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Abstract

We introduce an approach to optimize a ma-
chine translation (MT) system on multiple
metrics simultaneously. Different metrics
(e.g. BLEU, TER) focus on different aspects
of translation quality; our multi-objective ap-
proach leverages these diverse aspects to im-
prove overall quality.

Our approach is based on the theory of Pareto
Optimality. It is simple to implement on top of
existing single-objective optimization meth-
ods (e.g. MERT, PRO) and outperforms ad
hoc alternatives based on linear-combination
of metrics. We also discuss the issue of metric
tunability and show that our Pareto approach
is more effective in incorporating new metrics
from MT evaluation for MT optimization.

1 Introduction

Weight optimization is an important step in build-
ing machine translation (MT) systems. Discrimi-
native optimization methods such as MERT (Och,
2003), MIRA (Crammer et al., 2006), PRO (Hop-
kins and May, 2011), and Downhill-Simplex (Nelder
and Mead, 1965) have been influential in improving
MT systems in recent years. These methods are ef-
fective because they tune the system to maximize an
automatic evaluation metric such as BLEU, which
serve as surrogate objective for translation quality.

However, we know that a single metric such as
BLEU is not enough. Ideally, we want to tune to-
wards an automatic metric that has perfect corre-
lation with human judgments of translation quality.
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While many alternatives have been proposed, such a
perfect evaluation metric remains elusive.

As a result, many MT evaluation campaigns now
report multiple evaluation metrics (Callison-Burch
et al., 2011; Paul, 2010). Different evaluation met-
rics focus on different aspects of translation quality.
For example, while BLEU (Papineni et al., 2002)
focuses on word-based n-gram precision, METEOR
(Lavie and Agarwal, 2007) allows for stem/synonym
matching and incorporates recall. TER (Snover
et al., 2006) allows arbitrary chunk movements,
while permutation metrics like RIBES (Isozaki et
al., 2010; Birch et al., 2010) measure deviation in
word order. Syntax (Owczarzak et al., 2007) and se-
mantics (Pado et al., 2009) also help. Arguably, all
these metrics correspond to our intuitions on what is
a good translation.

The current approach of optimizing MT towards
a single metric runs the risk of sacrificing other met-
rics. Can we really claim that a system is good if
it has high BLEU, but very low METEOR? Simi-
larly, is a high-METEOR low-BLEU system desir-
able? Our goal is to propose a multi-objective op-
timization method that avoids “overfitting to a sin-
gle metric”. We want to build a MT system that
does well with respect to many aspects of transla-
tion quality.

In general, we cannot expect to improve multi-
ple metrics jointly if there are some inherent trade-
offs. We therefore need to define the notion of Pareto
Optimality (Pareto, 1906), which characterizes this
tradeoff in a rigorous way and distinguishes the set
of equally good solutions. We will describe Pareto
Optimality in detail later, but roughly speaking, a
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hypothesis is pareto-optimal if there exist no other
hypothesis better in all metrics. The contribution of
this paper is two-fold:

• We introduce PMO (Pareto-based Multi-
objective Optimization), a general approach for
learning with multiple metrics. Existing single-
objective methods can be easily extended to
multi-objective using PMO.

• We show that PMO outperforms the alterna-
tive (single-objective optimization of linearly-
combined metrics) in multi-objective space,
and especially obtains stronger results for met-
rics that may be difficult to tune individually.

In the following, we first explain the theory of
Pareto Optimality (Section 2), and then use it to
build up our proposed PMO approach (Section 3).
Experiments on NIST Chinese-English and PubMed
English-Japanese translation using BLEU, TER, and
RIBES are presented in Section 4. We conclude by
discussing related work (Section 5) and opportuni-
ties/limitations (Section 6).

2 Theory of Pareto Optimality

2.1 Definitions and Concepts
The idea of Pareto optimality comes originally from
economics (Pareto, 1906), where the goal is to char-
acterize situations when a change in allocation of
goods does not make anybody worse off. Here, we
will explain it in terms of MT:

Let h ∈ L be a hypothesis from an N-best list L.
We have a total of K different metrics Mk(h) for
evaluating the quality of h. Without loss of gen-
erality, we assume metric scores are bounded be-
tween 0 and 1, with 1 being perfect. Each hypoth-
esis h can be mapped to a K-dimensional vector
M(h) = [M1(h);M2(h); ...;MK(h)]. For exam-
ple, suppose K = 2, M1(h) computes the BLEU
score, and M2(h) gives the METEOR score of h.
Figure 1 illustrates the set of vectors {M(h)} in a
10-best list.

For two hypotheses h1, h2, we write M(h1) >
M(h2) if h1 is better than h2 in all metrics, and
M(h1) ≥ M(h2) if h1 is better than or equal
to h2 in all metrics. When M(h1) ≥ M(h2) and
Mk(h1) > Mk(h2) for at least one metric k, we say
that h1 dominates h2 and write M(h1) . M(h2).
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Figure 1: Illustration of Pareto Frontier. Ten hypotheses
are plotted by their scores in two metrics. Hypotheses
indicated by a circle (o) are pareto-optimal, while those
indicated by a plus (+) are not. The line shows the convex
hull, which attains only a subset of pareto-optimal points.
The triangle (4) is a point that is weakly pareto-optimal
but not pareto-optimal.

Definition 1. Pareto Optimal: A hypothesis h∗ ∈
L is pareto-optimal iff there does not exist another
hypothesis h ∈ L such that M(h) . M(h∗).

In Figure 1, the hypotheses indicated by circle
(o) are pareto-optimal, while those with plus (+) are
not. To visualize this, take for instance the pareto-
optimal point (0.4,0.7). There is no other point with
either (metric1 > 0.4 and metric2 ≥ 0.7), or (met-
ric1 ≥ 0.4 and metric2 > 0.7). On the other hand,
the non-pareto point (0.6,0.4) is “dominated” by an-
other point (0.7,0.6), because for metric1: 0.7 > 0.6
and for metric2: 0.6 > 0.4.

There is another definition of optimality, which
disregards ties and may be easier to visualize:

Definition 2. Weakly Pareto Optimal: A hypothesis
h∗ ∈ L is weakly pareto-optimal iff there is no other
hypothesis h ∈ L such that M(h) > M(h∗).

Weakly pareto-optimal points are a superset of
pareto-optimal points. A hypothesis is weakly
pareto-optimal if there is no other hypothesis that
improves all the metrics; a hypothesis is pareto-
optimal if there is no other hypothesis that improves
at least one metric without detriment to other met-
rics. In Figure 1, point (0.1,0.8) is weakly pareto-
optimal but not pareto-optimal, because of the com-
peting point (0.3,0.8). Here we focus on pareto-
optimality, but note our algorithms can be easily
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modified for weakly pareto-optimality. Finally, we
can introduce the key concept used in our proposed
PMO approach:

Definition 3. Pareto Frontier: Given an N-best list
L, the set of all pareto-optimal hypotheses h ∈ L is
called the Pareto Frontier.

The Pareto Frontier has two desirable properties
from the multi-objective optimization perspective:

1. Hypotheses on the Frontier are equivalently
good in the Pareto sense.

2. For each hypothesis not on the Frontier, there
is always a better (pareto-optimal) hypothesis.

This provides a principled approach to optimiza-
tion: i.e. optimizing towards points on the Frontier
and away from those that are not, and giving no pref-
erence to different pareto-optimal hypotheses.

2.2 Reduction to Linear Combination
Multi-objective problems can be formulated as:

arg max
w

[M1(h);M2(h); . . . ;Mk(h)] (1)

where h = Decode(w, f)

Here, the MT system’s Decode function, parame-
terized by weight vector w, takes in a foreign sen-
tence f and returns a translated hypothesis h. The
argmax operates in vector space and our goal is to
find w leading to hypotheses on the Pareto Frontier.

In the study of Pareto Optimality, one central
question is: To what extent can multi-objective prob-
lems be solved by single-objective methods? Equa-
tion 1 can be reduced to a single-objective problem
by scalarizing the vector [M1(h); . . . ;Mk(h)] with
a linear combination:

arg max
w

K∑
k=1

pkMk(h) (2)

where h = Decode(w, f)

Here, pk are positive real numbers indicating the rel-
ative importance of each metric (without loss of gen-
erality, assume

∑
k pk = 1). Are the solutions to

Eq. 2 also solutions to Eq. 1 (i.e. pareto-optimal)
and vice-versa? The theory says:

Theorem 1. Sufficient Condition: If w∗ is solution
to Eq. 2, then it is weakly pareto-optimal. Further,
if w∗ is unique, then it is pareto-optimal.

Theorem 2. No Necessary Condition: There may
exist solutions to Eq. 1 that cannot be achieved by
Eq. 2, irregardless of any setting of {pk}.

Theorem 1 is a positive result asserting that lin-
ear combination can give pareto-optimal solutions.
However, Theorem 2 states the limits: in partic-
ular, Eq. 2 attains only pareto-optimal points that
are on the convex hull. This is illustrated in Fig-
ure 1: imagine sweeping all values of p1 = [0, 1]
and p2 = 1− p1 and recording the set of hypotheses
that maximizes

∑
k pkMk(h). For 0.6 < p1 ≤ 1 we

get h = (0.9, 0.1), for p1 = 0.6 we get (0.7, 0.6),
and for 0 < p1 < 0.6 we get (0.4, 0.8). At no
setting of p1 do we attain h = (0.4, 0.7) which
is also pareto-optimal but not on the convex hull.1

This may have ramifications for issues like metric
tunability and local optima. To summarize, linear-
combination is reasonable but has limitations. Our
proposed approach will instead directly solve Eq. 1.

Pareto Optimality and multi-objective optimiza-
tion is a deep field with active inquiry in engineer-
ing, operations research, economics, etc. For the in-
terested reader, we recommend the survey by Mar-
ler and Arora (2004) and books by (Sawaragi et al.,
1985; Miettinen, 1998).

3 Multi-objective Algorithms

3.1 Computing the Pareto Frontier
Our PMO approach will need to compute the Pareto
Frontier for potentially large sets of points, so we
first describe how this can be done efficiently. Given
a set of N vectors {M(h)} from an N-best list L,
our goal is extract the subset that are pareto-optimal.

Here we present an algorithm based on iterative
filtering, in our opinion the simplest algorithm to
understand and implement. The strategy is to loop
through the list L, keeping track of any dominant
points. Given a dominant point, it is easy to filter
out many points that are dominated by it. After suc-
cessive rounds, any remaining points that are not fil-

1We note that scalarization by exponentiated-combination∑
k pkMk(h)q , for a suitable q > 0, does satisfy necessary

conditions for pareto optimality. However the proper tuning of q
is not known a priori. See (Miettinen, 1998) for theorem proofs.
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Algorithm 1 FindParetoFrontier
Input: {M(h)}, h ∈ L
Output: All pareto-optimal points of {M(h)}

1: F = ∅
2: while L is not empty do
3: h∗ = shift(L)
4: for each h in L do
5: if (M(h∗) . M(h)): remove h from L
6: else if (M(h) . M(h∗)): remove h from L; set

h∗ = h
7: end for
8: Add h∗ to Frontier Set F
9: for each h in L do

10: if (M(h∗) . M(h)): remove h from L
11: end for
12: end while
13: Return F

tered are necessarily pareto-optimal. Algorithm 1
shows the pseudocode. In line 3, we take a point h∗

and check if it is dominating or dominated in the for-
loop (lines 4-8). At least one pareto-optimal point
will be found by line 8. The second loop (lines 9-11)
further filters the list for points that are dominated by
h∗ but iterated before h∗ in the first for-loop.

The outer while-loop stops exactly after P iter-
ations, where P is the actual number of pareto-
optimal points in L. Each inner loop costs O(KN)
so the total complexity is O(PKN). Since P ≤ N
with the actual value depending on the probability
distribution of {M(h)}, the worst-case run-time is
O(KN2). For a survey of various Pareto algorithms,
refer to (Godfrey et al., 2007). The algorithm we de-
scribed here is borrowed from the database literature
in what is known as skyline operators.2

3.2 PMO-PRO Algorithm
We are now ready to present an algorithm for multi-
objective optimization. As we will see, it can be seen
as a generalization of the pairwise ranking optimiza-
tion (PRO) of (Hopkins and May, 2011), so we call
it PMO-PRO. PMO-PRO approach works by itera-
tively decoding-and-optimizing on the devset, sim-

2The inquisitive reader may wonder how is Pareto related
to databases. The motivation is to incorporate preferences into
relational queries(Börzsönyi et al., 2001). For K = 2 metrics,
they also present an alternative faster O(N logN) algorithm by
first topologically sorting along the 2 dimensions. All domi-
nated points can be filtered by one-pass by comparing with the
most-recent dominating point.

ilar to many MT optimization methods. The main
difference is that rather than trying to maximize a
single metric, we maximize the number of pareto
points, in order to expand the Pareto Frontier

We will explain PMO-PRO in terms of the
pseudo-code shown in Algorithm 2. For each sen-
tence pair (f, e) in the devset, we first generate an
N-best list L ≡ {h} using the current weight vector
w (line 5). In line 6, we evaluate each hypothesis
h with respect to the K metrics, giving a set of K-
dimensional vectors {M(h)}.

Lines 7-8 is the critical part: it gives a “la-
bel” to each hypothesis, based on whether it is
in the Pareto Frontier. In particular, first we call
FindParetoFrontier (Algorithm 1), which re-
turns a set of pareto hypotheses; pareto-optimal hy-
potheses will get label 1 while non-optimal hypothe-
ses will get label 0. This information is added to
the training set T (line 8), which is then optimized
by any conventional subroutine in line 10. We will
follow PRO in using a pairwise classifier in line 10,
which finds w∗ that separates hypotheses with labels
1 vs. 0. In essence, this is the trick we employ to
directly optimize on the Pareto Frontier. If we had
used BLEU scores rather than the {0, 1} labels in
line 8, the entire PMO-PRO algorithm would revert
to single-objective PRO.

By definition, there is no single “best” result
for multi-objective optimization, so we collect all
weights and return the Pareto-optimal set. In line 13
we evaluate each weight w on K metrics across the
entire corpus and call FindParetoFrontier
in line 14.3 This choice highlights an interesting
change of philosophy: While setting {pk} in linear-
combination forces the designer to make an a priori
preference among metrics prior to optimization, the
PMO strategy is to optimize first agnostically and
a posteriori let the designer choose among a set of
weights. Arguably it is easier to choose among so-
lutions based on their evaluation scores rather than
devising exact values for {pk}.

3.3 Discussion
Variants: In practice we find that a slight modifi-
cation of line 8 in Algorithm 2 leads to more sta-

3Note this is the same FindParetoFrontier algorithm as used
in line 7. Both operate on sets of points in K-dimensional
space, induced from either weights {w} or hypotheses {h}.
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Algorithm 2 Proposed PMO-PRO algorithm
Input: Devset, max number of iterations I
Output: A set of (pareto-optimal) weight vectors

1: Initialize w. LetW = ∅.
2: for i = 1 to I do
3: Let T = ∅.
4: for each (f, e) in devset do
5: {h} =DecodeNbest(w,f )
6: {M(h)}=EvalMetricsOnSentence({h}, e)
7: {f} =FindParetoFrontier({M(h)})
8: foreach h ∈ {h}:

if h ∈ {f}, set l=1, else l=0; Add (l, h) to T
9: end for

10: w∗=OptimizationSubroutine(T , w)
11: Add w∗ toW; Set w = w∗.
12: end for
13: M(w) =EvalMetricsOnCorpus(w,devset) ∀w ∈ W
14: Return FindParetoFrontier({M(w)})

ble results for PMO-PRO: for non-pareto hypothe-
ses h /∈ {f}, we set label l =

∑
k Mk(h)/K in-

stead of l= 0, so the method not only learns to dis-
criminate pareto vs. non-pareto but also also learns
to discriminate among competing non-pareto points.
Also, like other MT works, in line 5 the N-best list is
concatenated to N-best lists from previous iterations,
so {h} is a set with i ·N elements.

General PMO Approach: The strategy we out-
lined in Section 3.2 can be easily applied to other
MT optimization techniques. For example, by re-
placing the optimization subroutine (line 10, Algo-
rithm 2) with a Powell search (Och, 2003), one can
get PMO-MERT4. Alternatively, by using the large-
margin optimizer in (Chiang et al., 2009) and mov-
ing it into the for-each loop (lines 4-9), one can
get an online algorithm such PMO-MIRA. Virtually
all MT optimization algorithms have a place where
metric scores feedback into the optimization proce-
dure; the idea of PMO is to replace these raw scores
with labels derived from Pareto optimality.

4 Experiments

4.1 Evaluation Methodology

We experiment with two datasets: (1) The PubMed
task is English-to-Japanese translation of scientific

4A difference with traditional MERT is the necessity of
sentence-BLEU (Liang et al., 2006) in line 6. We use sentence-
BLEU for optimization but corpus-BLEU for evaluation here.

abstracts. As metrics we use BLEU and RIBES
(which demonstrated good human correlation in
this language pair (Goto et al., 2011)). (2) The
NIST task is Chinese-to-English translation with
OpenMT08 training data and MT06 as devset. As
metrics we use BLEU and NTER.

• BLEU = BP × (Πprecn)1/4. BP is brevity
penality. precn is precision of n-gram matches.

• RIBES = (τ + 1)/2 × prec1/4
1 , with Kendall’s

τ computed by measuring permutation between
matching words in reference and hypothesis5.

• NTER=max(1−TER, 0), which normalizes
Translation Edit Rate6 so that NTER=1 is best.

We compare two multi-objective approaches:

1. Linear-Combination of metrics (Eq. 2),
optimized with PRO. We search a range
of combination settings: (p1, p2) =
{(0, 1), (0.3, 0.7), (0.5, 0.5), (0.7, 0.3), (1, 0)}.
Note (1, 0) reduces to standard single-metric
optimization of e.g. BLEU.

2. Proposed Pareto approach (PMO-PRO).

Evaluation of multi-objective problems can be
tricky because there is no single figure-of-merit.
We thus adopted the following methodology: We
run both methods 5 times (i.e. using the 5 differ-
ent (p1, p2) setting each time) and I = 20 iterations
each. For each method, this generates 5x20=100 re-
sults, and we plot the Pareto Frontier of these points
in a 2-dimensional metric space (e.g. see Figure 2).
A method is deemed better if its final Pareto Fron-
tier curve is strictly dominating the other. We report
devset results here; testset trends are similar but not
included due to space constraints.7

5from www.kecl.ntt.co.jp/icl/lirg/ribes
6from www.umd.edu/˜snover/tercom
7An aside: For comparing optimization methods, we believe

devset comparison is preferable to testset since data mismatch
may confound results. If one worries about generalization, we
advocate to re-decode the devset with final weights and evaluate
its 1-best output (which is done here). This is preferable to sim-
ply reporting the achieved scores on devset N-best (as done in
some open-source scripts) since the learned weight may pick
out good hypotheses in the N-best but perform poorly when
re-decoding the same devset. The re-decode devset approach
avoids being overly optimistic while accurately measuring op-
timization performance.

5



Train Devset #Feat Metrics
PubMed 0.2M 2k 14 BLEU, RIBES
NIST 7M 1.6k 8 BLEU, NTER

Table 1: Task characteristics: #sentences in Train/Dev, #
of features, and metrics used. Our MT models are trained
with standard phrase-based Moses software (Koehn and
others, 2007), with IBM M4 alignments, 4gram SRILM,
lexical ordering for PubMed and distance ordering for the
NIST system. The decoder generates 50-best lists each
iteration. We use SVMRank (Joachims, 2006) as opti-
mization subroutine for PRO, which efficiently handle all
pairwise samples without the need for sampling.

4.2 Results
Figures 2 and 3 show the results for PubMed and
NIST, respectively. A method is better if its Pareto
Frontier lies more towards the upper-right hand cor-
ner of the graph. Our observations are:

1. PMO-PRO generally outperforms Linear-
Combination with any setting of (p1, p2).
The Pareto Frontier of PMO-PRO dominates
that of Linear-Combination. This implies
PMO is effective in optimizing towards Pareto
hypotheses.

2. For both methods, trading-off between met-
rics is necessary. For example in PubMed,
the designer would need to make a choice be-
tween picking the best weight according to
BLEU (BLEU=.265,RIBES=.665) vs. another
weight with higher RIBES but poorer BLEU,
e.g. (.255,.675). Nevertheless, both the PMO
and Linear-Combination with various (p1, p2)
samples this joint-objective space broadly.

3. Interestingly, a multi-objective approach can
sometimes outperform a single-objective opti-
mizer in its own metric. In Figure 2, single-
objective PRO focusing on optimizing RIBES
only achieves 0.68, but PMO-PRO using both
BLEU and RIBES outperforms with 0.685.

The third observation relates to the issue of metric
tunability (Liu et al., 2011). We found that RIBES
can be difficult to tune directly. It is an extremely
non-smooth objective with many local optima–slight
changes in word ordering causes large changes in
RIBES. So the best way to improve RIBES is to
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Figure 2: PubMed Results. The curve represents the
Pareto Frontier of all results collected after multiple runs.
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Figure 3: NIST Results

not to optimize it directly, but jointly with a more
tunable metric BLEU. The learning curve in Fig-
ure 4 show that single-objective optimization of
RIBES quickly falls into local optimum (at iteration
3) whereas PMO can zigzag and sacrifice RIBES in
intermediate iterations (e.g. iteration 2, 15) leading
to a stronger result ultimately. The reason is the
diversity of solutions provided by the Pareto Fron-
tier. This finding suggests that multi-objective ap-
proaches may be preferred, especially when dealing
with new metrics that may be difficult to tune.

4.3 Additional Analysis and Discussions

What is the training time? The Pareto approach
does not add much overhead to PMO-PRO. While
FindParetoFrontier scales quadratically by size of
N-best list, Figure 5 shows that the runtime is triv-
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Figure 5: Avg. runtime per sentence of FindPareto

ial (0.3 seconds for 1000-best). Table 2 shows
the time usage breakdown in different iterations for
PubMed. We see it is mostly dominated by decod-
ing time (constant per iteration at 40 minutes on
single 3.33GHz processor). At later iterations, Opt
takes more time due to larger file I/O in SVMRank.
Note Decode and Pareto can be “embarrasingly par-
allelized.”

Iter Time Decode Pareto Opt Misc.
(line 5) (line 7) (line 10) (line 6,8)

1 47m 85% 1% 1% 13%
10 62m 67% 6% 8% 19%
20 91m 47% 15% 22% 16%

Table 2: Training time usage in PMO-PRO (Algo 2).
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Figure 6: Average number of Pareto points

hypotheses gives a rough indication of the diversity
of hypotheses that can be exploited by PMO. Fig-
ure 6 shows that this number increases gradually per
iteration. This perhaps gives PMO-PRO more direc-
tions for optimizing around potential local optimal.
Nevertheless, we note that tens of Pareto points is far
few compared to the large size of N-best lists used
at later iterations of PMO-PRO. This may explain
why the differences between methods in Figure 3
are not more substantial. Theoretically, the num-
ber will eventually level off as it gets increasingly
harder to generate new Pareto points in a crowded
space (Bentley et al., 1978).

Practical recommendation: We present the
Pareto approach as a way to agnostically optimize
multiple metrics jointly. However, in practice, one
may have intuitions about metric tradeoffs even if
one cannot specify {pk}. For example, we might
believe that approximately 1-point BLEU degra-
dation is acceptable only if RIBES improves by
at least 3-points. In this case, we recommend
the following trick: Set up a multi-objective prob-
lem where one metric is BLEU and the other is
3/4BLEU+1/4RIBES. This encourages PMO to ex-
plore the joint metric space but avoid solutions that
sacrifice too much BLEU, and should also outper-
form Linear Combination that searches only on the
(3/4,1/4) direction.

5 Related Work

Multi-objective optimization for MT is a relatively
new area. Linear-combination of BLEU/TER is
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the most common technique (Zaidan, 2009), some-
times achieving good results in evaluation cam-
paigns (Dyer et al., 2009). As far as we known, the
only work that directly proposes a multi-objective
technique is (He and Way, 2009), which modifies
MERT to optimize a single metric subject to the
constraint that it does not degrade others. These
approaches all require some setting of constraint
strength or combination weights {pk}. Recent work
in MT evaluation has examined combining metrics
using machine learning for better correlation with
human judgments (Liu and Gildea, 2007; Albrecht
and Hwa, 2007; Gimnez and Màrquez, 2008) and
may give insights for setting {pk}. We view our
Pareto-based approach as orthogonal to these efforts.

The tunability of metrics is a problem that is gain-
ing recognition (Liu et al., 2011). If a good evalu-
ation metric could not be used for tuning, it would
be a pity. The Tunable Metrics task at WMT2011
concluded that BLEU is still the easiest to tune
(Callison-Burch et al., 2011). (Mauser et al., 2008;
Cer et al., 2010) report similar observations, in ad-
dition citing WER being difficult and BLEU-TER
being amenable. One unsolved question is whether
metric tunability is a problem inherent to the metric
only, or depends also on the underlying optimization
algorithm. Our positive results with PMO suggest
that the choice of optimization algorithm can help.

Multi-objective ideas are being explored in other
NLP areas. (Spitkovsky et al., 2011) describe a tech-
nique that alternates between hard and soft EM ob-
jectives in order to achieve better local optimum in
grammar induction. (Hall et al., 2011) investigates
joint optimization of a supervised parsing objective
and some extrinsic objectives based on downstream
applications. (Agarwal et al., 2011) considers us-
ing multiple signals (of varying quality) from online
users to train recommendation models. (Eisner and
Daumé III, 2011) trades off speed and accuracy of
a parser with reinforcement learning. None of the
techniques in NLP use Pareto concepts, however.

6 Opportunities and Limitations

We introduce a new approach (PMO) for training
MT systems on multiple metrics. Leveraging the
diverse perspectives of different evaluation metrics
has the potential to improve overall quality. Based

on Pareto Optimality, PMO is easy to implement
and achieves better solutions compared to linear-
combination baselines, for any setting of combi-
nation weights. Further we observe that multi-
objective approaches can be helpful for optimiz-
ing difficult-to-tune metrics; this is beneficial for
quickly introducing new metrics developed in MT
evaluation into MT optimization, especially when
good {pk} are not yet known. We conclude by draw-
ing attention to some limitations and opportunities
raised by this work:

Limitations: (1) The performance of PMO is
limited by the size of the Pareto set. Small N-best
lists lead to sparsely-sampled Pareto Frontiers, and
a much better approach would be to enlarge the hy-
pothesis space using lattices (Macherey et al., 2008).
How to compute Pareto points directly from lattices
is an interesting open research question. (2) The
binary distinction between pareto vs. non-pareto
points ignores the fact that 2nd-place non-pareto
points may also lead to good practical solutions. A
better approach may be to adopt a graded definition
of Pareto optimality as done in some multi-objective
works (Deb et al., 2002). (3) A robust evaluation
methodology that enables significance testing for
multi-objective problems is sorely needed. This will
make it possible to compare multi-objective meth-
ods on more than 2 metrics. We also need to follow
up with human evaluation.

Opportunities: (1) There is still much we do
not understand about metric tunability; we can learn
much by looking at joint metric-spaces and exam-
ining how new metrics correlate with established
ones. (2) Pareto is just one approach among many
in multi-objective optimization. A wealth of meth-
ods are available (Marler and Arora, 2004) and more
experimentation in this space will definitely lead to
new insights. (3) Finally, it would be interesting to
explore other creative uses of multiple-objectives in
MT beyond multiple metrics. For example: Can we
learn to translate faster while sacrificing little on ac-
curacy? Can we learn to jointly optimize cascaded
systems, such as as speech translation or pivot trans-
lation? Life is full of multiple competing objectives.
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