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Abstract

The MUSEEC (MUltilingual SEntence
Extraction and Compression) summariza-
tion tool implements several extractive
summarization techniques – at the level of
complete and compressed sentences – that
can be applied, with some minor adapta-
tions, to documents in multiple languages.

The current version of MUSEEC pro-
vides the following summarization meth-
ods: (1) MUSE – a supervised summa-
rizer, based on a genetic algorithm (GA),
that ranks document sentences and ex-
tracts top–ranking sentences into a sum-
mary, (2) POLY – an unsupervised sum-
marizer, based on linear programming
(LP), that selects the best extract of docu-
ment sentences, and (3) WECOM – an un-
supervised extension of POLY that com-
piles a document summary from com-
pressed sentences. In this paper, we pro-
vide an overview of MUSEEC methods
and its architecture in general.

1 Introduction

High quality summaries can significantly reduce
the information overload of many professionals in
a variety of fields. Moreover, the publication of
information on the Internet in an ever–increasing
variety of languages dictates the importance of de-
veloping multi–lingual summarization tools that
can be readily applied to documents in multiple
languages.

There is a distinction between extractive sum-
marization that is aimed at the selection of a sub-
set of the most relevant fragments – mostly com-
plete sentences – from a source text, and abstrac-
tive summarization that generates a summary as a

reformulated synopsis expressing the main idea of
the input documents.

Unlike the abstractive summarization methods,
which require natural language processing oper-
ations, language-independent summarizers work
in an extractive manner, usually via ranking frag-
ments of a summarized text by a relevance score
and selecting the top-ranked fragments (e.g., sen-
tences) into a summary. Because sentence scor-
ing methods, like MUSE (MUltilingual Sentence
Extractor) (Last and Litvak, 2012), use a greedy
approach, they cannot necessarily find the best ex-
tract out of all possible combinations of sentences.

Another approach, based on the maximum cov-
erage principle (McDonald, 2007; Gillick and
Favre, 2009), tries to find the best subset of ex-
tracted sentences. This problem is known as NP-
hard (Khuller et al., 1999), but an approximate so-
lution can be found by the POLY algorithm (Lit-
vak and Vanetik, 2013) in polynomial time.

Given the tight length constraints, extractive
systems that select entire sentences are quite lim-
ited in the quality of summaries they can produce.
Compressive summarization seeks to overcome
this limitation by compiling summaries from com-
pressed sentences that are composed of strictly rel-
evant information(Knight and Marcu, 2002). WE-
COM (Weighted COMpression) summarization
approach (Vanetik et al., 2016) combines methods
for term weighting and sentence compression into
a weighted compression model. WECOM extends
POLY by utilizing the choice of POLY’s objective
functions for the term-weighting model.

In this paper, we present MUSEEC, a multi-
lingual text summarization platform, which cur-
rently implements three single-document sum-
marization algorithms: MUSE (Last and Lit-
vak, 2012), POLY algorithm (Litvak and Vanetik,
2013), and WECOM (Vanetik et al., 2016).
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Figure 1: MUSEEC pipeline

2 MUSEEC: Overview

MUSEEC can be applied to documents in multi-
ple languages. The current version was tested on
nine languages: English, Hebrew, Arabic, Persian,
Russian, Chinese, German, French, and Spanish,
and its summarization quality was evaluated on
three languages: English, Hebrew and Arabic.1

The sections below provide brief descriptions of
the system architecture and its main components.

2.1 MUSEEC Architecture
As shown in Figure 1, MUSEEC runs a pipeline
that is composed of the following components:
1. Preprocessing. MUSEEC can work with docu-
ments written in any language by treating the text
as a sequence of UTF-8 characters. It performs the
following pre-processing operations: (1) sentence
segmentation, (2) word segmentation, (3) stem-
ming, and (4) stop-word removal. The last two
operations are skipped if they are unavailable for
a given language. Some optional, linguistic fea-
tures require Part-of Speech (POS) tagging as a
pre-processing step as well.
2. Training. This stage is optional and it is rel-
evant only for the supervised MUSE algorithm.
Given a set of training parameters, MUSE finds
the best vector of weights for a linear combination
of chosen sentence features. The resulting vector
(trained model) can be saved and used for future
summarization of documents in the same or any
other language.
3. Ranking. At this stage, entire sentences or their
parts (in case of compressive summarization) are
ranked.
4. Sentence Compression. This stage is also op-
tional and it is relevant only for compressive sum-
marization performed by WECOM. Given ranked
sentence parts, new, shorter sentences are com-
piled and ranked.

1MUSEEC also participated in MultiLing 2011, 2013,
and 2015 contests on English, Hebrew and Arabic, and
demonstrated excellent results.

5. Extraction. Complete sentences are selected
in the case of MUSE and POLY, and compressed
sentences in the case of WECOM.
6. Postprocessing. The generated summaries can
be post-processed by anaphora resolution (AR)
and named entity (NE) tagging operations, if
the corresponding tools are provided for a given
language. MUSEEC utilizes Stanford CoreNLP
package for English.
7. Results Presentation. Summaries are pre-
sented in two formats: sentences highlighted in
the original document, selected by the user from
a list of input documents, and a list of extracted
sentences shown in their original order. The user
can also sort sentences by their rank and see their
scores.
MUSEEC allows the user to setup various sum-
marization parameters, general and specific for a
chosen algorithm, which are listed in Table 1. The
table does not contain explicit WECOM settings
because running WECOM equivalent to running
POLY with “compressive” choice for the summary
type.

2.2 MUltilingual Sentence Extractor (MUSE)

MUSE implements a supervised learning ap-
proach to extractive summarization, where the
best set of weights for a linear combination of sen-
tence scoring metrics is found by a GA trained
on a collection of documents and their gold stan-
dard summaries. MUSE training can be performed
from the MUSEEC tool. The obtained weighting
vector is used for sentence scoring in future sum-
marizations. Since most sentence scoring methods
have a linear computational complexity, only the
training phase of MUSE, which may be applied
in advance, is time-consuming. In MUSEEC, one
can use ROUGE-1 and ROUGE-2, Recall (Lin and
Hovy, 2003) 2 as fitness functions for measuring
summarization quality—similarity with gold stan-

2We utilized the language-independent implementation of
ROUGE that operates Unicode characters (Krapivin, 2014)
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Parameter Description Possible Default
name values value

General
Input path Documents folder Path name
Output path Summaries folder Path name
Summary type Summarization Compressive, Extractive

approach Extractive
Method Summarization MUSE, POLY MUSE (extr.),

method WECOM (comp.)
Limit by Summary length unit Words, Sentences,

Ratio, Characters Words
Limit Summary length limit Numeric value Depends

on unit
AR Anaphora resolution Check box unchecked
NER Named Entity tagging Check box unchecked

MUSE
Mode Train a new model, Train, Summarize, Summarize

summarize documents Evaluate
evaluate summarizer

Model Model to save Path name
(training mode), or
model to use
(summarize mode)

Sent. features Sentence scoring 31 basic metrics, 31 basic metrics
features 75 linguistic features

GA training
Ratio split Ratio of training data [0..1] 1
Population GA settings 500
Size GA settings 100
Elite count GA settings 5
Rouge Rouge type as 1, 2 Rouge-1

a fitness func.
POLY

Objective Optimization 8 functions, Function 2
function function described in in Section 2.3

Section 2.3

Table 1: MUSEEC general and method-specific
parameters.

dard summaries, which should be maximized dur-
ing the training. The reader is referred to (Litvak
et al., 2010) for a detailed description of the opti-
mization procedure implemented by MUSE.

The user can choose a subset of sentence met-
rics that will be included by MUSE in the lin-
ear combination. By default, MUSEEC will use
the 31 language-independent metrics presented
in (Last and Litvak, 2012). MUSEEC also allows
the user to employ additional, linguistic features,
which are currently available only for the English
language. These features are based on lemmatiza-
tion, multi-word expressions (MWE), NE recogni-
tion (NER), and POS tagging, all performed with
Stanford CoreNLP package. The list of linguistic
features is available in (Dlikman, 2015).

The training time of the GA is proportional to
the number of GA iterations3 multiplied by the
number of individuals in a population, times the
fitness (ROUGE) evaluation time. The summa-
rization time (given a model) is linear in number
of terms for all basic features.

3On average, in our experiments the GA performed 5− 6
iterations of selection and reproduction before reaching con-
vergence.

2.3 POLYnomial summarization with
POLYtopes (POLY)

Following the maximum coverage principle, the
goal of POLY, which is an unsupervised summa-
rizer, is to find the best subset of sentences that,
under length constraints, can be presented as a
summary. POLY uses an efficient text represen-
tation model with the purpose of representing all
possible extracts4 without computing them explic-
itly, that saves a great portion of computation time.
Each sentence is represented by a hyperplane, and
all sentences derived from a document form hyper-
plane intersections (polytope). Then, all possible
extracts can be represented by subplanes of hyper-
plane intersections that are not located far from the
boundary of the polytope. POLY is aimed at find-
ing the extract that optimizes the chosen objective
function.

MUSEEC provides the following categories of
objective functions, described in detail in (Litvak
and Vanetik, 2013).
1. Maximal weighted term sum, that maximizes
the information coverage as a weighted term sum
with following weight options supported:

1. Term sum: all terms get weight 1;

2. POS F: terms appearing earlier in the text get
higher weight;

3. POS L: terms appearing close to the end of
the text get higher weight;

4. POS B: terms appearing closer to text bound-
aries (beginning or end) get higher weight;

5. TF: weight of a term is set to its frequency in
the document;

6. TF IDF: weight of a term is set to its tf*idf
value;

2. McDonald – maximal sentence coverage and
minimal sentence overlap, that maximizes the
summary similarity to the text and minimizes the
similarity between sentences in a summary, based
on the Jaccard similarity measure (based on (Mc-
Donald, 2007));
3. Gillick – maximal bigram sum and minimal
sentence overlap, that maximizes the information
coverage as a bigram sum while minimizing the
similarity between sentences (based on (Gillick

4exponential in the number of sentences
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and Favre, 2009)).
All functions produce term weights in [0, 1] that
are then used for calculating the importance scores
of each sentence.

Like in MUSE, the sentences with the highest
score are added to the summary in a greedy man-
ner. The overall complexity of POLY is polyno-
mial in number of sentences. Further details about
the POLY algorithm can be found in (Litvak and
Vanetik, 2013).

2.4 WEighted Compression (WECOM)

In WECOM (Vanetik et al., 2016), we shorten
sentences by iteratively removing Elementary
Discourse Units (EDUs), which were defined as
grammatically independent parts of a sentence
in (Marcu, 1997). We preserve the important
content by optimizing the weighting function that
measures cumulative importance and preserve a
valid syntax by following the syntactic structure
of a sentence. The implemented approach consists
of the following steps:
Term weight assignment. We apply a weighting
model (using one of the options available for
POLY) that assigns a non-negative weight to each
occurrence of every term in all sentences of the
document.
EDU selection and ranking. At this stage,
we prepare a list of candidate EDUs for re-
moval. First, we generate the list of EDUs from
constituency-based syntax trees (Manning and
Schütze, 1999) of sentences. Then, we omit
from the list those EDUs that may create a
grammatically incorrect sentence if they were
to be removed. Finally, we compute weights
for all remaining EDU candidates from term
weights obtained in the first stage and sort them
by increasing weight.
Budgeted sentence compression and selection.
We define a summary cost as its length measured
in words or characters5. We are given a budget
for the summary cost, for example, the maximal
number of words in a summary. The compressive
part of WECOM is responsible for selecting
EDUs in all sentences such that
(1) the weight to cost ratio of the summary is
maximal; and
(2) the summary length does not exceed a given
budget.

5depends on the user’s choice of a summary maximal
length

The compressed sentences are expected to be
more succinct than the originals, to contain the
important content from the originals, and to be
grammatically correct. The compressed sentences
are selected to a summary by the greedy manner.
The overall complexity of WECOM is bound by
Nlog(N), where N is a number of terms in all
sentences.

3 Experimental Results

Tables 2, 3, and 4 contain the summarized re-
sults of automated evaluations for the MultiL-
ing 2015, single-document summarization (MSS)
task. The quality of the summaries is measured
by ROUGE-1 (Recall, Precision, and F-measure),
(C.-Y, 2004). We also demonstrate the absolute
ranks of each submission–P-Rank, R-Rank, and
F-Rank–with their scores sorted by Precision, Re-
call, and F-measure, respectively. Only the best
submissions (in terms of F-measure) for each par-
ticipating system are presented and sorted in de-
scending order of their F-measure scores. Two
systems–Oracles and Lead–were used as top-line
and baseline summarizers, respectively. Oracles
compute summaries for each article using the
combinatorial covering algorithm in (Davis et al.,
2012)–sentences were selected from a text to max-
imally cover the tokens in the human summary.
Since the Oracles system can actually “see” the
human summaries, it is considered as the optimal
algorithm and its scores are the best scores that ex-
tractive approaches can achieve. The Lead system
simply extracts the leading substring of the body
text of the articles having the same length as the
human summary of the article.

system P score R score F score P-Rank R-Rank F-Rank

Oracles 0.601 0.619 0.610 1 1 1
MUSE 0.488 0.500 0.494 2 3 2
CCS 0.477 0.495 0.485 4 6 3
POLY 0.475 0.494 0.484 5 8 5
EXB 0.467 0.495 0.480 9 13 4
NTNU 0.470 0.456 0.462 13 12 17
LCS-IESI 0.461 0.456 0.458 15 15 18
UA-DLSI 0.457 0.456 0.456 17 18 16
Lead 0.425 0.434 0.429 20 24 20

Table 2: MSS task. English.

As can be seen, MUSE outperformed all other
participating systems except for CCS in Hebrew.
CCS (the CCS-5 submission, to be precise) uses
the document tree structure of sections, subsec-
tions, paragraphs, and sentences, and compiles a
summary from the leading sentences of recursive
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system P score R score F score P-Rank R-Rank F-Rank

CCS 0.202 0.213 0.207 1 1 1
MUSE 0.196 0.210 0.203 2 2 2
POLY 0.189 0.203 0.196 4 4 6
EXB 0.186 0.205 0.195 5 5 4
Oracles 0.182 0.204 0.192 6 6 5
Lead 0.168 0.178 0.173 12 13 12
LCS-IESI 0.181 0.170 0.172 13 7 14

Table 3: MSS task. Hebrew.

system P score R score F score P-Rank R-Rank F-Rank

Oracles 0.630 0.658 0.644 1 1 1
MUSE 0.562 0.569 0.565 2 4 2
CCS 0.554 0.571 0.562 4 3 3
EXB 0.546 0.571 0.558 8 2 7
POLY 0.545 0.560 0.552 10 9 9
LCS-IESI 0.540 0.527 0.531 11 13 12
Lead 0.524 0.535 0.529 13 12 13

Table 4: MSS task. Arabic.

bottom-up interweaving of the node leading sen-
tences, starting from leaves (usually, paragraphs
in a section). POLY got very close scores, though
it is an unsupervised approach and its comparison
to a supervised summarizer is not fair.

MUSEEC also participated in the multi-
document summarization (MMS) task, on En-
glish, Hebrew and Arabic. MUSE got first place
on Hebrew, and 2nd places on English and Ara-
bic languages, out of 9 participants. POLY got
third place on Hebrew, 4th place on English, and
5th place on Arabic, out of 9 participants. We
explain the differences between scores in Hebrew
and other languages by the lack of NLP tools for
this language. For example, none of the competing
systems performed stemming for Hebrew. Also,
it is possible that the quality of the gold standard
summaries or the level of agreement between an-
notators in Hebrew was lower than in other lan-
guages.

WECOM was evaluated in (Vanetik et al., 2016)
on three different datasets (DUC 2002, DUC 2004,
and DUC 2007) using automated and human ex-
periments. Both automated and human scores
have shown that compression significantly im-
proves the quality of generated summaries. Ta-
ble 5 contains results for POLY and WECOM
summarizers on the DUC 2002 dataset. Statis-
tical testing (using a paired T-test) showed that
there is a significant improvement in ROUGE-
1 recall between ILP concept-based extraction
method of Gillick and Favre (2009) and WECOM
with weights generated by Gillick and Favre’s
method. Another significant improvement is be-
tween ILP extraction method of McDonald (2007)
and WECOM with weights generated by McDon-

ald’s method.

System R-1 R R-1 P R-1 F R-2 R R-2 P R-2 F
POLY + Gillick 0.401 0.407 0.401 0.160 0.162 0.160
WECOM + Gillick 0.410* 0.413 0.409 0.166 0.166 0.165
POLY + McDonald 0.393 0.407 0.396 0.156 0.159 0.156
WECOM + McDonald 0.401* 0.403 0.399 0.158 0.158 0.157
POLY + POS F 0.448 0.453 0.447 0.213 0.214 0.212
WECOM + POS F 0.450 0.450 0.447 0.211 0.210 0.210

Table 5: ROUGE-1 and -2 scores. DUC 2002.

Practical running times for MUSE (summariza-
tion) and POLY are tens of milliseconds per a text
document of a few thousand words. WECOM
running time is strictly dependent on the running
time of dependency parsing performed by Stan-
ford CoreNLP package, which takes 2−3 seconds
per sentence. Given pre-saved pre-processing re-
sults, WECOM takes tens of milliseconds per doc-
ument as well.

4 Possible Extensions

MUSEEC functionality can be easily extended us-
ing its API. New algorithms can be added by im-
plementing new ranking and/or compression mod-
ules of the pipeline. The pipeline is dynamically
built before running a summarization algorithm,
and it can be configured by a programmer6. The
currently implemented algorithms can also be ex-
tended. For example, a new sentence feature for
MUSE can be implemented by preparing one con-
crete class implementing a predefined interface.
Using Java reflection, it does not require changes
in any other code. New objective functions can
be provided for POLY by implementation of one
concrete class implementing the predefined inter-
face and adding a few rows in the objective func-
tions factory for creation instances of a new class
(using factory method design pattern). Using de-
pendency injections design pattern, MUSEEC can
switch from Stanford CoreNLP package to any
other tool for text preprocessing. MUSEEC is
totally language-independent and works for any
language with input texts provided in UTF-8 en-
coding. If no text processing tools for a given
language are provided, MUSEEC skips the rele-
vant stages in its pipeline (for example, it does
not perform stemming for Chinese). Providing
new NLP tools can improve MUSEEC summa-
rization quality on additional languages. The sub-
sequent stages in the MUSEEC pipeline (sentence

6Because building pipeline requires programming skills,
this option cannot be applied from GUI.
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ranking and compression) are totally language-
independent and work with structured data gener-
ated during pre-processing. The optional capabil-
ities of NE tagging and AR in the post-processing
stage may be also extended with additional NLP
tools for specific languages.

The programmer and user guidelines for ex-
tending and using MUSEEC can be provided upon
request.

5 Final Remarks

In this paper, we present MUSEEC - a plat-
form for summarizing documents in multiple lan-
guages. MUSEEC implements several variations
of three single-document summarization methods:
MUSE, POLY, and WECOM. The big advantage
of MUSEEC is its multilinguality. The system has
been successfully evaluated on benchmark docu-
ment collections in three languages (English, Ara-
bic, and Hebrew) and tested on six more lan-
guages. Also, MUSEEC has a flexible architec-
ture and API, and it can be extended to other algo-
rithms and languages.

However, MUSEEC has the following limita-
tions: all its methods, especially compressive, are
dependent on the pre-processing tools, in terms of
summarization quality and performance. In order
to improve coherency of the generated summaries,
the MUSEEC user can apply AR as well as NE
tagging to the generated summaries. More sophis-
ticated post-processing operations performed on
the extracted text in MUSEEC can further improve
the user experience.

The MUSEEC tool, along with its
code, is available under a BSD license on
https://bitbucket.org/elenach/
onr_gui/wiki/Home. In the future, we intend
to prepare a Web application allowing users to
apply MUSEEC online.
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