
Proceedings of NAACL-HLT 2019, pages 3415–3420
Minneapolis, Minnesota, June 2 - June 7, 2019. c©2019 Association for Computational Linguistics

3415

Domain adaptation for part-of-speech tagging of noisy user-generated text

Luisa März and Dietrich Trautmann and Benjamin Roth
CIS, University of Munich (LMU) Munich, Germany

{luisa.maerz, dietrich, beroth}@cis.lmu.de

Abstract
The performance of a Part-of-speech (POS)
tagger is highly dependent on the domain of
the processed text, and for many domains there
is no or only very little training data avail-
able. This work addresses the problem of
POS tagging noisy user-generated text using
a neural network. We propose an architec-
ture that trains an out-of-domain model on
a large newswire corpus, and transfers those
weights by using them as a prior for a model
trained on the target domain (a data-set of Ger-
man Tweets) for which there is very little an-
notations available. The neural network has
two standard bidirectional LSTMs at its core.
However, we find it crucial to also encode a set
of task-specific features, and to obtain reliable
(source-domain and target-domain) word rep-
resentations. Experiments with different reg-
ularization techniques such as early stopping,
dropout and fine-tuning the domain adaptation
prior weights are conducted. Our best model
uses external weights from the out-of-domain
model, as well as feature embeddings, pre-
trained word and sub-word embeddings and
achieves a tagging accuracy of slightly over
90%, improving on the previous state of the
art for this task.

1 Introduction

Part-of-speech (POS) tagging is a prerequisite for
many applications and necessary for a wide range
of tools for computational linguists. The state-
of-the art method to implement a tagger is to use
neural networks (Ma and Hovy, 2016; Yang et al.,
2018). The performance of a POS tagger is highly
dependent on the domain of the processed text and
the availability of sufficient training data (Schn-
abel and Schütze, 2014). Existing POS taggers for
canonical German text already achieve very good
results around 97% accuracy, e.g. (Schmid, 1999;
Plank et al., 2016). When applying these trained
models to out-of-domain data the performance de-
creases drastically.

One of the domains where there is not enough
data is online conversational text in platforms such
as Twitter, where the very informal language ex-
hibits many phenomena that differ significantly
from canonical written language.

In this work, we propose a neural network that
combines a character-based encoder and embed-
dings of features from previous non-neural ap-
proaches (that can be interpreted as an inductive
bias to guide the learning task). We further show
that the performance of this already effective tag-
ger can be improved significantly by incorporating
external weights using a mechanism of domain-
specific L2-regularization during the training on
in-domain data. This approach establishes state-
of-the-art results of 90.3% accuracy on the Ger-
man Twitter corpus of Rehbein (2013).

2 Related Work

The first POS tagging approach for German Twit-
ter data was conducted by Rehbein (2013) and
reaches an accuracy of 88.8% on the test set using
a CRF. They use a feature set with eleven differ-
ent features and an extended version of the STTS
(Schiller et al., 1999) as a tagset. Gimpel et al.
(2011) developed a tagset for English Twitter data
and report results of 89.37% on their test set using
a CRF with different features as well. POS tagging
for different languages using a neural architecture
was successfully applied by Plank et al. (2016).
The data comes from the Universal Dependencies
project1 and mainly contains German newspaper
texts and Wikipedia articles.

The work of Barone et al. (2017) investigates
different regularization mechanisms in the field of
domain adaptation. They use the same L2 regular-
ization mechanism for neural machine translation,
as we do for POS tagging.

1http://universaldependencies.org

http://universaldependencies.org


3416

3 Data

3.1 Tagset

The Stuttgart-Tübingen-TagSet (STTS, Schiller
et al. (1999)) is widely used as the state-of-the-
art tagset for POS tagging of German. Bartz et al.
(2013) show that the STTS is not sufficient when
working with textual data from online social plat-
forms, as online texts do not have the same charac-
teristics as formal-style texts, nor are identical to
spoken language. Online conversational text often
contains contracted forms, graphic reproductions
of spoken language such as prolongations, inter-
jections and grammatical inconsistencies as well
as a high rate of misspellings, omission of words
etc.

For POS tagging we use the tagset of Rehbein
(2013), where (following Gimpel et al. (2011)) ad-
ditional tags are provided to capture peculiarities
of the Twitter corpus. This tagset provides tags
for @-mentions, hashtags and URLs. They also
provide a tag for non-verbal comments such as
*Trommelwirbel* (drum-roll). Additional, com-
plex tags for amalgamated word forms were used
(see Gimpel et al. (2011)). Overall the tagset used
in our target domain contains 15 tags more than
the original STTS.

3.2 Corpora

Two corpora with different domains are used in
this work. One of them is the TIGER corpus and
the other is a collection of German Twitter data.

The texts in the TIGER corpus (Brants et al.,
2004) are taken from the Frankfurter Rundschau
newspaper and date from 1995 over a period of
two weeks. The annotation of the corpus was cre-
ated semi automatically. The basis for the annota-
tion of POS tags is the STTS. The TIGER corpus
is one of the standard corpora for German in NLP
and contains 888.505 tokens.

The Twitter data was collected by Rehbein
(2013) within eight months in 2012 and 2013. The
complete collection includes 12.782.097 distinct
tweets, from which 1.426 tweets were randomly
selected for manual annotation with POS tags.
The training set is comparably small and holds 420
tweets, whereas the development and test set hold
around 500 tweets each (overall 20.877 tokens).
Since this is the only available German annotated
Twitter corpus, we use it for this work.

3.3 Pretrained word vectors

The usage of pretrained word embeddings can be
seen as a standard procedure in NLP to improve
the results with neural networks (see Ma and Hovy
(2016).

3.4 FastText

FastText2 provides pretrained sub-word embed-
dings for 158 different languages and allows to
obtain word vectors for out-of-vocabulary words.
The pretrained vectors for German are based
on Wikipedia articles and data from Common
Crawl3. We obtain 97.988 different embeddings
for the tokens in TIGER and the Twitter corpus of
which 75.819 were already contained in Common
Crawl and 22.171 were inferred from sub-word
units.

3.5 Word2Vec

Spinningbytes4 is a platform for different applica-
tions in NLP and provides several solutions and
resources for research. They provide word em-
beddings for different text types and languages, in-
cluding Word2Vec (Mikolov et al., 2013) vectors
pretrained on 200 million German Tweets. Overall
17.030 word embeddings form the Spinningbytes
vectors are used (other words are initialized all-
zero).

3.6 Character level encoder

Lample et al. (2016) show that the usage of a char-
acter level encoder is expedient when using bidi-
rectional LSTMs. Our implementation of this en-
coder follows Hiroki Nakayama (2017)5, where
character embeddings are passed to a bidirectional
LSTM and the output is concatenated to the word
embeddings.

4 Experiments

This section describes the proposed architecture
of the neural network and the conditional random
field used in the experiments. For comparison of
the results we also experiment with jointly train-
ing on a merged training set, which contains the
Twitter and the TIGER training sets.

2https://fasttext.cc
3https://commoncrawl.org
4https://www.spinningbytes.com
5https://github.com/Hironsan/anago

https://fasttext.cc
https://commoncrawl.org
https://www.spinningbytes.com
https://github.com/Hironsan/anago


3417

Figure 1: Final architecture of the neural model. Layers
that are passed pretrained weights are hatched in gray.
Dropout affected layers are highlighted in green.

4.1 Methods
4.1.1 Conditional random field baseline
The baseline CRF of Rehbein (2013) achieves an
accuracy of 82.49%. To be comparable with their
work we implement a CRF equivalent to their
baseline model. Each word in the data is repre-
sented by a feature dictionary. We use the same
features as Rehbein proposed for the classifica-
tion of each word. These are the lowercased word
form, word length, number of uppercase letters,
number of digits and occurrence of a hashtag,
URL, @-mention or symbol.

4.1.2 Neural network baseline
The first layer in the model is an embedding layer.
The next layers are two bidirectional LSTMs. The
baseline model uses softmax for each position in
the final layer and is optimized using Adam core
with a learning rate of 0.001 and the categorical
crossentropy as the loss function.

4.1.3 Extensions of the neural network
The non neural CRF model benefits from different
features extracted from the data. Those features
are not explicitely modeled in the neural baseline
model, and we apply a feature function for the ex-
tended neural network. We include the features
used in the non-neural CRF for hashtags and @-
mentions. In addition, we capture orthographic
features, e.g., whether a word starts with a digit
or an upper case letter. Typically, manually de-
fined features like these are not used in neural

networks, as a neural network should take over
feature engineering completely. Since this does
not work optimally, especially for smaller data
sets, we have decided to give the neural network
this type of information as well. Thus we com-
bine the advantages of classical feature engineer-
ing and neural networks. This also goes along with
the observations of Plank et al. (2018) and Sagot
and Martı́nez Alonso (2017), who both show that
adding conventional lexical information improves
the performance of a neural POS tagger. All words
are represented by their features and for each fea-
ture type an embedding layer is set up within the
neural network in order to learn vectors for the dif-
ferent feature expressions. Afterwards all the fea-
ture embeddings are added together. As the next
step we use the character level layer mentioned in
section 3.6 (Lample et al., 2016). The following
vector sequences are concatenated at each position
and form the input to the bidirectional LSTMs:

• Feature embedding vector

• character-level encoder

• FastText vectors

• Word2Vec vectors

4.1.4 Domain Adaptation and regularization
We train the model with the optimal setting on the
TIGER corpus, i.e., we prepare the TIGER data
just like the Twitter data and extract features, in-
clude a character level layer and use pretrained
embeddings. We extract the weights Ŵ that were
optimized with TIGER. The prior weights Ŵ are
used during optimization as a regularizer for the
weights W used in the final model (trained on
the Twitter data). This is achieved by adding the
penalty term RW , as shown in Equation 1, to the
objective function (cross-entropy loss).

RW = λ||W − Ŵ ||22 (1)

The regularization is applied to the weights of the
two LSTMs, the character LSTM, to all of the em-
bedding layers and to the output layer.

As a second regularization mechanism we in-
clude dropout for the forward and the backward
LSTM layers. We also add 1 to the bias of the
forget gate at initialization, since this is recom-
mended in Jozefowicz et al. (2015). Additionally,
we use early stopping. Since the usage of different
regularization techniques worked well in the ex-
periments of Barone et al. (2017), we also tried the



3418

combination of different regularizers in this work.
Figure 1 shows the final architecture of our model.

4.2 NCRF++

We also report results obtained by training the se-
quence labelling tagger of Yang and Zhang (2018),
NCRF++. They showed that their architecture
produces state-of-the-art models across a wide
range of data sets (Yang et al., 2018) so we used
this standardized framework to compare it with
our model.

5 Results

5.1 Experimental Results

Table 1 shows the results on the Twitter test set.
The feature-based baseline CRF outperforms the
baseline of the neural net with more than 20 per-
centage points. After adding the feature informa-
tion, the performance of the neural baseline is im-
proved by 13 percentage points, which is under-
standable, because many German POS tags are
case sensitive.

experiment accuracy
baseline crf 0.831
baseline neural model 0.634
neural model

+features 0.768
+character embeddings 0.796
+pretrained word vectors 0.845
+l2 domain adaptation 0.896
+dropout 0.903

neural model joint training 0.894
final CRF of Rehbein 2013 0.888
NCRF++ system 0.887

Table 1: Results on the test set using the time-
distributed layer.

The model’s performance increases by another
3 percentage points if the character level layer
is used. Including the pretrained embeddings,
FastText and Word2Vec vectors, the accuracy is
84.5%, which outperforms the CRF baseline.

Figure 2 shows the impact of domain adaptation
and fine-tuning the prior weight. The value of the
λ parameter in the regularization formula 1 can
control the degree of impact of the weights on the
training. Excluding the pretrained weights means
that λ is 0. We observe an optimal benefit from
the out-of-domain weights by using a λ value

10−5 10−4 10−3 10−2 10−1 100

0,75

0,8

0,85

0,9

results on test set
results on development set

Figure 2: Influence of fine-tuning on the results on
dev and test set in accuracy (y-axis). The x-axis cor-
responds to the different λ values.

of 0.001. This is in line with the observations
of Barone et al. (2017) for transfer-learning for
machine translation.

Overall the addition of the L2 fine-tuning can
improve the tagging outcome by 5 percentage
points, compared to not doing domain adaptation.
A binomial test shows that this improvement is
significant. This result confirms the intuition that
the tagger can benefit from the pretrained weights.
On top of fine-tuning different dropout rates were
added to both directions of the LSTMs for the
character level layer and the joint embeddings. A
dropout rate of 75% is optimal in our scenario,
and it increases the accuracy by 0.7 percentage
points.

The final 90.3% on the test set outperform
the results of Rehbein (2013) by 1.5 percentage
points.Our best score also outperforms the ac-
curacy obtained with the NCRF++ model. This
shows that for classifying noisy user-generated
text, explicit feature engineering is beneficial, and
that the usage of domain adaptation is expedient
in this context. Joint training, using all data
(out-of-domain and target domain), can obtain
an accuracy score of 89.4%, which is about 1
percentage point worse than using the same data
with domain adaptation. The training setup for
the joint training is the same as for the other
experiments and includes all extensions except for
the domain adaptation.

5.2 Error Analysis
The most frequent error types in all our systems
were nouns, proper nouns, articles, verbs, adjec-



3419

Figure 3: Total number of errors for the six most fre-
quent POS-tags and different experimental settings

tives and adverbs as pictured in figure 3. By in-
cluding the features the number of errors can be
reduced drastically for nouns. Since we included
a feature that captures upper and lower case, and
nouns as well as proper nouns are written upper
case in German, the model can benefit from that
information. The pretrained word embeddings
also help classifying nouns, articles, verbs, adjec-
tives and adverbs. Only the errors with proper
nouns increase slightly. Compared to only includ-
ing the features, the model can benefit from adding
both, the character level layer and the pretrained
word vectors, while the results for tagging proper
nouns and articles are still slightly worse than the
baseline. In contrast the final experimental setup
can optimize the results for every POS tag com-
pared to the baseline, see figure 3. Slightly in case
of articles and proper nouns, but markedly for the
other tags. A comparison of the baseline errors
and the errors of the final system shows that Twit-
ter specific errors, e.g. with @-mentions or URLs,
can be reduced drastically. Only hashtags still
pose a challenge for the tagger. In the gold stan-
dard words with hashtags are not always tagged as
such, but sometimes are classified as proper nouns.
This is due to the fact that the function of the to-
ken in the sentence is the one of a proper noun.
Thus the tagger has decision problems with these
hashtags. Other types of errors, such as confusion
of articles or nouns, are not Twitter-specific issues,
but are often a problem with POS tagging and can
only be fixed by general improvement of the tag-
ger.

6 Conclusion

We present a deep learning based fine-grained
POS tagger for German Twitter data using both

domain adaptation and regularization techniques.
On top of an efficient POS tagger we implemented
domain adaptation by using a L2-norm regular-
ization mechanism, which improved the model’s
performance by 5 percentage points. Since this
performance is significant we conclude that fine-
tuning and domain adaptation techniques can suc-
cessfully be used to improve the performance
when training on a small target-domain corpus.

Our experiments show that the combination of
different regularization techniques is recommend-
able and can further optimize already efficient sys-
tems.

The advantage of our approach is that we do not
need a large annotated target-domain corpus, but
only pretrained weights. Using a pretrained model
as a prior for training on a small amount of data is
done within minutes and therefore very practica-
ble in real world scenarios.

References
Antonio Valerio Miceli Barone, Barry Haddow, Ulrich

Germann, and Rico Sennrich. 2017. Regularization
techniques for fine-tuning in neural machine trans-
lation. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1489–1494. Association for Computa-
tional Linguistics.

Thomas Bartz, Michael Beisswenger, and Angelika
Storrer. 2013. Optimierung des stuttgart-tübingen-
tagset für die linguistische annotation von korpora
zur internetbasierten kommunikation: Phä-
nomene, herausforderungen, er-
weiterungsvorschläge. JLCL, 28:157–198.

Sabine Brants, Stefanie Dipper, Peter Eisenberg, Sil-
via Hansen-Schirra, Esther König, Wolfgang Lezius,
Christian Rohrer, George Smith, and Hans Uszkor-
eit. 2004. Tiger: Linguistic interpretation of a ger-
man corpus. Research on Language and Computa-
tion, 2(4):597–620.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein,
Michael Heilman, Dani Yogatama, Jeffrey Flanigan,
and Noah A. Smith. 2011. Part-of-speech tagging
for twitter: Annotation, features, and experiments.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies: Short Papers - Volume 2,
HLT ’11, pages 42–47, Stroudsburg, PA, USA. As-
sociation for Computational Linguistics.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya
Sutskever. 2015. An empirical exploration of re-
current network architectures. In Proceedings of
the 32Nd International Conference on International



3420

Conference on Machine Learning - Volume 37,
ICML’15, pages 2342–2350. JMLR.org.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270. Association for Computational Lin-
guistics.

Xuezhe Ma and Eduard H. Hovy. 2016. End-to-end
sequence labeling via bi-
directional lstm-cnns-crf. CoRR, abs/1603.01354.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Barbara Plank, Sigrid Klerke, and Zeljko Agic. 2018.
The best of both worlds: Lexical resources to im-
prove low-resource part-of-speech tagging. CoRR,
abs/1811.08757.

Barbara Plank, Anders Søgaard, and Yoav Goldberg.
2016. Multilingual part-of-speech tagging with
bidirectional long short-term memory models and
auxiliary loss. CoRR, abs/1604.05529.

Ines Rehbein. 2013. Fine-grained pos tagging of ger-
man tweets. In Language Processing and Knowl-
edge in the Web, pages 162–175, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Benoı̂t Sagot and Héctor Martı́nez Alonso. 2017. Im-
proving neural tagging with lexical information. In
Proceedings of the 15th International Conference on
Parsing Technologies, pages 25–31. Association for
Computational Linguistics.

Anne Schiller, Simone Teufel, Christine Stckert, and
Christine Thielen. 1999. Guidelines fr das tagging
deutscher textcorpora mit stts (kleines und groes
tagset). Seminararbeit, University of Stuttgart, Uni-
versity of Tbingen.

H. Schmid. 1999. Improvements in Part-of-Speech
Tagging with an Application to German, pages 13–
25. Springer Netherlands, Dordrecht.

Tobias Schnabel and Hinrich Schütze. 2014. Flors:
Fast and simple domain adaptation for part-of-
speech tagging. Transactions of the Association for
Computational Linguistics, 2:15–26.

Jie Yang, Shuailong Liang, and Yue Zhang. 2018. De-
sign challenges and misconceptions in neural se-
quence labeling. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics
(COLING).

Jie Yang and Yue Zhang. 2018. Ncrf++: An open-
source neural sequence labeling toolkit. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics.

http://arxiv.org/abs/1811.08757
http://arxiv.org/abs/1811.08757
http://aclweb.org/anthology/W17-6304
http://aclweb.org/anthology/W17-6304
http://aclweb.org/anthology/C18-1327
http://aclweb.org/anthology/C18-1327
http://aclweb.org/anthology/C18-1327
http://aclweb.org/anthology/P18-4013
http://aclweb.org/anthology/P18-4013

