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Abstract

We often talk about events that impact us posi-
tively or negatively. For example “I got a job”
is good news, but “I lost my job” is bad news.
When we discuss an event, we not only under-
stand its affective polarity but also the reason
why the event is beneficial or detrimental. For
example, getting or losing a job has affective
polarity primarily because it impacts us finan-
cially. Our work aims to categorize affective
events based upon human need categories that
often explain people’s motivations and desires:
PHYSIOLOGICAL, HEALTH, LEISURE, SO-
CIAL, FINANCIAL, COGNITION, and FREE-
DOM. We create classification models based
on event expressions as well as models that
use contexts surrounding event mentions. We
also design a co-training model that learns
from unlabeled data by simultaneously train-
ing event expression and event context classi-
fiers in an iterative learning process. Our re-
sults show that co-training performs well, pro-
ducing substantially better results than the in-
dividual classifiers.

1 Introduction

Recent research has focused on identifying affec-
tive events in text, which are activities or states
that positively or negatively affect the people who
experience them. Recognizing affective events in
text is challenging because they appear as factual
expressions and their affective polarity is often im-
plicit. For example, “I broke my arm” and “I got
fired” are usually negative experiences, while “I
broke a record” and “I went to a concert” are
typically positive experiences. Several NLP tech-
niques have been developed to recognize affec-
tive events, including patient polarity verb boot-
strapping (Goyal et al., 2010, 2013), implicature
rules (Deng and Wiebe, 2014), label propagation
(Ding and Riloff, 2016), pattern-based learning

(Vu et al., 2014; Reed et al., 2017), and semantic
consistency optimization (Ding and Riloff, 2018).

Our research aims to probe deeper and under-
stand not just the polarity of affective events, but
the reason for the polarity. Events can impact peo-
ple in many ways, and understanding why an event
is beneficial or detrimental is a fundamental as-
pect of language understanding and narrative text
comprehension. Additionally, many applications
could benefit from understanding the nature of af-
fective events, including text summarization, con-
versational dialogue processing, and mental health
therapy or counseling systems. As an illustra-
tion, a mental health therapy system can benefit
from understanding why someone is in a negative
state. If the triggering event for depression is “I
broke my leg” then the reason is about the per-
son’s Health, but if the triggering event is “I broke
up with my girlfriend” then the reason is based on
Social relationships.

We hypothesize that the polarity of affective
events can often be attributed to a relatively small
set of human need categories. Our work is moti-
vated by theories in psychology that explain peo-
ple’s motivations, desires, and overall well-being
in terms of categories associated with basic hu-
man needs, such as Maslow’s Hierarchy of Needs
(Maslow et al., 1970) and Fundamental Human
Needs (Max-Neef et al., 1991). Drawing upon
these works, we propose that the polarity of af-
fective events often arises from 7 types of human
needs: PHYSIOLOGICAL, HEALTH, LEISURE,
SOCIAL, FINANCIAL, COGNITION, and FREE-
DOM. For example, “I broke my arm” has neg-
ative polarity because it negatively impacts one’s
Health, “I got fired” is negative because it neg-
atively impacts one’s Finances, and “I am con-
fused” is negative because it reflects a problem re-
lated to Cognition.

We explore this hypothesis and tackle the chal-
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lenge of categorizing affective events in text with
respect to these 7 human need categories. As our
evaluation data, we use events extracted from per-
sonal blog posts and manually labeled with affec-
tive polarity in previous work (Ding and Riloff,
2018). These affective events were then subse-
quently annotated for the human need categories.

In this paper, we design several types of classifi-
cation models that learn from both labeled and un-
labeled data. First, we present supervised learning
models that use lexical and embedding features for
the words in event expressions, as well as models
that learn from the sentence contexts surrounding
mentions of event expressions. Next, we explore
self-training and co-training models that exploit
both labeled and unlabeled data for training. The
most effective system is a co-training model that
uses two classifiers with two different views in an
iterative learning process: one classifier only uses
the words in an event expression, and the other
classifier only uses the contexts surrounding in-
stances of an event expression. Our results show
that this co-training model effectively uses unla-
beled data to substantially improve results com-
pared to classifiers trained only with labeled data,
yielding gains in both precision and recall.

2 Related Work

Recently, there has been growing interest in rec-
ognizing the affective polarity of events. For ex-
ample, Goyal et al. (2013) developed a boot-
strapped learning method to learn patient polar-
ity verbs, which impart affective polarities to their
patients. Li et al. (2015) designed methods to ex-
tract verb expressions that imply negative opin-
ions from reviews. Rashkin et al. (2016) re-
cently proposed connotation frames to incorpo-
rate the connotative polarities for a verb’s argu-
ments from the writer’s and other event entities’
perspectives. Li et al. (2014) proposed a boot-
strapping approach to extract major life events
from tweets using congratulation and condolence
speech acts. Most of these major life events are
affective although their work did not identify po-
larity. Another group of researchers have stud-
ied +/- effect events (Deng et al., 2013; Choi and
Wiebe, 2014) which they previously called bene-
factive/malefactive events. Their work mainly fo-
cused on inferring implicit opinions through im-
plicature rules (Deng and Wiebe, 2014, 2015).

Ding and Riloff (2016) designed an event con-

text graph model to identify affective events us-
ing label propagation. Reed et al. (2017) demon-
strated that automatically acquired patterns could
benefit the recognition of first-person related af-
fective sentences. Most recently, Ding and Riloff
(2018) developed a semantic consistency model
to induce a large set of affective events using
three types of semantic relations in an optimiza-
tion framework. (We use their annotated affective
event data set in our work.) All of this previous
work only identifies affective events and their po-
larities. In contrast, our work aims to identify the
reason for the affective polarity of an event.

The human need categories are inspired by two
prior theories. The first one is Maslow’s Hierar-
chy of Needs (Maslow et al., 1970) which was de-
veloped to study people’s motivations and person-
alities. The second one is Fundamental Human
Needs (Max-Neef et al., 1991) which was devel-
oped to help communities identify their strengths
and weaknesses. The human need categories are
also related to the concept of “goals”, which has
been proposed by (Schank and Abelson, 1977)
to understand narrative stories. Goals could be
very specific to a character in a particular narra-
tive story. However, but many types of goals orig-
inate from universal needs and desires shared by
most people (Max-Neef et al., 1991). In addition,
our work is also related to research on wish de-
tection (Goldberg et al., 2009), desire fulfillment
(Chaturvedi et al., 2016), and modelling protago-
nist goals and desires (Rahimtoroghi et al., 2017).

Self-training is a semi-supervised learning
method to improve performance by exploiting un-
labeled data. Self-training has been successfully
used in many NLP applications such as informa-
tion extraction (Ding and Riloff, 2015) and syn-
tactic parsing (McClosky et al., 2006). Co-training
(Blum and Mitchell, 1998) uses both labeled and
unlabeled data to train models that have two differ-
ent views of the data. Co-training has been previ-
ously used for many NLP tasks including spectral
clustering (Kumar and Daumé, 2011), word sense
disambiguation (Mihalcea, 2004), coreference res-
olution (Phillips and Riloff, 2002), and sentiment
analysis (Wan, 2009; Xia et al., 2015).

3 Affective Event Data

The goal of our research is to categorize affective
events based on 7 categories of human needs. To
facilitate this work, we build upon a large data set
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Physiological Health Leisure Social Finance Cognition Freedom Emotion None
19 (4%) 52 (10%) 75 (14%) 108 (20%) 29 (5%) 26 (5%) 7 (1%) 128 (24%) 98 (18%)

Table 1: Distribution of Human Need Categories (each cell shows the frequency and percentage).

created for prior research (Ding and Riloff, 2018)
which aims to identify affective events. We will
refer to this data as the AffectEvent dataset. We
will briefly describe this data and the human need
category annotations that we added on top of it.

The AffectEvent dataset contains events ex-
tracted from a personal story corpus that was cre-
ated by applying a personal story classifier (Gor-
don and Swanson, 2009) to 177 million blog posts.
The personal story corpus contains 1,383,425 per-
sonal story blogs. StanfordCoreNLP (Manning
et al., 2014) was used for POS and NER tagging
and SyntaxNet (Andor et al., 2016) for parsing.
Each event is represented using a frame-like struc-
ture to capture the meanings of different types of
events. Each event representation contains four
components: 〈Agent, Predicate, Theme, PP〉.
The Predicate is a simple verb phrase correspond-
ing to an action or state. The Agent is a named
entity, nominal, or pronoun, and is extracted us-
ing syntactic heuristics rather than semantic role
labeling. We use “Theme” loosely to allow a NP
or adjective to fill this role. The PP component
is composed of a preposition and a NP. All words
in the event are lemmatized, and active and passive
voices are normalized to have the same representa-
tion. See (Ding and Riloff, 2018) for more details
of the event representation. Table 2 shows some
examples of extracted events.

Positive Events Human Need
〈 our pizza; arrive, -, -〉 Physiological
〈 ear, be, better, - 〉 Health
〈 I, watch, Hellboy II, -〉 Leisure
〈 we, get, marry, -〉 Social
〈 I, get, my new laptop, -〉 Finance
〈 my memory, be, vivid, -〉 Cognition
〈 my heart, feel, happy, -〉 Emotion
〈 we, be, legal, -〉 None
Negative Events Human Need
〈 I, grow, hungry, - 〉 Physiological
〈 my face, look, pale, - 〉 Health
〈 -, rain out, game, -〉 Leisure
〈 you, confront, me, -〉 Social
〈 I, be, unemployed, at time 〉 Finance
〈 my memory, not serve, me, -〉 Cognition
〈 I, be, scared, -〉 Emotion
〈 it, not work, -, for me〉 None

Table 2: Examples of Affective Events with Human
Need Category Labels

3.1 Human Need Category Annotations

Affective events impact people in a positive or
negative way for a variety of reasons. We hypoth-
esized that the polarity of most affective events
arises from the satisfaction or violation of basic
human needs. Psychologists have developed theo-
ries that explain people’s motivations, desires, and
overall well-being in terms of categories associ-
ated with basic human needs, such as Maslow’s
Hierarchy of Needs (Maslow et al., 1970) and Fun-
damental Human Needs (Max-Neef et al., 1991).
Based upon this work, we defined 7 human need
categories, which are briefly described below.

Physiological Needs maintain our body’s basic
functions (e.g., air, food, water, sleep). Health
Needs are to be physically healthy and safe.
Leisure Needs are to have fun, to be relaxed, to
have leisure time, to appreciate and enjoy beauty.
Social Needs are to have good social relations
(e.g., family, friendship), to have good self-worth
and self-esteem, and to be respected by others. Fi-
nancial Needs are to obtain and protect financial
income, to acquire and maintain valuable posses-
sions, to have a job and satisfying work. Cogni-
tion Needs are to obtain skills, information, and
knowledge, to receive education, to improve one’s
intelligence, and to mentally process information
correctly. Freedom Needs are the ability to move
or change positions freely, and to access things
or services in a timely manner. We also de-
fined two categories for event expressions that
represent explicit emotions and opinions (Emo-
tions/Sentiments/Opinions) and events that do not
fall into any other categories (None of the Above).

We added manual annotations for human need
categories on top of the manually annotated pos-
itive and negative affective events in the Af-
fectEvent dataset. Three people were asked to
assign a human need category label to each of
the 559 affective events in the AffectEvent test
set. Annotators achieved good pairwise inter-
annotator agreement (κ ≥ .65) on this task. The
Cohen’s kappa scores were κ=.69, κ=.66 and
κ=.65. We assigned a single category to each
event because most of the affective events fell into
just one category in our preliminary study, even
though some cases could legitimately be argued
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for multiple categories. We discuss this issue fur-
ther in Section 5.4

The distribution of human need categories is
shown in Table 1. Since very few affective events
were found to belong to the Freedom category, this
category was merged into None. Additionally, 17
events received three different labels from the an-
notators, so they were discarded. The majority
label was then assigned to the remaining events,
yielding a gold standard data set of 542 affective
events with human need category labels. Some of
the annotated examples are shown in Table 2. A
more detailed description of the human need cat-
egory definitions, data set, and manual annotation
effort is described in (Ding et al., 2018). This data
set is freely available for other researchers to use.

In the next section, we present classification
models designed to tackle this human needs cat-
egorization task.

4 Categorizing Human Needs with
Labeled and Unlabeled Data

Automatically categorizing affective events in text
based on human needs is a new task, so we in-
vestigated several types of approaches. First, we
designed supervised classifiers to categorize af-
fective events based upon the words in the event
expressions, which we will refer to as Event Ex-
pression Classifiers. We explored lexical fea-
tures, word embedding features, and semantic cat-
egory features, along with several types of ma-
chine learning algorithms.

Our task is to determine the human need cate-
gory of an affective event based on the meaning of
the event itself, independent of any specific con-
text.1 But we hypothesized that collecting the con-
texts around instances of the events could also pro-
vide valuable information to infer human need cat-
egories. So we also designed Event Context Clas-
sifiers to use the sentence contexts around event
mentions as features.

Our gold standard data set is relatively small, so
supervised learning that relies entirely on manu-
ally labeled data may not have sufficient coverage
to perform well across the human need categories.
However, the AffectEvent dataset contains a very
large set of events that were extracted from the
same blog corpus, but not manually labeled with

1We view this as assuming the most common interpreta-
tion of an event, which would be the default in the absence of
context.

affective polarity. Consequently, we explored two
weakly supervised learning methods to exploit this
large set of unlabeled events. First, we tried self-
training to iteratively improve the event expres-
sion classifier. Second, we designed a co-training
model that takes advantage of both an event ex-
pression classifier and an event context classifier to
learn from the unlabeled events. These two types
of classifiers provide complementary views of an
event, so new instances labeled by one classifier
can be used as valuable new data to benefit the
other classifier, in an iterative learning cycle.

4.1 Event Expression Classifiers

The most obvious approach is to use the words in
event expressions as features for recognizing hu-
man need categories (e.g., {ear, be, better} for
the event <ear, be, better>). We experimented
with both lexical (string) features and pre-trained
word embedding features. For the latter, we used
GloVe (Pennington et al., 2014) vectors (200d)
pretrained on 27B tweets. For each event expres-
sion, we compute its embedding as the average of
its words’ embeddings.

We also designed semantic features using the
lexical categories in the LIWC lexicon (Pen-
nebaker et al., 2007) to capture a more general
meaning for each word. LIWC is a dictionary of
words associated with “psychologically meaning-
ful” lexical categories, some of which are directly
relevant to our task, such as AFFECTIVE, SO-
CIAL, COGNITIVE, and BIOLOGICAL PROCESS.
We identify the LIWC category of the head word
of each phrase in the event representation and use
them as Semantic Category features.

We experimented with three types of supervised
classification models: logistic regression (LR),
support vector machines (SVM), and recurrent
neural network classifiers (RNN). One advantage
of the RNN is that it considers the word order in
the event expression, which can be important. In
our experiments, we used the Scikit-learn imple-
mentation (Pedregosa et al., 2011) for the LR clas-
sifier, and LIBSVM (Chang and Lin, 2011) with a
linear kernel for the SVM classifier. For the RNN,
we used the example LSTM implementation from
Keras (Chollet et al., 2015) github, which was de-
veloped to build a sentiment classifier. We used
the default parameters in our experiments2.

2LR and SVM use the one-vs-rest (ovr) scheme, while
RNN is a single multi-class classifier.
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4.2 Event Context Classifiers

The event dataset was originally extracted from
a large collection of blog posts, which contain
many instances of the events in different sen-
tences. We hypothesized that the contexts sur-
rounding instances of an event can also provide
strong clues about the human need category asso-
ciated with the event. Therefore, we also created
Event Context Classifiers to exploit the sentence
contexts around event mentions. We explored sev-
eral designs for event context classifiers, which are
explained below.

ContextSentBOW : For each event in the training
set, we first collect all sentences mentioning this
event and assign the event’s human need category
as the label for each sentence. Each sentence is
then used as a training instance for the event con-
text classifier. We use a bag-of-words representa-
tion for each sentence.

ContextSentEmbed : This variation labels sen-
tences exactly the same way as the previous
model. But each sentence is represented as a dense
embedding vector, which is computed as the aver-
age of the embeddings for each word in the sen-
tence. We used GloVe (Pennington et al., 2014)
vectors (200d) pretrained on 27B tweets.

ContextAllBOW : Instead of treating each sen-
tence as a training instance, for this model we ag-
gregate all of the sentences that mention the same
event to create one giant context for the event.
Each event corresponds to one training instance
in this model, which is represented using bag-of-
word features.

ContextAllEmbed : This variation aggregates the
sentences that mention an event exactly like the
previous model. But each sentence is represented
as a dense embedding vector. First, we compute an
embedding vector for each sentence as the average
of the embeddings of its words. Then we compute
a single context embedding by averaging all of the
sentence embeddings.

In the data, some events appear in many sen-
tences, while others appear in just a few sentences.
To maintain balance, we randomly sample 10 sen-
tences for each event to use as its contexts.

To predict the human need category of an event,
we first apply the event context classifier to con-
texts that mention the event, which produces a
probability distribution over the human need cat-
egories. For each category, we compute its mean
probability. Finally, we assign the event with the

human need category that has the highest mean
probability (i.e. argmax).

4.3 Self-Training the Event Expression
Classifier

Our labeled data set is relatively small, but as men-
tioned previously, the AffectEvent dataset con-
tains a large set of unlabeled events as well. So
we designed a self-training model to try to itera-
tively improve the event expression classifier by
exploiting the unlabeled event data.

The self-training process works as follows. Ini-
tially, the event expression classifier is trained us-
ing the manually labeled events. Then the classi-
fier is applied to the unlabeled events and assigns
a human need category to each event with a con-
fidence value. For each human need category, we
select the unlabeled event that has been assigned to
that category with the highest confidence. There-
fore, each category will have one additional la-
beled event at each iteration. The newly labeled
events are added to the labeled data set, and the
classifier is re-trained for the next iteration.

4.4 Co-Training with Event Expression and
Event Context Classifiers

The sentence contexts in which an event appears
contain complementary information to the event
expression itself. So we designed co-training
models to exploit these complementary types of
classifiers to iteratively learn from unlabeled data.

Figure 1: The Co-Training Model

Figure 1 shows the architecture of our co-
training model. Initially, an event expression clas-
sifier and an event context classifier are indepen-
dently trained on the manually labeled training
data. Each classifier is then applied to the large
collection of unlabeled events EU . For each hu-
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man need category, we then select the event that
has been assigned to the category with the highest
confidence value as a new instance to label. Con-
sequently, each category will receive two addi-
tional labeled events at each iteration, one from the
event expression classifier and another one from
the event context classifier.3 Both sets of newly
labeled events are then added to the labeled set
EL, and each of the classifiers is re-trained on the
expanded set of labeled data. Because the classi-
fiers have different views of the events, the new
instances labeled by one classifier serve as fresh
training instances for the other, unlike self-training
with a single classifier where it is learning entirely
from its own predictions. The following section
describes the co-training algorithm in more detail.

4.4.1 The Co-Training Algorithm
Our co-training algorithm is shown in Algorithm
1. The input to the algorithm are the sets of la-
beled events EL and unlabeled events EU . Each
event is associated with both an event expression
and the set of sentences in which it occurs in the
blogs corpus.

For each iteration, the event expression classi-
fier is first trained using the labeled eventsEL with
the event expression view. Then, we construct an
event context view Xcon for each event in the la-
beled set EL. The context sentences are used dif-
ferently depending on the type of context model
(described in Section 4.2). An event context clas-
sifier is then trained using the context view Xcon.
Both classifiers are then independently applied to
the unlabeled events EU . For each human need
category, each classifier selects one event to label
based on its most confident prediction. All of the
newly labeled events are then added to the labeled
training set EL, and the process repeats.

4.4.2 Prediction with Co-Trained Classifiers
The co-training process simultaneously trains two
classifiers, so here we explain how we use the re-
sulting classifiers after the co-training process has
finished. For each event e in the test set, we apply
both the event expression classifier and the event
context classifier, which each produce a probabil-
ity distribution over the human need categories.
Then we explore two different methods to com-
bine the two probability distributions for each test

3The event expression classifier first selects from unla-
beled events, then the event context classifier does the selec-
tion. This ensures that there are 16 new events in total at each
iteration.

Algorithm 1 Co-Training Algorithm
1: Input: Labeled EL, unlabeled EU events
2: while Not maximum iteration do
3: Train the event expression classifier on EL

4: Construct context view (Xcon) of EL

5: Train the event context classifier on Xcon

6: Apply the event expression classifier to EU

and select new labeled events (Eexp)
7: Apply the event context classifier toEU and

select new labeled events (Econ)
8: Update labeled events:

EL = EL ∪ Eexp ∪ Econ

9: end while

event: (1) sum, we compute the final probability
vector p(e) by applying the element-wise summa-
rization operation to the two predicted probability
vectors; (2) product, we compute the final p(e)
as the element-wise product of the two vectors.
Then, the final probability vector is normalized to
make sure the sum of probabilities over all classes
is 1. Finally, we predict an event’s human need
category as the one with the highest probability.

5 Evaluation

We conducted experiments to evaluate the meth-
ods described in Section 4. For all of our exper-
iments, the results are reported based on 3-fold
cross-validation on the 542 affective events manu-
ally labeled with human need categories. We show
the average results over 3-folds in the following
sections. For development, we used a distinct set
of events labeled during preliminary studies. We
did not tune any of the models, using only their de-
fault parameter settings. We present experimental
results in terms of precision, recall, and F1 score,
macro-averaged over the human need categories.

5.1 Performance of Event Expression
Classifiers

Table 4 shows the results4 for the event expression
classifiers. We also evaluated the ability of the
LIWC lexicon (Pennebaker et al., 2007) to label
the event expressions. We manually aligned the
relevant LIWC categories with our human need
categories, as shown in Table 3. Then we labeled
each event by identifying the human need cate-
gory of each word in the event phrase and assign-

4Since we report the average precision, recall, F1 score
over 3-folds, the F1 score can be smaller than both precision
and recall in some cases.

1924



ing the most frequent category to the event.5 If no
words were assigned to our categories, we labeled
the event as None. The top row of Table 4 shows
that LIWC achieved 39% recall but only 47.7%
precision. The reason is that some categories in
LIWC are more generalized compared with the
definitions of our corresponding categories. For
example, the words “abandon” and “damage” be-
long to the Affect category (corresponding to our
Emotion category) in LIWC. However, based on
our definition the event “my house was damaged”
actually belongs to the Finance category. In this
way, the Emotion category is overly generalized
which leads to low precision for this class.

LIWC Category Human Need Category
Ingest → Physiological
Health, Body, Death → Health
Leisure → Leisure
Social → Social
Money, Work → Finance
Inhib, Insight → Cognition
Affect → Emotion

Table 3: LIWC Mapping to Human Need Categories.

The LR and SVM rows in Table 4 show the
performance of the logistic regression (LR) and
support vector machine (SVM) classifiers, respec-
tively. We evaluated classifiers with bag-of-words
features (BOW) and classifiers with event embed-
ding features (Embed), computed as the average
of the embeddings for all words in the event ex-
pression. We also tried adding semantic category
features from LIWC to each feature set, denoted
as +SemCat. The results show that the Embed
features performed best for both the LR and SVM
classifiers. Adding the SemCat features improved
upon the bag-of-word representations, but not the
embeddings.

The last two rows of Table 4 show the perfor-
mance of two RNN classifiers, one using lexical
words as input (RNNWords) and one using pre-
trained word embeddings as input (RNNEmbedSeq).
The RNNEmbedSeq system takes the sequence of
word embeddings as input rather than the aver-
age embeddings. As with the other classifiers,
the word embedding feature representations per-
formed best, achieving an F1 score 54.4%, which
is comparable to the F1 score of the LREmbed sys-
tem. However, the RNN’s precision was only
58%, compared to 64.2% for the logistic regres-

5For ties, we remove a component one by one in the order
of Agent, PP, Theme until we obtain a majority label.

Method Precision Recall F1
LIWC 47.7 39.0 38.6
LRBOW 33.6 28.7 27.3
LRBOW+SemCat 55.2 39.6 41.9
LREmbed+SemCat 60.1 49.3 51.9
LREmbed 64.2 51.7 54.8
SVMBOW 52.3 43.1 44.8
SVMBOW+SemCat 51.0 45.9 46.8
SVMEmbed+SemCat 50.4 48.4 48.6
SVMEmbed 51.3 50.7 50.5
RNNWords 45.2 39.6 40.1
RNNEmbedSeq 58.0 53.7 54.4

Table 4: Performance of Event Expression Classifiers

sion model, with only 2% higher recall that does
not fully compensate for the lower precision. Neu-
ral net models often need large training sets, so the
relatively small size of our training data may not
be ideal for an RNN.

Overall, we concluded that the logistic re-
gression classifier with event embedding features
(LREmbed) achieved the best performance because
of its F1 score (54.8%) and higher precision
(64.2%).

5.2 Performance of Event Context Classifiers

Table 5 shows the performance4 of the event con-
text classifiers described in Section 4.2. Since lo-
gistic regression worked best in the previous ex-
periments, we only evaluated logistic regression
classifiers in our remaining experiments. The re-
sults show that using each context sentence as an
individual training instance (ContextSentBOW and
ContextSentEmbed) substantially outperformed the
classifiers that merged all the context sentences
as a single training instance (ContextAllBOW and
ContextAllEmbed). Overall, the best performing
system ContextSentEmbed achieved an F1 score of
44.3% with 59.1% Precision.

Method Precision Recall F1
ContextAllBOW 20.6 18.0 17.8
ContextAllEmbed 38.2 29.9 29.1
ContextSentBOW 48.2 31.4 32.8
ContextSentEmbed 59.1 41.9 44.3

Table 5: Performance of Event Context Classifiers

It is worth noting that the precision of the best
contextual classifier was only 5% below that of the
best event expression classifier, while there was a
10% difference in their recall. Since they achieved
(roughly) similar levels of precision and repre-
sent complementary views of events, a co-training
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framework seemed like a logical way to use them
together to gain additional benefits from unlabeled
event data.

We also created a classifier that combined event
expression features and event context features to-
gether. But combining them did not improve per-
formance.

5.3 Performance of Self-Training and
Co-Training Models

In this section, we evaluate the weakly supervised
self-training and co-training methods that addi-
tionally use unlabeled data. To keep the num-
ber of unlabeled events manageable, we only used
events in the AffectEvent dataset that had fre-
quency ≥ 100, which produced an unlabeled data
set of 23,866 events.

We used the best performing event expression
classifier (LREmbed) in these models, and the co-
training framework includes the best performing
event context classifier (ContextSentEmbed) as well.
We also experimented with the sum and prod-
uct variants for co-training (described in Sec-
tion 4.4.2), which are denoted as CoTrainsum and
CoTrainprod. We ran both the self-training and co-
training methods for 20 iterations.
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Figure 2: Learning Curves

Figure 2 tracks the performance of the self-
training and co-training models after each itera-
tion, in terms of F1 score. The flat line shows
the F1 score for the best classifier that uses only
labeled data (LREmbed). Both types of models
yield performance gains from iteratively learning
with the unlabeled data, but the co-training models
perform substantially better than the self-training
model. Even after just 5 iterations, co-training

achieves an F1 score over 58%, and by 20 itera-
tions performance improves to > 60%.

Table 6 shows the results for these models af-
ter 20 iterations, which was an arbitrary stopping
criterion, and after 17 iterations, which happened
to produce the best results for all three systems.
The first two rows show the results of the best per-
forming event context classifier (ContextSentEmbed)
and best performing event expression classifier
(LREmbed) from the previous experiments, for the
sake of comparison.

Table 6 shows that after 20 iterations, the
CoTrainprod model performed best, yielding an F1
score of 61% compared to 54.8% for the LREmbed

model. Furthermore, we see gains in both recall
and precision.

All three systems performed best after 17 itera-
tions, so we show those results as well to give an
idea of additional gains that would be possible if
we could find an optimal stopping criterion. Our
data set was small so we did not feel that we had
enough data to fine-tune parameters, but we see
the potential to further improve performance given
additional tuning data.

Method Precision Recall F1
Supervised Models

ContextSentEmbed 59.1 41.9 44.3
LREmbed 64.2 51.7 54.8

After 20 Iterations
SelfTrain 63.2 54.2 56.6
CoTrainsum 66.2 58.2 60.3
CoTrainprod 67.1 58.7 61.0

Best Results, After 17 Iterations
SelfTrain 63.5 54.1 56.7
CoTrainsum 68.6 59.0 61.7
CoTrainprod 69.7 59.5 62.4

Table 6: Performance of Self-Training and Co-Training

Table 7 shows a breakdown of the performance
across the individual human need categories for
two models: the best event expression classifier
and the best co-training model (CoTrainprod after
17 iterations). We see that the co-training model
outperformed the LREmbed model on every cate-
gory. Co-training improved performance the most
for the Finance and Cognition categories, yielding
F1 score gains of +12% and +16%, respectively,
and notably improving both recall and precision.

5.4 Analysis
We manually examined our system’s predictions
to better understand its behavior. We found
that most of the correctly classified Physiological
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LREmbed CoTrainProd

Category Pre Rec F1 Pre Rec F1
Physiological 82 57 67 81 68 74
Health 65 40 49 68 50 57
Leisure 62 59 60 69 63 66
Social 61 72 66 68 79 73
Finance 61 31 40 67 44 52
Cognition 75 31 42 92 46 58
Emotion 60 75 66 64 74 69
None 47 49 48 48 52 50

Table 7: Breakdown of results across Human Need cat-
egories. Each cell shows Precision, Recall, and F1.

events were related to food, while the correctly
classified Cognition events were primarily about
learning and understanding. Our method missed
many events for the Health, Finance, and Cog-
nition classes. For Health, many medical symp-
toms were not recognized, such as “my face looks
pale” and “I puked”. For Finance, the system
missed events related to possessions (e.g., “engine
stopped running” and “my clock is wrong”) and
jobs (e.g., “I went to resign”).

We also took a closer took at which categories
were confused with other categories. Figure 3
shows the confusion matrix between CoTrainProd

and the gold annotations. Each cell shows the total
number of confusions across the 3-folds of cross-
validation. The category names are abbreviated as
Physiological (Phy), Health (Hlth), Leisure (Leis),
Social (Socl), Finance (Fnc), Cognition (Cog), and
Emotion (Emo). #Tot denotes the total number of
events in each row or column.

Pred. \ Gold Phy Hlth Leis Socl Fnc Cog Emo None #Tot
Phy 13 1 0 0 1 0 0 2 17
Hlth 1 26 1 0 1 1 4 8 42
Leis 1 1 48 4 0 1 4 10 69
Socl 0 6 4 84 2 3 10 11 120
Fnc 1 0 2 0 13 0 1 5 22
Cog 0 0 0 0 0 12 1 2 15
Emo 1 5 12 12 3 1 91 16 141
None 2 13 8 8 9 8 17 51 116
#Tot 19 52 75 108 29 26 128 105 542

Figure 3: Confusion between Predictions and Gold.

The co-training model had difficulty distin-
guishing the None category from other classes,
presumably because None does not have its own
semantics but is used for affective events that do
not belong to any of the other categories. We also
see that the system often confuses Emotion with
Leisure and Social. This happens because many
event expressions contain words that refer to emo-
tions. Our guidelines instructed annotators to fo-
cus on the event and assign the Emotion label only

when no event is described beyond an emotion
(e.g., “I was thrilled”). Consequently, the gold
label of “I love journey” is Leisure and “I’m wor-
ried about my mom” is Social, but both were clas-
sified by the system as Emotion. In future work,
it may be advantageous to allow event expressions
to be labeled as both an explicit Emotion and a
Human Need category based on the target of the
emotion.

6 Conclusions

In this work, we introduced a new challenge to
recognize the reason for the affective polarity of
events in terms of basic human needs. We de-
signed four types of classification methods to cat-
egorize affective events according to human need
categories, exploiting both labeled and unlabeled
data. We first evaluated event expression and event
context classifiers, trained using only labeled data.
Then we designed self-training and co-training
methods to additionally exploit unlabeled data. A
co-training model that simultaneously trains event
expression and event context classifiers produced
substantial performance gains over the individual
models. However, performance on the human
need categories still has substantial room for im-
provement. In future work, obtaining more human
annotations will be useful to build a better human
needs categorization system. In addition, applying
and analyzing the human needs of affective events
in narrative stories and conversations is a fruitful
and interesting direction for future research.
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