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Abstract 

This paper proposes a tag-based statistical framework to solve math word problems 

with understanding and reasoning. It analyzes the body and question texts into their 

associated tag-based logic forms, and then performs inference on them. Comparing 

to those rule-based approaches, the proposed statistical approach alleviates rules 

coverage and ambiguity resolution problems, and our tag-based approach also 

provides the flexibility of handling various kinds of related questions with the same 

body logic form. On the other hand, comparing to those purely statistical 

approaches, the proposed approach is more robust to the irrelevant information and 

could more accurately provide the answer. The major contributions of our work are: 

(1) proposing a tag-based logic representation such that the system is less sensitive 

to the irrelevant information and could provide answer more precisely; (2) 

proposing a unified statistical framework for performing reasoning from the given 

text. 

Keywords: Math Word Problem Solver, Machine Reading, Natural Language 
Understanding. 

1. Introduction 

Since Big Data mainly aims to explore the correlation between surface features but not their 

underlying causality relationship, the Big Mechanism1 program was initiated by DARPA 
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(from July 2014) to find out “why” behind the “Big Data”. However, the pre-requisite for it is 

that the machine can read each document and learn its associated knowledge, which is the task 

of Machine Reading (MR) (Strassel et al., 2010). Therefore, the Natural Language and 

Knowledge Processing Group, under the Institute of Information Science of Academia Sinica, 

formally launched a 3-year MR project (from January 2015) to attack this problem. 

As a domain-independent MR system is complicated and difficult to build, the math 

word problem (MWP) (Mukherjee & Garain, 2008) is chosen as the first task to study MR for 

the following reasons: (1) Since the answer for the MWP cannot be extracted by simply 

performing keyword matching (as Q&A usually does), MWP thus can act as a test-bed for 

understanding the text and then drawing the answer via inference. (2) MWP usually possesses 

less complicated syntax and requires less amount of domain knowledge. It can let the 

researcher focus on the task of understanding and reasoning, not on how to build a 

wide-coverage grammar and acquire domain knowledge. (3) The body part of MWP (which 

mentions the given information for solving the problem) usually consists of only a few 

sentences. Therefore, the understanding and reasoning procedure could be checked more 

efficiently. (4) The MWP solver could have its own standalone applications, such as computer 

tutor, etc. It is not just a toy test case. 

According to the framework of making the decision while there are several candidates, 

previous MWP algebra solvers can be classified into: (1) Rule-based approaches with logic 

inference (Bobrow, 1964; Slagle, 1965; Charniak, 1968, 1969; Dellarosa, 1986; Bakman, 

2007), which apply rules to get the answer (via identifying entities, quantities, operations, etc.) 

with a logic inference engine. (2) Rule-based approaches without logic inference (Gelb, 1971; 

Ballard & Biermann, 1979; Biermann & Ballard, 1980; Biermann et al., 1982; Fletcher, 1985; 

Hosseini et al., 2014), which apply rules to get the answer without a logic inference engine. (3) 

Purely statistics-based approaches (Kushman et al., 2014; Roy et al., 2015), which use 

statistical models to identify entities, quantities, operations, and get the answer without 

conducting language analysis or inference. 

The main problem of the rule-based approaches mentioned above is that the coverage 

rate problem is serious, as rules with wide coverage are difficult and expensive to construct. 

Also, it is awkward in resolving ambiguity problems. Besides, since they adopt Go/No-Go 

approach (unlike statistical approaches which can adopt a large Top-N to have high including 

rates), the error accumulation problem would be severe. On the other hand, the main problem 

of those approaches not adopting logic inference is that they usually need to implement a new 

handling procedure for each new type of problems (as the general logic inference mechanism 

is not adopted). Also, as there is no inference engine to generate the reasoning chain, 

additional effort would be required for generating the explanation. In contrast, the main 

problem of those purely statistical approaches is that they are sensitive to irrelevant 
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information (Hosseini et al., 2014) (as the problem is solved without first understanding the 

text). Also, the performance deteriorates significantly when they encounter complicated 

problems due to the same reason. 

To avoid the problems mentioned above, a tag-based statistical framework which is able 

to perform understanding and reasoning is proposed in this paper. For each body statement 

(which specifies the given information), the text will be first analyzed into its corresponding 

semantic tree (with its anaphora/ellipses resolved and semantic roles labeled), and then 

converted into its associated logic form (via a few mapping rules). The obtained logic form is 

then mapped into its corresponding domain dependent generic concepts (also expressed in 

logic form). The same process also goes for the question text (which specifies the desired 

answer). Finally, the inference (based on the question logic form) is performed on the logic 

statements derived from the body text. Please note that a statistical model will be applied each 

time when we have choices. 

Furthermore, to reply any kind of questions associated with the given information, we 

keep all related semantic roles (such as agent, patient, etc.) and associated specifiers (which 

restrict the given quantity, and is freely exchangeable with the term tag) in the logic form 

(such as verb(q1,進貨), agent(q1,文具店), head(n1p,筆), color(n1p,紅), etc.), which are 

regarded as various tags (or conditions) for selecting the appropriate information related to the 

given question. Therefore, the proposed approach can be regarded as a tag-based statistical 

approach with logic inference. Since extra-linguistic knowledge would be required for 

bridging the gap between the linguistic semantic form and the desired logic form, we will 

extract the desired background knowledge (ontology) from E-HowNet (Chen et al., 2005) for 

verb-entailment. 

In comparison with those rule-based approaches, the proposed approach alleviates the 

ambiguity resolution problem (i.e., selecting the appropriate semantic tree, 

anaphora/co-reference, domain-dependent concepts, inference rules) via a statistical 

framework. Furthermore, our tag-based approach provides the flexibility of handling various 

kinds of possible questions with the same body logic form. On the other hand, in comparison 

with those purely statistical approaches, the proposed approach is more robust to the irrelevant 

information (Hosseini et al., 2014) and could provide the answer more precisely (as the 

semantic analysis and the tag-based logic inference are adopted). In addition, with the given 

reasoning chain, the explanation could be more easily generated. Last, since logic inference is 

a general problem solving mechanism, the proposed approach can solve various types of 

problems that the inference engine could handle (i.e., not only arithmetic or algebra as most 

approaches aim to). 

The contributions of our work are: (1) Proposing a semantic composition form for 

abstracting the text meaning to perform semantic reasoning; (2) Proposing verb entailment via 
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E-HowNet for bridging the lexical gap (Moldovan & Rus, 2001); (3) Proposing a tag-based 

logic representation to adopt one body logic form for handling various possible questions; (4) 

Proposing a set of domain dependent (for math algebra) generic concepts for solving MWP; (5) 

Proposing a statistical solution type classifier to indicate the way for solving MWP; (6) 

Proposing a semantic matching method for performing unification; (7) Proposing a statistical 

framework for performing reasoning from the given text. 

2. Design Principles 

Since we will have various design options in implementing a math word problem solver, we 

need some guidelines to judge which option is better when there is a choice. Some principles 

are thus proposed as follows for this purpose: 

(1) Solutions should be given via understanding and inference (versus the template matching 

approach proposed in (Kushman et al., 2014), as the math word problem is just the first 

case for our text understanding project and we should be able to explain how the answer 

is obtained. 

(2) The expressiveness of the adopted body logical form should be powerful enough for 

handling various kinds of possible questions related to the body, which implies that logic 

form transformation should be information lossless. In other words, all the information 

carried by the semantic representation should be kept in the corresponding logical form. It 

also implies that the associated body logical form should be independent on the given 

question (as we don’t know which question will be asked later). 

(3) The dynamically constructed knowledge should not favor any specific kind of 

problem/question. This principle suggests that the Inference Engine (IE) should regard 

logic statements as a flat list, instead of adopting a pre-specified hierarchical structure 

(e.g., the container adopted in (Hosseini et al., 2014), which is tailored to some kinds of 

problems/questions). Any desired information will be located from the list via the same 

mechanism according to the specified conditions. 

(4) The Logic Form Converter (LFC) should be compositional (Moldovan & Rus, 2001) after 

giving co-reference and solution type2, which implies that each sub-tree (or nonterminal 

node) should be independently transformed regardless of other nodes not under it, and the 

logic form of a given nonterminal node is formed by concatenating the corresponding 

logic forms of its associated child-nodes. 

(5) The IE should only deal with domain dependent generic concepts (instead of complicated 

                                                       
2 Solution Type specifies the desired mathematic utility/operation that LFC should adopt (see Section 

3.3 for details). 
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problem dependent concepts); otherwise, it would be too tedious. Take the problem “100

顆糖裝成 5 盒糖, 1 盒糖裝幾顆糖? (If 100 candies are packed into 5 boxes, how many 

candies are there in a box?)” as an example. Instead of using a problem-dependent First 

Order Logic (FOL) predicate like “裝成(100,顆,糖,5,盒,糖)”, the problem-independent 

FOL functions/predicates like “quan(q1, 顆 , 糖 ) = 100”, “quan(q2, 盒 , 糖 ) = 5”, 

“qmap(m1,q1,q2)”, and “verb(m1,裝成)” are adopted to represent the facts provided by 

problem description3. 

(6) The LFC should know the global skeleton of the whole given text (which is implicitly 

implied by the associated semantic segments linked via the given co-reference 

information) to achieve a reasonable balance between it and the IE. 

(7) The IE should separate the knowledge from the reasoning procedures to ease porting, 

which denotes that those domain dependent concepts and inference rules should be kept 

in a declarative form (and could be imported from some separated files); and the 

inference rules should not be a part of the IE’s source code. 

3. System Framework 

 
Figure 1.The block diagram of the proposed Math Word Problem Solver. 

The block diagram of the proposed MWP solver is shown in Figure 1. First, every sentence in 

the MWP, including both body text and the question text, is analyzed by the Language 

Analysis module, which transforms each sentence into its corresponding Semantic 

Representation (SR) tree. The sequence of SR trees is then sent to the Problem Resolution 

module, which adopts logic inference approach to obtain the answer for each question. Finally, 

                                                       
3 “quan(…)” is an FOL function to describe quantity facts. “quan(q1,顆,糖)=100” and “quan(q2,盒,

糖)=5” describe two quantity facts about “100 顆糖” and “5 盒糖”, respectively. “qmap(m1,q1,q2)” is 

an FOL predicate to describe that there is a relation (denoted by “m1”) between two quantity facts “q1” 

and “q2”. “verb(m1,裝成)” indicates that the verb “裝成” is associated with the quantity relation 

“m1”. 
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the Explanation Generation module will explain how the answer is obtained (in natural 

language text) according to the given reasoning chain. 

As the figure depicted, the Problem Resolution module in our system consists of three 

components: Solution Type Classifier (STC), LFC and IE. The STC suggests a scenario to 

solve the problem for every question in an MWP. In order to perform logic inference, the LFC 

first extracts the related facts from the given SR tree and then represents them as FOL 

predicates/functions (Russell & Norvig, 2009). It also transforms each question into an 

FOL-like utility function according to the assigned solution type. Finally, according to 

inference rules, the IE derives new facts from the old ones provided by the LFC. Besides, it is 

also responsible for providing utilities to perform math operations on related facts. 

The entities (like noun phrases) or events (like verb phrases) described in the given 

sentence may be associated with modifiers, which usually restrict the scope (or specify the 

property) of the entities/events that they are associated. Since the system does not know which 

kind of questions will be asked when it reads the body sentences, modifiers should be also 

included in logic expressions (act as specifiers) and involved in binding. Therefore, the 

reification technique (Jurafsky & Martin, 2000) is employed to map the nonterminals in the 

given semantic tree, including verb phrases and noun phrases, into quantified objects which 

can be related to other objects via specified relations. For example, the logic form of the noun 

phrase “紅筆(red pens)” would be “color(n1,紅)&head(n1,筆)”, where “n1” is an identified 

object referring to the noun phrase. Usually, the specifiers in the Body Logic Form (BLF) are 

optional in Question Logic Form (QLF), as the body might contain irrelevant text. On the 

contrary, the specifiers in the QLF are NOT optional (at least in principle) in BLF (i.e., the 

same (or corresponding) specifier must exist in BLF). This restriction is important as we want 

to make sure that each argument (which will act as a filtering-condition) in the QLF will be 

exactly matched to keep irrelevant facts away during the inference procedure. 

Take the MWP “文具店進貨 2361 枝紅筆和 1587 枝藍筆(A stationer bought 2361 red 

pens and 1587 blue pens), 文具店共進貨幾枝筆(How many pens did the stationer buy)?” as 

an example. The STC will assign the operation type “Sum” to it. The LFC will extract the 

following facts from the first sentence: 

 

quan(q1,枝,n1p)=2361&verb(q1,進貨)&agent(q1,文具店)&head(n1p,筆)&color(n1p,紅) 

quan(q2,枝,n2p)=1587&verb(q2,進貨)&agent(q2,文具店)&head(n2p,筆)&color(n2p,藍) 
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The quantity-fact “2361 枝紅筆(2361 red pens)” is represented by “quan(q1,枝,n1p)=2361”, 

where the argument “n1p”
4 denotes “紅筆(red pens)” due to the facts “head(n1p,筆)” and 

“color(n1p, 紅 )”. Also, those specifiers “verb(q1, 進 貨 )&agent(q1, 文 具 店 )&head(n1p,

筆)&color(n1p,紅)” are regarded as various tags which will act as different conditions for 

selecting the appropriate information related to the question specified later. Likewise, the 

quantity-fact “1587 枝藍筆(1587 blue pens)” is represented by “quan(q2,枝,n2p)=1587”. The 

LFC also issues the utility call “ASK Sum(quan(?q,枝,筆),verb(?q,進貨)&agent(?q,文具店))” 

(based on the assigned solution type) for the question. Finally, the IE will select out two 

quantity-facts “quan(q1, 枝 ,n1p)=2361” and “quan(q2, 枝 ,n2p)=1587”, and then perform 

“Sum” operation on them to obtain “3948”. 

If the question in the above example is “文具店共進貨幾枝紅筆(How many red pens 

did the stationer buy)?”, the LFC will generate the following facts and utility call for this new 

question: 

 

head(n3p,筆)&color(n3p,紅) 

ASK Sum(quan(?q,枝,n3p),verb(?q,進貨)&agent(?q,文具店)) 

 

As the result, the IE will only select the quantity-fact “quan(q1,枝,n1p)=2361”, because the 

specifier in QLF (i.e., “color(n3p,紅)”) cannot match the associated specifier “藍(blue)” (i.e., 

“color(n2p,藍)”) of “quan(q2,枝,n2p)=1587”. After performing “Sum” operation on it, we thus 

obtain the answer “2361”. Each module will be described in detail as follows (We will skip 

Explanation Generation due to space limitation. Please refer to (Huang et al., 2015) for the 

details). 

3.1 Language Analysis (Jurafsky & Martin, 2000) 

Since the Chinese sentence is a string of characters with no delimiters to mark word 

boundaries, the first step for analyzing the MWP text is to segment each given sentence string 

into its corresponding word sequence. Our Chinese word segmentation system (Chen & Ma, 

2002; Ma & Chen, 2003) adopts a modularized approach. Independent modules were designed 

to solve the problems of segmentation ambiguities and identifying unknown words. 

Segmentation ambiguities are resolved by a hybrid method of using heuristic and statistical 

rules. Regular-type unknown words are identified by associated regular expressions, and 

                                                       
4 The subscript “p” in “n1p” indicates that “n1p” is a pseudo nonterminal derived from the nonterminal 

“n1”, which has four terminals “2361”, “枝”, “紅” and “筆”. More details about pseudo nonterminal 

will be given at Section 3.3. 
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irregular types of unknown words are detected first by their occurrence and then extracted by 

morphological rules with statistical and morphological constraints. Part-of-Speech tagging is 

also included in the segmentation system for both known and unknown words by using HMM 

models and morphological rules. Please refer to (Tseng & Chen, 2002; Tsai & Chen, 2004) for 

the details. 

In order to design a high precision and broad coverage Chinese parser, we had 

constructed a Chinese grammar via generalizing and specializing the grammar extracted from 

Sinica Treebank (Hsieh et al., 2013; Hsieh et al., 2014) to achieve this goal. The designed 

F-PCFG (Feature-embedded Probabilistic Context-free Grammar) parser was based on the 

probabilities of the grammar rules. It evaluates the plausibility of each syntactic structure to 

resolve parsing ambiguities. We refine the probability estimation of a syntactic tree (for 

tree-structure disambiguation) by incorporating word-to-word association strengths. The 

word-to-word association strengths were self-learned from parsing the CKIP corpus (Hsieh et 

al., 2007). A semantic-role assignment capability is also incorporated into the system. 

3.1.1 Semantic Composition 

Once the syntactic structure (with semantic roles) for a sentence is obtained, its semantic 

representation can be further derived through a process of semantic composition (from lexical 

senses) and achieved near-canonical representations. To represent lexical senses, we had 

implemented a universal concept-representation mechanism, called E-HowNet (Chen et al., 

2005; Huang et al., 2014). It is a frame-based entity-relation model where word senses are 

expressed by both primitives (or well-defined senses) and their semantic relations. We utilize 

E-HowNet to disambiguate word senses by referencing its ontology and the related synsets of 

the target words. 

To solve math word problems, it is crucial to know who or what entity is being talked 

about in the descriptions of problems. This task is called reference resolution, and it can be 

classified into two types – anaphora resolution and co-reference resolution. Anaphora 

resolution is the task of finding the antecedent for a single pronoun while co-reference is the 

task of finding referring expressions (within the problem description) that refer to the same 

entity. We attack these two types of resolution mainly based on assessing whether a target 

pronoun/entity coincides its referent candidate in E-HowNet definition. For example, the 

definition of “她 (she)” is “{3rdPerson|他人 :gender={female|女}}”. Therefore, it would 

restrict that the valid referent candidates must be a female human, and result in a much fewer 

number of candidates for further consideration.  

In the following example, the semantic composition, anaphora resolution and 

co-reference resolution are shown in the table. 
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小豪 有 62 張 貼紙 ， 哥哥 再 給 他 56 張 ， 小豪 現在 共 有 幾張 貼紙 ？ 

(Xiaohao had 64 stickers, and his brother gave him 56 more. How many stickers does Xiahao 

have now?) 

小豪有 62 張貼紙， 哥哥再給他 56 張， 小豪現在共有幾張貼紙？ 

{有(2): 

    theme={[x1]小豪(1)}, 

    range={貼紙(4): 

      quantifier={６２張(3)} 

    } 

} 
 

 

 

 

小豪(1): {human|人:name={"小豪"}} 

有(2): {own|有} 

６２張(3): quantifier={張.null|無
義:quantity={62}} 

貼紙(4): {paper|紙張: qualification 
={sticky|黏}} 

{給(3): 

    agent={哥哥(1)}, 

    time={再(2)}, 

    goal={[x1]他(4)}, 

    theme={貼紙(5.1): 

      quantifier={５６張(5)} 

    } 

} 

 
哥哥(1): {哥哥|ElderBrother} 

再(2): frequency={again|再} 

給(3): {give|給} 

他(4): {3rdPerson|他人} 

５６張(5): quantifier={張.null|無
義:quantity={56}} 

貼紙(5.1): {paper|紙
張:qualification={sticky|黏}} 

{有(4): 

    theme={[x1]小豪(1)}, 

    time={現在(2)}, 

    quantity={共(3)}, 

    range={貼紙(6): 

      quantifier={幾張(5)} 

    } 

} 

 
小豪(1): {human|人:name={"小豪

"}} 

現在(2): {present|現在} 

共(3): {all|全} 

有(4): {own|有} 

幾張(5): quantifier={張.null|無義:
幾.quantity={Ques|疑問}} 

貼紙(6): {paper|紙
張:qualification={sticky|黏}} 

We use numbers following words to represent words’positions in a sentence. For 

instance, “有(2)” is the second word in the first sentence. The semantic representation uses a 

near-canonical representation form, where semantic role labels, such as “agent”, “theme” and 

“range”, are marked on each word, and each word is identified with its sense, such as “有(2): 

{own|有}”. 

The co-referents of all sentences in a math problem are marked with the same “x[#]”. For 

example, we mark the proper noun “小豪(1)” with “[x1]” to co-refer with the pronoun “他(4)” 

and the second occurrence of the proper noun “小豪(1)”. In the second sentence of the 

example, the head of the quantifier “５６張” is omitted in the text but it is recovered in the 

semantic representation and annotated with a decimal point in its word position. The missing 

head is recovered as “貼紙(5.1)”, which is an extra word with its constructed position based 

on decimal point. 
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3.2 Solution Type Identification 

However, even we know what the given math word problem means, we still might not know 

how to solve it if we have not been taught for solving the same type of problems in a math 

class before (i.e., without enough math training/background). Therefore, we need to collect 

various types of math operations (e.g., addition, subtraction, multiplication, division, sum, 

etc.), aggregative operations (e.g., Comparison, Set-Operation, etc.) and specific problem 

types (e.g., Algebra, G.C.D., L.C.M., etc.) that have been taught in the math class. And the 

LFC needs to know which math operation, aggregative operation or specific problem type 

should be adopted to solve the given problem. Therefore, we need to map the given semantic 

representation to a specific problem type. However, this mapping is frequently decided based 

on the global information across various input sentences (even across body text and question 

text). Without giving the corresponding mathematic utility/operation, the logic form 

transformation would be very complicated. A Solution Type Classifier (STC) is thus proposed 

to decide the desired utility/operation that LFC should adopt (i.e., to perform the mapping). 

Currently, 16 different solution types are specified (in Table 1; most of them are 

self-explained with their names) to cover a wide variety of questions found in our elementary 

math word corpus. They are listed according to their frequencies found in 75 manually labeled 

questions. The STC is similar to the Question Type Classifier commonly adopted at Q&A 

(Loni, 2011). For mathematic operation type, it will judge which top-level math operation is 

expected (based on the equation used to get the final answer). For example, if the associated 

equation is “Answer = q1 – (q2 × q3)”, then “Subtraction” will be the assigned math operation 

type, which matches human reasoning closely. 

Table 1. Various solution types for solving elementary school math word problems 
with frequency in the training set (75 questions in total). 

Multiply (24%) Utility (6%) Surplus (4%) L.C.M (2%) 

Sum (14%) Algebra (5%) Difference (4%) G.C.D (2%) 

Subtraction (12%) Comparison (5%) Ceil-Division (3%) Addition (1%) 

Floor-Division (7%) Ratio (5%) Common-Division (3%) Set-Operation (1%) 

Take the following math word problem as an example, “一艘輪船 20 分鐘可以行駛 25

公里(A boat sails 25 kilometers in 20 minutes)， 2.5 小時可以行駛多少公里(How far can it 

sail in 2.5 hours)？”. Its associated equation is “Answer = 150 × (25÷20)”. Therefore, the 

top-level operation is “Multiplication”, and it will be the assigned solution type for this 

example. However, for the problem “某數乘以 11(Multiply a number with 11)， 再除以 4 的

答案是 22(then divide it by 4. The answer is 22)， 某數是多少(What is the number)？”, its 
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associated equation is “Answer×11÷4 = 22”; since there is no specific natural top-level 

operation, the “Algebra” solution type will be assigned5. 

The STC will check the SR trees from both the body and the question to make the 

decision. Therefore, it provides a kind of global decision, and the LFC will perform logic 

transformation based on it (i.e., the statistical model of the LFC is formulated to condition on 

the solution type). Currently, a SVM classifier with linear kernel functions (Chang & Lin, 

2011) is used, and it adopted four different kinds of feature-sets: (1) all word unigrams in the 

text, (2) head word of each nonterminal (inspired by the analogous feature adopted in (Huang 

et al., 2008) for question classification), (3) E-HowNet semantic features, and (4) 

pattern-matching indicators (currently, patterns/rules are manually created). 

3.3 Logic Form Transformation 

A two-stage approach is adopted to transform the SR tree of an input sentence to its 

corresponding logic forms. In the first stage, the syntactic/semantic relations between the 

words are deterministically transformed into their domain-independent logic forms. 

Afterwards, crucial generic math facts and the possible math operations are 

non-deterministically generated (as domain-dependent logic forms) in the second stage. 

Basically, logic forms are expressed with the first-order logic (FOL) formalism (Russell & 

Norvig, 2009) 

In the first stage, FOL predicates are generated by traversing the input SR tree which 

mainly depicts the syntactic/semantic relations between its words (with associated 

word-senses). For example, the SR tree of the sentence “100 顆糖裝成 5 盒(If 100 candies are 

packed into 5 boxes)” is shown as follows: 

 

{裝成(t1);  theme={糖(t2); quantity=100(t3); unit=顆(t4)};  

              result={糖(t5); quantity=5(t6); unit=盒(t7)} } 

 

Where “theme” and “result” are semantic roles, and information within brace are their 

associated attributes. Also, the symbols within parentheses are the identities of the terminals in 

the SR tree. Note that the terminal t5 is created via zero anaphora resolution in the language 

analysis phase. The above SR tree is transformed into the following FOL predicates separated 

by the logic AND operator &. 

                                                       
5 However, the “Algebra” solution type in this case is useless to LFC because the body text has already 

mentioned how to solve it, and the LFC actually does not need STC to tell it how to solve the 

problem. 
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verb(v1,t1)&theme(v1,n1)&result(v1,n2)& 

head(n1,t2)&quantity(n1,t3)&unit(n1,t4)& 

head(n2,t5)&quantity(n2,t6)&unit(n2,t7) 

 

All the first arguments of the above FOL predicates (i.e., v1, n1 and n2) are the identities to 

the nonterminals in the SR tree. To ease reading, the terminal identities in logic forms are 

replaced with their corresponding terminal strings in the rest of this paper. After replacement, 

the above logic forms become more readable as follows: 

 

verb(v1,裝成)&theme(v1,n1)&result(v1,n2)&head(n1,糖)&quantity(n1,100)& 

unit(n1,顆)&head(n2,糖)&quantity(n2,5)&unit(n2,盒) 

 

The above FOL predicates are also called logic-form-1 (LF1) facts. The predicate names of 

LF1 facts are just the domain-independent syntactic/semantic roles of the constituents in a 

sub-tree. Therefore, the LF1 facts are also domain-independent. 

The domain-dependent logic-form-2 (LF2) facts are generated in the second stage. The 

LF2 facts are derived from some crucial generic math facts associated with quantities and 

relations between quantities. The FOL function “quan(quan_id, unit_id, object_id) = number” 

is used to describe the facts about quantities. The first argument is a unique identity to 

represent this quantity-fact. The other arguments and the function value describe the meaning 

of this fact. For example, “qaun(q1,顆,糖) = 100” means “100 顆糖(100 candies)” and 

“qaun(q2, 盒 , 糖 ) = 5” means “5 盒 糖 (five boxes of candies)”. The FOL predicate 

“qmap(map_id, quan_id1, quan_id2)” (denotes the mapping from quan_id1 to quan_id2) is 

used to describe a relation between two quantity-facts, where the first argument is a unique 

identity to represent this relation. For example, “qmap(m1, q1, q2)” indicates that there is a 

relation between “100 顆糖” and “5 盒糖”. Now, LF2 facts are transformed by rules with a 

predefined set of lexico-semantic patterns as conditions. When more cases are exploited, a 

nondeterministic approach would be required. 

In additional to domain-dependent facts like “quan(…)” and “qmap(…)”, some auxiliary  

domain-independent facts associated with quan_id and map_id are also created in this stage to 

help the IE find the solution. The auxiliary facts of the quan_id are created by 4 steps: First, 

locate the nonterminal (said nq) which quan_id is coming from. Second, traverse upward from 

nq to find the nearest nonterminal (said nv) which directly connects to a verb terminal. Third, 

duplicate all LF1 facts whose first arguments are nv, except the one whose second argument is 

nq. Finally, replace the first arguments of the duplicated facts with quan_id. In the above 
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example, for the quantity-fact q1, nq is n1 and nv is v1 in the first and second steps. “verb(v1, 

裝成)” and “result(v1, n2)” will be copied at the third step. Finally, “verb(q1, 裝成)” and 

“result(q1, n2)” are created. Likewise, “verb(q2, 裝成)” and “theme(q2, n1)” are created for 

q2. The auxiliary facts of “qmap(map_id, quan_id1, quan_id2)” are created by copying all 

facts of the forms “verb(quan_id1, *)” and “verb(quan_id2, *)” (where “*” is a wildcard), and 

then replace all the first arguments of the copied facts with map_id. So, “verb(m1, 裝成)” is 

created for m1. 

Sometimes, the third argument of a quantity-fact (i.e., object_id) is a pseudo nonterminal 

identity created in the second stage. For example, the LF1 facts of the phrase “2361 枝紅筆

(2361 red pens)” are “quantity(n1, 2361)”, “unit(n1, 枝)”, “color(n1, 紅)” and “head(n1, 

筆)”, where n1 is the nonterminal identity of the phrase. A pseudo nonterminal identity, said 

n1p, is created to carry the terminals “紅(red)” and “筆(pen)” so that the quantity-fact “2361

枝紅筆(2361 red pens)” can be expressed as “quan(q1, 枝, n1p) = 2361”. The subscript “p” in 

n1p indicates that n1p is a pseudo nonterminal derived from the n1. To express that fact that 

n1p carries the terminals “紅(red)” and “筆(pen)”, two auxiliary facts “color(n1p, 紅)” and 

“head(n1p, 筆)” are also generated. 

The questions in an MWP are transformed into FOL-like utility functions provided by 

the IE. One utility function is issued for each question to find the answer. For example, the 

question “文具店共進貨幾枝筆(How many pens did the stationer buy)” is converted into 

“ASK Sum(quan(?q,枝,筆), verb(?q,進貨)&agent(?q,文具店))”. This conversion is completed 

by two steps. First, select an IE utility (e.g., “Sum(…)”) to be called. Since the solution type 

of the question is “Sum”, the IE utility “Sum(function, condition) = value” is selected. Second, 

instantiate the arguments of the selected IE utility. In this case, the first argument function is 

set to “quan(?q, 枝, 筆)” because an unknown quantity fact is detected in the phrase “幾枝筆

(how many pens)”. Let the FOL variable “?q” play the role of quan_id in the steps of finding 

the auxiliary facts. The auxiliary facts “verb(?q, 進貨 )” and “agent(?q, 文具店 )” are 

obtained to compose the second argument condition. 

To sum up, the LFC transforms the semantic representation obtained by language 

analysis into domain dependent FOL expressions on which inference can be performed. In 

contrast, most researches of semantic parsing (Jurcicek et al., 2009; Das et al., 2014; Berant et 

al., 2013; Allen, 2014) seek to directly map the input text into the corresponding logic form. 

Therefore, across sentences deep analysis of the input text (e.g., anaphora and co-reference 

resolution) cannot be handled. The proposed two-stage approach (i.e., language analysis and 

then logic form transformation) thus provides the freedom to enhance the system capability for 

handling complicated problems which require deep semantic analysis. 
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3.4 Logic Inference 

3.4.1 Basic Operation 

In our design, an IE is used to find the solution for an MWP. It is responsible for providing 

utilities to select desired facts and then obtaining the answer by taking math operations on 

those selected facts. In addition, it is also responsible for using inference rules to derive new 

facts from the facts directly provided from the description of the MWP. Facts and inference 

rules are represented in first-order logic (FOL) (Russell & Norvig, 2009). 

In some simple cases, the desired answer can be calculated from the facts directly 

derived from the MWP. For those cases, the IE only needs to provide a utility function to 

calculate the answer. In the example of Figure 2, quantities 300, 600, 186 and 234 are 

mentioned in the MWP. The LFC transforms the question into “ASK Sum(quan(?q,朵,百合), 

verb(?q,賣出)&agent(?q,花店)” to ask the IE to find the answer, where “Sum(…)” is a utility 

function provided by the IE. The first argument of “Sum(…)” is an FOL function to indicate 

which facts should be selected. In this case, the unification procedure of the IE will 

successfully unify the first argument “quan(?q, 朵, 百合)” with three facts “quan(q2, 朵, 百

合)”, “quan(q3, 朵, 百合)” and “quan(q4, 朵, 百合)”. When unifying “quan(?q, 朵, 百合)” 

with “quan(q2, 朵, 百合)”, the FOL variable “?q” will be bound/substituted with q2. The 

second argument of “Sum(…)” (i.e., “verb(?q,賣出)&agent(?q,花店)”) is the condition to be 

satisfied. Since “quan(q2, 朵, 百合)” is rejected by the given condition, “Sum(…)” will sum 

the values of the remaining facts (i.e., q3 and q4) to obtain the desired answer “420”. 

花店進貨 300 朵玫瑰和 600 朵百合(A flower store bought 300 roses and 600 lilies ), 

上午賣出 186 朵百合(It sold 186 lilies in the morning)，下午賣出 234 朵(It sold 234 lilies in 

the afternoon)，問花店共賣出幾朵百合(How many lilies did the flower store sell)? 

quan(q1,朵,玫瑰)=300&verb(q1,進貨)&agent(q1,花店)&… 

quan(q2,朵,百合)=600&verb(q2,進貨)&agent(q2,花店)&… 

quan(q3,朵,百合)=186&verb(q3,賣出)&agent(q3,花店)&… 

quan(q4,朵,百合)=234&verb(q4,賣出)&agent(q4,花店)&… 

ASK Sum(quan(?q,朵,百合), verb(?q,賣出)&agent(?q,花店)) 

Figure 2. A simple problem and its essential corresponding logic forms. 

Table 2 lists the utilities provided by the IE. The first one, as we have just described, returns 

the sum of the values of FOL function instances which can be unified with the function 

argument and satisfy the condition argument. The Addition utility simply returns the value of 

“value1+value2”, where valuei is either a constant number, or an FOL function value, or a 

value returned by a utility. Likewise, Subtraction and Multiplication utilities return 
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“value1−value2” and “value1×value2” respectively. Difference returns the absolute value of 

Subtraction. CommonDiv returns the value of “value1÷value2”. FloorDiv returns the largest 

integer value not greater than “value1÷value2” and CeilDiv returns the smallest integer value 

not less than “value1÷value2”. Surplus returns the remainder after division of value1 by value2. 

Table 2. The utilities provided by the IE. 

Sum(function, condition)=value 

Addition(value1, value2)=value 

Subtraction(value1, value2)=value 

Difference(value1, value2)=value 

Multiplication(value1, value2)=value 

CommonDiv(value1, value2)=value 

FloorDiv(value1, value2)=value 

CeilDiv(value1, value2)=value 

Surplus(value1, value2)=value 

Solving MWPs may require deriving new facts according to common sense or domain 

knowledge. In Figure 3, the MWP provides the facts that “爸爸(Papa)” bought something but 

it does not provide any facts associated to the money that “爸爸(Papa)” must pay. As a result, 

we are not able to obtain the answer from the question logic form “Sum(quan(?q,元,#), 

verb(?q,付)&agent(?q,爸爸))”. However, it is common sense that people must pay some 

money to buy something. The following inference rule implements this common-sense 

implication. 

 

quan(?q,?u,?o)&verb(?q,買)&agent(?q,?a)&price(?o,?p) 

→quan($q,元,#)=quan(?q,?u,?o)×?p&verb($q,付)&agent($q,?a) 

 

In the above implication inference rule, “quan(?q,?u,?o)&…&price(?o,?p)” is the premise of 

the rule and “quan($q,元,#)=…&agent($q,?a)” is the consequence of the rule. Please note that 

“$q” indicates a unique ID generated by the IE. 

爸爸買了 3 本 329 元的故事書和 2 枝 465 元的鋼筆(Papa bought three $329 books and two 

$465 pens)，爸爸共要付幾元(How much money did Papa pay)? 

quan(q1,本,n1p)=3&verb(q1,買)&agent(q1,爸爸)&head(n1p,故事書)&price(n1p,329) 

quan(q2,枝,n2p)=2&verb(q2,買)&agent(q2,爸爸)&head(n2p,鋼筆)&price(n2p,465) 

ASK Sum(quan(?q,元,#),verb(?q,付)&agent(?q,爸爸)) 

Figure 3. An example for deriving new facts. 
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After unifying this inference rule with the facts in Figure 3, we can get two possible bindings 

(for q1 and q2, respectively). The following shows the binding of q1. 

 

quan(q1,本,n1)&verb(q1,買)&agent(q1,爸爸)&price(n1,329) 

→quan(q3,元,#)=quan(q1,本,n1)×329&verb(q3,付)&agent(q3,爸爸) 

 

Since “quan(q1,本,n1)×329 = 3×329 = 987”, the consequence of the above inference will 

generate three new facts “quan(q3, 元, #) = 987”, “verb(q3, 付)” and “agent(q3, 爸爸)”. The 

semantics of the consequence is “爸爸付 987 元(Papa pays 987 dollars)”. Likewise, the 

consequence of another binding of this inference rule will also generate three new facts 

“quan(q4, 元, #) = 930”, “verb(q4, 付)” and “agent(q4, 爸爸)”. By taking these new facts 

into account, the utility call “Sum(quan(?q,元,#), verb(?q,付)&agent(?q,爸爸))” can thus 

return the correct answer “1917”. 

Furthermore, the unification process in a conventional IE is based on string-matching. 

The expression “qaun(?q, 枝, 筆)” can be unified with a fact “quan(q1, 枝, 筆)”. However, 

it cannot be unified with the fact “quan(q2, 朵, 花)”. String-matching guarantees that the IE 

will not operate on undesired quantities. But, it sometimes prevents the IE from operating on 

desired quantities. For instance, in Figure 4, two quantity-facts “quan(q1,枝,n1p) = 2361” and 

“quan(q2,枝,n2p) = 1587” are converted from “2361 枝紅筆(2361 red pens)” and “1587 枝藍

筆(1587 blue pens)”, respectively. The first argument of “Sum(…)” is “quan(?q, 枝, 筆)” 

because “幾枝筆(how many pens)” is concerned in the question. The conventional unification 

is not able to unify “quan(?q, 枝, 筆)” to either “quan(q1, 枝, n1p)” or “quan(q2, 枝, n2p)” 

due to different strings of the third arguments. However, from the semantic point of view, 

“quan(?q, 枝, 筆)” should be unified with both “quan(q1, 枝, n1p)” and “quan(q2, 枝, n2p)”, 

because n1p and n2p represent “紅筆(red pens)” and “藍筆(blue pens)” respectively (and 

either one is a kind of “筆(pen)”). 

文具店進貨 2361 枝紅筆和 1587 枝藍筆(A stationer bought 2361 red pens and 1587 blue pens), 

文具店共進貨幾枝筆(How many pens did the stationer buy)? 

quan(q1,枝,n1p)=2361&verb(q1,進貨)&agent(q1,文具店)&head(n1p,筆)&color(n1p,紅) 

quan(q2,枝,n2p)=1587&verb(q2,進貨)&agent(q2,文具店)&head(n2p,筆)&color(n2p,藍) 

ASK Sum(quan(?q,枝,筆),verb(?q,進貨)&agent(?q,文具店)) 

Figure 4. An example for requiring semantic-matching 

Therefore, a semantic matching method is proposed to be incorporated into the 

unification procedure. The idea is to match the semantic constituent sets of the two arguments 
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involved in unification. For example, while matching the third arguments of two functions 

during unifying the request6 “quan(?q, 枝, 筆)” with the fact “quan(q1, 枝, n1p)”, IE will 

construct and compare two semantic constituent sets, one is for “筆” and the other is for “n1p”. 

Let SCS denote “semantic constituent set” and SCS(x) denote the semantic constituent set of x. 

In our approach, “SCS(筆) = {筆}”7 and “SCS(n1p) = {筆, color(紅)}”8 . Since “SCS(筆)” is 

covered by the “SCS(n1p)”, “quan(?q, 枝, 筆)” can be unified with “quan(q1, 枝, n1p)”. 

Likewise, “quan(?q, 枝, 筆)” can be unified with “quan(q2, 枝, n2p)” because “SCS(n2p) = 

{筆, color(藍)}” covers “SCS(筆)”. As the result, the utility call “Sum(quan(?q,枝,筆), 

verb(?q,進貨)&agent(?q,文具店))” will obtain the correct answer “3948”. On the other hand, 

if the question is “文具店共進貨幾枝紅筆(How many red pens did the stationer buy)?”, the 

request will become “quan(?q, 枝, n3p)”, where n3p is a pseudo nonterminal consisting of the 

terminals “紅(red)” and “筆(pen)” under the noun phrase “幾枝紅筆(how many red pens)”. 

Since “SCS(n3p) = {筆, color(紅)}”, “quan(?q, 枝, n3p)” can be unified only with “quan(q1, 

枝, n1p)”. It cannot be unified with “quan(q2, 枝, n2p)” because SCS(n3p) cannot be covered 

by SCS(n2p). Therefore, the quantity of “藍筆(blue pens)” will not be taken into account for 

the question “文具店共進貨幾枝紅筆(How many red pens did the stationer buy)?”. 

3.4.2 Verb Entailment (Jurafsky & Martin, 2000) 

Since we might adopt the verb “買(buy)” in the body text “爸爸買了 3 本 329 元的故事書

(Papa bought three $329 books)”, but adopt the verb “付(pay)” in the question text “爸爸共要

付幾元(How much money did Papa pay)？” (as illustrated in the previous section), we need 

the knowledge that “buy” implies “pay” to perform logic binding (Moldovan & Rus, 2001). 

Verb entailment is thus required to identify whether there is an entailment relation between 

these two verbs (Hashimoto et al., 2009). Verb entailment detection is an important function 

for the IE (de Salvo Braz et al., 2006), as it can indicate the event progress and the status 

changing. In the math problem “Bill had no money. Mom gave Bill two dollars, and Dad gave 

Bill three dollars. How much money Bill had then?”, the entailment between “give (給)” and 

“have (有)” can update the status of Bill from “no money”, then “two dollars”, and to the final 

                                                       
6 An FOL predicate/function in an IE utility or in the premise of an inference rule is called a request. A 

request usually consists of FOL variables. 
7 The SCS of a terminal consists of the terminal string only (e.g., “SCS(筆) = {筆}”). 
8 SCS(n1p) is constructed by two steps. First, enumerate all facts whose first arguments are n1p. Second, 

for each enumerated fact, denote the predicate name as Child-Role and the SCS of the second 

argument as Child-SCS. If Child-Role is “head”, put the elements of Child-SCS into SCS(n1p). 

Otherwise, for each string s in Child-SCS, put the string “Child-Role(s)” into SCS(n1p). In the first 

step, the facts “head(n1p, 筆)” and “color(n1p, 紅)” are picked out. In the second step, the strings “筆” 

and “color(紅)” are put into SCS(n1p). 
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answer “five dollars”. 

We define the verb entailment problem as follows: given an ordered verb pair “(v1, v2)” 

as input, we want to detect whether the entailment relation ‘v1 → v2’ holds for this pair. 

E-HowNet (Chen et al., 2009; Huang et al., 2014) is adopted as the knowledge base for 

solving this problem. For the previous example verb “give (給)”, we can find its conflation of 

events, which has been described as the phenomenon involved in predicates where the verb 

expresses a co-event or accompanying event, rather than the main event (Talmy, 1972; 

Haugen, 2009; Mateu, 2012), from E-HowNet as shown in Figure 5. The conflations of events 

are defined by predicates and their arguments (Huang et al., 2015), as shown in Figure 5. 

Conflation of 

events: 

lose→agent({give|給})=theme({lose|失去}); lose→theme({give|

給})=possession({lose|失去}); obtain→theme({give|

給})=possession({obtain|得到}); obtain→target({give|

給})=theme({obtain|得到}); receive→target({give|

給})=agent({receive|收受}); receive→theme({give|

給})=possession({receive|收受}) 

Figure 5. The conflation events of the verb “give (給)”. 

Verb entailment is vital for solving the elementary school math problem. Consider the 

following math problem as a simple example: 

 

老師原有 9 枝鉛筆,送給小朋友 5 枝後,老師還有幾枝筆？(The teacher has 9 pencils. 

After giving his students 5 pencils, how many pencils he has?) 

 

The verbs are “有(have)” and “送給(give as a gift)” in this problem. If we want to derive the 

concept of “有(have)” from “送給(give as a gift)”, we can follow the direction of their 

definitions in E-HowNet: “送給(give as a gift)” is a hyponym of “給(give)”, and one of its 

implication from the conflation of events is “得到(obtain)”, which is a hyponym of “有

(have)”. 

However, for the four verbs in this derivation, implications are defined only in the verb 

“給(give)”. As we can see, given all those definitions of words in E-HowNet, we need to find 

a valid path (which may involve word sense disambiguation) to determine whether there is an 

entailment between two verbs. Therefore, we need a model to automatically build the relations 

of these verbs by finding paths from E-HowNet or other resources, and then rank or validate 

these paths to find the verb entailment. The conflation of events also indicates that when the 

entailed verb pair is detected, we may further map semantic roles of these two verbs to 



 

 

             Designing a Tag-Based Statistical Math Word Problem Solver          19 

with Reasoning and Explanation 

proceed the inference and find the solution (Wang & Zhang, 2009). 

4. Proposed Statistical Framework 

Since the accuracy rate of the Top-1 SR tree cannot be 100%, and the decisions made in the 

following phases (i.e., STC, LFC and IE) are also uncertain, we need a statistical framework 

to handle those non-deterministic phenomena. Under this framework, the problem of getting 

the desired answer for a given WMP can be formulated as follows: 

  argmax P  ,  
Ans

Ans Ans Body Qus                                                                     (1) 

Where Ans  is the obtained answer, Ans denotes a specific possible answer, Body denotes 

the given body text of the problem, and Qus denotes the question text of the problem. 

The probability factor in the above equation can be further derived as follows via 

introducing some related intermediate/latent random variables: 
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Ans IR LF LF SM SM ST Body Qus

Ans IR LF LF SM SM ST Body Qus

Ans IR LF LF IR LF LF ST LF SM ST

LF SM ST ST SM SM SM Body SM Qus





  

   



            (2) 

IR : Inference Rules Applied. 
LFB : Logic Form of Body text. 
LFQ : Logic Form of Question text. 
SMB : Semantic Representation of Body text. 
SMQ : Semantic Representation of Question text. 
ST : Solution Type. 

In the above equation, we will further assume that P(Ans|IR,LFB,LFQ)≈P(Rm), where Rm is the 

remaining logic factors in LFQ after the IE has bound it with LFB (with referring to the 

knowledge-base adopted). Last, Viterbi decoding (Seshadri & Sundberg, 1994) could be used 

to search the most likely answer with the above statistical model. 

To obtain the associated parameters of the model, we will first get the initial 

parameter-set from a small seed corpus annotated with various intermediate/latent variables 

involved in the model. Afterwards, we perform weakly supervised learning (Artzi & 

Zettlemoyer, 2013) on a partially annotated training-set (in which only the answer is annotated 

with each question). That is, we iteratively conduct beam-search (with the parameter-set 

obtained from the last iteration) on this partially annotated training-set starting from the given 
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body text (and question text) to the final obtained answer. If the annotated answer match some 

of the obtained answers (within the search-beam), simply pick up the matched path with the 

maximal likelihood value. We then re-estimate the parameter-set (of the current iteration) 

from those picked up paths. If the annotated answer cannot match any of the obtained answers 

(within the search-beam), we simply drop that case, and then repeat the above re-estimation 

procedure. 

5. Current Status and Future Work 

Currently, we have completed all the associated modules (including Word Segmenter, 

Syntactic Parser, Semantic Composer, STC, LFC, IE, and Explanation Generation), and have 

manually annotated 75 samples (from our elementary school math corpus) as the seed corpus 

(with syntactic tree, semantic tree, logic form, and reasoning chain annotated). Besides, we 

have cleaned the original elementary school math corpus and encoded it into the appropriate 

XML format. There are total 23,493 problems from six different grades; and the average 

number of words of the body text is 18.2 per problem. Table 3 shows the statistics of the 

converted corpus. 

Table 3. MWP corpus statistics and Average length per problem. 

 

Corpus Num. of problems 

Training Set 20,093 

Develop Set 1,700 

Test Set 1,700 

Total 23,493 
 

 

Corpus 
Avg. Chinese 

Chars. 

Avg. Chinese 

Words 

Body 27 18.2 

Question 9.4 6.8 
 

MWP corpus statistics Average length per problem 

We have completed a prototype system which is able to solve 11 different solution types 

(including Multiplication, Summation, Subtraction, Floor-Division, Algebra, Comparison, 

Surplus, Difference, Ceil-Division, Common-Division and Addition), and have tested it on the 

seed corpus. The success of our pilot run has demonstrated the feasibility of the proposed 

approach. We plan to use the next few months to perform weakly supervised learning, as 

mentioned above, and fine tune the system. 

6. Related Work 

To the best of our knowledge, all those MWP solvers proposed before year 2014 adopted the 

rule-based approach (Mukherjee & Garain, 2008). For example, Bobrow’s STUDENT 
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(Bobrow, 1964; Slagle, 1965) used format matching to map the input English sentence into the 

corresponding logic statement (all start with predicate “EQUAL”). Another system, 

WORDPRO, was developed by Fletcher (1985) to understand and solve simple one-step 

addition and subtraction arithmetic word problems designed for third-grade children. It did not 

accept the surface representation of text as input. Instead it begins with a set of propositions 

(manually created) that represent the text's meaning. Afterwards, the problem was solved with 

a set of rules (also called schemas), which matched the given proposition and then took the 

corresponding actions. Besides, it adopted key word match to obtain the answer. 

Solving the problem with schemata was then adopted in almost every later system 

(Mukherjee & Garain, 2008).  In 1986, ARITHPRO was designed with an inheritance 

network in which word classes inherit attributes from those classes above them on a verb 

hierarchy (Dellarosa, 1986). The late development of ROBUST (Bakman, 2007) demonstrated 

how it could solve free format word problems with multi-step arithmetic through splitting one 

single sentence into two formula propositions. In this way, transpositions of problem 

sentences or additional irrelevant data to the problem text do not affect the problem solution. 

However, it only handles state change scenario. In 2010, Ma et al. (Ma et al., 2010) proposed 

a MSWPAS system to simulate people’s arithmetic multi-step addition and subtraction word 

problems behavior. It uses frame-based calculus and means-end analysis (AI planning) to 

solve the problem with pre-specified rules. In 2012, Liguda and Pfeiffer (Liguda & Pfeiffer, 

2012) proposed a model based on augmented semantic networks to represent the mathematical 

structure behind word problems. It read and solved mathematical text problems from German 

primary school books. With more attributes associated with the semantic network, it claimed 

that the system was able to solve multi-step word problems and complex equation systems and 

was more robust to irrelevant information. Also, it was declared that it was able to solve all 

classes of problems that could be solved by the schema-based systems, and could solve around 

20 other classes of word problems from a school book which were in most cases not solvable 

by other systems. 

Recently, Hosseini et al. (2014) proposed a Container-Entity based approach, which 

solved the math word problem with a state transition sequence. Each state consists of a set of 

containers, and each container specifies a set of entities identified by a few heuristic rules. 

How the quantity of each entity type changes depends on the associated verb category. Each 

time a verb is encountered, it will be classified (via a SVM, which is the only statistical 

module adopted) into one of the seven categories which pre-specify how to change the states 

of associated entities. Therefore, logic inference is not adopted. Furthermore, the anaphora and 

co-reference are left un-resolved, and it only handles addition and subtraction. 

Kushman et al. (2014) proposed the first statistical approach, which used a few heuristic 

rules to extract the algebra equation templates (consists of variable slots and number slots) 
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from a set of problems annotated with equations. For a given problem, all possible 

variable/number slots are identified first. Afterwards, they are aligned with those templates. 

The best combination of the template and alignment (scored with a statistical model) is then 

picked up. Finally, the answer is obtained from those equations instantiated from the selected 

template. However, without really understanding the problem (i.e., no semantic analysis is 

performed), the performance that this approach can reach is limited; also, it is sensitive to 

those irrelevant statements (Hosseini et al., 2014). Furthermore, it can only solve algebra 

related problems. Last, it cannot explain how the answer is obtained. 

The most recent statistical approach was proposed by Roy et al. (2015), which used 4 

cascade statistical classifiers to solve the elementary school math word problems: quantity 

identifier (used to find out the related quantities), quantity pair classifier (used to find out the 

operands), operation classifier (used to pick an arithmetic operation), and order classifier 

(used to order operands for subtraction and division cases). It not only shares all the 

drawbacks associated with Kushman et al. (2014), but also limits itself for allowing only one 

basic arithmetic operation (i.e., among addition, subtraction, multiplication, division) with 

merely 2 or 3 operand candidates. 

Our proposed approach differs from those previous approaches by combining the 

statistical framework with logic inference. Besides, the tag-based approach adopted for 

selecting the appropriate information also distinguishes our approach from that of others. 

7. Conclusion 

A tag-based statistical framework is proposed in this paper to perform understanding and 

reasoning for solving MWP. It first analyzes the body and question texts into their 

corresponding semantic trees (with anaphora/ellipse resolved and semantic role labeled), and 

then converted them into their associated tag-based logic forms. Afterwards, the inference 

(based on the question logic form) is performed on the logic facts derived from the body text. 

The combination of the statistical frame and logic inference distinguishes the proposed 

approach from other approaches. Comparing to those rule-based approaches, the proposed 

statistical approach alleviates the ambiguity resolution problem; also, our tag-based approach 

provides the flexibility of handling various kinds of related questions with the same body logic 

form. On the other hand, comparing to those purely statistical approaches, the proposed 

approach is more robust to the irrelevant information and could more accurately provide the 

answer. 

The contributions of our work mainly lie in: (1) proposing a tag-based logic 

representation which makes the system less sensitive to the irrelevant information and could 

provide answer more precisely; (2) proposing a statistical framework for performing reasoning 

from the given text. 
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