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Abstract

Semantic parsing requires training data
that is expensive and slow to collect.
We apply active learning to both tradi-
tional and “overnight” data collection ap-
proaches. We show that it is possible
to obtain good training hyperparameters
from seed data which is only a small
fraction of the full dataset. We show
that uncertainty sampling based on least
confidence score is competitive in tradi-
tional data collection but not applicable
for overnight collection. We evaluate sev-
eral active learning strategies for overnight
data collection and show that different ex-
ample selection strategies per domain per-
form best.

1 Introduction

Semantic parsing maps a natural language query
to a logical form (LF) (Zettlemoyer and Collins,
2005, 2007; Haas and Riezler, 2016; Kwiatkowksi
et al., 2010). Producing training data for seman-
tic parsing is slow and costly. Active learning is
effective in reducing costly data requirements for
many NLP tasks. In this work, we apply active
learning to deep semantic parsing and show that
we can substantially reduce the data required to
achieve state-of-the-art results.

There are two main methods for generating se-
mantic parsing training data. The traditional ap-
proach first generates the input natural language
utterances and then labels them with output LFs.
We show that active learning based on uncertainty
sampling works well for this approach.

The “overnight” annotation approach (Wang
et al., 2015) generates output LFs from a grammar,
and uses crowd workers to paraphrase these LFs
into input natural language queries. This approach

is faster and cheaper than traditional annotation.
However, the difficulty and cost of data genera-
tion and validation are still substantial if we need a
large amount of data for the system to achieve high
accuracy; if the logical forms can express complex
combinations of semantic primitives that must be
covered; or if the target language is one with rela-
tively few crowd workers.

Applying active learning to the overnight ap-
proach is even more compelling, since the unla-
belled LFs can be generated essentially for free by
a grammar. However, conventional active learning
strategies are not compatible with the overnight
approach, since the crowd annotators produce in-
puts (utterances) rather than labels (LFs).

In order to apply active learning to deep se-
mantic parsing, we need a way of selecting hy-
perparameters without requiring the full training
dataset. For optimal performance, we should re-
run hyperparameter tuning for each active learning
round, but this is prohibitively expensive compu-
tationally. We show that hyperparameters selected
using a random subset of the data (about 20%) per-
form almost as well as those from the full set.

Our contributions are (1) a simple hyperparam-
eter selection technique for active learning ap-
plied to semantic parsing, and (2) straightforward
active learning strategies for both traditional and
overnight data collection that significantly reduce
data annotation requirements. To the best of our
knowledge we are the first to investigate active
learning for overnight data collection.

2 Related work

Sequence-to-sequence models are currently the
state-of-the-art for semantic parsing (Jia and
Liang, 2016; Dong and Lapata, 2016; Duong et al.,
2017). In this paper, we also exploit a sequence-
to-sequence model to minimise the amount of la-
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belled training data required to achieve state-of-
the-art semantic parsing results.

Active learning has been applied to a variety
of machine learning and NLP tasks (Thompson
et al., 1999; Tang et al., 2002; Chenguang Wang,
2017) employing various algorithms such as least
confidence score (Culotta and McCallum, 2005),
large margin (Settles and Craven, 2008), entropy
based sampling, density weighting method (Set-
tles, 2012), and reinforcement learning (Fang
et al., 2017). Nevertheless, there has been limited
work applying active learning for deep semantic
parsing with the exception of Iyer et al. (2017).
Different from conventional active learning, they
used crowd workers to select what data to annotate
for traditional semantic parsing data collection.

In this paper, we apply active learning for both
traditional and overnight data collection with the
focus on overnight approach. In addition, a limi-
tation of prior active learning work is that the hy-
perparameters are usually predefined in some way,
mostly from different work on the same or simi-
lar dataset, or from the authors experience (Wang
et al., 2017; Fang et al., 2017). In this paper, we
investigate how to efficiently set the hyperparam-
eters for the active learning process.

3 Base S2S Model
We base our approach on the attentional sequence-
to-sequence model (S2S) of Bahdanau et al.
(2014). This attentional model uses a bidirec-
tional recurrent neural network (RNN) to encode
a source as a sequence of vectors, which are used
by another RNN to generates output. Given the
source utterance x = [x1, x2, ...xn] and target LF
y = [y1, y2, ...ym], we train the model to minimize
the loss under model parameters ✓.

loss = �
mX

i=1

logP(yi|y1, ..yi�1, x; ✓) (1)

Additionally, we apply the UNK replacement tech-
nique in Duong et al. (2017), keeping the original
sentence in the data.1

4 Active learning models
There is a diversity of strategies for active learn-
ing. A simple and effective active learning strat-
egy is based on least confidence score (Culotta

1We call S2S model applied to traditional data collection
and overnight data collection as forward S2S and backward
S2S respectively. The forward S2S model estimates P(y|x),
the backward S2S model estimates P(x|y).

and McCallum, 2005). This strategy selects ut-
terance x0 to label from the unlabelled data Ux as
follows:

x0 = argmin
x2Ux

⇥
max
y⇤

P(y⇤|x; ✓)
⇤

where y⇤ is the most likely output. We found
that this least confidence score works well across
datasets, even better than more complicated strate-
gies in traditional data collection (described be-
low).

4.1 Traditional data collection

In the traditional (forward) approach, we start with
the list of unlabelled utterances and an initial seed
of utterances paired with LFs. We gradually select
utterances to annotate with the aim of maximizing
the test score as early as possible. We use forward
S2S sentence loss as defined in Equation (1) as the
least confidence score measurement (i.e. select the
instance with higher loss).

The drawback of a least confidence score strat-
egy (and strategies based on other measurements
such as large margin), is that they only leverage
a single measurement to select utterances (Settles
and Craven, 2008). To combine multiple measure-
ments, we build a classifier to predict if the model
will wrongly generate the LF given the utterance,
and select those utterances for annotation. The
classifier is trained on the data generated by run-
ning 5-fold cross validation on annotated data.2

We exploit various features, including sentence
log loss, the margin between the best and second
best solutions, source sentence frequency, source
encoder last hidden state and target decoder last
hidden state (see supplementary material §A.1 for
more detail) and various classifier architectures in-
cluding logistic regression, feedforward networks
and multilayer convolutional neural networks. On
the development corpus, we observed that the least
confidence score works as well as the classifier
strategy.

4.2 Overnight data collection

In the overnight (backward) approach, we start
with the set of all unlabelled LFs (Uy), and an ini-
tial randomly-selected seed of LFs paired with ut-
terances (i.e. labelled LFs Ly). The aim is to select

2This classifier is complementary to the approach pro-
posed in Iyer et al. (2017) where we use this classifier instead
of user feedback.
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LFs for which we should obtain utterances, max-
imizing the test score as early as possible. In the
overnight approach, we can’t use the least confi-
dence score (i.e. the forward S2S sentence loss)
directly since we can’t estimate P(y|x) because
we don’t know the utterance x. We have to some-
how approximate this probability with regard to
the performance on test.

A simple strategy is just to apply the backward
S2S model and estimate P(x|y), e.g. we select LF
y0 to label from the unlabelled data Uy as follows:

y0 = argmin
y2Uy

⇥
max
x⇤

P(x⇤|y; ✓)
⇤

Essentially, we train the S2S model to predict the
utterance given the LF. The motivation is that if
we can reconstruct the utterance from the LF then
we could possibly generate LFs from utterances.
However, this strategy ignores one important as-
pect of semantic parsing, which is that LFs are an
abstraction of utterances. One utterance is mapped
to only one LF, but one LF corresponds to many
utterances.

Since the forward S2S loss performs so well,
another strategy is to approximate the selections
made by this score. We train a linear binary clas-
sifier3 to predict selections, using features which
can be computed from LFs only. We extract two
set of features from the LF model and the back-
ward S2S model. The LF model is an RNN lan-
guage model but trained on LFs (Zaremba et al.,
2014).4 We extract the LF sentence log proba-
bility i.e. logP(y), feature from this model. The
backward S2S model, as mentioned above, is the
model trained to predict an utterance given a LF.
We extracted the same set of features as mentioned
in §4.1 including LF sentence log loss, margin be-
tween best and second best solutions, and LF fre-
quencies.

On the development corpus, we first run one ac-
tive learning round using forward S2S model sen-
tence loss (i.e. modelling P(y|x)) on the initial an-
notated data Ly. The set of selected LFs based
on forward S2S loss will be the positive exam-
ples, and all other LFs that are not selected will
be the negative examples for training the binary
classifier. Our experiments show that the classi-
fier which uses the combination of two features
(source LF frequencies and the margin of best and

3Instead of binary classifier, it would also be possible to
train a logistic model. However, we leave this for future work.

4We use the configuration from Zaremba et al. (2014).

second best solution) are the best predictor of what
is selected by forward S2S model log loss (i.e.
modelling P(y|x)). It is interesting to see that ab-
solute score of backward S2S model loss is not a
good indicator as it is not selected. This may be
due to the fact that utterance-LF mapping is one-
to-many and the model probability is distributed
to all valid output utterances. Hence, low proba-
bility is not necessary an indicator of bad predic-
tion. We use the linear combination of the two
features mentioned above with the weights from
the binary classifier as a means of selecting the LF
for overnight active learning on different corpora
without retraining the classifier.

5 Experiment

5.1 Datasets
We experiment with the NLMaps corpus (Haas
and Riezler, 2016) which was collected using
the traditional approach. We tokenize follow-
ing Kočiský et al. (2016). We also experiment with
the Social Network corpus from the Overnight
dataset (Wang et al., 2015) (which was collected
using the overnight approach). Social Network
was chosen as being the largest dataset available.
Since neither corpora have a separate development
set, we use 10% of the training set as development
data for early stopping. We select ATIS (Zettle-
moyer and Collins, 2007) as our development cor-
pus for all feature selection and experiments with
classifiers in §4.1 and §4.2.

For evaluation, we use full LF exact match ac-
curacy for all experiments (Kočiský et al., 2016).
Note that this is a much stricter evaluation com-
pared with running through database evaluator as
in Wang et al. (2015).

5.2 Hyperparameter tuning
Hyperparameter tuning is important for good per-
formance. We tune the base S2S model (§3)
on the development data by generating 100 con-
figurations using Adam optimizer (Kingma and
Ba, 2014) and a permutation of different source
and target RNN sizes, RNN cell types, initializer,
dropout rates and mini-batch sizes.

As mentioned, hyperparameter tuning is often
overlooked in active learning. The common ap-
proach is just to use the configuration from a sim-
ilar problem, from prior work on the same dataset,

5The exact match accuracy for Social Network is ex-
tracted from logs from (Jia and Liang, 2016).
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Figure 1: Active learning for various selection criteria. Random baseline randomly select the training
data at each round. Fw S2S is used for traditional data collection using forward S2S loss score. Bw S2S

is used for overnight data collection using backward S2S loss score. Bw classifier is used also for the
overnight approach but linearly combines several scores together as mentioned in §4.2. The scores in
parentheses measure the area under the curve. The dashed lines are the SOTA from Table 1.

NLMap Social ATIS

From ATIS 76.0 65.8 86.0
Small subset 84.2 68.9 85.7
Full data 84.2 69.1 86.0

SOTA 84.1 68.8 86.1

Table 1: The LF exact match accuracy on NLMap,
Social Network and ATIS with configurations
from ATIS, from hyperparameter tuning on small
subset of data (10% + dev) or on the full train-
ing data. The supervised SOTA for NLMap and
ATIS (Duong et al., 2017) and Social Network (Jia
and Liang, 2016) are provided for reference.5

or based on the authors own experience. How-
ever, in practice we don’t have any prior work to
copy the configuration from. Table 1 shows the
experiments with the NLMap and Social Network
corpora with configurations: 1) copied from an-
other dataset (ATIS), 2) tuned on a small subset
(10% of train data plus development data) and 3)
tuned on the full dataset. We can see that copy-
ing from a different dataset results in a subopti-
mal solution, which is expected since the different
datasets are significantly different. It is surprising
that tuning on small subset of the data performs
as well as tuning on all the data and, more impor-
tantly, it achieves similar results as the state of the
art (SOTA).

5.3 Active Learning Results
Figure 1 shows the active learning curve for
NLMap, ATIS and Overnight (Social Network)
datasets. 10% of data is randomly selected as
initial seed data for active learning and hyperpa-
rameter tuning. We run active learning for 10
rounds, selecting 10% of the data at each round.
Round 0 reports the result trained on the initial
seed data and round 9 is the result on the whole
training data. For reference, we also report Fw S2S

for Social Network, treating that corpus as if they
were collected using the traditional approach, and
Bw S2S/classifier for NLMap and ATIS treating
those corpora as if they were collected using the
overnight approach.

For traditional data collection (forward direc-
tion), S2S loss consistently outperforms the ran-
dom baselines on both datasets. The differences
are as high as 9% for NLMap (at round 4). Apply-
ing this strategy for ATIS, we reach SOTA results
at round 4, using only 50% of data. We also exper-
imented with the large margin baseline and classi-
fier strategies as mentioned in §4.1. The least con-
fidence strategy using S2S loss outperforms large
margin and achieves similar performance with the
more complicated classifier strategy, thus we omit
those results for brevity.

On the overnight data collection active learn-
ing (backward direction), the results are split. The
backward S2S loss performs particularly well on
the NLMap corpus, approximating the forward
S2S performance. However, it performs similar
to the random baseline in the other corpora. On
the other hand, the classifier strategy performs
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well on both ATIS and Social Network but poorly
on NLMap. Using this strategy, we approximate
the SOTA for both ATIS and Social Network at
round 5 and 6 respectively (saving 40% and 30%
of data). We suspect that backward S2S loss per-
forms so well on NLMap since there is a one-to-
one mapping between utterance and LF. The num-
ber of unique LFs in the training data for NLMap,
ATIS and Overnight are 95.4%, 28.4% and 19.5%
respectively. All in all, our proposed strategies for
“overnight” active learning are nearly as good as
traditional active learning, showing in similar area
under the curve value in Figure 1.

6 Conclusion

We have discussed practical active learning for
deep semantic parsing. We have empirically
shown that it is possible to get good hyperpa-
rameters from only a small subset of annotated
data. We applied active learning for both tradi-
tional and overnight semantic parsing data collec-
tion. For traditional data collection, we show that
least confidence score based on S2S log loss per-
forms well across datasets. Applying active learn-
ing for overnight data collection is challenging,
and the best performing strategy depends on the
domain. We recommend that applications explore
both the backward S2S and classifier strategies.
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