
NATURAL LANGUAGE DATABASE UPDATES

Sharon C. Salveter
David Maier

Computer Science Depar=ment
SUNY Stony Brook

Stony Brook, NY 11794

ABSTRACT

Although a great deal of research effort has
been expended in support of natural language (NL)
database querying, little effort has gone to NL
database update. One reason for this state of
affairs is that in NL querying, one can tie nouns
and stative verbs in the query to database objects
(relation names, attributes and domain values). In
many cases this correspondence seems sufficient to
interpret NL queries. NL update seems to require
database counterparts for active verbs, such as
"hire," "schedule" and "enroll," rather than for
stative entities. There seem to be no natural can-
didates to fill this role.

We suggest a database counterpart for active
verbs, which we call verbsraphs. The verbgraphs
may be used to support NL update. A verbgraph is a
structure for representing the various database
changes that a given verb might describe. In addi-
tion to describing the variants of a verb, they may
be used to disamblguate the update command. Other
possible uses of verbgraphs include, specification
of defaults, prompting of the user to guide but not
dictate user interaction and enforcing a variety of
types of database integrity constraints.

I. MOTIVIATION AND PROBLEM STATF~NT

We want to support natural language interface
for all aspects of database manipulation. English
and English-like query systems already exist, such
as ROBOT[Ha77], TQA[Da78], LUNAR[W076] and those
described by Kaplan[Ka79], Walker[Wa78] and Waltz
[Wz75]. We propose to extend natural language
interac$ion to include data modification (insert,
delete, modify) rather than simply data extraction.
The desirability and unavailability of natural lan-
guage database modification has been noted by
Wiederhold, et al.[Wi81]. Database systems cur-
rently do not contain structures for explicit model-
ling of real world changes.

A state of a database (OB) is meant to repre-
sent a state of a portion of the real world.

This research is partially supported by NSF grants
IST-79-18264 and ENG-79-07794.

We refer to the abstract description of the portion
of the real world being modelled as the semantic
data descri~tlo n (SDD). A SDD indicates a set of
real world states (RWS) of interest, a DB defini-
tion gives a set of allowable database states
(DBS). The correspondence between the SDD and the
DB definition induces connections between DB states
and real world states. The situation is diagrammed
in Figure i.

Real World
m

o ~ RWSI

c~o
RWS2

~ RWS3

semantic
description

Database

> DBSI m ,~ m

m D-o
DBS2 m ~

m

DBS3

< ~ database
correspondence definition

Figure 1

Natural language (NL) querying of the DB re-
quires that the correspondence between the SDD and
the DB definition be explicitly stated. The query
system must translate a question phrased in terms
of the SDD into a question phrased in terms of a
data retrieval command in the language of the DB
system. The response to the command must be trans-
lated back into terms of the SDD, which yields
information about the real world state. For NL
database modification, this stative correspondence
between DB states and real world states is not
adequate. We want changes in the real world to be
reflected in the DB. In Figure 2 we see that when
some action in the real world causes a state change
from RWSI to RWS2, we must perform some modifica-
tion to the DB to change its state from DBSI to
DBS2.

Real World Database

f action D}IL

RWS2 ~ DBS2

Figure 2

67

We have a means to describe the action that
changed the state of the real world: active verbs.
We also have a means ~o describe a change in the
DB state: data manipulation language (DML) com-
mand sequences. But given a real world-action, how
do we find a O~XL command sequence that will agcomp-
lish the corresponding change in the DB?

Before we explore ways to represent his
active correspondence--the connection between real
world actions and DB updates--, let us examine how
the stative correspondence is captured for use by
a NL query system. We need to connect entities
and relationships in the SDD with files, fields
and field values in the DB. This stative corres-
pondence between RWS and DBS is generally specif-
ied in a system file. For example, in Harris'
ROBOT system, the semantic description is implici%
and it is assumed to be given in English. The
entities and relationships in the description are
roughly English nouns and stative verbs. The
correspondence of the SDD to the DB is given by a
lexicon that associates English words with files,
fields and field values in the DB. This lexicon
also gives possible referents for word and phrases
such as "who," "where" and "how much."

Consider the following example. Suppose we
have an office DB of employees and their scheduled
meetings, reservations for meeting rooms and mes-
sages from one employee to another. We capture
this information in the following four relations,

EMP(name,office,phone,supervisor)
APPOINTMENT(name,date,time,duration,who,

topic,location)
MAILBOX(name,date,time,from,message)
ROO~ESERVE(room,date,time,duration,reserver)

with domains (permissible sets of values):

DOIiAIN ATTRIBUTES

personname name, who, from, reserver, supervisor
roomnum room, location, office
phonenum phone
calendardate date
clock~ime time
elapsedtime duration
text message~ topic

Consider an analysis of the query

"What is the name and phone # of the person
who reserved room 85 for 2:45pm today?"

Using the lexicon, we can tie words in the query to
domains and relations.

name - personname

phone - phonenum
person - personname
who - personname

reserve - ROOMRESERVE
relation

room - roomnum
2:45pm - clocktlme
~ay - calendardate

We need to connect relations D~ and ROO~ESERVE.
The possible joins are room-office and name-
reserver. If we have stored the informa=ion that
offices and reservable rooms never intersect, we can

eliminate the first possibility. Thus we can
arrive at the query

i__nnEMP, ROOMKESERVE retrieve name, phone where
name = reserver and room = 85 and time =
2:45pm and date = CURRE~DATE

Suppose we now want to make a change to the
database:

"Schedule Bob Marley for 2:lbpm Friday."

This request could mean schedule a meeting with an
individual or schedule Bob Marley for a seminar.
We want to connect "schedule" with the insertion
of a tuple in either APPOINTMENT or ROO~ESERVE.
Although we may have pointers from "schedule" to
APPOINTMENT and ROOMRESERVE, we do not have ade-
quate information for choosing the relation to up-
date.

Although files, fields, domains and values
seem to be adequate for expressing the stative
correspondence, we have no similar DB objects to
which we may tie verbs that describe actions in
the real world. The best we can do with files,
fields and domains is to indicate what is to be
modified; we cannot specify how to make the modif-
ication. We need to connect the verbs "schedule,"
"hire" and "reserve" with some structures that
dictate appropriate D:.~ sequences that perform the
corresponding updates to the DB. The best we have
is a specific D~ command sequence, a transaction,
for each instance of "schedule" in the real world.
No single transaction truly represents all the
implications and variants of the "schedule" action.
"Schedule" really corresponds to a set of similar
transactions, or perhaps some parameterized version
of a DB transaction.

induced connections

RWS2 ~ / ~ ~ DBS2

"Schedule"4.~Parameterized
Transaction (PT)

Figure 3

The desired situation is shown in Figure 3.
We hg" ~ an active correspondence between "schedule"
anG a parameterized DB transaction PT. Oifferent
instances of the schedule action, S1 and $2, cause
differenL changes in the real worl~ s~a~. From
the active correspondence of "schedule" and PT, we
want to produce the proper transaction, T1 or T2,
to effect the correct change in the DB state.
There is not an existing candidate for the high-
level specification language for verb descriptions.

68

We must be able to readily express the correspond-
ence between actions in the semantic world and
verb descriptions in this high-level specification
We depend heavily on this correspondence to proc-
ess natural language updates, just as the statlve
correspondence is used to process natural language
queries. In the next section we examine these
requirements in more detail and offer, by example,
one candidate for the representation.

Another indication of the problem of active
verbs in DB shows up in looking a semantic data
languages. Sematnic data models are systems for
constructing precise descriptions of protions of
the real world - semantic data description (SDD)-
using terms that come from the real world rather
than a particular DB system. A SDD is a starting
point for designing and comparing particular DB
implementations. Some of the semantic models that
have been proposed are the entity-relationship
model[Ch763, SDM[~81], RM/T[Co793, TAXIS[MB80]
and Beta[Br78]. For some of these models, method-
ologies exist for translating to a DB specification
in various DB models, as well as for expressing
the static correspondence between a SDD in the
semantic model and a particular DB implementation.
To express actions in these models, however, there
are only terms that refer to DBs: insert, delete,
modify, rather than schedule, cancel, postpone
(the notable exception is Skuce[SkSO]).

While there have been a number of approaches
made to NL querying, there seems to be little work
on NL update. Carbonell and Hayes[CHSl] have
looked at parsing a limited set of NL update com-
mands, but they do not say much about generating
the DB transactions for these commands. Kaplan
and Davidson[KDSl] have looked at the translation
of NL updates to transactions, but the active
verbs they deal with are synonyms for DB terms,
essentially following the semantic data model as
above. This limitation is intentional, as the
following excerpt shows:

First, it is assume that the underlying
database update must be a series of trans-
actions of the same type indicated in the
request. That is, if the update requests
a deletion, this can only be mapped into
a series of deletions in the database.

While some active verbs, such as "schedule,"
may correspond to a single type of DB update,
there are other verbs that will require multiple
types of DB updates, such as "cancel," which
might require sending message as well as removing
an appointment. ~apian and Davidson are also
trying to be domain independent, while we are
trying to exploit domain-specific information.

II. NATURE OF THE REPRESENTATION

We propose a structure, a verbgraph, to repre-
sent action verbs. Verbgraph are extensions of
frame-like structures used to represent verb mean-
ing in FDRAN[Sa78] and [Sa79]. One verbgraph is

associated with each sense of a verb; that struc-
ture represents all variants. A real world change
is described by a sentence that contains an active
verb; the DB changes are accomplished by DML com-
mand sequences. A verbgraph is used to select
DNfL sequences appropriate to process the variants
of verb sense. We also wish to capture that one
verb that may be used as part of another: we may
have a verb sense RESERVE-ROOM that may be used by
itself or may be used as a subpart of the verb
SCHEDULE-TALK.

Figure 4 is an example of verbgraph. It
models the "schedule appointment" sense of the
verb "schedule." There are four basic variants we
are attempting to capture; they are distinguished
by whether or not the appointment is scheduled with
someone in the company and whether or not a meeting
room is to be reserved. There is also the possi-
bility that the supervisor must be notified of
the meeting.

The verbgraph is directed acyclic graph (DAG)
with 5 kinds of nodes: header, footer, informa-
tion, AND (0) and OR (o). Header is the source of
the graph, the footer is the sink. Every informa-
tion node has one incoming and outgoing edge. An
AND or OR node can have any number of incoming or
outgoing edges. A variant corresponds to a
directed path in the graph. We define a path to
be connected subgraph such that

I) the header is included;
2) the footer is included;
3) if it contains an information node, it

contains the incoming and outgoing edge;
4) if it contains an AND node, it contains

all incoming and outgoing edges; and
5) if it contains an OR node, it contains

exactly one incoming and one outgoing
edge.

We can think of tracing a path in the graph by
starting at the header and following its outgoing
edge. Whenever we encounter an information node,
we go through it. Whenever we encounter an ~ND
node, the path divides and follows all outgoing
edges. We may only pass through an AND node if
all its incoming edges have been followed. An OR
node can be entered on only one edge and we leave
it by any of its outgoing edges.

An example of a complete path is one that
consists of theheader, footer, information nodes,
A, B, D, J, and connector nodes, a, b, c, d, g, k,
i, n. Although there is a direction to paths, we
do not intend that the order of nodes on a path
implies any order of processing the graph, except
the footer node is always last to be processed.
A variant of a verb sense is described by the set
of all expressions in the information nodes con-
tained in a path.

Expressions in the information nodes can be
of two basic types: assignment and restriction.
The assignment type produces a value to be used
in the update, either by input or computation; the
key word input indicates the value comes from the
user. Some examples of assignment are:

69

I
" . l . ~ F I ' ' ~ a e - ~ / S ~

APPT.~ul-atlon in=u~ fz~m el~sedtime
APPT.cl~e - in?u+~ f'm~m ca!e~a:~iata
APPT. ,~ho - L=put f : , ~ ~e=somm,,e

b

B
APPT. who in RI
APPT~. =am~ - APPT. ~ho
APPT..2. who - AP.~T. =Ame
APPT2. Cite - AP~T. time
APPT2. d~te - APPT. dais
APPT2. topic - APPT. topic
.~PT2. whets - APPT. whe:e

wi th :e on %APPT. ~ . t e !

o $

C IRES. date - APPT. date

i
~! I ~" :eserve= - AY~T. ~!~e

IA~T'~° ~-~ ~--~ ,l~S.~. - ~.t~.
RES. ~ul'Atlon A.~P~, iuz'ation

l~ : . ~,~ ~o_~t _~ R~ i L~T,. ~e~ R2J

Figura 4

c a l l I~r'OKM(R~, .~2Fg.name, 'Meet ing I
~ - -~ ~ T T . ~ho on f ~ T . ~ t e in I room ~PPT. vhere')

ROONRESERVE inse.~ ~ES

70

i) (node labelled A in Figure 4)
APPT.who ÷ input from personname

The user must provide a value from the domain
personname.

2) (node labelled D in Figure 4)
RES.date ÷ APPT.date

The value for ApPT.date is used as the value
RES.date.

An example of restriction is: (node B in Figure 4)
APPT.who in R1 where R1 = in EMP retrieve name

This statement restricts the value of APPT.who to
be a company employee.

Also in Figure 4, the symbols RI, R2, R 3 and R 4
stand for the retrievals

R I = i_~nEMP retrieve name

R 2 = i_nn EMP retrieve office where name =
ApPT.name

R 3 = i_~n EMP retrieve office where name =
APPT.name or name = APPT.who.

R 4 = in ~MP retrieve supervisor where name =
APPT.name.

In Node B, INFORM(APPT.who, APPT.name, 'meeting
with me on %APPT.date at %APPT.time') stands for
another verbgraph that represents sending a message
by inserting a tuple in MAILBOX. We can treat the
INFORM verbgraph as a procedure by specifying
values for all the slots that must be filled from
input. The input slots for INFORM are (name, from,
message).

III. WHAT CAN WE DO WITH IT?

One use for the verbgraphs is in support of NL
directed manipulation of the DB. in particular,
they can aid in variant selection. We assume that
the correct verb sense has already been selected; we
discuss sense selection later. Our goal is to use
information in the query and user responses to
questions to identify a path in the verbgraph. Let
us refer again to the verbgraph for SCHEDULE-
APPOINTMENT shown in Figure 4. Suppose the user
command is "Schedule an appointment with James
Parker on April 13" where James Parker is a company
employee. Interaction with the verbgraph proceeds
as follows. First, information is extracted from
the command and classified by domain. For example,
James Parker is in domain personname, which can
only be used to instantiate APPT.name, APPT.who,
APPT2.name and APPT2.who. However, since USER is
a system variable, the only slots left are APPT.who
and APPT2.name, Wblch are necessarily the same.
Thus we can instantiate APPT.who and ApPT2.name
with "James Parker." We classify "April 13" as a
calendar date and instantiate APPT.date, APPT2.date
and RES.date with it, because all these must be the
same. No more useful information is in the query.

Second, we examine the graph to see if a unique
path has been determined. In this case it has
not. However, other possibilities are constrained
because we know the path must go through node B.
This is because the path must go through either
node B or node C and by analyzing the response to
retrieval RI, we can determine it must be node B
(i.e., James Parker is a company employee). Now
we must determine the rest of the path. One deter-
mination yet to be made is whether or not node D
is in the path. Because no room was mentioned in
the query, we generate from the graph a question
such as '";here will the appointment take place?"
Suppose the answer is "my office." Presume we
can translate "my office" into the scheduler's
office number. This response has two effects.
First, we know that no room has to be reserved, so
node D is not in the path. Second, we can fill in
APPT.where in node F. Finally, all that remains
to be decided is if node H is on the path. A
question like "Should we notify your supervisor?"
is generated. Supposing the answer is "no." Now
the path is completely determined; it contains
nodes A, B and F. Now that we have determined a
unique path in the graph, we discover that not all
the information has been filled-in in every node
on the path. We now ask the questions to complete
these nodes, such as '~nat time?", "For how long?"
and "~at is the topic?". At this point we have a
complete unique path, so the appropriate calls to
INFORM can be made and the parameterized trans-
action in the footer can be filled-in.

Note that the above interaction was quite rig-
idly structured. In particular, after the user
issues the original command, the verbgraph instan-
tiation program chooses the order of the subsequent
data entry. There is no provision for default, or
optional values. Even if optional values were
allowed, the program would have to ask questions
for them anyway, since the user has no opportunity
to specify them subsequent to the original command.
We want the interaction to be more user-dlrected.
Our general principle is to allow the user to
volunteer additional information during the course
of the interaction, as long as the path has not
been determined and values remain unspecified. We
use the following interaction protocol. The user
enters the initial command and hits return. The
program will accept additional lines of input.
However, if the user just hits return, and the pro-
gram needs more information, the program will gener-
ate a question. The user answers the question,
followed by a return. As before, additional infor-
mation may be entered on subsequent lines. If the
user hits return on an empty line, another question
is generated, if necessary.

Brodle[Br813 and Skuce[Sk80] both present

systems for representing DB change. Skuce's
goal is to provide an English-like syntax for DB
procedure specification. Procedures have a rigid
format and require all information to be entered
at time of invocation in a specific order, as with
any computer subprogram. Brodie is attempting to
also specify DB procedures for DB change. He
allows some information to be specified later, but
the order is fixed. Neither allow the user to
choose the order of entry, and neither accomodates

71

variants that would require different sets of
values to be specified. However, like our method,
and unlike Kaplan and Davidson[KD81], they attempt
to model DB changes that correspond to real world
actions rather than just specifying English syno-
nyms for single DB come, ands.

Certain constraints on updates are implicit
on verbgraphs, such as APPT.where ÷ input from R3,
which constrains the location of the meeting to be
the office of one of the two employees. We also
use verbgraphs to maintain database consistency.
Integrity constraints take two forms: constraints
on a single state and constraints on successive
database states. The second kind is harder to en-
force; few systems support constraints on succes-
sive states.

Verbgraphs provide many opportunities for
specifying various defaults. First, we can specify
default values, which may depend on other values.
Second, we can specify default paths. Verbgraphs
are also a means for specifying non-DB operations.
For example, if an appointment is made with someone
outside the company, generate a confirmation letter
to be sent.

All of the above discussion has assumed we are
selecting a variant where the sense has already
been determined. In general sense selection, being
equivalent to the frame selection problem in
Artifical Intelligence[CW76], is very difficult.
We do feel that verbgraph will aid in sense selec-
tion, but will not be as efficacious as for variant
selection. In such a situation, perhaps the English
parser can help disambiguate or we may want to ask
an appropriate question to select the correct
sense, or as a last resort, provide menu selection,

IV. AN ALTERNATIVE TO VERBGRAPHS

We are currently considering hierarchically
structured transactions, as used in the TAXIS
semantic model [MB80], as an alternative to verb-
graphs. Verbgraphs can be ambiguous, and do not
lend themselves to top-down design. Hierarchical
transactions would seem to overcome both problems.
Hierarchical transactions in TAXIS are not quite as
versatile as verbgraphs in representing variants.
The hierarchy is induced by hierarchies on the
entity classes involved. Variants based on the
relationship among particular entities, as recorded
in the database, cannot be represented. For
example, in the SCHEDULE-APPOINTME/{T action, we may
want to require that if a supervisor schedules a
meeting with an employee not under his supervision,
a message must be sent to that employee's super-
visor. This variant cannot he distinguished by
classlfl [ng one entity as a supervisor and the
othe£ as an employee because the variant does not
apply when the supervisor is scheduling a meeting
with his own employee. Also all variants in a TAXIS
trausaction hierarchy must involve the same entity
classes, where we may want to involve some classes
only in certain variants. For example, a variant
of SCHEDULE-APPOINTMENT may require that a secretary

be present to take notes, introducing an entity
into that variant that is not present elsewhere.

We are currently trying to extend the TAXIS
model so it can represent such variants. Our ex-
tensions include introducing guards to distinguish
specializations and adding optional actions and
entities to transactions. A guard is a boolean
expression involving the entities and the database
that, when satisfied, indicates the associated
specialization applies. For example, the guard

scheduler i__nnclass(supervisor) and
scheduler # supervisor-of(schedulee)

would distinguish the variant described above
where an employee's supervisor must be notified
of any meeting with another supervisor. The dis-
crimination mechanism in TAXIS is a limited form
of guards that only allows testing for entities
in classes.

[Br78]

[Br81]

[C~Sl]

[cw76]

[Ch76]

[Co79]

[Da78]

[~M81]

[Ha77]

V. REFERENCES

Brodie, M.L., Specification and verifica-
tion of data base semantic integrity.
CSRG Report 91, Univ. of Toronto, April
1978.

Brodie, M.L., On modelling behavioral
semantics of database. VLDB 7, Cannes
France, Sept. 1981.

Carbonell, J. and Hayes, P., Multi-
strategy construction-specification pars-
ing for flexible database query and up-
date. CMU Internal Report, July 1981.

Charniak, E. and Wilks, Y., Computation
Semantics. North Holland, 1976.

Chen, P.P.-S., The entity-relationship
model: toward a unified view of data.
ACM TODS i:I, March 1976, pp. 9-36.

Codd, E.F., Extending the database rela-
tional model to capture more meaning. ACM
TODS 4:4, December 1979, pp. 397-434.

Damereau, F.J., The derivation of answers
from logical forms in a question answering
system. American Journal of Computational
Linguistics. Microfiche 75, 1978,
pp. 3-42.

Hammer, M. and McLeod, D., Database
description with SDM: A semantic database
model. ACM TODS 6:3, Sept. 1981,
pp. 351-386.

Harris, L.R., Using the database itself
as a semantic component to aid the parsing
of natural language database queries.
Dartmouth College Mathematics Dept.
TR 77-2, 1977.

72

IRa79]

[m~81]

[~m8o]

[Sa78]

[Sa79]

[skSO]

[Wa78]

[wisz]

[Wo76]

[wz7s]

Kaplan, S.J., Cooperative responses from a
natural language data base query system.
Stanford Univ. Heuristic Programming
Project paper HPP-79-19.

Kaplan, S.J., and Davidson, J., Inter-
preting Natural Language Updates. Proceed-
ings of the 19th Annual Meeting of the
Association for Computational Linsulstlcs,
June 1981.

Mylopoulos, J., Bernstein, P.A., and Wong,
H.K.T., A language facility for designing
database-lntensive applications. ACM
TODS 5:2, June 1980, pp. 397-434.

Salveter, S.C., Inferring conceptual struc-
tures from pictorial input data. Univer-
sity of Wisconsin, Computer Science Dept.,
TR 328, 1978.

Salveter, S.C., Inferring conceptual
graphs. Cognitive Science~3, pp. 141-166.

Skuce, D.R., Bridging the gap between
natural and computer language. Proc. of
Int'l Congress on Applied Systems, and
Cybernetics, Acapulco, December 1980.

Walker, D.E., Understanding Spoken
Language. American Elsevier, 1978.

Wiederhold, G., Kaplan, S.J., and
Sagalowicz, D., Research in knowledge base
management systems. SIG%IOD Record, VII,
#3, April 1981, pp. 26-54.

Woods, W., et. al., Speech Understanding
Systems: Final Technical Progress Report.
BBN No. 3438, Cambridge, MA, 1976.

Waltz, D., Natural language access to a
large database: an engineering approach.
In Proc. of the Fourth Int'l Joint Conf.
onArtlficial Intelligence, 1976.

73

