
Proceedings of the NAACL HLT 2010: Demonstration Session, pages 37–40,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Interactive Predictive Parsing using a Web-based Architecture∗

Ricardo Sánchez-Śaez† Luis A. Leiva‡ Joan-Andreu Sánchez† Jośe-Miguel Bened́ı†

Instituto Tecnológico de Informática
Universidad Politécnica de Valencia

{rsanchez,luileito,jandreu,jbenedi}@{†dsic,‡iti}.upv.es

Abstract

This paper introduces a Web-based demon-
stration of an interactive-predictive framework
for syntactic tree annotation, where the user is
tightly integrated into the interactive parsing
system. In contrast with the traditional post-
editing approach, both the user and the sys-
tem cooperate to generate error-free annotated
trees. User feedback is provided by means of
natural mouse gestures and keyboard strokes.

1 Introduction

There is a whole family of problems within the pars-
ing world where error-free results, in the form of
perfectly annotated trees, are needed. Constructing
error-free trees is a necessity in many tasks, such
as handwritten mathematical expression recognition
(Yamamoto et al., 2006), or new gold standard tree-
bank creation (de la Clergerie et al., 2008). It is
a fact that current state-of-the-art syntactic parsers
provide trees that, although of excellent quality, still
contain errors. Because of this, the figure of a human
corrector who supervises the annotation process is
unavoidable in this kind of problems.

When using automatic parsers as a baseline for
building perfect syntactic trees, the role of the hu-
man annotator is to post-edit the trees and correct the
errors. This manner of operating results in the typ-
ical two-step process for error correcting, in which
the system first generates the whole output and then

∗Work partially supported by the Spanish MICINN under
the MIPRCV “Consolider Ingenio 2010” (CSD2007-00018),
MITTRAL (TIN2009-14633-C03-01), Prometeo (PROME-
TEO/2009/014) research projects, and the FPU fellowship
AP2006-01363. The authors wish to thank Vicent Alabau for
his invaluable help with the CAT-API library.

the user verifies or amends it. This paradigm is
rather inefficient and uncomfortable for the human
annotator. For example, in the creation of the Penn
Treebank annotated corpus, a basic two-stage setup
was employed: a rudimentary parsing system pro-
vided a skeletal syntactic representation, which then
was manually corrected by human annotators (Mar-
cus et al., 1994). Other tree annotating tools within
the two-step paradigm exist, such as the TreeBanker
(Carter, 1997) or the Tree Editor TrEd1.

With the objective of reducing the user effort and
making this laborious task easier, we devised an In-
teractive Predictive framework. Our aim is to put
the user into the loop, embedding him as a part of
the automatic parser, and allowing him to interact in
real time within the system. In this manner, the sys-
tem can use the readily available user feedback to
make predictions about the parts that have not been
validated by the corrector.

In this paper, we present a Web-based demo,
which implements the Interactive Predictive Parsing
(IPP) framework presented in (Sánchez-Sáez et al.,
2009). User feedback (provided by means of key-
board and mouse operations) allows the system to
predict new subtrees for unvalidated parts of the an-
notated sentence, which in turn reduces the human
effort and improves annotation efficiency.

As a back-end for our demo, we use a more pol-
ished version of the CAT-API library, the Web-based
Computer Assisted Tool introduced in (Alabau et al.,
2009). This library allows for a clean application de-
sign, in which both the server side (the parsing en-
gine) and the client side (which draws the trees, cap-
tures and interprets the user feedback, and requests

1http://ufal.mff.cuni.cz/∼pajas/tred/

37

(a) System: output tree 1 (b) User:span modification (c) System: output tree 2

Figure 1: An interaction example on the IPP system.

parsed subtrees to the server) are independent. One
of the features that steam from the CAT-API library
is the ability for several annotators to work concur-
rently on the same problem-set, each in a different
client computer sharing the same parsing server.

Interactive predictive methods have been success-
fully demonstrated to ease the work of transcrip-
tors and translators in fields like Handwriting Text
Recognition (Romero et al., 2009; Toselli et al.,
2008) and Statistical Machine Translation (Ortiz et
al., 2010; Vidal et al., 2006). This new paradigm
enables the collaboration between annotators across
the globe, granting them a physical and geographical
freedom that was inconceivable in the past.

2 Interactive Predictive Parsing

A tree t, associated to a stringx1|x|, is composed
by substructures that are usually referred as con-
stituents. A constituentcA

ij is defined by the non-
terminal symbolA (either asyntactic labelor aPOS
tag) and its spanij (the starting and ending indexes
which delimit the part of the input sentence encom-
passed by the constituent).

Here follows a general formulation for the non-
interactive parsing scenario. Using a grammatical
modelG, the parser analyzes the input sentencex =
{x1, . . . , x|x|} and produces the parse treet̂

t̂ = arg max
t∈T

pG(t|x), (1)

wherepG(t|x) is the probability of parse treet given
the input stringx using modelG, andT is the set of
all possible parse trees forx.

In the interactive predictive scenario, after obtain-
ing the (probably incorrect) best treêt, the user is
able to individually correct any of its constituents

cA
ij . The system reacts to each of the corrections in-

troduced by the human, proposing a newt̂′ that takes
into account the afore-mentioned corrections.

The action of modifying an incorrect constituent
(either setting the correct span or the correct label)
implicitly validates a subtree that is composed by
the partially corrected constituent, all of its ancestor
constituents, and all constituents whose end span is
lower than the start span of the corrected constituent.
We will name this subtree the validated prefix tree
tp. When the user replaces the constituentcA

ij with
the correct onec′Aij , the validated prefix tree is:

tp(c
′A
ij) = {cB

mn : m ≤ i, n ≥ j,

d(cB
mn) ≤ d(c′Aij)} ∪

{cD
pq : p >= 1 , q < i}

(2)

with d(cB
mn) being the depth of constituentcB

mn.
When a constituent correction is performed, the

prefix treetp(c′Aij) is fixed and a new treêt′ that takes
into account the prefix is proposed

t̂′ = arg max
t∈T

pG(t|x, tp(c
′A
ij)). (3)

Given that we are working with context-free
grammars, the only subtree that effectively needs to
be recalculated is the one starting from the parent of
the corrected constituent.

3 Demo outline

A preview version of the demonstration can be ac-
cessed athttp://cat.iti.upv.es/ipp/.

The user is presented with the sentences in the se-
lected corpus, and starts parsing them one by one.
They make corrections in the trees both with the key-
board and the computer mouse. The user feedback

38

is decoded on the client side which in turn requests
subtrees to the parse engine.

Two kind of operations can be performed over
constituents: span modification (performed either by
dragging a line from the constituent to the word that
corresponds to the span’s upper index, or deleting
a tree branch by clicking on it), and label substitu-
tion (done by typing the correct one on its text field).
Modifying the span of a constituent invalidates its
label, so the server recalculates it as part of the suf-
fix. Modifying the label of a constituent validates its
span.

When the user is about to perform an opera-
tion, the affected constituent and the prefix that will
be validated are highlighted. The target span of
the modified constituent is visually shown as well.
When the user obtains the correctly annotated tree,
they can accept it by by clicking on a new sentence.

As already mentioned, the user is tightly inte-
grated into the interactive parsing process. They fol-
low a predetermined protocol in which they correct
and/or validate the annotated parse trees:

1. The parsing server proposes a full parse treet

for the input sentence. The treet is shown to
the user by the client (Fig. 1a).

2. The user finds the first2 incorrect constituentc
and starts amending it, either by changing its
label or changing its span (Fig. 1b, note how
the label is greyed out as it is discarded with
the span modification). This operation implic-
itly validates the prefix treetp (highlighted in
green).

3. The system decodes the user feedback (i.e.,
mouse gestures or keyboard strokes) which can
either affect the label or the span of the incor-
rect constituentc:

(a) If the span ofc is modified, the label is
not assumed to be correct. A partial con-
stituentc∗, which includesspanbut nola-
bel, is decoded from the user feedback.

(b) If the label ofc is modified, the span is
assumed to be correct. The corrected con-
stituentc′ is decoded from the user feed-
back.

2The tree visiting order is left-to-right depth-first.

This step only deals with analysing the user
feedback, the parsing server will not be con-
tacted until the next step.

4. Either the partially corrected constituentc∗ or
the corrected constituentc′ is then used by the
client to create a newextended consolidated
prefixthat combines the validated prefix and the
user feedback: eithertpc∗ or tpc

′. The client
sends the extended prefix tree to the parsing
server and requests a suitable continuation for
the parse tree, or tree suffixts:

(a) If the extended prefix is partial (tpc
∗), the

first element ofts is the label completing
c∗, followed by the remaining calculated
whole constituents.

(b) If the extended prefix is complete (tpc
′),

the parsing server produces a suitable tree
suffix ts which contains the remaining cal-
culated whole constituents.

5. The client concatenates the suffix returned by
the server to the validated extended prefix, and
shows the whole tree to the client (Fig. 1c).

6. These previous steps are iterated until a final,
perfect parse tree is produced by the server and
validated by the user.

Note that within this protocol, constituents can be
deleted or inserted by adequately modifying the span
of the left-neighbouring constituent.

4 Demo architecture

The proposed system coordinates client-side script-
ing with server-side technologies, by using the CAT-
API library (Alabau et al., 2009).

4.1 Server side

The server side of our system is a parsing en-
gine based on a customized CYK-Viterbi parser,
which uses a Probabilistic Context-Free Grammar in
Chomsky Normal Form obtained from sections 2 to
21 of the UPenn Treebank as a model (see (Sánchez-
Sáez et al., 2009) for details).

The client can request to the parsing server the
best subtree for any given span of the input string.
For each requested subtree, the client can either pro-
vide the starting label or not. If the starting subtree

39

label is not provided, the server calculates the most
probable label. The server also performs transparent
tree debinarization/binarization when communicat-
ing with the client.

4.2 Client side

The client side has been designed taking into ac-
count ergonomic issues in order to facilitate the in-
teraction.

The prototype is accessed through a Web browser,
and the only requirement is the Flash plugin (98% of
market penetration) installed in the client machine.
The hardware requirements in the client are very
low on the client side, as the parsing is process per-
formed remotely on the server side: any computer
(including netbooks) capable of running a modern
Web browser is enough.

Each validated user interaction is saved as a log
file on the server side, so a tree’s annotation session
can be later resumed.

4.2.1 Communication protocol

This demo exploits the WWW to enable the con-
nection of simultaneous accesses across the globe.
This architecture also provides cross-platform com-
patibility and requires neither computational power
nor disk space on the client’s machine.

Client and server communicate via asynchronous
HTTP connections, providing thus a richer interac-
tive experience – no page refreshes is required when
parsing a new sentence. Moreover, the Web client
communicates with the IPP engine through binary
TCP sockets. Thus, response times are quite slow – a
desired requirement for the user’s solace. Addition-
ally, cross-domain requests are possible, so the user
could switch between different IPP engines within
the same UI.

5 Evaluation results

We have carried out experiments that simulate user
interaction using section 23 of the Penn Treebank.
The results suggest figures ranging from 42% to
46% of effort saving compared to manually post-
editing the trees without an interactive system. In
other words, for every 100 erroneous constituents
produced by a parsing system, an IPP user would
correct only 58 (the other 42 constituents being au-
tomatically recalculated by the IPP system). Again,

see (Sánchez-Sáez et al., 2009) for the details on ex-
perimentation.

5.1 Conclusions and future work

We have introduced a Web-based interactive-
predictive system that, by using a parse engine in
an integrated manner, aids the user in creating cor-
rectly annotated syntactic trees. Our system greatly
reduces the human effort required for this task com-
pared to using a non-interactive automatic system.

Future work includes improvements to the client
side (e.g., confidence measures as a visual aid, mul-
timodality), as well as exploring other kinds of pars-
ing algorithms for the server side (e.g., adaptative
parsing).

References
V. Alabau, D. Ortiz, V. Romero, and J. Ocampo. 2009. A

multimodal predictive-interactive application for com-
puter assisted transcription and translation. InICMI-
MLMI ’09, 227–228.

D. Carter. 1997. The TreeBanker. A tool for supervised
training of parsed corpora. InENVGRAM’97, 9–15.

E.V. de la Clergerie, O. Hamon, D. Mostefa, C. Ayache,
P. Paroubek, and A. Vilnat. 2008. Passage: from
French parser evaluation to large sized treebank. In
LREC’08, 100:P2.

M.P. Marcus, B. Santorini, and M.A. Marcinkiewicz.
1994. Building a large annotated corpus of En-
glish: The Penn Treebank.Computational linguistics,
19(2):313–330.

D. Ortiz, L. A. Leiva, V. Alabau, and F. Casacuberta.
2010. Interactive machine translation using a web-
based architecture. InIUI’10 , 423–425.

V. Romero, L. A. Leiva, A. H. Toselli, and E. Vidal.
2009. Interactive multimodal transcription of text
imagse using a web-based demo system. InIUI’09 ,
477–478.

R. Sánchez-Sáez, J.A. Sánchez, and J.M. Benedı́. 2009.
Interactive predictive parsing. InIWPT’09, 222–225.

A.H. Toselli, V. Romero, and E. Vidal. 2008. Computer
assisted transcription of text images and multimodal
interaction. InMLMI’08, 5237: 296–308.

E. Vidal, F. Casacuberta, L. Rodrı́guez, J. Civera, and
C. Martı́nez. 2006. Computer-assisted translation us-
ing speech recognition.IEEE Trans. on Audio, Speech
and Language Processing, 14(3):941–951.

R. Yamamoto, S. Sako, T. Nishimoto, and S. Sagayama.
2006. On-line recognition of handwritten mathe-
matical expressions based on stroke-based stochastic
context-free grammar. In10th Frontiers in Handwrit-
ing Recognition, 249–254.

40

