
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics-System Demonstrations, pages 111–115
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

111

Praaline: An Open-Source System for Managing, Annotating,
Visualising and Analysing Speech Corpora

George Christodoulides
Metrology and Language Sciences Unit, University of Mons

Place du Parc 18, B-7000 Mons, Belgium
george@mycontent.gr

Abstract

In this system demonstration we present
the latest developments of Praaline, an
open-source software system for constitut-
ing and managing, manually and automati-
cally annotating, visualising and analysing
spoken language and multimodal corpora.
We review the system’s functionality and
design architecture, present current use
cases and directions for future develop-
ment.

1 Introduction

In this system demonstration, we present Praaline.
Praaline is an open-source application for creating
and managing speech and multi-modal corpora,
annotating them manually or automatically, visu-
alising the speech signal and annotations, query-
ing the data and creating concordances, and per-
forming statistical analyses. The system was first
presented in (Christodoulides, 2014). Praaline is
a cross-platform standalone application that runs
on Windows, Mac OSX and Linux. It is writ-
ten in C++ using the Qt framework. The ap-
plication is available for download at https:
//www.praaline.org and the source code is
available on GitHub (https://github.com/
praaline), under the GPL version 3 license.

Several tools are being used currently in spo-
ken language research. In the phonetics and
prosody domain, the most widely used tool is
Praat (Boersma and Weenink, 2018); in the prag-
matics and discourse studies community Exmar-
alda (Schmidt and Wörner, 2009) is appreciated
for its concordancing functionality; for multi-
modal and signed language corpora, ELAN (Brug-
man and Russel, 2004) is often preferred; and
large corpora have been transcribed using Tran-
scriberAG (Barras et al., 1998).

We have focused on creating a tool that will
cover the needs of researchers working simultane-
ously on speech (phonetics, phonology, prosody)
and discourse (syntax, semantics, pragmatics).
Praaline should help an individual researcher or-
ganise their data using the best practices in corpus
design and data management, and allow them to
work independently. At the same time, our system
aims to facilitate depositing the corpus data to a
central repository at the end of a research project,
using a structure that will facilitate long-term stor-
age and reuse. For these reasons, we have decided
to use an SQL relational database for data stor-
age: an SQLite database for local projects, or a
MySQL or PostgreSQL database for using Praa-
line in a network environment. Furthermore the
system provides extensive support for importing
and exporting data between Praaline and other
annotation tools (Praat, Exmaralda, ELAN, Tran-
sriberAG, other formats), as well as support for
importing and exporting annotation data in the
XML and JSON formats.

In the following, we will present the main func-
tionality of Praaline, describe its design architec-
ture and conclude with our plans for future devel-
opment.

2 Features

2.1 Corpus Management

A collection of recordings (audio and video) con-
stitutes a Corpus, which can be stored in a Cor-
pus Repository. A repository provides a com-
mon structure for metadata and annotations (see
next section). A Corpus contains a collection of
Communications and Speakers. Each Communi-
cation consists of one or more Recordings and cor-
responding Annotation documents. Speakers are
linked to the Communications in which they are
involved though Participation objects. The six ba-

https://www.praaline.org
https://www.praaline.org
https://github.com/praaline
https://github.com/praaline


112

sic objects can all be described using a set of meta-
data. Praaline does not impose any schema for
metadata: the user can define their own metadata
schema per Repository. The Corpus Explorer (see
Figure 1) is used to constitute the corpus and to
edit its metadata: corpus objects can be browsed
in a tree (possibly grouped based on metadata in-
formation); the user can also edit metadata using a
spreadsheet-like display.

Figure 1: Corpus Explorer

2.2 Metadata and Annotation Structure
Each Corpus Repository will have a defined data
structure for its metadata and annotations. Tem-
plates are provided to help individual researchers;
it is also possible to standardise these struc-
tures when multiple users are accessing the same
database. Praaline includes an editor for metadata
and annotation structures: the editors perform data
definition language (DDL) queries to change the
SQL database structure. The metadata structure
editor allows the user to define the fields that will
be stored for each of the six main objects described
in the previous section. Annotations are organised
in Levels and Attributes: a Level describes a unit
of linguistic analysis (e.g. a syllable, a token, an
utterance etc) and contains a label and an arbitrary
number of Attributes. Each Annotation Level cor-
responds to a table in the SQL database and At-
tributes correspond to columns. The data structure
editor for annotations is shown in Figure 2).

The metadata and annotation structure editors
allow the user to define fields having any of the
standard SQL data types (integers, real numbers,
strings, boolean values etc.). Furthermore, a sys-
tem for defining and importing/exporting name-
value lists is available. A name-value list (NVL)
can be associated with any number of metadata
fields or annotation attributes. The NVL subsys-
tem can improve data quality by enforcing ref-

Figure 2: Annotation Structure and Vocabularies

erential integrity rules and help users in annotat-
ing data based on a closed vocabulary (e.g. a de-
fined set of part-of-speech tags, dependency re-
lations, discourse relations, phoneme labels etc.).
The metadata and annotation structure of a corpus
repository can be exported as an XML or JSON
file; when these files are imported on another
repository, Praaline recreates the corresponding
database structures and NVL data.

2.3 Annotation

Annotations can be added to the corpus using one
of the Manual Annotation editors: a spreadsheet-
like editor that can combine multiple levels of an-
notation; a transcriber interface; an editor for se-
quences or for relations. The tabular editor is show
in Figure 3.

Figure 3: Manual Annotation Editor

The annotation tools offered attempt to cover
the entire workflow of constructing a speech cor-
pus: collecting recordings, transcribing them or
re-using existing transcriptions, speech-text align-
ment, enrichment of the annotations with addi-
tional levels and feature extraction (before pro-
ceeding with analysing the data). The Transcriber
module provides a user interface for quick manual
transcription, especially in the presence of multi-



113

ple speakers. The Long Sound Aligner module al-
lows the user to reuse existing, possibly imperfect,
transcriptions of the corpus materials. The Long
Sound Aligner uses the output of a speech recog-
nition engine and the transcription text to pro-
duce iteratively refined alignments of transcrip-
tion utterances to the speech signal (similar to
other long sound alignment tools, e.g. Katsama-
nis et al. (2011)). The Forced Alignment mod-
ule allows the user to produce alignments at the
phone, syllable and token level, based on a pro-
nunciation dictionary or other system for phoneti-
sation, and an ASR engine. The currently sup-
ported ASR engines in Praaline are HTK(Young
et al., 2006), PocketSphinx (Walker et al., 2004)
and Kaldi (Povey et al., 2011).

The annotation framework in Praaline is lan-
guage independent: annotations are stored in
Unicode format and no assumptions are made
about language. However, several tasks require
language-specific resources: tokenisation rules,
pronunciation dictionaries, acoustic models and
language models for the ASR engine. A collection
of open resources is available, and the develop-
ment of language resources for the back-end tools
in the context of other open source projects can be
harnessed.

Much of the functionality in Praaline comes
from its automatic annotation plug-ins. The user
can run a cascade of automatic annotation plugins,
after setting the relevant parameters (each plugin
defines its own set) on the entire corpus or on a
subset of corpus items. The user interface for these
operations is shown in Figure 4.

Figure 4: Automatic Annotation Plugins

Currently, plugins are available for the follow-
ing tasks:

• Part-of-speech tagging and syntactical analy-
sis of spoken language, in several languages,

using the DisMo plug-in (Christodoulides
et al., 2014). Statistical models for many
languages are provided, based on the work
by the Universal Dependencies project (Nivre
et al., 2016).

• Prosodic feature extraction and pitch styli-
sation, using either the Prosogram (Mertens,
2004) system, or the INTSINT/MoMel sys-
tem (Hirst, 2007) for intonation annotation.

• Automatic detection and annotation of
prosodic events, with language-specific
statistical models extracted from manually
annotated corpora.

2.4 Visualisation
The Visualisation module of Praaline reuses and
extends the code of Sonic Visualiser (Cannam
et al., 2010), which is also an open-source (GPL)
project written in C++/Qt and used in the field
of musicology. The user can create the visualisa-
tion that best suits their needs by combining panes
and layers, containing: annotation tiers, points,
curves, histograms, colour-coded regions, spec-
trograms etc. Extensions have been added for
visualising intonation information, for studies in
prosody. Visualisation templates can be saved in
XMl and JSON formats; a collection of available
visualisation templates is presented to the user. An
example of a visualisation is show in Figure 5.

Figure 5: Visualisation

An annotation editor can be combined with the
visualisation user interface, to facilitate use cases
where the user codes a linguistic phenomenon
with the aid of a visual representation. Visuali-
sations can be exported in image formats for use
in presentations and publications. A system of
Bookmarks allows the user to save points of in-
terest in the corpus: the identification data of the
Communication, Recording and Annotation along



114

with a time-code constitute a Bookmark that can
be stored in collections of bookmarks for easy ac-
cess. The results of a concordance search (see next
section) can also be exported as bookmarks.

2.5 Queries and Concordances

The user can perform queries on any of the an-
notation levels or a combination of these levels.
The results are displayed in keyword-in-context
(KWIC) concordances and can be exported for
further analysis. It is possible to search for se-
quences and patterns. The Concordancer results
can be exported as Bookmarks for immediate ac-
cess in the Annotation editors and in the Visu-
aliser. The Concordancer is show in Figure 6.

Figure 6: Concordancer

Furthermore, an interface is provided for cre-
ating datasets. Using a dataset, information from
multiple annotation levels can be combined, a set
of basic statistic operations can be applied and
the results can be saved for further analysis. As
an example, in a corpus annotated on four lev-
els (phones, syllables, tokens, discourse units), the
user may export a dataset containing: all the syl-
lables in the corpus, their acoustic features (ex-
tracted from upstream plug-ins), the correspond-
ing tokens and associated attributes (e.g. POS
tags), the corresponding discourse units and asso-
ciated attributes, and some metadata attributes. A
dataset has a minimum unit (in the previous ex-
ample, the syllable) and lower-level (grouped) or
higher-level (associated) data.

2.6 Statistics

Praaline includes a set of statistical analysis plu-
gins, covering a range of common analyses in
speech research: basic counts; temporal anal-
ysis (pauses, speech rate, dialogue dynamics);
prosodic and disfluency analysis; clustering cor-
pus items using principal component analysis. The

results of the analysis can be exported, and the
basic graphics can be immediately accessed from
within Praaline. For more advanced statistical
analysis of corpus data, users can use R scripts (R
Core Team, 2018) that take advantage of the fact
that the corpus data and annotations are stored in
SQL format. An example of a PCA analysis is
shown in Figure 7.

Figure 7: Statistics (PCA plot)

3 System Architecture and Extensibility

The system is following a modular design. A core
library (Praaline Core) contains all the basic func-
tionality needed to access and manage Praaline
corpus metadata and annotations. The library can
be reused in other software (see also next section).
At the next level, a set of modules (Praaline Li-
braries) contain the functionality needed for auto-
matic speech recognition, the application of ma-
chine learning algorithms, feature extraction etc.
These libraries are often wrappers of existing and
well-established open-source NLP tools, such as
Sphinx, OpenSmile, HTK, CRF++ etc. An addi-
tional module contains the user interface elements
(e.g. widgets for visualisation). All these modules
are brought together in the main application.

An API for the Core library and for interfacing
with the main application allows for the creation
of plugins. Plugins add functionality to Praaline
and include implementations of automatic annota-
tion algorithms, statistical analysis plugins or new
visualisation elements.

Examples of plug-in development are provided
on the project’s website: a skeleton C++ project is
given, and Python scripts using the Praaline Core
library, or other modules of the Praaline Libraries
illustrate the use of these resources for common
NLP tasks. The Praaline Core library can be used
as a tool for input-output and interfacing with an-



115

notation information without using Praaline’s user
interface.

4 Future Development

Praaline is under active development. The main
priorities for adding features are as follows:

• A signal annotation editor strongly resem-
bling Praat. We have found that researchers
in some communities are strongly attached
to this user interface, and this addition will
facilitate the acceptance of a new system on
their part.

• Stabilise the API of the Praaline Core library
and provide Python and R bindings.

• Finalise the development of PraalineWeb, a
system that allows the publication of corpora
on the web, using Django.

• Add functionality for editing dependency re-
lations.

The development of Praaline has been mainly
driven by the expectations and needs of its users.
It is hoped that this system demonstration will pro-
vide additional feedback.

References
Claude Barras, Edouard Geoffrois, Zhibiao Wu, and

Mark Liberman. 1998. Transcriber: a free tool
for segmenting, labeling and transcribing speech.
In LREC 1998 – 1st International Conference on
Language Resources and Evaluation, 28–30 May,
Granada, Spain Proceedings, pages 1373–1376.

Paul Boersma and David Weenink. 2018. Praat: doing
phonetics by computer, ver. 6.0.37.

Hennie Brugman and Albert Russel. 2004. Annotating
multimedia and multi-modal resources with elan. In
LREC 2004 – 4th International Conference on Lan-
guage Resources and Evaluation, May 26–28, Paris,
France, Proceedings, pages 2065–2068.

Chris Cannam, Christian Landone, and Sandler Mark.
2010. Sonic visualiser: An open source application
for viewing, analysing, and annotating music audio
files. In Proceedings of the ACM Multimedia 2010
International Conference, pages 1467–1468.

George Christodoulides. 2014. Praaline: Integrating
tools for speech corpus research. In LREC 2014
– 9th International Conference on Language Re-
sources and Evaluation, May 26–31, Reykjavik, Ice-
land, Proceedings, pages 31–34.

George Christodoulides, Mathieu Avanzi, and
Jean Philippe Goldman. 2014. DisMo: A mor-
phosyntactic, disfluency and multi-word unit
annotator. In LREC 2014 – 9th International Con-
ference on Language Resources and Evaluation,
May 26–31, Reykjavik, Iceland, Proceedings, pages
3902–3907.

Daniel Hirst. 2007. A praat plugin for momel and
intsint with improved algorithms for modelling and
coding intonation.

Athanasios Katsamanis, Matthew P. Black, Panayio-
tis G. Georgiou, Louis Goldstein, and Shrikanth S.
Narayanan. 2011. SailAlign: Robust long speech-
text alignment. In Proceedings of the Workshop on
New Tools and Methods for Very-Large Scale Pho-
netics Research.

Piet Mertens. 2004. The Prosogram: Semi-automatic
transcription of prosody based on a tonal perception
model. In Proc. of Speech Prosody 2004, March 23–
26, Nara, Japan, pages 549–552.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, and et al. 2016. Universal depen-
dencies v1: A multilingual treebank collection. In
Proceedings of the 10th International Conference on
Language Resources and Evaluation (LREC 2016).

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko
Hannemann, Petr Motlicek, Yanmin Qian, Petr
Schwarz, Jan Silovsky, Georg Stemmer, and Karel
Vesely. 2011. The kaldi speech recognition toolkit.
In IEEE 2011 Workshop on Automatic Speech
Recognition and Understanding. IEEE Signal Pro-
cessing Society. IEEE Catalog No.: CFP11SRW-
USB.

R Core Team. 2018. R: A language and environment
for statistical computing. R Foundation for Statisti-
cal Computing, Vienna, Austria.

Thomas Schmidt and Kai Wörner. 2009. EXMAR-
aLDA – creating, analysing and sharing spoken lan-
guage corpora for pragmatic research. Pragmatics,
19(4):565–582.

Willie Walker, Paul Lamere, Philip Kwok, Bhiksha
Raj, Rita Singh, Evandro Gouvea, Peter Wolf, and
Joe Woelfel. 2004. Sphinx-4: A flexible open source
framework for speech recognition. Technical report,
Mountain View, CA, USA.

Steve J. Young, D. Kershaw, J. Odell, D. Ollason,
V. Valtchev, and P. Woodland. 2006. The HTK Book
Version 3.4. Cambridge University Press.

http://www.praat.org
http://www.praat.org
http://www.praaline.org
http://www.praaline.org
https://www.R-project.org/
https://www.R-project.org/

