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Abstract
We propose a simple and accurate model for
coordination boundary identification. Our
model decomposes the task into three sub-
tasks during training; finding a coordinator,
identifying inside boundaries of a pair of con-
juncts, and selecting outside boundaries of it.
For inference, we make use of probabilities of
coordinators and conjuncts in the CKY parsing
to find the optimal combination of coordinate
structures. Experimental results demonstrate
that our model achieves state-of-the-art results,
ensuring that the global structure of coordina-
tions is consistent.

1 Introduction

Coordination is a frequently occurring structure
that consists of conjuncts joined by a coordina-
tor word. Since conjunct spans are one of the
major ambiguities, identifying them is difficult,
even for humans. For instance, in the sentence
“Toshiba’s line of portables, for example, features
the T-1000, which is in the same weight class but is
much slower and has less memory, and the T-1600,
which also uses a 286 microprocessor, but which
weighs almost twice as much and is three times
the size,” we cannot find correct conjuncts for each
coordinator at a glance. The presence of coordina-
tion makes a sentence more ambiguous and longer,
resulting in errors in syntactic parsing.

To identify the conjuncts of a given coordina-
tor, previous studies have explored two properties
of coordinate structures: (1) similarity – conjuncts
tend to be similar; (2) replaceability – conjuncts
can be replaced. Ficler and Goldberg (2016b)
combine the syntactic parser and neural networks
to compute the similarity and replaceability fea-
tures of conjuncts. Teranishi et al. (2017) also
exploit the two properties without deploying any
syntactic parser, and achieve state-of-the-art re-
sults. Although both approaches outperform the

similarity-based approaches (Shimbo and Hara,
2007; Hara et al., 2009), they cannot handle more
than two conjuncts in a coordination, and multiple
coordinations in a sentence at one time. Hence,
their systems may produce coordinations that con-
flict with each other. In contrast, Hara et al. (2009)
define production rules for coordination in order to
output consistent coordinate structures.

Here, we propose a new framework for coordi-
nation boundary identification. We generalize a
scoring function that takes a pair of spans with
a coordinator and returns a higher score when
the two spans appear to be coordinated. Using
this function in the CKY parsing with produc-
tion rules for coordination, our system produces
globally consistent coordinations in a given sen-
tence. To obtain such a function, we decompose
the task into three independent subtasks – find-
ing a coordinator, identifying the inner boundaries
of a pair of conjuncts and delineating its outer
boundaries. We use three different neural net-
works for the tasks, and the networks are trained
on the basis of their local decisions. Our method
is inspired by recent successes with locally-trained
models for structured inference problems such as
constituency parsing (Teng and Zhang, 2018) and
dependency parsing (Dozat and Manning, 2017)
without globally-optimized training. Experimen-
tal results reveal that our model outperforms ex-
isting systems and our strong baseline, an exten-
sion of Teranishi et al. (2017), and ensures that the
global structure of the coordinations is consistent.

In summary, our contributions include the fol-
lowing:

• We propose a simple framework that trains a
generalized scoring function of a pair of con-
juncts and uses it for inference.
• We decompose the task and use three local

models that interoperate for the CKY parsing.
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• We establish a system that can accommodate
more than two conjuncts in a sentence.
• Our system outperforms existing ones, par-

ticularly because it produces globally consis-
tent coordinate structures.

2 Coordination Boundary Identification

2.1 Coordinate Structure

A coordinate structure or coordination is a syn-
tactic structure in which two or more elements,
known as conjuncts, are linked by coordinator(s).
In addition to coordinating words, such as “and,”
“or,” or “but,” some punctuation marks function
secondarily to connect two conjuncts. We refer
to those punctuation marks as sub-coordinators.
Sub-coordinators cannot independently conjoin
phrases to form a coordinate structure. The pres-
ence of a coordination is usually signaled by the
appearance of a coordinator; however, coordinat-
ing words do not always lead to coordinations. For
instance, “but” is not a coordinator when it func-
tions as a preposition. In this paper, we refer to a
word that can be a coordinator or sub-coordinator
as a coordinator key.

2.2 Task Definition and Difficulties

The task of coordination boundary identification
is to find conjunct spans of a given coordinating
word. If a coordinating word does not act as a
coordinator, a system must return NONE; denot-
ing the absence of a coordinate structure. The
difficulties in this task arise when there are mul-
tiple coordinate structures in a sentence or more
than two conjuncts in a single coordinate struc-
ture. If there is more than one coordinate struc-
ture in a sentence, each coordinate structure must
be isolated from the others or integrated into the
other(s). In other words, coordinate structures
cannot be partially overlapped. When there are
more than two conjuncts in a coordinate structure,
it has to be ascertained whether the punctuation
marks are sub-coordinators that bring one more
conjunct, and if so, which coordinate structure
they belong to. Thus, we must identify how many
conjuncts a coordinate structure contains and the
location of those conjuncts in the coordinate struc-
ture — whether it is nested in or isolated from
other coordinate structures.
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e.g.)  It also recommends better retirement and day-care benefits, and basing 
pay on education, experience and nurses’ demanding work schedules.

Figure 1: An example of a coordinate tree.

2.3 Coordinate Structures as a Tree

Invoking Shimbo and Hara (2007), we use a tree to
represent the coordinate structures in a sentence.
We call this tree a coordinate tree. Figure 1 shows
an example of a coordinate tree. Tree structures
are particularly suitable because the ranges of co-
ordinate structures are always consistent, and con-
juncts are shown as nodes without being limited by
the frequency of their occurrence. Our system pro-
duces a coordinate tree using the CKY algorithm
and then retrieves well-formed coordinate struc-
tures from the tree. In this work, we focus on how
to learn the scoring function that assigns higher
scores to probable pairs of conjuncts for the CKY
parsing.

3 Proposed Method

Our proposed model consists of three parts: a
coordinator classifier and the inner and outer-
boundary scoring models. Figure 2 is the overview
of our framework. The coordinator classifier is
a binary classifier that ascertains whether a word
functions as a coordinator or not. The inner-
boundary scoring model computes the score for a
pair of conjuncts on the basis of their boundaries
that are in proximity to a coordinator. This means
that the model produces a score based on the end
of the left conjunct and the beginning of the right
conjunct. Similarly, the outer-boundary scoring
model assigns a score to a pair of the beginning
of the left conjunct and the end of the right con-
junct. Using the inner and outer-boundary scoring
models, our model calculates all possible combi-
nations of the four boundaries, and then produces
their probabilities. Given the local probabilities,
we run the CKY algorithm to find the globally
optimal coordinate structures in the sentence. In
this section, we formulate our model based on the
details of the neural networks’ architecture; after-
ward, we describe the parsing method.
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Figure 2: Overview of the proposed framework for coordination boundary identification. The scores of circular
nodes are assigned by the coordinator classifier, and the scores of rectangular nodes are assigned by the inner and
outer-boundary scoring models.

3.1 Model

Given a sentence that consists of N words
w1:N = w1, . . . , wN with the corresponding part-
of-speech (POS) tags p1:N = p1, . . . , pN , our
model outputs a set of coordinate structures
{〈c, {[b1, e1], . . . , [bn, en]}〉}(n ≥ 2) where c is a
coordinator and [bk, ek] is the k-th conjunct span-
ning from the bk-th word to the ek-th word. Al-
though we cannot know the number of coordinate
structures and conjuncts in each coordinate struc-
ture, we can use coordinator keys as clues to find
pairs of conjuncts. Our model tries to find pairs
of conjuncts, rather than coordinate structures, in
a sentence.

X = {w1:N , p1:N , C}
C = {t|wt ∈ Scc ∪ Ssub-cc}

Y = {〈yckeyt , ypairt 〉|t ∈ C}
(1)

where yckeyt is a label that indicates whether
wt is the actual coordinator (yckeyt = 1) or not
(yckeyt = 0), and ypairt is a pair of conjunct spans.
ypairt = ∅ when yckeyt = 0. When t = 1 or t = N ,
yckeyt = 0 because it does not form a coordinate
structure within the sentence. In this paper, we de-
fine Scc and Ssub-cc as {“and”, “or”, “but”, “nor”,
“and/or”} and {“,”, “;”, “:”}, respectively. We use
two different models to identify inner and outer
boundaries of ypairt , because enumerating all pos-

sible inner and outer boundaries of ypairt requires
time complexity O(N2) + O(N2) = O(N2),
whereas enumerating all possible ypairt requires
time complexity O(N4)1.

Coordinator Classifier
The coordinator classifier is a binary classifier that
predicts the label of a coordinator key.

P (yckeyt |wt, θ) = softmax(fckey(wt)) (2)

The training loss of the binary classification is
computed by the following equation:

`ckeyθ (X,Y ) = −
∑

〈yckeyt ,ypairt 〉∈Y

logP (yckeyt |wt, θ)

(3)

Inner-Boundary Scoring Model
The inner-boundary scoring model assigns a score
to a pair of conjunct spans on the basis of inner
boundaries. We use bl, el, br, er to denote the be-
ginning of a left conjunct, the end of the left con-
junct, the beginning of a right conjunct, and the
end of the right conjunct, respectively. The score

1For division of four boundaries, “two beginnings and two
ends” or “left span and right span” can be chosen instead. In
preliminary experiments, “left span and right span” models
perform poorly, and “two beginnings and two ends“ mod-
els perform well, but worse than “inner and outer-boundary”
models.
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of the inner-boundary pair (el, br) for a coordina-
tor key wt is calculated as follows:

SCOREinnerθ (el, br, wt) = finner(e
l, br, wt) (4)

The probabilities of the inner boundaries are
normalized distributions over all possible inner
boundary pairs:

Iwt = {(1, t+ 1), (1, t+ 2), . . . , (1, N),

(2, t+ 1), . . . , (t− 1, N)}
(5)

P (ypairt = ([∗, el], [br, ∗])|wt, θ) =
exp (SCOREinnerθ (el, br, wt))∑

(e′l,b′r)∈Iwt

exp (SCOREinnerθ (e′l, b′r, wt))
(6)

`innerθ (X,Y ) =

−
∑

〈yckeyt ,ypairt 〉∈Y

yckeyt logP (ypairt |wt, θ) (7)

The term yckeyt logP (ypairt |wt, θ) means the
cross-entropy loss is activated only for positive co-
ordinator keys (yckeyt = 1) and is disabled other-
wise (yckeyt = 0).

Outer-Boundary Scoring Model
Similarly to the inner-boundary scor-
ing model, we define the probability
P (ypairt = ([bl, ∗], [∗, er])|wt, θ) based on the
set of all the outer-boundary pairs Owt ; the loss
is defined as `outerθ using the scoring function
SCOREouterθ (bl, er, wt) = fouter(b

l, er, wt).
Note that Iwt and Owt are identical be-
cause their possible pairs are the same.
Based on the inner pair probability
P (ypairt = ([∗, el], [br, ∗])|wt, θ) and the outer
pair probability P (ypairt = ([bl, ∗], [∗, er])|wt, θ),
the most probable pair is produced by:

ypairt = argmax
(êl,b̂r)

P (([∗, êl], [b̂r, ∗])|wt, θ)

∪ argmax
(b̂l,êr)

P (([b̂l, ∗], [∗, êr])|wt, θ)
(8)

3.2 CKY Parsing
Our three models predict coordinators including
sub-coordinators, and the inner and outer bound-
aries of their coordinating conjuncts. Such local
predictions may cause conflicts between different
coordinate structures. Furthermore, two conjuncts

Non-terminals
COORD Coordination
CONJ Conjunct
CC Coordinating conjunction
CC-SUB Sub-coordinator
W Word
N Non-coordination
S Sentence
Rules for coordinations
(1) COORD → CONJ N? CC N? CONJ
(2) COORD → CONJ CC-SUB COORD
(3) CONJ → COORD
(4) CONJ → N
Rules for non-coordinations
(5) S → COORD
(6) S → N
(7) N → COORD N
(8) N → W COORD
(9) N → W N
(10) N → W
Rules for pre-terminals
(11) CC → (and|or|but|nor|and/or)
(12) CC-SUB → (,|;|:)
(13) W → *

Table 1: Production rules for coordinate trees. (. . . |. . . )
matches one of the elements and “*” matches any word.
“?” indicates zero or one occurrence of the preceding
element.

linked by a sub-coordinator must be embedded in
another coordinate structure formed by a coordi-
nator. To overcome these limitations, we use the
CKY algorithm to find the optimal coordinations
in a sentence. In particular, we define the CFG
rules to produce a coordinate tree, as used in Hara
et al. (2009). Our CFG rules, distinct from those of
Hara et al. (2009) 2, are shown in Table 1. Based
on these rules, we can map a coordinate tree to the
one-to-one corresponding syntactic tree, covering
99.5% coordinations in the Penn Treebank 3.

3.2.1 Scoring

We give scores only to coordination nodes de-
noted as COORD, and pre-terminals. When scor-
ing pre-terminals, we assign logP (wk = 1) to CC
and CC-SUB, and log(P (wk = 0)) to W if wk ∈
Scc ∪ Ssub-cc, otherwise 0. When scoring the CO-

2Our rules can produce coordinate structures that contain
arbitrary length phrase(s) around coordinators, while con-
juncts always appear next to coordinators in their rules.

3Most of the non-derivable coordinations are in the form
like “A and B and C” where a coordinating word is regarded
as a sub-coordinator. Even so, this expression can be parsed
as a nested coordinate structure by the rules.



3398

ORD, we take the left conjunct and the right con-
junct which are linked by the CC. Thus, in the
rule (2), the conjunct pair linked by a CC-SUB
is the incoming CONJ and the leftmost CONJ in
the child COORD. Using a coordinator and its pair
of conjuncts, we assign logP (([i, j], [l,m])) =
logP (([∗, j], [l, ∗]))+ logP (([i, ∗], [∗,m])) to the
COORD. The best scoring coordinate tree can
be found efficiently using dynamic programming
with time complexity O(N3).

3.3 Neural Network Models
We use neural networks as instantiations of fckey,
finner, and fouter that we have introduced in this
section.

Encoder
To get sentence-level representations for a se-
quence of words and POS tags, we use bidi-
rectional long short-term memories (BiLSTMs)
(Hochreiter and Schmidhuber, 1997).

h1:N = BiLSTMs(finput(w1:N , p1:N )) (9)

The dimensionality of each resulting vector ht is
2dhidden. For the BiLSTMs inputs, we use finput
to map words and POS tags onto their representa-
tions. We can use different word representations
including a pretrained word model, ELMo (Pe-
ters et al., 2018), BERT (Devlin et al., 2018) or
character-level LSTMs/convolutional neural net-
works (CharCNNs). We demonstrate the differ-
ences between the different choices in Section 4.
The entire network consisting of finput and BiL-
STMs is referred to as the encoder; it is shared by
the three neural networks in the higher layer.

Coordinator Classifier
We use a linear transformation of the sentence-
level representation of a coordinator key for fckey.

fckey(wt) = Wckeyht + bckey (10)

where Wckey ∈ R2×2dhidden and bckey ∈ R2 are
the model parameters of the classifier.

Inner-Boundary Scoring Model
From the sentence-level representations produced
by the encoder, the inner-boundary scoring model
concatenates two representations of inner bound-
aries, and then feeds the produced vector into a
multilayered perceptron (MLP).

finner(e
l, br, wt) =

win
2 ReLU(Win

1 [hel ;hbr ] + bin1 ) + bin2
(11)

where Win
1 ∈ Rdin×4dhidden , bin1 ∈ Rdin , win

2 ∈
Rdin and bin2 ∈ R1 are the parameters of the inner-
boundary scoring model.

Outer-Boundary Scoring Model
Using sentence-level representations, the outer-
boundary scoring model takes two vectors that are
calculated by subtracting the adjacent vectors to
the coordinator from the boundary vectors. These
subtraction operations are intended to capture the
semantic distance and relatedness between two
spans (Teranishi et al., 2017). The model then
passes the vector to a MLP.

ffeature(b
l, er, wt,h1:N ) =[

hbl − ht+1;her − ht−1
] (12)

fouter(b
l, er, wt) =

wout
2 ReLU(Wout

1 r) + bout1 ) + bout2

r = ffeature(b
l, er, wt,h1:N )

(13)

where Wout
1 ∈ Rdout×4dhidden , bout1 ∈ Rdout ,

wout
2 ∈ Rdout and bout2 ∈ R1 are the parameters

of the outer-boundary scoring model.

3.4 Learning

To train the set of parameter θ of our neural net-
works, we minimize the following loss function:

L(θ) =
∑

(X,Ŷ )∈D

(
`ckeyθ (X, Ŷ )

+`innerθ (X, Ŷ )

+`outerθ (X, Ŷ )
) (14)

where D is a set of pairs of a sentence and its
correct coordinate structures in a training dataset.
Thus, our submodels are trained jointly.

Why local training?
Instead of learning the scoring functions on the ba-
sis of local decisions, we can directly train our
models combined with the CKY parsing using
a structured max-margin objective between the
scores of the best predicted and gold trees. In
preliminary experiments, however, such a global
training requires careful hyperparameter tuning
and is hard to optimize stably, resulting in slightly
better performance than the method of Teranishi
et al. (2017).
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4 Experiments

4.1 Settings

4.1.1 Datasets
We use the coordination-annotated Penn Treebank
(Ficler and Goldberg, 2016a) (PTB) and Genia
Treebank beta (Kim et al., 2003) (GENIA). Unlike
the evaluation by Teranishi et al. (2017) and Ficler
and Goldberg (2016b), we strip the PTB of all quo-
tation marks (“) and (”) to normalize irregular co-
ordinations such as 〈. . . “Daybreak,” “Daywatch,”
“Newsday,” and “Newsnight,” . . . 〉. We follow the
standard train/development/test split on the PTB.
For the GENIA, we do not apply the preprocessing
described above. We evaluate the model through a
five-fold cross-validation, as in Hara et al. (2009).

4.1.2 Model
We use pretrained word vectors, POS tags, and
character vectors produced by the CharCNN (Ma
and Hovy, 2016), regarded as the default. We
also investigate the performance of the model, us-
ing three different word representations for the en-
coder: (1) pretrained word embeddings; GloVe
(Pennington et al., 2014) for the PTB, BioASQ
(Tsatsaronis et al., 2012) for the GENIA, (2) con-
textualized sentence embeddings; ELMo, (3) ran-
domly initialized word vectors. For the PTB, POS
tags are obtained using the Stanford POS Tagger
(Toutanova et al., 2003) with 10-way jackknifing.
For the GENIA, we use the gold POS tags, as in
Hara et al. (2009). To optimize the model parame-
ters, we use Adam (Kingma and Ba, 2015). Other
hyperparameters are described in Appendix A.

4.1.3 Baseline Model
We adopt our implementation of Teranishi et al.
(2017) as the baseline. The original model of
Teranishi et al. (2017) predicts the beginning and
the end of a coordinate structure, and then splits
it into conjuncts by commas. Their model de-
cides the boundary of a coordinate structure in-
dividually, which may cause conflicts with that
of other coordinate structure(s). Thus, we extend
their model to find the best combination of coor-
dinate structures, greedily choosing most proba-
ble boundaries without conflicts4. For the baseline
model, we use the same encoder as that of our de-
fault model. Hereinafter, we refer to this baseline
model as Teranishi+17:+ext.

4We did not add the constraint to situate a nested coordi-
nation in the parent conjunct.

4.1.4 Evaluation
We evaluate the systems on the basis of the abil-
ity to predict conjunct spans with the precision,
recall, and F1 measures on the PTB. To compare
the performance of our model with Teranishi et al.
(2017), we adjudge the predicted conjuncts correct
based on the following metrics.

• whole: matches at the beginning of the first
conjunct and the end of the last conjunct.
• outer: matches in the first conjunct and the

last conjunct.
• inner: matches in the two conjuncts adjacent

to the coordinator.
• exact: matches in all the conjuncts.

In addition, we pay particular attention to the eval-
uation of NP coordination.

For the GENIA, we measure the recall values of
coordinate structures by the aforementioned met-
rics; previous studies, on the other hand, evalu-
ated their systems based only on the whole metric.
Also, we evaluate the performance of our model
based on syntactic categories.

4.2 Results

Tables 2 and 3 show the experimental results on
the PTB and GENIA datasets. On the PTB, our
model outperforms the baseline and existing meth-
ods for all metrics. We cannot compare its perfor-
mance with that of existing methods because of
its use of the preprocessing for quotation marks;
nevertheless, our model achieves significant im-
provements. Our model is more accurate than the
baseline because ours learns both the inner and
outer boundaries of conjunct pairs including those
of sub-coordinators, while the baseline learns only
the coordination boundaries. On the GENIA, our
model also outperforms the baseline on the ex-
act metric. While our model has some limita-
tions when it comes to predicting the beginning
and the end of coordinations, it performs better on
the inner metric. In contrast, Teranishi+17:+ext
achieves the best results on the whole metric,
whereas it performs poorly on the other metrics.
This performance reflects the differences between
the algorithms of the two systems. Our model
builds a coordinate tree in a bottom-up manner and
predicts inner conjuncts accurately. On the other
hand, the baseline model predicts the entire span
of a coordinate structure and splits them into con-
juncts in a top-down fashion. That is why the base-



3400

Development Test
All NP All NP

P R F P R F P R F P R F

Ours

whole 78.60 78.41 78.51 79.26 78.71 78.98 76.88 77.16 77.02 78.75 78.50 78.62
outer 77.18 77.00 77.09 78.57 78.03 78.30 75.33 75.61 75.47 77.95 77.70 77.83
inner 79.19 79.00 79.10 80.64 80.09 80.36 77.60 77.88 77.74 80.19 79.93 80.06
exact 76.95 76.76 76.85 78.11 77.57 77.84 75.33 75.61 75.47 77.95 77.70 77.83

Teranishi+17
:+ext

whole 78.78 77.94 78.36 78.52 77.80 78.16 77.36 76.52 76.94 78.72 78.34 78.53
outer 74.49 73.70 74.09 76.67 75.97 76.32 72.03 71.24 71.63 75.36 75.00 75.17
inner 76.04 75.23 75.63 77.82 77.11 77.47 74.14 73.33 73.74 77.44 77.07 77.25
exact 74.13 73.34 73.74 76.21 75.51 75.86 71.48 70.70 71.08 75.20 74.84 75.01

Teranishi+17*

whole 75.92 72.87 74.36 77.90 75.05 76.45 - - - - - -
outer 72.48 69.57 70.99 76.24 73.45 74.82 - - - - - -
inner 74.07 71.10 72.56 77.43 74.59 75.99 73.46 72.16 72.81 75.87 74.76 75.31
exact 72.11 69.22 70.63 75.77 72.99 74.35 - - - - - -

Ficler+16* inner 72.34 72.25 72.29 75.17 74.82 74.99 72.81 72.61 72.7 76.91 75.31 76.1

Table 2: Evaluation per coordination by the different metrics. Preprocessing for quotation marks are not reported
in “Teranishi+17” and “Ficler+16”.

NP VP ADJP S PP UCP SBAR ADVP Others All
# 2317 465 321 188 167 60 56 21 3 3598

Ours

whole 59.30 65.16 78.19 53.19 55.68 48.33 66.07 90.47 0.00 61.31
outer 59.21 64.94 78.19 53.19 55.68 48.33 66.07 90.47 0.00 61.22
inner 70.60 67.74 81.61 55.31 55.68 53.33 69.64 90.47 33.33 69.51
exact 59.21 64.94 78.19 53.19 55.68 48.33 66.07 90.47 0.00 61.22

Teranishi+17
:+ext

whole 67.19 63.65 76.63 53.19 61.67 35.00 78.57 85.71 33.33 66.31
outer 57.14 54.83 72.27 8.51 55.68 28.33 57.14 85.71 0.00 55.22
inner 57.61 54.83 72.27 8.51 55.68 28.33 57.14 85.71 0.00 55.53
exact 57.14 54.83 72.27 8.51 55.68 28.33 57.14 85.71 0.00 55.22

Teranishi+17 whole 66.59 63.87 78.50 52.65 53.89 50.00 78.57 85.71 33.33 65.98
Ficler+16 whole 65.08 71.82 74.76 17.02 56.28 51.66 91.07 80.95 33.33 64.14
Hara+09 whole 64.2 54.2 80.4 22.9 59.9 36.7 51.8 85.7 66.7 61.5

Table 3: Recall with Genia Treebank beta. The numbers in the rows “Teranishi+17,” “Ficler+16” and “Hara+09”
are taken from their papers.

line model cannot predict coordinated clauses la-
beled as “S,” that are likely to be longer and to con-
tain non-coordinating commas. The shortcoming
of our model is that our bottom-up parsing may
cause errors due to wrong decisions in the early
stage of the parsing; this is observed as poor per-
formance in the whole metric.

4.3 Analysis
Complete match in a sentence
We investigate the ability of our system to pre-
dict all the coordinate structures in a sentence pre-
cisely. We categorize sentences into the following
four groups5.

All: All sentences that have any coordinate
structure.
• Simple: Sentences that have only one coor-

dinate structure consisting of two conjuncts.
5Consecutive and Multiple both contain sentences that are

Consecutive and Multiple.

• Complex: Sentences that are categorized as
Consecutive and/or Multiple.
– Consecutive: Sentences that have a coor-

dinate structure consisting of more than
two conjuncts.

– Multiple: Sentences that have multiple co-
ordinate structures.

Sentences categorized as “All” are the union of the
mutually exclusive sets of Simple and Complex.

Table 4 shows complete match rates on the PTB.
Both on the development and test sets, our system
records significant gain, in comparison to Teran-
ishi+17:+ext, on Simple coordination sentences.
It might be because the inner and outer-boundary
scoring models learn to predict four boundaries of
two spans, whereas the baseline model predicts
only two outer boundaries on Simple coordination
sentences. Since an appositive or adverbial phrase
can appear between a coordinator and its conjunct,
the assumption that two conjuncts must be next to
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Model Sentence Development Test

Ours

All 489 / 673 = 72.65 619 / 873 = 70.90
- Simple 378 / 481 = 78.58 476 / 609 = 78.16
- Complex 111 / 192 = 57.81 143 / 264 = 54.16
- Consecutive 41 / 66 = 62.12 56 / 96 = 58.33
- Multiple 79 / 146 = 54.10 96 / 197 = 48.73

Teranishi+17
:+ext

All 468 / 673 = 69.53 577 / 873 = 66.09
- Simple 358 / 481 = 74.42 444 / 609 = 72.90
- Complex 110 / 192 = 57.29 133 / 264 = 50.37
- Consecutive 40 / 66 = 60.60 48 / 96 = 50.00
- Multiple 78 / 146 = 53.42 92 / 197 = 46.70

Table 4: Complete match rates of coordinations per sentence.

All (exact) All (inner)
P R F F

default 76.95 76.76 76.85 79.10
-POS tags 71.59 71.34 71.47 74.42
-CharCNNs 76.41 76.41 76.41 78.53
-GloVe 75.05 75.23 75.14 77.03
+ELMo 76.35 76.17 76.26 78.15
concat feature 74.85 74.41 74.63 76.64

Table 5: Performance comparison between different
settings of the proposed models.

a coordinator fails and causes errors. Our system
also outperforms Teranishi+17:+ext on Consecu-
tive and Multiple coordination sentences. Teran-
ishi+17:+ext predicts a coordination span, and
then splits it into conjunct spans. Therefore, it
can mistakenly segment coordinations when false
sub-coordinators appear in a sentence. In contrast,
our approach ascertains whether sub-coordinating
words are true sub-coordinators; thus, it can lead
to more robust production of Consecutive sen-
tences.

What helps for Coordination Parsing?

We conduct an ablation study for our model. Ta-
ble 5 shows the results. Without the POS tags, the
model performs poorly. It is worthy of note that
the pretrained word embedding is beneficial infor-
mation for the task. On the other hand, the use of
contextual embedding, ELMo, does not improve
performance. We deduce that POS tags and mor-
phological information, and not contextual word
senses, are clues for shorter and similar coordina-
tions such as NP coordinations. For the feature
extraction function of the outer-boundary scoring
model, the concat function that performs the same
function as the inner-boundary scoring model does
not achieve competitive advantage. The feature
function described as Eq. 12 is designed to cap-

ture the similarity and replaceability of two spans;
while the concat function has only the contextual
information of the outer boundaries of a pair.

5 Related Work

5.1 Similarity-based Approaches

For the coordination identification task in
Japanese, Kurohashi and Nagao (1994) used
a chart to find the highest similarity pair of
conjuncts using dynamic programming. Hogan
(2007) developed a generative parsing model for
coordinated noun phrases, incorporating symme-
try in conjunct structures and head words. Shimbo
and Hara (2007) proposed a discriminative model
that computes scores based on the syntactic and
morphological features assigned to edges and
nodes in a sequence alignment. While their
method focused on non-nested coordinations,
Hara et al. (2009) extended their work to accom-
modate nested coordinations using CFG rules.
A consistent global structure of coordinations is
produced using discriminative functions based
on the similarity of conjuncts with dynamic
programming. Our concept of the CKY parsing is
borrowed from their work; however, a key differ-
ence of our approach lies in how it computes the
score of conjuncts and trains the score function.
Hanamoto et al. (2012) used dual decomposition
to combine HPSG parsing with the discriminative
model developed by Hara et al. (2009).

5.2 Non Similarity-based Approaches

Kawahara and Kurohashi (2008) focused on re-
solving the ambiguities of coordinate structures
without the use of any similarities. Their method
relied on the dependency relations surrounding
the conjuncts and the generative probabilities of
phrases. Yoshimoto et al. (2015) extended the Eis-
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ner algorithm by adding new rules to accommo-
date coordinations during dependency parsing.

5.3 Coordination Boundary Identification
using Neural Networks

Ficler and Goldberg (2016b) used neural networks
for the coordination boundary identification task.
They incorporated the replaceability property be-
tween conjuncts, in addition to the similarity prop-
erty, in the computation of a score for a pair
of conjuncts. They first used a binary classi-
fier for coordinating words; then, they extracted
probable candidate pairs of conjuncts using the
Berkeley Parser (Petrov et al., 2006); afterward,
they assigned scores to the pairs using neural net-
works. However, the shortcoming of their work is
that it is highly dependent on the external parser.
The work of Teranishi et al. (2017) developed an
end-to-end model, as opposed to the pipeline ap-
proach of Ficler and Goldberg (2016b). They also
used similarity and replaceability feature repre-
sentations without information from a syntactic
parser. While Ficler and Goldberg (2016b) cut
off improbable pairs of conjuncts ahead of train-
ing, Teranishi et al. (2017) calculated scores for all
possible pairs of the beginning and the end of co-
ordinate structures instead of conjuncts. We apply
the same strategy to the inner-boundary pairs and
the outer-boundary pairs because assigning low
probabilities to improbable inner and outer pairs
makes the model robust for the CKY parsing.

6 Conclusion

We proposed a simple and accurate model for co-
ordination boundary identification. Our system
decomposes this task into three subtasks, and uses
three different neural networks to tackle them. For
inference, the CKY algorithm is applied using the
CFG rules in order to produce globally consistent
coordinate structures in a sentence. Experimental
results demonstrated that our locally-trained mod-
els interoperate to obtain the optimal combination
of coordinate structures and outperform existing
systems and the strong baseline. Through empir-
ical analysis, we found that our system performs
better than the baseline in complete matches of
sentences that contain more than two conjuncts
and/or multiple coordinations.
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A Hyperparameters

Name Value
Dimention of the word embeddings (GloVe) 100
Dimention of the word embeddings
(BioASQ)

200

Dimention of the POS tag embeddings 50
Dimention of the character embeddings in
the CharCNNs

10

Window size of the the CharCNNs 5
Dimention of the produced representation
from the CharCNNs

50

Dimension of the LSTM hidden vector
dhidden

512

Number of BiLSTMs layers 2
MLP units in the hidden layer din 1024
MLP units in the hidden layer dout 1024
Dropout ratio (all) 0.50
Initial learning rate 0.001
Regularization term λ (PTB) 0.0
Regularization term λ (GENIA) 0.0001
Gradient clipping threshold 5.0

Table 6: The final hyperparameters used in the experi-
ments.
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