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Abstract

We propose an unsupervised method for clus-
tering the translations of a word, such that
the translations in each cluster share a com-
mon semantic sense. Words are assigned to
clusters based on their usage distribution in
large monolingual and parallel corpora using
the softK-Means algorithm. In addition to de-
scribing our approach, we formalize the task
of translation sense clustering and describe a
procedure that leverages WordNet for evalu-
ation. By comparing our induced clusters to
reference clusters generated from WordNet,
we demonstrate that our method effectively
identifies sense-based translation clusters and
benefits from both monolingual and parallel
corpora. Finally, we describe a method for an-
notating clusters with usage examples.

1 Introduction

The ability to learn a bilingual lexicon from a
parallel corpus was an early and influential area
of success for statistical modeling techniques in
natural language processing. Probabilistic word
alignment models can induce bilexical distributions
over target-language translations of source-language
words (Brown et al., 1993). However, word-to-word
correspondences do not capture the full structure of
a bilingual lexicon. Consider the example bilingual
dictionary entry in Figure 1; in addition to enumerat-
ing the translations of a word, the dictionary author
has grouped those translations into three sense clus-
ters. Inducing such a clustering would prove use-
ful in generating bilingual dictionaries automatically
or building tools to assist bilingual lexicographers.

∗Author was a summer intern with Google Research while
conducting this research project.

Colocar [co·lo·car´], va. 1. To arrange, to put in
due place or order. 2. To place, to put in any place,
rank condition or office, to provide a place or em-
ployment. 3. To collocate, to locate, to lay.

Figure 1: This excerpt from a bilingual dictionary groups
English translations of the polysemous Spanish word colocar
into three clusters that correspond to different word senses
(Velázquez de la Cadena et al., 1965).

This paper formalizes the task of clustering a set
of translations by sense, as might appear in a pub-
lished bilingual dictionary, and proposes an unsu-
pervised method for inducing such clusters. We also
show how to add usage examples for the translation
sense clusters, hence providing complete structure
to a bilingual dictionary.

The input to this task is a set of source words and
a set of target translations for each source word. Our
proposed method clusters these translations in two
steps. First, we induce a global clustering of the en-
tire target vocabulary using the soft K-Means algo-
rithm, which identifies groups of words that appear
in similar contexts (in a monolingual corpus) and are
translated in similar ways (in a parallel corpus). Sec-
ond, we derive clusters over the translations of each
source word by projecting the global clusters.

We evaluate these clusters by comparing them to
reference clusters with the overlapping BCubed met-
ric (Amigo et al., 2009). We propose a clustering cri-
terion that allows us to derive reference clusters from
the synonym groups of WordNet R© (Miller, 1995).1

Our experiments using Spanish-English and
Japanese-English datasets demonstrate that the au-
tomatically generated clusters produced by our
method are substantially more similar to the

1WordNet is used only for evaluation; our sense clustering
method is fully unsupervised and language-independent.
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Sense cluster WordNet sense description Usage example
collocate group or chunk together in a certain

order or place side by side
colocar juntas todas los libros
collocate all the books

invest, place, put make an investment capitales para colocar
capital to invest

locate, place assign a location to colocar el número de serie
locate the serial number

place, position, put put into a certain place or abstract
location

colocar en un lugar
put in a place

Figure 2: Correct sense clusters for the translations of Spanish verb s = colocar, assuming that it has translation set Ts =
{collocate, invest, locate, place, position, put}. Only the sense clusters are outputs of the translation sense clustering task; the
additional columns are presented for clarity.

WordNet-based reference clusters than naive base-
lines. Moreover, we show that bilingual features
collected from parallel corpora improve clustering
accuracy over monolingual distributional similarity
features alone.

Finally, we present a method for annotating clus-
ters with usage examples, which enrich our automat-
ically generated bilingual dictionary entries.

2 Task Description

We consider a three-step pipeline for generating
structured bilingual dictionary entries automatically.

(1) The first step is to identify a set of high-quality
target-side translations for source lexical items. In
our experiments, we ask bilingual human annota-
tors to create these translation sets.2 We restrict our
present study to word-level translations, disallowing
multi-word phrases, in order to leverage existing lex-
ical resources for evaluation.

(2) The second step is to cluster translations of each
word according to common word senses. This clus-
tering task is the primary focus of the paper, and we
formalize it in this section.

(3) The final step annotates clusters with usage ex-
amples to enrich the structure of the output. Sec-
tion 7 describes a method of identifying cluster-
specific usage examples.

In the task of translation sense clustering, the
second step, we assume a fixed set of source lexi-
cal items of interest S, each with a single part of

2We do not use automatically extracted translation sets in
our experiments, in order to isolate the clustering task on clean
input.

speech3, and for each s ∈ S a set Ts of target trans-
lations. Moreover, we assume that each target word
t ∈ Ts has a set of senses in common with s. These
senses may also be shared among different target
words. That is, each target word may have multiple
senses and each sense may be expressed by multiple
words.

Given a translation set Ts, we define a clusterG ⊆
Ts to be a correct sense cluster if it is both coherent
and complete.

• A sense cluster G is coherent if and only if
there exists some sense B shared by all of the
target words in G.

• A sense clusterG is complete if and only if, for
every sense B shared by all words in G, there
is no other word in Ts but not in G that also
shares that sense.

The full set of correct clusters for a set of translations
consists of all sense clusters that are both coherent
and complete.

The example translation set for the Spanish word
colocar in Figure 2 is shown with four correct sense
clusters. For descriptive purposes, these clusters are
annotated by WordNet senses and bilingual usage
examples. However, the task we have defined does
not require the WordNet sense or usage example
to be identified: we must only produce the correct
sense clusters within a set of translations. In fact, a
cluster may correspond to more than one sense.

Our definition of correct sense clusters has sev-
eral appealing properties. First, we do not attempt
to enumerate all senses of the source word. Sense

3A noun and verb that share the same word form would con-
stitute two different source lexical items.
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Notation
Ts : The set of target-language translations (given)
Dt : The set of synsets in which t appears (given)
C : A synset; a set of target-language words
B : A source-specific synset; a subset of Ts

B : A set of source-specific synsets
G : A set of correct sense clusters for Ts

The Cluster Projection Algorithm:
B ←

{
C ∩ Ts : C ∈

⋃
t∈Ts
Dt

}
G ← ∅
for B ∈ B do

if @B′ ∈ B such that B ⊂ B′ then
add B to G

return G

Figure 3: The Cluster Projection (CP) algorithm projects
language-level synsets (C) to source-specific synsets (B) and
then filters the set of synsets for redundant subsets to produce
the complete set of source-specific synsets that are both coher-
ent and complete (G).

distinctions are only made when they affect cross-
lingual lexical choice. If a source word has many
fine-grained senses but translates in the same way
regardless of the sense intended, then there is only
one correct sense cluster for that translation.

Second, no correct sense cluster can be a super-
set of another, because the subset would violate the
completeness condition. This criterion encourages
larger clusters that are easier to interpret, as their
unifying senses can be identified as the intersection
of senses of the translations in the cluster.

Third, the correct clusters need not form a parti-
tion of the input translations. It is common in pub-
lished bilingual dictionaries for a translation to ap-
pear in multiple sense clusters. In our example, the
polysemous English verbs place and put appear in
multiple clusters.

3 Generating Reference Clusters

To construct a reference set for the translation
sense clustering task, we first collected English
translations of Spanish and Japanese nouns, verbs,
and adverbs. Translation sets were curated by hu-
man annotators to keep only high-quality single-
word translations.

Rather than gathering reference clusters via an ad-
ditional annotation effort, we leverage WordNet, a
large database of English lexical semantics (Miller,
1995). WordNet groups words into sets of cogni-

Synsets 
 

collocate 
collocate, lump, chunk 
 
invest, put, commit, place 
invest, clothe, adorn 
invest, vest, enthrone 
… 
 

locate, turn up 
situate, locate 
locate, place, site 
… 
 

put, set, place, pose, position, lay 
rate, rank, range, order, grade, place 
locate, place, site 
invest, put, commit, place 
… 
 
position 
put, set, place, pose, position, lay 
 

put, set, place, pose, position, lay 
put 
frame, redact, cast, put, couch 
invest, put, commit, place 
… 

Words 
 

collocate 
 
 
invest 
 
 
 
locate 
 
 
 
 

place 
 
 
 
 

position 
 
 
put 

Sense Clusters 
 

collocate 
 
invest, place, put 
 
locate, place 
 
place, position, put 

Figure 4: An example of cluster projection on WordNet, for the
Spanish source word colocar. We show the target translation
words to be clustered, their WordNet synsets (with words not in
the translation set grayed out), and the final set of correct sense
clusters.

tive synonyms called synsets, each expressing a dis-
tinct concept. We use WordNet version 2.1, which
has wide coverage of nouns, verbs, and adverbs, but
sparser coverage of adjectives and prepositions.4

Reference clusters for the set of translations Ts
of some source word s are generated algorithmi-
cally from WordNet synsets via the Cluster Projec-
tion (CP) algorithm defined in Figure 3. An input
to the CP algorithm is the translation set Ts of some
source word s. Also, each translation t ∈ Ts be-
longs to some set of synsets Dt, where each synset
C ∈ Dt contains target-language words that may
or may not be translations of s. First, the CP algo-
rithm constructs a source-specific synset B for each
C, which contains only translations of s. Second,
it identifies all correct sense clusters G that are both
coherent and complete with respect to the source-
specific senses B. A sense cluster must correspond
to some synset B ∈ B to be coherent, and it must

4WordNet version 2.1 is almost identical to ver-
sion 3.0, for Unix-like systems, as described in
http://wordnetcode.princeton.edu/3.0/CHANGES. The lat-
est version 3.1 is not yet available for download.
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not have a proper superset in B to be complete.5

Figure 4 illustrates the CP algorithm for the trans-
lations of the Spanish source word colocar that ap-
pear in our input dataset.

4 Clustering with K-Means

In this section, we describe an unsupervised method
for inducing translation sense clusters from the us-
age statistics of words in large monolingual and par-
allel corpora. Our method is language independent.

4.1 Distributed Soft K-Means Clustering

As a first step, we cluster all words in the target-
language vocabulary in a way that relates words that
have similar distributional features. Several methods
exist for this task, such as the K-Means algorithm
(MacQueen, 1967), the Brown algorithm (Brown
et al., 1992) and the exchange algorithm (Kneser
and Ney, 1993; Martin et al., 1998; Uszkoreit and
Brants, 2008). We use a distributed implementa-
tion of the “soft” K-Means clustering algorithm de-
scribed in Lin and Wu (2009). Given a feature vec-
tor for each element (a word type) and the number
of desired clusters K, the K-Means algorithm pro-
ceeds as follows:

1. Select K elements as the initial centroids for
K clusters.
repeat

2. Assign each element to the top M clusters
with the nearest centroid, according to a simi-
larity function in feature space.
3. Recompute each cluster’s centroid by aver-
aging the feature vectors of the elements in that
cluster.

until convergence

4.2 Monolingual Features

Following Lin and Wu (2009), each word to be clus-
tered is represented as a feature vector describing the
distributional context of that word. In our setup, the

5One possible shortcoming of our approach to constructing
reference sets for translation sense clustering is that a cluster
may correspond to a sense that is not shared by the original
source word used to generate the translation set. All translations
must share some sense with the source word, but they may not
share all senses with the source word. It is possible that two
translations are synonymous in a sense that is not shared by the
source. However, we did not observe this problem in practice.

context of a word w consists of the words immedi-
ately to the left and right of w. The context feature
vector of w is constructed by first aggregating the
frequency counts of each word f in the context of
each w. We then compute point-wise mutual infor-
mation (PMI) features from the frequency counts:

PMI(w, f) = log
c(w, f)

c(w)c(f)

where w is a word, f is a neighboring word, and
c(·) is the count of a word or word pair in the cor-
pus.6 A feature vector for w contains a PMI feature
for each word type f (with relative position left or
right) for all words that appears a sufficient number
of times as a neighbor of w. The similarity of two
feature vectors is the cosine of the angle between the
vectors. We follow Lin and Wu (2009) in applying
various thresholds during K-Means, such as a fre-
quency threshold for the initial vocabulary, a total-
count threshold for the feature vectors, and a thresh-
old for PMI scores.

4.3 Bilingual Features

In addition to the features described in Lin and Wu
(2009), we introduce features from a bilingual par-
allel corpus that encode reverse-translation informa-
tion from the source-language (Spanish or Japanese
in our experiments). We have two types of bilin-
gual features: unigram features capture source-side
reverse-translations ofw, while bigram features cap-
ture both the reverse-translations and source-side
neighboring context words to the left and right. Fea-
tures are expressed again as PMI computed from
frequency counts of aligned phrase pairs in a par-
allel corpus. For example, one unigram feature for
place would be the PMI computed from the number
of times that place was in the target side of a phrase
pair whose source side was the unigram lugar. Sim-
ilarly, a bigram feature for place would be the PMI
computed from the number of times that place was
in the target side of a phrase pair whose source side
was the bigram lugar de. These features characterize
the way in which a word is translated, an indication
of its meaning.

6PMI is typically defined in terms of probabilities, but has
proven effective previously when defined in terms of counts.
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4.4 Predicting Translation Clusters

As a result of softK-Means clustering, each word in
the target-language vocabulary is assigned to a list of
up to M clusters. To predict the sense clusters for a
set of translations of a source word, we apply the CP
algorithm (Figure 3), treating the K-Means clusters
as synsets (Dt).

5 Related Work

To our knowledge, the translation sense clustering
task has not been explored previously. However,
much prior work has explored the related task of
monolingual word and phrase clustering. Uszkor-
eit and Brants (2008) uses an exchange algorithm
to cluster words in a language model, Lin and Wu
(2009) uses distributed K-Means to cluster phrases
for various discriminative classification tasks, Vla-
chos et al. (2009) uses Dirichlet Process Mixture
Models for verb clustering, and Sun and Korhonen
(2011) uses a hierarchical Levin-style clustering to
cluster verbs.

Previous word sense induction work (Diab and
Resnik, 2002; Kaji, 2003; Ng et al., 2003; Tufis
et al., 2004; Apidianaki, 2009) relates to our work
in that these approaches discover word senses au-
tomatically through clustering, even using multilin-
gual parallel corpora. However, our task of clus-
tering multiple words produces a different type of
output from the standard word sense induction task
of clustering in-context uses of a single word. The
underlying notion of “sense” is shared across these
tasks, but the way in which we use and evaluate in-
duced senses is novel.

6 Experiments

The purpose of our experiments is to assess whether
our unsupervised soft K-Means clustering method
can effectively recover the reference sense clusters
derived from WordNet.

6.1 Datasets

We conduct experiments using two bilingual
datasets: Spanish-to-English (S→E) and Japanese-
to-English (J→E). Table 1 shows, for each dataset,
the number of source words and the total number
of target words in their translation sets. The datasets

Dataset No. of src-words Total no. of tgt-words
S→E 52 230
J→E 369 1639

Table 1: Sizes of the Spanish-to-English (S→E) and Japanese-
to-English (J→E) datasets.

are limited in size because we solicited human anno-
tators to filter the set of translations for each source
word. The S→E dataset has 52 source-words with a
part-of-speech-tag distribution of 38 nouns, 10 verbs
and 4 adverbs. The J→E dataset has 369 source-
words with 319 nouns, 38 verbs and 12 adverbs. We
included only these parts of speech because Word-
Net version 2.1 has adequate coverage for them.
Most source words have 3 to 5 translations each.

Monolingual features for K-Means clustering
were computed from an English corpus of Web
documents with 700 billion tokens of text. Bilin-
gual features were computed from 0.78 (S→E) and
1.04 (J→E) billion tokens of parallel text, primar-
ily extracted from the Web using automated paral-
lel document identification (Uszkoreit et al., 2010).
Word alignments were induced from the HMM-
based alignment model (Vogel et al., 1996), initial-
ized with the bilexical parameters of IBM Model 1
(Brown et al., 1993). Both models were trained us-
ing 2 iterations of the expectation maximization al-
gorithm. Phrase pairs were extracted from aligned
sentence pairs in the same manner used in phrase-
based machine translation (Koehn et al., 2003).

6.2 Clustering Evaluation Metrics

The quality of text clustering algorithms can be eval-
uated using a wide set of metrics. For evaluation
by set matching, the popular measures are Purity
(Zhao and Karypis, 2001) and Inverse Purity and
their harmonic mean (F measure, see Van Rijsber-
gen (1974)). For evaluation by counting pairs, the
popular metrics are the Rand Statistic and Jaccard
Coefficient (Halkidi et al., 2001; Meila, 2003).

Metrics based on entropy include Cluster Entropy
(Steinbach et al., 2000), Class Entropy (Bakus et al.,
2002), VI-measure (Meila, 2003), Q0 (Dom, 2001),
V-measure (Rosenberg and Hirschberg, 2007) and
Mutual Information (Xu et al., 2003). Lastly, there
exist the BCubed metrics (Bagga and Baldwin,
1998), a family of metrics that decompose the clus-
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tering evaluation by estimating precision and recall
for each item in the distribution.

Amigo et al. (2009) compares the various clus-
tering metrics mentioned above and their properties.
They define four formal but intuitive constraints on
such metrics that explain which aspects of clustering
quality are captured by the different metric families.
Their analysis shows that of the wide range of met-
rics, only BCubed satisfies those constraints. After
defining each constraint below, we briefly describe
its relevance to the translation sense clustering task.
Homogeneity: In a cluster, we should not mix items
belonging to different categories.
Relevance: All words in a proposed cluster should
share some common WordNet sense.
Completeness: Items belonging to the same cate-
gory should be grouped in the same cluster.
Relevance: All words that share some common
WordNet sense should appear in the same cluster.
Rag Bag: Introducing disorder into a disordered
cluster is less harmful than introducing disorder into
a clean cluster.
Relevance: We prefer to maximize the number of
error-free clusters, because these are most easily in-
terpreted and therefore most useful.
Cluster Size vs. Quantity: A small error in a big
cluster is preferable to a large number of small er-
rors in small clusters.
Relevance: We prefer to minimize the total number
of erroneous clusters in a dictionary.

Amigo et al. (2009) also show that BCubed ex-
tends cleanly to settings with overlapping clusters,
where an element can simultaneously belong to
more than one cluster. For these reasons, we focus
on BCubed for cluster similarity evaluation.7

The BCubed metric for scoring overlapping clus-
ters is computed from the pair-wise precision and
recall between pairs of items:

P(e, e′) =
min(|C(e) ∩ C(e′)|, |L(e) ∩ L(e′)|)

|C(e) ∩ C(e′)|

R(e, e′) =
min(|C(e) ∩ C(e′)|, |L(e) ∩ L(e′)|)

|L(e) ∩ L(e′)|

where e and e′ are two items, L(e) is the set of ref-
erence clusters for e and C(e) is the set of predicted

7An evaluation using purity and inverse purity (extended to
overlapping clusters) has been omitted for space, but leads to
the same conclusions as the evaluation using BCubed.

clusters for e (i.e., clusters to which e belongs). Note
that P(e, e′) is defined only when e and e′ share
some predicted cluster, and R(e, e′) when e and e′

share some reference cluster.
The BCubed precision associated to one item is its

averaged pair-wise precision over other items shar-
ing some of its predicted clusters, and likewise for
recall8; and the overall BCubed precision (or recall)
is the averaged precision (or recall) of all items:

PB3 = Avge[Avge′s.t.C(e)∩C(e′)6=∅[P(e, e′)]]

RB3 = Avge[Avge′s.t.L(e)∩L(e′)6=∅[R(e, e′)]]

6.3 Results
Figure 5 shows the Fβ-score for various β values:

Fβ =
(1 + β2) · PB3 · RB3

β2 · PB3 + RB3

This graph gives us a trade-off between precision
and recall (β = 0 is exact precision and β → ∞
tends to exact recall).9

Each curve in Figure 5 represents a particular
clustering method. We include three naive baselines:

ewnc: Each word in its own cluster

aw1c: All words in one cluster

Random: Each target word is assigned M random
cluster id’s in the range 1 to K, then translation
sets are clustered with the CP algorithm.

The curves for K-Means clustering include one
condition with monolingual features alone and two
curves that include bilingual features as well.10 The
bilingual curves correspond to two different feature
sets: the first includes only unigram features (t1),
while the second includes both unigram and bigram
features (t1t2).

Each point on an Fβ curve in Figure 5 (including
the baseline curves) represents a maximum over two

8The metric does include in this computation the relation of
each item with itself.

9Note that we use the micro-averaged version of F-score
where we first compute PB3 and RB3 for each source-word,
then compute the average PB3 and RB3 over all source-words,
and finally compute the F-score using these averaged PB3 and
RB3.

10All bilingual K-Means experiments include monolingual
features also. K-Means with only bilingual features does not
produce accurate clusters.
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Figure 5: BCubed Fβ plot for the Spanish-English dataset (top) and Japanese-English dataset (bottom).

Source word: ayudar
Monolingual [[aid], [assist, help]] P=1.0, R=0.56
Bilingual [[aid, assist, help]] P=1.0, R=1.0

Source word: concurso
Monolingual [[competition, contest, match], [concourse], [contest, meeting]] P=0.58, R=1.0
Bilingual [[competition, contest], [concourse], [match], [meeting]] P=1.0, R=1.0

Table 2: Examples showing improvements in clustering when we move from K-Means clustering with only monolingual features
to clustering with additional bilingual features.
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Figure 6: BCubed Precision-Recall scatter plot for the Japanese-English dataset. Each point represents a particular choice of cluster
count K and clusters per word M .

parameters: K, the number of clusters created in the
whole corpus andM , the number of clusters allowed
per word (in M -best soft K-Means). As both the
random baseline and proposed clustering methods
can be tuned to favor precision or recall, we show
the best result from each technique across this spec-
trum of Fβ metrics. We vary β to highlight different
potential objectives of translation sense clustering.
An application that focuses on synonym discovery
would favor recall, while an application portraying
highly granular sense distinctions would favor pre-
cision.

Clustering accuracy improves over the baselines
with monolingual features alone, and it improves
further with the addition of bilingual features, for a
wide range of β values. Our unsupervised approach
with bilingual features achieves up to 6-8% absolute
improvement over the random baseline, and is par-
ticularly effective for recall-weighted metrics.11 As
an example, in a S→E experiment with a K-Means
setting ofK = 4096 : M = 3, the overall F1.5 score

11It is not surprising that a naive baseline like random clus-
tering can achieve a high precision: BCubed counts each word
itself as correctly clustered, and so even trivial techniques that
create many singleton clusters will have high precision. High
recall (without very low precision) is harder to achieve, because
it requires positing larger clusters, and it is for recall-focused
objectives that our technique substantially outperforms the ran-
dom baseline.

increases from 80.58% to 86.12% upon adding bilin-
gual features. Table 2 shows two examples from that
experiment for which bilingual features improve the
output clusters.

The parameter values we use in our experiments
are K ∈ {23, 24, . . . , 212} and M ∈ {1, 2, 3, 4, 5}.
To provide additional detail, Figure 6 shows the
BCubed precision and recall for each induced clus-
tering, as the values of K and M vary, for Japanese-
English.12 Each point in this scatter plot represents a
clustering methodology and a particular value for K
and M . Soft K-Means with bilingual features pro-
vides the strongest performance across a broad range
of cluster parameters.

6.4 Evaluation Details

Certain special cases needed to be addressed in order
to complete this evaluation.
Target words not in WordNet: Words that did not
have any synset in WordNet were each assigned to a
singleton reference cluster.13 The S→E dataset has
only 2 out of 225 target types missing in WordNet
and the J→E dataset has only 55 out of 1351 target

12Spanish-English precision-recall results are omitted due to
space constraints, but depict similar trends.

13Note that certain words with WordNet synsets also end up
in their own singleton cluster because all other words in their
cluster are not in the translation set.
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types missing.
Target words not clustered by K-Means: The K-
Means algorithm applies various thresholds during
different parts of the process. As a result, there
are some target word types that are not assigned
any cluster at the end of the algorithm. For ex-
ample, in the J→E experiment with K = 4096
and with bilingual (t1 only) features, only 49 out
of 1351 target-types are not assigned any cluster by
K-Means. These unclustered words were each as-
signed to a singleton cluster in post-processing.

7 Identifying Usage Examples

We now briefly consider the task of automatically
extracting usage examples for each predicted clus-
ter. We identify these examples among the extracted
phrase pairs of a parallel corpus.

Let Ps be the set of source phrases containing
source word s, and letAt be the set of source phrases
that align to target phrases containing target word
t. For a source word s and target sense cluster G,
we identify source phrases that contain s and trans-
late to all words in G. That is, we collect the set
of phrases Ps ∩

⋂
t∈GAt. We use the same parallel

corpus as we used to compute bilingual features.
For example, if we consider the cluster [place, po-

sition, put] for the Spanish word colocar, then we
find Spanish phrases that contain colocar and also
align to English phrases containing place, position,
and put somewhere in the parallel corpus. Sample
usage examples extracted by this approach appear in
Figure 7. We have not performed a quantitative eval-
uation of these extracted examples, although quali-
tatively we have found that the technique surfaces
useful phrases. We look forward to future research
that further explores this important sub-task of auto-
matically generating bilingual dictionaries.

8 Conclusion

We presented the task of translation sense clustering,
a critical second step to follow translation extraction
in a pipeline for generating well-structured bilingual
dictionaries automatically. We introduced a method
of projecting language-level clusters into clusters for
specific translation sets using the CP algorithm. We
used this technique both for constructing reference
clusters, via WordNet synsets, and constructing pre-

debajo
["below","beneath"]    → debajo de la superficie (below the surface)
["below","under"]     → debajo de la línea (below the line)
["underneath"]     → debajo de la piel (under the skin)

休養
["break"]     → 一生懸命 働い た から 休養 する の は 当然 です . 

(I worked hard and I deserve a good break.)
["recreation"]     → 従来 の 治療 や 休養 方法 

(Traditional healing and recreation activities)
["rest"]     → ベッド で 休養 する だけ で 治り ます . 

(Bed rest is the only treatment required.)

利用
["application"]     → コンピューター 利用 技術 

(Computer-aided technique)
["use","utilization"]     → 土地 の 有効 利用 を 促進 する 

(Promote effective use of land)

引く
["draw","pull"]     → カーテン を 引く 

(Draw the curtain)
["subtract"]     → A から B を 引く 

(Subtract B from A)
["tug"]     → 袖 を ぐいと 引く 

(Tug at someone's sleeve)

Figure 7: Usage examples for Spanish and Japanese words and
their English sense clusters. Our approach extracts multiple
examples per cluster, but we show only one. We also show
the translation of the examples back into English produced by
Google Translate.

dicted clusters from the output of a vocabulary-level
clustering algorithm.

Our experiments demonstrated that the soft K-
Means clustering algorithm, trained using distribu-
tional features from very large monolingual and
bilingual corpora, recovered a substantial portion of
the structure of reference clusters, as measured by
the BCubed clustering metric. The addition of bilin-
gual features improved clustering results over mono-
lingual features alone; these features could prove
useful for other clustering tasks as well. Finally, we
annotated our clusters with usage examples.

In future work, we hope to combine our cluster-
ing method with a system for automatically gen-
erating translation sets. In doing so, we will de-
velop a system that can automatically induce high-
quality, human-readable bilingual dictionaries from
large corpora using unsupervised learning methods.
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