

Computational Linguistics and Chinese Language Processing

Vol. 20, No. 2, December 2015, pp. 1-26 1

 The Association for Computational Linguistics and Chinese Language Processing

Designing a Tag-Based Statistical Math Word Problem

Solver with Reasoning and Explanation

Yi-Chung Lin, Chao-Chun Liang, Kuang-Yi Hsu,

Chien-Tsung Huang, Shen-Yun Miao, Wei-Yun Ma,

Lun-Wei Ku, Churn-Jung Liau, and Keh-Yih Su

Abstract

This paper proposes a tag-based statistical framework to solve math word problems

with understanding and reasoning. It analyzes the body and question texts into their

associated tag-based logic forms, and then performs inference on them. Comparing

to those rule-based approaches, the proposed statistical approach alleviates rules

coverage and ambiguity resolution problems, and our tag-based approach also

provides the flexibility of handling various kinds of related questions with the same

body logic form. On the other hand, comparing to those purely statistical

approaches, the proposed approach is more robust to the irrelevant information and

could more accurately provide the answer. The major contributions of our work are:

(1) proposing a tag-based logic representation such that the system is less sensitive

to the irrelevant information and could provide answer more precisely; (2)

proposing a unified statistical framework for performing reasoning from the given

text.

Keywords: Math Word Problem Solver, Machine Reading, Natural Language
Understanding.

1. Introduction

Since Big Data mainly aims to explore the correlation between surface features but not their

underlying causality relationship, the Big Mechanism1 program was initiated by DARPA

 Institute of Information Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei

11529, Taiwan

E-mail: {lyc; ccliang; ianhsu; joecth; jackymiu; ma; lwku; liaucj; kysu}@iis.sinica.edu.tw
1 http://www.darpa.mil/Our_Work/I2O/Programs/Big_Mechanism.aspx

2 Yi-Chung Lin et al.

(from July 2014) to find out “why” behind the “Big Data”. However, the pre-requisite for it is

that the machine can read each document and learn its associated knowledge, which is the task

of Machine Reading (MR) (Strassel et al., 2010). Therefore, the Natural Language and

Knowledge Processing Group, under the Institute of Information Science of Academia Sinica,

formally launched a 3-year MR project (from January 2015) to attack this problem.

As a domain-independent MR system is complicated and difficult to build, the math

word problem (MWP) (Mukherjee & Garain, 2008) is chosen as the first task to study MR for

the following reasons: (1) Since the answer for the MWP cannot be extracted by simply

performing keyword matching (as Q&A usually does), MWP thus can act as a test-bed for

understanding the text and then drawing the answer via inference. (2) MWP usually possesses

less complicated syntax and requires less amount of domain knowledge. It can let the

researcher focus on the task of understanding and reasoning, not on how to build a

wide-coverage grammar and acquire domain knowledge. (3) The body part of MWP (which

mentions the given information for solving the problem) usually consists of only a few

sentences. Therefore, the understanding and reasoning procedure could be checked more

efficiently. (4) The MWP solver could have its own standalone applications, such as computer

tutor, etc. It is not just a toy test case.

According to the framework of making the decision while there are several candidates,

previous MWP algebra solvers can be classified into: (1) Rule-based approaches with logic

inference (Bobrow, 1964; Slagle, 1965; Charniak, 1968, 1969; Dellarosa, 1986; Bakman,

2007), which apply rules to get the answer (via identifying entities, quantities, operations, etc.)

with a logic inference engine. (2) Rule-based approaches without logic inference (Gelb, 1971;

Ballard & Biermann, 1979; Biermann & Ballard, 1980; Biermann et al., 1982; Fletcher, 1985;

Hosseini et al., 2014), which apply rules to get the answer without a logic inference engine. (3)

Purely statistics-based approaches (Kushman et al., 2014; Roy et al., 2015), which use

statistical models to identify entities, quantities, operations, and get the answer without

conducting language analysis or inference.

The main problem of the rule-based approaches mentioned above is that the coverage

rate problem is serious, as rules with wide coverage are difficult and expensive to construct.

Also, it is awkward in resolving ambiguity problems. Besides, since they adopt Go/No-Go

approach (unlike statistical approaches which can adopt a large Top-N to have high including

rates), the error accumulation problem would be severe. On the other hand, the main problem

of those approaches not adopting logic inference is that they usually need to implement a new

handling procedure for each new type of problems (as the general logic inference mechanism

is not adopted). Also, as there is no inference engine to generate the reasoning chain,

additional effort would be required for generating the explanation. In contrast, the main

problem of those purely statistical approaches is that they are sensitive to irrelevant

 Designing a Tag-Based Statistical Math Word Problem Solver 3

with Reasoning and Explanation

information (Hosseini et al., 2014) (as the problem is solved without first understanding the

text). Also, the performance deteriorates significantly when they encounter complicated

problems due to the same reason.

To avoid the problems mentioned above, a tag-based statistical framework which is able

to perform understanding and reasoning is proposed in this paper. For each body statement

(which specifies the given information), the text will be first analyzed into its corresponding

semantic tree (with its anaphora/ellipses resolved and semantic roles labeled), and then

converted into its associated logic form (via a few mapping rules). The obtained logic form is

then mapped into its corresponding domain dependent generic concepts (also expressed in

logic form). The same process also goes for the question text (which specifies the desired

answer). Finally, the inference (based on the question logic form) is performed on the logic

statements derived from the body text. Please note that a statistical model will be applied each

time when we have choices.

Furthermore, to reply any kind of questions associated with the given information, we

keep all related semantic roles (such as agent, patient, etc.) and associated specifiers (which

restrict the given quantity, and is freely exchangeable with the term tag) in the logic form

(such as verb(q1,進貨), agent(q1,文具店), head(n1p,筆), color(n1p,紅), etc.), which are

regarded as various tags (or conditions) for selecting the appropriate information related to the

given question. Therefore, the proposed approach can be regarded as a tag-based statistical

approach with logic inference. Since extra-linguistic knowledge would be required for

bridging the gap between the linguistic semantic form and the desired logic form, we will

extract the desired background knowledge (ontology) from E-HowNet (Chen et al., 2005) for

verb-entailment.

In comparison with those rule-based approaches, the proposed approach alleviates the

ambiguity resolution problem (i.e., selecting the appropriate semantic tree,

anaphora/co-reference, domain-dependent concepts, inference rules) via a statistical

framework. Furthermore, our tag-based approach provides the flexibility of handling various

kinds of possible questions with the same body logic form. On the other hand, in comparison

with those purely statistical approaches, the proposed approach is more robust to the irrelevant

information (Hosseini et al., 2014) and could provide the answer more precisely (as the

semantic analysis and the tag-based logic inference are adopted). In addition, with the given

reasoning chain, the explanation could be more easily generated. Last, since logic inference is

a general problem solving mechanism, the proposed approach can solve various types of

problems that the inference engine could handle (i.e., not only arithmetic or algebra as most

approaches aim to).

The contributions of our work are: (1) Proposing a semantic composition form for

abstracting the text meaning to perform semantic reasoning; (2) Proposing verb entailment via

4 Yi-Chung Lin et al.

E-HowNet for bridging the lexical gap (Moldovan & Rus, 2001); (3) Proposing a tag-based

logic representation to adopt one body logic form for handling various possible questions; (4)

Proposing a set of domain dependent (for math algebra) generic concepts for solving MWP; (5)

Proposing a statistical solution type classifier to indicate the way for solving MWP; (6)

Proposing a semantic matching method for performing unification; (7) Proposing a statistical

framework for performing reasoning from the given text.

2. Design Principles

Since we will have various design options in implementing a math word problem solver, we

need some guidelines to judge which option is better when there is a choice. Some principles

are thus proposed as follows for this purpose:

(1) Solutions should be given via understanding and inference (versus the template matching

approach proposed in (Kushman et al., 2014), as the math word problem is just the first

case for our text understanding project and we should be able to explain how the answer

is obtained.

(2) The expressiveness of the adopted body logical form should be powerful enough for

handling various kinds of possible questions related to the body, which implies that logic

form transformation should be information lossless. In other words, all the information

carried by the semantic representation should be kept in the corresponding logical form. It

also implies that the associated body logical form should be independent on the given

question (as we don’t know which question will be asked later).

(3) The dynamically constructed knowledge should not favor any specific kind of

problem/question. This principle suggests that the Inference Engine (IE) should regard

logic statements as a flat list, instead of adopting a pre-specified hierarchical structure

(e.g., the container adopted in (Hosseini et al., 2014), which is tailored to some kinds of

problems/questions). Any desired information will be located from the list via the same

mechanism according to the specified conditions.

(4) The Logic Form Converter (LFC) should be compositional (Moldovan & Rus, 2001) after

giving co-reference and solution type2, which implies that each sub-tree (or nonterminal

node) should be independently transformed regardless of other nodes not under it, and the

logic form of a given nonterminal node is formed by concatenating the corresponding

logic forms of its associated child-nodes.

(5) The IE should only deal with domain dependent generic concepts (instead of complicated

2 Solution Type specifies the desired mathematic utility/operation that LFC should adopt (see Section

3.3 for details).

 Designing a Tag-Based Statistical Math Word Problem Solver 5

with Reasoning and Explanation

problem dependent concepts); otherwise, it would be too tedious. Take the problem “100

顆糖裝成 5 盒糖, 1 盒糖裝幾顆糖? (If 100 candies are packed into 5 boxes, how many

candies are there in a box?)” as an example. Instead of using a problem-dependent First

Order Logic (FOL) predicate like “裝成(100,顆,糖,5,盒,糖)”, the problem-independent

FOL functions/predicates like “quan(q1, 顆 , 糖) = 100”, “quan(q2, 盒 , 糖) = 5”,

“qmap(m1,q1,q2)”, and “verb(m1,裝成)” are adopted to represent the facts provided by

problem description3.

(6) The LFC should know the global skeleton of the whole given text (which is implicitly

implied by the associated semantic segments linked via the given co-reference

information) to achieve a reasonable balance between it and the IE.

(7) The IE should separate the knowledge from the reasoning procedures to ease porting,

which denotes that those domain dependent concepts and inference rules should be kept

in a declarative form (and could be imported from some separated files); and the

inference rules should not be a part of the IE’s source code.

3. System Framework

Figure 1.The block diagram of the proposed Math Word Problem Solver.

The block diagram of the proposed MWP solver is shown in Figure 1. First, every sentence in

the MWP, including both body text and the question text, is analyzed by the Language

Analysis module, which transforms each sentence into its corresponding Semantic

Representation (SR) tree. The sequence of SR trees is then sent to the Problem Resolution

module, which adopts logic inference approach to obtain the answer for each question. Finally,

3 “quan(…)” is an FOL function to describe quantity facts. “quan(q1,顆,糖)=100” and “quan(q2,盒,

糖)=5” describe two quantity facts about “100 顆糖” and “5 盒糖”, respectively. “qmap(m1,q1,q2)” is

an FOL predicate to describe that there is a relation (denoted by “m1”) between two quantity facts “q1”

and “q2”. “verb(m1,裝成)” indicates that the verb “裝成” is associated with the quantity relation

“m1”.

6 Yi-Chung Lin et al.

the Explanation Generation module will explain how the answer is obtained (in natural

language text) according to the given reasoning chain.

As the figure depicted, the Problem Resolution module in our system consists of three

components: Solution Type Classifier (STC), LFC and IE. The STC suggests a scenario to

solve the problem for every question in an MWP. In order to perform logic inference, the LFC

first extracts the related facts from the given SR tree and then represents them as FOL

predicates/functions (Russell & Norvig, 2009). It also transforms each question into an

FOL-like utility function according to the assigned solution type. Finally, according to

inference rules, the IE derives new facts from the old ones provided by the LFC. Besides, it is

also responsible for providing utilities to perform math operations on related facts.

The entities (like noun phrases) or events (like verb phrases) described in the given

sentence may be associated with modifiers, which usually restrict the scope (or specify the

property) of the entities/events that they are associated. Since the system does not know which

kind of questions will be asked when it reads the body sentences, modifiers should be also

included in logic expressions (act as specifiers) and involved in binding. Therefore, the

reification technique (Jurafsky & Martin, 2000) is employed to map the nonterminals in the

given semantic tree, including verb phrases and noun phrases, into quantified objects which

can be related to other objects via specified relations. For example, the logic form of the noun

phrase “紅筆(red pens)” would be “color(n1,紅)&head(n1,筆)”, where “n1” is an identified

object referring to the noun phrase. Usually, the specifiers in the Body Logic Form (BLF) are

optional in Question Logic Form (QLF), as the body might contain irrelevant text. On the

contrary, the specifiers in the QLF are NOT optional (at least in principle) in BLF (i.e., the

same (or corresponding) specifier must exist in BLF). This restriction is important as we want

to make sure that each argument (which will act as a filtering-condition) in the QLF will be

exactly matched to keep irrelevant facts away during the inference procedure.

Take the MWP “文具店進貨 2361 枝紅筆和 1587 枝藍筆(A stationer bought 2361 red

pens and 1587 blue pens), 文具店共進貨幾枝筆(How many pens did the stationer buy)?” as

an example. The STC will assign the operation type “Sum” to it. The LFC will extract the

following facts from the first sentence:

quan(q1,枝,n1p)=2361&verb(q1,進貨)&agent(q1,文具店)&head(n1p,筆)&color(n1p,紅)

quan(q2,枝,n2p)=1587&verb(q2,進貨)&agent(q2,文具店)&head(n2p,筆)&color(n2p,藍)

 Designing a Tag-Based Statistical Math Word Problem Solver 7

with Reasoning and Explanation

The quantity-fact “2361 枝紅筆(2361 red pens)” is represented by “quan(q1,枝,n1p)=2361”,

where the argument “n1p”
4 denotes “紅筆(red pens)” due to the facts “head(n1p,筆)” and

“color(n1p, 紅)”. Also, those specifiers “verb(q1, 進 貨)&agent(q1, 文 具 店)&head(n1p,

筆)&color(n1p,紅)” are regarded as various tags which will act as different conditions for

selecting the appropriate information related to the question specified later. Likewise, the

quantity-fact “1587 枝藍筆(1587 blue pens)” is represented by “quan(q2,枝,n2p)=1587”. The

LFC also issues the utility call “ASK Sum(quan(?q,枝,筆),verb(?q,進貨)&agent(?q,文具店))”

(based on the assigned solution type) for the question. Finally, the IE will select out two

quantity-facts “quan(q1, 枝 ,n1p)=2361” and “quan(q2, 枝 ,n2p)=1587”, and then perform

“Sum” operation on them to obtain “3948”.

If the question in the above example is “文具店共進貨幾枝紅筆(How many red pens

did the stationer buy)?”, the LFC will generate the following facts and utility call for this new

question:

head(n3p,筆)&color(n3p,紅)

ASK Sum(quan(?q,枝,n3p),verb(?q,進貨)&agent(?q,文具店))

As the result, the IE will only select the quantity-fact “quan(q1,枝,n1p)=2361”, because the

specifier in QLF (i.e., “color(n3p,紅)”) cannot match the associated specifier “藍(blue)” (i.e.,

“color(n2p,藍)”) of “quan(q2,枝,n2p)=1587”. After performing “Sum” operation on it, we thus

obtain the answer “2361”. Each module will be described in detail as follows (We will skip

Explanation Generation due to space limitation. Please refer to (Huang et al., 2015) for the

details).

3.1 Language Analysis (Jurafsky & Martin, 2000)

Since the Chinese sentence is a string of characters with no delimiters to mark word

boundaries, the first step for analyzing the MWP text is to segment each given sentence string

into its corresponding word sequence. Our Chinese word segmentation system (Chen & Ma,

2002; Ma & Chen, 2003) adopts a modularized approach. Independent modules were designed

to solve the problems of segmentation ambiguities and identifying unknown words.

Segmentation ambiguities are resolved by a hybrid method of using heuristic and statistical

rules. Regular-type unknown words are identified by associated regular expressions, and

4 The subscript “p” in “n1p” indicates that “n1p” is a pseudo nonterminal derived from the nonterminal

“n1”, which has four terminals “2361”, “枝”, “紅” and “筆”. More details about pseudo nonterminal

will be given at Section 3.3.

8 Yi-Chung Lin et al.

irregular types of unknown words are detected first by their occurrence and then extracted by

morphological rules with statistical and morphological constraints. Part-of-Speech tagging is

also included in the segmentation system for both known and unknown words by using HMM

models and morphological rules. Please refer to (Tseng & Chen, 2002; Tsai & Chen, 2004) for

the details.

In order to design a high precision and broad coverage Chinese parser, we had

constructed a Chinese grammar via generalizing and specializing the grammar extracted from

Sinica Treebank (Hsieh et al., 2013; Hsieh et al., 2014) to achieve this goal. The designed

F-PCFG (Feature-embedded Probabilistic Context-free Grammar) parser was based on the

probabilities of the grammar rules. It evaluates the plausibility of each syntactic structure to

resolve parsing ambiguities. We refine the probability estimation of a syntactic tree (for

tree-structure disambiguation) by incorporating word-to-word association strengths. The

word-to-word association strengths were self-learned from parsing the CKIP corpus (Hsieh et

al., 2007). A semantic-role assignment capability is also incorporated into the system.

3.1.1 Semantic Composition

Once the syntactic structure (with semantic roles) for a sentence is obtained, its semantic

representation can be further derived through a process of semantic composition (from lexical

senses) and achieved near-canonical representations. To represent lexical senses, we had

implemented a universal concept-representation mechanism, called E-HowNet (Chen et al.,

2005; Huang et al., 2014). It is a frame-based entity-relation model where word senses are

expressed by both primitives (or well-defined senses) and their semantic relations. We utilize

E-HowNet to disambiguate word senses by referencing its ontology and the related synsets of

the target words.

To solve math word problems, it is crucial to know who or what entity is being talked

about in the descriptions of problems. This task is called reference resolution, and it can be

classified into two types – anaphora resolution and co-reference resolution. Anaphora

resolution is the task of finding the antecedent for a single pronoun while co-reference is the

task of finding referring expressions (within the problem description) that refer to the same

entity. We attack these two types of resolution mainly based on assessing whether a target

pronoun/entity coincides its referent candidate in E-HowNet definition. For example, the

definition of “她 (she)” is “{3rdPerson|他人 :gender={female|女}}”. Therefore, it would

restrict that the valid referent candidates must be a female human, and result in a much fewer

number of candidates for further consideration.

In the following example, the semantic composition, anaphora resolution and

co-reference resolution are shown in the table.

 Designing a Tag-Based Statistical Math Word Problem Solver 9

with Reasoning and Explanation

小豪 有 62 張 貼紙 ， 哥哥 再 給 他 56 張 ， 小豪 現在 共 有 幾張 貼紙 ？

(Xiaohao had 64 stickers, and his brother gave him 56 more. How many stickers does Xiahao

have now?)

小豪有 62 張貼紙， 哥哥再給他 56 張， 小豪現在共有幾張貼紙？

{有(2):

 theme={[x1]小豪(1)},

 range={貼紙(4):

 quantifier={６２張(3)}

 }

}

小豪(1): {human|人:name={"小豪"}}

有(2): {own|有}

６２張(3): quantifier={張.null|無
義:quantity={62}}

貼紙(4): {paper|紙張: qualification
={sticky|黏}}

{給(3):

 agent={哥哥(1)},

 time={再(2)},

 goal={[x1]他(4)},

 theme={貼紙(5.1):

 quantifier={５６張(5)}

 }

}

哥哥(1): {哥哥|ElderBrother}

再(2): frequency={again|再}

給(3): {give|給}

他(4): {3rdPerson|他人}

５６張(5): quantifier={張.null|無
義:quantity={56}}

貼紙(5.1): {paper|紙
張:qualification={sticky|黏}}

{有(4):

 theme={[x1]小豪(1)},

 time={現在(2)},

 quantity={共(3)},

 range={貼紙(6):

 quantifier={幾張(5)}

 }

}

小豪(1): {human|人:name={"小豪

"}}

現在(2): {present|現在}

共(3): {all|全}

有(4): {own|有}

幾張(5): quantifier={張.null|無義:
幾.quantity={Ques|疑問}}

貼紙(6): {paper|紙
張:qualification={sticky|黏}}

We use numbers following words to represent words’positions in a sentence. For

instance, “有(2)” is the second word in the first sentence. The semantic representation uses a

near-canonical representation form, where semantic role labels, such as “agent”, “theme” and

“range”, are marked on each word, and each word is identified with its sense, such as “有(2):

{own|有}”.

The co-referents of all sentences in a math problem are marked with the same “x[#]”. For

example, we mark the proper noun “小豪(1)” with “[x1]” to co-refer with the pronoun “他(4)”

and the second occurrence of the proper noun “小豪(1)”. In the second sentence of the

example, the head of the quantifier “５６張” is omitted in the text but it is recovered in the

semantic representation and annotated with a decimal point in its word position. The missing

head is recovered as “貼紙(5.1)”, which is an extra word with its constructed position based

on decimal point.

10 Yi-Chung Lin et al.

3.2 Solution Type Identification

However, even we know what the given math word problem means, we still might not know

how to solve it if we have not been taught for solving the same type of problems in a math

class before (i.e., without enough math training/background). Therefore, we need to collect

various types of math operations (e.g., addition, subtraction, multiplication, division, sum,

etc.), aggregative operations (e.g., Comparison, Set-Operation, etc.) and specific problem

types (e.g., Algebra, G.C.D., L.C.M., etc.) that have been taught in the math class. And the

LFC needs to know which math operation, aggregative operation or specific problem type

should be adopted to solve the given problem. Therefore, we need to map the given semantic

representation to a specific problem type. However, this mapping is frequently decided based

on the global information across various input sentences (even across body text and question

text). Without giving the corresponding mathematic utility/operation, the logic form

transformation would be very complicated. A Solution Type Classifier (STC) is thus proposed

to decide the desired utility/operation that LFC should adopt (i.e., to perform the mapping).

Currently, 16 different solution types are specified (in Table 1; most of them are

self-explained with their names) to cover a wide variety of questions found in our elementary

math word corpus. They are listed according to their frequencies found in 75 manually labeled

questions. The STC is similar to the Question Type Classifier commonly adopted at Q&A

(Loni, 2011). For mathematic operation type, it will judge which top-level math operation is

expected (based on the equation used to get the final answer). For example, if the associated

equation is “Answer = q1 – (q2 × q3)”, then “Subtraction” will be the assigned math operation

type, which matches human reasoning closely.

Table 1. Various solution types for solving elementary school math word problems
with frequency in the training set (75 questions in total).

Multiply (24%) Utility (6%) Surplus (4%) L.C.M (2%)

Sum (14%) Algebra (5%) Difference (4%) G.C.D (2%)

Subtraction (12%) Comparison (5%) Ceil-Division (3%) Addition (1%)

Floor-Division (7%) Ratio (5%) Common-Division (3%) Set-Operation (1%)

Take the following math word problem as an example, “一艘輪船 20 分鐘可以行駛 25

公里(A boat sails 25 kilometers in 20 minutes)， 2.5 小時可以行駛多少公里(How far can it

sail in 2.5 hours)？”. Its associated equation is “Answer = 150 × (25÷20)”. Therefore, the

top-level operation is “Multiplication”, and it will be the assigned solution type for this

example. However, for the problem “某數乘以 11(Multiply a number with 11)， 再除以 4 的

答案是 22(then divide it by 4. The answer is 22)， 某數是多少(What is the number)？”, its

 Designing a Tag-Based Statistical Math Word Problem Solver 11

with Reasoning and Explanation

associated equation is “Answer×11÷4 = 22”; since there is no specific natural top-level

operation, the “Algebra” solution type will be assigned5.

The STC will check the SR trees from both the body and the question to make the

decision. Therefore, it provides a kind of global decision, and the LFC will perform logic

transformation based on it (i.e., the statistical model of the LFC is formulated to condition on

the solution type). Currently, a SVM classifier with linear kernel functions (Chang & Lin,

2011) is used, and it adopted four different kinds of feature-sets: (1) all word unigrams in the

text, (2) head word of each nonterminal (inspired by the analogous feature adopted in (Huang

et al., 2008) for question classification), (3) E-HowNet semantic features, and (4)

pattern-matching indicators (currently, patterns/rules are manually created).

3.3 Logic Form Transformation

A two-stage approach is adopted to transform the SR tree of an input sentence to its

corresponding logic forms. In the first stage, the syntactic/semantic relations between the

words are deterministically transformed into their domain-independent logic forms.

Afterwards, crucial generic math facts and the possible math operations are

non-deterministically generated (as domain-dependent logic forms) in the second stage.

Basically, logic forms are expressed with the first-order logic (FOL) formalism (Russell &

Norvig, 2009)

In the first stage, FOL predicates are generated by traversing the input SR tree which

mainly depicts the syntactic/semantic relations between its words (with associated

word-senses). For example, the SR tree of the sentence “100 顆糖裝成 5 盒(If 100 candies are

packed into 5 boxes)” is shown as follows:

{裝成(t1); theme={糖(t2); quantity=100(t3); unit=顆(t4)};

 result={糖(t5); quantity=5(t6); unit=盒(t7)} }

Where “theme” and “result” are semantic roles, and information within brace are their

associated attributes. Also, the symbols within parentheses are the identities of the terminals in

the SR tree. Note that the terminal t5 is created via zero anaphora resolution in the language

analysis phase. The above SR tree is transformed into the following FOL predicates separated

by the logic AND operator &.

5 However, the “Algebra” solution type in this case is useless to LFC because the body text has already

mentioned how to solve it, and the LFC actually does not need STC to tell it how to solve the

problem.

12 Yi-Chung Lin et al.

verb(v1,t1)&theme(v1,n1)&result(v1,n2)&

head(n1,t2)&quantity(n1,t3)&unit(n1,t4)&

head(n2,t5)&quantity(n2,t6)&unit(n2,t7)

All the first arguments of the above FOL predicates (i.e., v1, n1 and n2) are the identities to

the nonterminals in the SR tree. To ease reading, the terminal identities in logic forms are

replaced with their corresponding terminal strings in the rest of this paper. After replacement,

the above logic forms become more readable as follows:

verb(v1,裝成)&theme(v1,n1)&result(v1,n2)&head(n1,糖)&quantity(n1,100)&

unit(n1,顆)&head(n2,糖)&quantity(n2,5)&unit(n2,盒)

The above FOL predicates are also called logic-form-1 (LF1) facts. The predicate names of

LF1 facts are just the domain-independent syntactic/semantic roles of the constituents in a

sub-tree. Therefore, the LF1 facts are also domain-independent.

The domain-dependent logic-form-2 (LF2) facts are generated in the second stage. The

LF2 facts are derived from some crucial generic math facts associated with quantities and

relations between quantities. The FOL function “quan(quan_id, unit_id, object_id) = number”

is used to describe the facts about quantities. The first argument is a unique identity to

represent this quantity-fact. The other arguments and the function value describe the meaning

of this fact. For example, “qaun(q1,顆,糖) = 100” means “100 顆糖(100 candies)” and

“qaun(q2, 盒 , 糖) = 5” means “5 盒 糖 (five boxes of candies)”. The FOL predicate

“qmap(map_id, quan_id1, quan_id2)” (denotes the mapping from quan_id1 to quan_id2) is

used to describe a relation between two quantity-facts, where the first argument is a unique

identity to represent this relation. For example, “qmap(m1, q1, q2)” indicates that there is a

relation between “100 顆糖” and “5 盒糖”. Now, LF2 facts are transformed by rules with a

predefined set of lexico-semantic patterns as conditions. When more cases are exploited, a

nondeterministic approach would be required.

In additional to domain-dependent facts like “quan(…)” and “qmap(…)”, some auxiliary

domain-independent facts associated with quan_id and map_id are also created in this stage to

help the IE find the solution. The auxiliary facts of the quan_id are created by 4 steps: First,

locate the nonterminal (said nq) which quan_id is coming from. Second, traverse upward from

nq to find the nearest nonterminal (said nv) which directly connects to a verb terminal. Third,

duplicate all LF1 facts whose first arguments are nv, except the one whose second argument is

nq. Finally, replace the first arguments of the duplicated facts with quan_id. In the above

 Designing a Tag-Based Statistical Math Word Problem Solver 13

with Reasoning and Explanation

example, for the quantity-fact q1, nq is n1 and nv is v1 in the first and second steps. “verb(v1,

裝成)” and “result(v1, n2)” will be copied at the third step. Finally, “verb(q1, 裝成)” and

“result(q1, n2)” are created. Likewise, “verb(q2, 裝成)” and “theme(q2, n1)” are created for

q2. The auxiliary facts of “qmap(map_id, quan_id1, quan_id2)” are created by copying all

facts of the forms “verb(quan_id1, *)” and “verb(quan_id2, *)” (where “*” is a wildcard), and

then replace all the first arguments of the copied facts with map_id. So, “verb(m1, 裝成)” is

created for m1.

Sometimes, the third argument of a quantity-fact (i.e., object_id) is a pseudo nonterminal

identity created in the second stage. For example, the LF1 facts of the phrase “2361 枝紅筆

(2361 red pens)” are “quantity(n1, 2361)”, “unit(n1, 枝)”, “color(n1, 紅)” and “head(n1,

筆)”, where n1 is the nonterminal identity of the phrase. A pseudo nonterminal identity, said

n1p, is created to carry the terminals “紅(red)” and “筆(pen)” so that the quantity-fact “2361

枝紅筆(2361 red pens)” can be expressed as “quan(q1, 枝, n1p) = 2361”. The subscript “p” in

n1p indicates that n1p is a pseudo nonterminal derived from the n1. To express that fact that

n1p carries the terminals “紅(red)” and “筆(pen)”, two auxiliary facts “color(n1p, 紅)” and

“head(n1p, 筆)” are also generated.

The questions in an MWP are transformed into FOL-like utility functions provided by

the IE. One utility function is issued for each question to find the answer. For example, the

question “文具店共進貨幾枝筆(How many pens did the stationer buy)” is converted into

“ASK Sum(quan(?q,枝,筆), verb(?q,進貨)&agent(?q,文具店))”. This conversion is completed

by two steps. First, select an IE utility (e.g., “Sum(…)”) to be called. Since the solution type

of the question is “Sum”, the IE utility “Sum(function, condition) = value” is selected. Second,

instantiate the arguments of the selected IE utility. In this case, the first argument function is

set to “quan(?q, 枝, 筆)” because an unknown quantity fact is detected in the phrase “幾枝筆

(how many pens)”. Let the FOL variable “?q” play the role of quan_id in the steps of finding

the auxiliary facts. The auxiliary facts “verb(?q, 進貨)” and “agent(?q, 文具店)” are

obtained to compose the second argument condition.

To sum up, the LFC transforms the semantic representation obtained by language

analysis into domain dependent FOL expressions on which inference can be performed. In

contrast, most researches of semantic parsing (Jurcicek et al., 2009; Das et al., 2014; Berant et

al., 2013; Allen, 2014) seek to directly map the input text into the corresponding logic form.

Therefore, across sentences deep analysis of the input text (e.g., anaphora and co-reference

resolution) cannot be handled. The proposed two-stage approach (i.e., language analysis and

then logic form transformation) thus provides the freedom to enhance the system capability for

handling complicated problems which require deep semantic analysis.

14 Yi-Chung Lin et al.

3.4 Logic Inference

3.4.1 Basic Operation

In our design, an IE is used to find the solution for an MWP. It is responsible for providing

utilities to select desired facts and then obtaining the answer by taking math operations on

those selected facts. In addition, it is also responsible for using inference rules to derive new

facts from the facts directly provided from the description of the MWP. Facts and inference

rules are represented in first-order logic (FOL) (Russell & Norvig, 2009).

In some simple cases, the desired answer can be calculated from the facts directly

derived from the MWP. For those cases, the IE only needs to provide a utility function to

calculate the answer. In the example of Figure 2, quantities 300, 600, 186 and 234 are

mentioned in the MWP. The LFC transforms the question into “ASK Sum(quan(?q,朵,百合),

verb(?q,賣出)&agent(?q,花店)” to ask the IE to find the answer, where “Sum(…)” is a utility

function provided by the IE. The first argument of “Sum(…)” is an FOL function to indicate

which facts should be selected. In this case, the unification procedure of the IE will

successfully unify the first argument “quan(?q, 朵, 百合)” with three facts “quan(q2, 朵, 百

合)”, “quan(q3, 朵, 百合)” and “quan(q4, 朵, 百合)”. When unifying “quan(?q, 朵, 百合)”

with “quan(q2, 朵, 百合)”, the FOL variable “?q” will be bound/substituted with q2. The

second argument of “Sum(…)” (i.e., “verb(?q,賣出)&agent(?q,花店)”) is the condition to be

satisfied. Since “quan(q2, 朵, 百合)” is rejected by the given condition, “Sum(…)” will sum

the values of the remaining facts (i.e., q3 and q4) to obtain the desired answer “420”.

花店進貨 300 朵玫瑰和 600 朵百合(A flower store bought 300 roses and 600 lilies),

上午賣出 186 朵百合(It sold 186 lilies in the morning)，下午賣出 234 朵(It sold 234 lilies in

the afternoon)，問花店共賣出幾朵百合(How many lilies did the flower store sell)?

quan(q1,朵,玫瑰)=300&verb(q1,進貨)&agent(q1,花店)&…

quan(q2,朵,百合)=600&verb(q2,進貨)&agent(q2,花店)&…

quan(q3,朵,百合)=186&verb(q3,賣出)&agent(q3,花店)&…

quan(q4,朵,百合)=234&verb(q4,賣出)&agent(q4,花店)&…

ASK Sum(quan(?q,朵,百合), verb(?q,賣出)&agent(?q,花店))

Figure 2. A simple problem and its essential corresponding logic forms.

Table 2 lists the utilities provided by the IE. The first one, as we have just described, returns

the sum of the values of FOL function instances which can be unified with the function

argument and satisfy the condition argument. The Addition utility simply returns the value of

“value1+value2”, where valuei is either a constant number, or an FOL function value, or a

value returned by a utility. Likewise, Subtraction and Multiplication utilities return

 Designing a Tag-Based Statistical Math Word Problem Solver 15

with Reasoning and Explanation

“value1−value2” and “value1×value2” respectively. Difference returns the absolute value of

Subtraction. CommonDiv returns the value of “value1÷value2”. FloorDiv returns the largest

integer value not greater than “value1÷value2” and CeilDiv returns the smallest integer value

not less than “value1÷value2”. Surplus returns the remainder after division of value1 by value2.

Table 2. The utilities provided by the IE.

Sum(function, condition)=value

Addition(value1, value2)=value

Subtraction(value1, value2)=value

Difference(value1, value2)=value

Multiplication(value1, value2)=value

CommonDiv(value1, value2)=value

FloorDiv(value1, value2)=value

CeilDiv(value1, value2)=value

Surplus(value1, value2)=value

Solving MWPs may require deriving new facts according to common sense or domain

knowledge. In Figure 3, the MWP provides the facts that “爸爸(Papa)” bought something but

it does not provide any facts associated to the money that “爸爸(Papa)” must pay. As a result,

we are not able to obtain the answer from the question logic form “Sum(quan(?q,元,#),

verb(?q,付)&agent(?q,爸爸))”. However, it is common sense that people must pay some

money to buy something. The following inference rule implements this common-sense

implication.

quan(?q,?u,?o)&verb(?q,買)&agent(?q,?a)&price(?o,?p)

→quan($q,元,#)=quan(?q,?u,?o)×?p&verb($q,付)&agent($q,?a)

In the above implication inference rule, “quan(?q,?u,?o)&…&price(?o,?p)” is the premise of

the rule and “quan($q,元,#)=…&agent($q,?a)” is the consequence of the rule. Please note that

“$q” indicates a unique ID generated by the IE.

爸爸買了 3 本 329 元的故事書和 2 枝 465 元的鋼筆(Papa bought three $329 books and two

$465 pens)，爸爸共要付幾元(How much money did Papa pay)?

quan(q1,本,n1p)=3&verb(q1,買)&agent(q1,爸爸)&head(n1p,故事書)&price(n1p,329)

quan(q2,枝,n2p)=2&verb(q2,買)&agent(q2,爸爸)&head(n2p,鋼筆)&price(n2p,465)

ASK Sum(quan(?q,元,#),verb(?q,付)&agent(?q,爸爸))

Figure 3. An example for deriving new facts.

16 Yi-Chung Lin et al.

After unifying this inference rule with the facts in Figure 3, we can get two possible bindings

(for q1 and q2, respectively). The following shows the binding of q1.

quan(q1,本,n1)&verb(q1,買)&agent(q1,爸爸)&price(n1,329)

→quan(q3,元,#)=quan(q1,本,n1)×329&verb(q3,付)&agent(q3,爸爸)

Since “quan(q1,本,n1)×329 = 3×329 = 987”, the consequence of the above inference will

generate three new facts “quan(q3, 元, #) = 987”, “verb(q3, 付)” and “agent(q3, 爸爸)”. The

semantics of the consequence is “爸爸付 987 元(Papa pays 987 dollars)”. Likewise, the

consequence of another binding of this inference rule will also generate three new facts

“quan(q4, 元, #) = 930”, “verb(q4, 付)” and “agent(q4, 爸爸)”. By taking these new facts

into account, the utility call “Sum(quan(?q,元,#), verb(?q,付)&agent(?q,爸爸))” can thus

return the correct answer “1917”.

Furthermore, the unification process in a conventional IE is based on string-matching.

The expression “qaun(?q, 枝, 筆)” can be unified with a fact “quan(q1, 枝, 筆)”. However,

it cannot be unified with the fact “quan(q2, 朵, 花)”. String-matching guarantees that the IE

will not operate on undesired quantities. But, it sometimes prevents the IE from operating on

desired quantities. For instance, in Figure 4, two quantity-facts “quan(q1,枝,n1p) = 2361” and

“quan(q2,枝,n2p) = 1587” are converted from “2361 枝紅筆(2361 red pens)” and “1587 枝藍

筆(1587 blue pens)”, respectively. The first argument of “Sum(…)” is “quan(?q, 枝, 筆)”

because “幾枝筆(how many pens)” is concerned in the question. The conventional unification

is not able to unify “quan(?q, 枝, 筆)” to either “quan(q1, 枝, n1p)” or “quan(q2, 枝, n2p)”

due to different strings of the third arguments. However, from the semantic point of view,

“quan(?q, 枝, 筆)” should be unified with both “quan(q1, 枝, n1p)” and “quan(q2, 枝, n2p)”,

because n1p and n2p represent “紅筆(red pens)” and “藍筆(blue pens)” respectively (and

either one is a kind of “筆(pen)”).

文具店進貨 2361 枝紅筆和 1587 枝藍筆(A stationer bought 2361 red pens and 1587 blue pens),

文具店共進貨幾枝筆(How many pens did the stationer buy)?

quan(q1,枝,n1p)=2361&verb(q1,進貨)&agent(q1,文具店)&head(n1p,筆)&color(n1p,紅)

quan(q2,枝,n2p)=1587&verb(q2,進貨)&agent(q2,文具店)&head(n2p,筆)&color(n2p,藍)

ASK Sum(quan(?q,枝,筆),verb(?q,進貨)&agent(?q,文具店))

Figure 4. An example for requiring semantic-matching

Therefore, a semantic matching method is proposed to be incorporated into the

unification procedure. The idea is to match the semantic constituent sets of the two arguments

 Designing a Tag-Based Statistical Math Word Problem Solver 17

with Reasoning and Explanation

involved in unification. For example, while matching the third arguments of two functions

during unifying the request6 “quan(?q, 枝, 筆)” with the fact “quan(q1, 枝, n1p)”, IE will

construct and compare two semantic constituent sets, one is for “筆” and the other is for “n1p”.

Let SCS denote “semantic constituent set” and SCS(x) denote the semantic constituent set of x.

In our approach, “SCS(筆) = {筆}”7 and “SCS(n1p) = {筆, color(紅)}”8 . Since “SCS(筆)” is

covered by the “SCS(n1p)”, “quan(?q, 枝, 筆)” can be unified with “quan(q1, 枝, n1p)”.

Likewise, “quan(?q, 枝, 筆)” can be unified with “quan(q2, 枝, n2p)” because “SCS(n2p) =

{筆, color(藍)}” covers “SCS(筆)”. As the result, the utility call “Sum(quan(?q,枝,筆),

verb(?q,進貨)&agent(?q,文具店))” will obtain the correct answer “3948”. On the other hand,

if the question is “文具店共進貨幾枝紅筆(How many red pens did the stationer buy)?”, the

request will become “quan(?q, 枝, n3p)”, where n3p is a pseudo nonterminal consisting of the

terminals “紅(red)” and “筆(pen)” under the noun phrase “幾枝紅筆(how many red pens)”.

Since “SCS(n3p) = {筆, color(紅)}”, “quan(?q, 枝, n3p)” can be unified only with “quan(q1,

枝, n1p)”. It cannot be unified with “quan(q2, 枝, n2p)” because SCS(n3p) cannot be covered

by SCS(n2p). Therefore, the quantity of “藍筆(blue pens)” will not be taken into account for

the question “文具店共進貨幾枝紅筆(How many red pens did the stationer buy)?”.

3.4.2 Verb Entailment (Jurafsky & Martin, 2000)

Since we might adopt the verb “買(buy)” in the body text “爸爸買了 3 本 329 元的故事書

(Papa bought three $329 books)”, but adopt the verb “付(pay)” in the question text “爸爸共要

付幾元(How much money did Papa pay)？” (as illustrated in the previous section), we need

the knowledge that “buy” implies “pay” to perform logic binding (Moldovan & Rus, 2001).

Verb entailment is thus required to identify whether there is an entailment relation between

these two verbs (Hashimoto et al., 2009). Verb entailment detection is an important function

for the IE (de Salvo Braz et al., 2006), as it can indicate the event progress and the status

changing. In the math problem “Bill had no money. Mom gave Bill two dollars, and Dad gave

Bill three dollars. How much money Bill had then?”, the entailment between “give (給)” and

“have (有)” can update the status of Bill from “no money”, then “two dollars”, and to the final

6 An FOL predicate/function in an IE utility or in the premise of an inference rule is called a request. A

request usually consists of FOL variables.
7 The SCS of a terminal consists of the terminal string only (e.g., “SCS(筆) = {筆}”).
8 SCS(n1p) is constructed by two steps. First, enumerate all facts whose first arguments are n1p. Second,

for each enumerated fact, denote the predicate name as Child-Role and the SCS of the second

argument as Child-SCS. If Child-Role is “head”, put the elements of Child-SCS into SCS(n1p).

Otherwise, for each string s in Child-SCS, put the string “Child-Role(s)” into SCS(n1p). In the first

step, the facts “head(n1p, 筆)” and “color(n1p, 紅)” are picked out. In the second step, the strings “筆”

and “color(紅)” are put into SCS(n1p).

18 Yi-Chung Lin et al.

answer “five dollars”.

We define the verb entailment problem as follows: given an ordered verb pair “(v1, v2)”

as input, we want to detect whether the entailment relation ‘v1 → v2’ holds for this pair.

E-HowNet (Chen et al., 2009; Huang et al., 2014) is adopted as the knowledge base for

solving this problem. For the previous example verb “give (給)”, we can find its conflation of

events, which has been described as the phenomenon involved in predicates where the verb

expresses a co-event or accompanying event, rather than the main event (Talmy, 1972;

Haugen, 2009; Mateu, 2012), from E-HowNet as shown in Figure 5. The conflations of events

are defined by predicates and their arguments (Huang et al., 2015), as shown in Figure 5.

Conflation of

events:

lose→agent({give|給})=theme({lose|失去}); lose→theme({give|

給})=possession({lose|失去}); obtain→theme({give|

給})=possession({obtain|得到}); obtain→target({give|

給})=theme({obtain|得到}); receive→target({give|

給})=agent({receive|收受}); receive→theme({give|

給})=possession({receive|收受})

Figure 5. The conflation events of the verb “give (給)”.

Verb entailment is vital for solving the elementary school math problem. Consider the

following math problem as a simple example:

老師原有 9 枝鉛筆,送給小朋友 5 枝後,老師還有幾枝筆？(The teacher has 9 pencils.

After giving his students 5 pencils, how many pencils he has?)

The verbs are “有(have)” and “送給(give as a gift)” in this problem. If we want to derive the

concept of “有(have)” from “送給(give as a gift)”, we can follow the direction of their

definitions in E-HowNet: “送給(give as a gift)” is a hyponym of “給(give)”, and one of its

implication from the conflation of events is “得到(obtain)”, which is a hyponym of “有

(have)”.

However, for the four verbs in this derivation, implications are defined only in the verb

“給(give)”. As we can see, given all those definitions of words in E-HowNet, we need to find

a valid path (which may involve word sense disambiguation) to determine whether there is an

entailment between two verbs. Therefore, we need a model to automatically build the relations

of these verbs by finding paths from E-HowNet or other resources, and then rank or validate

these paths to find the verb entailment. The conflation of events also indicates that when the

entailed verb pair is detected, we may further map semantic roles of these two verbs to

 Designing a Tag-Based Statistical Math Word Problem Solver 19

with Reasoning and Explanation

proceed the inference and find the solution (Wang & Zhang, 2009).

4. Proposed Statistical Framework

Since the accuracy rate of the Top-1 SR tree cannot be 100%, and the decisions made in the

following phases (i.e., STC, LFC and IE) are also uncertain, we need a statistical framework

to handle those non-deterministic phenomena. Under this framework, the problem of getting

the desired answer for a given WMP can be formulated as follows:

 argmax P ,
Ans

Ans Ans Body Qus (1)

Where Ans is the obtained answer, Ans denotes a specific possible answer, Body denotes

the given body text of the problem, and Qus denotes the question text of the problem.

The probability factor in the above equation can be further derived as follows via

introducing some related intermediate/latent random variables:

P ,

P , , , , , , ,

max P , , , , , , ,

max P , , P , , P ,

P , P , P P

B Q B Q

B Q B Q

B Q B Q B B

Q Q B Q B Q

Ans Body Qus

Ans IR LF LF SM SM ST Body Qus

Ans IR LF LF SM SM ST Body Qus

Ans IR LF LF IR LF LF ST LF SM ST

LF SM ST ST SM SM SM Body SM Qus

 (2)

IR : Inference Rules Applied.
LFB : Logic Form of Body text.
LFQ : Logic Form of Question text.
SMB : Semantic Representation of Body text.
SMQ : Semantic Representation of Question text.
ST : Solution Type.

In the above equation, we will further assume that P(Ans|IR,LFB,LFQ)≈P(Rm), where Rm is the

remaining logic factors in LFQ after the IE has bound it with LFB (with referring to the

knowledge-base adopted). Last, Viterbi decoding (Seshadri & Sundberg, 1994) could be used

to search the most likely answer with the above statistical model.

To obtain the associated parameters of the model, we will first get the initial

parameter-set from a small seed corpus annotated with various intermediate/latent variables

involved in the model. Afterwards, we perform weakly supervised learning (Artzi &

Zettlemoyer, 2013) on a partially annotated training-set (in which only the answer is annotated

with each question). That is, we iteratively conduct beam-search (with the parameter-set

obtained from the last iteration) on this partially annotated training-set starting from the given

20 Yi-Chung Lin et al.

body text (and question text) to the final obtained answer. If the annotated answer match some

of the obtained answers (within the search-beam), simply pick up the matched path with the

maximal likelihood value. We then re-estimate the parameter-set (of the current iteration)

from those picked up paths. If the annotated answer cannot match any of the obtained answers

(within the search-beam), we simply drop that case, and then repeat the above re-estimation

procedure.

5. Current Status and Future Work

Currently, we have completed all the associated modules (including Word Segmenter,

Syntactic Parser, Semantic Composer, STC, LFC, IE, and Explanation Generation), and have

manually annotated 75 samples (from our elementary school math corpus) as the seed corpus

(with syntactic tree, semantic tree, logic form, and reasoning chain annotated). Besides, we

have cleaned the original elementary school math corpus and encoded it into the appropriate

XML format. There are total 23,493 problems from six different grades; and the average

number of words of the body text is 18.2 per problem. Table 3 shows the statistics of the

converted corpus.

Table 3. MWP corpus statistics and Average length per problem.

Corpus Num. of problems

Training Set 20,093

Develop Set 1,700

Test Set 1,700

Total 23,493

Corpus
Avg. Chinese

Chars.

Avg. Chinese

Words

Body 27 18.2

Question 9.4 6.8

MWP corpus statistics Average length per problem

We have completed a prototype system which is able to solve 11 different solution types

(including Multiplication, Summation, Subtraction, Floor-Division, Algebra, Comparison,

Surplus, Difference, Ceil-Division, Common-Division and Addition), and have tested it on the

seed corpus. The success of our pilot run has demonstrated the feasibility of the proposed

approach. We plan to use the next few months to perform weakly supervised learning, as

mentioned above, and fine tune the system.

6. Related Work

To the best of our knowledge, all those MWP solvers proposed before year 2014 adopted the

rule-based approach (Mukherjee & Garain, 2008). For example, Bobrow’s STUDENT

 Designing a Tag-Based Statistical Math Word Problem Solver 21

with Reasoning and Explanation

(Bobrow, 1964; Slagle, 1965) used format matching to map the input English sentence into the

corresponding logic statement (all start with predicate “EQUAL”). Another system,

WORDPRO, was developed by Fletcher (1985) to understand and solve simple one-step

addition and subtraction arithmetic word problems designed for third-grade children. It did not

accept the surface representation of text as input. Instead it begins with a set of propositions

(manually created) that represent the text's meaning. Afterwards, the problem was solved with

a set of rules (also called schemas), which matched the given proposition and then took the

corresponding actions. Besides, it adopted key word match to obtain the answer.

Solving the problem with schemata was then adopted in almost every later system

(Mukherjee & Garain, 2008). In 1986, ARITHPRO was designed with an inheritance

network in which word classes inherit attributes from those classes above them on a verb

hierarchy (Dellarosa, 1986). The late development of ROBUST (Bakman, 2007) demonstrated

how it could solve free format word problems with multi-step arithmetic through splitting one

single sentence into two formula propositions. In this way, transpositions of problem

sentences or additional irrelevant data to the problem text do not affect the problem solution.

However, it only handles state change scenario. In 2010, Ma et al. (Ma et al., 2010) proposed

a MSWPAS system to simulate people’s arithmetic multi-step addition and subtraction word

problems behavior. It uses frame-based calculus and means-end analysis (AI planning) to

solve the problem with pre-specified rules. In 2012, Liguda and Pfeiffer (Liguda & Pfeiffer,

2012) proposed a model based on augmented semantic networks to represent the mathematical

structure behind word problems. It read and solved mathematical text problems from German

primary school books. With more attributes associated with the semantic network, it claimed

that the system was able to solve multi-step word problems and complex equation systems and

was more robust to irrelevant information. Also, it was declared that it was able to solve all

classes of problems that could be solved by the schema-based systems, and could solve around

20 other classes of word problems from a school book which were in most cases not solvable

by other systems.

Recently, Hosseini et al. (2014) proposed a Container-Entity based approach, which

solved the math word problem with a state transition sequence. Each state consists of a set of

containers, and each container specifies a set of entities identified by a few heuristic rules.

How the quantity of each entity type changes depends on the associated verb category. Each

time a verb is encountered, it will be classified (via a SVM, which is the only statistical

module adopted) into one of the seven categories which pre-specify how to change the states

of associated entities. Therefore, logic inference is not adopted. Furthermore, the anaphora and

co-reference are left un-resolved, and it only handles addition and subtraction.

Kushman et al. (2014) proposed the first statistical approach, which used a few heuristic

rules to extract the algebra equation templates (consists of variable slots and number slots)

22 Yi-Chung Lin et al.

from a set of problems annotated with equations. For a given problem, all possible

variable/number slots are identified first. Afterwards, they are aligned with those templates.

The best combination of the template and alignment (scored with a statistical model) is then

picked up. Finally, the answer is obtained from those equations instantiated from the selected

template. However, without really understanding the problem (i.e., no semantic analysis is

performed), the performance that this approach can reach is limited; also, it is sensitive to

those irrelevant statements (Hosseini et al., 2014). Furthermore, it can only solve algebra

related problems. Last, it cannot explain how the answer is obtained.

The most recent statistical approach was proposed by Roy et al. (2015), which used 4

cascade statistical classifiers to solve the elementary school math word problems: quantity

identifier (used to find out the related quantities), quantity pair classifier (used to find out the

operands), operation classifier (used to pick an arithmetic operation), and order classifier

(used to order operands for subtraction and division cases). It not only shares all the

drawbacks associated with Kushman et al. (2014), but also limits itself for allowing only one

basic arithmetic operation (i.e., among addition, subtraction, multiplication, division) with

merely 2 or 3 operand candidates.

Our proposed approach differs from those previous approaches by combining the

statistical framework with logic inference. Besides, the tag-based approach adopted for

selecting the appropriate information also distinguishes our approach from that of others.

7. Conclusion

A tag-based statistical framework is proposed in this paper to perform understanding and

reasoning for solving MWP. It first analyzes the body and question texts into their

corresponding semantic trees (with anaphora/ellipse resolved and semantic role labeled), and

then converted them into their associated tag-based logic forms. Afterwards, the inference

(based on the question logic form) is performed on the logic facts derived from the body text.

The combination of the statistical frame and logic inference distinguishes the proposed

approach from other approaches. Comparing to those rule-based approaches, the proposed

statistical approach alleviates the ambiguity resolution problem; also, our tag-based approach

provides the flexibility of handling various kinds of related questions with the same body logic

form. On the other hand, comparing to those purely statistical approaches, the proposed

approach is more robust to the irrelevant information and could more accurately provide the

answer.

The contributions of our work mainly lie in: (1) proposing a tag-based logic

representation which makes the system less sensitive to the irrelevant information and could

provide answer more precisely; (2) proposing a statistical framework for performing reasoning

from the given text.

 Designing a Tag-Based Statistical Math Word Problem Solver 23

with Reasoning and Explanation

Acknowledgment

We would like to thank Prof. Wen-Lian Hsu for suggesting this research topic and making the

original elementary school math corpus available to us, and Prof. Keh-Jiann Chen for

providing the resources and supporting this project. Besides, our thanks should be extended to

Dr. Yu-Ming Hsieh and Dr. Ming-Hong Bai for implementing the syntactic parser and the

semantic composer, respectively. Also, we would like to thank Prof. Chin-Hui Lee for

suggesting the solution type. Last, our thanks should also go to Ms. Su-Chu Lin for manually

annotating the corpus.

References

Allen, J. F. (2014). Learning a Lexicon for Broad-Coverage Semantic Parsing. In the
Proceedings of the ACL 2014 Workshop on Semantic Parsing, 1-6.

Artzi, Y., & Zettlemoyer, L. (2013). Weakly supervised learning of semantic parsers for
mapping instructions to actions. Transactions of the Association for Computational
Linguistics, 1(2013), 49-62.

Bakman, Y. (2007). Robust Understanding of Word Problems With Extraneous Information.
Retrieved from arXiv:math/0701393.

Ballard, B. & Biermann, A. (1979). PROGRAMMING IN NATURAL LANGUAGE : "NLC"
AS A PROTOTYPE. ACM-Webinar, 1979, DOI: 10.1145/800177.810072.

Berant, J., Chou, A., Frostig, R., & Liang, P. (2013). Semantic Parsing on Freebase from
Question-Answer Pairs. Conference on Empirical Methods in Natural Language
Processing (EMNLP)2013, 1533-1544.

Biermann, A. W., & Ballard, B. W. (1980). Toward Natural Language Computation. American
Journal of Computational Linguistic, 6(2), 71-86.

Biermann, A., Rodman, R., Ballard, B., Betancourt, T., Bilbro, G., Deas, H., Fineman, L.,
Fink, P., Gilbert, K., Gregory, D., & Heidlage, F. (1982). INTERACTIVE NATURAL
LANGUAGE PROBLEM SOLVING:A PRAGMATIC APPROACH. In Proc. of the
first conference on applied natural language processing, 180-191.

Bobrow, D. G. (1964). Natural language input for a computer problem solving system. Ph.D.
Dissertation, Massachusetts Institute of Technology.

Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2(3).
Doi:10.1145/1961189.1961199.

Charniak, E. (1968). CARPS, a program which solves calculus word problems. Report
MAC-TR-51, Project MAC, MIT.

Charniak, E. (1969). Computer solution of calculus word problems. In IJCAI'69 Proc. of
International Joint Conference on Artificial Intelligence, 303-316.

24 Yi-Chung Lin et al.

Chen, K.-J., Huang, S.-L., Shih, Y.-Y., & Chen, Y.-J. (2005). Extended-HowNet- A
Representational Framework for Concepts. OntoLex 2005 - Ontologies and Lexical
Resources IJCNLP-05 Workshop, Jeju Island, South Korea.

Chen, K.J., & Ma, W.Y. (2002). Unknown Word Extraction for Chinese Documents. In
Proceedings of Coling 2002, 169-175.

Das, D., Chen, D., Martins, A. F. T., Schneider, N., & Smith, N. A. (2014). Frame-Semantic
Parsing. Computational Linguistics, 40(1), 9-56.

Dellarosa, D. (1986). A computer simulation of children's arithmetic word-problem solving.
Behavior Research Methods, Instruments, & Computers, 18(2), 147-154.

Fletcher, C. R. (1985). COMPUTER SIMULATION -- Understanding and solving arithmetic
word problems: A computer simulation. Behavior Research Methods, Instruments, &
Computers, 17(5,) 565-571.

Gelb, J. P. (1971). Experiments with a natural language problem solving system. In Proc. of
IJCAI-71, 455-462.

Hashimoto, C., Torisawa, K., Kuroda, K., De Saeger, S., Murata, M., & Kazama, J. J. (2009).
Large-scale verb entailment acquisition from the web. In Proceedings of the 2009
Conference on Empirical Methods in Natural Language Processing, 3, 1172-1181.

Haugen, J. D. (2009). Hyponymous objects and Late Insertion. Lingua, 119, 242-262.

Hosseini, M. J., Hajishirzi, H., Etzioni, O., & Kushman, N. (2014). Learning to Solve
Arithmetic Word Problems with Verb Categorization. EMNLP(2014), 523-533.

Hsieh, Y.-M., Chang, J. S., & Chen, K.-J. (2014). Ambiguity Resolution for Vt-N Structures
in Chinese. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, 928-937.

Hsieh, Y.-M., Lin, S.-C., Chang, J. S., & Chen, K.-J. (2013). Improving Chinese Parsing with
Special-Case Probability Re-estimation. In Proceedings of 2013 International
Conference on Asian Language Processing (IALP), 177-180.

Hsieh, Y.-M., Yang, D.-C., & Chen, K.-J. (2007). Improve Parsing Performance by
Self-Learning. International Journal of Computational Linguistics and Chinese
Language Processing, 12(2), 195-216.

Huang, S.-L., Hsieh, Y.-M., Lin, S.-C., & Chen, K.-J. (2014). Resolving the Representational
Problems of Polarity and Interaction between Process and State Verbs. International
Journal of Computational Linguistics and Chinese Language Processing (IJCLCLP),
19(2), 33-52.

Huang, S.-L., Lin, S.-C., Ma, W.-Y., & Chen, K.-J. (2015). Semantic Roles and Semantic Role
Labeling. (CKIP technical report no. 2015-01). Institute of Information Science,
Academia Sinica.

Huang, C. T., Lin, Y. C., & Su, K. Y. (2015). Explanation Generation for a Math Word
Problem Solver. International Journal of Computational Linguistics and Chinese
Language Processing (IJCLCLP), 20(2), 27-44.

 Designing a Tag-Based Statistical Math Word Problem Solver 25

with Reasoning and Explanation

Huang, Z., Thint, M., & Qin, Z.(2008). Question classification using head words and their
hypernyms. In Proceeding of EMNLP '08 Proceedings of the Conference on Empirical
Methods in Natural Language Processing, 927-936.

Jurafsky, D., & Martin, J. H. (2000). Speech and Language Processing. New Jersey: Prentice
Hall.

Jurcıcek, F., Mairesse, F., Gašic, M., Keizer, S., Thomson, B., Yu, K., Young, S., & Gasic, M.
(2009). Transformation-based Learning for Semantic parsing. In Proceedings of
INTERSPEECH 2009, 2719-2722.

Kushman, N., Artzi, Y., Zettlemoyer, L., & Barzilay, R. (2014). Learning to Automatically
Solve Algebra Word Problems. In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics, 271-281.

Liguda, C., & Pfeiffer, T. (2012). Modeling math word problems with augmented semantic
networks. NLDB 2012, 247-252.

Loni, B. (2011). A survey of State-of-the-Art Methods on Question Classification. Literature
Survey, Published on TU Delft Repository, 2011 Jun.

Ma, W.-Y., & Chen, K.-J. (2003). Introduction to CKIP Chinese Word Segmentation System
for the First International Chinese Word Segmentation Bakeoff. In Proceedings of ACL,
Second SIGHAN Workshop on Chinese Language Processing, 168-171.

Ma, Y. H., Zhou, Y., Cui, G. Z., Ren, Y., & Huang, R. H. (2010). Frame-Based Calculus of
solving Arithmetic MultiStep Addition and Subtraction word problems. In 2010 Second
International Workshop on Education Technology and Computer Science, 476-479.

Mateu, J. (2012). Conflation and incorporation processes in resultative constructions. In
Violeta Demonte & Louise McNally (eds.), Telicity, Change, and State: A
Cross-Categorial View of Event Structure, Oxford: Oxford University Press, 252-278.

Moldovan, D., & Rus, V. (2001). Logic Form Transformation of WordNet and Its
Applicability to Question Answering. In ACL '01 Proceedings of the 39th Annual
Meeting on Association for Computational Linguistics, 402-409.

Mukherjee, A., & Garain, U. (2008). A review of methods for automatic understanding of
natural language mathematical problems. Artif Intell Rev, 29(2), 93-122.

Roy, S. I., Vieira, T. J. H., & Roth, D. I.(2015). Reasoning about Quantities in Natural
Language. TACL, 3, 1-13.

Russell, S. J. & Norvig, P. (2009). Artificial Intelligence : A Modern Approach(3rd Edition),
Prentice Hall.

de Salvo Braz, R., Girju, R., Punyakanok, V., Roth, D., & Sammons, M. (2006). An inference
model for semantic entailment in natural language. In Machine Learning Challenges.
Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising
Textual Entailment., Springer Berlin Heidelberg, 2006, 261-286.

Seshadri, N., Sundberg, C.-E.W. (1994). List Viterbi Decoding Algorithms with Applications.
IEEE Transactions on Communications, 42(234), 313-323.

26 Yi-Chung Lin et al.

Slagle, J. R. (1965). Experiments with a deductive question-answering program. J-CACM,
8(12), 792-798.

Strassel, S., Adams, D., Goldberg, H., Herr, J., Keesing, R., Oblinger, D., Simpson, H., Schrag,
R., & Wright, J. (2010). The DARPA Machine Reading Program - Encouraging
Linguistic and Reasoning Research with a Series of Reading Tasks. LREC 2010.

Talmy, L. (1972). Semantic Structures in English and Atsugewi. PhD thesis, Berkeley:
University of California at Berkeley.

Tsai, Y.-F., & Chen, K.-J. (2004). Reliable and Cost-Effective Pos-Tagging. International
Journal of Computational Linguistics & Chinese Language Processing, 9(1), 83-96.

Tseng, H. H., & Chen, K.-J. (2002). Design of Chinese Morphological Analyzer. In
Proceedings of SIGHAN 2002, 49-55.

Wang, R., & Zhang, Y. (2009). Recognizing textual relatedness with predicate-argument
structures. In Proceedings of the 2009 Conference on Empirical Methods in Natural
Language Processing, 2, 784-792.

