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Abstract

This paper is concerned with the task of
multi-hop open-domain Question Answering
(QA). This task is particularly challenging
since it requires the simultaneous performance
of textual reasoning and efficient searching.
We present a method for retrieving multiple
supporting paragraphs, nested amidst a large
knowledge base, which contain the necessary
evidence to answer a given question. Our
method iteratively retrieves supporting para-
graphs by forming a joint vector representa-
tion of both a question and a paragraph. The
retrieval is performed by considering contex-
tualized sentence-level representations of the
paragraphs in the knowledge source. Our
method achieves state-of-the-art performance
over two well-known datasets, SQuAD-Open
and HotpotQA, which serve as our single- and
multi-hop open-domain QA benchmarks, re-
spectively. 1

1 Introduction

Textual Question Answering (QA) is the task of
answering natural language questions given a set
of contexts from which the answers to these ques-
tions can be inferred. This task, which falls un-
der the domain of natural language understand-
ing, has been attracting massive interest due to ex-
tremely promising results that were achieved us-
ing deep learning techniques. These results were
made possible by the recent creation of a variety of
large-scale QA datasets, such as TriviaQA (Joshi
et al., 2017) and SQuAD (Rajpurkar et al., 2016).
The latest state-of-the-art methods are even capa-
ble of outperforming humans on certain tasks (De-
vlin et al., 2018)2.

The basic and arguably the most popular task of
QA is often referred to as Reading Comprehension

1Code is available at https://github.com/yairf11/MUPPET
2https://rajpurkar.github.io/SQuAD-explorer/

(RC), in which each question is paired with a rela-
tively small number of paragraphs (or documents)
from which the answer can potentially be inferred.
The objective in RC is to extract the correct an-
swer from the given contexts or, in some cases,
deem the question unanswerable (Rajpurkar et al.,
2018). Most large-scale RC datasets, however, are
built in such a way that the answer can be inferred
using a single paragraph or document. This kind
of reasoning is termed single-hop reasoning, since
it requires reasoning over a single piece of evi-
dence. A more challenging task, called multi-hop
reasoning, is one that requires combining evidence
from multiple sources (Talmor and Berant, 2018;
Welbl et al., 2018; Yang et al., 2018). Figure 1
provides an example of a question requiring multi-
hop reasoning. To answer the question, one must
first infer from the first context that Alex Ferguson
is the manager in question, and only then can the
answer to the question be inferred with any confi-
dence from the second context.

Another setting for QA is open-domain QA, in
which questions are given without any accompa-
nying contexts, and one is required to locate the
relevant contexts to the questions from a large
knowledge source (e.g., Wikipedia), and then ex-
tract the correct answer using an RC component.
This task has recently been resurged following
the work of Chen et al. (2017), who used a TF-
IDF based retriever to find potentially relevant
documents, followed by a neural RC component
that extracted the most probable answer from the
retrieved documents. While this methodology
performs reasonably well for questions requiring
single-hop reasoning, its performance decreases
significantly when used for open-domain multi-
hop reasoning.

We propose a new approach to accomplishing
this task, called iterative multi-hop retrieval, in
which one iteratively retrieves the necessary evi-
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Question: The football manager who recruited David
Beckham managed Manchester United during what time-
frame?
Context 1: The 1995–96 season was Manchester
United’s fourth season in the Premier League ... Their
triumph was made all the more remarkable by the fact
that Alex Ferguson ... had drafted in young players
like Nicky Butt, David Beckham, Paul Scholes and the
Neville brothers, Gary and Phil.
Context 2: Sir Alexander Chapman Ferguson, CBE
(born 31 December 1941) is a Scottish former football
manager and player who managed Manchester United
from 1986 to 2013. He is regarded by many players,
managers and analysts to be one of the greatest and most
successful managers of all time.

Figure 1: An example of a question and its answer
contexts from the HotpotQA dataset requiring multi-
hop reasoning and retrieval. The first reasoning hop is
highlighted in green, the second hop in purple, and the
entity connecting the two is highlighted in blue bold
italics. In the first reasoning hop, one has to infer that
the manager in question is Alex Ferguson. Without
this knowledge, the second context cannot possibly be
retrieved with confidence, as the question could refer
to any of the club’s managers throughout its history.
Therefore, an iterative retrieval is needed in order to
correctly retrieve this context pair.

dence to answer a question. We believe this iter-
ative framework is essential for answering multi-
hop questions, due to the nature of their reasoning
requirements.

Our main contributions are the following:

• We propose a novel multi-hop retrieval ap-
proach, which we believe is imperative for
truly solving the open-domain multi-hop QA
task.

• We show the effectiveness of our approach,
which achieves state-of-the-art results in
both single- and multi-hop open-domain QA
benchmarks.

• We also propose using sentence-level repre-
sentations for retrieval, and show the possible
benefits of this approach over paragraph-level
representations.

While there are several works that discuss so-
lutions for multi-hop reasoning (Dhingra et al.,
2018; Zhong et al., 2019), to the best of our knowl-
edge, this work is the first to propose a viable so-
lution for open-domain multi-hop QA.

2 Task Definition

We define the open-domain QA task by a triplet
(KS,Q,A) where KS = {P1, P2, . . . , P|KS|}
is a background knowledge source and Pi =
(p1, p2, . . . , pli) is a textual paragraph consist-
ing of li tokens, Q = (q1, q2, . . . , qm) is a tex-
tual question consisting of m tokens, and A =
(a1, a2, . . . , an) is a textual answer consisting of
n tokens, typically a span of tokens pj1 , . . . , pjn
in some Pi ∈ KS, or optionally a choice from a
predefined set of possible answers. The objective
of this task is to find the answer A to the question
Q using the background knowledge source KS.
Formally speaking, our task is to learn a function
φ such that A = φ(Q,KS).

Single-Hop Retrieval In the classic and most
simple form of QA, questions are formulated in
such a way that the evidence required to answer
them may be contained in a single paragraph, or
even in a single sentence. Thus, in the open-
domain setting, it might be sufficient to retrieve
a single relevant paragraph Pi ∈ KS using the
information present in the given question Q, and
have a reading comprehension model extract the
answer A from Pi. We call this task variation
single-hop retrieval.

Multi-Hop Retrieval In contrast to the single-
hop case, there are types of questions whose an-
swers can only be inferred by using at least two
different paragraphs. The ability to reason with
information taken from more than one paragraph
is known in the literature as multi-hop reasoning
(Welbl et al., 2018). In multi-hop reasoning, not
only might the evidence be spread across multi-
ple paragraphs, but it is often necessary to first
read a subset of these paragraphs in order to ex-
tract the useful information from the other para-
graphs, which might otherwise be understood as
not completely relevant to the question. This sit-
uation becomes even more difficult in the open-
domain setting, where one must first find an initial
evidence paragraph in order to be able to retrieve
the rest. This is demonstrated in Figure 1, where
one can observe that the second context alone may
appear to be irrelevant to the question at hand and
the information in the first context is necessary to
retrieve the second part of the evidence correctly.

We extend the multi-hop reasoning ability to the
open-domain setting, referring to it as multi-hop
retrieval, in which the evidence paragraphs are re-
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trieved in an iterative fashion. We focus on this
task and limit ourselves to the case where two it-
erations of retrieval are necessary and sufficient.

3 Methodology

Our solution, which we call MUPPET (multi-hop
paragraph retrieval), relies on the following basic
scheme consisting of two main components: (a) a
paragraph and question encoder, and (b) a para-
graph reader. The encoder is trained to encode
paragraphs into d-dimensional vectors, and to en-
code questions into search vectors in the same vec-
tor space. Then, a maximum inner product search
(MIPS) algorithm is applied to find the most sim-
ilar paragraphs to a given question. Several al-
gorithms exist for fast (and possibly approximate)
MIPS, such as the one proposed by Johnson et al.
(2017). The most similar paragraphs are then
passed to the paragraph reader, which, in turn, ex-
tracts the most probable answer to the question.

It is critical that the paragraph encodings do not
depend on the questions. This enables storing pre-
computed paragraph encodings and executing effi-
cient MIPS when given a new search vector. With-
out this property, any new question would require
the processing of the complete knowledge source
(or a significant part of it).

To support multi-hop retrieval, we propose
the following extension to the basic scheme.
Given a question Q, we first obtain its encod-
ing q ∈ Rd using the encoder. Then, we trans-
form it into a search vector qs ∈ Rd, which
is used to retrieve the top-k relevant paragraphs
{PQ

1 , P
Q
2 , . . . , P

Q
k } ⊂ KS using MIPS. In each

subsequent retrieval iteration, we use the para-
graphs retrieved in its previous iteration to refor-
mulate the search vector. This produces k new
search vectors, {q̃s

1, q̃
s
2, . . . , q̃

s
k}, where q̃s

i ∈ Rd,
which are used in the same manner as in the first it-
eration to retrieve the next top-k paragraphs, again
using MIPS. This method can be seen as perform-
ing a beam search of width k in the encoded para-
graphs’ space. A high-level view of the described
solution is given in Figure 2.

3.1 Paragraph and Question Encoder

We define f , our encoder model, in the fol-
lowing way. Given a paragraph P consisting
of k sentences (s1, s2, . . . , sk) and m tokens
(t1, t2, . . . , tm), such that si = (ti1 , ti2 , . . . , til),
where l is the length of the sentence, our encoder

generates k respective d-dimensional encodings
(s1, s2, . . . , sk) = f(P ), one for each sentence.
This is in contrast to previous work in paragraph
retrieval in which only a single fixed-size repre-
sentation is used for each paragraph (Lee et al.,
2018; Das et al., 2019). The encodings are created
by passing (t1, t2, . . . , tm) through the following
layers.

Word Embedding We use the same embed-
ding layer as the one suggested by Clark and Gard-
ner (2018). Each token t is embedded into a vector
t using both character-level and word-level infor-
mation. The word-level embedding tw is obtained
via pretrained word embeddings. The character-
level embedding of a token t with lt characters
(tc1, t

c
2, . . . , t

c
lt
) is obtained in the following man-

ner: each character tci is embedded into a fixed-
size vector tci . We then pass each token’s charac-
ter embeddings through a one-dimensional convo-
lutional neural network, followed by max-pooling
over the filter dimension. This produces a fixed-
size character-level representation for each to-
ken, tc = max

(
CNN(tc1, tc2, . . . , tclt)

)
. Finally,

we concatenate the word-level and character-level
embeddings to form the final word representation,
t = [tw; tc].

Recurrent Layer After obtaining the word
representations, we use a bidirectional GRU (Cho
et al., 2014) to process the paragraph and obtain
the contextualized word representations,

(c1, c2, . . . , cm) = BiGRU(t1, t2, . . . , tm).

Sentence-wise max-pooling Finally, we
chunk the contextualized representations of
the paragraph tokens into their corresponding
sentence groups, and apply max-pooling over the
time dimension of each sentence group to obtain
the parargaph’s d-dimensional sentence represen-
tations, si = max(ci1 , ci2 , . . . , cil). A high-level
outline of the sentence encoder is shown is
Figure 3a, where we can see a series of m tokens
being passed through the aforementioned layers,
producing k sentence representations.

The encoding q of a question Q is computed
similarly, such that q = f(Q). Note that we pro-
duce a single vector for any given question, thus
the max-pooling operation is applied over all ques-
tion words at once, disregarding sentence informa-
tion.
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Figure 2: A high-level overview of our solution, MUPPET.

(a) Sentence Encoder (b) Reformulation Component

Figure 3: Architecture of the main components of our
paragraph and question encoder. (a) Our sentence en-
coder architecture. The model receives a series of to-
kens as input and produces a sequence of sentence rep-
resentations. (b) Our reformulation component archi-
tecture. This layer receives contextualized representa-
tions of a question and a paragraph, and produces a re-
formulated representation of the question.

Reformulation Component The reformula-
tion component receives a paragraph P and a
question Q, and produces a single vector q̃. First,
contextualized word representations are obtained
using the same embedding and recurrent layers
used for the initial encoding, (cq1, c

q
2, . . . , c

q
nq) for

Q and (cp1, c
p
2, . . . , c

p
np) for P . We then pass the

contextualized representations through a bidirec-
tional attention layer, which we adopt from Clark
and Gardner (2018). The attention between ques-
tion word i and paragraph word j is computed as:

aij = wa
1 · c

q
i + wa

2 · c
p
j + wa

3 · (c
q
i � cpj ),

Context: One of the most famous people born in War-
saw was Maria Skłodowska-Curie, who achieved inter-
national recognition for her research on radioactivity and
was the first female recipient of the Nobel Prize. Famous
musicians include Władysław Szpilman and Frédéric
Chopin. Though Chopin was born in the village of
Żelazowa Wola, about 60 km (37 mi) from Warsaw, he
moved to the city with his family when he was seven
months old. Casimir Pulaski, a Polish general and hero of
the American Revolutionary War, was born here in 1745.
Question 1: What was Maria Curie the first female re-
cipient of?
Question 2: How old was Chopin when he moved to
Warsaw with his family?

Figure 4: An example from the SQuAD dataset of
a paragraph that acts as the context for two different
questions. Question 1 and its evidence (highlighted
in purple) have little relation to question 2 and its
evidence (highlighted in green). This motivates our
method of storing sentence-wise encodings instead of
a single representation for an entire paragraph.

where wa
1,wa

2,wa
3 ∈ Rd are learned vectors. For

each question word, we compute the vector ai:

αij =
eaij∑np

j=1 e
aij
, ai =

np∑
j=1

αijcpj .

A paragraph-to-question vector ap is computed as
follows:

mi = max
1≤j≤np

aij , βi =
emi∑nq

i=1 e
mi

ap =
nq∑
i=1

βicqi .

We concatenate cqi , ai, c
q
i � ai and ap � ai and

pass the result through a linear layer with ReLU



2300

activations to compute the final bidirectional at-
tention vectors. We also use a residual connec-
tion where we process these representations with
a bidirectional GRU and another linear layer with
ReLU activations. Finally, we sum the outputs of
the two linear layers. As before, we derive the d-
dimensional reformulated question representation
q̃ using a max-pooling layer on the outputs of the
residual layer. A high-level outline of the reformu-
lation layer is given in Figure 3b, wherem contex-
tualized token representations of the question and
n contextualized token representations of the para-
graph are passed through the component’s layers
to produce the reformulated question representa-
tion, q̃.

Relevance Scores Given the sentence repre-
sentations (s1, s2, . . . , sk) of a paragraph P , and
the question encoding q forQ, the relevance score
of P with respect to a question Q is calculated in
the following way:

rel(Q,P ) = max
i=1,...,k

σ

(
si

si � q
si · q
q

 ·

w1

w2

w3

w4

+ b

)
,

where w1,w2,w4 ∈ Rd and w3, b ∈ R are
learned parameters.

A similar max-pooling encoding approach,
along with the scoring layer’s structure, were pro-
posed by Conneau et al. (2017) who showed their
efficacy on various sentence-level tasks. We find
this sentence-wise formulation to be beneficial be-
cause it suffices for one sentence in a paragraph
to be relevant to a question for the whole para-
graph to be considered as relevant. This allows
more fine-grained representations for paragraphs
and more accurate retrieval. An example of the
benefits of using this kind of sentence-level model
is given in Figure 4, where we see two questions
answered by two different sentences. Our model
allows each question to be similar only to parts of
the paragraph, and not necessarily to all of it.

Search Vector Derivation Recall that our re-
trieval algorithm is based on executing a MIPS in
the paragraph encoding space. To derive such a
search vector from the question encoding q, we
observe that:

rel(Q,P ) ∝ max
i=1,...,k

s>i (w1 +w2 � q+ w3 · q).

Therefore, the final search vector of a question Q
is qs = w1 + w2 � q + w3 · q. The same equa-
tions apply when predicting the relevance score for
the second retrieval iteration, in which case q is
swapped with q̃.

Training and Loss Functions Each training
sample consists of a question and two paragraphs,
(Q,P 1, P 2), whereP 1 corresponds to a paragraph
retrieved in the first iteration, and P 2 corresponds
to a paragraph retrieved in the second iteration us-
ing the reformulated vector q̃. P 1 is considered
relevant if it constitutes one of the necessary ev-
idence paragraphs to answer the question. P 2 is
considered relevant only if P 1 and P 2 together
constitute the complete set of evidence paragraphs
needed to answer the question. Both iterations
have the same form of loss functions, and the
model is trained by optimizing the sum of the iter-
ations’ losses.

Our training objective for each iteration is com-
posed of two components: a binary cross-entropy
loss function and a ranking loss function. The
cross-entropy loss is defined as follows:

LCE = − 1

N

N∑
i=1

yi log
(
rel(Qi, Pi)

)
+ (1− yi) log

(
1− rel(Qi, Pi)

)
,

where yi ∈ {0, 1} is a binary label indicating the
true relevance of Pi to Qi in the iteration in which
rel(Qi, Pi) is calculated, and N is the number of
samples in the current batch.

The ranking loss is computed in the following
manner. First, for each question Qi in a given
batch, we find the mean of the scores given to
positive and negative paragraphs for each ques-
tion, qposi = 1

M1

∑M1
j=1 rel(Qi, Pj) and qnegi =

1
M2

∑M2
j=1 rel(Qi, Pj), where M1 and M2 are the

number of positive and negative samples for Qi,
respectively. We then define the margin ranking
loss (Socher et al., 2013) as

LR =
1

M

M∑
i=1

max(0, γ − qposi + qnegi ), (1)

whereM is the number of distinct questions in the
current batch, and γ is a hyperparameter. The final
objective is the sum of the two losses:

L = LCE + λLR, (2)

where λ is a hyperparameter.
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We note that we found it slightly beneficial to
incorporate pretrained ELMo (Peters et al., 2018)
embeddings in our model. For more detailed infor-
mation of the implementation details and training
process, please refer to Appendix C.

3.2 Paragraph Reader
The paragraph reader receives as input a question
Q and a paragraph P and extracts the most proba-
ble answer span to Q from P . We use the S-norm
model proposed by Clark and Gardner (2018). A
detailed description of the model is given in Ap-
pendix A.

Training An input sample for the paragraph
reader consists of a question and a single con-
text (Q,P ). We optimize the same negative log-
likelihood function used in the S-norm model for
the span start boundaries:

Lstart = − log

(∑
j∈PQ

∑
k∈Aj

eskj∑
j∈PQ

∑nj

i=1 e
sij

)
,

where PQ is the set of paragraphs paired with the
same question Q, Aj is the set of tokens that start
an answer span in the j-th paragraph, and sij is
the score given to the i-th token in the j-th para-
graph. The same formulation is used for the span
end boundaries, so that the final objective function
is the sum of the two: Lspan = Lstart + Lend.

4 Experiments and Results

We test our approach on two datasets, and mea-
sure end-to-end QA performance using the stan-
dard exact match (EM) and F1 metrics, as well as
the metrics proposed by Yang et al. (2018) for the
HotpotQA dataset (see Appendix B).

4.1 Datasets
HotpotQA Yang et al. (2018) introduced a
dataset of Wikipedia-based questions, which re-
quire reasoning over multiple paragraphs to find
the correct answer. The dataset also includes hard
supervision on sentence-level supporting facts,
which encourages the model to give explainable
answer predictions. Two benchmark settings are
available for this dataset: (1) a distractor setting,
in which the reader is given a question as well as
a set of paragraphs that includes both the support-
ing facts and irrelevant paragraphs; (2) a full wiki
setting, which is an open-domain version of the
dataset. We use this dataset as our benchmark for

the multi-hop retrieval setting. Several extensions
must be added to the reader from Section 3.2 in or-
der for it to be suitable for the HotpotQA dataset.
A detailed description of our proposed extensions
is given in Appendix B.

SQuAD-Open Chen et al. (2017) decoupled the
questions from their corresponding contexts in the
original SQuAD dataset (Rajpurkar et al., 2016),
and formed an open-domain version of the dataset
by defining an entire Wikipedia dump to be the
background knowledge source from which the an-
swer to the question should be extracted. We use
this dataset to test the effectiveness of our method
in a classic single-hop retrieval setting.

4.2 Experimental Setup

Search Hyperparameters For our experi-
ments in the multi-hop setting, we used a width
of 8 in the first retrieval iteration. In all our ex-
periments, unless stated otherwise, the reader is
fed the top 45 paragraphs through which it rea-
sons independently and finds the most probable
answers. In addition, we found it beneficial to
limit the search space of our MIPS retriever to a
subset of the knowledge source, which is deter-
mined by a TF-IDF heuristic retriever. We define
ni to be the size of the search space for retrieval
iteration i. As we will see, there is a trade-off for
choosing various values of ni. A large value of
ni offers the possibility of higher recall, whereas a
small value of ni introduces less noise in the form
of irrelevant paragraphs.

Knowledege Sources For HotpotQA, our
knowledge source is the same Wikipedia version
used by Yang et al. (2018)3. This version is a set of
all of the first paragraphs in the entire Wikipedia.
For SQuAD-Open, we use the same Wikipedia
dump used by Chen et al. (2017). For both knowl-
edge sources, the TF-IDF based retriever we use
for search space reduction is the one proposed by
Chen et al. (2017), which uses bigram hashing and
TF-IDF matching. We note that in the HotpotQA
Wikipedia version each document is a single para-
graph, while in SQuAD-Open, the full Wikipedia
documents are used.

3It has recently come to our attention that during our
work, some details of the Wikipedia version have changed.
Due to time limitations, we use the initial version description.
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Setting Method Answer Sup Fact Joint

EM F1 EM F1 EM F1

distractor Baseline (Yang et al., 2018) 44.44 58.28 21.95 66.66 11.56 40.86

Our Reader 51.56 65.32 44.54 75.27 28.68 54.08

full wiki

Baseline (Yang et al., 2018) 24.68 34.36 5.28 40.98 2.54 17.73

TF-IDF + Reader 27.55 36.58 10.75 42.45 7.00 21.47
MUPPET (sentence-level) 30.20 39.43 16.57 46.13 11.38 26.55
MUPPET (paragraph-level) 31.07 40.42 17.00 47.71 11.76 27.62

Table 1: Primary results for HotpotQA (dev set). At the top of the table, we compare our Paragraph Reader to the
baseline model of Yang et al. (2018) (as of writing this paper, no other published results are available other than
the baseline results). At the bottom, we compare the end-to-end performance on the full wiki setting. TF-IDF +
Reader refers to using the TF-IDF based retriever without our MIPS retriever. MUPPET (sentence-level) refers
to our approach with sentence-level representations, and MUPPET (paragraph-level) refers to our approach with
paragraph-level representations. For both sentence- and paragraph-level results, we set n1 = 32 and n2 = 512.

Method EM F1

DrQA (Chen et al., 2017) 28.4 -
DrQA (Chen et al., 2017) (multitask) 29.8 -
R3 (Wang et al., 2018a) 29.1 37.5
DS-QA (Lin et al., 2018) 28.7 36.6
Par. Ranker + Full Agg. (Lee et al., 2018) 30.2 -
Minimal (Min et al., 2018) 34.7 42.6
Multi-step (Das et al., 2019) 31.9 39.2
BERTserini (Yang et al., 2019) 38.6 46.1

TF-IDF + Reader 34.6 41.6
MUPPET (sentence-level) 39.3 46.2
MUPPET (paragraph-level) 35.6 42.5

Table 2: Primary results for SQuAD-Open.

4.3 Results

Primary Results Tables 1 and 2 show our
main results on the HotpotQA and SQuAD-Open
datasets, respectively. In the HotpotQA distrac-
tor setting, our paragraph reader greatly improves
the results of the baseline reader, increasing the
joint EM and F1 scores by 17.12 (148%) and 13.22
(32%) points, respectively. In the full wiki set-
ting, we compare three methods of retrieval: (1)
TF-IDF, in which only the TF-IDF heuristic is
used. The reader is fed all possible paragraph
pairs from the top-10 paragraphs. (2) Sentence-
level, in which we use MUPPET with sentence-
level encodings. (3) Paragraph-level, in which
we use MUPPET with paragraph-level encodings
(no sentence information). We can see that both
methods significantly outperform the naı̈ve TF-
IDF retriever, indicating the efficacy of our ap-
proach. As of writing this paper, we are placed
second in the HotpotQA full wiki setting (test set)

leaderboard4. For SQuAD-Open, our sentence-
level method established state-of-the-art results,
improving the current non-BERT (Devlin et al.,
2018) state-of-the-art by 4.6 (13%) and 3.6 (8%)
EM and F1 points, respectively. This shows that
our encoder can be useful not only for multi-hop
questions, but also for single-hop questions.

Retrieval Recall Analysis We analyze the per-
formance of the TF-IDF retriever for HotpotQA
in Figure 5a. We can see that the retriever suc-
ceeds in retrieving at least one of the gold para-
graphs for each question (above 90% with the top-
32 paragraphs), but fails at retrieving both gold
paragraphs. This demonstrates the necessity of an
efficient multi-hop retrieval approach to aid or re-
place classic information retrieval methods.

Effect of Narrowing the Search Space In Fig-
ures 5b and 5c, we show the performance of our
method as a function of the size of the search
space of the last retrieval iteration. For SQuAD-
Open, the TF-IDF retriever initially retrieves a set
of documents, which are then split into paragraphs
to form the search space. Each search space of
top-k paragraphs limits the potential recall of the
model to that of the top-k paragraphs retrieved by
the TF-IDF retriever. This proves to be subopti-
mal for very small values of k, as the performance
of the TF-IDF retriever is not good enough. Our
models, however, fail to benefit from increasing
the search space indefinitely, hinting that they are
not as robust to noise as we would want them to
be.

4March 5, 2019. Leaderboard available at
https://hotpotqa.github.io/
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(a) TF-IDF retrieval results (b) SQuAD-Open (c) HotpotQA

Figure 5: Various results based on the TF-IDF retriever. (a) Retrieval results of the TF-IDF hueristic retriever on
HotpotQA. At Least One @ k is the number of questions for which at least one of the paragraphs containing the
supporting facts is retrieved in the top-k paragraphs. Potentially Perfect @ k is the number of questions for which
both of the paragraphs containing the supporting facts are retrieved in the top-k paragraphs. (b) and (c) Performance
analysis on the SQuAD-Open and HotpotQA datasets, respectively, as more documents/paragraphs are retrieved
by the TF-IDF heuristic retriever. Note that for SQuAD-Open each document contains several paragraphs, and the
reader is fed the top-k TF-IDF ranked paragraphs from within the documents in the search space.

Effectiveness of Sentence-Level Encodings
Our method proposes using sentence-level en-
codings for paragraph retrieval. We test the
significance of this approach in Figures 5b and
5c. While sentence-level encodings seem to be
vital for improving state-of-the-art results on
SQuAD-Open, the same cannot be said about
HotpotQA. We hypothesize that this is a conse-
quence of the way the datasets were created. In
SQuAD, each paragraph serves as the context
of several questions, as shown in Figure 4. This
leads to questions being asked about facts less
essential to the gist of the paragraph, and thus they
would not be encapsulated in a single paragraph
representation. In HotpotQA, however, most of
the paragraphs in the training set serve as the
context of at most one question.

5 Related Work

Chen et al. (2017) first introduced the use of neu-
ral methods to the task of open-domain QA us-
ing a textual knowledge source. They proposed
DrQA, a pipeline approach with two components:
a TF-IDF based retriever, and a multi-layer neu-
ral network that was trained to find an answer
span given a question and a paragraph. In an at-
tempt to improve the retrieval of the TF-IDF based
component, many existing works have used Dis-
tant Supervision (DS) to further re-rank the re-
trieved paragraphs (Htut et al., 2018; Yan et al.,
2018). Wang et al. (2018a) used reinforcement
learning to train a re-ranker and an RC component
in an end-to-end manner, and showed its advan-

tage over the use of DS alone. Min et al. (2018)
trained a sentence selector and demonstrated the
effectiveness of reading minimal contexts instead
of complete documents. As DS can often lead
to wrong labeling, Lin et al. (2018) suggested
a denoising method for alleviating this problem.
While these methods have proved to increase per-
formance in various open-domain QA datasets,
their re-ranking approach is limited in the num-
ber of paragraphs it can process, as it requires the
joint reading of a question with all possible para-
graphs. This is in contrast to our approach, in
which all paragraph representations are precom-
puted to allow efficient large-scale retrieval. There
are some works that adopted a similar precom-
putation scheme. Lee et al. (2018) learned an
encoding function for questions and paragraphs
and ranked paragraphs by their dot-product sim-
ilarity with the question. Many of their improve-
ments, however, can be attributed to the incorpora-
tion of answer aggregation methods as suggested
by Wang et al. (2018b) in their model, which en-
hanced their results significantly. Seo et al. (2018)
proposed phrase-indexed QA (PI-QA), a new for-
mulation of the QA task that requires the inde-
pendent encoding of answers and questions. The
question encodings are then used to retrieve the
correct answers by performing MIPS. This is more
of a challenge task rather than a solution for open-
domain QA. A recent work by Das et al. (2019)
proposed a new framework for open-domain QA
that employs a multi-step interaction between a re-
triever and a reader. This interactive framework
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is used to refine a question representation in or-
der for the retrieval to be more accurate. Their
method is complimentary to ours – the interac-
tive framework is used to enhance retrieval per-
formance for single-hop questions, and does not
handle the multi-hop domain.

Another line of work reminiscent of our method
is the one of Memory Networks (Weston et al.,
2015). Memory Networks consist of an array of
cells, each capable of storing a vector, and four
modules (input, update, output and response) that
allow the manipulation of the memory for the task
at hand. Many variations of Memory Networks
have been proposed, such as end-to-end Mem-
ory Networks (Sukhbaatar et al., 2015), Key-Value
Memory Networks (Miller et al., 2016), and Hier-
archical Memory Networks (Chandar et al., 2016).

6 Concluding Remarks

We present MUPPET, a novel method for multi-
hop paragraph retrieval, and show its efficacy in
both single- and multi-hop QA datasets. One dif-
ficulty in the open-domain multi-hop setting is the
lack of supervision, a difficulty that in the single-
hop setting is alleviated to some extent by using
distant supervision. We hope to tackle this prob-
lem in future work to allow learning more than two
retrieval iterations. An interesting improvement to
our approach would be to allow the retriever to
automatically determine whether or not more re-
trieval iterations are needed. A promising direc-
tion could be a multi-task approach, in which both
single- and multi-hop datasets are learned jointly.
We leave this for future work.
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Billion-scale similarity search with gpus. CoRR,
abs/1702.08734.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In ACL.

Jinhyuk Lee, Seongjun Yun, Hyunjae Kim, Miyoung
Ko, and Jaewoo Kang. 2018. Ranking paragraphs
for improving answer recall in open-domain ques-
tion answering. In EMNLP.

Yankai Lin, Haozhe Ji, Zhiyuan Liu, and Maosong Sun.
2018. Denoising distantly supervised open-domain
question answering. In ACL.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In ACL.

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-
Hossein Karimi, Antoine Bordes, and Jason We-
ston. 2016. Key-value memory networks for directly
reading documents. In EMNLP.

Sewon Min, Victor Zhong, Richard Socher, and Caim-
ing Xiong. 2018. Efficient and robust question an-
swering from minimal context over documents. In
ACL.

https://arxiv.org/pdf/1605.07427
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/P17-1171
http://aclweb.org/anthology/D/D14/D14-1179.pdf
http://aclweb.org/anthology/D/D14/D14-1179.pdf
http://aclweb.org/anthology/D/D14/D14-1179.pdf
https://aclanthology.info/papers/P18-1078/p18-1078
https://aclanthology.info/papers/P18-1078/p18-1078
https://aclanthology.info/papers/P18-1078/p18-1078
https://aclanthology.info/papers/D17-1070/d17-1070
https://aclanthology.info/papers/D17-1070/d17-1070
https://aclanthology.info/papers/D17-1070/d17-1070
https://openreview.net/forum?id=HkfPSh05K7
https://openreview.net/forum?id=HkfPSh05K7
https://openreview.net/forum?id=HkfPSh05K7
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/N18-2007
https://doi.org/10.18653/v1/N18-2007
https://doi.org/10.18653/v1/N18-2007
http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/6241-a-theoretically-grounded-application-of-dropout-in-recurrent-neural-networks.pdf
https://aclanthology.info/papers/N18-4017/n18-4017
https://aclanthology.info/papers/N18-4017/n18-4017
http://arxiv.org/abs/1702.08734
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://aclanthology.info/papers/D18-1053/d18-1053
https://aclanthology.info/papers/D18-1053/d18-1053
https://aclanthology.info/papers/D18-1053/d18-1053
https://aclanthology.info/papers/P18-1161/p18-1161
https://aclanthology.info/papers/P18-1161/p18-1161
http://aclweb.org/anthology/P/P14/P14-5010.pdf
http://aclweb.org/anthology/P/P14/P14-5010.pdf
https://doi.org/10.18653/v1/D16-1147
https://doi.org/10.18653/v1/D16-1147
https://aclanthology.info/papers/P18-1160/p18-1160
https://aclanthology.info/papers/P18-1160/p18-1160


2305

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In EMNLP.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In NAACL-HLT.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. In ACL.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions for
machine comprehension of text. In EMNLP.

Minjoon Seo, Tom Kwiatkowski, Ankur P. Parikh, Ali
Farhadi, and Hannaneh Hajishirzi. 2018. Phrase-
indexed question answering: A new challenge for
scalable document comprehension. In EMNLP.

Richard Socher, Danqi Chen, Christopher D Manning,
and Andrew Ng. 2013. Reasoning with neural ten-
sor networks for knowledge base completion. In
NIPS.

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: a simple way to prevent neural
networks from overfitting. JMLR.

Sainbayar Sukhbaatar, arthur szlam, Jason Weston, and
Rob Fergus. 2015. End-to-end memory networks.
In NIPS.

Alon Talmor and Jonathan Berant. 2018. The web as
a knowledge-base for answering complex questions.
In NAACL-HLT.

Shuohang Wang, Mo Yu, Xiaoxiao Guo, Zhiguo Wang,
Tim Klinger, Wei Zhang, Shiyu Chang, Gerry
Tesauro, Bowen Zhou, and Jing Jiang. 2018a. R3:
Reinforced ranker-reader for open-domain question
answering. In AAAI.

Shuohang Wang, Mo Yu, Jing Jiang, Wei Zhang,
Xiaoxiao Guo, Shiyu Chang, Zhiguo Wang, Tim
Klinger, Gerald Tesauro, and Murray Campbell.
2018b. Evidence aggregation for answer re-ranking
in open-domain question answering. In ICLR.

Johannes Welbl, Pontus Stenetorp, and Sebastian
Riedel. 2018. Constructing datasets for multi-hop
reading comprehension across documents. TACL.

Jason Weston, Sumit Chopra, and Antoine Bordes.
2015. Memory networks. In ICLR.

Ming Yan, Jiangnan Xia, Chen Wu, Bin Bi, Zhongzhou
Zhao, Ji Zhang, Luo Si, Rui Wang, Wei Wang,
and Haiqing Chen. 2018. A deep cascade model
for multi-document reading comprehension. CoRR,
abs/1811.11374.

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen
Tan, Kun Xiong, Ming Li, and Jimmy Lin. 2019.
End-to-end open-domain question answering with
bertserini. arXiv preprint arXiv:1902.01718.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W. Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. In EMNLP.

Matthew D. Zeiler. 2012. ADADELTA: an adaptive
learning rate method. CoRR, abs/1212.5701.

Victor Zhong, Caiming Xiong, Nitish Keskar, and
Richard Socher. 2019. Coarse-grain fine-grain coat-
tention network for multi-evidence question answer-
ing. In ICLR.

http://aclweb.org/anthology/D/D14/D14-1162.pdf
http://aclweb.org/anthology/D/D14/D14-1162.pdf
https://arxiv.org/pdf/1802.05365.pdf
https://arxiv.org/pdf/1802.05365.pdf
http://aclweb.org/anthology/P18-2124
http://aclweb.org/anthology/P18-2124
http://aclweb.org/anthology/D/D16/D16-1264.pdf
http://aclweb.org/anthology/D/D16/D16-1264.pdf
https://aclanthology.info/papers/D18-1052/d18-1052
https://aclanthology.info/papers/D18-1052/d18-1052
https://aclanthology.info/papers/D18-1052/d18-1052
http://papers.nips.cc/paper/5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion.pdf
http://papers.nips.cc/paper/5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion.pdf
http://dl.acm.org/citation.cfm?id=2670313
http://dl.acm.org/citation.cfm?id=2670313
http://papers.nips.cc/paper/5846-end-to-end-memory-networks.pdf
https://aclanthology.info/papers/N18-1059/n18-1059
https://aclanthology.info/papers/N18-1059/n18-1059
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16712
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16712
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16712
https://openreview.net/forum?id=rJl3yM-Ab
https://openreview.net/forum?id=rJl3yM-Ab
https://transacl.org/ojs/index.php/tacl/article/view/1325
https://transacl.org/ojs/index.php/tacl/article/view/1325
http://arxiv.org/abs/1410.3916
http://arxiv.org/abs/1811.11374
http://arxiv.org/abs/1811.11374
https://arxiv.org/pdf/1902.01718.pdf
https://arxiv.org/pdf/1902.01718.pdf
https://aclanthology.info/papers/D18-1259/d18-1259
https://aclanthology.info/papers/D18-1259/d18-1259
https://aclanthology.info/papers/D18-1259/d18-1259
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
https://openreview.net/forum?id=Syl7OsRqY7
https://openreview.net/forum?id=Syl7OsRqY7
https://openreview.net/forum?id=Syl7OsRqY7


2306

A Paragraph Reader

In this section we describe in detail the reader
mentioned in Section 3.2. The paragraph reader
receives as input a question Q and a paragraph
P and extracts the most probable answer span to
Q from P . We use the shared-norm model pre-
sented by Clark and Gardner (2018), which we
refer to as S-norm. The model’s architecture is
quite similar to the one we used for the encoder.
First, we process Q and P seperately to obtain
their contexualized token representations, in the
same manner as used in the encoder. We then pass
the contextualized representations through a bidi-
rectional attention layer similar to the one defined
in the reformulation layer of the encoder, with the
only difference being that the roles of the ques-
tion and the paragraph are switched. As before, we
further pass the bidirectional attention representa-
tions through a residual connection, this time us-
ing a self-attention layer between the bidirectional
GRU and the linear layer. The self-attention mech-
anism is similar to the bidirectional attention layer,
only now it is between the paragraph and itself.
Therefore, question-to-parargaph attention is not
used, and we set aij = −∞ if i = j. The summed
outputs of the residual connection are passed to the
prediction layer. The inputs to the prediction layer
are passed through a bidirectional GRU followed
by a linear layer that predicts the answer span start
scores. The hidden layers of that GRU are con-
catenated with the input and passed through an-
other bidirectional GRU and linear layer to predict
the answer span end scores.

Training An input sample for the paragraph
reader consists of a question and a single con-
text (Q,P ). We optimize the same negative log-
likelihood function used in the S-norm model for
the span start boundaries:

Lstart = − log

(∑
j∈PQ

∑
k∈Aj

eskj∑
j∈PQ

∑nj

i=1 e
sij

)
,

where PQ is the set of paragraphs paired with the
same question Q, Aj is the set of tokens that start
an answer span in the j-th paragraph, and sij is
the score given to the i-th token in the j-th para-
graph. The same formulation is used for the span
end boundaries, so that the final objective function
is the sum of the two: Lspan = Lstart + Lend.

B Paragraph Reader Extension for
HotpotQA

HotpotQA presents the challenge of not only pre-
dicting an answer span, but also yes/no answers.
This is a combination of span-based questions
and multiple-choice questions. In addition, one is
also required to provide explainability to the an-
swer predictions by predicting the supporting facts
leading to the answer. We extend the paragraph
reader from Section 3.2 to support these predic-
tions in the following manner.

Yes/No Prediction We argue that one can de-
cide whether the answer to a given question should
be span-based or yes/no-based without looking
at any context at all. Therefore, we first create
a fixed-size vector representing the question us-
ing max-pooling over the first bidirectional GRU’s
states of the question. We pass this representation
through a linear layer that predicts whether this
is a yes/no-based question or a span-based ques-
tion. If span-based, we predict the answer span
from the context using the original span prediction
layer. If yes/no-based, we encode the question-
aware context representations to a fixed-size vec-
tor by performing max-pooling over the outputs
of the residual self-attention layer. As before, we
then pass this vector through a linear layer to pre-
dict a yes/no answer.

Supporting Fact Prediction As a context’s
supporting facts for a question are at the sentence-
level, we encode the question-aware context rep-
resentations to fixed-size sentence representations
by passing the outputs of the residual self-attention
layer through another bidirectional GRU, followed
by performing max-pooling over the sentence
groups of the GRU’s outputs. Each sentence repre-
sentation is then passed through a multilayer per-
ceptron with a single hidden layer equipped with
ReLU activations to predict whether it is indeed a
supporting fact or not.

Training An input sample for the paragraph
reader consists of a question and a single context,
(Q,P ). Nevertheless, as HotpotQA requires mul-
tiple paragraphs to answer a question, we define P
to be the concatenation of these paragraphs.

Our objective function comprises four loss
functions, corresponding to the four possible pre-
dictions of our model. For the span-based predic-
tion we useLspan, as before. We use a similar neg-
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ative log likelihood loss for the answer type pre-
diction (whether the answer should be span-based
or yes/no-based) and for a yes/no answer predic-
tion:

Ltype = − log

( ∑
j∈PQ e

stypej∑
j∈PQ(e

sbinary
j + es

span
j )

)

Lyes/no = − log

( ∑
j∈PQ e

s
yes/no
j∑

j∈PQ(e
syesj + es

no
j )

)
,

where PQ is the set of paragraphs paired with the
same question Q, and es

binary
j , es

span
j and es

type
j

are the likelihood scores of the j-th question-
paragraph pair being a binary yes/no-based type,
a span-based type, and its true type, respectively.

es
yes
j , es

no
j and es

yes/no
j are the likelihood scores of

the j-th question-paragraph pair having the answer
‘yes’, the answer ‘no’, and its true answer, respec-
tively. For span-based questions, Lyes/no is de-
fined to be zero, and vice-versa.

For the supporting fact prediction, we use a
binary cross-entropy loss on each sentence, Lsp.
The final loss function is the sum of these four ob-
jectives,

Lhotpot = Lspan + Ltype + Lyes/no + Lsp

During inference, the supporting facts prediction
is taken only from the paragraph from which the
answer is predicted.

Metrics Three sets of metrics were proposed by
Yang et al. (2018) to evaluate performance on the
HotpotQA dataset. The first set of metrics fo-
cuses on evaluating the answer span. For this
purpose the exact match (EM) and F1 metrics are
used, as suggested by Rajpurkar et al. (2016). The
second set of metrics focuses on the explainabil-
ity of the models, by evaluating the supporting
facts directly using the EM and F1 metrics on the
set of supporting fact sentences. The final set of
metrics combines the evaluation of answer spans
and supporting facts as follows. For each ex-
ample, given its precision and recall on the an-
swer span (P (ans), R(ans)) and the supporting facts
(P (sup), R(sup)), respectively, the joint F1 is calcu-
lated as

P (joint) = P (ans)P (sup), R(joint) = R(ans)R(sup),

Joint F1 =
2P (joint)R(joint)

P (joint) +R(joint) .

The joint EM is 1 only if both tasks achieve an
exact match and otherwise 0. Intuitively, these
metrics penalize systems that perform poorly on
either task. All metrics are evaluated example-by-
example, and then averaged over examples in the
evaluation set.

C Implementation Details

We use the Stanford CoreNLP toolkit (Manning
et al., 2014) for tokenization. We implement all
our models using TensorFlow.

Architecture Details For the word-level embed-
dings, we use the GloVe 300-dimensional embed-
dings pretrained on the 840B Common Crawl cor-
pus (Pennington et al., 2014). For the character-
level embeddings, we use 20-dimensional char-
acter embeddings, and use a 1-dimensional CNN
with 100 filters of size 5, with a dropout (Srivas-
tava et al., 2014) rate of 0.2.

For the encoder, we also concatenate ELMo
(Peters et al., 2018) embeddings with a dropout
rate of 0.5 and the token representations from the
output of embedding layer to form the final token
representations, before processing them through
the first bidirectional GRU. We use the ELMo
weights pretrained on the 5.5B dataset.5 To speed
up computations, we cache the context indepen-
dent token representations of all tokens that ap-
pear at least once in the titles of the HotpotQA
Wikipedia version, or appear at least five times in
the entire Wikipedia version. Words not in this vo-
cabulary are given a fixed OOV vector. We use a
learned weighted average of all three ELMo lay-
ers. Variational dropout (Gal and Ghahramani,
2016), where the same dropout mask is applied at
each time step, is applied on the inputs of all re-
current layers with a dropout rate of 0.2. We set
the encoding size to be d = 1024.

For the paragraph reader used for HotpotQA,
we use a state size of 150 for the bidirectional
GRUs. The size of the hidden layer in the MLP
used for supporting fact prediction is set to 150
as well. Here again variational dropout with a
dropout rate of 0.2 is applied on the inputs of all
recurrent layers and attention mechanisms. The
reader used for SQuAD is the shared-norm model
trained on the SQuAD dataset by Clark and Gard-
ner (2018).6

5Available at https://allennlp.org/elmo
6Available at https://github.com/allenai/document-qa
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Training Details We train all our models using
the Adadelta optimizer (Zeiler, 2012) with a learn-
ing rate of 1.0 and ρ = 0.95.

SQuAD-Open: The training data is gathered as
follows. For each question in the original SQuAD
dataset, the original paragraph given as the ques-
tion’s context is considered as the single relevant
(positive) paragraph. We gather ∼12 irrelevant
(negative) paragraphs for each question in the fol-
lowing manner:

• The three paragraphs with the highest TF-
IDF similarity to the question in the same
SQuAD document as the relevant paragraph
(excluding the relevant paragraph). The same
method is applied to retrieve the three para-
graphs most similar to the relevant paragraph.

• The two paragraphs with the highest TF-IDF
similarity to the question from the set of all
first paragraphs in the entire Wikipedia (ex-
cluding the relevant paragraph’s article). The
same method is applied to retrieve the two
paragraphs most similar to the relevant para-
graph.

• Two randomly sampled paragraphs from the
entire Wikipedia.

Questions that contain only stop-words are
dropped, as they are most likely too dependent
on the original context and not suitable for open-
domain. In each epoch, a question appears as a
training sample four times; once with the relevant
paragraph, and three times with randomly sampled
irrelevant paragraphs.

We train with a batch size of 45, and do not use
the ranking loss by setting λ = 0 in Equation (2).
We limit the length of the paragraphs to 600 to-
kens.

HotpotQA: The paragraphs used for training
the encoder are the gold and distractor paragraphs
supplied in the original HotpotQA training set.
As mentioned in Section 3.1, each training sam-
ple consists of a question and two paragraphs,
(Q,P 1, P 2), whereP 1 corresponds to a paragraph
retrieved in the first iteration, and P 2 corresponds
to a paragraph retrieved in the second iteration.
For each question, we create the following sample
types:

1. Gold: The two paragraphs are the two gold
paragraphs of the question. Both P 1 and P 2

are considered positive.

2. First gold, second distractor: P 1 is one of
the gold paragraphs and considered positive,
while P 2 can be a random paragraph from the
training set, the same as P 1, or one of the dis-
tractors, with probabilities 0.05, 0.1 and 0.85,
respectively. P 2 is considered negative.

3. First distractor, second gold: P 1 is either one
of the distractors or a random paragraph from
the training set, with probabilities 0.9 and
0.1, respectively. P 2 is one of the gold para-
graphs. Both P 1 and P 2 are considered neg-
ative.

4. All distractors: Both P 1 and P 2 are sampled
from the question’s distractors, and are con-
sidered negative.

5. Gold from another question: A gold para-
graph pair taken from another question; both
paragraphs are considered negative.

The use of the sample types from the above list
motivation is motivated as follows. Sample type
1 is the only one that contains purely positive ex-
amples and hence is mandatory. Sample type 2
is necessary to allow the model to learn a valu-
able reformulation, which does not give a relevant
score based solely on the first paragraph. Sample
type 3 is complementary to type 2; it allows the
model to learn that a paragraph pair is irrelevant if
the first paragraph is irrelevant, regardless of the
second. Sample type 3 is used for random nega-
tive sampling, which is the most common case of
all. Sample type 4 is used to guarantee the model
does not determine relevancy solely based on the
paragraph pair, but also based on the question.

In each training batch, we include three samples
for each question in the batch: a single gold sam-
ple (type 1), and two samples from the other four
types, with sample probabilities of 0.35, 0.35, 0.25
and 0.05, respectively.

We use a batch size of 75 (25 unique questions).
We set the margin to be γ = 1 in Equation (1)
and λ = 1 in Equation (2), for both prediction
iterations. We limit the length of the paragraphs to
600 tokens.

HotpotQA Reader: The reader receives a
question and a concatenation of a paragraph pair
as input. Each training batch consists of three
samples with three different paragraph pairs for
each question: a single gold pair, which is the
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two gold paragraphs of the question, and two ran-
domly sampled paragraph pairs from the set of the
distractors and one of the gold paragraphs of the
question. We label the correct answer spans to be
every text span that has an exact match with the
ground truth answer, even in the distractor para-
graphs. We use a batch size of 75 (25 unique ques-
tions), and limit the length of the paragraphs (be-
fore concatenation) to 600 tokens.


