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Abstract
Recently, there is rising interest in mod-
elling the interactions of text pair with
deep neural networks. In this paper, we
propose a model of deep fusion LSTMs
(DF-LSTMs) to model the strong inter-
action of text pair in a recursive match-
ing way. Specifically, DF-LSTMs con-
sist of two interdependent LSTMs, each
of which models a sequence under the in-
fluence of another. We also use exter-
nal memory to increase the capacity of
LSTMs, thereby possibly capturing more
complicated matching patterns. Experi-
ments on two very large datasets demon-
strate the efficacy of our proposed archi-
tecture. Furthermore, we present an elab-
orate qualitative analysis of our models,
giving an intuitive understanding how our
model worked.

1 Introduction

Among many natural language processing (NLP)
tasks, such as text classification, question answer-
ing and machine translation, a common problem
is modelling the relevance/similarity of a pair of
texts, which is also called text semantic matching.
Due to the semantic gap problem, text semantic
matching is still a challenging problem.

Recently, deep learning is rising a substan-
tial interest in text semantic matching and has
achieved some great progresses (Hu et al., 2014;
Qiu and Huang, 2015; Wan et al., 2016). Accord-
ing to their interaction ways, previous models can
be classified into three categories:

Weak interaction Models Some early works
focus on sentence level interactions, such as ARC-
I(Hu et al., 2014), CNTN(Qiu and Huang, 2015)
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and so on. These models first encode two se-
quences into continuous dense vectors by sepa-
rated neural models, and then compute the match-
ing score based on sentence encoding. In this
paradigm, two sentences have no interaction un-
til arriving final phase.

Semi-interaction Models Another kind of mod-
els use soft attention mechanism to obtain the rep-
resentation of one sentence by depending on rep-
resentation of another sentence, such as ABCNN
(Yin et al., 2015), Attention LSTM (Rocktäschel
et al., 2015; Hermann et al., 2015). These models
can alleviate the weak interaction problem to some
extent.

Strong Interaction Models Some models build
the interaction at different granularity (word,
phrase and sentence level), such as ARC-II (Hu
et al., 2014), MultiGranCNN (Yin and Schütze,
2015), Multi-Perspective CNN (He et al., 2015),
MV-LSTM (Wan et al., 2016), MatchPyramid
(Pang et al., 2016). The final matching score de-
pends on these different levels of interactions.

In this paper, we adopt a deep fusion strat-
egy to model the strong interactions of two sen-
tences. Given two texts x1:m and y1:n, we define
a matching vector hi,j to represent the interaction
of the subsequences x1:i and y1:j . hi,j depends on
the matching vectors hs,t on previous interactions
1 ≤ s < i and 1 ≤ t < j. Thus, text match-
ing can be regarded as modelling the interaction
of two texts in a recursive matching way.

Following this idea, we propose deep fusion
long short-term memory neural networks (DF-
LSTMs) to model the interactions recursively.
More concretely, DF-LSTMs consist of two in-
terconnected conditional LSTMs, each of which
models a piece of text under the influence of an-
other. The output vector of DF-LSTMs is fed into
a task-specific output layer to compute the match-
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Gymnast get ready for a competition

Female gymnast warm up before a competition





Figure 1: A motivated example to illustrate our
recursive composition mechanism.

ing score.
The contributions of this paper can be summa-

rized as follows.

1. Different with previous models, DF-LSTMs
model the strong interactions of two texts in
a recursive matching way, which consist of
two inter- and intra-dependent LSTMs.

2. Compared to the previous works on text
matching, we perform extensive empirical
studies on two very large datasets. Exper-
iment results demonstrate that our proposed
architecture is more effective.

3. We present an elaborate qualitative analysis
of our model, giving an intuitive understand-
ing how our model worked.

2 Recursively Text Semantic Matching

To facilitate our model, we firstly give some defi-
nitions.

Given two sequences X = x1, x2, · · · , xm and
Y = y1, y2, · · · , yn, most deep neural models try
to represent their semantic relevance by a match-
ing vector h(X,Y ), which is followed by a score
function to calculate the matching score.

The weak interaction methods decompose
matching vector by h(X,Y ) = f(h(X),h(Y )),
where function f(·) may be one of some basic op-
erations or the combination of them: concatena-
tion, affine transformation, bilinear, and so on.

In this paper, we propose a strong interaction
of two sequences to decompose matching vec-
tor h(X,Y ) in a recursive way. We refer to the
interaction of the subsequences x1:i and y1:j as
hi,j(X,Y ), which depends on previous interac-
tions hs,t(X,Y ) for 1 ≤ s < i and 1 ≤ t < j.

Figure 1 gives an example to illustrate this. For
sentence pair X =“Female gymnast warm
up before a competition”, Y =“Gym-
nast get ready for a competition”,

considering the interaction (h4,4) between x1:4

= “Female gymnast warm up” and y1:4

= “Gymnast get ready for”, which is
composed by the interactions between their
subsequences (h1,4, · · · ,h3,4,h4,1, · · · ,h4,3).
We can see that a strong interaction between
two sequences can be decomposed in recursive
topology structure.

The matching vector hi,j(X,Y ) can be written
as

hi,j(X,Y ) = hi,j(X|Y )⊕ hi,j(Y |X), (1)

where hi,j(X|Y ) refers to conditional encoding of
subsequence x1:i influenced by y1:j . Meanwhile,
hi,j(Y |X) is conditional encoding of subsequence
y1:j influenced by subsequence x1:i; ⊕ is concate-
nation operation.

These two conditional encodings depend on
their history encodings. Based on this, we propose
deep fusion LSTMs to model the matching of texts
by recursive composition mechanism, which can
better capture the complicated interaction of two
sentences due to fully considering the interactions
between subsequences.

3 Long Short-Term Memory Network

Long short-term memory neural network
(LSTM) (Hochreiter and Schmidhuber, 1997)
is a type of recurrent neural network (RNN)
(Elman, 1990), and specifically addresses the
issue of learning long-term dependencies. LSTM
maintains a memory cell that updates and exposes
its content only when deemed necessary.

While there are numerous LSTM variants, here
we use the LSTM architecture used by (Jozefow-
icz et al., 2015), which is similar to the architec-
ture of (Graves, 2013) but without peep-hole con-
nections.

We define the LSTM units at each time step t to
be a collection of vectors in Rd: an input gate it,
a forget gate ft, an output gate ot, a memory cell
ct and a hidden state ht. d is the number of the
LSTM units. The elements of the gating vectors
it, ft and ot are in [0, 1].

The LSTM is precisely specified as follows.


c̃t

ot

it
ft

 =


tanh
σ
σ
σ

TA,b

[
xt

ht−1

]
, (2)
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Figure 2: Illustration of DF-LSTMs unit.

ct = c̃t � it + ct−1 � ft, (3)

ht = ot � tanh (ct) , (4)

where xt is the input at the current time step; TA,b

is an affine transformation which depends on pa-
rameters of the network A and b. σ denotes the
logistic sigmoid function and � denotes elemen-
twise multiplication. Intuitively, the forget gate
controls the amount of which each unit of the
memory cell is erased, the input gate controls how
much each unit is updated, and the output gate
controls the exposure of the internal memory state.

The update of each LSTM unit can be written
precisely as

(ht, ct) = LSTM(ht−1, ct−1,xt). (5)

Here, the function LSTM(·, ·, ·) is a shorthand
for Eq. (2-4).

LSTM can map the input sequence of arbi-
trary length to a fixed-sized vector, and has been
successfully applied to a wide range of NLP
tasks, such as machine translation (Sutskever et
al., 2014), language modelling (Sutskever et al.,
2011), text matching (Rocktäschel et al., 2015)
and text classification (Liu et al., 2015).

4 Deep Fusion LSTMs for Recursively
Semantic Matching

To deal with two sentences, one straightforward
method is to model them with two separate
LSTMs. However, this method is difficult to
model local interactions of two sentences.

Following the recursive matching strategy, we
propose a neural model of deep fusion LSTMs
(DF-LSTMs), which consists of two interdepen-
dent LSTMs to capture the inter- and intra-
interactions between two sequences. Figure 2
gives an illustration of DF-LSTMs unit.

To facilitate our model, we firstly give some
definitions. Given two sequences X =
x1, x2, · · · , xn and Y = y1, y2, · · · , ym, we let
xi ∈ Rd denotes the embedded representation of
the word xi. The standard LSTM has one temporal
dimension. When dealing with a sentence, LSTM
regards the position as time step. At position i of
sentence x1:n, the output hi reflects the meaning
of subsequence x1:i = x1, · · · , xi.

To model the interaction of two sentences in a
recursive way, we define hi,j to represent the in-
teraction of the subsequences x1:i and y1:j , which
is computed by

hi,j = h(x)
i,j ⊕ h(y)

i,j , (6)

where h(x)
i,j denotes the encoding of subsequence

x1:i in the first LSTM influenced by the output of
the second LSTM on subsequence y1:j ; h(y)

i,j is the
encoding of subsequence y1:j in the second LSTM
influenced by the output of the first LSTM on sub-
sequence x1:i.

More concretely,

(h(x)
i,j , c

(x)
i,j ) = LSTM(Hi,j , c

(x)
i−1,j ,xi), (7)

(h(y)
i,j , c

(y)
i,j ) = LSTM(Hi,j , c

(y)
i,j−1,xj), (8)

where Hi,j is information consisting of history
states before position (i, j).

The simplest setting is Hi,j = h(x)
i−1,j ⊕ h(y)

i,j−1.
In this case, our model can be regarded as grid
LSTMs (Kalchbrenner et al., 2015).

However, there are totalm×n interactions in re-
cursive matching process, LSTM could be stressed
to keep these interactions in internal memory.
Therefore, inspired by recent neural memory net-
work, such as neural Turing machine(Graves et
al., 2014) and memory network (Sukhbaatar et
al., 2015), we introduce two external memories to
keep the history information, which can relieve the
pressure on low-capacity internal memory.

Following (Tran et al., 2016), we use exter-
nal memory constructed by history hidden states,
which is defined as

Mt = {ht−K , . . . ,ht−1} ∈ RK×d, (9)

where K is the number of memory segments,
which is generally instance-independent and pre-
defined as hyper-parameter; d is the size of each
segment; and ht is the hidden state at time t emit-
ted by LSTM.
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At position i, j, two memory blocks
M(x),M(y) are used to store contextual in-
formation of x and y respectively.

M(x)
i,j = {h(x)

i−K,j , . . . ,h
(x)
i−1,j}, (10)

M(y)
i,j = {h(y)

i,j−K , . . . ,h
(y)
i,j−1}, (11)

where h(x) and h(x) are outputs of two conditional
LSTMs at different positions.

The history information can be read from these
two memory blocks. We denote a read vector from
external memories as ri,j ∈ Rd, which can be
computed by soft attention mechanisms.

r(x)
i,j = a(x)

i,j M(x)
i,j , (12)

r(y)
i,j = a(y)

i,j M(y)
i,j , (13)

where ai,j ∈ RK represents attention distribution
over the corresponding memory Mi,j ∈ RK×d.

More concretely, each scalar ai,j,k in attention
distribution ai,j can be obtained:

a
(x)
i,j,k = softmax(g(M(x)

i,j,k, r
(x)
i−1,j ,xi)), (14)

a
(y)
i,j,k = softmax(g(M(y)

i,j,k, r
(y)
i,j−1,yj)), (15)

where Mi,j,k ∈ Rd represents the k-th row mem-
ory vector at position (i, j), and g(·) is an align
function defined by

g(x,y, z) = vT tanh(Wa[x;y, z]), (16)

where v ∈ Rd is a parameter vector and Wa ∈
Rd×3d is a parameter matrix.

The history information Hi,j in Eq (7) and (8)
is computed by

Hi,j = r(x)
i,j ⊕ r(y)

i,j . (17)

By incorporating external memory blocks, DF-
LSTMs allow network to re-read history interac-
tion information, therefore it can more easily cap-
ture complicated and long-distance matching pat-
terns. As shown in Figure 3, the forward pass
of DF-LSTMs can be unfolded along two dimen-
sional ordering.

4.1 Related Models
Our model is inspired by some recently proposed
models based on recurrent neural network (RNN).

One kind of models is multi-dimensional re-
current neural network (MD-RNN) (Graves et al.,
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Gymnast get ready for a competition

Figure 3: Illustration of unfolded DF-LSTMs.

2007; Graves and Schmidhuber, 2009; Byeon et
al., 2015) in machine learning and computer vi-
sion communities. As mentioned above, if we just
use the neighbor states, our model can be regarded
as grid LSTMs (Kalchbrenner et al., 2015).

What is different is the dependency relations
between the current state and history states. Our
model uses external memory to increase its mem-
ory capacity and therefore can store large useful
interactions of subsequences. Thus, we can dis-
cover some matching patterns with long depen-
dence.

Another kind of models is memory augmented
RNN, such as long short-term memory-network
(Cheng et al., 2016) and recurrent memory net-
work (Tran et al., 2016), which extend memory
network (Bahdanau et al., 2014) and equip the
RNN with ability of re-reading the history infor-
mation. While they focus on sequence modelling,
our model concentrates more on modelling the in-
teractions of sequence pair.

5 Training

5.1 Task Specific Output
There are two popular types of text matching tasks
in NLP. One is ranking task, such as community
question answering. Another is classification task,
such as textual entailment.

We use different ways to calculate matching
score for these two types of tasks.

1. For ranking task, the output is a scalar match-
ing score, which is obtained by a linear trans-
formation of the matching vector obtained by
FD-LSTMs.

2. For classification task, the outputs are the
probabilities of the different classes, which
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is computed by a softmax function on the
matching vector obtained by FD-LSTMs.

5.2 Loss Function
Accordingly, we use two loss functions to deal
with different sentence matching tasks.

Max-Margin Loss for Ranking Task Given a
positive sentence pair (X,Y ) and its correspond-
ing negative pair (X, Ŷ ). The matching score
s(X,Y ) should be larger than s(X, Ŷ ).

For this task, we use the contrastive max-margin
criterion (Bordes et al., 2013; Socher et al., 2013)
to train our model on matching task.

The ranking-based loss is defined as

L(X,Y, Ŷ ) = max(0, 1− s(X,Y ) + s(X, Ŷ )).
(18)

where s(X,Y ) is predicted matching score for
(X,Y ).

Cross-entropy Loss for Classification Task
Given a sentence pair (X,Y ) and its label l. The
output l̂ of neural network is the probabilities of
the different classes. The parameters of the net-
work are trained to minimise the cross-entropy of
the predicted and true label distributions.

L(X,Y ; l, l̂) = −
C∑

j=1

lj log(̂lj), (19)

where l is one-hot representation of the ground-
truth label l; l̂ is predicted probabilities of labels;
C is the class number.

5.3 Optimizer
To minimize the objective, we use stochastic gra-
dient descent with the diagonal variant of Ada-
Grad (Duchi et al., 2011).

To prevent exploding gradients, we perform
gradient clipping by scaling the gradient when the
norm exceeds a threshold (Graves, 2013).

5.4 Initialization and Hyperparameters
Orthogonal Initialization We use orthogonal
initialization of our LSTMs, which allows neurons
to react to the diverse patterns and is helpful to
train a multi-layer network (Saxe et al., 2013).

Unsupervised Initialization The word embed-
dings for all of the models are initialized with the
100d GloVe vectors (840B token version, (Pen-
nington et al., 2014)). The other parameters are
initialized by randomly sampling from uniform
distribution in [−0.1, 0.1].

Hyper-parameters MQA RTE
K 9 9
Embedding size 100 100
Hidden layer size 50 100
Initial learning rate 0.05 0.005
Regularization 5E−5 1E−5

Table 1: Hyper-parameters for our model on two
tasks.

Hyperparameters For each task, we used
a stacked DF-LSTM and take the hyperpa-
rameters which achieve the best performance
on the development set via an small grid
search over combinations of the initial learn-
ing rate [0.05, 0.0005, 0.0001], l2 regularization
[0.0, 5E−5, 1E−5, 1E−6] and the values of K
[1, 3, 6, 9, 12]. The final hyper-parameters are set
as Table 1.

6 Experiment

In this section, we investigate the empirical per-
formances of our proposed model on two different
text matching tasks: classification task (recogniz-
ing textual entailment) and ranking task (matching
of question and answer).

6.1 Competitor Methods

• Neural bag-of-words (NBOW): Each se-
quence is represented as the sum of the em-
beddings of the words it contains, then they
are concatenated and fed to a MLP.

• Single LSTM: Two sequences are encoded by
a single LSTM, proposed by (Rocktäschel et
al., 2015).

• Parallel LSTMs: Two sequences are first en-
coded by two LSTMs separately, then they
are concatenated and fed to a MLP.

• Attention LSTMs: Two sequences are en-
coded by LSTMs with attention mechanism,
proposed by (Rocktäschel et al., 2015).

• Word-by-word Attention LSTMs: An im-
proved strategy of attention LSTMs, which
introduces word-by-word attention mecha-
nism and is proposed by (Rocktäschel et al.,
2015).
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Model k Train Test
NBOW 100 77.9 75.1
single LSTM
(Rocktäschel et al., 2015) 100 83.7 80.9

parallel LSTMs
(Bowman et al., 2015) 100 84.8 77.6

Attention LSTM
(Rocktäschel et al., 2015) 100 83.2 82.3

Attention(w-by-w) LSTM
(Rocktäschel et al., 2015) 100 83.7 83.5

DF-LSTMs 100 85.2 84.6

Table 2: Accuracies of our proposed model against
other neural models on SNLI corpus.

6.2 Experiment-I: Recognizing Textual
Entailment

Recognizing textual entailment (RTE) is a task to
determine the semantic relationship between two
sentences. We use the Stanford Natural Language
Inference Corpus (SNLI) (Bowman et al., 2015).
This corpus contains 570K sentence pairs, and all
of the sentences and labels stem from human an-
notators. SNLI is two orders of magnitude larger
than all other existing RTE corpora. Therefore, the
massive scale of SNLI allows us to train powerful
neural networks such as our proposed architecture
in this paper.

6.2.1 Results
Table 2 shows the evaluation results on SNLI. The
2nd column of the table gives the number of hid-
den states.

From experimental results, we have several ex-
perimental findings.

The results of DF-LSTMs outperform all the
competitor models with the same number of hid-
den states while achieving comparable results to
the state-of-the-art and using much fewer param-
eters, which indicate that it is effective to model
the strong interactions of two texts in a recursive
matching way.

All models outperform NBOW by a large mar-
gin, which indicate the importance of words order
in semantic matching.

The strong interaction models surpass the weak
interaction models, for example, compared with
parallel LSTMs, DF-LSTMs obtain improvement
by 7.0%.

6.2.2 Understanding Behaviors of Neurons in
DF-LSTMs

To get an intuitive understanding of how the DF-
LSTMs work on this problem, we examined the
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Figure 4: Illustration of two interpretable neurons
and some word-pairs captured by these neurons.
The darker patches denote the corresponding acti-
vations are higher.

neuron activations in the last aggregation layer
while evaluating the test set. We find that some
cells are bound to certain roles.

We refer to hi,j,k as the activation of the k-
th neuron at the position of (i, j), where i ∈
{1, . . . , n} and j ∈ {1, . . . ,m}. By visualizing
the hidden state hi,j,k and analyzing the maximum
activation, we can find that there exist multiple
interpretable neurons. For example, when some
contextualized local perspectives are semantically
related at point (i, j) of the sentence pair, the ac-
tivation value of hidden neuron hi,j,k tends to be
maximum, meaning that the model could capture
some reasoning patterns.

Figure 4 illustrates this phenomenon. In Fig-
ure 4(a), a neuron shows its ability to monitor the
word pairs with the property of describing differ-
ent things of the same type.

The activation in the patch, containing the word
pair “(cat, dog)”, is much higher than others.
This is an informative pattern for the relation pre-
diction of these two sentences, whose ground truth
is contradiction. An interesting thing is there are
two “dog” in sentence “ Dog running with
pet toy being by another dog”. Our
model ignores the useless word, which indicates
this neuron selectively captures pattern by contex-
tual understanding, not just word level interaction.

In Figure 4(b), another neuron shows that it can
capture the local contextual interactions, such as
“(ocean waves, beach)”. These patterns
can be easily captured by final layer and provide
a strong support for the final prediction.
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Index of Cell Word or Phrase Pairs Explanation

5-th
(jeans, shirt), (dog, cat)
(retriever, cat), (stand, sitting)

different entities or events
of the same type

11-th
(pool, swimming), (street, outside)
(animal, dog), (grass,outside)

word pair related
to lexical entailment

20-th
(skateboard, skateboarding), (running, runs)
(advertisement, ad), (grassy, grass)

words with different
morphology

49-th
(blue, blue), (wearing black, wearing white),
(green uniform, red uniform)

words related to color

55-th
(a man, two other men), (a man, two girls)
(Two women, No one)

subjects with singular
or plural forms

Table 3: Multiple interpretable neurons and the word-pairs/phrase-pairs captured by these neurons. The
third column gives the explanations of corresponding neuron’s behaviours.

Table 3 illustrates multiple interpretable neu-
rons and some representative word or phrase pairs
which can activate these neurons. These cases
show that our model can capture contextual inter-
actions beyond word level.

6.2.3 Case Study for Attention Addressing
Mechanism

External memory with attention addressing mech-
anism enables the network explicitly to utilize the
history information of two sentences simultane-
ously. As a by-product, the obtained attention dis-
tribution over history hidden states also help us
interpret the network and discover underlying de-
pendencies present in the data.

To this end, we randomly sample two good
cases with entailment relation from test data
and visualize attention distributions over exter-
nal memory constructed by last 9 hidden states.
As shown in Figure 5(a), For the first sentence
pair, when the word pair “(competition,
competition)” are processed, the model si-
multaneously selects “warm, before” from
one sentence and “gymnast,ready,for”
from the other, which are informative patterns and
indicate our model has the capacity of capturing
phrase-phrase pair.

Another case in Figure 5(b) also shows by at-
tention mechanism, the network can sufficiently
utilize the history information and the fusion ap-
proach allows two LSTMs to share the history in-
formation of each other.

6.2.4 Error Analysis
Although our model DF-LSTMs are more sensi-
tive to the discrepancy of the semantic capacity
between two sentences, some cases still can

not be solved by our model. For example, our
model gives a wrong prediction of the sen-
tence pair “A golden retriever nurses
puppies/Puppies next to their
mother”, whose ground truth is entailment. The
model fails to realize “nurses” means “next
to”.

Besides, despite the large size of the training
corpus, it’s still very difficult to solve some cases,
which depend on the combination of the world
knowledge and context-sensitive inferences. For
example, given an entailment pair “Several
women are playing volleyball/The
women are hitting a ball with
their arms”, all models predict “neutral”.

These analysis suggests that some architectural
improvements or external world knowledge are
necessary to eliminate all errors instead of simply
scaling up the basic model.

6.3 Experiment-II: Matching Question and
Answer

Matching question answering (MQA) is a typical
task for semantic matching (Zhou et al., 2013).
Given a question, we need select a correct answer
from some candidate answers.

In this paper, we use the dataset collected from
Yahoo! Answers with the getByCategory func-
tion provided in Yahoo! Answers API, which pro-
duces 963, 072 questions and corresponding best
answers. We then select the pairs in which the
length of questions and answers are both in the
interval [4, 30], thus obtaining 220, 000 question
answer pairs to form the positive pairs.

For negative pairs, we first use each question’s
best answer as a query to retrieval top 1, 000 re-
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Female  gymnast  warm  up  before  a  competition 

Gymnast  get  ready  for  a  competition

(a)

A  female  gymnast  in  black  and  red  being  coached  on  bar  skills  

The  female  gymnast  is  training

(b)

Figure 5: Examples of external memory positions attended when encoding the next word pair (bold and
marked by a box)

Model k P@1(5) P@1(10)
Random Guess - 20.0 10.0
NBOW 50 63.9 47.6
single LSTM 50 68.2 53.9
parallel LSTMs 50 66.9 52.1
Attention LSTMs 50 73.5 62.0
Attention(w-by-w) LSTMs 50 75.1 64.0
DF-LSTMs 50 76.5 65.0

Table 4: Results of our proposed model against
other neural models on Yahoo! question-answer
pairs dataset.

sults from the whole answer set with Lucene,
where 4 or 9 answers will be selected randomly
to construct the negative pairs.

The whole dataset1 is divided into training, val-
idation and testing data with proportion 20 : 1 : 1.
Moreover, we give two test settings: selecting the
best answer from 5 and 10 candidates respectively.

6.3.1 Results
Results of MQA are shown in the Table 4. we can
see that the proposed model also shows its supe-
riority on this task, which outperforms the state-
of-the-arts methods on both metrics (P@1(5) and
P@1(10)) with a large margin.

By analyzing the evaluation results of question-
answer matching in Table 4, we can see strong
interaction models (attention LSTMs, our DF-
LSTMs) consistently outperform the weak interac-
tion models (NBOW, parallel LSTMs) with a large
margin, which suggests the importance of mod-
elling strong interaction of two sentences.

7 Related Work

Our model can be regarded as a strong interaction
model, which has been explored in previous meth-
ods.

One kind of methods is to compute similari-
ties between all the words or phrases of the two
sentences to model multiple-granularity interac-
tions of two sentences, such as RAE (Socher et

1http://nlp.fudan.edu.cn/data/.

al., 2011), Arc-II (Hu et al., 2014),ABCNN (Yin
et al., 2015),MultiGranCNN (Yin and Schütze,
2015), Multi-Perspective CNN (He et al., 2015),
MV-LSTM (Wan et al., 2016).

Socher et al. (2011) firstly used this paradigm
for paraphrase detection. The representations of
words or phrases are learned based on recursive
autoencoders.

Hu et al. (2014) proposed to an end-to-end
architecture with convolutional neural network
(Arc-II) to model multiple-granularity interactions
of two sentences.

Wan et al. (2016) used LSTM to enhance the
positional contextual interactions of the words or
phrases between two sentences. The input of
LSTM for one sentence does not involve another
sentence.

Another kind of methods is to model the con-
ditional encoding, in which the encoding of one
sentence can be affected by another sentence.
Rocktäschel et al. (2015) and Wang and Jiang
(2015) used LSTM to read pairs of sequences to
produce a final representation, which can be re-
garded as interaction of two sequences. By incor-
porating an attention mechanism, they got further
improvements to the predictive abilities.

Different with these two kinds of methods, we
model the interactions of two texts in a recursively
matching way. Based on this idea, we propose a
model of deep fusion LSTMs to accomplish recur-
sive conditional encodings.

8 Conclusion and Future Work

In this paper, we propose a model of deep fu-
sion LSTMs to capture the strong interaction for
text semantic matching. Experiments on two large
scale text matching tasks demonstrate the efficacy
of our proposed model and its superiority to com-
petitor models. Besides, our visualization analysis
revealed that multiple interpretable neurons in our
model can capture the contextual interactions of
the words or phrases.
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In future work, we would like to investigate our
model on more text matching tasks.
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