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Abstract 

There are many methods to improve performances of statistical parsers. Among them, resolving structural 

ambiguities is a major task. In our approach, the parser produces a set of n-best trees based on a feature-extended 

PCFG grammar and then selects the best tree structure based on association strengths of dependency word-pairs. 

However, there is no sufficiently large Treebank producing reliable statistical distributions of all word-pairs. This 

paper aims to provide a self-learning method to resolve the problems. The word association strengths were 

automatically extracted and learned by parsing a giga-word corpus. Although the automatically learned word 

associations were not perfect, the built structure evaluation model improved the bracketed f-score from 83.09% to 

86.59%. We believe that the above iterative learning processes can improve parsing performances automatically by 

learning word-dependence knowledge continuously from web. 

1. Introduction 

How to solve structural ambiguity is an important task in building a high-performance statistical parser, 

particularly for Chinese. Since Chinese is analytic language, words play different grammatical 

functions without inflections. A great deal of ambiguous structures will be produced by parsers if no 

structure evaluator is applied. There are three main steps in our approach aim to disambiguate the 

structures. The first step is to have parser produce n-best structures. Secondly, we extract word-to-word 

association from large corpora and build semantic information. The last one is to build a structural 

evaluator to find the best tree structure from n-best. Formerly, there were some approaches proposed to 

resolve structure ambiguities. For instances, 

 to add on lexical dependencies. Collins (1999) solves structural ambiguity by extracting 

lexical dependencies from Penn WSJ Treebank and applying dependencies to the statistic 

model. Lexical dependency (or Word-to-word association, WA) is one type of semantic 

information. It is a current trend to add on semantic related information in traditional 

parsers. Some incorporated word-to-word association in their parsing models, such as the 

Dependency Parsing in Chen et al. (2004). They take advantage of statistic information of 

word dependency in the parsing process to produce dependency structures. However, word 

association methods suffer low coverage for lacking very large tree-annotated training 

corpora, while checking dependency relation between word pairs.  



 to add on word semantic knowledge. CiLin and HowNet information are used in the 

statistic model in the experiment of Xiong et al. (2005). Their results prove to solve 

common parsing mistakes efficiently.  

 to use re-annotation method in grammar rule. Johnson (1998) thinks that re-annotating 

each node with the category of its parent category in Treebank is able to improve parsing 

performance. Klein et al. (2003) proposes internal/external/tag-splitting annotation 

strategies to obtain better results.  

 to build evaluator. Some people re-rank the structure values and find out the best parse 

(Collins, 2000; Charniak et al., 2005). At first hand, their parser produces a set of candidate 

parses for each sentence. Later, the reranker finds out the best tree through relevance 

features. The performance is better that without the reranker.  

This paper is going to show a self-learning method to produce imperfect (due to errors produced by 

automatic parsing) but unlimited amount of word association data to evaluate the n-best trees produced 

by a feature-extended PCFG grammar. The parser with this WA evaluation is considerably superior to 

those without evaluation. 

The organization of the paper is as follows: Section 2 describes how to generate n-best trees in a 

simple way. In Section 3, we account for building word-to-word association and a primitive semantic 

class as well. As to the design of evaluating model, our probability model, coordination of rule 

probability and word association probability are presented in section 4. In Section 5 we discuss and 

explain the experimental data and results. Ambiguities of PoS are to be considered in a practical system. 

Section 6 deals with further experiment on automatic tagging with PoS. Finally, we offer concluding 

remarks in section 7. 

2. Feature extension of PCFG grammars for producing the n-best trees  

It is clear that Treebanks (Chen et al., 2003) provide not only instances of phrasal structures and word 

dependencies but also their statistical distributions. Recently, probabilistic preferences for grammar 

rules and feature dependencies were incorporated to resolve structure-ambiguities and had great 

improvements on parsing performances. However, the automatic extracted grammars and 

feature-dependence pairs suffer the problem of low coverage. We proposed different approaches to 

solve these two different types of low coverage problems. For the low coverage of extracted grammar, 

a linguistically-motivated grammar generalization method is proposed in Hsieh et al. (2005). And the 

low coverage of word association pairs is resolved by a self-learning method of automatic parsing and 

extracting word dependency pairs from very large corpora.  

The linguistically-motivated generalized grammars are derived from probabilistic context-free 

grammars (PCFG) by right-association binarization and feature embedding (Hsieh et al., 2005). The 

binarized grammars have better coverage than the original grammars directly extracted from treebank. 

Features are embedded in the lexical and phrasal categories to improve the precision of generalized 

grammar. The important features adopted in our grammar are described in the following: 
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Head (Head feature): The PoS of phrasal head will propagate all intermediate nodes within the 

constituent. 
Example: S(NP(Head:Nh: 他 )|S’-Head:VF(Head:VF: 叫 |S’-Head:VF(NP(Head:Nb: 李 四 )| 

VP(Head:VC:撿| NP (Head:Na:球))))) 
Linguistic motivations: To constrain the sub-categorization frame. 

Left (Leftmost feature): The PoS of the leftmost constitute will propagate one–level to its 
intermediate mother-node only. 

Example: S(NP(Head:Nh: 他 )|S’-Head:VF(Head:VF: 叫 |S’-NP(NP(Head:Nb: 李 四 )| 
VP(Head:VC:撿| NP(Head:Na:球))))) 

Linguistic motivation: To constrain linear order of constituents. 

Head 0/1  
(Existence of phrasal head): 

If phrasal head exists in intermediate node, the nodes will be marked with 
feature 1; otherwise 0. 

Example: S(NP(Head:Nh:他)|S’-1(Head:VF:叫|S’-0(NP(Head:Nb:李四)|VP(Head:VC:
撿| NP(Head:Na:球))))) 

Linguistic motivation: To enforce unique phrasal head in each phrase. 

 

There are two functions in applying the embedded features: one is to increase the precision of the 

grammar and the other is to produce more candidate parse structures. With features embedded in 

phrasal categories, PCFG parsers are forced to produce varieties of different possible structures1. In 

order to achieve a better n-best oracle performance (i.e. the ceiling performance achieved by picking 

the best structure from n bests), we designed some different feature-embedded grammars and try to find 

a grammar with the better n-best oracle performance. For instance, “S(NP(Head:Nh:他)|Head:VF:叫| 

NP(Head:Nb:李四)| VP(Head:VC:撿| NP(Head:Na:球)))”. The explanations of feature sets are as 

follow. 

 
Rule type-1: 
Intermediate node: add on “Left and Head 1/0” features. 
Non-intermediate node: if there is only one member in the NP, add on “Head” feature. 
Example: S(NP-Head:Nh(Head:Nh:他)|S’-Head:VF-1(Head:VF:叫|S’-NP-0(NP-Head:Nb(Head:Nb:李
四)|VP(Head:VC:撿| NP-Head:Na(Head:Na:球))))) 
 
Rule type-2: 
Intermediate node: add on “Left and Head 1/0” features. 
Non-intermediate node: add on “Head and Left” features, if there is only one member in the NP, add 
on “Head” feature. 
Example: S-NP-Head:VF(NP-Head:Nh(Head:Nh:他)|S’-Head:VF-1(Head:VF:叫|S’-NP-0(NP-Head:Nb(Head:Nb:李
四)|VP-Head:VC(Head:VC:撿| NP-Head:Na(Head:Na:球))))) 
 
Rule type-3: 
Intermediate: add on “Left, and Head 1/0” features. 
Top-Level node: add on “Head and Left” features.   (see example of S-NP-Head:VF) 
Non-intermediate node: if there is only one member in the NP, add on “Head” feature. 
Example: S-NP-Head:VF(NP-Head:Nh(Head:Nh:他)|S’-Head:VF-1(Head:VF:叫|S’-NP-0(NP-Head:Nb(Head:Nb:李
四)|VP(Head:VC:撿| NP-Head:Na(Head:Na:球))))) 
 
 
 

                                                 
1 The parser adopts an Earley's Algorithm. It is a top-down left-to-right algorithm. So, in parts that have the same 
non-terminals, we keep only the best structure after pruning, to reduce the load of calculating and thus fasten the 
parsing speed. Therefore, if we add different features in the Top-Level rules, we'll get more results. 
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Rules and their statistical probabilities are extracted from the transformed structures. The 

grammars are derived and trained from Sinica Treebank. Sinica Treebank contains 38,944 

tree-structures and 230,979 words. Table 1 shows the number of rule types in each grammar and Table 

2 shows their 50-best oracle bracketed f-scores on three sets of testing data. The three sets of testing 

data used in our experiments represent "moderate", "difficult" and "easy" scale of Chinese language 

respectively. We adopt PARSEVAL measures to evaluate the bracketed f-score (BF)2 as Table 2. A 

bracket represents the phrasal scope. The reason we don't use labeled f-score is that we aim to evaluate 

the phrasal scope, rather than the effect brought by phrasal category.  

 

Table 1. Numbers of rules for each grammar. 

Rule Type 
 

Rule-1 Rule-2 Rule-3 

Rule number 9,899 26,797 13,652

 

Table 2. The 50-best oracle performances from the different grammars. 

Rule Type 
Testing Data Sources Hardness

Rule type-1 Rule type-2 Rule type-3 

Sinica Balanced corpus Moderate 92.97 94.84 96.25 

Sinorama Magazine Difficult 90.01 91.65 93.91 

Textbook Elementary school Easy 93.65 95.64 96.81 

 

From the above table, we can observe that the “Rule type-3” outperforms the “Rule type-1” and 

“Rule type-2”. We adopt the approach used in Charniak et al. (2005) to analyze the n-best parse. Table 

3 shows the bracketed f-score values of different candidate trees. From the result, we observe that the 

improvement after n=5 is slight. Thus the number of ambiguous candidates can be dynamically 

adjusted according to the complexity of input sentences. For normal sentences, we may consider to take 

n=5 in order to minimize the complexity. For long sentences or sentences with auto PoS tagging should 

take as large as n=50 to raise the ceiling of the best f-score. 

 

Table 3. Oracle bracketed f-scores as a function of number n of n-best parses. 

n 
Testing Data 

1 2 5 10 25 50 

Sinica 91.88 94.39 95.91 96.17 96.25 96.25 

Sinorama 86.69 90.44 92.87 93.47 93.86 93.91 

Textbook 92.24 95.01 96.21 96.61 96.78 96.81 

 

                                                 
2 The harmonic mean of bracketed precision (BP) and bracketed recall (BR), i.e. 

BRBP
BRBPBF

+
=

**2  
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For each candidate tree, its syntactic plausibility is obtained by rule probabilities produced by 

PCFG parser. Yet, we need semantic related information to help with finding the best tree structure 

among candidate trees. In the next section, we will see methods to get semantic related information.  

3. Auto-Extracting world knowledge 

In our experiments, we use a Gigaword Chinese corpus instead of texts from web to extract word 

dependence pairs. The Gigaword corpus contains about 1.12 billion Chinese characters, include 735 

million characters from Taiwan's Central News Agency (traditional characters), and 380 million 

characters from Xinhua News Agency (simplified characters)3. Word associations are extracted from 

the texts of Central News Agency (CNA). First we use Chinese Autotag System (Tsai et. al., 2003), 

developed by Academia Sinica, to process the segmentation and PoS tagging of the texts. This system 

reaches a performance of 95% segmentation ability and 93% tagging ability. Then we parse each 

sentence4 in the corpus and assign semantic roles to each constituent. Based on the head word 

information, we extract dependence word-pairs between head words and their arguments or modifiers. 

There are three types of the word pairs: (a) head word on the left hand side: (H_W_C, X_W_C); (b) 

head word on the right hand side: (X_W_C, H_W_C); (c) coordinating structure: (H_W_C, H_W_C). 

In the word pairs, “H” denotes Head, “W” means word, and “C” refers to PoS tag, “X” refers to any 

semantic role other than Head role. Figure 1 is an example of extracted word associations. The 

following illustrates how the automatic knowledge extraction works. We input a Chinese sentence to 

the parser:  

 

他 叫  李四  撿 球   

Ta  jiao  Li-si   jian  qiu 

He  ask  L-isi   pick  ball 

"He asked Li-si to pick up the ball." 

 

Here is the sentence after segmentation and PoS tagging: 

 

他(Nh) 叫(VF) 李四(Nb) 撿(VC) 球(Na) 

 

The parser analyzes the sentence structure and assigns roles to each phrase. And then word-pair 

knowledge of heads and their modifiers are extracted as shown in Figure 1. The processes above are 

repeated in new data, no matter in Gigaword or texts from the internet. Finally we obtain a great deal of 

knowledge on words and their relations, and the amount of knowledge is on the increase. Meanwhile 

the evaluator takes this knowledge is for reference as well.  

 

 
                                                 
3http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2003T09 
4An existing parser is used to produce 1-best tree of a sentence. 
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Parsing and role assignment: 
S(agent:NP(Head:Nhaa:他)|Head:VF2:叫|goal:NP(Head:Nba:李四)|theme:VP(Head: VC2: 撿| goal:NP(Head:Nab:球))) 
 
 
 
Word association extraction: 
 Role1 PoS1 Word1 Role2 PoS2 Word2 
a X Nh 他 H VF 叫 
b H VF 叫 X Nb 李四 
c H VF 叫 X VC 撿 
d H VC 撿 X Na 球  

d
c

b
a

Figure 1. A sample for word association extraction. 

 
We have 37,489,408 sentences that are successfully parsed and with word association information. 

And the number of extracted word associations is 221,482,591. The extracted word to word 

associations that undergo structure analysis and head word assignment are not perfectly correct, but 

they are more informative than simply taking words on the left and right hand window. 

3.1. Coverage rates of the word associations 

Data sparseness is always a problem of statistical evaluation methods. We test our extracted word 

association data in five different levels of granularities. Level-1 to Level-5 represents HWC_WC, 

HW_W, HC_WC, HW_C, and HC_C respectively. We like to see the bi-gram coverage rates for each 

level of representation. We divide word association data into ten. Figure 2 shows coverage relationships 

between five levels and sizes of word association data for three testing data. The extracted word 

association data are divided into ten layers of different sizes for each level. 
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Figure 2. Coverage rates vs. size of Corpus: (a) Sinica; (b) Sinorama; (c) Textbook. 
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Figure 2 shows that larger data increases the coverage rates, but the coverage of the fine-grained 

level word associations, e.g. Level-1 (HWC_WC), is about 70%, which are far from saturation. 

Nonetheless the coverage rate can be improved by reading more texts from web. The coarse-grained 

level associations, e.g. Level-5 (HC_C), cover the most category bi-gram. But it may not be very useful, 

since syntactic associations which are partially embedded in the PCFG are redundant. To achieve a 

better evaluation model, we derived new associations between semantic classes. Criteria for semantic 

classification are discussed in the following section. 

3.2. Incorporating semantic knowledge 

In this section, we propose a simple approach to build a semantic-class-based relation for words, and 

that will be Level-6 (HS_S). Semantic class information is put into Level-6 in order to get high 

coverage and to avoid redundant syntactic associations in other levels. Besides, we hope to smooth the 

problem of data sparseness. 

The idea is to classify words into their head morpheme. It begins with the transformation of every 

input "WORD, POS" in the data. We adopt affix database of high frequency verbs and nouns (Chiu et 

al., 2004) to setup noun and verb classes. There are 34,857 corresponding affixes. As to determinative 

measures (DM), we refer to the dictionary of measure words, and divide the DMs in the data into 

thirteen categories, according to the meanings of measure words. The thirteen categories include 

general, event, length, science, approximate measures, weight, square measures, container, capacity, 

time, currency value, classification measures, and measures of verbs. Finally we consult parts of speech 

analyses (CKIP, 1993) and the transformation rules of Figure 3 to build our semantic class. Take "張三, 

Nb" for example, its semantic class is "PersonalName" in our classification. 
Notation: WORD: user input Word 
 POS: user input PoS of the word 
 CLASS: transformation class of the word 
 Affix(WORD): input WORD to find mapping affix from table 
 Prefix(WORD): prefix of the WORD 
 Suffix(WORD): suffix of the WORD 
 DM(WORD): input Word to find DM category 
Input:  WORD, POS  
Output: CLASS 
Initial Step: 
 CLASS=WORD; 
 if WORD in affix table then CLASS=affix(WORD); 
 if POS is verb or adverb then CLASS=POS+prefix(WORD); 
 if POS is noun then CLASS=POS+suffix(WORD); 
Mapping Step:   
 if POS is non-predicative adjective then CLASS='A'+prefix(WORD);   /* e.g. A */ 
 if POS is preposition then CLASS='P'+suffix(WORD);  /* e.g. P */ 
 if POS is SHI then CLASS='SHI';   /* e.g. 是 */ 
 if POS is V_2 then CLASS='V_2';   /* e.g. 有 */ 
 if POS is DM or Measure and exist in DM table then CLASS=DM(WORD); /* e.g. DM/Nf */ 
 if POS is conjunction then CLASS=POS+prefix(WORD);   /* e.g. Caa/Cab/Cba/Cbb */ 
 if POS is determinative then CLASS=POS;   /* e.g. Nep/Neqa/Neqb/Nes/Neu */ 
 if POS is pronoun then CLASS=WORD;   /* e.g. Nh */ 
 if POS is time noun then CLASS='Time';   /* e.g. Nd */ 
 if POS is Postposition/Place Noun/Localizer then CLASS='Location';   /* e.g. Ng/Nc/Ncd */ 
 if POS is Proper Noun and is family names then CLASS='PersonalName';   /* e.g. Nb */ 
 if POS is aspectual adverb, CLASS=POS  /* e.g. Di */ 
 if POS is pre/post-verbal adverb of degree then CLASS='Df'+suffix(Word) /*e.g. Dfa/Dfb */ 
 if POS is VD/VCL/VL then CLASS=POS+suffix(WORD) 

Figure 3. Transformation algorithm. 
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We estimate the word association coverage rate as the above mentioned. From the results shown in 

Figure 4, the coverage rate of Level-6 is higher than Level-2, and the problem of data sparseness is 

indeed moderated. 
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Figure 4. WA coverage rate of Level-6. 

 
Now we have semantic information. How it works with rule probability to find the best structure 

among the numerous ambiguous candidates will be discussed in Section 4. 

4. Building evaluation model 

A sentence structure is evaluated by its syntactic and semantic plausibility. The syntactic plausibility is 

modeled by products of phrase rule probabilities of its syntactic tree. The semantic plausibility is 

modeled by the word association strengths between head words and their arguments or modifiers. For 

an input sentence s, the feature-embedded PCFG parser produces n-best trees of . 

The evaluating model finds out the best structure according to the rule probability (syntactic) and 

corresponding word association probability (semantic). Rule probabilities are marked when n-best trees 

are produced. We will estimate word association probabilities in the following formula. In the formula, 

“Head” means the Head member word association, as HWC, HC, HW. “Modify” means modify or 

argument member, as in WC, W, C. “freq(Head)” means Head word frequency in the corpus and 

“freq(Head, Modify)” refers to the co-occurrence frequency of “Head” and “Modify”. 

)}(),...,({ 1 sysy n

 

)(
),()|(

Headfreq
ModifyHeadfreqHeadModifyP =  (1) 

 

Data sparseness is a common problem in dealing with corpus. A minimal value σ  is used to 

smooth data sparseness, such as 
okener of WA ttotal numb

1
=σ . 

))(( syValue n  in the formula below means the final evaluation value to each candidate tree. 
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Where is the rule probability of the sentence and  is the total 

word association value in different level n. RuleValue and WAValue are normalized, i.e. 

(i-min)/(max-min). The following shows weighting in different levels and explanation of formula: 

))(( syRuleValue n ))(( syWAValue n

 

))((*))((
6

1

syWAsyWAValue n
level

levelleveln ∑
=

= θ  (3) 

∏=
)(____

)|())((
syfornassociatiowordall

nlevel
n

HeadModifyPsyWA  (4) 

 

After semantic probability collocating with rule probability, we hope to find the best tree .  )(* sy
 

))((maxarg)(* syValuesy n=  (5) 

 

where  has the best bracketed f-score. We calculate relating )(* sy λ  and θ  values from 

development sets. The development sets are adopted from trees in training data. In evaluation, we 

substitute λ  and θ  for every interval of 0.1 from 0 to 1. Then we find out the best results in certain 

probability. The experiment results will be shown in the following section. Moreover, we justify 

whether the word associations are reasonable.  

5. Experimental results 

We evaluated the performance of our evaluating model using the standard PARSEVAL metrics. Hsieh 

et al. (2005) state that the bracketed f-score of short sentence parsing (the length of a sentence is from 1 

to 5 words) is over 90% in their experiment. As a result, the following experiments are on sentences 

more than 6 words. The oracle 50-best bracketed f-scores of “Rule type-3" are listed in Table 4. 

 

Table 4. The bracketed f-scores of 1-best and oracle performance of 50-best. (sentence length 6) ≥
Testing data 

Top n-best 
Sinica Sinorama Textbook 

1-best  83.09 77.545 83.195 

50-best  90.11 87.445 89.945 

 

To simplify our evaluation model, we try to find the most effective levels of associations first. In 

turn, the evaluation model uses only one level of association and rule probabilities to select the best 

structure from n candidates. That is,  
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Figure 5 displays the results of testing data. The best results of Level-1 slightly surpass that of 

Level-2; results of Level-6 overtake that of Level-3; Level-6 has better performance than Level-5. 

Therefore, only three levels (Level-1, Level-4 and Level-6) are chosen to be calculated, for dimension 

reduction. 
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Figure 5. Matching rule with WA value in each level (sentence length 6). ≥

 

Finally we use the combination of L1, L4, and L6 associations and rule probabilities to 
evaluate plausibility of structures. Results of experiments on the three testing data are shown in 
Table 5. 

 

Table 5. The bracketed f-scores of 50-best parses (sentence length 6) ≥
Testing data 

Models 
Sinica Sinorama Textbook

R, L1, L4, L6 86.59 82.81 85.97 

 

In Table 5, we see that semantic information is effective in finding correct structure. If we 
justify the rationality of WA, about 3.5%~5.2% of the performance is raised. In our 
experiments, λ  =0.7, 1θ =0.7, 4θ =0.3, and 6θ =0.5. In Charniak et al. (2005), the f-score 

was improved from 89.7% (without reranking) to 91.02% (with reranking) for English; the 
oracle f-score was 96.8% for n-best in their paper. From the result, we see an improvement in 
the testing data. With the more data parsed, better word-association values are obtained. This 
enhances the parsing performance and reaches our goal of self-learning.  
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6. Further Experiments on Sentences with Automatic PoS Tagging 

Perfect testing data was used in the above experiments without considering PoS tagging errors. 

However, in reality, PoS tagging errors will degenerate parsing performances. The real parsing 

performances of accepting input from PoS tagging system are shown in the Table 6(1). In this table, 

"Autotag" mean to markup the best PoS on the segmented data. The naïve approach to overcome the 

PoS tagging errors is to delay some of the ambiguous PoS resolution for words with lower confidence 

tagging scores and leave the ambiguous PoS to be resolves at parsing stage. The tagging confidence of 

each word is measured by the following value.  

 

)()(
)(

 valueConfidence
,2,1

,1

wcPwcP
wcP

+
= , (7) 

 

where P(c1,w) and P(c2,w) are probabilities assigned by the tagging model for the best candidate 

“c1,w” and the second best candidate “c2,w”. 

In Table 6(2), "Autotag with confidence value=1.0" means that if confidence value <= 1.0, we list 

all possible PoSs for parser to decide. The experimental results, Table 6(2), show that delaying 

ambiguous PoS resolution does not improve parsing performances, since PoS ambiguities increase 

structure ambiguities and the PCFG parser is not robust enough to select better syntactic structures. 

 

Table 6. Oracle bracketed f-scores of different autotag for parsing:  

(1)Autotag; (2)Autotag with confidence value = 1.0. 

Testing data 
Top n-best 

Sinica Sinorama Textbook

(1) 1-best 75.31 72.05 79.27 

 50-best 84.09 83.36 87.54 

(2) 1-best 73.41 68.34 77.83 

 50-best 86.45 83.99 88.83 

 

We then apply our evaluation model to select the best structure from 50-best parses. The results 

are shown in Table 7. The experiment above takes “Rule type-3” for n-best parses. The bracketed 

f-score is raised from the original 73.41% to 79.34%, about 4% of improvement in the Sinica testing 

data. Sinorama data is improved from 68.34% to 74.78%. Textbook data is from 77.83% to 82.59%.  

All these results are raised up to 2%~4%. We can see that our evaluating model finds better results than 

Autotag. In solving the ambiguous POS, our evaluating model produces better tree structures than 

Autotag. 
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Table 7. The bracketed f-scores in Autotag  

with confidence value=1.0 and 50-best parses (sentence length 6). ≥
Testing data 

Models 
Sinica Sinorama Textbook

R, L1, L4, L6 79.34 74.78 82.59 

 

 

7. Conclusion 

Parsers of any language aim to correctly analyze the syntactic structure of a sentence, often with the 

help of semantics. This paper shows a self-learning method to produce imperfect (due to errors 

produced by automatic parsing) but unlimited amount of word association data to evaluate the n-best 

trees produced by a feature-extended PCFG grammar. We prove that although the statistical association 

strengths produced by automatic parsing are not perfect, still the extracted data is reliable enough in 

measuring plausibility of ambiguous structures. The parser with this WA evaluation is considerably 

superior to those without evaluation. We believe that the above iterative learning processes can improve 

parsing performances automatically by learning word-dependence knowledge continuously from web. 

We also propose an easy method to produce n-best of a sentence. First of all we slightly modify the 

parser to produce n-best. Then different feature sets in grammar rules are used to bring forth different 

results. There is one feature set that covers more structures than the original 1-best. In our experiments, 

we use 50-best to estimate the efficiency of our evaluating model. 

On the other hand, we offer a general syntactic and semantic evaluation model. We input n-best 

parses to our evaluating model. The evaluating model selects the best parse from this set of parses 

using a rule and semantic probability. The system we described, using the standard PARSEVAL 

framework, has a bracketed f-score of the selected trees, which is 86.59% higher to the original 1-best. 

Furthermore, ambiguous PoS of a word is also parsed and evaluated on n-best. We can see that our 

evaluating model finds better results than Autotag.  

In the future research, we plan to improve the quality of word-association. Three aspects need to 

done: improving the accuracy of PoS tagger; enhancing the parser's ability to solve common mistakes, 

such as parsing conjunctive structures; extracting more word associations by reading and parsing text 

from web. As to the evaluating model, a properly corresponding semantic classifications from coarse to 

fine-grained category are needed in Level-6. 
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