
Proceedings of NAACL-HLT 2018, pages 2081–2091
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

EMR Coding with Semi-Parametric Multi-Head Matching Networks

Anthony Rios
Department of Computer Science

University of Kentucky
Lexington, KY

anthony.rios1@uky.edu

Ramakanth Kavuluru
Division of Biomedical Informatics

University of Kentucky
Lexington, KY

ramakanth.kavuluru@uky.edu

Abstract

Coding EMRs with diagnosis and procedure
codes is an indispensable task for billing, sec-
ondary data analyses, and monitoring health
trends. Both speed and accuracy of coding
are critical. While coding errors could lead
to more patient-side financial burden and mis-
interpretation of a patient’s well-being, timely
coding is also needed to avoid backlogs and
additional costs for the healthcare facility. In
this paper, we present a new neural network ar-
chitecture that combines ideas from few-shot
learning matching networks, multi-label loss
functions, and convolutional neural networks
for text classification to significantly outper-
form other state-of-the-art models. Our eval-
uations are conducted using a well known de-
identified EMR dataset (MIMIC) with a vari-
ety of multi-label performance measures.

1 Introduction

Electronic medical record (EMR) coding is the
process of extracting diagnosis and procedure
codes from the digital record (the EMR) pertain-
ing to a patient’s visit. The digital record is mostly
composed of multiple textual narratives (e.g., dis-
charge summaries, pathology reports, progress
notes) authored by healthcare professionals, typ-
ically doctors, nurses, and lab technicians. Hos-
pitals heavily invest in training and retaining pro-
fessional EMR coders to manually annotate all pa-
tient visits by reviewing EMRs. Proprietary com-
mercial software tools often termed as computer-
assisted coding (CAC) systems are already in use
in many healthcare facilities and were found to
be helpful in increasing medical coder productiv-
ity (Dougherty et al., 2013). Thus progress in au-
tomated EMR coding methods is expected to di-
rectly impact real world operations.

In the US, the diagnosis and procedure codes
used in EMR coding are from the Interna-

tional Classification of Diseases (ICD) terminol-
ogy (specifically the ICD-10-CM variant) as re-
quired by the Health Insurance Portability and
Accountability Act (HIPPA). ICD codes facili-
tate billing activities, retrospective epidemiologi-
cal studies, and also enable researchers to aggre-
gate health statistics and monitor health trends.
To code EMRs effectively, medical coders are ex-
pected to have thorough knowledge of ICD-10-
CM and follow a complex set of guidelines to code
EMRs. For example, if a coder accidentally uses
the code “heart failure” (ICD-10-CM code I50) in-
stead of “acute systolic (congestive) heart failure”
(ICD-10-CM code I50.21), then the patient may
be charged substantially more1 causing significant
unfair burden. Therefore, it is important for coders
to have better tools at their disposal to find the
most appropriate codes. Additionally, if coders
become more efficient, hospitals may hire fewer
coders to reduce their operating costs. Thus auto-
mated coding methods are expected to help with
expedited coding, cost savings, and error control.

In this paper, we treat medical coding of EMR
narratives as a multi-label text classification prob-
lem. Multi-label classification (MLC) is a ma-
chine learning task that assigns a set of labels
(typically from a fixed terminology) to an in-
stance. MLC is different from multi-class prob-
lems, which assign a single label to each exam-
ple from a set of labels. Compared to general
multi-label problems, EMR coding has three dis-
tinct challenges. First, with thousands of ICD
codes, the label space is large and the label dis-
tribution is extremely unbalanced – most codes
occur very infrequently with a few codes occur-
ring several orders of magnitude more than oth-
ers. Second and more importantly, a patient may
have a large number of diagnoses and procedures.

1https://nyti.ms/2oxrjCv

2081

On average, coders annotate an EMR with more
than 20 such codes and hence predicting the top
one or two codes is not sufficient for EMR cod-
ing. Third, EMR narratives may be very long (e.g.,
discharge summaries may have over 1000 words),
which may result in a needle in a haystack situa-
tion when attempting to seek evidence for particu-
lar codes.

Recent advances in extreme multi-label classi-
fication have proven to work well for large label
spaces. Many of these methods (Yu et al., 2014;
Bhatia et al., 2015; Liu et al., 2017) focus on cre-
ating efficient multi-label models that can handle
104 to 106 labels. While these models perform
well in large label spaces, they don’t necessarily
focus on improving prediction of infrequent la-
bels. Typically, they optimize for the top 1, 3, or 5
ranked labels by focusing on the P@1, P@3, and
P@5 evaluation measures. The labels ranked at
the top usually occur frequently in the dataset and
it is not obvious how to handle infrequent labels.
One solution would be to ignore the rare labels.
However, when the majority of medical codes are
infrequent, this solution is unsatisfactory.

While neural networks have shown great
promise for text classification (Kim, 2014; Yang
et al., 2016; Johnson and Zhang, 2017), the label
imbalances associated with EMR coding hinder
their performance. Imagine if a dataset contains
only one training example for every class leading
to one-shot learning, a subtask of few-shot learn-
ing. How can we classify a new instance? A triv-
ial solution would be to use a non-parametric 1-
NN (1 nearest neighbor) classifier. 1-NN does not
require learning any label specific parameters and
we only need to define features to represent our
data and a distance metric. Unfortunately, defining
good features and picking the best distance metric
is nontrivial. Instead of manually defining the fea-
ture set and distance metric, neural network train-
ing procedures have been developed to learn them
automatically (Koch et al., 2015). For example,
matching networks (Vinyals et al., 2016) can auto-
matically learn discriminative feature representa-
tions and a useful distance metric. Therefore, us-
ing a 1-NN prediction method, matching networks
work well for infrequent labels. However, re-
searchers typically evaluate matching networks on
multi-class problems without label imbalance. For
EMR coding with extreme label imbalance with
several labels occurring thousands of times, tra-

ditional parametric neural networks (Kim, 2014)
should work very well on the frequent labels. In
this paper, we introduce a new variant of matching
networks (Vinyals et al., 2016; Snell et al., 2017)
to address the EMR coding problem. Specifically,
we combine the non-parametric idea of k-NN and
matching networks with traditional neural network
text classification methods to handle both frequent
and infrequent labels encountered in EMR coding.

Overall, we make the following contributions in
this paper:

• We propose a novel semi-parametric neural
matching network for diagnosis/procedure
code prediction from EMR narratives. Our
architecture employs ideas from matching
networks (Vinyals et al., 2016), multiple at-
tention (Lin et al., 2017), multi-label loss
functions (Nam et al., 2014a), and convolu-
tional neural networks (CNNs) for text clas-
sification (Kim, 2014) to produce a state-of-
the-art EMR coding model.

• We evaluate our model on publicly available
EMR datasets to ensure reproducibility and
benchmarking; we also compare against prior
state-of-the-art methods in EMR coding and
demonstrate robustness across multiple stan-
dard evaluation measures.

• We analyze and measure how each compo-
nent of our model affects the performance us-
ing ablation experiments.

2 Related Work

In this section we cover recent methodologies that
are either relevant to our approach and problem or
form the main ingredients of our contribution.

2.1 Extreme Multi-label Classification
Current methods for extreme MLC fall into two
categories: embedding and tree-based methods.
Embedding-based methods aim to reduce the
training complexity. They effectively reduce the
label space by assuming the training label ma-
trix is low rank. Intuitively, rather than learning
independent classifiers for each label (binary rel-
evance) (Tsoumakas et al., 2010), classifiers are
learned in a reduced label space L̂ � L where L
is the total number of labels. Likewise, a projec-
tion matrix is learned to convert predictions from
the reduced label space back to the original la-
bel space. In general, embedding methods vary

2082

based on how they reduce the label space and
how the projection operation is optimized. Tai
and Lin (2012) use principal component analy-
sis (PCA) to reduce the label space. Low-rank Em-
pirical risk minimization for Multi-Label Learning
(LEML) (Yu et al., 2014) jointly optimizes the la-
bel space reduction and the projection processes.
RobustXML (Xu et al., 2016) is similar to LEML
but it treats infrequent labels as outliers and mod-
els them separately. Liu et al. (2017) employ neu-
ral networks for extreme multi-label problems us-
ing a funnel-like architecture that reduces the la-
bel vector dimensionality. Tree-based multi-label
methods work by recursively splitting the feature
space. These methods usually differ based on the
node splitting criterion. FastXML (Prabhu and
Varma, 2014) partitions the feature space using
the nDCG measure as the splitting criterion. Pfas-
treXML (Jain et al., 2016) improves on FastXML
by using a propensity scored nDCG splitting cri-
terion and re-ranking the predicted labels to opti-
mize various ranking measures.

2.2 Memory Augmented Neural Networks

Memory networks (Weston et al., 2014) have ac-
cess to external memory, typically consisting of
information the model may use to make predic-
tions. Intuitively, informative memories concern-
ing a given instance are found by the memory net-
work to improve its predictive power. Kamra et al.
(2017) use memory networks to fix issues of catas-
trophic forgetting. They show that external mem-
ory can be used to learn new tasks without for-
getting previous tasks. Memory networks are now
applied to a wide variety of natural language pro-
cessing tasks, including question answering and
language modeling (Sukhbaatar et al., 2015; Bor-
des et al., 2015; Miller et al., 2016).

Matching networks (Vinyals et al., 2016; Snell
et al., 2017) have recently been developed for
few/one-shot learning problems. We can interpret
matching networks as a key-value memory net-
work (Miller et al., 2016). The “keys” are training
instances, while the “values” are the labels asso-
ciated with each training example. Intuitively, the
concept is similar to a hashmap. The model will
search for the most similar training instance to find
its respective “value”. Also, matching networks
can be interpreted as a k-NN based model that
automatically learns an informative distance met-
ric. Finally, Altae-Tran et al. (2017) used match-

ing networks for drug discovery, a problem where
data is limited.

2.3 Diagnosis Code Prediction
The 2007 shared task on coding radiology re-
ports (Pestian et al., 2007) was the first effort that
popularized automated EMR coding. Tradition-
ally, linear methods have been used for diagno-
sis code prediction. Perotte et al. (2013) devel-
oped a hierarchical support vector machine (SVM)
model that takes advantage of the ICD-9-CM hier-
archy. In our prior work, we train a linear model
for every label (Rios and Kavuluru, 2013) and
re-rank the labels using a learning-to-rank proce-
dure (Kavuluru et al., 2015). Zhang et al. (2017)
supplement the diagnosis code training data with
data from PubMed (biomedical article corpus and
search system) to train linear models using both
the original training data and the PubMed data.

Recent advances in neural networks have also
been put to use for EMR coding: Baumel et al.
(2018) trained a CNN with multiple sigmoid out-
puts using binary cross-entropy. Duarte et al.
(2017) use hierarchical recurrent neural networks
(RNNs) to annotate death reports with ICD-10
codes. Vani et al. (2017) introduced grounded
RNNs for EMR coding. They found that itera-
tively updating their predictions at each time step
significantly improved the performance. Finally,
similar to our work, memory networks (Prakash
et al., 2017) have recently been used for diagnosis
coding. However, we would like to note two sig-
nificant differences between the memory network
from Prakash et al. (2017) and our model. First,
they don’t use a matching network and their mem-
ories rely on extracting information about each la-
bel from Wikipedia. In contrast, our model does
not use any auxiliary information. Second, they
only evaluate on the 50 most frequent labels, while
we evaluate on all the labels in the dataset.

3 Our Architecture

An overview of our model is shown in Figure 1.
Our model architecture has two main components.

1. We augment a CNN with external memory
over a support set S, which consists of a small
subset of the training dataset. The model
searches the support set to find similar exam-
ples with respect to the input instance. We
make use of the homophily assumption that
similar instances in the support set are coded

2083

xCNN
g(sk)

V65.1
363.3
433.1
...
...
521.2

...

...
Support

Set

Input
Instance

Predict
LabelsCNN

g(x)

pi(x)

h(sk)
...

q

Figure 1: The matching CNN architecture. For each input instance, x, we search a support set using different
representations of x and use the similar support instances and auxiliary features to the output layer.

with similar labels. Therefore, we use the re-
lated support set examples as auxiliary fea-
tures. The similar instances are chosen au-
tomatically by combining ideas from metric
learning and neural attention. We emphasize
that unlike in a traditional k-NN setup, we do
NOT explicitly use the labels of the support
set instances. The support set essentially en-
riches and complements the features derived
from the input instance.

2. Rather than predicting labels by thresholding,
we rank them and select the top k labels spe-
cific to each instance where k is predicted us-
ing an additional output unit (termed MetaL-
abeler). We train the MetaLabeler along with
the classification loss using a multi-task train-
ing scheme.

Before we go into more specific details of our ar-
chitecture, we introduce some notation. Let X
represent the set of all training documents and x
be an instance of X . Likewise, let S represent the
set of support instances and s be an instance of S.
We let L be the total number of unique labels. Our
full model is described in following subsections.

3.1 Convolutional Neural Networks

We use a CNN to encode each document follow-
ing what is now a fairly standard approach consist-
ing of an embedding layer, a convolution layer, a
max-pooling layer, and an output layer (Collobert
et al., 2011; Kim, 2014). However, in our architec-
ture, the CNN additionally aids in getting interme-

diate representations for the multi-head matching
network component (Section 3.2).

Intuitively, CNNs make use of the sequential
nature of text, where a non-linear function is ap-
plied to region vectors formed from vectors of
words in short adjacent word sequences. Formally,
we represent each document as a sequence of word
vectors, [w1,w2, . . . ,wn], where wi ∈ Rd repre-
sents the vector of the i-th word in the document.
The region vectors are formed by concatenating
each window of s words, wi−s+1|| . . . ||wi, into a
local region vector cj ∈ Rsd. Next, cj is passed to
a non-linear function

ĉj = ReLU(Wcj + b),

where W ∈ Rv×sd, b ∈ Rv, and ReLU is a recti-
fied linear unit (Glorot et al., 2011; Nair and Hin-
ton, 2010). Each row of W represents a convolu-
tional filter; so v is the total number of filters.

After processing each successive region vec-
tor, we obtain a document representation D =
[ĉ1, ĉ2, . . . , ĉn+s−1] by concatenating each ĉj
forming a matrix D ∈ Rv×(n+s−1). Each row of
D is referred to as a feature map, formed by differ-
ent convolutional filters. Unfortunately, this repre-
sentation is dependent on the length of the docu-
ment and we cannot pass it to an output layer. We
use max-over-time pooling to create a fixed size
vector

g(s) = [ĉ1max, ĉ
2
max, . . . , ĉ

q
max],

where ĉjmax = max(ĉj1, ĉ
j
2, . . . , ĉ

j
n+s−1).

2084

3.2 Multi-Head Matching Network
Using the support set and the input instance, our
goal is to estimate P (y|x, S). The support set S
is chosen based on nearest neighbors and its selec-
tion process is discussed in Section 3.4. Among
instances in S, our model finds informative sup-
port instances with respect to x and creates a fea-
ture vector using them. This feature vector is com-
bined with the input instance to make predictions.

First, each support instance sk ∈ S is projected
into the support space using a simple single-layer
feed forward NN as

h(g(sk)) = ReLU(Ws g(sk) + bs),

where Ws ∈ Rz×v and bs ∈ Rz . Likewise, we
project each input instance x into the input space
using a different feed forward neural network,

pi(g(x)) = ReLU(Wi
α g(x) + biα),

where Wi
α ∈ Rz×v and biα ∈ Rz . Compared

to the support set neural network where we use
only a single network, for the input instance we
have u projection neural networks. This means we
have u versions of x, an idea that is similar to self-
attention (Lin et al., 2017), where the model learns
multiple representations of an instance. Here each
pi(g(x)) represents a single “head” or representa-
tion of the input x. Using different weight ma-
trices, [W1

α, . . . ,W
u
α] and [b1

α, . . . ,b
u
α], we cre-

ate different representations of x (multiple heads).
For both the input multi-heads and the support in-
stance projection, we note that the same CNN is
used (also indicated in Figure 1) whose output is
subject to the feed forward neural nets outlined
thus far in this section.

Rather than searching for a single informative
support instance, we search for multiple relevant
support instances. For each of the u input instance
representations, we calculate a normalized atten-
tion score

Ai,k =
exp(−d(pi(g(x)), h(g(sk)))∑

sk′∈S
[
exp(−d(pi(g(x)), h(g(sk′)))

]

whereAi,k represents the score of the k-th support
example with respect to the i-th input representa-
tion pi(g(x)) and

d(xi,xj) = ‖xi − xj‖22,

is the square of the Euclidean distance between the
input and support representations.

Next, the normalized scores are aggregated into
a matrix A ∈ Ru×|S|. Then, we create a feature
vector

q = vec(AS) (1)

where q ∈ Ruz , vec is the matrix vectorization
operator, and S ∈ R|S|×z is the support instance
CNN feature matrix whose i-th row is h(g(si)) for
i = 1, . . . , |S|. Intuitively, multiple weighted av-
erages of the support instances are created, one for
each of the u input representations. The final fea-
ture vector,

h = q || g(x), (2)

is formed by concatenating the CNN representa-
tion of the input instance x and the support set
feature vector q.

Finally, the output layer for L labels involves
computing

ŷ = P (y|x, S) = σ(Wc h+ bc) (3)

where Wc ∈ RL×(uz+v), bc ∈ RL, and σ is the
sigmoid function. Because we use a sigmoid acti-
vation function, each label prediction (ŷi) is in the
range from 0 to 1.

3.3 MetaLabeler

The easiest method to convert ŷ into label predic-
tions is to simply threshold each element at 0.5.
However, most large-scale multi-label problems
are highly imbalanced. When training using bi-
nary cross-entropy, the threshold 0.5 is optimized
for accuracy. Therefore, our predictions will be bi-
ased towards 0. A simple way to fix this problem
is to optimize the threshold value for each label.
Unfortunately, searching for the optimal threshold
of each label is computational expensive in large
label spaces. Here we train a regression based out-
put layer

r̂ = ReLU(Wr g(x) + br)

where r̂ estimates the number of labels x should
be annotated with. At test time, we rank each label
by its score in ŷ. Next, r̂ is rounded to the nearest
integer and we predict the top r̂ ranked labels.

3.4 Training

To train our model, we need to define two
loss functions. First, following recent work-
ing on multi-label classification with neural net-

2085

works (Nam et al., 2014b), we train using a multi-
label cross-entropy loss. The loss is defined as

Lc =
L∑

i=1

[
− yi log(ŷi)− (1− yi) log(1− ŷi)

]
,

which sums the binary cross-entropy loss for each
label. The second loss is used to train the MetaL-
abeler for which we use the mean squared error

Lr = ‖r− r̂‖22

where r is the vector of correct numbers of labels
and r̂ is our estimate. We train these two losses
using a multi-task learning paradigm (Collobert
et al., 2011).

Similar to previous work with matching net-
works (Vinyals et al., 2016; Snell et al., 2017),
“episode” or mini-batch construction can have an
impact on performance. In the multi-label setting,
episode construction is non-trivial. We propose
a simple strategy for choosing the support set S
which we find works well in practice. First, at the
beginning of the training process we loop over all
training examples and store g(x) for every train-
ing instance. We will refer to this set of vectors as
T . Next, for every step of the training process (for
every mini-batch M), we search T \M to find the
e nearest neighbors (using Euclidean distance) per
instance to form our support set S. Likewise, we
add e random examples from T \M to the sup-
port set. Therefore, our support set S contains up
to |M |e+ e instances. The purpose of the random
examples is to ensure the distance metric learned
during training (captured by improving represen-
tations of documents as influenced by all network
parameters) is robust to noisy examples.

3.5 Matching Network Interpretation

If we do not use the support set label vectors, then
what is our network learning? To answer this
question we directly compare the matching net-
work formulation to our method. Matching net-
works can be expressed as

ŷ =
∑

sk∈S
a(x, sk)ysk

where a(,) is the attention/distance learned be-
tween two instances, k indexes each support in-
stance, and yk is a one-hot encoded vector. a(,)
is equivalent to A1,k assuming we use a single

head. Traditional matching networks use one-
hot encoded vectors because they are evaluated on
multi-class problems. EMR coding is a multi-label
problem. Hence, yk is a multi-hot encoded vec-
tor. Moreover, with thousands of labels, it is un-
likely even for neighboring instance pairs to share
many labels; this problem is not encountered in
the multi-class setting. We overcome this issue by
learning new output label vectors for each support
set instance. Assuming a single head, our method
can be re-written as

ŷ = σ(W1
c g(x) + bc +

∑

sk∈S
a(x, sk) ỹsk), (4)

where ỹk is the learned label vector for support
instance s. Next, we define ỹk, the learned support
set vectors, as

ỹsk = W2
c h(g(sk)) (5)

where both W1
c and W2

c are submatrices of Wc.
Using this reformulation, we can now see that our
method’s main components (equations (1)-(3)) are
equivalent to this more explicit matching network
formulation (equations (4)–(5)). Intuitively, our
method combines a traditional output layer – the
first half of equation 4 – with a matching network
where the support set label vectors are learned to
better match the labels of their nearest neighbors.

4 Experiments

In this section we compare our work with prior
state-of-the-art medical coding methods. In Sec-
tion 4.1 we discuss the two publicly available
datasets we use. Next, Section 4.2 describes the
implementation details of our model. We summa-
rize the various baselines and models we compare
against in Section 4.3. The evaluation metrics are
described in Section 4.4. Finally, we discuss how
our method performs in Section 4.5.

4.1 Datasets

EMR data is generally not available for public use
especially if it involves textual notes. Therefore,
we focus on the publicly available Medical Infor-
mation Mart for Intensive Care (MIMIC) datasets
for benchmarking purposes. We evaluate using
two versions of MIMIC: MIMIC II (Lee et al.,
2011) and MIMIC III (Johnson et al., 2016), where
the former is a relatively smaller and older dataset

2086

Train # Test # Labels LC AI/L

MIMIC II 18822 2282 7042 36.7 118.8
MIMIC III 37016 2755 6932 13.6 80.8

Table 1: This table presents the number of training
examples (# Train), the number of test examples (#
Test), label cardinality (LC), and the average number
of instances per label (AI/L) for the MIMIC II and
MIMIC III datasets.

and the latter is the most recent version. Follow-
ing prior work (Perotte et al., 2013; Vani et al.,
2017), we use the free text discharge summaries
in MIMIC to predict the ICD-9-CM2 codes. The
dataset statistics are shown in Table 1.

For comparison purposes, we use the same
MIMIC II train/test splits as Perotte et al. (2013).
Specifically, we use discharge reports collected
from 2001 to 2008 from the intensive care unit
(ICU) of the Beth Israel Deaconess Medical Cen-
ter. Following Perotte et al. (2013), the labels for
each discharge summary are extended using the
parent of each label in label set. The parents are
based on the ICD-9-CM hierarchy. We use the hi-
erarchical label expansion to maximize the prior
work we can compare against.

The MIMIC III dataset has been extended to
include health records of patients admitted to the
Beth Israel Deaconess Medical Center from 2001
to 2012 and hence provides a test bed for more ad-
vanced learning methods. Unfortunately, it does
not have a standard train/test split to compare
against prior work given we believe we are the
first to look at it for this purpose. Hence, we use
both MIMIC II and MIMIC III for comparison
purposes. Furthermore, we do not use the hierar-
chical label expansion on the MIMIC III dataset.

Before we present our results, we discuss an
essential distinction between the MIMIC II and
MIMIC III datasets. Particularly, we are inter-
ested in the differences concerning label imbal-
ance. From Table 1, we find that MIMIC III
has almost twice as many examples compared to
MIMIC II in the dataset. However, MIMIC II on
average has more instances per label. Thus, al-
though MIMIC III has more examples, each la-
bel is used fewer times on average compared to

2In 2015, a federal mandate was issued that requires the
use of ICD-10 instead of ICD-9. However because of this
recent change, ICD-10 training data is limited. Therefore, we
use publicly available ICD-9 datasets for evaluation.

MIMIC II. The reason for this is because of how
the label sets for each instance were extended us-
ing the ICD-9 hierarchy in MIMIC II.

4.2 Implementation Details
Preprocessing: Each discharge summary was to-
kenized using a simple regex tokenization scheme
(\w\w+). Also, each word/token that occurs less
than five times in the training dataset was replaced
with the UNK token.
Model Details: For our CNN, we used convo-
lution filters of size 3, 4 and 5 with 300 filters
for each filter size. We used 300 dimensional
skip-gram (Mikolov et al., 2013) word embed-
dings pre-trained on PubMed. The Adam opti-
mizer (Kingma and Ba, 2015) was used for train-
ing with the learning rate 0.0001. The mini-
batch size was set to 4, e – the number of
nearest neighbors per instance – was set to 16,
and the number of heads (u) is set to 8. Our
code is available at: https://github.com/
bionlproc/med-match-cnn

4.3 Baseline Methods
In this paper, we focused on comparing our
method to state-of-the-art methods for diagno-
sis code prediction such as grounded recurrent
neural networks (Vani et al., 2017) (GRNN) and
multi-label CNNs (Baumel et al., 2018). We
also compare against traditional binary relevance
methods where independent binary classifiers (L1-
regularized linear models) are trained for each
label. Next, we compare against hierarchical
SVM (Perotte et al., 2013), which incorporates the
ICD-9-CM label hierarchy. Finally, we also re-
port the results of the traditional matching network
with one modification: We train the matching net-
work with the multi-label loss presented in Sec-
tion 3.4 and threshold using the MetaLabeler de-
scribed in Section 3.3.

We also present two versions of our model:
Match-CNN and Match-CNN Ens. Match-CNN
is the multi-head matching network introduced in
Section 3. Match-CNN Ens is an ensemble that
averages three Match-CNN models, each initial-
ized using a different random seed.

4.4 Evaluation Metrics
We evaluate our method using a wide variety of
standard multi-label evaluation metrics. We use
the popular micro and macro averaged F1 mea-
sures to assess how our model (with the MetaL-

2087

F1 AUC (PR) AUC (ROC) P@k R@k
Prec. Recall Micro Macro Micro Macro Micro Macro 8 40 8 40

Flat SVM (Perotte et al., 2013) 0.867 0.164 0.276 – – – – – – – – –
Hier. SVM (Perotte et al., 2013) 0.577 0.301 0.395 – – – – – – – – –

Logistic (Vani et al., 2017) 0.774 0.395 0.523 0.042 0.541 0.125 0.919 0.704 0.913 0.572 0.169 0.528
Attn BoW (Vani et al., 2017) 0.745 0.399 0.52 0.027 0.521 0.079 0.975 0.807 0.912 0.549 0.169 0.508
GRU-128 (Vani et al., 2017) 0.725 0.396 0.512 0.027 0.523 0.082 0.976 0.827 0.906 0.541 0.168 0.501
BiGRU-64 (Vani et al., 2017) 0.715 0.367 0.485 0.021 0.493 0.071 0.973 0.811 0.892 0.522 0.165 0.483
GRNN-128 (Vani et al., 2017) 0.753 0.472 0.58 0.052 0.587 0.126 0.976 0.815 0.93 0.592 0.172 0.548
BiGRNN-64 (Vani et al., 2017) 0.761 0.466 0.578 0.054 0.589 0.131 0.975 0.798 0.925 0.596 0.172 0.552

CNN (Baumel et al., 2018) * 0.810 0.403 0.538 0.031 0.599 0.127 0.971 0.759 0.931 0.585 0.207 0.586

Matching Network * 0.439 0.388 0.412 0.014 0.394 0.034 0.893 0.551 0.793 0.427 0.172 0.425

Match-CNN (Ours) 0.605 0.561 0.582 0.064 0.612 0.148 0.977 0.792 0.930 0.586 0.207 0.590
Match-CNN Ens. (Ours) 0.616 0.567 0.591 0.066 0.623 0.157 0.977 0.793 0.935 0.594 0.208 0.598

Table 2: Results for the MIMIC II dataset. Models marked with * represent our custom implementations.

F1 AUC (PR) AUC (ROC) P@k R@k
P R Micro Macro Micro Macro Micro Macro 8 40 8 40

Logistic (Vani et al., 2017) * 0.711 0.242 0.361 0.026 0.419 0.147 0.961 0.751 0.554 0.211 0.414 0.686
CNN (Baumel et al., 2018) * 0.726 0.246 0.367 0.021 0.376 0.095 0.942 0.697 0.534 0.196 0.395 0.636
Matching Network * 0.248 0.237 0.242 0.008 0.183 0.028 0.823 0.554 0.310 0.128 0.231 0.431

Match-CNN (Ours) 0.466 0.447 0.456 0.041 0.421 0.119 0.963 0.726 0.557 0.206 0.413 0.670
Match-CNN Ens. (Ours) 0.488 0.449 0.468 0.043 0.441 0.129 0.965 0.760 0.570 0.211 0.422 0.683

Table 3: Results for the MIMIC III dataset. Models marked with * represent our custom implementations.

abeler) performs when thresholding predictions.
For problems with large labels spaces that suffer
from significant imbalances in label distributions,
the default threshold of 0.5 generally performs
poorly (hence our use of MetaLabeler). To remove
the thresholding effect bias, we also report differ-
ent versions of the area under the precision-recall
(PR) and receiver operating characteristic (ROC)
curves. Finally, in a real-world setting, our system
would not be expected to replace medical coders.
We would expect medical coders to use our system
to become more efficient in coding EMRs. There-
fore, we would rank the labels based on model
confidence and medical coders would choose the
correct labels from the top few. To understand if
our system would be useful in a real-world setting,
we evaluate with precision at k (P@k) and recall
at k (R@k). Having high P@k and R@k are crit-
ical to effectively encourage the human coders to
use and benefit from the system.

4.5 Results

We show experimental results on MIMIC II in Ta-
ble 2. Overall, our method improves on prior work
across a variety of metrics. With respect to mi-
cro F1, we improve upon GRNN-128 by over 1%.

Also, while macro-F1 is still low in general, we
also improve macro F1 compared to state-of-the-
art neural methods by more than 1%. In general,
both micro and macro F1 are highly dependent on
the thresholding methodology. Rather than thresh-
olding at 0.5, we rank the labels and pick the top k
based on a trained regression output layer. Can we
do better than using a MetaLabeler? To measure
this, we look at the areas under PR/ROC curves.
Regarding micro and macro PR-AUC, we improve
on prior work by ≈ 2.5%. This suggests that via
better thresholding, the chances of improving both
micro and macro F1 are higher for Match-CNN
compared to other methods. Finally, we are also
interested in metrics that evaluate how this model
would be used in practice. We perform compara-
bly with prior work on P@k. We show strong im-
provements in R@k with over a 4% improvement
in R@40 compared to grounded RNNs and over
1% improvement when compared with Baumel
et al. (2018). Our method also outperforms match-
ing networks across every evaluation measure.

We present MIMIC III results in Table 3. We
reiterate that MIMIC III does not have a standard
train/test split. Hence we compare our model to
our implementations of methods from prior ef-

2088

F1 P@k R@k AUC (PR)
Micro Macro 8 40 8 40 Micro Macro

Match-CNN 0.456 0.041 0.557 0.206 0.413 0.670 0.421 0.119
- Matching 0.429 0.034 0.534 0.196 0.395 0.636 0.376 0.095
- MetaLabler 0.391 0.026 0.557 0.206 0.413 0.670 0.421 0.119
- Multi-Head 0.450 0.034 0.548 0.202 0.403 0.656 0.417 0.113

Table 4: Ablation results for the MIMIC III dataset.

forts. For MIMIC III also we show improve-
ments in multiple evaluation metrics. Interest-
ingly, our method performs much better than the
standard CNN on MIMIC III, compared to the rel-
ative performances of the two methods on MIMIC
II. Match-CNN improves on CNN in R@40 by al-
most 5% on the MIMIC III dataset. The gain in
R@40 is more than the 1% improvement found
on MIMIC II. We hypothesize that the improve-
ments on MIMIC III are because the label imbal-
ance found in MIMIC III is higher than MIMIC II.
Increased label imbalances mean more labels oc-
cur less often. Therefore, we believe our model
works better with less training examples per label
compared to the standard CNN model.

In Table 4 we analyze each component of our
model using an ablation analysis on the MIMIC III
dataset. First, we find that removing the matching
component significantly effects our performance
by reducing micro PR-AUC by almost 5%. Re-
garding micro and macro F1, we also notice that
the MetaLabeler heuristic substantially improves
on default thresholding (0.5). Finally, we see that
the multi-head matching component provides rea-
sonable improvements to our model across multi-
ple evaluation measures. For example, P@8 and
P@40 decrease by around 1% when we use atten-
tion with a single input representation.

5 Conclusion

In this paper, we introduce a semi-parametric
multi-head matching network with a specific ap-
plication to EMR coding. We find that by combin-
ing the non-parametric properties of matching net-
works with a traditional classification output layer,
we improve metrics for both frequent and infre-
quent labels in the dataset. In the future, we plan to
investigate three limitations of our current model.

1. We currently use a naive approach to choose
the support set. We believe that improving

the support set sampling method could sub-
stantially improve performance.

2. We hypothesize that a more sophisticated
thresholding method could have a significant
impact on the micro and macro F1 measures.
As we show in Table 4, MetaLabeler outper-
forms naive thresholding strategies. How-
ever, given our method shows non-trivial
gains in PR-AUC compared to micro/macro
F1, we believe better thresholding strategies
are a worthy avenue to seek improvements.

3. Both the MIMIC II and MIMIC III datasets
have around 7000 labels but ICD-9-CM con-
tains over 16000 labels and ICD-10-CM has
nearly 70,000 labels. In future work, we be-
lieve significant attention should be given to
zero-shot learning applied to EMR coding.
To predict labels that have never occurred in
the training dataset, we think it is vital to
take advantage of the ICD hierarchy. Baker
and Korhonen (2017) improve neural net-
work training by incorporating hierarchical
label information to create better weight ini-
tializations. However, this does not help with
respect to zero-shot learning. If we can better
incorporate expert knowledge about the label
space, we may be able to infer labels we have
not seen before.

Acknowledgments

Thanks to anonymous reviewers for their thorough
reviews and constructive criticism that helped im-
prove the clarity of the paper (especially leading
to the addition of Section 3.5 in the revision). This
research is supported by the U.S. National Li-
brary of Medicine through grant R21LM012274.
We also gratefully acknowledge the support of the
NVIDIA Corporation for its donation of the Titan
X Pascal GPU used for this research.

2089

References
Han Altae-Tran, Bharath Ramsundar, Aneesh S Pappu,

and Vijay Pande. 2017. Low data drug discov-
ery with one-shot learning. ACS central science
3(4):283–293.

Simon Baker and Anna Korhonen. 2017. Initializ-
ing neural networks for hierarchical multi-label text
classification. BioNLP 2017 pages 307–315.

Tal Baumel, Jumana Nassour-Kassis, Michael Elhadad,
and Noemie Elhadad. 2018. Multi-label classifica-
tion of patient notes a case study on icd code as-
signment. In Proceedings of the 2018 AAAI Joint
Workshop on Health Intelligence.

Kush Bhatia, Himanshu Jain, Purushottam Kar, Manik
Varma, and Prateek Jain. 2015. Sparse local em-
beddings for extreme multi-label classification. In
Advances in neural information processing systems.
pages 730–738.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and
Jason Weston. 2015. Large-scale simple question
answering with memory networks. arXiv preprint
arXiv:1506.02075 .

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research
12:2493–2537.

Michelle Dougherty, Sandra Seabold, and Susan E
White. 2013. Study reveals hard facts on CAC.
Journal of the American Health Information Man-
agement Association 84(7):54–56.

Francisco Duarte, Bruno Martins, Cátia Sousa Pinto,
and Mário J Silva. 2017. A deep learning method
for icd-10 coding of free-text death certificates. In
Portuguese Conference on Artificial Intelligence.
Springer, pages 137–149.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Deep sparse rectifier networks. In Proceed-
ings of the 14th International Conference on Arti-
ficial Intelligence and Statistics. JMLR W&CP Vol-
ume. volume 15, pages 315–323.

Himanshu Jain, Yashoteja Prabhu, and Manik Varma.
2016. Extreme multi-label loss functions for rec-
ommendation, tagging, ranking & other missing la-
bel applications. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, pages 935–944.

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-
wei H Lehman, Mengling Feng, Mohammad Ghas-
semi, Benjamin Moody, Peter Szolovits, Leo An-
thony Celi, and Roger G Mark. 2016. Mimic-iii,
a freely accessible critical care database. Scientific
data 3.

Rie Johnson and Tong Zhang. 2017. Deep pyramid
convolutional neural networks for text categoriza-
tion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers). volume 1, pages 562–570.

Nitin Kamra, Umang Gupta, and Yan Liu. 2017. Deep
generative dual memory network for continual learn-
ing. arXiv preprint arXiv:1710.10368 .

Ramakanth Kavuluru, Anthony Rios, and Yuan Lu.
2015. An empirical evaluation of supervised learn-
ing approaches in assigning diagnosis codes to elec-
tronic medical records. Artificial intelligence in
medicine 65(2):155–166.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP). Association for Com-
putational Linguistics, Doha, Qatar, pages 1746–
1751.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceed-
ings of the 3rd International Conference on Learn-
ing Representations (ICLR).

Gregory Koch, Richard Zemel, and Ruslan Salakhut-
dinov. 2015. Siamese neural networks for one-shot
image recognition. In ICML Deep Learning Work-
shop. volume 2.

Joon Lee, Daniel J Scott, Mauricio Villarroel, Gari D
Clifford, Mohammed Saeed, and Roger G Mark.
2011. Open-access mimic-ii database for intensive
care research. In Engineering in Medicine and Biol-
ogy Society, EMBC, 2011 Annual International Con-
ference of the IEEE. IEEE, pages 8315–8318.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. Automatic discovery and optimiza-
tion of parts for image classification. In Proceedings
of the International Conference on Learning Repre-
sentations (ICLR).

Jingzhou Liu, Wei-Cheng Chang, Yuexin Wu, and
Yiming Yang. 2017. Deep learning for extreme
multi-label text classification. In Proceedings of the
40th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval.
ACM, pages 115–124.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems. pages 3111–3119.

Alexander H. Miller, Adam Fisch, Jesse Dodge, Amir-
Hossein Karimi, Antoine Bordes, and Jason We-
ston. 2016. Key-value memory networks for directly
reading documents. In EMNLP. The Association for
Computational Linguistics, pages 1400–1409.

2090

Vinod Nair and Geoffrey E Hinton. 2010. Rectified
linear units improve restricted Boltzmann machines.
In Proceedings of the 27th International Conference
on Machine Learning (ICML-10). pages 807–814.

Jinseok Nam, Jungi Kim, Eneldo Loza Mencı́a, Iryna
Gurevych, and Johannes Fürnkranz. 2014a. Large-
scale multi-label text classification - revisiting neu-
ral networks. In Machine Learning and Knowl-
edge Discovery in Databases - European Confer-
ence, ECML PKDD 2014, Nancy, France, Septem-
ber 15-19, 2014. Proceedings, Part II. pages 437–
452.

Jinseok Nam, Jungi Kim, Eneldo Loza Mencı́a, Iryna
Gurevych, and Johannes Fürnkranz. 2014b. Large-
scale multi-label text classificationrevisiting neural
networks. In Machine Learning and Knowledge
Discovery in Databases, Springer, pages 437–452.

Adler Perotte, Rimma Pivovarov, Karthik Natarajan,
Nicole Weiskopf, Frank Wood, and Noémie El-
hadad. 2013. Diagnosis code assignment: models
and evaluation metrics. Journal of the American
Medical Informatics Association 21(2):231–237.

John P Pestian, Christopher Brew, Paweł Matykiewicz,
Dj J Hovermale, Neil Johnson, K Bretonnel Cohen,
and Włodzisław Duch. 2007. A shared task involv-
ing multi-label classification of clinical free text. In
Proceedings of the Workshop on BioNLP 2007: Bi-
ological, Translational, and Clinical Language Pro-
cessing. Association for Computational Linguistics,
pages 97–104.

Yashoteja Prabhu and Manik Varma. 2014. Fastxml: A
fast, accurate and stable tree-classifier for extreme
multi-label learning. In Proceedings of the 20th
ACM SIGKDD international conference on Knowl-
edge discovery and data mining. ACM, pages 263–
272.

Aaditya Prakash, Siyuan Zhao, Sadid A Hasan,
Vivek V Datla, Kathy Lee, Ashequl Qadir, Joey Liu,
and Oladimeji Farri. 2017. Condensed memory net-
works for clinical diagnostic inferencing. In AAAI.
pages 3274–3280.

Anthony Rios and Ramakanth Kavuluru. 2013. Su-
pervised extraction of diagnosis codes from emrs:
role of feature selection, data selection, and prob-
abilistic thresholding. In Healthcare Informatics
(ICHI), 2013 IEEE International Conference on.
IEEE, pages 66–73.

Jake Snell, Kevin Swersky, and Richard Zemel. 2017.
Prototypical networks for few-shot learning. In

I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems
30, Curran Associates, Inc., pages 4078–4088.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. In Advances
in neural information processing systems. pages
2440–2448.

Farbound Tai and Hsuan-Tien Lin. 2012. Multilabel
classification with principal label space transforma-
tion. Neural Computation 24(9):2508–2542.

Grigorios Tsoumakas, Ioannis Katakis, and Ioannis P.
Vlahavas. 2010. Mining multi-label data. In Data
Mining and Knowledge Discovery Handbook, pages
667–685.

Ankit Vani, Yacine Jernite, and David Sontag. 2017.
Grounded recurrent neural networks. arXiv preprint
arXiv:1705.08557 .

Oriol Vinyals, Charles Blundell, Tim Lillicrap, Daan
Wierstra, et al. 2016. Matching networks for one
shot learning. In Advances in Neural Information
Processing Systems. pages 3630–3638.

Jason Weston, Sumit Chopra, and Antoine Bor-
des. 2014. Memory networks. arXiv preprint
arXiv:1410.3916 .

Chang Xu, Dacheng Tao, and Chao Xu. 2016. Robust
extreme multi-label learning. In KDD. pages 1275–
1284.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.
pages 1480–1489.

Hsiang-Fu Yu, Prateek Jain, Purushottam Kar, and
Inderjit S. Dhillon. 2014. Large-scale multi-label
learning with missing labels. In Proceedings of the
31th International Conference on Machine Learn-
ing, ICML 2014, Beijing, China, 21-26 June 2014.
pages 593–601.

Danchen Zhang, Daqing He, Sanqiang Zhao, and Lei
Li. 2017. Enhancing automatic icd-9-cm code as-
signment for medical texts with pubmed. BioNLP

2017 pages 263–271.

2091

