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Preface: General Chair

When | asked what General Chairs are supposed to worry about, the main advice | got was this: Make
sure the Program Co-Chairs are in the same time zone. Well, what'’s fun about that? Between Istanbul,
Singapore, and Los Angeles, we could easily solve problems in real time; by the time Kemal arrived at

the office after breakfast, Hwee Tou was just back from lunch, and | was done carrying out the late-night

raid on my own refrigerator. No problem.

I'd like to start by thanking everyone who submitted research work to ACL-05. I'd especially like to
thank researchers new to the field — this is a great time to be in computational linguistics. Excellent
research is one of the Two Critical Ingredients of a successful ACL conference.

Program Co-Chairslwee Tou NgandKemal Oflazer deserve our gratitude for putting an immense
amount of work into the main session program. They and the Area Chairs got a large number of
submissions this year, and the program is diverse and exciting. Thanks Blska®@arragan-Nunez

for arranging the program committee meeting in California.

Stefan Riezler assembled a program of five excellent tutorials to begin the meetingMinatla
Lapata organized the workshop program, assistedark Dras, Mary Harper , Dan Klein, and
Shuly Winter. Masaaki NagataandTed Pederserput together a high-quality demo session, including
software systems from all over the world.

Jason Eisnerand Philipp Koehn put in a tremendous amount of thought, effort, and persistence
into publications. Each time ACL doubles the number of papers, the work way more than doubles.
Mark Johnson, as sponsorship chair, requested that the money be shown to him (and it was!), so
thanks very much to the sponsors, and to MaRichard Wicentowski took on two chair roles —
exhibits and publicity — the latter of which included writing the useful ACL-05 newsletters forwarded
by ubiquifamoudPriscilla Rasmussen

Regina Barzilay, Chris Callison-Burch andStephen Wanorganized the Student Research Workshop
(and thanks again to all the students who submitted their rese&idiard Power graciously agreed to

do pre-submission mentoring for authors. The ACL Executive Committee provided help on a number
of issues and responded quickly to questions — thank Wartha Palmer, Jun’ichi Tsujii , Mark
Steedman Kathy McCoy, Sandee Carberry, Johanna Moore, Priscilla RasmussenAnnie Zaenen

Walter Daelemans andKeh-Yih Su.

Dragomir Radev went far beyond the call of duty as Local Arrangements Chair. He raised and solved
lots of strategic issues, followed up on every wire and cable, and cajoled other ACL chairs into solving
important problems fast. | believe he may even be responsible for the weather and for making sure
your luggage arrived on the same day you did. Thanks to the whole local teai:Thomason

Steve Abney Joyce Chaj San Duanmy Kurt Godden, Acrisio Pires, Martha Pollack, Keith van

der Linden, Rick Lewis, Sara Schwartz andBill Vlisides, and toJames Sweeneywho served as

the conference webmaster. On behalf of Dragomir, please let me thank the University of Michigan’s
School of Information, Department of Electrical Engineering and Computer Science, and Department
of Linguistics for their support. Dragomir also arranged the banquet at the Henry Ford Museum, where
ACL PresidentMartha Palmer will no doubt make an excellent speech — that’s of course the Other
Critical Ingredient of a successful ACL.



Finally, I'd also like to thank all the other folks who helped create ACL-05, including student volunteers,
exhibitors, tutorialists, and everyone else not listed here.

To ACL attendees: thanks for coming, and please have a good conference!

Kevin Knight
ACL-05 General Chair
May 9, 2005



Preface: Program Co-Chairs

Exciting research in computational linguistics is being pursued vigorously all over the world. This year,
we received a record number of 423 submissions. The program committee accepted 77 papers, for an
acceptance rate of 18%, continuing the tradition of the annual ACL conference as being one of the most
competitive and selective conferences. Of the accepted papers, 42 are from North America, 18 from
Europe and the Middle East, and 17 from Asia and Australia.

We would like to express our heartfelt gratitude to all the authors who submitted their papers, to the
231 program committee members who worked tirelessly to review all submissions, and to the ten Area
Chairs who oversaw the review process, collated the reviews, led discussions on papers with conflicting
reviews, and solicited additional reviews for controversial papers. The Program Committee Co-Chairs
and the area chairs then met for two days at the program committee meeting held at USC/ISI to select
the final set of accepted papers. We would like to thidakin Knight , the General Conference Chair,

who made available USC/ISI as the meeting venue, and his asgistikmBarragan-Nunez who took

care of the meeting arrangements and logistics.

The ACL-05 main program lasts three days, and includes plenary sessions, three parallel paper sessions,
demo and poster sessions, and the student research workshop. We are grateful to Rudéasor
Cassell(Northwestern University) and Profesgdichael Jordan (University of California, Berkeley)

who have kindly accepted our invitation to present invited talks at the conference.

The ACL-05 conference will also feature the ACL Lifetime Achievement Award. This prestigious
award is presented to a most distinguished researcher for his or her pioneering work in computational
linguistics. Past distinguished recipients of this awardfaeind Joshi, Makoto Nagao, andKaren
Sparck-Jones The recipient of this award in 2005 will be announced at a special plenary session at
ACL-05, followed by a special lecture by the award recipient. ACL-05 will also continue the tradition of
presenting the Best Paper Award to an outstanding paper. This award will be announced in the plenary
session at the end of the conference.

A conference like ACL would not succeed without the many volunteers who offer their generous help.
We deeply appreciate the advice and suppoKefin Knight, General Conference Chabragomir

Radev, Local Arrangements Chair, and the Local Arrangements Committee. We are also grateful to
the ACL Executive Committee for their guidance, adlter DaelemansandMarilyn Walker , ACL-

04 Program Co-Chairs, for sharing their experience. We would also like to thesdn Eisnerand
Philipp Koehn, Publication Co-Chairs, for putting together the proceedings of this conference.

We wish you an enjoyable time at ACL-05!

Hwee Tou Ng and Kemal Oflazer
ACL-05 Program Co-Chairs
May 12, 2005
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Abstract

In machine learning, whether one can
build a more accurate classifier by using
unlabeled datasemi-supervised learnifg

is an important issue. Although a num-
ber of semi-supervised methods have been
proposed, their effectiveness on NLP tasks
is not always clear. This paper presents
a novel semi-supervised method that em-
ploys a learning paradigm which we call
structural learning The idea is to find
“what good classifiers are like” by learn-
ing from thousands of automatically gen-
erated auxiliary classification problems on
unlabeled data. By doing so, the common
predictive structure shared by the multiple
classification problems can be discovered,
which can then be used to improve perfor-
mance on the target problem. The method
produces performance higher than the pre-
vious best results on CoNLL'00 syntac-
tic chunking and CoNLL'03 named entity
chunking (English and German).

itongz@s. i bm com

(Blum and Mitchell, 1998) automatically bootstraps
labels, and such labels are not necessarily reliable
(Pierce and Cardie, 2001). A related idea is to
use Expectation MaximizatiofEM) to impute la-
bels. Although useful under some circumstances,
when a relatively large amount of labeled data is
available, the procedure often degrades performance
(e.g. Merialdo (1994)). A number of bootstrap-
ping methods have been proposed for NLP tasks
(e.g. Yarowsky (1995), Collins and Singer (1999),
Riloff and Jones (1999)). But these typically assume
a very small amount of labeled data and have not
been shown to improve state-of-the-art performance
when a large amount of labeled data is available.

Our goal has been to develop a general learning
framework for reliably using unlabeled data to im-
prove performance irrespective of the amount of la-
beled data available. It is exactly this important and
difficult problem that we tackle here.

This paper presents a novel semi-supervised
method that employs a learning framework called
structural learning(Ando and Zhang, 2004), which
seeks to discover sharguedictive structuregi.e.
what good classifiers for the task are like) through

jointly learning multiple classification problems on
unlabeled data. That is, we systematically create
In supervised learning applications, one can oftethousands of problems (callexlxiliary problem3}
find a large amount of unlabeled data without diffi+elevant to the target task using unlabeled data, and
culty, while labeled data are costly to obtain. Theretrain classifiers from the automatically generated
fore, a natural question is whether we can use unl&raining data’. We learn the commonality (or struc-
beled data to build a more accurate classifier, giveture) of such many classifiers relevant to the task,
the same amount of labeled data. This problem &nd use it to improve performance on the target task.
often referred to asemi-supervised learning One example of such auxiliary problems fdrunk-
Although a number of semi-supervised methodmg tasks is to ‘mask’ a word and predict whether
have been proposed, their effectiveness on NLPis “people” or not from the context, like language
tasks is not always clear. For exampte;training modeling. Another example is to predict the pre-

1 Introduction
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diction of some classifier trained for the target tasknodel complexity. ERM-based methods for dis-

These auxiliary classifiers can be adequately learnediminative learning are known to be effective for

since we have very large amounts of ‘training dataNLP tasks such as chunking (e.g. Kudoh and Mat-
for them, which we automatically generate from asumoto (2001), Zhang and Johnson (2003)).

very large amount of unlabeled data. . .

The contributions of this paper are two-fold. First2-2 Linear model for structural leaming
we present a novel robust semi-supervised methdtle present a linear prediction model for structural
based on a new learning model and its applicatiolearning, which extends the traditional model to
to chunking tasks. Second, we report higher pemultiple problems. Specifically, we assume that
formance than the previous best results on syntactibere exists dow-dimensional predictive structure
chunking (the CoNLL'00 corpus) and named entityshared by multiple prediction problems. We seek to
chunking (the CoNLL'03 English and German cor-discover this structure througbint empirical risk
pora). In particular, our results are obtained by ugninimizationover the multiple problems.
ing unlabeled data as thenly additional resource  Considern problems indexed b§ e {1,...,m},
while many of the top systems rely on hand-crafte¢ach withn, samples(X¢, ;) indexed byi €
resources such as large name gazetteers or even rdle-. .. ,n¢}. In our joint linear model, a predictor
based post-processing. for problem/ takes the following form

2 A Model for Learning Structures f(0,x) =w/x+viOx, 00" =1, (1)

This work uses a linear formulation of structuralwhere we usd to denote the identity matrix. Ma-
learning. We first briefly review a standard lineatrix © (whose rows are orthonormal) is the common
prediction model and then extend it for structuraktructure parameteshared by all the problemsy,
learning. We sketch an optimization algorithm usandv, are weight vectors specific to each predic-
ing SVD and compare it to related methods. tion problem¢. The idea of this model is to dis-
cover a common low-dimensional predictive struc-
ture (shared by then problems) parameterized by
In the Standard fOI’mu|ati0n Of SuperVised Iearninq,he projection matri)@l In th|s Setting, the goal Of
we seek gredictorthat maps an inputvectare X' stryctural learning may also be regardedessning

to the corresponding outpyte ). Linear predic- 3 good feature ma@x — a low-dimensional fea-
tion modelsare based on real-valued predictors ofyre vector parameterized I6y.

the form f(x) = w”x, wherew is called aweight  |n joint ERM, we seel® (and weight vectors) that

vector For binary problems, the sign of the linearminimizes the empirical risk summed over all the
prediction gives the class label. Fbiway classi- problems:

fication (with £k > 2), a typical method isvinner

2.1 Standard linear prediction model

takes all where we train one predictor per class and (1(0.X0). V!
choose the class with the highest output value. [0, {f:}] = arg min Z (Z ,— +r(f ))
A frequently used method for finding an accurate ek =1 \im @

predictor f is regularizedempirical risk minimiza-
tion (ERM) which minimizes an empirical loss of It can be shown that using joint ERM, we can reli-
the predictor (with regularization) on thetraining ably estimate the optimal joint parameteras long

examples{ (X;, Y;)}: asm is large (even when eagafy is small). This is
the key reason why structural learning is effective.
B A formal PAC-style analysis can be found in (Ando
—arg mm (Z L(f )+ TU)) ' and Zhang, 2004).

L(-) is aloss functionto quantify the difference 2.3 Alternating structure optimization (ASO)

between the predictiorf (X;) and the true output The optimization problem (2) has a simple solution
Y;, andr(-) is a regularization term to control the using SVD when we choose square regularization:



r(fi) = A|we||3 , where the regularization parame-
ter \ is given. For clarity, letn, be a weight vector
for problem? such thatu, = w, + ©7'v, . Then,
(2) becomes the minimization of the joint empirical
risk written as:

Input: training data{ (X, Y)Y (¢ =1,...,m)
Parameters dimensionh and regularization parach
Output: matrix © with h rows
Initialize: u, = 0 (¢ = 1...m), and arbitrary®
iterate

for £ =1tomdo

With fixed © andv, = ©u,, solve forwy:
LwlIxt+vIextvhH

~ . n
W¢ = arg Milw, [27:51

+A[well3]

e Tx!t yit ) g

> (Z XY 4 A - eTwHé) ®

t=1 \i=1 ! Letu; = wy + @TV[

endfor

Compute the SVD ofJ = [uy,...,un].

Let the rows of® be thenh left singular vectors otJ
corresponding to thé largest singular values.

until converge

This minimization can be approximately solved by
the following alternating optimization procedure:

e Fix (6, {v¢}), and findm predictors{u,} that
minimizes the joint empirical risk (3).

Figure 1: SVD-based Alternating Structure Optimization

e Fix m predictors{u,}, and find(©, {v,}) that (SVD-ASO) Algorithm

minimizes the joint empirical risk (3).

* lterate until a convergence criterion is met. the predictor space (corrupted with estimation error,

In the first step, we traim predictors independently. OF noise), then SVD-ASO can be interpreted as find-
Itis the second step that couples all the problems. 189 the “principle components” (or commonality)
solution is given by the SVD (singular value decom©f these predictors (i.e., “what good predictors are
position) of the predictor matrikl = [uy, ..., u,,]: like”). Consequently the methadirectly looks for
the rows of the optimur® are given by the most sig- low-dimensional structures with the highest predic-
nificant left singular vectors of U. Intuitively, the tive power. By contrast, the principle components of
optimum © captures the maximal commonality ofinput data in the data space (which PCA seeks) may
the m predictors (each derived from,). Thesem  NOt necessarily have the highest predictive power.
predictors are updated using the new structure ma- The above argument also applies to the fea-
trix © in the next iteration, and the process repeatsture generation from unlabeled data using LSI (e.g.
Figure 1 summarizes the algorithm sketched\ndo (2004)). Similarly, Miller et al. (2004) used
above, which we call thalternating structure op- Wword-cluster memberships induced from an unanno-
timization (ASO)algorithm. The formal derivation tated corpus as features for named entity chunking.
can be found in (Ando and Zhang, 2004). Our work is related but more general, because we
can explore additional information from unlabeled
2.4 Comparison with existing techniques data using many different auxiliary problems. Since
It is important to note that this SVD-based ASOMiller et al. (2004)'s experiments used a proprietary
(SVD-ASO) procedure is fundamentally differentcorpus, direct performance comparison is not pos-
from the usual principle component analysis (PCA)sible. However, our preliminary implementation of
which can be regarded as dimension reduction in tHee word clustering approach did not provide any
data spaceY. By contrast, the dimension reductionimprovement on our tasks. As we will see, our start-
performed in the SVD-ASO algorithm is on tpee-  ing performance is already high. Therefore the addi-
dictor space(a set of predictors). This is possibletional information discovered by SVD-ASO appears
because we observe multiple predictors from multierucial to achieve appreciable improvements.
ple learning tasks. If we regard the observed predic-
tors as sample points of the predictor distribution i@ Semi-supervised Learning Method

‘In other words,© is computed so that the best low-rank For semi-supervised learning, the idea iscteate
approximation ofU in the least square sense is obtained by i dicti bl I t to th
projectingU onto the row space @; see e.g. Golub and Loan many auxiliary prediction problems (relevant to the

(1996) for SVD. task) from unlabeled data so that we can learn the



shared structuré® (useful for the task) using the Ex 3.1 Predict words. Create auxiliary problems
ASO algorithm. In particular, we want to create auxby regarding the word at each position as an auxil-
iliary problems with the following properties: iary label, which we want to predict from the context.

: . . For instance, predict whether a word is “Smith” or
e Automatic labeling we need to automatically ) . .
not from its context. This problem is relevant to,

generate various “labeled” data for the auxil-, . . . . .
. for instance, named entity chunking since knowing
iary problems from unlabeled data.

a word is “Smith” helps to predict whether it is part

e Relevancy auxiliary problems should be re- of a name. One binary classification problem can be
lated to the target problem. That is, they shouldreated for each possible word value (e.g., “IBM”,
share a certain predictive structure. “he”, “get”, ---). Hence, many auxiliary problems

The final classifier for the target task is in the formCan be obtained using this idea.

of (1), a linear predictor for structural learning. We More generally

fix O (learned from ur_1|a_be|ed _data through auxil—of the input data, we may mask some features as
lary problems) and optimize weight vectossandv ygpserved, and learn classifiers to predict these
on the given labeled data. We summarize this SeéMiyaq1ed’ features based on other features that are
supervised learning procedure below. not masked. The automatic-labeling requirement is

1. Create training datd, = {(f(j, f/jf)} for each satisfied since the auxiliary labels are observable to
: us. To create relevant problems, we should choose
N to (mask and) predict features that have good cor-
2. Computed from {Z,} through SVD-ASO. relation to the target classes, such as words on text

tagging/chunking tasks.
3. Minimize the empirical risk on the labeled data: agging/ehunking 1asks

¢ : L(f(©,X;),Y;
f = argming yp , HUAOX)D)

given a feature representation

auxiliary problem? from unlabeled dataf(j}.

L) 4w,
wheref(0,x) = w’x + v ©x as in (1).
3.1 Auxiliary problem creation The second strategy is motivated by co-training.

. . . . We use two (or more) distinct feature map@;
The idea is to discover useful features (which d%nd &,. First, we train a classifieF, for the tar-

not necessarily appear in the labeled data) from ttbeet task, using the feature map and the labeled

?:Tlable led d".’}j[a througr learning auIX|I|a|ry prloi)lzrr:sdata. The auxiliary tasks are to predict the behavior
carly, auxiliary probiéms more closely related 10, ;- classifierF; (such as predicted labels) on the

the target problem will be more beneficial. HoweverUnIabeIed data, by using the other feature nap

even if some problems are less re_Ievant, they will nq\tlote that unlike co-training, we only use the classi-
degrade performance severely since they merely fier as a means of creating auxiliary problems that

sult in some irrelevant features (originated from M heet the relevancy requirement, instead of using it
relevant®-components), which ERM learners can,, bootstrap labels
cope with. On the other hand, potential gains from '

relevant auxiliary problems can be significant. | . . -
: Y Probe 9 "Ex 3.2 Predict the top+ choices of the classifier.
this sense, our method is robust.

. redict the combination df (a few) classes to which
We present two general strategies for generat- . ) :
. . . . 1 assigns the highest output (confidence) values.
ing useful auxiliary problems: one in a completely

. . . . “For instance, predict whethdr; assigns the highest
unsupervised fashion, and the other in a partially-~ . oo
supervised fashion confidence values tOLASS1 andCLASS2 in this or-
' der. By setting: = 1, the auxiliary task is simply to
3.1.1 Unsupervised strategy predict the label prediction of classifidr;. By set-
In the first strategy, we regard some observabléng &£ > 1, fine-grained distinctions (related to in-
substructures of the input dafd as auxiliary class trinsic sub-classes of target classes) can be learned.

labels, and try to predict these labels using othdrrom ac-way classification problen!/(c — k)! bi-
parts of the input data. nary prediction problems can be created.

3.1.2 Partially-supervised strategy



4 Algorithms Used in Experiments (Zhang, 2004).

, . , As we will show in Section 7.3, our formulation
Using auxiliary problems introduced above, W&g reiatively insensitive to the change in (row-

study the performance of our semi-supervised Iea”&ﬂmension of the structure matrix). We fix (for

ing method on named entity chunking and syntaGs, ., feature group) to 50, and use it in all settings.
tic chunking. This section describes the algorithmic o most time-consuming process is the train-

aspects of the experimental framework. The taskyy of ., auxiliary predictors on the unlabeled data
specific setup is described in Sections 5 and 6. (computingU in Figure 1). Fixing the number of
4.1 Extension of the basic SVD-ASO algorithm iterations to a constant, |'F runs in linear #@ and

the number of unlabeled instances and takes hours

In our experiments, we use an extension of SVDin our settings that use more than 20 million unla-
ASO. In NLP applications, features have naturaheled instances.

grouping according to their types/origins such as _ '

‘current words’, ‘parts-of-speech on the right’, and?-3 Baseline algorithms

so forth. It is desirable to perform a localized op-Supervised classifier For comparison, we train a
timization for each of such natural feature groupsclassifier using the same features and algorithm, but
Hence, we associate each feature group with a sulgithout unlabeled datag = 0 in effect).

matrix of structure matrix®. The optimization al- . . ) )
gorithm for this extension is essentially the same a(:‘:o—t_ralnmg We test co_—_tralnlng since our |d_ea of
SVD-ASO in Figure 1, but with the SVD step per_partlally-superwsed auxiliary problems is motivated
formed separately for each group. See (Ando ari%ly_ c_:o—tralnlng. Our |mpl_ementat|on follows the
Zhang, 2004) for the precise formulation. In agoriginal work (Blum and Mitchell, 1998). The two
dition, we regularize only those componentsve (or more) classifiers (with distinct feature maps) are
which correspond to the non-negative partinf trained with labeled data. We maintain a poolqof

The motivation is that positive weights are usuaIIyLmIabEIEd instances by random selection. The clas-

directly related to the target concept, while negativé'f'erif’mposfeS labels f]?r the i:]stlanci_s n thrlfhpor? .
ones often yield much less specific information rep\-Ne Chooses |n§tances or each classiier \_N't_ '9
onfidence while preserving the class distribution

resenting ‘the others’. The resulting extension, i - - H
effect, only uses the positive componentstafin observed in the initial labeled data, and add them

the SVD computation to the labeled data. The process is then repeated.
' We explore¢=50K, 100K, s=50,100,500,1K, and

4.2 Chunking algorithm, loss function, training commonly-used feature splits: ‘current vs. context’
algorithm, and parameter settings and ‘current+left-context vs. current+right-context’.

As is commonly done, we encode chunk informaSelf-training Single-view bootstrapping is some-
tion into word tags to cast the chunking problem tdimes calledself-training We test the basic self-
that of sequential word tagging. We perform Viterbiraining?, which replaces multiple classifiers in the
style decoding to choose the word tag sequence tha-training procedure with a single classifier that
maximizes the sum of tagging confidence values. employs all the features.

In all sgttlngs (|nclud'|r.19 pasellne methods,), th%o/self—training oracle performance To avoid the
loss function is a modification of the Huber’s ro-

bust loss f iond, . 0.1 issue of parameter selection for the co- and self-

USQ 'foss >or rle_gredssgn (1?[ ’hy) - ma);(] '~ training, we report their best possilieacle perfor-
Py py = — . an ify OInEWISe, With SqQUAre - ance which is the best F-measure number among
regularization K = 10™*). One may select other

. . ___all the co- and self-training parameter settings in-
loss functions such as SVM or logistic regression gp g

o . . ¢luding the choice of the number of iterations.
The specific choice is not important for the purpose __~
of this paper. The training algorithm sochastic 2\We also tested “self-training with bagging”, which Ng and
. L Cardie (2003) used for co-reference resolution. We omitltes
gradient descentwhich is argued to perform well

; : *~" since it did not produce better performance than the supealvi
for regularized convex ERM learning formulationsbaseline.



words, parts-of-speech (POS), character types, # of aux. Auxiliary Features used for
4 characters at the beginning/ending in a 5-word window. problems labels learning aux problems
words in a 3-syntactic chunk window. 1000 | previous words all but previous words
labels assigned to two words on the left. 1000 | current words all but current words
bi-grams of the current word and the label on the left. 1000 | next words all but next words
labels assigned to previous occurrences of the current 72 | Fi'stop-2 choices| ®- (all but left context)
word. 72 | F»'stop-2 choices| @, (left context)
. 72 | F5'stop-2 choices| @, (all but right context)
Figure 2:Feature types for named entity chunking. POS and 72 | Fy’s top-2 choices| @ (right context)

syntactic chunk information is provided by the organizer. } - ]
Figure 3: Auxiliary problems used for named entity chunk-

ing. 3000 problems ‘mask’ words and predict them from the
other features on unlabeled data. 288 problems predidiclas
fier F;’s predictions on unlabeled data, whefgis trained with

. . labeled data using feature mép. There are 72 possible top-2
We report named entity chunking performance Oghgices from 9 classes (beginning/inside of four types ai@a

the CoNLL'03 shared-taskcorpora (English and chunks and ‘outside’).
German). We choose this task because the original

intention of this shared task was to test the effecf the classifier” using feature splits ‘left context vs.
tiveness of semi-supervised learning methods. Howhe others’ and ‘right context vs. the others’. For
ever, it turned out that none of the top performingyord-prediction problems, we only consider the in-
systems used unlabeled data. The likely reason dgances whose current words are either nouns or ad-
that the number of labeled data is relatively larggectives since named entities mostly consist of these
(>200K), making it hard to benefit from unlabeledtypesl Also, we leave out all but at most 1000 bi-
data. We show that our ASO-based semi-supervis%ry prediction problems of each type that have the
learning method (hereafteASO-sen)ican produce |argest numbers of positive examples to ensure that
results appreciably better than all of the top systemgyxiliary predictors can be adequately learned with
by using unlabeled data as tiealy additional re- 5 syfficiently large number of examples. The results

source. In particular, we do not use any gazettegje report are obtained by using all the problems in
information, which was used in all other systems. Figyre 3 unless otherwise specified.

The CoNLL corpora are annotated with four types _ _
of named entities: persons, organizations, location8;3 Named entity chunking results
and miscellaneous names (e.g., “World Cup”). We

5 Named Entity Chunking Experiments

use the official training/development/test splits. Oyr ™Methods | test diff. from supervised
. - data F prec. recall F
ur_1|abe|ed data sets consist of 27 million words_ (En- English, small (10K examples) fraining set
glish) and 35 million words (German), respectively] ASO-semi | dev. || 81.25] +10.02 | +7.00 | +8.51
They were chosen from the same sources — Reutgre?/self oracle 7310] +0.32] +0.39| +0.36
- : ASO-semi | test || 78.42| +9.39 [ +10.73 | +10.10
and ECI Multl_llrjgual Text Corpus — as the provided cq/self oracle 69.63| +060| +1.95| +1.31
corpora but disjoint from them. English, all (204K) training examples
ASO-semi | dev. || 93.15] +2.25| +3.00 | +2.62
5.1 Features co/self oracle 90.64| +0.04| +0.20| +0.11
o _ o ASO-semi | test || 89.31| +3.20| +451| +3.86
Our feature representation is a slight modification aof co/self oracle 85.40| -0.04| -0.05| -0.05
a simpler configuration (without any gazetteer) i German, all (207K) training examples
(Zhang and Johnson, 2003), as shown in Figure p, ASO-semi | dev. || 74.06 | +7.04 | +10.19 | +9.22
. . . co/self oracle 66.47| —259| +4.39| +1.63
We use POS and syntactic chunk information pra&—asosemi [ test 7527 +4.64 | +6.59 | +5.88
vided by the organizer. co/self oracle 70.45| —1.26| +259| +1.06
5.2 Auxiliary problems Figure 4: Named entity chunking results. No gazetteer. F-

o ) ] __ measure and performance improvements over the supervised
As shown in Figure 3, we experiment with auxiliarybaseline in precision, recall, and F. For co- and self-ingin

problems from Ex 3.1 and 3.2: “Predict current (ofPaseline), theracleperformance is shown.

previous or next) words”; and "Preditdp-2choices Figure 4 shows results in comparison with the su-

®htp://cnts.uia.ac.be/conll2003/ner pervised baseline in six configurations, each trained



with one of three sets of labeled training examples: a Uni- and bi-grams of words and POS in a 5-token window.

. - word-POS bi-grams in a 3-token window.
small English set (10K examples randomly chosen),. pos tri-grams on the left and right.
the entire English training set (204K), and the entire- labels of the two words on the left and their bi-grams.
German set (207K), tested on either the development bi-grams of the current word and two labels on the left.
set O.r FeSt set. ASO seml S|gn|f_|cantly_|mprqves bOﬂI}igure 6:Feature types for syntactic chunking. POS informa-
precision and recall in all the six configurations, resjon is provided by the organizer.

sulting in improved F-measures over the supervised

baseline by +2.62% to +10.10%. prec. | recall Fs_i

_ FE : supervised | 93.83 | 93.37 | 93.60
_ Co- and self-training, at thearacle perfqrmanc,e ASO-semi | 9457|0420 | 94.39 (70.79)
improve recall but often degrade precision; con- colself oracle| 93.76 | 93.56 | 93.66 (+0.06)
sequently, their F-measure improvements are rela-
tively low: —0.05% to +1.63%. Figure 7:Syntactic chunking results.

Comparison with top systems As shown in Fig-

ure 5, ASO-semi achieves higher performance thamse the WSJ articles in 1991 (15 million words) from
the top systems on both English and Germathe TREC corpus as the unlabeled data.

data. Most of the top systems boost performance

by external hand-crafted resources such as: lar§el Features and auxiliary problems

gazetteer§ a large amount (2 million words) of o feature representation is a slight modification of
labeleddata manually annotated with finer-grained, gjmpjer configuration (without linguistic features)
nam_ed entities (FIJZ03); and rule-based post prg; (Zhang et al., 2002), as shown in Figure 6. We
cessing (KSNMO3). Hence, we feel that our results,ge the pOS information provided by the organizer.
obtained by using unlabeled data as the only addine tynes of auxiliary problems are the same as in
tional resource, are encouraging. the named entity experiments. For word predictions,
we exclude instances of punctuation symbols.

System Eng. | Ger. | Additional resources
ASO-semi| 89.31 | 75.27 | unlabeled data

F1JZ03 88.76 | 72.41 | gazetteers; 2M-word labele
data (English) . ..
CNO3 88.31| 65.67 | gazetteers (English); (@lso | AS shown in Figure 7, ASO-semiimproves both pre-

very elaborated features) cision and recall over the supervised baseline. It
KSNMO3 | 86.31 | 71.90 | rule-based post processing|  4chjeves)4.39% in F-measure, which outperforms

) the supervised baseline y79%. Co- and self-
Figure 5: Named entity chunking. F-measure on the tes

sets. Previous best results: FIJZ03 (Florian et al., 200R03 lralnlng age_m_] S“ghtly |mprove recall but S"ghtly de__
(Chieu and Ng, 2003), KSNMO3 (Klein et al., 2003). grade precision at their oracle performance, which

demonstrates that it is not easy to benefit from unla-
beled data on this task.

6.2 Syntactic chunking results

j®N

6 Syntactic Chunking Experiments
Comparison with the previous best systems As

Next, we report syntactic chunking performance 0@pgwn in Figure 8, ASO-semi achieves performance
the CONLL'00 shared-taSkcorpus. The training pigher than the previous best systems. Though the
and test data sets consist of the Wall Street Journ%ace constraint precludes providing the detail, we
corpus (WSJ) sections 15-18 (212K words) and Sefpte that ASO-semi outperforms all of the previ-

tion 20, respectively. They are annotated with eleveg, s top systems in both precision and recall. Unlike
types of syntactic chunks such as noun phrases. \M&med entity chunking, the use of external resources

“Whether or not gazetteers are useful depends on their codh this task is rare. An exception is the use of out-

erage. A number of top-performing systems used their owput from a grammar-based full parser as features in
gazetteers in addition to the organizer’s gazetteers grutte DJ02+, which our system does not use. KMO1
significant performance improvements (e.g., FIJZ03, CNO3% ’ . .

and ZJ03). and CMO03 boost performance by classifier combina-

Shttp://cnts.uia.ac.be/conli2000/chunking tions. SPO3 trains conditional random fields for NP



row# | Features corresponding to | Interpretation
all NP | description significant® entries
ASO-semi| 94.39 | 94.70 | +unlabeled data 4 Ltd, Inc, Plc, International, organizations
KMO01 93.91| 94.39 | SVM combination Ltd., Association, Group, Inc
CMO03 93.74 | 94.41 | perceptron in two layers 7 Co, Corp, Co., Company, organizations
SP0O3 - 94.38 | conditional random fields Authority, Corp., Services
ZDJ02 93.57 | 93.89 | generalized Winnow 9 PCT, N/A, Nil, Dec, BLN, no names
[ZDJ02+ | 94.17 | 94.38 | +ull parser output | Avg, Year-on-year, UNCH _
11 New, France, European, San, locations
North, Japan, Asian, India
Figure 8: Syntactic chunking F-measure. Comparison with ~ 15 Peter, Sir, Charles, Jose, Palilpersons
previous best results: KM01 (Kudoh and Matsumoto, 2001), Lee, Alan, Dan, John, James
CMO3 (Carreras and Marquez, 2003), SP03 (Sha and Pereira, 26 June, May, July, Jan, March,| months
2003), ZDJ02 (Zhang et al., 2002). August, September, April

_ _ Figure 10: Interpretation of ® computed from word-
(noun phrases) only. ASO-semi produces higher Nftediction (unsupervised) problems for named entity cingik

chunking performance than the others.

words beginning with upper-case letters (i.e., likely
to be names in English). Our method captures the
spirit of predictive word-clustering but is more gen-
eral and effective on our tasks.

7 Empirical Analysis

7.1 Effectiveness of auxiliary problems

English named entity German named entity

SN S 76 It is possible to develop a general theory to show
o 89 o 74l that the auxiliary problems we use are helpful under
2 23 I 372 reasonable conditions. The intuition is as follows.
£ g5 | g 70t Suppose we split the features into two pabtsand
o — U 68 &, and predict®; based on®,. Suppose features
Osupervised in &, are correlated to the class labels (but not nec-

Ow/ "Predict (previous, current, or next) words"
@w/ "Predict top-2 choices"
Ww/ "Predict words" + "Predict top-2 choices'

essarily correlated among themselves). Then, the
auxiliary prediction problems are related to the tar-
get task, and thus can reveal useful structure®of
‘Under some conditions, it can be shown that features
in @, with similar predictive performance tend to

map to similar low-dimensional vectors through

~ Figure 9 shows F-measure obtained by compuirhis effect can be empirically observed in Figure 10
ing © from individual types of auxiliary problems 5nq will be formally shown elsewhere.
on named entity chunking. Both types — “Predict

words” and “Predict top-2 choices of the classifier'7 3 Effect of the® dimension
— are useful, producing significant performance im-
provements over the supervised baseline. The best
performance is achieved whéhis produced from

all of the auxiliary problems.

Figure 9:Named entity F-measure produced by using individ
ual types of auxiliary problems. Trained with the entirertiiag
sets and tested on the test sets.

[c000000¢

ASO-semi
supervised

e, g

20 40 60 80 100
dimension

7.2 Figure 11:F-measure in relation to the row-dimensioncf
To gain insights into the information obtained fromEnglish named entity chunking, test set.

unlabeled data, we examine tBeentries associated

with the feature ‘current words’, computed for the Recall that throughout the experiments, we fix the
English named entity task. Figure 10 shows the feaew-dimension of® (for each feature group) to 50.
tures associated with the entriesivith the largest Figure 11 plots F-measure in relation to the row-
values, computed from the 2000 unsupervised augimension of®, which shows that the method is rel-
iliary problems: “Predict previous words” and “Pre-atively insensitive to the change of this parameter, at
dict next words”. For clarity, the figure only showsleast in the range which we consider.

o 0
o N ©
o

F-measure (%)

Interpretation of ©



8 Conclusion Michael Collins and Yoram Singer. 1999. Unsupervised
models for named entity classification. Pmoceedings
We presented a novel semi-supervised learn- of EMNLP/VLC'99

|n.g mthOd that Iearns. th.e most predictive IOW_Radu Florian, Abe Ittycheriah, Hongyan Jing, and Tong
dimensional feature projection from unlabeled data zhang. 2003. Named entity recognition through

using the structural learning algorithm SVD-ASO. classifier combination. I®roceedings CoNLL-2003
On CoNLL'00 syntactic chunking and CoNLL'03  pages 168-171.

named entity chunking (English and German), thgene H. Golub and Charles F. Van Loan. 1996. Matrix
method exceeds the previous best systems (includ-computations third edition.
ing those which rely on hand-crafted resources) b

. L lgan Klein, Joseph Smarr, Huy Nguyen, and Christo-
using unlabeled data as the only additional resource. pher D. Manning. 2003. Named entity recognition

The key idea is to create auxiliary problems au- with character-level models. IRroceedings CoNLL-
tomatically from unlabeled data so that predictive 2003 pages 188-191.

structures can be learned from that data. In practic:cl-‘:aku Kudoh and Yuji Matsumoto. 2001. Chunking with

it is desirable to create as many auxiliary problems support vector machines. Rroceedings of NAACL
as possible, as long as there is some reason to be2001

lieve in their relevancy to the task. This is becausEernalrol Merialdo. 1994. Tagging English text with

the risk is relatively minor while the potential gain probabilistic model. Computational Linguistics
from relevant problems is large. Moreover, the aux- 20(2):155-171.

iliary problems used in our experiments are merel , . ,
ossible examples. One advantage of our a roaéﬁon Miller, Jethran Guinness, and Alex Zamanian.
P ples. g PP 2004. Name tagging with word clusters and discrimi-

is that one may design a variety of auxiliary prob- native training. InProceedings of HLT-NAACL-2004

lems to learn various aspects of the target problem N d Claire Cardie. 2003. Weakl sed
. . incent Ng and Claire Cardie. . Weakly supervise
from unlabeled data. Structural learning provides X natural language learning without redundant views. In

framework for carrying out possible new ideas. Proceedings of HLT-NAACL-2003
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Abstract

Conditional Random Fields (CRFs) have
been applied with considerable success to
a number of natural language processing
tasks. However, these tasks have mostly
involved very small label sets. When
deployed on tasks with larger label
sets, the requirements for computational
resources mean that training becomes
intractable.

This paper describes a method for train-
ing CRFs on such tasks, using error cor-
recting output codes (ECOC). A number
of CRFs are independently trained on the
separate binary labelling tasks of distin-
guishing between a subset of the labels
and its complement. During decoding,
these models are combined to produce a
predicted label sequence which is resilient
to errors by individual models.

Error-correcting CRF training is much
less resource intensive and has a much
faster training time than a standardly
formulated CRF, while decoding
performance remains quite comparable.
This allows us to scale CRFs to previously
impossible tasks, as demonstrated by our
experiments with large label sets.

1 Introduction

Conditional random fields (CRFs) (Lafferty et
al., 2001) are probabilistic models for labelling
sequential data. CRFs are undirected graphical

10
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models that define a conditional distribution over
label sequences given an observation sequence.
They allow the use of arbitrary, overlapping,
non-independent features as a result of their global
conditioning.  This allows us to avoid making
unwarranted independence assumptions over the
observation sequence, such as those required by
typical generative models.

Efficient inference and training methods exist
when the graphical structure of the model forms
a chain, where each position in a sequence is
connected to its adjacent positions. CRFs have been
applied with impressive empirical results to the
tasks of named entity recognition (McCallum and
Li, 2003), simplified part-of-speech (POS) tagging
(Lafferty et al., 2001), noun phrase chunking (Sha
and Pereira, 2003) and extraction of tabular data
(Pinto et al., 2003), among other tasks.

CRFs are usually estimated using gradient-based
methods such as limited memory variable metric
(LMVM). However, even with these efficient
methods, training can be slow. Consequently, most
of the tasks to which CRFs have been applied are
relatively small scale, having only a small number
of training examples and small label sets. For
much larger tasks, with hundreds of labels and
millions of examples, current training methods
prove intractable. Although training can potentially
be parallelised and thus run more quickly on large
clusters of computers, this in itself is not a solution
to the problem: tasks can reasonably be expected
to increase in size and complexity much faster
than any increase in computing power. In order to
provide scalability, the factors which most affect the
resource usage and runtime of the training method

Proceedings of the 43rd Annual Meeting of the AGages 10-17,
Ann Arbor, June 2005©)2005 Association for Computational Linguistics



must be addressed directly — ideally the dependence
on the number of labels should be reduced.

This paper presents an approach which enables
CRFs to be used on larger tasks, with a significant
reduction in the time and resources needed for
training. This reduction does not come at the cost
of performance — the results obtained on benchmark
natural language problems compare favourably,
and sometimes exceed, the results produced from
regular CRF training.  Error correcting output
codes (ECOC) (Dietterich and Bakiri, 1995) are
used to train a community of CRFs on binary
tasks, with each discriminating between a subset
of the labels and its complement. Inference is
performed by applying these ‘weak’ models to an
unknown example, with each component model
removing some ambiguity when predicting the label
sequence. Given a sufficient number of binary
models predicting suitably diverse label subsets, the
label sequence can be inferred while being robust
to a number of individual errors from the weak
models. As each of these weak models are binary,
individually they can be efficiently trained, even
on large problems. The number of weak learners
required to achieve good performance is shown to
be relatively small on practical tasks, such that the
overall complexity of error-correcting CRF training
is found to be much less than that of regular CRF
training methods.

We have evaluated the error-correcting CRF on
the CoNLL 2003 named entity recognition (NER)
task (Sang and Meulder, 2003), where we show
that the method yields similar generalisation perfor-
mance to standardly formulated CRFs, while requir-
ing only a fraction of the resources, and no increase
in training time. We have also shown how the error-
correcting CRF scales when applied to the larger
task of POS tagging the Penn Treebank and also
the even larger task of simultaneously noun phrase
chunking (NPC) and POS tagging using the CoNLL
2000 data-set (Sang and Buchholz, 2000).

2 Conditional random fields

CREFs are undirected graphical models used to spec-
ify the conditional probability of an assignment of
output labels given a set of input observations. We
consider only the case where the output labels of the
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model are connected by edges to form a linear chain.
The joint distribution of the label sequence, y, given
the input observation sequence, X, is given by

T+1

1
€xXp )\kfk(t7}’t—17}’tax)
Z(x) ; zk:

p(ylx) =

where 7' is the length of both sequences and A, are
the parameters of the model. The functions fj, are
feature functions which map properties of the obser-
vation and the labelling into a scalar value. Z(x)
is the partition function which ensures that p is a
probability distribution.

A number of algorithms can be used to find the
optimal parameter values by maximising the log-
likelihood of the training data. Assuming that the
training sequences are drawn /ID from the popula-
tion, the conditional log likelihood L is given by

£ = Y logp(y®x®)

T 41 . : .
- z{ > Y ity <)

% t=1 k

— log Z(x(i))}

where x( and y(® are the i*" observation and label
sequence. Note that a prior is often included in the
L formulation; it has been excluded here for clar-
ity of exposition. CRF estimation methods include
generalised iterative scaling (GIS), improved itera-
tive scaling (IIS) and a variety of gradient based
methods. In recent empirical studies on maximum
entropy models and CRFs, limited memory variable
metric (LMVM) has proven to be the most efficient
method (Malouf, 2002; Wallach, 2002); accord-
ingly, we have used LM VM for CRF estimation.

Every iteration of LMVM training requires the
computation of the log-likelihood and its deriva-
tive with respect to each parameter. The partition
function Z(x) can be calculated efficiently using
dynamic programming with the forward algorithm.
Z(x)is given by >~ ar(y) where o are the forward
values, defined recursively as

a1 (y) =D oY) exp Y Aefu(t + 1,y ,y,%)
Y k



The derivative of the log-likelihood is given by
T 41
- Z Z fk: 7Yt 17yt ) ())
- > plyx?) X("))}
y

1

The first term is the empirical count of feature £,
and the second is the expected count of the feature
under the model. When the derivative equals zero —
at convergence — these two terms are equal. Evalu-
ating the first term of the derivative is quite simple.
However, the sum over all possible labellings in the
second term poses more difficulties. This term can
be factorised, yielding

SN p(Yier =y, Ve = ylxD) fi(t,y y, xD)

t Yy

or
O

T 41

Z fk(ta Yi—-1,Y¢s
t=1

This term uses the marginal distribution over pairs of
labels, which can be efficiently computed from the
forward and backward values as

at—l(y/) €xXp Zk )\kfk(t7 y,7 Y,
Z(x(®)
The backward probabilities § are defined by the
recursive relation

y)=> By
"

Typically CRF training using LMVM requires
many hundreds or thousands of iterations, each of
which involves calculating of the log-likelihood
and its derivative. The time complexity of a single
iteration is O(L2NTF) where L is the number
of labels, N is the number of sequences, 7' is
the average length of the sequences, and F' is
the average number of activated features of each
labelled clique. It is not currently possible to state
precise bounds on the number of iterations required
for certain problems; however, problems with a
large number of sequences often require many more
iterations to converge than problems with fewer
sequences. Note that efficient CRF implementations
cache the feature values for every possible clique
labelling of the training data, which leads to a
memory requirement with the same complexity of
O(L®(NTF) - quite demanding even for current
computer hardware.

x) 3 (y)

,) expz )‘kfk‘(t + 173/7 ylvx)
k
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3 Error Correcting Output Codes

Since the time and space complexity of CRF
estimation is dominated by the square of the number
of labels, it follows that reducing the number
of labels will significantly reduce the complexity.
Error-correcting coding is an approach which recasts
multiple label problems into a set of binary label
problems, each of which is of lesser complexity than
the full multiclass problem. Interestingly, training a
set of binary CRF classifiers is overall much more
efficient than training a full multi-label model. This
is because error-correcting CRF training reduces
the L? complexity term to a constant. Decoding
proceeds by predicting these binary labels and then
recovering the encoded actual label.

Error-correcting output codes have been used for
text classification, as in Berger (1999), on which the
following is based. Begin by assigning to each of the
m labels a unique n-bit string C;, which we will call
the code for this label. Now train n binary classi-
fiers, one for each column of the coding matrix (con-
structed by taking the labels’ codes as rows). The ;"
classifier, 7/, takes as positive instances those with
label ¢ where C;; = 1. In this way, each classifier
learns a different concept, discriminating between
different subsets of the labels.

We denote the set of binary classifiers as

{41,42,...,94™}, which can be used for

prediction as follows. Classify a novel instance z
with each of the binary classifiers, yielding a n-bit
vector I'(z) = {v'(x),7*(z),...,7"(x)}. Now
compare this vector to the codes for each label. The
vector may not exactly match any of the labels due
to errors in the individual classifiers, and thus we
chose the actual label which minimises the distance
argmin;,A(I'(z),C;).  Typically the Hamming
distance is used, which simply measures the number
of differing bit positions. In this manner, prediction
is resilient to a number of prediction errors by the
binary classifiers, provided the codes for the labels
are sufficiently diverse.

3.1 Error-correcting CRF training

Error-correcting codes can also be applied to
sequence labellers, such as CRFs, which are capable
of multiclass labelling. ECOCs can be used with
CRFs in a similar manner to that given above for



classifiers. A series of CRFs are trained, each
on a relabelled variant of the training data. The
relabelling for each binary CRF maps the labels
into binary space using the relevant column of the
coding matrix, such that label ¢ is taken as a positive
for the j'* model example if C;; = 1.

Training with a binary label set reduces the time
and space complexity for each training iteration to
O(NTF); the L? term is now a constant. Pro-
vided the code is relatively short (i.e. there are
few binary models, or weak learners), this translates
into considerable time and space savings. Coding
theory doesn’t offer any insights into the optimal
code length (i.e. the number of weak learners).
When using a very short code, the error-correcting
CREF will not adequately model the decision bound-
aries between all classes. However, using a long
code will lead to a higher degree of dependency
between pairs of classifiers, where both model simi-
lar concepts. The generalisation performance should
improve quickly as the number of weak learners
(code length) increases, but these gains will diminish
as the inter-classifier dependence increases.

3.2 Error-correcting CRF decoding

While training of error-correcting CRFs is simply
a logical extension of the ECOC classifier method
to sequence labellers, decoding is a different mat-
ter. We have applied three decoding different strate-
gies. The Standalone method requires each binary
CRF to find the Viterbi path for a given sequence,
yielding a string of Os and 1s for each model. For
each position ¢ in the sequence, the ¢ bit from
each model is taken, and the resultant bit string
compared to each of the label codes. The label
with the minimum Hamming distance is then cho-
sen as the predicted label for that site. This method
allows for error correction to occur at each site, how-
ever it discards information about the uncertainty of
each weak learner, instead only considering the most
probable paths.

The Marginals method of decoding uses the
marginal probability distribution at each position
in the sequence instead of the Viterbi paths. This
distribution is easily computed using the forward
backward algorithm. The decoding proceeds as
before, however instead of a bit string we have a
vector of probabilities. This vector is compared
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to each of the label codes using the L; distance,
and the closest label is chosen. While this method
incorporates the uncertainty of the binary models, it
does so at the expense of the path information in the
sequence.

Neither of these decoding methods allow the
models to interact, although each individual weak
learner may benefit from the predictions of the
other weak learners. The Product decoding method
addresses this problem. It treats each weak model
as an independent predictor of the label sequence,
such that the probability of the label sequence given
the observations can be re-expressed as the product
of the probabilities assigned by each weak model.
A given labelling y is projected into a bit string for
each weak learner, such that the i** entry in the
string is Cy; for the 4% weak learner, where k is
the index of label y,. The weak learners can then
estimate the probability of the bit string; these are
then combined into a global product to give the
probability of the label sequence

) = s T (sl

where p;(q|x) is the predicted probability of q given
x by the j* weak learner, b;(y) is the bit string
representing y for the ;¢ weak learner and Z'(x)
is the partition function. The log probability is

Z {Fj(b;(y),x) - A; — log Z;(x)} — log Z'(x)
J

where Fj(y,x) = ZtT:Jrll £;(t,yt—1,¥t,x). This log
probability can then be maximised using the Viterbi
algorithm as before, noting that the two log terms are
constant with respect to y and thus need not be eval-
uated. Note that this decoding is an equivalent for-
mulation to a uniformly weighted logarithmic opin-
ion pool, as described in Smith et al. (2005).

Of the three decoding methods, Standalone
has the lowest complexity, requiring only a binary
Viterbi decoding for each weak learner. Marginals
is slightly more complex, requiring the forward
and backward values. Product, however, requires
Viterbi decoding with the full label set, and many
features — the union of the features of each weak
learner — which can be quite computationally
demanding.



3.3 Choice of code

The accuracy of ECOC methods are highly depen-
dent on the quality of the code. The ideal code
has diverse rows, yielding a high error-correcting
capability, and diverse columns such that the weak
learners model highly independent concepts. When
the number of labels, k, is small, an exhaustive
code with every unique column is reasonable, given
there are 2~ — 1 unique columns. With larger
label sets, columns must be selected with care to
maximise the inter-row and inter-column separation.
This can be done by randomly sampling the column
space, in which case the probability of poor separa-
tion diminishes quickly as the number of columns
increases (Berger, 1999). Algebraic codes, such as
BCH codes, are an alternative coding scheme which
can provide near-optimal error-correcting capabil-
ity (MacWilliams and Sloane, 1977), however these
codes provide no guarantee of good column separa-
tion.

4 Experiments

Our experiments show that error-correcting CRFs
are highly accurate on benchmark problems with
small label sets, as well as on larger problems with
many more labels, which would be otherwise prove
intractable for traditional CRFs. Moreover, with a
good code, the time and resources required for train-
ing and decoding can be much less than that of the
standardly formulated CRF.

4.1 Named entity recognition

CRFs have been used with strong results on the
CoNLL 2003 NER task (McCallum, 2003) and thus
this task is included here as a benchmark. This data
set consists of a 14,987 training sentences (204,567
tokens) drawn from news articles, tagged for per-
son, location, organisation and miscellaneous enti-
ties. There are 8 IOB-2 style labels.

A multiclass (standardly formulated) CRF was
trained on these data using features covering word
identity, word prefix and suffix, orthographic tests
for digits, case and internal punctuation, word
length, POS tag and POS tag bigrams before and
after the current word. Only features seen at least
once in the training data were included in the model,
resulting in 450,345 binary features. The model was
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Model Decoding MLE  Regularised

Multiclass 88.04 89.78

Coded standalone 88.23* 88.671
marginals ~ 88.23* 89.19
product 88.69* 89.69

Table 1: F; scores on NER task.

trained without regularisation and with a Gaussian
prior. An exhaustive code was created with all
127 unique columns. All of the weak learners
were trained with the same feature set, each having
around 315,000 features. The performance of the
standard and error-correcting models are shown in
Table 1. We tested for statistical significance using
the matched pairs test (Gillick and Cox, 1989) at
p < 0.001. Those results which are significantly
better than the corresponding multiclass MLE or
regularised model are flagged with a *, and those
which are significantly worse with a T

These results show that error-correcting CRF
training achieves quite similar performance to the
multiclass CRF on the task (which incidentally
exceeds McCallum (2003)’s result of 89.0 using
feature induction).  Product decoding was the
better of the three methods, giving the best
performance both with and without regularisation,
although this difference was only statistically
significant between the regularised standalone and
the regularised product decoding. The unregularised
error-correcting CRF significantly outperformed
the multiclass CRF with all decoding strategies,
suggesting that the method already provides some
regularisation, or corrects some inherent bias in the
model.

Using such a large number of weak learners is
costly, in this case taking roughly ten times longer
to train than the multiclass CRF. However, much
shorter codes can also achieve similar results. The
simplest code, where each weak learner predicts
only a single label (a.k.a. one-vs-all), achieved an
F score of 89.56, while only requiring 8 weak learn-
ers and less than half the training time as the multi-
class CRF. This code has no error correcting capa-
bility, suggesting that the code’s column separation
(and thus interdependence between weak learners)
is more important than its row separation.



An exhaustive code was used in this experiment
simply for illustrative purposes: many columns
in this code were unnecessary, yielding only a
slight gain in performance over much simpler
codes while incurring a very large increase in
training time. Therefore, by selecting a good subset
of the exhaustive code, it should be possible to
reduce the training time while preserving the strong
generalisation performance. One approach is to
incorporate skew in the label distribution in our
choice of code — the code should minimise the
confusability of commonly occurring labels more
so than that of rare labels. Assuming that errors
made by the weak learners are independent, the
probability of a single error, ¢, as a function of the
code length n can be bounded by

|t

)
T (- or-

=0

g(n) <1=3"p()
l

where p([) is the marginal probability of the label [,
h; is the minimum Hamming distance between [ and
any other label, and p is the maximum probability
of an error by a weak learner. The performance
achieved by selecting the code with the minimum
loss bound from a large random sample of codes
is shown in Figure 1, using standalone decoding,
where p was estimated on the development set. For
comparison, randomly sampled codes and a greedy
oracle are shown. The two random sampled codes
show those samples where no column is repeated,
and where duplicate columns are permitted (random
with replacement). The oracle repeatedly adds to the
code the column which most improves its F score.
The minimum loss bound method allows the per-
formance plateau to be reached more quickly than
random sampling; i.e. shorter codes can be used,
thus allowing more efficient training and decoding.

Note also that multiclass CRF training required
830Mb of memory, while error-correcting training
required only 380Mb. Decoding of the test set
(51,362 tokens) with the error-correcting model
(exhaustive, MLE) took between 150 seconds for
standalone decoding and 173 seconds for integrated
decoding. The multiclass CRF was much faster,
taking only 31 seconds, however this time difference
could be reduced with suitable optimisations.

15

90

89

F1 score

random ——
random with replacement ----x---
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Figure 1: NER F1 scores for standalone decoding
with random codes, a minimum loss code and a
greedy oracle.

Coding Decoding MLE Regularised
Multiclass 95.69 95.78
Coded - 200 standalone 95.63 96.03
marginals  95.68 96.03
One-vs-all product 94.90 96.57

Table 2: POS tagging accuracy.

4.2 Part-of-speech Tagging

CRFs have been applied to POS tagging, however
only with a very simple feature set and small training
sample (Lafferty et al., 2001). We used the Penn
Treebank Wall Street Journal articles, training on
sections 2-21 and testing on section 24. In this
task there are 45,110 training sentences, a total of
1,023,863 tokens and 45 labels.

The features used included word identity, prefix
and suffix, whether the word contains a number,
uppercase letter or a hyphen, and the words one
and two positions before and after the current word.
A random code of 200 columns was used for this
task. These results are shown in Table 2, along with
those of a multiclass CRF and an alternative one-vs-
all coding. As for the NER experiment, the decod-
ing performance levelled off after 100 bits, beyond
which the improvements from longer codes were
only very slight. This is a very encouraging char-
acteristic, as only a small number of weak learners
are required for good performance.



The random code of 200 bits required 1,300Mb
of RAM, taking a total of 293 hours to train and
3 hours to decode (54,397 tokens) on similar
machines to those used before. We do not have
figures regarding the resources used by Lafferty et
al.’s CREF for the POS tagging task and our attempts
to train a multiclass CRF for full-scale POS tagging
were thwarted due to lack of sufficient available
computing resources. Instead we trained on a
10,000 sentence subset of the training data, which
required approximately 17Gb of RAM and 208
hours to train.

Our best result on the task was achieved using
a one-vs-all code, which reduced the training
time to 25 hours, as it only required training 45
binary models. This result exceeds Lafferty et al.’s
accuracy of 95.73% using a CRF but falls short of
Toutanova et al. (2003)’s state-of-the-art 97.24%.
This is most probably due to our only using a
first-order Markov model and a fairly simple feature
set, where Tuotanova et al. include a richer set of
features in a third order model.

4.3 Part-of-speech Tagging and Noun Phrase
Segmentation

The joint task of simultaneously POS tagging and
noun phrase chunking (NPC) was included in order
to demonstrate the scalability of error-correcting
CRFs. The data was taken from the CoNLL 2000
NPC shared task, with the model predicting both the
chunk tags and the POS tags. The training corpus
consisted of 8,936 sentences, with 47,377 tokens
and 118 labels.

A 200-bit random code was used, with the follow-
ing features: word identity within a window, pre-
fix and suffix of the current word and the presence
of a digit, hyphen or upper case letter in the cur-
rent word. This resulted in about 420,000 features
for each weak learner. A joint tagging accuracy of
90.78% was achieved using MLE training and stan-
dalone decoding. Despite the large increase in the
number of labels in comparison to the earlier tasks,
the performance also began to plateau at around 100
bits. This task required 220Mb of RAM and took a
total of 30 minutes to train each of the 200 binary
CREFs, this time on Pentium 4 machines with 1Gb
RAM. Decoding of the 47,377 test tokens took 9,748
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seconds and 9,870 seconds for the standalone and
marginals methods respectively.

Sutton et al. (2004) applied a variant of the CRF,
the dynamic CRF (DCRF), to the same task, mod-
elling the data with two interconnected chains where
one chain predicted NPC tags and the other POS
tags. They achieved better performance and train-
ing times than our model; however, this is not a
fair comparison, as the two approaches are orthogo-
nal. Indeed, applying the error-correcting CRF algo-
rithms to DCRF models could feasibly decrease the
complexity of the DCRE, allowing the method to be
applied to larger tasks with richer graphical struc-
tures and larger label sets.

In all three experiments, error-correcting CRFs
have achieved consistently good generalisation per-
formance. The number of weak learners required
to achieve these results was shown to be relatively
small, even for tasks with large label sets. The time
and space requirements were lower than those of a
traditional CRF for the larger tasks and, most impor-
tantly, did not increase substantially when the num-
ber of labels was increased.

5 Related work

Most recent work on improving CRF performance
has focused on feature selection. McCallum (2003)
describes a technique for greedily adding those
feature conjuncts to a CRF which significantly
improve the model’s log-likelihood. His experi-
mental results show that feature induction yields a
large increase in performance, however our results
show that standardly formulated CRFs can perform
well above their reported 73.3%, casting doubt
on the magnitude of the possible improvement.
Roark et al. (2004) have also employed feature
selection to the huge task of language modelling
with a CRF, by partially training a voted perceptron
then removing all features that the are ignored
by the perceptron. The act of automatic feature
selection can be quite time consuming in itself,
while the performance and runtime gains are often
modest. Even with a reduced number of features,
tasks with a very large label space are likely to
remain intractable.



6 Conclusion

Standard training methods for CRFs suffer greatly
from their dependency on the number of labels,
making tasks with large label sets either difficult
or impossible. As CRFs are deployed more widely
to tasks with larger label sets this problem will
become more evident. The current ‘solutions’ to
these scaling problems — namely feature selection,
and the use of large clusters — don’t address the
heart of the problem: the dependence on the square
of number of labels.

Error-correcting CRF training allows CRFs to be
applied to larger problems and those with larger
label sets than were previously possible, without
requiring computationally demanding methods such
as feature selection. On standard tasks we have
shown that error-correcting CRFs provide compa-
rable or better performance than the standardly for-
mulated CRF, while requiring less time and space to
train. Only a small number of weak learners were
required to obtain good performance on the tasks
with large label sets, demonstrating that the method
provides efficient scalability to the CRF framework.

Error-correction codes could be applied to
other sequence labelling methods, such as the
voted perceptron (Roark et al., 2004). This may
yield an increase in performance and efficiency
of the method, as its runtime is also heavily
dependent on the number of labels. We plan to
apply error-correcting coding to dynamic CRFs,
which should result in better modelling of naturally
layered tasks, while increasing the efficiency and
scalability of the method. We also plan to develop
higher order CRFs, using error-correcting codes to
curb the increase in complexity.
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Abstract

Recent work on Conditional Random
Fields (CRFs) has demonstrated the need
for regularisation to counter the tendency
of these models to overfit. The standard
approach to regularising CRFs involves a
prior distribution over the model parame-
ters, typically requiring search over a hy-
perparameter space. In this paper we ad-
dress the overfitting problem from a dif-
ferent perspective, by factoring the CRF
distribution into a weighted product of in-
dividual “expert” CRF distributions. We
call this model a logarithmic opinion
pool (LOP) of CRFs (LOP-CRFs). We ap-
ply the LOP-CREF to two sequencing tasks.
Our results show that unregularised expert
CRFs with an unregularised CRF under
a LOP can outperform the unregularised
CREF, and attain a performance level close
to the regularised CRF. LOP-CRFs there-
fore provide a viable alternative to CRF
regularisation without the need for hyper-
parameter search.

1 Introduction

In recent years, conditional random fields (CRFs)
(Lafferty et al., 2001) have shown success on a num-
ber of natural language processing (NLP) tasks, in-
cluding shallow parsing (Sha and Pereira, 2003),
named entity recognition (McCallum and Li, 2003)
and information extraction from research papers
(Peng and McCallum, 2004). In general, this work
has demonstrated the susceptibility of CRFs to over-
fit the training data during parameter estimation. As
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a consequence, it is now standard to use some form
of overfitting reduction in CRF training.

Recently, there have been a number of sophisti-
cated approaches to reducing overfitting in CRFs,
including automatic feature induction (McCallum,
2003) and a full Bayesian approach to training and
inference (Qi et al., 2005). These advanced meth-
ods tend to be difficult to implement and are of-
ten computationally expensive. Consequently, due
to its ease of implementation, the current standard
approach to reducing overfitting in CRFs is the use
of a prior distribution over the model parameters,
typically a Gaussian. The disadvantage with this
method, however, is that it requires adjusting the
value of one or more of the distribution’s hyper-
parameters. This usually involves manual or auto-
matic tuning on a development set, and can be an ex-
pensive process as the CRF must be retrained many
times for different hyperparameter values.

In this paper we address the overfitting problem
in CRFs from a different perspective. We factor the
CREF distribution into a weighted product of indi-
vidual expert CRF distributions, each focusing on
a particular subset of the distribution. We call this
model a logarithmic opinion pool (LOP) of CRFs
(LOP-CREFs), and provide a procedure for learning
the weight of each expert in the product. The LOP-
CRF framework is “parameter-free” in the sense that
it does not involve the requirement to adjust hyper-
parameter values.

LOP-CREFs are theoretically advantageous in that
their Kullback-Leibler divergence with a given dis-
tribution can be explicitly represented as a function
of the KL-divergence with each of their expert dis-
tributions. This provides a well-founded framework
for designing new overfitting reduction schemes:
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look to factorise a CRF distribution as a set of di-
verse experts.

We apply LOP-CRFs to two sequencing tasks in
NLP: named entity recognition and part-of-speech
tagging. Our results show that combination of un-
regularised expert CRFs with an unregularised stan-
dard CRF under a LOP can outperform the unreg-
ularised standard CRF, and attain a performance
level that rivals that of the regularised standard CRF.
LOP-CREFs therefore provide a viable alternative to
CREF regularisation without the need for hyperpa-
rameter search.

2 Conditional Random Fields

A linear chain CRF defines the conditional probabil-
ity of a state or label sequence s given an observed

sequence o via':

1 T+1
p(slo) = mexp <Z Zlkfk(Sz—hSnO,t)) €]
t=1 k

where T is the length of both sequences, A; are pa-
rameters of the model and Z(o0) is the partition func-
tion that ensures (1) represents a probability distri-
bution. The functions f; are feature functions rep-
resenting the occurrence of different events in the
sequences s and o.

The parameters A; can be estimated by maximis-
ing the conditional log-likelihood of a set of labelled
training sequences. The log-likelihood is given by:

Z(A) = Y plos)logp(s|e; )

7 T41
[Z?L sot]

= L
- Z )logZ(o;1)

o
where p(o0,s) and p(o) are empirical distributions
defined by the training set. At the maximum like-
lihood solution the model satisfies a set of feature
constraints, whereby the expected count of each fea-
ture under the model is equal to its empirical count
on the training data:

'In this paper we assume there is a one-to-one mapping be-
tween states and labels, though this need not be the case.
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In general this cannot be solved for the A; in
closed form so numerical routines must be used.
Malouf (2002) and Sha and Pereira (2003) show
that gradient-based algorithms, particularly limited
memory variable metric (LMVM), require much
less time to reach convergence, for some NLP tasks,
than the iterative scaling methods (Della Pietra et
al., 1997) previously used for log-linear optimisa-
tion problems. In all our experiments we use the
LMVM method to train the CRFs.

For CRFs with general graphical structure, calcu-
lation of Ee)[fi] is intractable, but for the linear
chain case Lafferty et al. (2001) describe an efficient
dynamic programming procedure for inference, sim-
ilar in nature to the forward-backward algorithm in
hidden Markov models.

3 Logarithmic Opinion Pools

In this paper an expert model refers a probabilistic
model that focuses on modelling a specific subset of
some probability distribution. The concept of com-
bining the distributions of a set of expert models via
a weighted product has previously been used in a
range of different application areas, including eco-
nomics and management science (Bordley, 1982),
and NLP (Osborne and Baldridge, 2004).

In this paper we restrict ourselves to sequence
models. Given a set of sequence model experts, in-
dexed by a, with conditional distributions py(s|o)
and a set of non-negative normalised weights w, a
logarithmic opinion pool ? is defined as the distri-
bution:

2

PLop (S | 0

with wg > 0 and Y, we = 1, and where Z, op(0) is
the normalisation constant:

Zyop(0 ZH Pals 3)

2Hinton (1999) introduced a variant of the LOP idea called
Product of Experts, in which expert distributions are multiplied
under a uniform weight distribution.



The weight wy encodes our confidence in the opin-
ion of expert .

Suppose that there is a “true” conditional distri-
bution ¢(s | 0) which each py(s|o) is attempting to
model. Heskes (1998) shows that the KL divergence
between ¢(s | 0) and the LOP, can be decomposed
into two terms:

E—A “)
= ZWO‘K (¢, pa) — ZW(XK (PLop, Par)

K(qapLOP)

This tells us that the closeness of the LOP model
to g(s| o) is governed by a trade-off between two
terms: an E term, which represents the closeness
of the individual experts to g(s|o0), and an A term,
which represents the closeness of the individual
experts to the LOP, and therefore indirectly to each
other. Hence for the LOP to model g well, we desire
models py which are individually good models of ¢
(having low E) and are also diverse (having large A).

3.1 LOPs for CRFs

Because CRFs are log-linear models, we can see
from equation (2) that CRF experts are particularly
well suited to combination under a LOP. Indeed, the
resulting LOP is itself a CRF, the LOP-CRF, with
potential functions given by a log-linear combina-
tion of the potential functions of the experts, with
weights wg. As a consequence of this, the nor-
malisation constant for the LOP-CRF can be calcu-
lated efficiently via the usual forward-backward al-
gorithm for CRFs. Note that there is a distinction be-
tween normalisation constant for the LOP-CRF, Z, o»
as given in equation (3), and the partition function of
the LOP-CREF, Z. The two are related as follows:

Pov(s|o) = H[pa(s|0)]wa

where Uy = exp Y. Y A far (51-1,5¢,0,1) and so
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logZ(0) =1logZ or(0

)+ Zwa logZy(0)

This relationship will be useful below, when we de-
scribe how to train the weights w, of a LOP-CRFE.

In this paper we will use the term LOP-CRF
weights to refer to the weights w, in the weighted
product of the LOP-CRF distribution and the term
parameters to refer to the parameters Ay of each
expert CRF «.

3.2 Training LOP-CRFs

In our LOP-CREF training procedure we first train
the expert CRFs unregularised on the training data.
Then, treating the experts as static pre-trained mod-
els, we train the LOP-CRF weights w, to maximise
the log-likelihood of the training data. This training
process is “parameter-free” in that neither stage in-
volves the use of a prior distribution over expert CRF
parameters or LOP-CRF weights, and so avoids the
requirement to adjust hyperparameter values.

The likelihood of a data set under a LOP-CREF, as
a function of the LOP-CRF weights, is given by:

L(w) = pos)

HpLOP
= I ZLOP Zilow) L17e

o

p(ovs)

After taking logs and rearranging, the log-
likelihood can be expressed as:

Z(w) = OZS‘,ﬁ(mS)Za‘,walogpa(S\O)
— i‘,ﬁ(O)logZLop(o;W)

= iWaZﬁ(o,S)logpa(S\O)
+ ZWaZp

721,

For the first two terms, the quantities that are mul-
tiplied by wq inside the (outer) sums are indepen-
dent of the weights, and can be evaluated once at the

)1ogZy (o

o)logZ(o;w)



beginning of training. The third term involves the
partition function for the LOP-CRF and so is a func-
tion of the weights. It can be evaluated efficiently as
usual for a standard CRF.

Taking derivatives with respect to wg and rear-
ranging, we obtain:

0.ZL(w)
dwpg

= Zﬁ(o, s)logpg(s|o)

0,8

+ Zﬁ(o) logZg(0)

o

— Y 0)E, o(sl0) [ZlogUﬁr(‘%S)]

o

where Ug, (0,s) is the value of the potential function
for expert B on clique 7 under the labelling s for ob-
servation 0. In a way similar to the representation
of the expected feature count in a standard CREF, the
third term may be re-written as:

XY pror(sio1 =55 =5",0)logUp, (55", 0)

0 t S/,SH

Hence the derivative is tractable because we can use
dynamic programming to efficiently calculate the
pairwise marginal distribution for the LOP-CRF.

Using these expressions we can efficiently train
the LOP-CRF weights to maximise the log-
likelihood of the data set.> We make use of the
LMVM method mentioned earlier to do this. We
will refer to a LOP-CRF with weights trained using
this procedure as an unregularised LOP-CRF.

3.2.1 Regularisation

The “parameter-free” aspect of the training pro-
cedure we introduced in the previous section relies
on the fact that we do not use regularisation when
training the LOP-CRF weights w,. However, there
is a possibility that this may lead to overfitting of
the training data. In order to investigate this, we
develop a regularised version of the training proce-
dure and compare the results obtained with each. We

3We must ensure that the weights are non-negative and nor-
malised. We achieve this by parameterising the weights as func-
tions of a set of unconstrained variables via a softmax transfor-
mation. The values of the log-likelihood and its derivatives with
respect to the unconstrained variables can be derived from the
corresponding values for the weights wy.
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use a prior distribution over the LOP-CRF weights.
As the weights are non-negative and normalised we
use a Dirichlet distribution, whose density function
is given by:

9
p (W ZO{ O( H 0p—1
where the 6, are hyperparameters.

Under this distribution, ignoring terms that are
independent of the weights, the regularised log-
likelihood involves an additional term:

Z(Oa —1)logwg

o
We assume a single value 6 across all weights. The
derivative of the regularised log-likelihood with
respect to weight wg then involves an additional
term @(9 —1).
development set to optimise the value of 8. We will
refer to a LOP-CRF with weights trained using this
procedure as a regularised LOP-CRF.

In our experiments we use the

4 The Tasks

In this paper we apply LOP-CRFs to two sequence
labelling tasks in NLP: named entity recognition
(NER) and part-of-speech tagging (POS tagging).

4.1 Named Entity Recognition

NER involves the identification of the location and
type of pre-defined entities within a sentence and is
often used as a sub-process in information extrac-
tion systems. With NER the CRF is presented with
a set of sentences and must label each word so as to
indicate whether the word appears outside an entity
(O), at the beginning of an entity of type X (B-X) or
within the continuation of an entity of type X (I-X).
All our results for NER are reported on the
CoNLL-2003 shared task dataset (Tjong Kim Sang
and De Meulder, 2003). For this dataset the en-
tity types are: persons (PER), locations (LOC),
organisations (ORG) and miscellaneous (MISC).
The training set consists of 14,987 sentences and
204,567 tokens, the development set consists of
3,466 sentences and 51,578 tokens and the test set
consists of 3,684 sentences and 46,666 tokens.



4.2 Part-of-Speech Tagging

POS tagging involves labelling each word in a sen-
tence with its part-of-speech, for example noun,
verb, adjective, etc. For our experiments we use the
CoNLL-2000 shared task dataset (Tjong Kim Sang
and Buchholz, 2000). This has 48 different POS
tags. In order to make training time manageable*,
we collapse the number of POS tags from 48 to 5
following the procedure used in (McCallum et al.,
2003). In summary:

e All types of noun collapse to category N.

e All types of verb collapse to category V.

o All types of adjective collapse to category J.
e All types of adverb collapse to category R.
o All other POS tags collapse to category O.

The training set consists of 7,300 sentences and
173,542 tokens, the development set consists of
1,636 sentences and 38,185 tokens and the test set
consists of 2,012 sentences and 47,377 tokens.

4.3 Expert sets

For each task we compare the performance of the
LOP-CREF to that of the standard CRF by defining
a single, complex CRF, which we call a monolithic
CREF, and a range of expert sets.

The monolithic CRF for NER comprises a num-
ber of word and POS tag features in a window of
five words around the current word, along with a
set of orthographic features defined on the current
word. These are based on those found in (Curran and
Clark, 2003). Examples include whether the cur-
rent word is capitalised, is an initial, contains a digit,
contains punctuation, etc. The monolithic CRF for
NER has 450, 345 features.

The monolithic CRF for POS tagging comprises
word and POS features similar to those in the NER
monolithic model, but over a smaller number of or-
thographic features. The monolithic model for POS
tagging has 188,448 features.

Each of our expert sets consists of a number of
CREF experts. Usually these experts are designed to

4See (Cohn et al., 2005) for a scaling method allowing the
full POS tagging task with CRFs.
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focus on modelling a particular aspect or subset of
the distribution. As we saw earlier, the aim here is
to define experts that model parts of the distribution
well while retaining mutual diversity. The experts
from a particular expert set are combined under a
LOP-CRF and the weights are trained as described
previously.
We define our range of expert sets as follows:

e Simple consists of the monolithic CRF and a
single expert comprising a reduced subset of
the features in the monolithic CRF. This re-
duced CRF models the entire distribution rather
than focusing on a particular aspect or subset,
but is much less expressive than the monolithic
model. The reduced model comprises 24,818
features for NER and 47,420 features for POS

tagging.

e Positional consists of the monolithic CRF and
a partition of the features in the monolithic
CRF into three experts, each consisting only of
features that involve events either behind, at or
ahead of the current sequence position.

e Label consists of the monolithic CRF and a
partition of the features in the monolithic CRF
into five experts, one for each label. For NER
an expert corresponding to label X consists
only of features that involve labels B-X or I-
X at the current or previous positions, while for
POS tagging an expert corresponding to label
X consists only of features that involve label
X at the current or previous positions. These
experts therefore focus on trying to model the
distribution of a particular label.

e Random consists of the monolithic CRF and a
random partition of the features in the mono-
lithic CRF into four experts. This acts as a
baseline to ascertain the performance that can
be expected from an expert set that is not de-
fined via any linguistic intuition.

5 Experiments

To compare the performance of LOP-CRFs trained
using the procedure we described previously to that
of a standard CRF regularised with a Gaussian prior,
we do the following for both NER and POS tagging:



e Train a monolithic CRF with regularisation us-
ing a Gaussian prior. We use the development
set to optimise the value of the variance hyper-
parameter.

e Train every expert CRF in each expert set with-
out regularisation (each expert set includes the
monolithic CRF, which clearly need only be
trained once).

e For each expert set, create a LOP-CRF from
the expert CRFs and train the weights of the
LOP-CRF without regularisation. We compare
its performance to that of the unregularised and
regularised monolithic CRFs.

e To investigate whether training the LOP-CRF
weights contributes significantly to the LOP-
CRF’s performance, for each expert set we cre-
ate a LOP-CRF with uniform weights and com-
pare its performance to that of the LOP-CRF
with trained weights.

e To investigate whether unregularised training
of the LOP-CRF weights leads to overfitting,
for each expert set we train the weights of the
LOP-CRF with regularisation using a Dirich-
let prior. We optimise the hyperparameter in
the Dirichlet distribution on the development
set. We then compare the performance of the
LOP-CRF with regularised weights to that of
the LOP-CRF with unregularised weights.

6 Results

6.1 Experts

Before presenting results for the LOP-CRFs, we
briefly give performance figures for the monolithic
CRFs and expert CRFs in isolation. For illustration,
we do this for NER models only. Table 1 shows F
scores on the development set for the NER CRFs.
We see that, as expected, the expert CRFs in iso-
lation model the data relatively poorly compared to
the monolithic CRFs. Some of the label experts, for
example, attain relatively low F scores as they focus
only on modelling one particular label. Similar be-
haviour was observed for the POS tagging models.
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F score
88.33
89.84
79.62
86.96
73.11
73.08
41.96
22.03
29.13
40.49
60.44
70.34
67.76
67.97
70.17

Expert

Monolithic unreg.
Monolithic reg.
Reduced
Positional 1

Positional 2
Positional 3
Label LOC
Label MISC
Label ORG
Label PER
Label O
Random 1
Random 2
Random 3
Random 4

Table 1: Development set F scores for NER experts

6.2 LOP-CREFs with unregularised weights

In this section we present results for LOP-CRFs with
unregularised weights. Table 2 gives F scores for
NER LOP-CRFs while Table 3 gives accuracies for
the POS tagging LOP-CRFs. The monolithic CRF
scores are included for comparison. Both tables il-
lustrate the following points:

e In every case the LOP-CRFs outperform the
unregularised monolithic CRF

e In most cases the performance of LOP-CRFs
rivals that of the regularised monolithic CREF,
and in some cases exceeds it.

We use McNemar’s matched-pairs test (Gillick
and Cox, 1989) on point-wise labelling errors to ex-
amine the statistical significance of these results. We
test significance at the 5% level. At this threshold,
all the LOP-CREFs significantly outperform the cor-
responding unregularised monolithic CRF. In addi-
tion, those marked with * show a significant im-
provement over the regularised monolithic CRF.
Only the value marked with © in Table 3 significantly
under performs the regularised monolithic. All other
values a do not differ significantly from those of the
regularised monolithic CRF at the 5% level.

These results show that LOP-CRFs with unreg-
ularised weights can lead to performance improve-
ments that equal or exceed those achieved from a
conventional regularisation approach using a Gaus-
sian prior. The important difference, however, is that
the LOP-CRF approach is “parameter-free” in the



Test set
81.87
83.98
84.22*
84.71*
83.27
83.06

Expert set Development set
88.33
89.84
90.26
90.35
89.30

88.84

Monolithic unreg.
Monolithic reg.

Simple
Positional
Label
Random

Table 2: F scores for NER unregularised LOP-CRFs

Expert set Development set | Test set
Monolithic unreg. 97.92 97.65
Monolithic reg. 98.02 97.84
Simple 98.31* 98.12*
Positional 98.03 97.81
Label 97.99 97.71
Random 97.99 97.76

Table 3: Accuracies for POS tagging unregularised
LOP-CRFs

sense that each expert CRF in the LOP-CRF is un-
regularised and the LOP weight training is also un-
regularised. We are therefore not required to search
a hyperparameter space. As an illustration, to ob-
tain our best results for the POS tagging regularised
monolithic model, we re-trained using 15 different
values of the Gaussian prior variance. With the
LOP-CRF we trained each expert CRF and the LOP
weights only once.

As an illustration of a typical weight distribution
resulting from the training procedure, the positional
LOP-CREF for POS tagging attaches weight 0.45 to
the monolithic model and roughly equal weights to
the other three experts.

6.3 LOP-CRFs with uniform weights

By training LOP-CRF weights using the procedure
we introduce in this paper, we allow the weights to
take on non-uniform values. This corresponds to
letting the opinion of some experts take precedence
over others in the LOP-CRF’s decision making. An
alternative, simpler, approach would be to com-
bine the experts under a LOP with uniform weights,
thereby avoiding the weight training stage. We
would like to ascertain whether this approach will
significantly reduce the LOP-CRF’s performance.
As an illustration, Table 4 gives accuracies for LOP-
CRFs with uniform weights for POS tagging. A sim-
ilar pattern is observed for NER. Comparing these
values to those in Tables 2 and 3, we can see that in
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Expert set | Development set | Test set
Simple 98.30 98.12
Positional 97.97 97.79
Label 97.85 97.73
Random 97.82 97.74

Table 4: Accuracies for POS tagging uniform LOP-
CRFs

general LOP-CRFs with uniform weights, although
still performing significantly better than the unreg-
ularised monolithic CRF, generally under perform
LOP-CRFs with trained weights. This suggests that
the choice of weights can be important, and justifies
the weight training stage.

6.4 LOP-CRFs with regularised weights

To investigate whether unregularised training of the
LOP-CRF weights leads to overfitting, we train
the LOP-CRF with regularisation using a Dirich-
let prior. The results we obtain show that in most
cases a LOP-CRF with regularised weights achieves
an almost identical performance to that with unreg-
ularised weights, and suggests there is little to be
gained by weight regularisation. This is probably
due to the fact that in our LOP-CRFs the number
of experts, and therefore weights, is generally small
and so there is little capacity for overfitting. We con-
jecture that although other choices of expert set may
comprise many more experts than in our examples,
the numbers are likely to be relatively small in com-
parison to, for example, the number of parameters in
the individual experts. We therefore suggest that any
overfitting effect is likely to be limited.

6.5 Choice of Expert Sets

We can see from Tables 2 and 3 that the performance
of a LOP-CRF varies with the choice of expert set.
For example, in our tasks the simple and positional
expert sets perform better than those for the label
and random sets. For an explanation here, we re-
fer back to our discussion of equation (5). We con-
jecture that the simple and positional expert sets
achieve good performance in the LOP-CRF because
they consist of experts that are diverse while simulta-
neously being reasonable models of the data. The la-
bel expert set exhibits greater diversity between the
experts, because each expert focuses on modelling a
particular label only, but each expert is a relatively



poor model of the entire distribution and the corre-
sponding LOP-CRF performs worse. Similarly, the
random experts are in general better models of the
entire distribution but tend to be less diverse because
they do not focus on any one aspect or subset of it.
Intuitively, then, we want to devise experts that pro-
vide diverse but accurate views on the data.

The expert sets we present in this paper were
motivated by linguistic intuition, but clearly many
choices exist. It remains an important open question
as to how to automatically construct expert sets for
good performance on a given task, and we intend to
pursue this avenue in future research.

7 Conclusion and future work

In this paper we have introduced the logarithmic
opinion pool of CRFs as a way to address overfit-
ting in CRF models. Our results show that a LOP-
CRF can provide a competitive alternative to con-
ventional regularisation with a prior while avoiding
the requirement to search a hyperparameter space.

We have seen that, for a variety of types of expert,
combination of expert CRFs with an unregularised
standard CRF under a LOP with optimised weights
can outperform the unregularised standard CRF and
rival the performance of a regularised standard CRF.

We have shown how these advantages a LOP-
CREF provides have a firm theoretical foundation in
terms of the decomposition of the KL-divergence
between a LOP-CRF and a target distribution, and
how this provides a framework for designing new
overfitting reduction schemes in terms of construct-
ing diverse experts.

In this work we have considered training the
weights of a LOP-CRF using pre-trained, static ex-
perts. In future we intend to investigate cooperative
training of LOP-CRF weights and the parameters of
each expert in an expert set.
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Abstract WORDNET with the uMLS medical resource and found
only a very small degree of overlap. Also, lexical-

The limited coverage of lexical-semantic re- semantic resources suffer from:

sources is a significant problem feiLp sys-

tems which can be alleviated by automati- bias towards concepts and senses from particular topics.

cally classifying the unknown words. Su-

persense taggingssigns unknown nouns one
of 26 broad semantic categories used by lex-
icographers to organise their manual inser-

Some specialist topics are better covered ioRi-
NET than others, e.glog has finer-grained distinc-
tions thancat andworm although this does not re-
flect finer distinctions in reality;

tion into WORDNET. Ciaramita and Johnson
(2003) present a tagger which uses synonym
set glosses as annotated training examples. We
describe an unsupervised approach, based on
vector-space similarity, which does not require
annotated examples but significantly outper-
forms their tagger. We also demonstrate the use
of an extremely large shallow-parsed corpus for
calculating vector-space semantic similarity.

limited coverage of infrequent words and senses. Cia-
ramita and Johnson (2003) found that common
nouns missing from WRDNET 1.6 occurred every
8 sentencesin th@ LIP corpus. By WORDNET 2.0,
coverage has improved but the problem of keeping
up with language evolution remains difficult.

consistencywhen classifying similar words into cate-
gories. For instance, the $®DNET lexicographer
file for ionosphere (location) is different to exo-
sphere and stratosphere (object), two other layers

1 Introduction of the earth’s atmosphere.

Lexical-semantic resources have been applied successful
to a wide range of Natural Language Processimgp]  These problems demonstrate the need for automatic or
problems ranging from collocation extraction (PearceSemi-automatic methods for the creation and mainte-
2001) and class-based smoothing (Clark and Weir, 2002)ance of lexical-semantic resources. Broad semantic
to text classification (Baker and McCallum, 1998) anc:lassification is currently used by lexicographers to or-
question answering (Pasca and Harabagiu, 2001). In pganise the manual insertion of words intoOADNET,
ticular, WoRDNET (Fellbaum, 1998) has significantly in- and is an experimental precursor to automatically insert-
fluenced research mLP. ing words directly into the VMRDNET hierarchy. Cia-
Unfortunately, these resource are extremely timeg-amita and Johnson (2003) call trispersense tagging
consuming and labour-intensive to manually develop anahd describe a multi-class perceptron tagger, which uses
maintain, requiring considerable linguistic and domaiWORDNET's hierarchical structure to create many anno-
expertise. Lexicographers cannot possibly keep padated training instances from the synset glosses.
with language evolution: sense distinctions are contin- This paper describes an unsupervised approach to su-
ually made and merged, words are coined or beconpersense tagging that does not require annotated sen-
obsolete, and technical terms migrate into the vernactences. Instead, we use vector-space similarity to re-
lar. Technical domains, such as medicine, require septiieve a number of synonyms for each unknown common
rate treatment since common words often take on speciabun. The supersenses of these synonyms are then com-
meanings, and a significant proportion of their vocabubined to determine the supersense. This approach sig-
lary does not overlap with everyday vocabulary. Burnificantly outperforms the multi-class perceptron on the
gun and Bodenreider (2001) compared an alignment sme dataset based oro®bONET 1.6 and 1.7.1.
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LEX-FILE

| DESCRIPTION

ing directly underneath.

act acts or actions Other alternative sets of supersenses can be created by
animal animals . an arbitrary cut through the WRDNET hierarchy near
artifact man-made objects ; the top, or by using topics from a thesaurus such as
attribute attributes of people and objects ' R EES

body body parts Roget’s (Yarowsky, 1992). These topic distinctions are
cognition cognitive processes and contents coarser-grained than WRDNET senses, which have been
communication | communicative processes and contents criticised for being too difficult to distinguish even for
?evsi“rfg ][‘ea;ﬁrqzlse;ﬁgtgmoﬂons experts. Ciaramita and Johnson (2003) believe that the
food foods and drinks key sense distinctions are still mamtgmgd b_y supersenses.
group groupings of people or objects They suggest that supersense tagging is similar to named
location spatial position entity recognition, which also has a very small set of cat-
motive goals . egories with similar granularity (e.tpcation andperson)
object naturlal objects (not man-made) for labelling predominantly unseen terms.

Eﬁ(resnoonmenon ﬁ:?uprael phenomena Supersense _tagging can provide automat_ed or semi-
plant plants automated assistance to lexicographers adding words to
possession possession and transfer of possession the WORDNET hierarchy. Once this task is solved suc-
process natural processes cessfully, it may be possible to insert words directly
?;g{;g;y ?:lg{;gtr'lzsbae;‘vse%“r:t;:gJ‘;?hsiﬁrges ideas INto the fine-grained distinctions of the hierarchy itself.
shape two and three dimensional shapes Clearly, thl§ is thg ultimate goal, to be' able to insert
state stable states of affairs new terms into lexical resources, extending the structure
substance substances where necessary. Supersense tagging is also interesting
time time and temporal relations for many applications that use shallow semantics, e.g. in-

Table 1: 25 noun lexicographer files in®DNET

2 Supersenses

formation extraction and question answering.

3 Previous Work

A considerable amount of research addresses structurally
and statistically manipulating the hierarchy ofO&D-

There are 26 broad semantic classes employed by leXeT and the construction of new wordnets using the con-
icographers in the initial phase of inserting words intaept structure from English. Féexical FreeNetBeefer-
the WORDNET hierarchy, calledexicographer fileglex-

man (1998) adds over 350000 collocation pairgger

files). For the noun hierarchy, there are 25 lex-files and pairs) extracted from a 160 million word corpus of broad-
file containing the top level nodes in the hierarchy called¢ast news using mutual information. The co-occurrence
Tops. Other syntactic classes are also organised usingindow was 500 words which was designed to approxi-
lex-files: 15 for verbs, 3 for adjectives and 1 for adverbsmate average document length.
Lex-files form a set of coarse-grained sense distinc- Caraballo and Charniak (1999) have explored deter-
tions within WORDNET. For examplecompany appears mining noun specificity from raw text. They find that
in the following lex-files in WoRDNET 2.0: group, which  simple frequency counts are the most effective way of
coverscompany in the social, commercial and troupe determining the parent-child ordering, achieving 83% ac-
fine-grained senses; anthte, which covers companion- curacy over types ofehicle, food and occupation. The
ship. The names and descriptions of the noun lex-filesther measure they found to be successful was the en-
are shown in Table 1. Some lex-files map directly tdropy of the conditional distribution of surrounding words
the top level nodes in the hierarchy, calletique begin- given the noun. Specificity ordering is a necessary step
ners while others are grouped together as hyponyms dér building a noun hierarchy. However, this approach
a unique beginner (Fellbaum, 1998, page 30). For exanstearly cannot build a hierarchy alone. For instarae,
ple, abstraction subsumes the lex-filestribute, quantity, tity is less frequent than many concepts it subsumes. This
relation, communication andtime. suggests it will only be possible to add words to an ex-
Ciaramita and Johnson (2003) call the noun lex-filésting abstract structure rather than create categories right
classessupersensesThere are 11 unique beginners inup to the unique beginners.
the WORDNET noun hierarchy which could also be used Hearst and Sditze (1993) flatten WWRDNET into 726
as supersenses. Ciaramita (2002) has produced a mioategories using an algorithm which attempts to min-
WORDNET by manually reducing the WRDNET hier- imise the variance in category size. These categories are
archy to 106 broad categories. Ciaramita et al. (2003)sed to label paragraphs with topics, effectively repeat-
describe how the lex-files can be used as root nodes inirgg Yarowsky’s (1992) experiments using the their cat-
two level hierarchy with the WURDNET synsets appear- egories rather than Roget’s thesaurus. ifofis (1992)
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WordSpace system was used to add topical links, such WORDNET 1.6 WoORDNET1.7.1
. SUPERSENSE NOUN SUPERSENSE
as betweemall, racquet andgame (thetennis problem

Further, they also use the same vector-space techni uStock Index  communication | week time
! y . p AUERst food food buyout act
to label previously unseen words using the most commorpgyijer group insurer group
class assigned to the top 20 synonyms for that word.  subcompact artifact partner person
Widdows (2003) uses a similar technique to insertadvancer — person health state

words into the WORDNET hierarchy. He first extracts ¢ash flow — possession Income ~ possession
. . downside cognition contender person

synonyms for the unknown word using vector-space Sim-yiscounter  artifact cartel group

ilarity measures based on Latent Semantic Analysis angade-off act lender person

then searches for a location in the hierarchy nearest taillionaire person planner artifact

these synonyms. This same technigue as is used in our

approach to supersense tagging. Table 2: Example nouns and their supersenses

Ciaramita and Johnson (2003) implement a super-
sense tagger based on the multi-class perceptron classi-
fier (Crammer and Singer, 2001), which uses the standalargestNLP processed corpus described in published re-
collocation, spelling and syntactic features common isearch. The corpus consists of Betish National Cor-
wsb and named entity recognition systems. Their insighpus (BNC), the Reuters Corpus Volume (Rcvi), and
was to use the WRDNET glosses as annotated trainingmost of the Linguistic Data Consortium’s news text col-
data and massively increase the number of training inected since 1987:Continuous Speech Recognition IlI
stances using the noun hierarchy. They developed an effcsr-111); North American News Text Corp{iSANTC);
cient algorithm for estimating the model over hierarchicathe NANTC Supplemen{NANTS); and the ACQUAINT

training data. Corpus The components and their sizes including punc-
tuation are given in Table 3. Thebc has recently re-
4 Evaluation leased th&nglish Gigaworccorpus which includes most

] ) of the corpora listed above.
Ciaramita and Johnson (2003) propose a very natural

evaluation for supersense tagging: inserting the extra CORPUS | DOCS__ SENTS _WORDS

common nouns that have been added to a new version BNG 7104 W 112

of WORDNET. They use the common nouns that have rRCv1l 806 791 8.1 207M

been added to WRDNET 1.7.1 since VWRDNET 1.6 and CSRII 491349 9.8 226M

compare this evaluation with a standard cross-validation NANTC 34312 ig; ggg gg%
NANTS .

approach that uses a small percentage of the words from ACOQUAINT | 1033461 218 291M

their WORDNET 1.6 training set for evaluation. Their
results suggest that the ®®DNET 1.7.1 test set is sig-
nificantly harder because of the large number of abstract
category nouns, e.gommunication and cognition, that
appear in the 1.7.1 data, which are difficult to classify. ~ We have tokenized the text using the Grok-OpenNLP
Our evaluation will use exactly the same test sets dgkenizer (Morton, 2002) and split the sentences using
Ciaramita and Johnson (2003). Theo®bNET 1.7.1test MXTerminator (Reynar and Ratnaparkhi, 1997). Any
set consists of 744 previously unseen nouns, the majorifgntences less than 3 words or more than 100 words long
of which (over 90%) have only one sense. Thokp- Were rejected, along with sentences containing more than
NET 1.6 test set consists of several cross-validation segsnumbers or more than 4 brackets, to reduce noise. The
of 755 nouns randomly selected from theLip train-  fest of the pipeline is described in the next section.
ing set used by Ciaramita and Johnson (2003). They
have kindly supplied us with the WRDNET 1.7.1testset 6 Semantic Similarity

and one cross-validation run of the&®DNET 1.6 test

set. Our development experiments are performed on tYgCtor-space models of similarity are based ondistri-
WORDNET 1.6 test set with one final run on theaip-  Putional hypothesi¢hat similar words appear in similar

NET 1.7.1 test set. Some examples from the test sets df@Ntexts. This hypothesis suggests that semantic simi-
given in Table 2 with their supersenses. larity can be measured by comparing the contexts each

word appears in. In vector-space models dashdword
5 Corpus is represented by a vector of frequency counts record-
ing the contexts that it appears in. The key parameters
We have developed a 2 billion word corpus, shalloware the context extraction method and the similarity mea-
parsed with a statisticalLp pipeline, which is by far the sure used to compare context vectors. Our approach to

Table 3: 2 billion word corpus statistics
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vector-space similarity is based on thex3ANT system RELATION [ DESCRIPTION

described in Grefenstette (1994). adj noun-adjectival modifier relation
Curran and Moens (2002b) compared several context ~ d0Pi verb—direct object relation
traction methods and found that the shallow pipeline lobj verb-indirect object relation

ex . ) - - PIp nn noun-noun modifier relation

and grammatical relation extraction used iBXSANT nnprep noun—prepositional head relation

was both extremely fast and produced high-quality re- subj verb—subject relation

sults. FEXTANT extracts relation tuplesw, r, w’) for

each noun, where is the headword; is the relation type Table 4: Grammatical relations fronESTANT

andw’ is the other word. The efficiency of theeSTANT

approach makes the extraction of contextual information i }
from over 2 billion words of raw text feasible. We de-29ainst thecELEX lexical database (Minnen et al., 2001)

scribe the shallow pipeline in detail below. — and is very efficient, analysing over 80000 words per
Curran and Moens (2002a) compared several diffesecond.morpha often maintains sense distinctions be-
ent similarity measures and found that Grefenstette@€€n singular and plural nouns; for instancgecta-

weighted ACCARD measure performed the best: cles is not reduced tepectacle, but fails to do so in
other casesglasses is converted tglass. This inconsis-
ST min(wgt(wy, *, % ), Wgh(wa, %4y %40 ) tency is problematic when using morphological analysis

S max(wgt(wy, %,y %u ), Wgt(Wa, %1, %7) ) @) 0 smooth vector-space models. However, morphological
smoothing still produces better results in practice.
wherewgt(w, r, w’) is the weight function for relation ) _ )
(w,r,w'). Curran and Moens (2002a) introduced th®-3 Grammatical Relation Extraction
TTESTweight function, which is used in collocation ex- After the raw text has beenostagged and chunked,
traction. Here, the t-test compares the joint and produthe grammatical relation extraction algorithm is run over
probability distributions of the headword and context: the chunks. This consists of five passes over each sen-
tence that first identify noun and verb phrase heads and
p(w,r,w') = plx, r, w)p(w, *, *) (2) thencollectgrammatical relations between each common
\/p(*,r, w)p(w, *, *) noun and its modifiers and verbs. A global list of gram-
o matical relations generated by each pass is maintained
wherex indicates a global sum over that element of the,cross the passes. The global list is used to determine if a
relation tuple. ACCARD and TTEST produced better \yqrq is already attached. Once all five passes have been
quality synonyms than existing measures in the literatur@ompleted this association list contains all of the noun-

so we use Curran and Moen'’s configuration for our supefqgifier/verb pairs which have been extracted from the

sense tagging experiments. sentence. The types of grammatical relation extracted by
SEXTANT are shown in Table 4. For relations between

) ) ) nouns (n andnnprep), we also create inverse relations
Our implementation of BXTANT uses a maximum en- (w',7',w) representing the fact that’ can modifyw.

tropy POs tagger designed to be very efficient, taggingrne 5 passes are described below.
at around 100 000 words per second (Curran and Clarggss 1: Noun Pre-modifiers
2003), trained on the entire Penn Treebank (Marcus et

6.1 Part of Speech Tagging and Chunking

1994). The only similar performing tool is thigrams al”;'? gﬁjsniﬁzilpz, )Iefﬁet_?nggi?izrCr?:rté?gaggﬁcri\g
‘n’ Tagstagger (Brants, 2000) which uses a much simpIeQ:a ) . n P 9 P
tions (GRs) with every noun to the pre-modifier’s right,

statistical model. Our implementation uses a maximumu to & prenosition or the phrase end. This corresponds to
entropy chunker which has similar feature types to Koel- P prep P ' b

ing (2000) and is also trained on chunks extracted frofg>ouming right-branching noun cpmpounds. Within each
P only thenp andpPheads remain unattached.

the entire Penn Treebank using the CoNLL 2000 scripg i o

Since the Penn Treebank separatesand conjunctions ass 2: Noun Post-modifiers

from NPs, they are concatenated to match Grefenstetteld1iS pass scansps, right to left, creating post-modifier
table-based results, i.e. the STANT always prefers noun GRS between the unattached headsves andpps. If

attachment. a preposition is encountered between the noun heads, a
prepositional nounnpprep) GR is created, otherwise an
6.2 Morphological Analysis appositional nounnp) GR is created. This corresponds

Our implementation usesorpha , the Sussex morpho- {0 assuming right-branchingp attachment. ~ After this
logical analyser (Minnen et al., 2001), which is imple-Phrase only theip head remains unattached.

mented usindex grammars for both affix splitting and Tense Determination

generation.morpha has wide coverage — nearly 100%The rightmost verb in eachr is considered the head. A
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VP is initially categorised aactive. If the head verb is a SUFFIX EXAMPLE SUPERSENSE

form of be then thevP becomesattributive. Otherwise, _ness remoteness  attribute

the algorithm scans ther from right to left: if an auxil- -tion, -ment annulment  act

iary verb form ofbe is encountered ther becomegpas- -ist, -man statesman  person

sive; if a progressive verb (excepting) is encountered -ing, -ion bowling act

the vpP becomesctive. -ity viscosity attribute
Only the noun heads on either side wbs remain -ics, -ism electronics  cognition

unattached. The remaining three passes attach these toene, -ane, -ine arsine substance

the verb heads as either subjects or objects depending on-er, -or, -ic, -ee, -an | mariner person

the voice of thevp. -gy entomology  cognition

Pass 3: Verb Pre-Attachment

This pass scans sentences, right to left, associating the
first NP head to the left of thep with its head. If thevp

is active, a subject fubj) relation is created; otherwise, fall-back method is a simple hand-coded classifier which

a direct object dobj) relation is created. For example, examines the unknown noun and makes a guess based on
antigen is the subject ofepresent. simple morphological analysis of the suffix. These rules
Pass 4: Verb Post-Attachment were created by inspecting the suffixes of rare nouns in

This pass scans sentences, left to right, associating tH6ORDNET 1.6. The supersense guessing rules are given
first NP or PP head to the right of the'p with its head. I Table 5. If none of the rules match, then the default

If the vP was classed asctive and the phrase is anp ~ SUPersensartifact is assigned.

then a direct objectdpbj) relation is created. If thep  1he problem now becomes how to convert the ranked
was classed agassive and the phrase is anp then a list .of extracted synonyms for each unknown noun into
subject §ubj) relation is created. If the following phrase & Single supersense selection. Each extracted synonym
is a PP then an indirect objectidbj) relation is created. VOt€S for its one or more supersenses that appear in
The interaction between the head verb and the prepodl/ORDNET 1.6. There are many parameters to consider:
tion determine whether the noun is an indirect object of ¢ how many extracted synonyms to use;

a ditransitive verb or alternatively the head afrthat is e how to weight each synonym’s vote;

modifying the verb. However, BXTANT always attaches o whether unreliable synonyms should be filtered out;
the PPto the previous phrase. e how to deal with polysemous synonyms.

Pass 5: Verb Progressive Patrticiples ) , ,
The experiments described below consider a range of op-

The final step of the process is to attach progressive Verﬁfﬁns for these parameters. In fact, these experiments are
to subjects and objects (without concern for whether the '

readv attached) P . b functi Yo quick to run we have been able to exhaustively test
are already attache ) rogressive verpbs can function ﬁ}%ny combinations of these parameters. We have exper-
nouns, verbs and adjectives and once againieenap-

. ; imented with up to 200 voting extracted synonyms.
proximation to th? correct attachment is made. ANy Pro- ere are several ways to weight each synonym'’s con-
gressive verb which appears after a determiner or qu ibution. The simplest approach would be to give each
tifier is considered a noun. Otherwise, it is a verb an nonym the same weight. Another approach is to use
passes 3 and 4 are repeated to attach subjects and obj 8" scores returned by the similarity system. Alterna-
Finally, SEXTANT collapses then, nnprep andadj re- el the weights can use the ranking of the extracted
lations together into a single broad noun-modifier grarTEynonyms. Again these options have been considered
matical relation. Grefenstette (1994) claims this extractQfaiow. A related question is whether to use all of the

has a grammatical relation accuracy of 75% after mantsytracted synonyms, or perhaps filter out synonyms for

ally checking 60 sentences. which a small amount of contextual information has been
7 Approach extracted, and so might be unreliable.

The final issue is how to deal with polysemy. Does ev-
Our approach uses voting across the known supersensgg supersense of each extracted synonym get the whole
of automatically extracted synonyms, to select a supeweight of that synonym or is it distributed evenly between
sense for the unknown nouns. This technique is simthe supersenses like Resnik (1995)? Another alternative
lar to Hearst and Schize (1993) and Widdows (2003). is to only consider unambiguous synonyms with a single
However, sometimes the unknown noun does not appesupersense in WRDNET.
in our 2 billion word corpus, or at least does not appear A disadvantage of this similarity approach is that it re-
frequently enough to provide sufficient contextual infor-quires full synonym extraction, which compares the un-
mation to extract reliable synonyms. In these cases, oknown word against a large number of words when, in

Table 5: Hand-coded rules for supersense guessing
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SYSTEM [ WN16 wN1.7.1 WORDNET 1.6 WORDNET 1.7.1

Ciaramita and Johnson baseline]  21% 28% SUPERSENSE| N P R F N P R F
Ciaramita and Johnson perceptron 53% 53% Tops 2 0 0 0 1 50 100 67
Similarity based results 68% 63% act 84 60 74 66 8 53 73 61
animal 16 69 56 62 5 33 60 43

. . . artifact 134 61 86 72129 57 76 65

Table 6: Summary of supersense tagging accuracies  guribute 32 52 81 63 16 44 69 54
body 8 83 88 83 5 50 40 44

o cognition 31 56 45 5Q 41 70 34 46
fact, we want to calculate the similarity to a small numbercommunication| 66 80 56 66 57 58 44 50

of supersenses. This inefficiency could be reduced sig-  event 14 83 36 50 10 80 40 53
nificantly if we consider only very high frequency words, feeling 8 0 8 7§ 1 0 0 0
but even this is still expensive. J?gfp 33 % gg ;3 %é gg 61 677
location 43 81 30 44 13 40 15 22

8 Results motive 0 0 0 O 1 0 0 O
object 17 73 47 574 13 75 23 35

We have used the WRDNET 1.6 test set to experi- person 155 76 89 82207 81 86 84
ment with different parameter settings and have kept thephenomenon 3 100 100 100 9 O O O
WORDNET 1.7.1 test set as a final comparison of best posglggéion 1; 1(8)8 ;g ;2 12 7% 4% 5%
results with Ciaramita and Joh_nsqn (2003). The experi- process 2> 0 0 o 9 50 11 18
ments were performed by considering all possible config-  quantity 12 8 33 47 5 0 0 O
urations of the parameters described above. relation 2 100 50 67 0 0O 0 O
The following voting options were considered for each szlg{)ee 21 4% 4% 4% Zg 5% 3% 4(2
supersense of each extracted synonym: the initial vot- substance 54 58 58 58 44 63 73 67

ing weight for a supersense could either be a constant = ;o 5 100 60 75 10 36 40 38
(IDENTITY) or the similarity scoregcorp of the syn- Overall 756 68 68 68744 63 63 63
onym. The initial weight could then be divided by the
number of supersenses to share out the wegfwRED).
The weight could also be divided by the ramafk) to
penalise supersenses further down the list. The best per-
formance on the 1.6 test set was achieved wittstheRE  WORDNET 1.6 test set with several other parameter com-
voting, without sharing or ranking penalties. binations described above performing nearly as well. On
The extracted synonyms are filtered before contributhe previously unused WRDNET 1.7.1 test set, our accu-
ing to the vote with their supersense(s). This filtering inracy is 63% using the best system on theMBNET 1.6
volves checking that the synonym’s frequency and nuntest set. By optimising the parameters on the 1.7.1 test
ber of contexts are large enough to ensure it is reliablget we can increase that to 64%, indicating that we have
We have experimented with a wide range of cutoffs andot excessively over-tuned on the 1.6 test set. Our results
the best performance on the 1.6 test set was achieved gignificantly outperform Ciaramita and Johnson (2003)
ing a minimum cutoff of 5 for the synonym’s frequency on both test sets even though our system is unsupervised.
and the number of contexts it appears in. The large difference between our 1.6 and 1.7.1 test set
The next question is how many synonyms are considkccuracy demonstrates that the 1.7.1 set is much harder.
ered. We considered using just the nearest unambiguousTable 7 shows the breakdown in performance for each
synonym, and the top 5, 10, 20, 50, 100 and 200 syrsupersense. The columns show the number of instances
onyms. All of the top performing configurations used 5f each supersense with the precision, recall and f-score
synonyms. We have also experimented with filtering outneasures as percentages. The most frequent supersenses
highly polysemous nouns by eliminating words with two.in both test sets wergerson, attribute andact. Of the
three or more synonyms. However, such a filter turneffequent categoriegerson is the easiest supersense to
out to make little difference. get correct in both the 1.6 and 1.7.1 test sets, followed
Finally, we need to decide when to use the similarityoy food, artifact and substance. This is not surprising
measure and when to fall-back to the guessing rules. Thisnce these concrete words tend to have very fewer other
is determined by looking at the frequency and number cfenses, well constrained contexts and a relatively high
attributes for the unknown word. Not surprisingly, thefrequency. These factors are conducive for extracting re-
similarity system works better than the guessing rules ifable synonyms.
it has any information at all. These results also support Ciaramita and Johnson’'s
The results are summarised in Table 6. The accurasyew that abstract concepts likemmunication, cognition
of the best-performing configurations was 68% on thandstate are much harder. We would expect theation

Table 7: Breakdown of results by supersense
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supersense to perform well since it is quite concrete, bmore recent versions of WRDNET to compare their dif-
unfortunately our synonym extraction system does ndiculty, and also perform experiments over a range of cor-
incorporate proper nouns, so many of these words wepis sizes to determine the impact of corpus size on the
classified using the hand-built classifier. Also, in the datguality of results.

from Ciaramita and Johnson all of the words are in lower We would like to move onto the more difficult task

case, so no sensible guessing rules could help. of insertion into the hierarchy itself and compare against
the initial work by Widdows (2003) using latent seman-
9 Other Alternatives and Future Work tic analysis. Here the issue of how to combine vec-

tors is even more interesting since there is the additional
An alternative approach worth exploring is to create constructure of the VARDNET inheritance hierarchy and the
text vectors for the supersense categories themselves amdall synonym sets that can be used for more fine-grained
compare these against the words. This has the advantagembination of vectors.
of producing a much smaller number of vectors to com-
pare against. In the current system, we must comparel® Conclusion

word agam_st the entire vocabqlz_ary (over 500000 h_ea(bur application of semantic similarity to supersense tag-
wort_js), which is much less efficient than a compansoaing follows earlier work by Hearst and Sitze (1993)
against only _26 supersense context vectors. and Widdows (2003). To classify a previously unseen
The question now becomes how to construct vectorssmmon noun our approach extracts synonyms which
of supersenses. The most obvious solution is to sum the using their supersenses iMWONET 1.6. We have
context vectors across the words which have each SUsperimented with several parameters finding that the
persense. However, our early experiments suggest thilst configuration uses 50 extracted synonyms, filtered
this produces extremely large vectors which do not matgly, frequency and number of contexts to increase their re-
well against the much smaller vectors of each unse§pjlity. Each synonym votes for each of its supersenses

word. Also, the same questions arise in the construgz,m worpNET 1.6 using the similarity score from our
tion of these vectors. How are words with multiple SUsynonym extractor.

persenses handlgd? Our preliminary exper_iments suggeshsing this approach we have significantly outper-
that only combining the vectors for unambiguous wordgy meq the supervised multi-class perceptron Ciaramita
produces the best results. and Johnson (2003). This paper also demonstrates the
One solution would be to take the intersection betweefjge of a very efficient shallowLP pipeline to process

vectors across words for each supersense (i.e. to find themassive corpus. Such a corpus is needed to acquire
common contexts that these words appear in). Howevagliable contextual information for the often very rare
given the sparseness of the data this may not leave vefguns we are attempting to supersense tag. This appli-
large context vectors. A final solution would be to contation of semantic similarity demonstrates that an unsu-
sider a large set of theanonical attributegCurran and  pervised methods can outperform supervised methods for

Moens, 2002a) to represent each supersense. CanonigghenLp tasks if enough data is available.
attributes summarise the key contexts for each headword
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Abstract they suffer from a serious drawback: the difficulty

_ _ _ of acquiring considerable amounts of training data,
Word Sense Disambiguation suffers from 5155 known agnowledge acquisition bottleneck
a long-standing problem of knowledge ac- ¢ typical setting, supervised learning needs train-
quisition bgttleneck. Although state of the ing data created for each and every polysemous
art supervised systems report good accu-  \yord: Ng (1997) estimates an effort of 16 person-
racies for selected words, they have not  years for acquiring training data for 3,200 significant
been shown to be promising in terms of 5145 in English. Mihalcea and Chklovski (2003)
scalability. Inthis paper, we presentanap-  hrovide a similar estimate of an 80 person-year ef-
proach for learning coarser and more gen-  ¢qrt for creating manually labelled training data for
eral set of concepts from a sense tagged  apout 20,000 words in a common English dictionary.
corpus, '”_C?r_der to alleviate the knowl- Two basic approaches have been tried as solu-
edge acquisition bottleneck. We show that tions to the lack of training data, namely unsu-
thege gengral concepts can be t_ransf_ormed pervised systems and semi-supervised bootstrapping
to fln_e .gramed word SEnses using simple techniques. Unsupervised systems mostly work
heuristics, and applying the technique for .\ oiedge-based techniques, exploiting sense
recent $NSEVAF data sets shows that our knowledge encoded in machine-readable dictionary
approach can yield state of the art perfor- entries, taxonomical hierarchies such asON®-

mance. NET (Fellbaum, 1998), and so on. Most of the
_ bootstrapping techniques start from a few