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Abstract

Automatic colorization is the process of
adding color to greyscale images. We condi-
tion this process on language, allowing end
users to manipulate a colorized image by feed-
ing in different captions. We present two dif-
ferent architectures for language-conditioned
colorization, both of which produce more
accurate and plausible colorizations than a
language-agnostic version. Through this
language-based framework, we can dramati-
cally alter colorizations by manipulating de-
scriptive color words in captions.

1 Introduction

Automatic image colorization (Cheng et al., 2015;
Larsson et al., 2016; Zhang et al., 2016; Iizuka
et al., 2016; Deshpande et al., 2017)—the process
of adding color to a greyscale image—is inherently
underspecified. Unlike background scenery such
as sky or grass, many common foreground objects
could plausibly be of any color, such as a person’s
clothing, a bird’s feathers, or the exterior of a car.
Interactive colorization seeks human input, usually
in the form of clicks or strokes on the image with a
selected color, to reduce these ambiguities (Levin
et al., 2004; Huang et al., 2005; Endo et al., 2016;
Zhang et al., 2017). We introduce the task of col-
orization from natural language, a previously unex-
plored source of color specifications.

Many use cases for automatic colorization in-
volve images paired with language. For example,
comic book artwork is normally first sketched in
black-and-white by a penciller; afterwards, a col-
orist selects a palette that thematically reinforces
the written script to produce the final colorized art.
Similarly, older black-and-white films are often col-
orized for modern audiences based on cues from
dialogue and narration (Van Camp, 1995).

FAuthors contributed equally

Language is a weaker source of supervision for
colorization than user clicks. In particular, lan-
guage lacks ground-truth information about the
colored image (e.g., the exact color of a pixel or
region). Given a description like a blue motorcy-
cle parked next to a fleet of sedans, an automatic
colorization system must first localize the motorcy-
cle within the image before deciding on a context-
appropriate shade of blue to color it with. The chal-
lenge grows with abstract language: a red color
palette likely suits an artistic rendering of the boy
threw down his toy in a rage better than it does the
boy lovingly hugged his toy.

We present two neural architectures for
language-based colorization that augment an exist-
ing fully-convolutional model (Zhang et al., 2016)
with representations learned from image captions.
As a sanity check, both architectures outperform a
language-agnostic model on an accuracy-based col-
orization metric. However, we are more interested
in whether modifications to the caption properly
manifest themselves in output colorizations (e.g.,
switching one color with another); crowdsourced
evaluations confirm that our models properly local-
ize and color objects based on captions (Figure 1).

2 Model

This section provides a quick introduction to color
spaces (Sec. 2.1) and then describes our baseline
colorization network (Sec. 2.2) alongside two mod-
els (Sec. 2.3) that colorize their output on represen-
tations learned from language.

2.1 Images and color spaces

An image is usually represented as a three dimen-
sional tensor with red, green and blue (RGB) chan-
nels. Each pixel’s color and intensity (i.e., light-
ness) are jointly represented by the values of these
three channels. However, in applications such as

764



Figure 1: Three pairs of images whose colorizations are conditioned on corresponding captions by our FILM
architecture. Our model can localize objects mentioned by the captions and properly color them.

colorization, it is more convenient to use represen-
tations that separately encode lightness and color.
These color spaces can be obtained through mathe-
matical transformations of the RGB color space; in
this work, following Zhang et al. (2016), we use
the CIE Lab space (Smith and Guild, 1931). Here,
the first channel (L) encodes only lightness (i.e.,
black-and-white). The two color channels a and
b represent color values between green to red and
blue to yellow, respectively. In this formulation, the
task of colorization is equivalent to taking the light-
ness channel of an image as input and predicting
the two missing color channels.

2.2 Fully-convolutional networks for
colorization

Following Zhang et al. (2016), we treat coloriza-
tion as a classification problem in CIE Lab space:
given only the lightness channel L of an image (i.e.,
a greyscale version), a fully-convolutional network
predicts values for the two color channels a and b.
For efficiency, we deviate from Zhang et al. (2016)
by quantizing the color channels into a 25×25 grid,
which results in 625 labels for classification. To
further speed up training, we use a one-hot encod-
ing for the ab channels instead of soft targets as
in Zhang et al. (2016); preliminary experiments
showed no qualitative difference in colorization
quality with one-hot targets. The contribution of
each label to the loss is downweighted by a factor
inversely proportional to its frequency in the train-
ing set, which prevents desaturated ab values. Our
baseline network architecture (FCNN) consists of
eight convolutional blocks, each of which contains
multiple convolutional layers followed by batch
normalization (Ioffe and Szegedy, 2015).1 Next,
we propose two ways to integrate additional text

1See Zhang et al. (2016) for complete architectural de-
tails. Code and pretrained models are available at https:
//github.com/superhans/colorfromlanguage.

ab Accuracy Human Experiments

Model acc@1 acc@5 plaus. qual. manip.

FCNN 15.4 45.8 20.4 32.6 N/A
CONCAT 17.9 50.3 39.0 34.1 77.4

FILM 23.7 60.5 40.6 32.1 81.2

Table 1: While FILM is the most accurate model in ab
space, its outputs are about as contextually plausible
as CONCAT’s according to our plausibility task, which
asks workers to choose which model’s output best de-
picts a given caption (however, both models signifi-
cantly outperform the language-agnostic FCNN). This
additional plausibility does not degrade the output, as
shown by our quality task, which asks workers to distin-
guish an automatically-colorized image from a real one.
Finally, our caption manipulation experiment, in which
workers are guided by a caption to select one of three
outputs generated with varying color words, shows that
modifying the caption significantly affects the outputs
of CONCAT and FILM.

input into FCNN.

2.3 Colorization conditioned on language

Given an image I paired with a unit of text T, we
first encode T into a continuous representation
h using the last hidden state of a bi-directional
LSTM (Hochreiter and Schmidhuber, 1997). We
integrate h into every convolutional block of the
FCNN, allowing language to influence the compu-
tation of all intermediate feature maps.

Specifically, say Zn is the feature map of the
nth convolutional block. A conceptually simple
way to incorporate language into this feature map
is to concatenate h to the channels at each spatial
location i, j in Zn, forming a new feature map

Z′ni,j = [Zni,j ;h]. (1)

While this method of integrating language with
images (CONCAT) has been successfully used for
other vision and language tasks (Reed et al., 2016;
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Figure 2: FILM applies feature-wise affine transforma-
tions (conditioned on language) to the output of each
convolutional block in our architecture.

Feichtenhofer et al., 2016), it requires consider-
ably more parameters than the FCNN due to the
additional language channels.

Inspired by recent work on visual question an-
swering, we also experiment with a less parameter-
hungry approach, feature-wise linear modula-
tion (Perez et al., 2018, FILM), to fuse the language
and visual representations. Since the activations
of FILM layers have attention-like properties when
trained on VQA, we also might expect FILM to
be better at localizing objects from language than
CONCAT on colorization (see Figure 4 for heatmap
visualizations).

FILM applies a feature-wise affine transforma-
tion to the output of each convolutional block,
where the transformation weights are conditioned
on language (Figure 2). Given Zn and h, we first
compute two vectors γn and βn through linear
projection,

γn = Wnγh βn = Wnβh, (2)

where Wnγ and Wnβ are learned weight matrices.
The modulated feature map then becomes

Z′ni,j = (1 + γn) ◦ Zni,j + βn, (3)

where ◦ denotes the element-wise product. Com-
pared to CONCAT, FILM is parameter-efficient, re-
quiring just two additional weight matrices per fea-
ture map.

3 Experiments

We evaluate FCNN, CONCAT, and FILM using ac-
curacy in ab space (shown by Zhang et al. (2016)
to be a poor substitute for plausibility) and with
crowdsourced experiments that ask workers to
judge colorization plausibility, quality, and the

colorization flexibly reflects language manipula-
tions. Table 1 summarizes our results; while there
is no clear winner between FILM and CONCAT,
both rely on language to produce higher-quality
colorizations than those generated by FCNN.

3.1 Experimental setup

We train all of our models on the 82,783 images
in the MSCOCO (Lin et al., 2014) training set, each
of which is paired with five crowdsourced cap-
tions. Training from scratch on MSCOCO results in
poor quality colorizations due to a combination of
not enough data and increased image complexity
compared to ImageNet (Russakovsky et al., 2015).
Thus, for our final models, we initialize all convolu-
tional layers with a FCNN pretrained on ImageNet;
we finetune both FILM and CONCAT’s convolu-
tional weights during training. To automatically
evaluate the models, we compute top-1 and top-
5 accuracy in our quantized ab output space2 on
the MSCOCO validation set. While FILM achieves
the highest ab accuracy, FILM and CONCAT do
not significantly differ on crowdsourced evaluation
metrics.

3.2 Human experiments

We run three human evaluations of our models on
the Crowdflower platform to evaluate their plausi-
bility, overall quality, and how well they condition
their output on language. Each evaluation is run
using a random subset of 100 caption/image pairs
from the MSCOCO validation set,3 and we obtain
five judgments per pair.

Plausibility given caption: We show workers
a caption along with three images generated by
FCNN, CONCAT, and FILM. They choose the im-
age that best depicts the caption; if multiple im-
ages accurately depict the caption, we ask them to
choose the most realistic. FCNN does not receive
the caption as input, so it makes sense that its out-
put is only chosen 20% of the time; there is no
significant difference between CONCAT and FILM
in plausibility given the caption.

Colorization quality: Workers receive a pair of
images, a ground-truth MSCOCO image and a gen-
erated output from one of our three architectures,

2We evaluate accuracy at the downsampled 56×56 resolu-
tion at which our network predicts colorizations. For human
experiments, the prediction is upsampled to 224×224.

3We only evaluate on captions that contain one of ten
“color” words (e.g., red, blue purple).
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Figure 3: The top row contains successes from our caption manipulation task generated by FILM and CONCAT,
respectively. The second row shows examples of how captions guide FILM to produce more accurate colorizations
than FCNN (failure cases outlined in red). The final row contains, from left to right, particularly eye-catching
colorizations from both CONCAT and FILM, a case where FILM fails to localize properly, and an image whose
unnatural caption causes artifacts in CONCAT.

and are asked to choose the image that was not
colored by a computer. The goal is to fool workers
into selecting the generated images; the “fooling
rates” for all three architectures are comparable,
which indicates that we do not reduce colorization
quality by conditioning on language.

Caption manipulation: Our last evaluation mea-
sures how much influence the caption has on the
CONCAT and FILM models. We generate three dif-
ferent colorizations of a single image by swapping
out different colors in the caption (e.g., blue car,
red car, green car). Then, we provide workers with
a single caption (e.g., green car) and ask them to
choose which image best depicts the caption. If our
models cannot localize and color the appropriate
object, workers will be unable to select an appro-
priate image. Fortunately, CONCAT and FILM are
both robust to caption manipulations (Table 1).

4 Discussion

Both CONCAT and FILM can manipulate image
color from captions (further supported by the top
row of Figure 3). Here, we qualitatively examine
model outputs and identify potential directions for
improvement.

Language-conditioned colorization depends on
correspondences between language and color statis-
tics (stop signs are always red, and school buses
are always yellow). While this extra information
helps us produce more plausible colorizations com-
pared to language-agnostic models (second row
of Figure 3), it biases models trained on natural
images against unnatural colorizations. For exam-
ple, the yellow sky produced by CONCAT in the
bottom right of Figure 3 contains blue artifacts be-
cause skies are usually blue in MSCOCO. Addition-
ally, our models are limited by the lightness chan-
nel L of the greyscale image, which prevents dra-
matic color shifts like black-to-white. Smaller ob-
jects are also problematic; often, colors will “leak”
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Figure 4: Examples of intermediate layer activations while generating colorized images using the FILM network.
These activation maps correspond to the mean activation immediately after the FILM layers of the sixth, seventh,
and eighth blocks. Interestingly, the activations after the FILM layer of Block 6 always seems to focus on the object
that is to be colorized, while those of Block 8 focus almost exclusively on the background. The activation maps
do not significantly differ when color words in the caption are manipulated; therefore, we show maps only for the
first color word in these examples.

into smaller objects from larger ones, as shown
by FILM’s colorizations of purple plants (Figure 3,
bottom-middle) and yellow tires (middle-left).

Figure 4 shows activation maps from interme-
diate layers generated while colorizing images us-
ing the FILM network. Each intermediate layer is
captured immediately after the FILM layer and is
of dimension h × w × c (e.g., 112 × 112 × 64,
28× 28× 512, etc.), where h is the height of the
feature map, w is its width, and c is the number
of channels.4 On inspection, the first few activa-
tion maps correspond to edges and are not visually
interesting. However, we notice that the sixth acti-
vation map usually focuses on the principal subject
of the image (such as a car or a horse), while the
eighth activation map focused everywhere but on
that subject (i.e., entirely on the background). This
analysis demonstrates that the FILM layer emulates
visual attention, reinforcing similar observations
on visual QA datasets by Perez et al. (2018).

5 Future Work

While these experiments are promising, that there
are many avenues to improve language-conditioned
colorization. From a vision perspective, we would
like to more accurately colorize parts of objects
(e.g., a person’s shoes); moving to more complex ar-

4We compute the mean across the c dimension and scale
the resulting h× w feature map between the limits [0, 255].

chitectures such as variational autoencoders (Desh-
pande et al., 2017) or PixelCNNs (Guadarrama
et al., 2017) might help here, as could increasing
training image resolution. We also plan on using
refinement networks (Shrivastava et al., 2017) to
correct for artifacts in the colorized output image.
On the language side, moving from explicitly spec-
ified colors to abstract or emotional language is
a particularly interesting. We plan to train our
models on dialogue/image pairs from datasets such
as COMICS (Iyyer et al., 2017) and visual story-
telling (Huang et al., 2016); these models could
also help learn powerful joint representations of
vision and language to improve performance on
downstream prediction tasks.
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