
NAACL HLT 2010

Human Language Technologies:
The 2010 Annual Conference of the

North American Chapter of the
Association for

Computational Linguistics

Proceedings of the Main Conference

June 2–4, 2010
Los Angeles, California

Conference Sponsors:

• AT&T Interactive (Platinum Level)

• Microsoft Research (Gold Level)

• USC Information Sciences Institute (Gold Level)

• Google (Silver Level)

• J.D. Power and Associates (Silver Level)

• Yahoo! Labs (Silver Level)

• Basis Technology (Bronze Level)

• Factual (Bronze Level)

• IBM Research (Best Student Paper Award)

• Language Weaver (Conference Bag Sponsor)

USB memory sticks produced by
Omnipress Inc.
2600 Anderson Street
Madison, WI 53707
USA

c©2010 The Association for Computational Linguistics

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN-10: 1-932432-65-5
IBSN-13: 978-1-932432-65-7

ii

Preface: General Chair

It is with great pleasure that I welcome you to the 2010 Human Language Technologies conference of
the North American chapter of the Association for Computational Linguistics. An enormous amount
of effort has gone into organizing the conference, and the result is the rich set of intellectual and social
experiences that you will enjoy this week.

The NAACL HLT 2010 conference is an orchestrated production of many events. The centerpiece is
the collection of carefully chosen papers, posters, and demonstrations that will be presented during
the three days of the main conference. This includes the papers and posters of the Student Research
Workshop, a setting that gives encouragement and opportunity for new members of our community to
present their work. The main conference is preceded by a day of tutorials on topics of current interest
in the field, and it is followed by a very full program of specialized workshops.

Many people have volunteered their time and energy to ensure the success of the conference. Indeed,
the community as a whole has contributed by submitting papers and proposals for workshops, demos,
and tutorials, by making thoughtful judgments as members of the many review committees, and for
coming to participate in the events this week. These contributions are very much appreciated. The
heaviest burdens have been shared by the people who agreed to lead the major subcommittees of the
conference, and I want to recognize them here and explicitly thank them for their service.

To begin, I want to express my gratitude to Jill Burstein, Mary Harper, and Gerald Penn, the co-
Chairs of the Program Committee. They supervised the selection of papers and scheduling for the main
conference, recruiting the Area Chairs and managing the overall process. They chose the Noisy Genre
theme of the conference, collaborated with the Area Chairs to select the Invited Speakers, administered
the START reviewing system, and worked with the Area Chairs and the Local Arrangements Committee
to assemble the final program. They also added a new feature to the program, a ”one-minute madness”
session to raise awareness and excitement about the poster and demo presentations.

The Program Committee co-Chairs and Area Chairs recommended a small number of papers for further
consideration by the Best Papers Committee, chaired by Aravind Joshi. Tremendous thanks go to
Aravind, Eugene Charniak, Michael Collins, Diane Litman, Daniel Marcu, and Drago Radev for their
work in identifying the best examples of current work in the field.

The main-conference days include some other important activities. I appreciate Kristina Toutanova’s
effort to organize a second lunch-time Industry Panel, a follow-on to the successful panel at NAACL
HLT 2009. I thank Carolyn Penstein Rosé, Chair of the Demonstration Committee, for soliciting
candidates for the Demo Session and overseeing the rigorous process of review. For organizing the
Student Research Workshop I thank Adriane Boyd, Mahesh Joshi, and Frank Rudzicz, the student co-
Chairs, and also Julia Hockenmaier and Diane Litman for the assistance and guidance they provided
as Faculty Advisors. Financial support for the student workshop came from a grant from the National
Science Foundation.

I thank Richard Sproat and David Traum for serving as co-Chairs of the Workshop Committee. The
workshop proposal and selection process was a joint activity of committees representing all three of
this year’s computational linguistics conferences, the ACL conference in Uppsala, Coling in Beijing,
and NAACL HLT. Their challenge was to honor the location requests of the workshop proposers while

iii

arranging for each conference to have a broad and balanced collection of workshops. A full complement
of 16 workshops were chosen for NAACL HLT, and Richard and David then became the interface
with the organizers of the individual workshops as they put out their calls, reviewed submissions, and
assembled final papers for the Publications Committee.

I am grateful to Jason Baldridge, Peter Clark, and Gokhan Tur for volunteering to co-Chair the Tutorial
Committee and for attracting and selecting tutorials that introduce a range of novel techniques and
address a number of theoretical and practical problems.

The Publications Committee is responsible for constructing the written Proceedings of the conference
from the materials that come from the many sources. The Publications Committee, with Claudia
Leacock and Richard Wicentowski as co-Chairs, comes in at the end of the preparation stage and
must operate on a strict schedule if the Proceedings are to be available by the time the conference
begins. This year Claudia and Richard have been the pioneers for two major departures from past
procedure. ACL proceedings in the past have been produced by a stand-alone community-developed
software package, ACLPUB; this year we are using a version of that package that has been integrated
directly into the START conference-management system. This should simplify the publication process
for future conferences, but Claudia and Richard endured a fair amount of first-user suffering. The
second departure from past practices is that for the first time we are providing the proceedings only on
a USB memory stick, unaccompanied by a hardcopy volume. I deeply appreciate the care and attention
with which Claudia and Richard have carried out their responsibilities.

We are all very much indebted to David Chiang, Jason Riesa, Jonathan May, and Eduard Hovy, the
co-Chairs of the Local Arrangements Committee, and to the other members of the committee from the
USC Information Sciences Institute. They have been hard at work for the longest time, and the comfort
and elegance of the conference setting is the result of the many decisions they have made. To highlight
just a few, they selected the hotel, made sure that the session rooms are properly laid out and equipped,
and planned for the reception and banquet. They also designed and maintained the very attractive and
informative conference web site. Liang Huang served as Coordinator of the Student Volunteers, and
Jillian Gerten and Kenji Sagae served as Exhibit Coordinators.

I am grateful to the sponsoring organizations listed above for their financial support of the conference,
and to the members of the Sponsorship Committee for identifying and nurturing those important
relationships. The Sponsorship Committee–Srinivas Bangalore, Christy Doran, Eduard Hovy, Stephen
Pulman, and Frédérique Segond–raised money jointly for NAACL HLT and ACL this year.

The NAACL executive committee, chaired by Owen Rambow and Rebecca Hwa, provides overall
supervision and maintains the continuity and traditions of the conference from year to year. They
helped by identifying candidates for many of the committee positions, by resolving several significant
issues of conference policy, and by overseeing the budgeting process.

Finally, my heartfelt thanks go to Priscilla Rasmussen, the Business Manager of the ACL office and
for the ACL conferences, for her steady guidance through all the stages of conference preparation.
Priscilla, as always, played a critical role as the voice of experience and the source of wise advice that
kept everything moving in the right direction.

Ronald M. Kaplan
Powerset division of Microsoft Bing
General Chair, NAACL HLT 2010

iv

Preface: Program Chairs

Thanks for attending NAACL HLT 2010! As can be seen in the Conference Program, the
NAACL HLT program contains innovative, high-quality work spanning a large array of disciplines
within computational linguistics and human language technology. This year, we have included a special
Noisy Genre theme to acknowledge the significant work in that area across several disciplines. We
would like to thank L.Venkata Subramaniam of IBM Research-India for this suggestion.

NAACL HLT 2010 consists of oral and poster presentations of full and short papers, tutorials,
application demonstrations, and workshops. A one-minute madness session has been introduced this
year to highlight the poster and demo contributions. We are excited to have two very interesting and
diverse keynote speakers: David Temperley, University of Rochester, whose talk is entitled, “Music,
Language, and Computational Modeling: Lessons from the Key-Finding Problem”, and Steve Renals,
University of Edinburgh, “Recognition and Understanding of Meetings.” In addition, we have a panel
session Recent and Future HLT Challenges in Industry, chaired by Kristina Toutanova, which very
appropriately reflects the conference theme.

This year, 291 full papers were submitted and reviewed, of which 90 papers were accepted (a 30.9%
acceptance rate); 159 short papers were submitted and reviewed, of which 56 were accepted (a 35.2%
acceptance rate). One of the accepted short papers was withdrawn to appear elsewhere, leaving a total
of 55 short papers in the proceedings. Eighty-six full papers and 25 short papers will be presented
orally. The remaining 34 accepted full and short papers will be presented as posters. We would like to
thank all of the authors for submitting such remarkable papers to the conference.

Two best papers have been selected this year, and will be presented at the conference in a special
awards session. The Best Full Paper, entitled Coreference Resolution in a Modular, Entity-Centered
Model, was written by Aria Haghighi and Dan Klein. The Best Short Paper, entitled “cba to check
the spelling”: Investigating Parser Performance on Discussion Forum Posts, was written by Jennifer
Foster. Congratulations to the authors! The selection process worked as follows. The Senior Program
Committee (SPC) nominated an initial set of best paper candidates for the awards; the final decisions
were then made by a separate committee: Aravind Joshi (chair), Eugene Charniak, Michael Collins,
Diane Litman, Daniel Marcu, and Dragomir Radev. We would like to thank the committee for reading,
discussing, and contributing to the final selection process. The committee was selected to handle the
breadth of expertise required to review the nominated best papers. Once the camera-ready versions of
the papers were submitted by the authors, the Best Paper committee chair used the following process:
(a) Committee members were asked to notify the chair about conflicts of interest. Members with
conflicts of interest did not rank or discuss those papers with which they were conflicted. (b) Short
papers were ranked first by committee members, and additional discussions were held to make a final
decision. (c) Next, long papers were ranked by members and a smaller set of top papers were identified.
Discussions were then held to make the final decision. (d) The committee chair was available to break
any ties.

The review process was organized as a two-tier system with 18 SPC members and 382 reviewers.
The SPC members managed the review process for both the full and short paper submissions: each
paper received at least three reviews. Strict conflict-of-interest policies were in place during the review
process. Specifically, authors who served on the Program Committee in any capacity were removed

v

from any responsibility related to their paper. Any such conflict-of-interest paper was handled by
another committee member. In addition, the author was prohibited from participating in any discussion
or decision making related to the paper. A similar policy also applied if a Program Committee member
had an institutional or personal conflict with an author. All decisions on papers with these types of
conflicts were made by members without conflicts. We would not have been able to produce such an
interesting conference program without the dedicated SPC members who spent many weeks handling
and evaluating the submission reviews, nor without the reviewers who provided such thoughtful
evaluations. The full list of the SPC members and reviewers is listed elsewhere in these Proceedings.
We would also like to thank the SPC members for their best paper recommendations and suggestions
for the program, and Chris Dyer for his suggestions on the Machine Translation sessions.

There were, of course, a number of additional people with whom we directly interacted, and who
made significant contributions to the success of this conference. So, here are some well-deserved
acknowledgements. We would like to thank Rich Gerber and the START team for their help with
the system that managed paper submissions and reviews, and the Local Arrangement co-chairs, David
Chiang, Eduard Hovy, Jonathan May, and Jason Riesa, for their help with organizing the program,
the preparation and publication of the conference handbook, handling the NAACL HLT 2010 website,
and various other tasks – a list too lengthy to name here. We would also like to thank the Publication
Co-chairs, Claudia Leacock and Richard Wicentowski, for forging through a number of obstacles, and
doing an excellent job of handling the preparation and printing of these proceedings. We would like to
thank the Workshop Co-chairs, David Traum and Richard Sproat, the Demo Chair, Carolyn Penstein
Rosé, the Tutorial Co-chairs, Jason Baldridge, Peter Clark and Gokhan Tur, and the Student Research
Workshop Faculty Co-chairs, Julia Hockenmeier and Diane Litman, and Student Co-chairs, Adriane
Boyd, Mahesh Joshi, and Frank Rudzicz. The hard work of all of these co-chairs contributed to the
quality of the entire conference program. We would also like to thank Chris Callison-Burch for handling
Student Author Support, and to Liang Huang for serving as the Student Volunteer Coordinator. We are
grateful to Priscilla Rasmussen for supporting the visa application process, as well as answering a
variety of our questions and concerns around general conference logistics and event planning. Finally,
we would like to express our deepest thanks to the General Chair, Ron Kaplan, for his continual support
and patience throughout this process.

We hope that you will have a unique and enriching conference experience!

Jill Burstein, Educational Testing Service
Mary Harper, University of Maryland; Johns Hopkins HLT COE
Gerald Penn, University of Toronto

vi

Organizers

General Chair:

Ronald Kaplan, Powerset Division of Microsoft Bing

Program Co-Chairs:

Jill Burstein (NLP), Educational Testing Service
Mary Harper (Speech), University of Maryland and The Johns Hopkins University HLTCOE
Gerald Penn (NLP), University of Toronto

Workshop Chairs:

Richard Sproat, Oregon Health & Science University
David Traum, University of Southern California, Institute for Creative Technologies

Demo Chair:

Carolyn Penstein Rosé, Carnegie Mellon University

Tutorial Chairs:

Jason Baldridge, The University of Texas at Austin
Peter Clark, The Boeing Company
Gokhan Tur, SRI International

Publications Chairs:

Claudia Leacock, Butler Hill Group
Richard Wicentowski, Swarthmore College

Student Research Workshop Chairs:

Julia Hockenmaier (Faculty Advisor), University of Illinois at Urbana-Champaign
Diane Litman (Faculty Advisor), University of Pittsburgh
Adriane Boyd (NLP Co-Chair), University of Ohio
Mahesh Joshi (NLP Co-Chair), Carnegie Mellon University
Frank Rudzicz (Speech Co-Chair), University of Toronto

Local Arrangements Chairs:

David Chiang, University of Southern California, Information Sciences Institute
Eduard Hovy, University of Southern California, Information Sciences Institute
Jonathan May, University of Southern California, Information Sciences Institute
Jason Riesa, University of Southern California, Information Sciences Institute

vii

Exhibits Chairs:

Jillian Gerten, University of Southern California, Institute for Creative Technologies
Kenji Sagae, University of Southern California, Information Sciences Institute

Student Volunteers Coordinator:

Liang Huang, University of Southern California, Information Sciences Institute

Sponsorship Chairs:

Srinivas Bangalore (North America), AT&T
Christy Doran (North America), MITRE
Eduard Hovy (Local), University of Southern California, Information Sciences Institute
Stephen Pulman (Europe), Oxford University
Frédérique Segond (Europe), Xerox Research Centre Europe

ACL Business Manager:

Priscilla Rasmussen

viii

Program Committee

Senior Program Committee Members (Area Chairs):

Eugene Agichtein, Emory University
Yaser Al-Onaizan, IBM
Ciprian Chelba, Google
Mona Diab, Columbia University
Barbara Di Eugenio, University of Illinois at Chicago
Eric Fosler-Lussier, Ohio State University
Makoto Kanazawa, National Institute of Informatics, Tokyo
Damianos Karakos, Johns Hopkins University
Philip Koehn, University of Edinburgh
Mike Maxwell, University of Maryland
Diana McCarthy, Lexical Computing Ltd
Ani Nenkova, University of Pennsylvania
Stefan Oepen, University of Oslo
Dan Roth, University of Illinois at Urbana-Champaign
Noah Smith, Carnegie Mellon University
Amanda Stent, AT&T
Joel Tetreault, Educational Testing Service
Jan Wiebe, University of Pittsburgh

Paper Award Committee:

Aravind Joshi (Chair), University of Pennsylvania
Daniel Marcu, University of Southern California, Information Sciences Institute
Diane Litman, University of Pittsburgh
Drago Radev, University of Michigan
Eugene Charniak, Brown University
Michael Collins, Massachusetts Institute of Technology

Program Committee Members:

Steve Abney
Mikhail Ageev
Eneko Agirre
David Ahn
Gregory Aist
Salah Ait-Mokhtar
Cem Akkaya
Ingunn Amdal
Ron Artstein

Abhishek Arun
Necip Fazil Ayan
Jason Baldridge
Tim Baldwin
Carmen Banea
Srinivas Bangalore
Regina Barzilay
Roberto Basili
Anja Belz

Yassine Benajiba
Emily M. Bender
Shane Bergsma
Steven Bethard
Pushpak Bhattacharyya
Jiang Bian
Dan Bikel
Alexandra Birch
Steven Bird

ix

Philippe Blache
Bernd Bohnet
Kristy Boyer
SRK Branavan
Antnio Branco
Thorsten Brants
Chris Brew
Sam Brody
Razvan Bunescu
Harry Bunt
Lukas Burget
Bill Byrne
Donna Byron
Lynne Cahill
Aoife Cahill
Chris Callison-Burch
Claire Cardie
Giuseppe Carenini
Michael Carl
Marine Carpuat
John Carroll
Francisco Casacuberta
Joyce Chai
Eugene Charniak
Ciprian Chelba
Jinying Chen
John Chen
Harr Chen
Yejin Choi
Alexander Clark
Stephen Clark
James Clarke
Martin Cmejrek
Shay Cohen
Trevor Cohn
Michael Collins
Michael Connor
John Conroy
Mark Core
Mathias Creutz
Aron Culotta
Robert Dale
Cristian Danescu-Niculescu-
Mizil
Hal Daume
Anne David

Kordula De Kuthy
Eric de la Clergerie
Dina Demner Fushman
John DeNero
David DeVault
Doug Downey
Mark Dredze
Jasha Droppo
Amit Dubey
Kevin Duh
Markus Egg
Andreas Eisele
Jacob Eisenstein
Jason Eisner
Noemie Elhadad
Jonathan Elsas
Micha Elsner
Ahmad Emami
Andrea Esuli
Tanveer Faruquie
Benoit Favre
Elena Filatova
Katja Filippova
Jenny Finkel
Dan Flickinger
Kate Forbes Riley
Eric Fosler-Lussier
Davide Fossati
Jennifer Foster
George Foster
Alexander Fraser
Maria Fuentes
Pascale Fung
Ryan Gabbard
Michel Galley
Michael Gamon
Albert Gatt
Panayiotis Georgiou
Dan Gildea
Jesus Gimenez
Roxana Girju
Claudio Giuliano
Vaibhava Goel
Dan Goldwasser
Carlos Gomez Rodriguez
Jeff Good

Nancy Green
Ralph Grishman
Qi Guo
Weiwei Guo
Iryna Gurevych
Aria Haghighi
Keith Hall
Mike Hammond
Sanda Harabagiu
Mary Harper
Mark Hasegawa-Johnson
Laura Hasler
Hany Hassan
Xiaodong He
Jeff Heinz
James Henderson
Andy Hickl
Silja Hildebrand
Graeme Hirst
Hieu Hoang
Julia Hockenmaier
Kristy Hollingshead
Rebecca Hwa
Nancy Ide
Diana Inkpen
Abraham Ittycheriah
Aren Jansen
Heng Ji
Kristiina Jokinen
Doug Jones
Laura Kallmeyer
Hiroshi Kanayama
Damianos Karakos
Lauri Karttunen
Athanassios Katsamanis
Frank Keller
Cynthia Kersey
Tracy King
Brian Kingsbury
Dan Klein
Kevin Knight
Greg Kobele
Rob Koeling
Greg Kondrak
Terry Koo
Stefan Kopp

x

Valia Kordoni
Anna Korhonen
Sandra Kuebler
Marco Kuhlmann
Roland Kuhn
Jonas Kuhn
Seth Kulick
Mikko Kurimo
Oren Kurland
Sadao Kurohashi
Arnd Christian Knig
Philippe Langlais
Mirella Lapata
Alberto Lavelli
Matt Lease
Lin-Shan Lee
Els Lefever
James Lester
Gregor Leusch
Haizhou Li
Zhifei Li
Henry Li
Mu Li
Percy Liang
Jimmy Lin
Diane Litman
Qun Liu
Yang Liu
Zhanyi Liu
Adam Lopez
Annie Louis
Bernardo Magnini
Wolfgang Maier
Rob Malouf
Arindam Mandal
Lidia Mangu
Christopher Manning
Daniel Marcu
Lluis Marquez Villodre
David Martinez
Andre Martins
Yuval Marton
Sameer Maskey
Yuji Matsumoto
Evgeny Matusov
Arne Mauser

Mike Maxwell
James Mayfield
David McClosky
Mark McConnville
Nancy McCracken
David McDonald
Ryan McDonald
Kathy McKeown
Susan McRoy
Florian Metze
Eleni Miltsakaki
Gilad Mishne
Yusuke Miyao
Saif Mohammad
Bob Moore
Alessandro Moschitti
Dragos Munteanu
Smaranda Muresan
Gabriel Murray
Tor Andre Myrvoll
Roberto Navigli
Mark-Jan Nederhof
Sumit Negi
Hwee Tou Ng
Vincent Ng
Patrick Nguyen
Takashi Ninomiya
Joakim Nivre
Doug Oard
Franz Och
Kemal Oflazer
Alice Oh
Constantin Orasan
Miles Osborne
Lilja Ovrelid
Deepak Padmanabhan
Ulrike Pado
Alexis Palmer
Martha Palmer
Bo Pang
Marius Pasca
Becky Passonneau
Sid Patwardhan
Ted Pedersen
Slav Petrov
Christine Piatko

Daniele Pighin
Emily Pitler
Massimo Poesio
Joe Polifroni
Simone Ponzetto
Maja Popovic
Dan Povey
Sameer Pradhan
Rashmi Prasad
Chris Quirk
Stephan Raaijmakers
Bhuvana Ramabhadran
Allan Ramsay
Ari Rappoport
Ariya Rastrow
Lev Ratinov
Roi Reichart
Ehud Reiter
German Rigau
Michael Riley
Laura Rimell
Nicholas Rizzolo
Brian Roark
Horacio Rodriguez
Victoria Rosen
Antti-Veikko Rosti
Dan Roth
Shourya Roy
Marta Ruiz Costa-juss
Mark Sammons
George Saon
Murat Saraclar
Kevin Scannell
Odette Scharenborg
David Schlangen
Helmut Schmid
Hinrich Schuetze
Mike Seltzer
Hendra Setiawan
Fei Sha
Izhak Shafran
Wade Shen
Libin Shen
Nobuyuki Shimizu
Advaith Siddharthan
Khalil Simaan

xi

Michel Simard
Kevin Small
David Smith
Mark Smucker
Swapna Somasundaran
Radu Soricut
Richard Sproat
Vivek Srikumar
Yaji Sripada
Mark Steedman
Josef Steinberger
Amanda Stent
Mark Stevenson
Carlo Strapparava
Kristina Striegnitz
Michael Strube
LV Subramaniam
Mihai Surdeanu
Hiroya Takamura
David Talbot
Simone Teufel
Joerg Tiedemann
Christoph Tillmann
Ivan Titov
Kristina Toutanova
Roy Tromble
Yoshimasa Tsuruoka

Ielka van der Sluis
Josef van Genabith
Keith Vander Linden
Balakrishnan Varadarajan
Ashish Venugopal
Yannick Versley
David Vilar
Stephan Vogel
Piek Vossen
Marilyn Walker
Stephen Wan
Wen Wang
Haifeng Wang
XingLong Wang
Qin Wang
Ye-Yi Wang
Andy Way
Bonnie Webber
David Weir
Fuiliang Weng
Michael White
Chris White
Richard Wicentowski
Theresa Wilson
Shuly Wintner
Yunfang Wu
Dekai Wu

Hua Wu
Holger Wunsch
Bing Xiang
Deyi Xiong
Puyang Xu
Jinxi Xu
Peng Xu
Wen-tau Yih
Dong Yu
Deniz Yuret
David Zajic
Richard Zens
Hao Zhang
Yue Zhang
Dongdong Zhang
Yi Zhang
Min Zhang
Ying Zhang
Tiejun Zhao
Bing Zhao
Bowen Zhou
Xiaodan Zhu
Imed Zitouni
Andreas Zollmann
Chengqing Zong
Geoff Zweig

xii

Table of Contents

Invited Talk: Recognition and Understanding of Meetings
Steve Renals . 1

Chart Mining-based Lexical Acquisition with Precision Grammars
Yi Zhang, Timothy Baldwin, Valia Kordoni, David Martinez and Jeremy Nicholson 10

Products of Random Latent Variable Grammars
Slav Petrov . 19

Automatic Domain Adaptation for Parsing
David McClosky, Eugene Charniak and Mark Johnson . 28

Appropriately Handled Prosodic Breaks Help PCFG Parsing
Zhongqiang Huang and Mary Harper . 37

Using Confusion Networks for Speech Summarization
Shasha Xie and Yang Liu . 46

Qme! : A Speech-based Question-Answering system on Mobile Devices
Taniya Mishra and Srinivas Bangalore . 55

Dialogue-Oriented Review Summary Generation for Spoken Dialogue Recommendation Systems
Jingjing Liu, Stephanie Seneff and Victor Zue . 64

Minimally-Supervised Extraction of Entities from Text Advertisements
Sameer Singh, Dustin Hillard and Chris Leggetter . 73

Taxonomy Learning Using Word Sense Induction
Ioannis P. Klapaftis and Suresh Manandhar .82

Visual Information in Semantic Representation
Yansong Feng and Mirella Lapata . 91

Automatic Evaluation of Topic Coherence
David Newman, Jey Han Lau, Karl Grieser and Timothy Baldwin . 100

Multi-Prototype Vector-Space Models of Word Meaning
Joseph Reisinger and Raymond J. Mooney . 109

Unsupervised Syntactic Alignment with Inversion Transduction Grammars
Adam Pauls, Dan Klein, David Chiang and Kevin Knight . 118

Joint Parsing and Alignment with Weakly Synchronized Grammars
David Burkett, John Blitzer and Dan Klein . 127

Learning Translation Boundaries for Phrase-Based Decoding
Deyi Xiong, Min Zhang and Haizhou Li . 136

xiii

Hitting the Right Paraphrases in Good Time
Stanley Kok and Chris Brockett . 145

Training Paradigms for Correcting Errors in Grammar and Usage
Alla Rozovskaya and Dan Roth . 154

Using Mostly Native Data to Correct Errors in Learners’ Writing
Michael Gamon . 163

Unsupervised Modeling of Twitter Conversations
Alan Ritter, Colin Cherry and Bill Dolan . 172

Streaming First Story Detection with application to Twitter
Saša Petrović, Miles Osborne and Victor Lavrenko. .181

Unsupervised Model Adaptation using Information-Theoretic Criterion
Ariya Rastrow, Frederick Jelinek, Abhinav Sethy and Bhuvana Ramabhadran 190

Formatting Time-Aligned ASR Transcripts for Readability
Maria Shugrina . 198

Cheap, Fast and Good Enough: Automatic Speech Recognition with Non-Expert Transcription
Scott Novotney and Chris Callison-Burch . 207

Contextual Information Improves OOV Detection in Speech
Carolina Parada, Mark Dredze, Denis Filimonov and Frederick Jelinek . 216

Improved Extraction Assessment through Better Language Models
Arun Ahuja and Doug Downey . 225

Language Identification: The Long and the Short of the Matter
Timothy Baldwin and Marco Lui . 229

Inducing Synchronous Grammars with Slice Sampling
Phil Blunsom and Trevor Cohn . 238

Task-based Evaluation of Multiword Expressions: a Pilot Study in Statistical Machine Translation
Marine Carpuat and Mona Diab . 242

Improving Semantic Role Labeling with Word Sense
Wanxiang Che, Ting Liu and Yongqiang Li . 246

Extending the METEOR Machine Translation Evaluation Metric to the Phrase Level
Michael Denkowski and Alon Lavie . 250

Testing a Grammar Customization System with Sahaptin
Scott Drellishak . 254

Two monolingual parses are better than one (synchronous parse)
Chris Dyer . 263

xiv

Fast Query for Large Treebanks
Sumukh Ghodke and Steven Bird . 267

Efficient Parsing of Well-Nested Linear Context-Free Rewriting Systems
Carlos Gómez-Rodrı́guez, Marco Kuhlmann and Giorgio Satta . 276

Utility Evaluation of Cross-document Information Extraction
Heng Ji, Zheng Chen, Jonathan Feldman, Antonio Gonzalez, Ralph Grishman and
Vivek Upadhyay . 285

Evaluation Metrics for the Lexical Substitution Task
Sanaz Jabbari, Mark Hepple and Louise Guthrie . 289

Movie Reviews and Revenues: An Experiment in Text Regression
Mahesh Joshi, Dipanjan Das, Kevin Gimpel and Noah A. Smith . 293

Using Gaussian Mixture Models to Detect Figurative Language in Context
Linlin Li and Caroline Sporleder . 297

Improving Phrase-Based Translation with Prototypes of Short Phrases
Frank Liberato, Behrang Mohit and Rebecca Hwa . 301

Putting the User in the Loop: Interactive Maximal Marginal Relevance for Query-Focused
Summarization

Jimmy Lin, Nitin Madnani and Bonnie Dorr . 305

Improving Blog Polarity Classification via Topic Analysis and Adaptive Methods
Feifan Liu, Dong Wang, Bin Li and Yang Liu . 309

Creating Local Coherence: An Empirical Assessment
Annie Louis and Ani Nenkova . 313

Time-Efficient Creation of an Accurate Sentence Fusion Corpus
Kathleen McKeown, Sara Rosenthal, Kapil Thadani and Coleman Moore 317

Towards Cross-Lingual Textual Entailment
Yashar Mehdad, Matteo Negri and Marcello Federico . 321

A Comparative Study of Word Co-occurrence for Term Clustering in Language Model-based
Sentence Retrieval

Saeedeh Momtazi, Sanjeev Khudanpur and Dietrich Klakow . 325

Information Content Measures of Semantic Similarity Perform Better Without Sense-Tagged Text
Ted Pedersen. .329

Generating Expository Dialogue from Monologue: Motivation, Corpus and Preliminary Rules
Paul Piwek and Svetlana Stoyanchev . 333

The Simple Truth about Dependency and Phrase Structure Representations: An Opinion Piece
Owen Rambow. .337

xv

Word Alignment with Stochastic Bracketing Linear Inversion Transduction Grammar
Markus Saers, Joakim Nivre and Dekai Wu . 341

Crowdsourcing the evaluation of a domain-adapted named entity recognition system
Asad B. Sayeed, Timothy J. Meyer, Hieu C. Nguyen, Olivia Buzek and Amy Weinberg 345

Generalizing Hierarchical Phrase-based Translation using Rules with Adjacent Nonterminals
Hendra Setiawan and Philip Resnik . 349

The Effect of Ambiguity on the Automated Acquisition of WSD Examples
Mark Stevenson and Yikun Guo . 353

Word Sense Subjectivity for Cross-lingual Lexical Substitution
Fangzhong Su and Katja Markert . 357

Query Ambiguity Revisited: Clickthrough Measures for Distinguishing Informational and
Ambiguous Queries

Yu Wang and Eugene Agichtein . 361

For the sake of simplicity: Unsupervised extraction of lexical simplifications from Wikipedia
Mark Yatskar, Bo Pang, Cristian Danescu-Niculescu-Mizil and Lillian Lee 365

Predicting Human-Targeted Translation Edit Rate via Untrained Human Annotators
Omar F. Zaidan and Chris Callison-Burch . 369

Improving Semantic Role Classification with Selectional Preferences
Beñat Zapirain, Eneko Agirre, Lluı́s Màrquez and Mihai Surdeanu . 373

Generalizing Syntactic Structures for Product Attribute Candidate Extraction
Yanyan Zhao, Bing Qin, Shen Hu and Ting Liu . 377

“cba to check the spelling”: Investigating Parser Performance on Discussion Forum Posts
Jennifer Foster . 381

Coreference Resolution in a Modular, Entity-Centered Model
Aria Haghighi and Dan Klein . 385

Stream-based Translation Models for Statistical Machine Translation
Abby Levenberg, Chris Callison-Burch and Miles Osborne . 394

Extracting Parallel Sentences from Comparable Corpora using Document Level Alignment
Jason R. Smith, Chris Quirk and Kristina Toutanova . 403

Statistical Machine Translation of Texts with Misspelled Words
Nicola Bertoldi, Mauro Cettolo and Marcello Federico . 412

Everybody loves a rich cousin: An empirical study of transliteration through bridge languages
Mitesh M. Khapra, A Kumaran and Pushpak Bhattacharyya . 420

Discriminative Learning over Constrained Latent Representations
Ming-Wei Chang, Dan Goldwasser, Dan Roth and Vivek Srikumar . 429

xvi

Some Empirical Evidence for Annotation Noise in a Benchmarked Dataset
Beata Beigman Klebanov and Eyal Beigman . 438

Bayesian Inference for Finite-State Transducers
David Chiang, Jonathan Graehl, Kevin Knight, Adam Pauls and Sujith Ravi 447

Distributed Training Strategies for the Structured Perceptron
Ryan McDonald, Keith Hall and Gideon Mann . 456

Term Weighting Schemes for Latent Dirichlet Allocation
Andrew T. Wilson and Peter A. Chew . 465

Learning Dense Models of Query Similarity from User Click Logs
Fabio De Bona, Stefan Riezler, Keith Hall, Massimiliano Ciaramita, Amaç Herdağdelen and

Maria Holmqvist . 474

Learning to Link Entities with Knowledge Base
Zhicheng Zheng, Fangtao Li, Minlie Huang and Xiaoyan Zhu. .483

Improving the Multilingual User Experience of Wikipedia Using Cross-Language Name Search
Raghavendra Udupa and Mitesh M. Khapra . 492

Learning Words and Their Meanings from Unsegmented Child-directed Speech
Bevan K. Jones, Mark Johnson and Michael C. Frank . 501

Subword Variation in Text Message Classification
Robert Munro and Christopher D. Manning . 510

Automatic Diacritization for Low-Resource Languages Using a Hybrid Word and Consonant CMM
Robbie Haertel, Peter McClanahan and Eric K. Ringger . 519

Urdu Word Segmentation
Nadir Durrani and Sarmad Hussain . 528

Enabling Monolingual Translators: Post-Editing vs. Options
Philipp Koehn .537

Online Learning for Interactive Statistical Machine Translation
Daniel Ortiz-Martı́nez, Ismael Garcı́a-Varea and Francisco Casacuberta . 546

The Best Lexical Metric for Phrase-Based Statistical MT System Optimization
Daniel Cer, Christopher D. Manning and Daniel Jurafsky . 555

Variational Inference for Adaptor Grammars
Shay B. Cohen, David M. Blei and Noah A. Smith . 564

Type-Based MCMC
Percy Liang, Michael I. Jordan and Dan Klein . 573

Painless Unsupervised Learning with Features
Taylor Berg-Kirkpatrick, Alexandre Bouchard-Côté, John DeNero and Dan Klein 582

xvii

Linguistic Steganography Using Automatically Generated Paraphrases
Ching-Yun Chang and Stephen Clark . 591

Prenominal Modifier Ordering via Multiple Sequence Alignment
Aaron Dunlop, Margaret Mitchell and Brian Roark . 600

Good Question! Statistical Ranking for Question Generation
Michael Heilman and Noah A. Smith . 609

Not All Seeds Are Equal: Measuring the Quality of Text Mining Seeds
Zornitsa Kozareva and Eduard Hovy . 618

Extracting Glosses to Disambiguate Word Senses
Weisi Duan and Alexander Yates . 627

Can Recognising Multiword Expressions Improve Shallow Parsing?
Ioannis Korkontzelos and Suresh Manandhar . 636

A Simple Approach for HPSG Supertagging Using Dependency Information
Yao-zhong Zhang, Takuya Matsuzaki and Jun’ichi Tsujii . 645

Ensemble Models for Dependency Parsing: Cheap and Good?
Mihai Surdeanu and Christopher D. Manning . 649

Enlarged Search Space for SITG Parsing
Guillem Gascó, Joan-Andreu Sánchez and José-Miguel Benedı́ . 653

Improving Data Driven Dependency Parsing using Clausal Information
Phani Gadde, Karan Jindal, Samar Husain, Dipti Misra Sharma and Rajeev Sangal 657

A Treebank Query System Based on an Extracted Tree Grammar
Seth Kulick and Ann Bies . 661

Reranking the Berkeley and Brown Parsers
Mark Johnson and Ahmet Engin Ural .665

An Exploration of Off Topic Conversation
Whitney L. Cade, Blair A. Lehman and Andrew Olney . 669

Making Conversational Structure Explicit: Identification of Initiation-response Pairs within
Online Discussions

Yi-Chia Wang and Carolyn P. Rosé . 673

Engaging learning groups using Social Interaction Strategies
Rohit Kumar and Carolyn P. Rosé . 677

Using Entity-Based Features to Model Coherence in Student Essays
Jill Burstein, Joel Tetreault and Slava Andreyev . 681

Summarizing Microblogs Automatically
Beaux Sharifi, Mark-Anthony Hutton and Jugal Kalita . 685

xviii

Automatic Generation of Personalized Annotation Tags for Twitter Users
Wei Wu, Bin Zhang and Mari Ostendorf . 689

Language identification of names with SVMs
Aditya Bhargava and Grzegorz Kondrak . 693

Integrating Joint n-gram Features into a Discriminative Training Framework
Sittichai Jiampojamarn, Colin Cherry and Grzegorz Kondrak . 697

A Hybrid Morphologically Decomposed Factored Language Models for Arabic LVCSR
Amr El-Desoky, Ralf Schlüter and Hermann Ney . 701

Is Arabic Part of Speech Tagging Feasible Without Word Segmentation?
Emad Mohamed and Sandra Kübler . 705

Arabic Mention Detection: Toward Better Unit of Analysis
Yassine Benajiba and Imed Zitouni . 709

An MDL-based approach to extracting subword units for grapheme-to-phoneme conversion
Sravana Reddy and John Goldsmith . 713

Extracting Phrase Patterns with Minimum Redundancy for Unsupervised Speaker
Role Classification

Bin Zhang, Brian Hutchinson, Wei Wu and Mari Ostendorf . 717

Classification of Prosodic Events using Quantized Contour Modeling
Andrew Rosenberg . 721

Investigations into the Crandem Approach to Word Recognition
Rohit Prabhavalkar, Preethi Jyothi, William Hartmann, Jeremy Morris and
Eric Fosler-Lussier . 725

Constraint-Driven Rank-Based Learning for Information Extraction
Sameer Singh, Limin Yao, Sebastian Riedel and Andrew McCallum . 729

Softmax-Margin CRFs: Training Log-Linear Models with Cost Functions
Kevin Gimpel and Noah A. Smith . 733

Bitext-Based Resolution of German Subject-Object Ambiguities
Florian Schwarck, Alexander Fraser and Hinrich Schütze . 737

Invited Talk: Music, Language, and Computational Modeling: Lessons from the Key-Finding Problem
David Temperley . 741

An Efficient Algorithm for Easy-First Non-Directional Dependency Parsing
Yoav Goldberg and Michael Elhadad . 742

From Baby Steps to Leapfrog: How “Less is More” in Unsupervised Dependency Parsing
Valentin I. Spitkovsky, Hiyan Alshawi and Daniel Jurafsky . 751

xix

Relaxed Marginal Inference and its Application to Dependency Parsing
Sebastian Riedel and David A. Smith . 760

Optimal Parsing Strategies for Linear Context-Free Rewriting Systems
Daniel Gildea . 769

The viability of web-derived polarity lexicons
Leonid Velikovich, Sasha Blair-Goldensohn, Kerry Hannan and Ryan McDonald 777

Dependency Tree-based Sentiment Classification using CRFs with Hidden Variables
Tetsuji Nakagawa, Kentaro Inui and Sadao Kurohashi . 786

Convolution Kernels for Opinion Holder Extraction
Michael Wiegand and Dietrich Klakow . 795

An Unsupervised Aspect-Sentiment Model for Online Reviews
Samuel Brody and Noemie Elhadad . 804

Joint Inference for Knowledge Extraction from Biomedical Literature
Hoifung Poon and Lucy Vanderwende . 813

Clinical Information Retrieval using Document and PICO Structure
Florian Boudin, Jian-Yun Nie and Martin Dawes . 822

Topic Models for Image Annotation and Text Illustration
Yansong Feng and Mirella Lapata . 831

Learning about Voice Search for Spoken Dialogue Systems
Rebecca Passonneau, Susan L. Epstein, Tiziana Ligorio, Joshua B. Gordon and
Pravin Bhutada . 840

A Direct Syntax-Driven Reordering Model for Phrase-Based Machine Translation
Niyu Ge . 849

Context-free reordering, finite-state translation
Chris Dyer and Philip Resnik . 858

Improved Models of Distortion Cost for Statistical Machine Translation
Spence Green, Michel Galley and Christopher D. Manning . 867

Why Synchronous Tree Substitution Grammars?
Andreas Maletti . 876

An extractive supervised two-stage method for sentence compression
Dimitrios Galanis and Ion Androutsopoulos . 885

Interpretation and Transformation for Abstracting Conversations
Gabriel Murray, Giuseppe Carenini and Raymond Ng . 894

Quantifying the Limits and Success of Extractive Summarization Systems Across Domains
Hakan Ceylan, Rada Mihalcea, Umut Özertem, Elena Lloret and Manuel Palomar 903

xx

Multi-document Summarization via Budgeted Maximization of Submodular Functions
Hui Lin and Jeff Bilmes . 912

Cross-lingual Induction of Selectional Preferences with Bilingual Vector Spaces
Yves Peirsman and Sebastian Padó . 921

Latent SVMs for Semantic Role Labeling using LTAG Derivation Trees
Yudong Liu, Gholamreza Haffari and Anoop Sarkar. .930

Unsupervised Induction of Semantic Roles
Joel Lang and Mirella Lapata . 939

Probabilistic Frame-Semantic Parsing
Dipanjan Das, Nathan Schneider, Desai Chen and Noah A. Smith . 948

Expected Sequence Similarity Maximization
Cyril Allauzen, Shankar Kumar, Wolfgang Macherey, Mehryar Mohri and Michael Riley 957

Accurate Non-Hierarchical Phrase-Based Translation
Michel Galley and Christopher D. Manning . 966

Model Combination for Machine Translation
John DeNero, Shankar Kumar, Ciprian Chelba and Franz Och . 975

Detecting Emails Containing Requests for Action
Andrew Lampert, Robert Dale and Cecile Paris . 984

Evaluating Hierarchical Discourse Segmentation
Lucien Carroll . 993

Reformulating Discourse Connectives for Non-Expert Readers
Advaith Siddharthan and Napoleon Katsos . 1002

Tree Edit Models for Recognizing Textual Entailments, Paraphrases, and Answers to Questions
Michael Heilman and Noah A. Smith . 1011

Syntactic/Semantic Structures for Textual Entailment Recognition
Yashar Mehdad, Alessandro Moschitti and Fabio Massimo Zanzotto .1020

Automatic Metaphor Interpretation as a Paraphrasing Task
Ekaterina Shutova . 1029

xxi

Conference Program

Wednesday, June 2, 2010

Plenary Session I

8:45–9:00 Opening Ceremony

9:00–10:10 Invited Talk: Recognition and Understanding of Meetings
Steve Renals

10:10–10:40 Break

Parsing I

10:40–11:05 Chart Mining-based Lexical Acquisition with Precision Grammars
Yi Zhang, Timothy Baldwin, Valia Kordoni, David Martinez and Jeremy Nicholson

11:05–11:30 Products of Random Latent Variable Grammars
Slav Petrov

11:30–11:55 Automatic Domain Adaptation for Parsing
David McClosky, Eugene Charniak and Mark Johnson

11:55–12:20 Appropriately Handled Prosodic Breaks Help PCFG Parsing
Zhongqiang Huang and Mary Harper

Noisy Genre I

10:40–11:05 Using Confusion Networks for Speech Summarization
Shasha Xie and Yang Liu

11:05–11:30 Qme! : A Speech-based Question-Answering system on Mobile Devices
Taniya Mishra and Srinivas Bangalore

11:30–11:55 Dialogue-Oriented Review Summary Generation for Spoken Dialogue Recommen-
dation Systems
Jingjing Liu, Stephanie Seneff and Victor Zue

xxiii

Wednesday, June 2, 2010 (continued)

11:55–12:20 Minimally-Supervised Extraction of Entities from Text Advertisements
Sameer Singh, Dustin Hillard and Chris Leggetter

Semantics I

10:40–11:05 Taxonomy Learning Using Word Sense Induction
Ioannis P. Klapaftis and Suresh Manandhar

11:05–11:30 Visual Information in Semantic Representation
Yansong Feng and Mirella Lapata

11:30–11:55 Automatic Evaluation of Topic Coherence
David Newman, Jey Han Lau, Karl Grieser and Timothy Baldwin

11:55–12:20 Multi-Prototype Vector-Space Models of Word Meaning
Joseph Reisinger and Raymond J. Mooney

Student Research Workshop I

Note: All student research workshop papers are located in a companion volume of the
proceedings.

10:40–11:10 Improving Syntactic Coordination Resolution using Language Modeling
Philip Ogren

11:10–11:40 On Automated Evaluation of Readability of Summaries: Capturing Grammaticality, Fo-
cus, Structure and Coherence
Ravikiran Vadlapudi and Rahul Katragadda

11:40–12:10 Detecting Novelty in the Context of Progressive Summarization
Praveen Bysani

12:20–2:00 Lunch

xxiv

Wednesday, June 2, 2010 (continued)

Machine Translation I

2:00–2:25 Unsupervised Syntactic Alignment with Inversion Transduction Grammars
Adam Pauls, Dan Klein, David Chiang and Kevin Knight

2:25–2:50 Joint Parsing and Alignment with Weakly Synchronized Grammars
David Burkett, John Blitzer and Dan Klein

2:50–3:15 Learning Translation Boundaries for Phrase-Based Decoding
Deyi Xiong, Min Zhang and Haizhou Li

3:15–3:40 Hitting the Right Paraphrases in Good Time
Stanley Kok and Chris Brockett

Noisy Genre II

2:00–2:25 Training Paradigms for Correcting Errors in Grammar and Usage
Alla Rozovskaya and Dan Roth

2:25–2:50 Using Mostly Native Data to Correct Errors in Learners’ Writing
Michael Gamon

2:50–3:15 Unsupervised Modeling of Twitter Conversations
Alan Ritter, Colin Cherry and Bill Dolan

3:15–3:40 Streaming First Story Detection with application to Twitter
Saša Petrović, Miles Osborne and Victor Lavrenko

xxv

Wednesday, June 2, 2010 (continued)

Speech Processing

2:00–2:25 Unsupervised Model Adaptation using Information-Theoretic Criterion
Ariya Rastrow, Frederick Jelinek, Abhinav Sethy and Bhuvana Ramabhadran

2:25–2:50 Formatting Time-Aligned ASR Transcripts for Readability
Maria Shugrina

2:50–3:15 Cheap, Fast and Good Enough: Automatic Speech Recognition with Non-Expert Tran-
scription
Scott Novotney and Chris Callison-Burch

3:15–3:40 Contextual Information Improves OOV Detection in Speech
Carolina Parada, Mark Dredze, Denis Filimonov and Frederick Jelinek

Student Research Workshop II

Note: All student research workshop papers are located in a companion volume of the
proceedings.

2:00–2:30 Extrinsic Parse Selection
David Goss-Grubbs

2:30–3:00 Towards a Matrix-based Distributional Model of Meaning
Eugenie Giesbrecht

3:00–3:30 Distinguishing Use and Mention in Natural Language
Shomir Wilson

3:40–4:10 Break

xxvi

Wednesday, June 2, 2010 (continued)

Poster Plenary Session

4:10–5:30 One-Minute Madness: Poster and Demo Previews

5:30–6:30 Break

6:30–8:30 Poster and Demo Session

Posters

Improved Extraction Assessment through Better Language Models
Arun Ahuja and Doug Downey

Language Identification: The Long and the Short of the Matter
Timothy Baldwin and Marco Lui

Inducing Synchronous Grammars with Slice Sampling
Phil Blunsom and Trevor Cohn

Task-based Evaluation of Multiword Expressions: a Pilot Study in Statistical Machine
Translation
Marine Carpuat and Mona Diab

Improving Semantic Role Labeling with Word Sense
Wanxiang Che, Ting Liu and Yongqiang Li

Extending the METEOR Machine Translation Evaluation Metric to the Phrase Level
Michael Denkowski and Alon Lavie

Testing a Grammar Customization System with Sahaptin
Scott Drellishak

Two monolingual parses are better than one (synchronous parse)
Chris Dyer

Fast Query for Large Treebanks
Sumukh Ghodke and Steven Bird

xxvii

Wednesday, June 2, 2010 (continued)

Efficient Parsing of Well-Nested Linear Context-Free Rewriting Systems
Carlos Gómez-Rodrı́guez, Marco Kuhlmann and Giorgio Satta

Utility Evaluation of Cross-document Information Extraction
Heng Ji, Zheng Chen, Jonathan Feldman, Antonio Gonzalez, Ralph Grishman and Vivek
Upadhyay

Evaluation Metrics for the Lexical Substitution Task
Sanaz Jabbari, Mark Hepple and Louise Guthrie

Movie Reviews and Revenues: An Experiment in Text Regression
Mahesh Joshi, Dipanjan Das, Kevin Gimpel and Noah A. Smith

Using Gaussian Mixture Models to Detect Figurative Language in Context
Linlin Li and Caroline Sporleder

Improving Phrase-Based Translation with Prototypes of Short Phrases
Frank Liberato, Behrang Mohit and Rebecca Hwa

Putting the User in the Loop: Interactive Maximal Marginal Relevance for Query-Focused
Summarization
Jimmy Lin, Nitin Madnani and Bonnie Dorr

Improving Blog Polarity Classification via Topic Analysis and Adaptive Methods
Feifan Liu, Dong Wang, Bin Li and Yang Liu

Creating Local Coherence: An Empirical Assessment
Annie Louis and Ani Nenkova

Time-Efficient Creation of an Accurate Sentence Fusion Corpus
Kathleen McKeown, Sara Rosenthal, Kapil Thadani and Coleman Moore

Towards Cross-Lingual Textual Entailment
Yashar Mehdad, Matteo Negri and Marcello Federico

A Comparative Study of Word Co-occurrence for Term Clustering in Language Model-
based Sentence Retrieval
Saeedeh Momtazi, Sanjeev Khudanpur and Dietrich Klakow

xxviii

Wednesday, June 2, 2010 (continued)

Information Content Measures of Semantic Similarity Perform Better Without Sense-
Tagged Text
Ted Pedersen

Generating Expository Dialogue from Monologue: Motivation, Corpus and Preliminary
Rules
Paul Piwek and Svetlana Stoyanchev

The Simple Truth about Dependency and Phrase Structure Representations: An Opinion
Piece
Owen Rambow

Word Alignment with Stochastic Bracketing Linear Inversion Transduction Grammar
Markus Saers, Joakim Nivre and Dekai Wu

Crowdsourcing the evaluation of a domain-adapted named entity recognition system
Asad B. Sayeed, Timothy J. Meyer, Hieu C. Nguyen, Olivia Buzek and Amy Weinberg

Generalizing Hierarchical Phrase-based Translation using Rules with Adjacent Nonter-
minals
Hendra Setiawan and Philip Resnik

The Effect of Ambiguity on the Automated Acquisition of WSD Examples
Mark Stevenson and Yikun Guo

Word Sense Subjectivity for Cross-lingual Lexical Substitution
Fangzhong Su and Katja Markert

Query Ambiguity Revisited: Clickthrough Measures for Distinguishing Informational and
Ambiguous Queries
Yu Wang and Eugene Agichtein

For the sake of simplicity: Unsupervised extraction of lexical simplifications from
Wikipedia
Mark Yatskar, Bo Pang, Cristian Danescu-Niculescu-Mizil and Lillian Lee

Predicting Human-Targeted Translation Edit Rate via Untrained Human Annotators
Omar F. Zaidan and Chris Callison-Burch

Improving Semantic Role Classification with Selectional Preferences
Beñat Zapirain, Eneko Agirre, Lluı́s Màrquez and Mihai Surdeanu

xxix

Wednesday, June 2, 2010 (continued)

Generalizing Syntactic Structures for Product Attribute Candidate Extraction
Yanyan Zhao, Bing Qin, Shen Hu and Ting Liu

Demonstrations

Note: Demo abstracts are located in a companion volume of the proceedings.

Camtology: Intelligent Information Access for Science
Ted Briscoe, Karl Harrison, Andrew Naish-Guzman, Andy Parker, Advaith Siddharthan,
David Sinclair, Mark Slater and Rebecca Watson

Summarizing Textual Information about Locations In a Geo-Spatial Information Display
System
Congxing Cai and Eduard Hovy

Phrasal: A Statistical Machine Translation Toolkit for Exploring New Model Features
Daniel Cer, Michel Galley, Daniel Jurafsky and Christopher D. Manning

Multilingual Propbank Annotation Tools: Cornerstone and Jubilee
Jinho Choi, Claire Bonial and Martha Palmer

KSC-PaL: A Peer Learning Agent that Encourages Students to take the Initiative
Cynthia Kersey, Barbara Di Eugenio, Pamela Jordan and Sandra Katz

A Detailed, Accurate, Extensive, Available English Lexical Database
Adam Kilgarriff

An Interactive Tool for Supporting Error Analysis for Text Mining
Elijah Mayfield and Carolyn Penstein-Rosé

Serious Game Environments for Language and Culture Education
Alicia Sagae, W. Lewis Johnson and Rebecca Row

Interpretation of Partial Utterances in Virtual Human Dialogue Systems
Kenji Sagae, David DeVault and David Traum

Interactive Predictive Parsing using a Web-based Architecture
Ricardo Sánchez-Sáez, Luis A. Leiva, Joan-Andreu Sánchez and José-Miguel Benedı́

SIMPLIFICA: a tool for authoring simplified texts in Brazilian Portuguese guided by read-
ability assessments
Carolina Scarton, Matheus Oliveira, Arnaldo Candido Jr., Caroline Gasperin and Sandra
Aluı́sio

xxx

Wednesday, June 2, 2010 (continued)

An Overview of Microsoft Web N-gram Corpus and Applications
Kuansan Wang, Chris Thrasher, Evelyne Viegas, Xiaolong Li and Bo-june (Paul) Hsu

6:30–8:30 Student Research Workshop Poster Session

Note: All student research workshop papers are located in a companion volume of the
proceedings.

A Learning-based Sampling Approach to Extractive Summarization
Vishal Juneja, Sebastian Germesin and Thomas Kleinbauer

Temporal Relation Identification with Endpoints
Chong Min Lee

Identifying Opinion Holders and Targets with Dependency Parser in Chinese News Texts
Bin Lu

A Data Mining Approach to Learn Reorder Rules for SMT
Avinesh PVS

Fine-Tuning in Brazilian Portuguese-English Statistical Transfer Machine Translation:
Verbal Tenses
Lucia Silva

Improving Syntactic Coordination Resolution using Language Modeling
Philip Ogren

On Automated Evaluation of Readability of Summaries: Capturing Grammaticality, Fo-
cus, Structure and Coherence
Ravikiran Vadlapudi and Rahul Katragadda

Extrinsic Parse Selection
David Goss-Grubbs

Towards a Matrix-based Distributional Model of Meaning
Eugenie Giesbrecht

Distinguishing Use and Mention in Natural Language
Shomir Wilson

xxxi

Thursday, June 3, 2010

Best Paper Award Plenary Session

9:00–9:10 Best Paper Award: Introduction

9:10–9:40 “cba to check the spelling”: Investigating Parser Performance on Discussion Forum Posts
Jennifer Foster

9:40–10:15 Coreference Resolution in a Modular, Entity-Centered Model
Aria Haghighi and Dan Klein

10:15–10:45 Break

Machine Translation II

10:45–11:10 Stream-based Translation Models for Statistical Machine Translation
Abby Levenberg, Chris Callison-Burch and Miles Osborne

11:10–11:35 Extracting Parallel Sentences from Comparable Corpora using Document Level Alignment
Jason R. Smith, Chris Quirk and Kristina Toutanova

11:35–12:00 Statistical Machine Translation of Texts with Misspelled Words
Nicola Bertoldi, Mauro Cettolo and Marcello Federico

12:00–12:25 Everybody loves a rich cousin: An empirical study of transliteration through bridge lan-
guages
Mitesh M. Khapra, A Kumaran and Pushpak Bhattacharyya

xxxii

Thursday, June 3, 2010 (continued)

Machine Learning I

10:45–11:10 Discriminative Learning over Constrained Latent Representations
Ming-Wei Chang, Dan Goldwasser, Dan Roth and Vivek Srikumar

11:10–11:35 Some Empirical Evidence for Annotation Noise in a Benchmarked Dataset
Beata Beigman Klebanov and Eyal Beigman

11:35–12:00 Bayesian Inference for Finite-State Transducers
David Chiang, Jonathan Graehl, Kevin Knight, Adam Pauls and Sujith Ravi

12:00–12:25 Distributed Training Strategies for the Structured Perceptron
Ryan McDonald, Keith Hall and Gideon Mann

Information Retrieval and Extraction I

10:45–11:10 Term Weighting Schemes for Latent Dirichlet Allocation
Andrew T. Wilson and Peter A. Chew

11:10–11:35 Learning Dense Models of Query Similarity from User Click Logs
Fabio De Bona, Stefan Riezler, Keith Hall, Massimiliano Ciaramita, Amaç Herdağdelen
and Maria Holmqvist

11:35–12:00 Learning to Link Entities with Knowledge Base
Zhicheng Zheng, Fangtao Li, Minlie Huang and Xiaoyan Zhu

12:00–12:25 Improving the Multilingual User Experience of Wikipedia Using Cross-Language Name
Search
Raghavendra Udupa and Mitesh M. Khapra

xxxiii

Thursday, June 3, 2010 (continued)

Morphology/Phonology

10:45–11:10 Learning Words and Their Meanings from Unsegmented Child-directed Speech
Bevan K. Jones, Mark Johnson and Michael C. Frank

11:10–11:35 Subword Variation in Text Message Classification
Robert Munro and Christopher D. Manning

11:35–12:00 Automatic Diacritization for Low-Resource Languages Using a Hybrid Word and Conso-
nant CMM
Robbie Haertel, Peter McClanahan and Eric K. Ringger

12:00–12:25 Urdu Word Segmentation
Nadir Durrani and Sarmad Hussain

Lunch

12:40–2:00 Panel: Recent and Future HLT Challenges in Industry

12:25–2:15 Lunch

Machine Translation III

2:15–2:40 Enabling Monolingual Translators: Post-Editing vs. Options
Philipp Koehn

2:40–3:05 Online Learning for Interactive Statistical Machine Translation
Daniel Ortiz-Martı́nez, Ismael Garcı́a-Varea and Francisco Casacuberta

3:05–3:30 The Best Lexical Metric for Phrase-Based Statistical MT System Optimization
Daniel Cer, Christopher D. Manning and Daniel Jurafsky

xxxiv

Thursday, June 3, 2010 (continued)

Machine Learning II

2:15–2:40 Variational Inference for Adaptor Grammars
Shay B. Cohen, David M. Blei and Noah A. Smith

2:40–3:05 Type-Based MCMC
Percy Liang, Michael I. Jordan and Dan Klein

3:05–3:30 Painless Unsupervised Learning with Features
Taylor Berg-Kirkpatrick, Alexandre Bouchard-Côté, John DeNero and Dan Klein

Generation

2:15–2:40 Linguistic Steganography Using Automatically Generated Paraphrases
Ching-Yun Chang and Stephen Clark

2:40–3:05 Prenominal Modifier Ordering via Multiple Sequence Alignment
Aaron Dunlop, Margaret Mitchell and Brian Roark

3:05–3:30 Good Question! Statistical Ranking for Question Generation
Michael Heilman and Noah A. Smith

Leixcal Semantics

2:15–2:40 Not All Seeds Are Equal: Measuring the Quality of Text Mining Seeds
Zornitsa Kozareva and Eduard Hovy

2:40–3:05 Extracting Glosses to Disambiguate Word Senses
Weisi Duan and Alexander Yates

3:05–3:30 Can Recognising Multiword Expressions Improve Shallow Parsing?
Ioannis Korkontzelos and Suresh Manandhar

3:30–4:00 Break

xxxv

Thursday, June 3, 2010 (continued)

Parsing: Short Papers

4:00–4:15 A Simple Approach for HPSG Supertagging Using Dependency Information
Yao-zhong Zhang, Takuya Matsuzaki and Jun’ichi Tsujii

4:15–4:30 Ensemble Models for Dependency Parsing: Cheap and Good?
Mihai Surdeanu and Christopher D. Manning

4:30–4:45 Enlarged Search Space for SITG Parsing
Guillem Gascó, Joan-Andreu Sánchez and José-Miguel Benedı́

4:45–5:00 Improving Data Driven Dependency Parsing using Clausal Information
Phani Gadde, Karan Jindal, Samar Husain, Dipti Misra Sharma and Rajeev Sangal

5:00–5:15 A Treebank Query System Based on an Extracted Tree Grammar
Seth Kulick and Ann Bies

5:15–5:30 Reranking the Berkeley and Brown Parsers
Mark Johnson and Ahmet Engin Ural

Noisy Genre: Short Papers

4:00–4:15 An Exploration of Off Topic Conversation
Whitney L. Cade, Blair A. Lehman and Andrew Olney

4:15–4:30 Making Conversational Structure Explicit: Identification of Initiation-response Pairs
within Online Discussions
Yi-Chia Wang and Carolyn P. Rosé

4:30–4:45 Engaging learning groups using Social Interaction Strategies
Rohit Kumar and Carolyn P. Rosé

4:45–5:00 Using Entity-Based Features to Model Coherence in Student Essays
Jill Burstein, Joel Tetreault and Slava Andreyev

5:00–5:15 Summarizing Microblogs Automatically
Beaux Sharifi, Mark-Anthony Hutton and Jugal Kalita

xxxvi

Thursday, June 3, 2010 (continued)

5:15–5:30 Automatic Generation of Personalized Annotation Tags for Twitter Users
Wei Wu, Bin Zhang and Mari Ostendorf

Morphology/Phonology: Short Papers

4:00–4:15 Language identification of names with SVMs
Aditya Bhargava and Grzegorz Kondrak

4:15–4:30 Integrating Joint n-gram Features into a Discriminative Training Framework
Sittichai Jiampojamarn, Colin Cherry and Grzegorz Kondrak

4:30–4:45 A Hybrid Morphologically Decomposed Factored Language Models for Arabic LVCSR
Amr El-Desoky, Ralf Schlüter and Hermann Ney

4:45–5:00 Is Arabic Part of Speech Tagging Feasible Without Word Segmentation?
Emad Mohamed and Sandra Kübler

5:00–5:15 Arabic Mention Detection: Toward Better Unit of Analysis
Yassine Benajiba and Imed Zitouni

5:15–5:30 An MDL-based approach to extracting subword units for grapheme-to-phoneme conver-
sion
Sravana Reddy and John Goldsmith

Machine Learning: Short Papers

4:00–4:15 Extracting Phrase Patterns with Minimum Redundancy for Unsupervised Speaker Role
Classification
Bin Zhang, Brian Hutchinson, Wei Wu and Mari Ostendorf

4:15–4:30 Classification of Prosodic Events using Quantized Contour Modeling
Andrew Rosenberg

4:30–4:45 Investigations into the Crandem Approach to Word Recognition
Rohit Prabhavalkar, Preethi Jyothi, William Hartmann, Jeremy Morris and Eric Fosler-
Lussier

4:45–5:00 Constraint-Driven Rank-Based Learning for Information Extraction
Sameer Singh, Limin Yao, Sebastian Riedel and Andrew McCallum

xxxvii

Thursday, June 3, 2010 (continued)

5:00–5:15 Softmax-Margin CRFs: Training Log-Linear Models with Cost Functions
Kevin Gimpel and Noah A. Smith

5:15–5:30 Bitext-Based Resolution of German Subject-Object Ambiguities
Florian Schwarck, Alexander Fraser and Hinrich Schütze

Friday, June 4, 2010

Plenary Session II

9:00–10:10 Invited Talk: Music, Language, and Computational Modeling: Lessons from the Key-
Finding Problem
David Temperley

10:10–10:40 Break

Parsing II

10:40–11:05 An Efficient Algorithm for Easy-First Non-Directional Dependency Parsing
Yoav Goldberg and Michael Elhadad

11:05–11:30 From Baby Steps to Leapfrog: How “Less is More” in Unsupervised Dependency Parsing
Valentin I. Spitkovsky, Hiyan Alshawi and Daniel Jurafsky

11:30–11:55 Relaxed Marginal Inference and its Application to Dependency Parsing
Sebastian Riedel and David A. Smith

11:55–12:20 Optimal Parsing Strategies for Linear Context-Free Rewriting Systems
Daniel Gildea

xxxviii

Friday, June 4, 2010 (continued)

Sentiment Analysis

10:40–11:05 The viability of web-derived polarity lexicons
Leonid Velikovich, Sasha Blair-Goldensohn, Kerry Hannan and Ryan McDonald

11:05–11:30 Dependency Tree-based Sentiment Classification using CRFs with Hidden Variables
Tetsuji Nakagawa, Kentaro Inui and Sadao Kurohashi

11:30–11:55 Convolution Kernels for Opinion Holder Extraction
Michael Wiegand and Dietrich Klakow

11:55–12:20 An Unsupervised Aspect-Sentiment Model for Online Reviews
Samuel Brody and Noemie Elhadad

Information Retrieval and Extraction II

10:40–11:05 Joint Inference for Knowledge Extraction from Biomedical Literature
Hoifung Poon and Lucy Vanderwende

11:05–11:30 Clinical Information Retrieval using Document and PICO Structure
Florian Boudin, Jian-Yun Nie and Martin Dawes

11:30–11:55 Topic Models for Image Annotation and Text Illustration
Yansong Feng and Mirella Lapata

11:55–12:20 Learning about Voice Search for Spoken Dialogue Systems
Rebecca Passonneau, Susan L. Epstein, Tiziana Ligorio, Joshua B. Gordon and Pravin
Bhutada

xxxix

Friday, June 4, 2010 (continued)

Lunch

12:20–2:00 Lunch

1:00–2:00 NAACL Business Meeting

Machine Translation IV

2:00–2:25 A Direct Syntax-Driven Reordering Model for Phrase-Based Machine Translation
Niyu Ge

2:25–2:50 Context-free reordering, finite-state translation
Chris Dyer and Philip Resnik

2:50–3:15 Improved Models of Distortion Cost for Statistical Machine Translation
Spence Green, Michel Galley and Christopher D. Manning

3:15–3:40 Why Synchronous Tree Substitution Grammars?
Andreas Maletti

Summarization

2:00–2:25 An extractive supervised two-stage method for sentence compression
Dimitrios Galanis and Ion Androutsopoulos

2:25–2:50 Interpretation and Transformation for Abstracting Conversations
Gabriel Murray, Giuseppe Carenini and Raymond Ng

2:50–3:15 Quantifying the Limits and Success of Extractive Summarization Systems Across Domains
Hakan Ceylan, Rada Mihalcea, Umut Özertem, Elena Lloret and Manuel Palomar

3:15–3:40 Multi-document Summarization via Budgeted Maximization of Submodular Functions
Hui Lin and Jeff Bilmes

xl

Friday, June 4, 2010 (continued)

Semantics II

2:00–2:25 Cross-lingual Induction of Selectional Preferences with Bilingual Vector Spaces
Yves Peirsman and Sebastian Padó

2:25–2:50 Latent SVMs for Semantic Role Labeling using LTAG Derivation Trees
Yudong Liu, Gholamreza Haffari and Anoop Sarkar

2:50–3:15 Unsupervised Induction of Semantic Roles
Joel Lang and Mirella Lapata

3:15–3:40 Probabilistic Frame-Semantic Parsing
Dipanjan Das, Nathan Schneider, Desai Chen and Noah A. Smith

3:40–4:00 Break

Machine Translation V

4:00–4:25 Expected Sequence Similarity Maximization
Cyril Allauzen, Shankar Kumar, Wolfgang Macherey, Mehryar Mohri and Michael Riley

4:25–4:50 Accurate Non-Hierarchical Phrase-Based Translation
Michel Galley and Christopher D. Manning

4:50–5:15 Model Combination for Machine Translation
John DeNero, Shankar Kumar, Ciprian Chelba and Franz Och

xli

Friday, June 4, 2010 (continued)

Discourse

4:00–4:25 Detecting Emails Containing Requests for Action
Andrew Lampert, Robert Dale and Cecile Paris

4:25–4:50 Evaluating Hierarchical Discourse Segmentation
Lucien Carroll

4:50–5:15 Reformulating Discourse Connectives for Non-Expert Readers
Advaith Siddharthan and Napoleon Katsos

Semantics III

4:00–4:25 Tree Edit Models for Recognizing Textual Entailments, Paraphrases, and Answers to Ques-
tions
Michael Heilman and Noah A. Smith

4:25–4:50 Syntactic/Semantic Structures for Textual Entailment Recognition
Yashar Mehdad, Alessandro Moschitti and Fabio Massimo Zanzotto

4:50–5:15 Automatic Metaphor Interpretation as a Paraphrasing Task
Ekaterina Shutova

5:15–5:30 End of Main Conference

xlii

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 1–9,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Recognition and Understanding of Meetings

Steve Renals
Centre for Speech Technology Research, University of Edinburgh
Informatics Forum, 10 Crichton Street, Edinburgh EH8 9AB, UK

s.renals@ed.ac.uk homepages.inf.ed.ac.uk/srenals/

Abstract

This paper is about interpreting human com-
munication in meetings using audio, video and
other signals. Automatic meeting recognition
and understanding is extremely challenging,
since communication in a meeting is sponta-
neous and conversational, and involves mul-
tiple speakers and multiple modalities. This
leads to a number of significant research prob-
lems in signal processing, in speech recog-
nition, and in discourse interpretation, tak-
ing account of both individual and group be-
haviours. Addressing these problems requires
an interdisciplinary effort. In this paper, I
discuss the capture and annotation of multi-
modal meeting recordings—resulting in the
AMI meeting corpus—and how we have built
on this to develop techniques and applications
for the recognition and interpretation of meet-
ings.

1 Introduction

On the face of it, meetings do not seem to form a
compelling research area. Although many people
spend a substantial fraction of their time in meetings
(e.g. the 1998 3M online survey at http://www.
3m.com/meetingnetwork/), for most people
they are not the most enjoyable aspect of their work.
However, for all the time that is spent in meet-
ings, technological support for the meeting process
is scant. Meeting records usually take the form of
brief minutes, personal notes, and more recent use
of collaborative web 2.0 software. Such records are
labour intensive to produce—because they are man-
ually created—and usually fail to capture much of

the content of a meeting, for example the factors
that led to a particular decision and the different sub-
jective attitudes displayed by the meeting attendees.
For all the time invested in meetings, very little of
the wealth of information that is exchanged is ex-
plicitly preserved.

To preserve the information recorded in meet-
ings, it is necessary to capture it. Obviously this
involves recording the speech of the meeting partic-
ipants. However, human communication is a mul-
timodal activity with information being exchanged
via gestures, handwritten diagrams, and numerous
social signals. The creation of a rich meeting record
involves the capture of data across several modal-
ities. It is a key engineering challenge to capture
such multimodal signals in a reliable, unobtrusive
and flexible way, but the greater challenges arise
from unlocking the multimodal recordings. If such
recordings are not transcribed and indexed (at the
least), then access merely corresponds to replay.
And it is rare that people will have the time, or the
inclination, to replay a meeting.

There is a long and interesting thread of research
which is concerned to better understand the dynam-
ics of meetings and the way that groups function
(Bales, 1951; McGrath, 1991; Stasser and Taylor,
1991). The types of analyses and studies carried
out by these authors is still someway beyond what
we can do automatically. The first significant work
on automatic processing of meetings, coupled with
an exploration of how people might interact with
an archive of recorded meetings, was performed in
the mid 1990s (Kazman et al., 1996). This work
was limited by the fact that it was not possible at

1

that time to transcribe meeting speech automatically.
Other early work in the area concentrated on the
multimodal capture and broadcast of meetings (Roy
and Luz, 1999; Cutler et al., 2002; Yong et al.,
2001).

Three groups further developed approaches to
automatically index the content of meetings. A
team at Fuji Xerox PARC used video retrieval tech-
niques such as keyframing to automatically gener-
ate manga-style summaries of meetings (Uchihashi
et al., 1999), Waibel and colleagues at CMU used
speech recognition and video tracking for meet-
ings (Waibel et al., 2001), and Morgan and col-
leagues at ICSI focused on audio-only capture and
speech recognition (Morgan et al., 2003). Since
2003 research in the recognition and understand-
ing of meetings has developed substantially, stim-
ulated by evaluation campaigns such as the NIST
Rich Transcription (RT)1 and CLEAR2 evaluations,
as well as some large multidisciplinary projects such
as AMI/AMIDA3, CHIL4 and CALO5.

This paper is about the work we have carried out
in meeting capture, recognition and interpretation
within the AMI and AMIDA projects since 2004.
One of the principal outputs of these projects was
a multimodal corpus of meeting recordings, anno-
tated at a number of different levels. In section 2 we
discuss collection of meeting data, and the construc-
tion of the AMI corpus. The remainder of the pa-
per discusses the automatic recognition (section 3)
and interpretation (section 4) of multimodal meeting
recordings, application prototypes (section 5) and is-
sues relating to evaluation (section 6).

2 The AMI corpus

Ideally it would not be necessary to undertake a large
scale data collection and annotation exercise, every
time we address a new domain. However unsuper-
vised adaptation techniques are still rather imma-
ture, and prior to the collection of the AMI corpus,
there had not been a controlled collection and multi-
level annotation of multiparty interactions, recorded
across multiple modalities.

1www.itl.nist.gov/iad/mig/tests/rt/
2clear-evaluation.org/
3www.amiproject.org/
4chil.server.de/
5caloproject.sri.com/

Figure 1: AMI instrumented meeting room: four co-
located participants, one joined by video conference. In
this case two microphone arrays and seven cameras were
used.

One of our key motivations is the development
of automatic approaches to recognise and interpret
group interactions, using information spread across
multiple modalities, but collected as unobtrusively
as possible. This led to the design and construction
of the AMI Instrumented Meeting Rooms (figure 1)
at the University of Edinburgh, Idiap Research In-
stitute, and TNO Human Factors. These rooms con-
tained a set of standardised recording equipment in-
cluding six or seven cameras (four of which would
be used for close-up views in meeting of up to four
people), an 8-element microphone array, a close-
talking microphone for each participant (used to
guarantee a clean audio signal for each speaker),
as well capture of digital pens, whiteboards, shared
laptop spaces, data projector and videoconferencing
if used. A considerable amount of hardware was
necessary for ensuring frame-level synchronisation.
More recently we have used a lighter weight setup,
that uses a high resolution spherical digital video
camera system, and a single microphone array (7–
20 elements, depending on meeting size) synchro-
nised using software. We have also constructed a
prototype system using a low-cost, flexible array of
digital MEMS microphones (Zwyssig et al., 2010).

We used these instrumented meeting rooms to
record the AMI Meeting Corpus (Carletta, 2007).
This corpus contains over 100 hours of meeting
recordings, with the different recording streams syn-
chronised to a common timeline. The corpus con-
tains a number of manually created and automatic
annotations, synchronised to the same timeline. This

2

includes a high-quality manual word-level transcrip-
tion of the complete corpus, as well as reference au-
tomatic speech recognition output, using the speech
recognition system discussed in section 3 (using 5-
fold cross-validation). In addition to word-level
transcriptions, the corpus includes manual annota-
tions that describe the behaviour of meeting partici-
pants at a number of levels. These include dialogue
acts, topic segmentation, extractive and abstractive
summaries, named entities, limited forms of head
and hand gestures, gaze direction, movement around
the room, and head pose information. Some of these
annotations, in particular video annotation, are ex-
pensive to perform: about 10 hours of meetings have
been completely annotated at all these levels; over
70% of the corpus has been fully annotated with
the linguistic annotations. NXT—the NITE XML
Toolkit6—an XML-based open source software in-
frastructure for multimodal annotation was used to
carry out and manage the annotations.

About 70% of the AMI corpus consists of meet-
ings based on a design scenario, in which four par-
ticipants play roles in a design team. The scenario
involves four team meetings, between which the par-
ticipants had tasks to accomplish. The participant
roles were stimulated in real-time by email and web
content. Although the use of a scenario reduces the
overall realism of the meetings, we adopted this ap-
proach for several reasons, most importantly: (1)
there were some preferred design outcomes, mak-
ing it possible to define some objective group out-
come measures; (2) the knowledge and motivation
of the participants was controlled, thus removing the
serious confounding factors that would arise from
the long history and context found in real organ-
isations; and (3) allowing the meeting scenario to
be replicated, thus enabling system-level evaluations
(as discussed in section 6). We recorded and anno-
tated thirty replicates of the scenario: this provides
an unparalleled resource for system evaluation, but
also reduces the variability of the corpus (for ex-
ample in terms of the language used). The remain-
ing 30% of the corpus contains meetings that would
have occurred anyway; these are meetings with a
lot less control than the scenario meetings, but with
greater linguistic variability.

6sourceforge.net/projects/nite/

All the meetings in the AMI corpus are spoken
in English, but over half the participants are non-
native speakers. This adds realism in a European
context, as well as providing an additional speech
recognition challenge. The corpus is publicly avail-
able7, and is released under a licence that is based on
the Creative Commons Attribution NonCommercial
ShareAlike 2.5 Licence. This includes all the signals
and manual annotations, plus a number of automatic
annotations (e.g. speech recognition) made available
to lower the startup cost of performing research on
the corpus.

3 Multimodal recognition

The predominant motivation behind the collection
and annotation of the AMI corpus was to enable the
development of multimodal recognisers to address
issues such as speech recognition, speaker diarisar-
tion (Wooters and Huijbregts, 2007), gesture recog-
nition (Al-Hames et al., 2007) and focus of attention
(Ba and Odobez, 2008). Although speech recog-
nition is based on the (multichannel) audio signal,
the other problems can be successfully addressed by
combining modalities. (There is certainly informa-
tion in other modalities that has the potential to make
speech recognition more accurate, but so far we have
not been able to use it consistently and robustly.)

Speech recognition: The automatic transcription
of what is spoken in a meeting is an essential pre-
requisite to interpreting a meeting. Morgan et al
(2003) described the speech recognition of meetings
as an “ASR-complete” problem. Developing an ac-
curate system for meeting recognition involves the
automatic segmentation of the recording into utter-
ances from a single talker, robustness to reverbera-
tion and competing acoustic sources, handling over-
lapping talkers, exploitation of multiple microphone
recordings, as well as the core acoustic and language
modelling problems that arise when attempting to
recognise spontaneous, conversational speech.

Our initial systems for meeting recognition used
audio recorded with close-talking microphones, in
order to develop the core acoustic modelling tech-
niques. More recently our focus has been on recog-
nising speech obtained using tabletop microphone

7corpus.amiproject.org/

3

arrays, which are less intrusive but have a lower
signal-to-noise ratio. Multiple microphone sys-
tems are based on microphone array beamforming
in which the individual microphone signals are fil-
tered and summed to enhance signals coming from
a particular direction, while suppressing signals
from competing locations (Wölfel and McDonough,
2009).

The core acoustic and language modelling com-
ponents for meeting speech recognition correspond
quite closely to the state-of-the-art systems used in
other domains. Acoustic modelling techniques in-
clude vocal tract length normalisation, speaker adap-
tation based on maximum likelihood linear trans-
forms, and further training using a discriminative
minimum Bayes risk criterion such as minimum
phone error rate (Gales and Young, 2007; Renals
and Hain, 2010). In addition we have employed a
number of novel acoustic parameterisations includ-
ing approaches based on local posterior probability
estimation (Grezl et al., 2007) and pitch adaptive
features (Garau and Renals, 2008), the automatic
construction of domain-specific language models
using documents obtained from the web by search-
ing with n-grams obtained from meeting transcripts
(Wan and Hain, 2006; Bulyko et al., 2007), and au-
tomatic approaches to acoustic segmentation opti-
mised for meetings (Wrigley et al., 2005; Dines et
al., 2006).

A feature of the systems developed for meeting
recognition is the use of multiple recognition passes,
cross-adaptation and model combination (Hain et
al., 2007). In particular successive passes make use
of more detailed—and more diverse—acoustic and
language models. Different acoustic models trained
on different feature representations (e.g. standard
PLP features and posterior probability-based fea-
tures) are cross-adapted, and different feature repre-
sentations are also combined using linear transforms
such as heteroscedastic linear discriminant analysis
(Kumar and Andreou, 1998).

These systems have been evaluated in successive
NIST RT evaluations: the core microphone array
based system has a word error rate of about 40%;
after adaptation and feature combination steps, this
error rate can be reduced to about 30%. The equiv-
alent close-talking microphone system has baseline
word error rate of about 35%, reduced to less than

25% after further recognition passes (Hain et al.,
2007). The core system runs about five times slower
than real-time, and the full system is about fourteen
times slower than real-time, on current commodity
hardware. We have developed a low-latency real-
time system (with an error rate of about 41% for mi-
crophone array input) (Garner et al., 2009), based on
an open source runtime system8.

4 Meeting interpretation

One of the interdisciplinary joys of working on
meetings is that researchers with different ap-
proaches are able to build collaborations through
working on common problems and common data.
The automatic interpretation of meetings is a very
good example: meetings form an exciting challenge
for work in things such as topic identification, sum-
marisation, dialogue act recognition and the recog-
nition of subjective content. Although text-based
approaches (using the output of a speech recogni-
tion system) form strong baselines, it is often the
case that systems can be improved through the in-
corporation of information characteristic of spoken
communication, such as prosody and speaker turn
patterns, as well video information such as head or
hand movements.

Segmentation: We have explored multistream
statistical models to automatically segment meeting
recordings. Meetings can be usefully segmented at
many different levels, for example into speech and
non-speech (an essential pre-processing for speech
recognition), into utterances spoken by a single
talker, into dialogue acts, into topics, and into “meet-
ing phases”. The latter was the subject of our first in-
vestigations in using multimodal multistream mod-
els to segment meetings.

Meetings are group events, characterised by both
individual actions and group actions. To obtain
structure at the group level, we and colleagues in
the M4 and AMI projects investigated segmenting
a meeting into a sequence of group actions such as
monologue, discussion and presentation (McCowan
et al., 2005). We used a number of feature streams
for this segmentation and labelling task including
speaker turn dynamics, prosody, lexical information,

8juicer.amiproject.org/

4

and participant head and hand movements (Diel-
mann and Renals, 2007). Our initial experiments
used an HMM to model the feature streams with a
single hidden state space, and resulted in an “action
error rate” of over 40% (action error rate is analo-
gous to word error rate, but defined over meeting
actions, presumed not to overlap). The HMM was
then substituted by a richer DBN multistream model
in which each feature stream was processed inde-
pendently at a lower level of the model. These par-
tial results were then combined at a higher level,
thus providing hierarchical integration of the multi-
modal feature streams. This multistream approach
enabled a later integration of feature streams and
increased flexibility in modelling the interdepen-
dences between the different streams, enabling some
accommodation for asynchrony and multiple time
scales. Thus use of the richer DBN multistream
model resulted in a significant lowering of the ac-
tion error rate to around 13%.

We extended this approach to look at a much finer
grained segmentation: dialogue acts. A dialogue act
can be viewed as a segment of speech labelled so as
to roughly categorise the speaker’s intention. In the
AMI corpus each dialogue act in a meeting is given
one of 15 labels, which may be categorised as infor-
mation exchange, making or eliciting suggestions or
offers, commenting on the discussion, social acts,
backchannels, or “other”. The segmentation prob-
lem is non-trivial, since a single stretch of speech
(with no pauses) from a speaker may comprise sev-
eral dialogue acts—and conversely a single dialogue
act may contain pauses. To address the tasks of auto-
matically segmenting the speech into dialogue acts,
and assigning a label to each segment, we employed
a switching dynamic Bayesian network architecture,
which modelled a set of features related to lexical
content and prosody and incorporates a weighted in-
terpolated factored language model (Dielmann and
Renals, 2008). The switching DBN coordinated the
recognition process by integrating all the available
resources. This approach was able to leverage addi-
tional corpora of conversational data by using them
as training data for a factored language model which
was used in conjunction with additional task spe-
cific language models. We followed this joint gener-
ative model, with a discriminative approach, based
on conditional random fields, which performed a re-

classification of the segmented dialogue acts.

Our experiments on dialogue act recognition used
both automatic and manual transcriptions of the
AMI corpus. The degradation when moving from
manual transcriptions to the output of a speech
recogniser was less than 10% absolute for both di-
alogue act classification and segmentation. Our ex-
periments indicated that it is possible to perform au-
tomatic segmentation into dialogue acts with a rel-
atively low error rate. However the operations of
tagging and recognition into fifteen imbalanced DA
categories have a relatively high error rate, even after
discriminative reclassification, indicating that this
remains a challenging task.

Summarisation: The automatic generation of
summaries provides a natural way to succinctly de-
scribe the content of a meeting, and can be an effi-
cient way for users to obtain information. We have
focussed on extractive techniques to construct sum-
maries, in which the most relevant parts of a meeting
are located, and concatenated together to provide a
‘cut-and-paste’ summary, which may be textual or
multimodal.

Our approach to extractive summarisation is
based on automatically extracting relevant dialogue
acts (or alternatively “spurts”, segments spoken by
a single speaker and delimited by silence) from a
meeting (Murray et al., 2006). This requires (as a
minimum) the automatic speech transcription and,
if spurts are not used, dialogue act segmentation.
Lexical information is clearly extremely important
for summarisation, but we have also found speaker
features (relating to activity, dominance and over-
lap), structural features (the length and position of
dialogue acts), prosody, and discourse cues (phrases
which signal likely relevance) to be important for
the development of accurate methods for extractive
summarisation of meetings. Furthermore we have
explored reduced dimension representations of text,
based on latent semantic analysis, which we found
added precision to the summarisation. Using an
evaluation measure referred to as weighted preci-
sion, we discovered that it is possible to reliably
extract the most relevant dialogue acts, even in the
presence of speech recognition errors.

5

5 Application prototypes

We have incorporated these meeting recognition and
interpretation components in a number of applica-
tions. Our basic approach to navigating meeting
archives centres on the notion of meeting browsers,
in which media files, transcripts and segmentations
are synchronised to a common time line. Figure 2
(a) gives an example of such a browser, which also
enables a user to pan and zoom within the captured
spherical video stream.

We have explored (and, as discussed below, eval-
uated) a number of ways of including automatically
generated summaries in meeting browsers. The
browser illustrated in figure 2 (b) enables navigation
by the summarised transcript or via the topic seg-
mentation. In this case the degree of summarisation
is controlled by a slider, which removes those speech
segments that do no contribute to the summary. We
have also explored real-time (with a few utterances
latency) approaches to summarisation, to facilitate
meeting “catchup” scenarios, including the genera-
tion of audio only summaries, with about 60% of
the speech removed (Tucker et al., 2010). Visual-
isations of summaries include a comic book layout
(Castronovo et al., 2008), illustrated in figure 3. This
is related to “VideoManga” (Uchihashi et al., 1999),
but driven by transcribed speech rather than visually
identified keyframes.

The availability of real-time meeting speech
recognition, with phrase-level latency (Garner et al.,
2009), enables a new class of applications. Within
AMIDA we developed a software architecture re-
ferred to as “The Hub” to support real-time ap-
plications. The Hub is essentially a real-time an-
notation server, mediating between annotation pro-
ducers, such as speech recognition, and annotation
consumers, such as a real-time catchup browser.
Of course many applications will be both produc-
ers and consumers: for instance topic segmenta-
tion consumes transcripts and speaker turn informa-
tion and produces time aligned topic segments. A
good example of an application made possible by
real-time recognition components and the Hub is the
AMIDA Content Linking Device (Popescu-Belis et
al., 2008). Content linking is essentially a continual
real-time search in which a repository is searched
using a query constructed from the current conver-

(a) Basic web-based browser

(b) Summary browser

Figure 2: Two examples of meeting browsers, both in-
clude time synchronisation with a searchable ASR tran-
script and speaker activities. (a) is a basic web-based
browser; (b) also employs extractive summarisation and
topic segmentation components.

sational context. In this case the context is obtained
from a speech recognition transcript of the past 30
seconds of the conversation, and a query is con-
structed using tf ·idf or a similar measure, combined
with predefined keywords or topic weightings. The
repository to be searched may be the web, or a por-
tion of the web, or it may be an organisational doc-
ument repository, including transcribed, structured
and indexed recordings of previous meetings. Figure
4 shows a basic interface to content linking. We have
constructed live content-linking systems, driven by
microphone array based real-time speech recogni-
tion, with the aim of presenting—without explicit
query—potentially relevant documents to meeting
participants.

6

yeah they like

spongy

material

like yeah a

sponge-ball

okay like

this

yeah

yeah
okay our secondary

audience people

above a forty years

in age they like the

dark traditional

colours

yeah materials

like wood that

well i figure if we

go for l_ l_c_d_

we should have the

advanced

yeah
yeah

okay that's

my

yeah do your

thing tim

okay

yeah which

buttons do you

want to in it

because you can build

in a back-forward

button and some

somebody would just

want to watch two

channels

you we could

choose what

what's better

plastic or

rubber

yeah i mean

plastic is

so you could go

for plastic but i

figured

yeah

yeah

it isn't i think

yeah

well i don't

know no

Materials

LCD screen

Buttons

materials

Figure 3: Comic book display of automatically generated
meeting summary.

6 Evaluation

The multiple streams of data and multiple layers of
annotations that make up the AMI corpus enable it to
be used for evaluations of specific recognition com-
ponents. The corpus has been used to evaluate many
different things including voice activity detection,
speaker diarisation and speech recognition (in the
NIST RT evaluations), and head pose recognition
(in the CLEAR evaluation). In the spoken language
processing domain, the AMI corpus has been used
to evaluate meeting summarisation, topic segmen-
tation, dialogue act recognition and cross-language
retrieval.

In addition to intrinsic component-level evalu-
ations, it is valuable to evaluate complete sys-
tems, and components in a system context. In the
AMI/AMIDA projects, we investigated a number of
extrinsic evaluation frameworks for browsing and
accessing meeting archives. The Browser Evalua-
tion Test (BET) (Wellner et al., 2005) provides a
framework for the comparison of arbitrary meet-
ing browser setups, which may differ in terms of
which content extraction or abstraction components
are employed. In the BET test subjects have to an-
swer true/false questions about a number of “obser-
vations of interest” relating to a recorded meeting,
using the browser under test with a specified time
limit (typically half the meeting length).

We developed of a variant of the BET to specifi-

Figure 4: Demonstration screenshot of the AMI auto-
matic content linking device. The subpanels show (clock-
wise from top left) the ASR transcript, relevant docu-
ments from the meeting document base, relevant web hits
and a a tag cloud.

cally evaluate different summarisation approaches.
In the Decision Audit evaluation (Murray et al.,
2009) the user’s task is to ascertain the factors across
a number of meetings that lead to a particular deci-
sion being made. A set of browsers were constructed
differing in the summarisation approach employed
(manual vs. ASR transcripts; extractive vs. abstrac-
tive vs. human vs. keyword-based summarisation),
and the test subjects used them to perform the deci-
sion audit. Like the BET this evaluation is labour-
intensive, but the results can be analysed using a
battery of objective and subjective measures. Con-
clusions from carrying out this evaluation indicated
that the task itself was quite challenging for users
(even with human transcripts and summaries, most
users could not find many factors involved in the de-
cision), that automatic extractive summaries outper-
formed reasonably competitive baseline approaches,
and that although subjects reported ASR transcripts
to be unsatisfactory (due to the error rate) browsing
using the ASR transcript still resulted in users’ be-
ing generally able to find the relevant parts of the
meeting archive.

7

7 Conclusions

In this paper I have given an overview of our inves-
tigations into automatic meeting recognition and in-
terpretation. Multiparty communication is a chal-
lenging problem at many levels, from signal pro-
cessing to discourse modelling. A major part of
our attempt to address this problem, in an interdisci-
plinary way, was the collection, annotation, and dis-
tribution of the AMI meeting corpus. The AMI cor-
pus has been at the basis of nearly all the work that
we have carried out in the area, from speech recog-
nition to summarisation. Multiparty speech recog-
nition remains a difficult task, with a typical error
rate of over 20%, however the accuracy is enough to
enable various components to build on top of it. A
major achievement has been the development of pro-
totype applications that can use phrase-level latency
real-time speech recognition.

Many of the automatic approaches to meeting
recognition and characterisation are characterised by
extensive combination at the feature stream, model
and system level. In our experience, such ap-
proaches offer consistent improvements in accuracy
for these complex, multimodal tasks.

Meetings serve a social function, and much of
this has been ignored in our work, so far. We have
focussed principally on understanding meetings in
terms of their lexical content, augmented by vari-
ous multimodal streams. However in many inter-
actions, the social signals are at least as important
as the propositional content of the words (Pentland,
2008); it is a major challenge to develop meeting in-
terpretation components that can infer and take ad-
vantage of such social cues. We have made initial
attempts to do this, by attempting to include aspects
such as social role (Huang and Renals, 2008).

The AMI corpus involved a substantial effort from
many individuals, and provides an invaluable re-
source. However, we do not wish to do this again,
even if we are dealing with a domain that is sig-
nificantly different, such as larger groups, or family
“meetings”. However, our recognisers rely strongly
on annotated in-domain data. It is a major chal-
lenge to develop algorithms that are unsupervised
and adaptive to free us from the need to collect and
annotate large amount of data each time we are in-
terested in a new domain.

Acknowledgments

This paper has arisen from a collaboration involving
several laboratories. I have benefitted, in particular,
from long-term collaborations with Hervé Bourlard,
Jean Carletta, Thomas Hain, and Mike Lincoln, and
from a number of fantastic PhD students. This work
was supported by the European IST/ICT Programme
Projects IST-2001-34485 (M4), FP6-506811 (AMI),
FP6-033812 (AMIDA), and FP7-231287 (SSPNet).
This paper only reflects the author’s views and fund-
ing agencies are not liable for any use that may be
made of the information contained herein.

References
M. Al-Hames, C. Lenz, S. Reiter, J. Schenk, F. Wallhoff,

and G. Rigoll. 2007. Robust multi-modal group action
recognition in meetings from disturbed videos with the
asynchronous hidden Markov model. In Proc IEEE
ICIP.

S. O. Ba and J. M. Odobez. 2008. Multi-party focus of
attention recognition in meetings from head pose and
multimodal contextual cues. In Proc. IEEE ICASSP.

R. F. Bales. 1951. Interaction Process Analysis. Addi-
son Wesley, Cambridge MA, USA.

I. Bulyko, M. Ostendorf, M. Siu, T. Ng, A. Stolcke, and
O. Cetin. 2007. Web resources for language modeling
in conversational speech recognition. ACM Transac-
tions on Speech and Language Processing, 5(1):1–25.

J. Carletta. 2007. Unleashing the killer corpus: expe-
riences in creating the multi-everything AMI Meet-
ing Corpus. Language Resources and Evaluation,
41:181–190.

S. Castronovo, J. Frey, and P. Poller. 2008. A generic
layout-tool for summaries of meetings in a constraint-
based approach. In Machine Learning for Multimodal
Interaction (Proc. MLMI ’08). Springer.

R. Cutler, Y. Rui, A. Gupta, J. Cadiz, I. Tashev, L. He,
A. Colburn, Z. Zhang, Z. Liu, and S. Silverberg. 2002.
Distributed meetings: a meeting capture and broad-
casting system. In Proc. ACM Multimedia, pages 503–
512.

A. Dielmann and S. Renals. 2007. Automatic meet-
ing segmentation using dynamic Bayesian networks.
IEEE Transactions on Multimedia, 9(1):25–36.

A. Dielmann and S. Renals. 2008. Recognition of di-
alogue acts in multiparty meetings using a switching
DBN. IEEE Transactions on Audio, Speech and Lan-
guage Processing, 16(7):1303–1314.

J. Dines, J. Vepa, and T. Hain. 2006. The segmenta-
tion of multi-channel meeting recordings for automatic
speech recognition. In Proc. Interspeech.

8

M. J. F. Gales and S. J. Young. 2007. The application of
hidden Markov models in speech recognition. Foun-
dations and Trends in Signal Processing, 1(3):195–
304.

G. Garau and S. Renals. 2008. Combining spectral rep-
resentations for large vocabulary continuous speech
recognition. IEEE Transactions on Audio, Speech and
Language Processing, 16(3):508–518.

P. Garner, J. Dines, T. Hain, A. El Hannani, M. Karafiat,
D. Korchagin, M. Lincoln, V. Wan, and L. Zhang.
2009. Real-time ASR from meetings. In Proc. In-
terspeech.

F. Grezl, M. Karafiat, S. Kontar, and J. Cernocky. 2007.
Probabilistic and bottle-neck features for lvcsr of
meetings. In Acoustics, Speech and Signal Process-
ing, 2007. ICASSP 2007. IEEE International Confer-
ence on, volume 4, pages IV–757–IV–760.

T. Hain, L. Burget, J. Dines, G. Garau, M. Karafiat,
M. Lincoln, J. Vepa, and V. Wan. 2007. The ami
system for the transcription of speech in meetings. In
Proc. IEEE ICASSP–07.

S. Huang and S. Renals. 2008. Unsupervised language
model adaptation based on topic and role information
in multiparty meetings. In Proc. Interspeech ’08.

R. Kazman, R. Al-Halimi, W. Hunt, and M. Mantei.
1996. Four paradigms for indexing video conferences.
Multimedia, IEEE, 3(1):63–73.

N. Kumar and A. G. Andreou. 1998. Heteroscedastic
discriminant analysis and reduced rank HMMs for im-
proved recognition. Speech Communication, 26:283–
297.

I. McCowan, D. Gatica-Perez, S. Bengio, G. Lathoud,
M. Barnard, and D. Zhang. 2005. Automatic analysis
of multimodal group actions in meetings. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
27(3):305–317.

J. E. McGrath. 1991. Time, interaction, and performance
(TIP): A theory of groups. Small Group Research,
22(2):147.

N. Morgan, D. Baron, S. Bhagat, H. Carvey, R. Dhillon,
J. Edwards, D. Gelbart, A. Janin, A. Krupski, B. Pe-
skin, T. Pfau, E. Shriberg, A. Stolcke, and C. Woot-
ers. 2003. Meetings about meetings: research at ICSI
on speech in multiparty conversations. In Proc. IEEE
ICASSP.

G. Murray, S. Renals, J. Moore, and J. Carletta. 2006. In-
corporating speaker and discourse features into speech
summarization. In Proceedings of the Human Lan-
guage Technology Conference of the NAACL, pages
367–374.

G. Murray, T. Kleinbauer, P. Poller, T. Becker, S. Renals,
and J. Kilgour. 2009. Extrinsic summarization eval-
uation: A decision audit task. ACM Transactions on
Speech and Language Processing, 6(2):1–29.

A.S. Pentland. 2008. Honest signals: how they shape
our world. The MIT Press.

A. Popescu-Belis, E. Boertjes, J. Kilgour, P. Poller,
S. Castronovo, T. Wilson, A. Jaimes, and J. Car-
letta. 2008. The amida automatic content linking de-
vice: Just-in-time document retrieval in meetings. In
Machine Learning for Multimodal Interaction (Proc.
MLMI ’08).

S. Renals and T. Hain. 2010. Speech recognition. In
A. Clark, C. Fox, and S. Lappin, editors, Handbook
of Computational Linguistics and Natural Language
Processing. Wiley Blackwell.

D. M. Roy and S. Luz. 1999. Audio meeting history
tool: Interactive graphical user-support for virtual au-
dio meetings. In Proc. ESCA Workshop on Accessing
Information in Spoken Audio, pages 107–110.

G. Stasser and LA Taylor. 1991. Speaking turns in face-
to-face discussions. Journal of Personality and Social
Psychology, 60(5):675–684.

S. Tucker, O. Bergman, A. Ramamoorthy, and S. Whit-
taker. 2010. Catchup: a useful application of time-
travel in meetings. In Proc. ACM CSCW, pages 99–
102.

S. Uchihashi, J. Foote, A. Girgensohn, and J. Boreczky.
1999. Video manga: generating semantically mean-
ingful video summaries. In Proc. ACM Multimedia,
pages 383–392.

A. Waibel, M. Bett, F. Metze, K. Ries, T. Schaaf,
T. Schultz, H. Soltau, H. Yu, and K. Zechner. 2001.
Advances in automatic meeting record creation and ac-
cess. In Proc IEEE ICASSP.

V. Wan and T. Hain. 2006. Strategies for language model
web-data collection. In Proc IEEE ICASSP.

P. Wellner, M. Flynn, S. Tucker, and S. Whittaker. 2005.
A meeting browser evaluation test. In Proc. ACM CHI,
pages 2021–2024.

M. Wölfel and J. McDonough. 2009. Distant Speech
Recognition. Wiley.

C. Wooters and M. Huijbregts. 2007. The ICSI RT07s
speaker diarization system. In Multimodal Technolo-
gies for Perception of Humans. International Evalu-
ation Workshops CLEAR 2007 and RT 2007, volume
4625 of LNCS, pages 509–519. Springer.

S. Wrigley, G. Brown, V. Wan, and S. Renals. 2005.
Speech and crosstalk detection in multichannel audio.
IEEE Transactions on Speech and Audio Processing,
13(1):84–91.

R. Yong, A. Gupta, and J. Cadiz. 2001. Viewing meet-
ings captured by an omni-directional camera. ACM
Transactions on Computing Human Interaction.

E. Zwyssig, M. Lincoln, and S. Renals. 2010. A digital
microphone array for distant speech recognition. In
Proc. IEEE ICASSP–10.

9

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 10–18,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Chart Mining-based Lexical Acquisition with Precision Grammars

Yi Zhang,♠ Timothy Baldwin,♥♦ Valia Kordoni,♠ David Martinez♦ and Jeremy Nicholson♥♦

♠ DFKI GmbH and Dept of Computational Linguistics, Saarland University, Germany

♥ Dept of Computer Science and Software Engineering, University of Melbourne, Australia

♦ NICTA Victoria Research Laboratory

yzhang@coli.uni-sb.de, tb@ldwin.net, kordoni@dfki.de,

{davidm,jeremymn}@csse.unimelb.edu.au

Abstract

In this paper, we present an innovative chart

mining technique for improving parse cover-

age based on partial parse outputs from preci-

sion grammars. The general approach of min-

ing features from partial analyses is applica-

ble to a range of lexical acquisition tasks, and

is particularly suited to domain-specific lexi-

cal tuning and lexical acquisition using low-

coverage grammars. As an illustration of the

functionality of our proposed technique, we

develop a lexical acquisition model for En-

glish verb particle constructions which oper-

ates over unlexicalised features mined from

a partial parsing chart. The proposed tech-

nique is shown to outperform a state-of-the-art

parser over the target task, despite being based

on relatively simplistic features.

1 Introduction

Parsing with precision grammars is increasingly

achieving broad coverage over open-domain texts

for a range of constraint-based frameworks (e.g.,

TAG, LFG, HPSG and CCG), and is being used in

real-world applications including information ex-

traction, question answering, grammar checking and

machine translation (Uszkoreit, 2002; Oepen et al.,

2004; Frank et al., 2006; Zhang and Kordoni, 2008;

MacKinlay et al., 2009). In this context, a “preci-

sion grammar” is a grammar which has been engi-

neered to model grammaticality, and contrasts with

a treebank-induced grammar, for example.

Inevitably, however, such applications demand

complete parsing outputs, based on the assumption

that the text under investigation will be completely

analysable by the grammar. As precision grammars

generally make strong assumptions about complete

lexical coverage and grammaticality of the input,

their utility is limited over noisy or domain-specific

data. This lack of complete coverage can make

parsing with precision grammars less attractive than

parsing with shallower methods.

One technique that has been successfully applied

to improve parser and grammar coverage over a

given corpus is error mining (van Noord, 2004;

de Kok et al., 2009), whereby n-grams with low

“parsability” are gathered from the large-scale out-

put of a parser as an indication of parser or (pre-

cision) grammar errors. However, error mining is

very much oriented towards grammar engineering:

its results are a mixture of different (mistreated) lin-

guistic phenomena together with engineering errors

for the grammar engineer to work through and act

upon. Additionally, it generally does not provide

any insight into the cause of the parser failure, and it

is difficult to identify specific language phenomena

from the output.

In this paper, we instead propose a chart min-

ing technique that works on intermediate parsing re-

sults from a parsing chart. In essence, the method

analyses the validity of different analyses for words

or constructions based on the “lifetime” and prob-

ability of each within the chart, combining the con-

straints of the grammar with probabilities to evaluate

the plausibility of each.

For purposes of exemplification of the proposed

technique, we apply chart mining to a deep lexical

acquisition (DLA) task, using a maximum entropy-

based prediction model trained over a seed lexicon

and treebank. The experimental set up is the fol-

lowing: given a set of sentences containing puta-

tive instances of English verb particle constructions,

10

extract a list of non-compositional VPCs optionally

with valence information. For comparison, we parse

the same sentence set using a state-of-the-art statisti-

cal parser, and extract the VPCs from the parser out-

put. Our results show that our chart mining method

produces a model which is superior to the treebank

parser.

To our knowledge, the only other work that has

looked at partial parsing results of precision gram-

mars as a means of linguistic error analysis is that of

Kiefer et al. (1999) and Zhang et al. (2007a), where

partial parsing models were proposed to select a set

of passive edges that together cover the input se-

quence. Compared to these approaches, our pro-

posed chart mining technique is more general and

can be adapted to specific tasks and domains. While

we experiment exclusively with an HPSG grammar

in this paper, it is important to note that the proposed

method can be applied to any grammar formalism

which is compatible with chart parsing, and where it

is possible to describe an unlexicalised lexical entry

for the different categories of lexical item that are to

be extracted (see Section 3.2 for details).

The remainder of the paper is organised as fol-

lows. Section 2 defines the task of VPC extraction.

Section 3 presents the chart mining technique and

the feature extraction process for the VPC extraction

task. Section 4 evaluates the model performance

with comparison to two competitor models over sev-

eral different measures. Section 5 further discusses

the general applicability of chart mining. Finally,

Section 6 concludes the paper.

2 Verb Particle Constructions

The particular construction type we target for DLA

in this paper is English Verb Particle Constructions

(henceforth VPCs). VPCs consist of a head verb

and one or more obligatory particles, in the form

of intransitive prepositions (e.g., hand in), adjec-

tives (e.g., cut short) or verbs (e.g., let go) (Villav-

icencio and Copestake, 2002; Huddleston and Pul-

lum, 2002; Baldwin and Kim, 2009); for the pur-

poses of our dataset, we assume that all particles are

prepositional—by far the most common and produc-

tive of the three types—and further restrict our atten-

tion to single-particle VPCs (i.e., we ignore VPCs

such as get along together).

One aspect of VPCs that makes them a partic-

ularly challenging target for lexical acquisition is

that the verb and particle can be non-contiguous (for

instance, hand the paper in and battle right on).

This sets them apart from conventional collocations

and terminology (cf., Manning and Schütze (1999),

Smadja (1993) and McKeown and Radev (2000))

in that they cannot be captured effectively using n-

grams, due to their variability in the number and type

of words potentially interceding between the verb

and the particle. Also, while conventional colloca-

tions generally take the form of compound nouns

or adjective–noun combinations with relatively sim-

ple syntactic structure, VPCs occur with a range of

valences. Furthermore, VPCs are highly productive

in English and vary in use across domains, making

them a prime target for lexical acquisition (Dehé,

2002; Baldwin, 2005; Baldwin and Kim, 2009).

In the VPC dataset we use, there is an addi-

tional distinction between compositional and non-

compositional VPCs. With compositional VPCs,

the semantics of the verb and particle both corre-

spond to the semantics of the respective simplex

words, including the possibility of the semantics be-

ing specific to the VPC construction in the case of

particles. For example, battle on would be clas-

sified as compositional, as the semantics of bat-

tle is identical to that for the simplex verb, and

the semantics of on corresponds to the continua-

tive sense of the word as occurs productively in

VPCs (cf., walk/dance/drive/govern/... on). With

non-compositional VPCs, on the other hand, the

semantics of the VPC is somehow removed from

that of the parts. In the dataset we used for eval-

uation, we are interested in extracting exclusively

non-compositional VPCs, as they require lexicalisa-

tion; compositional VPCs can be captured via lexi-

cal rules and are hence not the target of extraction.

English VPCs can occur with a number of va-

lences, with the two most prevalent and productive

valences being the simple transitive (e.g., hand in

the paper) and intransitive (e.g., back off). For the

purposes of our target task, we focus exclusively on

these two valence types.

Given the above, we define the English VPC ex-

traction task to be the production of triples of the

form 〈v, p, s〉, where v is a verb lemma, p is a prepo-

sitional particle, and s ∈ {intrans , trans} is the va-

11

lence; additionally, each triple has to be semantically

non-compositional. The triples are extracted relative

to a set of putative token instances for each of the

intransitive and transitive valences for a given VPC.

That is, a given triple should be classified as positive

if and only if it is associated with at least one non-

compositional token instance in the provided token-

level data.

The dataset used in this research is the one used

in the LREC 2008 Multiword Expression Workshop

Shared Task (Baldwin, 2008).1 In the dataset, there

is a single file for each of 4,090 candidate VPC

triples, containing up to 50 sentences that have the

given VPC taken from the British National Cor-

pus. When the valence of the VPC is ignored,

the dataset contains 440 unique VPCs among 2,898

VPC candidates. In order to be able to fairly com-

pare our method with a state-of-the-art lexicalised

parser trained over the WSJ training sections of the

Penn Treebank, we remove any VPC types from the

test set which are attested in the WSJ training sec-

tions. This removes 696 VPC types from the test

set, and makes the task even more difficult, as the

remaining testing VPC types are generally less fre-

quent ones. At the same time, it unfortunately means

that our results are not directly comparable to those

for the original shared task.2

3 Chart Mining for Parsing with a Large

Precision Grammar

3.1 The Technique

The chart mining technique we use in this paper

is couched in a constituent-based bottom-up chart

parsing paradigm. A parsing chart is a data struc-

ture that records all the (complete or incomplete) in-

termediate parsing results. Every passive edge on

the parsing chart represents a complete local analy-

sis covering a sub-string of the input, while each ac-

tive edge predicts a potential local analysis. In this

view, a full analysis is merely a passive edge that

spans the whole input and satisfies certain root con-

1Downloadable from http://www.csse.unimelb.

edu.au/research/lt/resources/vpc/vpc.tgz.
2In practice, there was only one team who participated in

the original VPC task (Ramisch et al., 2008), who used a vari-

ety of web- and dictionary-based features suited more to high-

frequency instances in high-density languages, so a simplistic

comparison would not have been meaningful.

ditions. The bottom-up chart parser starts with edges

instantiated from lexical entries corresponding to the

input words. The grammar rules are used to incre-

mentally create longer edges from smaller ones until

no more edges can be added to the chart.

Standardly, the parser returns only outputs that

correspond to passive edges in the parsing chart that

span the full input string. For those inputs without a

full-spanning edge, no output is generated, and the

chart becomes the only source of parsing informa-

tion.

A parsing chart takes the form of a hierarchy of

edges. Where only passive edges are concerned,

each non-lexical edge corresponds to exactly one

grammar rule, and is connected with one or more

daughter edge(s), and zero or more parent edge(s).

Therefore, traversing the chart is relatively straight-

forward.

There are two potential challenges for the chart-

mining technique. First, there is potentially a huge

number of parsing edges in the chart. For in-

stance, when parsing with a large precision gram-

mar like the HPSG English Resource Grammar

(ERG, Flickinger (2002)), it is not unusual for a

20-word sentence to receive over 10,000 passive

edges. In order to achieve high efficiency in pars-

ing (as well as generation), ambiguity packing is

usually used to reduce the number of productive

passive edges on the parsing chart (Tomita, 1985).

For constraint-based grammar frameworks like LFG

and HPSG, subsumption-based packing is used to

achieve a higher packing ratio (Oepen and Carroll,

2000), but this might also potentially lead to an in-

consistent packed parse forest that does not unpack

successfully. For chart mining, this means that not

all passive edges are directly accessible from the

chart. Some of them are packed into others, and the

derivatives of the packed edges are not generated.

Because of the ambiguity packing, zero or more

local analyses may exist for each passive edge on

the chart, and the cross-combination of the packed

daughter edges is not guaranteed to be compatible.

As a result, expensive unification operations must be

reapplied during the unpacking phase. Carroll and

Oepen (2005) and Zhang et al. (2007b) have pro-

posed efficient k-best unpacking algorithms that can

selectively extract the most probable readings from

the packed parse forest according to a discrimina-

12

tive parse disambiguation model, by minimising the

number of potential unifications. The algorithm can

be applied to unpack any passive edges. Because

of the dynamic programming used in the algorithm

and the hierarchical structure of the edges, the cost

of the unpacking routine is empirically linear in the

number of desired readings, and O(1) when invoked

more than once on the same edge.

The other challenge concerns the selection of in-

formative and representative pieces of knowledge

from the massive sea of partial analyses in the pars-

ing chart. How to effectively extract the indicative

features for a specific language phenomenon is a

very task-specific question, as we will show in the

context of the VPC extraction task in Section 3.2.

However, general strategies can be applied to gener-

ate parse ranking scores on each passive edge. The

most widely used parse ranking model is the log-

linear model (Abney, 1997; Johnson et al., 1999;

Toutanova et al., 2002). When the model does not

use non-local features, the accumulated score on a

sub-tree under a certain (unpacked) passive edge can

be used to approximate the probability of the partial

analysis conditioned on the sub-string within that

span.3

3.2 The Application: Acquiring Features for

VPC Extraction

As stated above, the target task we use to illustrate

the capabilities of our chart mining method is VPC

extraction.

The grammar we apply our chart mining method

to in this paper is the English Resource Grammar

(ERG, Flickinger (2002)), a large-scale precision

HPSG for English. Note, however, that the method

is equally compatible with any grammar or grammar

formalism which is compatible with chart parsing.

The lexicon of the ERG has been semi-

automatically extended with VPCs extracted

by Baldwin (2005). In order to show the effective-

ness of chart mining in discovering “unknowns”

and remove any lexical probabilities associated

with pre-existing lexical entries, we block the

3To have a consistent ranking model on any sub-analysis,

one would have to retrain the disambiguation model on every

passive edge. In practice, we find this to be intractable. Also,

the approximation based on full-parse ranking model works rea-

sonably well.

lexical entries for the verb in the candidate VPC

by substituting the input token with a DUMMY-V

token, which is coupled with four candidate lexical

entries of type: (1) intransitive simplex verb (v - e),

(2) transitive simplex verb (v np le), (3) intransitive

VPC (v p le), and (4) transitive VPC (v p-np le),

respectively. These four lexical entries represent the

two VPC valences we wish to distinguish between

in the VPC extraction task, and the competing

simplex verb candidates. Based on these lexical

types, the features we extract with chart mining are

summarised in Table 1. The maximal constituent

(MAXCONS) of a lexical entry is defined to be the

passive edge that is an ancestor of the lexical entry

edge that: (i) must span over the particle, and (ii)

has maximal span length. In the case of a tie,

the edge with the highest disambiguation score is

selected as the MAXCONS. If there is no edge found

on the chart that spans over both the verb and the

particle, the MAXCONS is set to be NULL, with a

MAXSPAN of 0, MAXLEVEL of 0 and MAXCRANK

of 4 (see Table 1). The stem of the particle is also

collected as a feature.

One important characteristic of these features is

that they are completely unlexicalised on the verb.

This not only leads to a fair evaluation with the ERG

by excluding the influence from the lexical coverage

of VPCs in the grammar, but it also demonstrates

that complete grammatical coverage over simplex

verbs is not a prerequisite for chart mining.

To illustrate how our method works, we present

the unpacked parsing chart for the candidate VPC

show off and input sentence The boy shows off his

new toys in Figure 1. The non-terminal edges are

marked with their syntactic categories, i.e., HPSG

rules (e.g., subjh for the subject-head-rule, hadj for

the head-adjunct-rule, etc.), and optionally their dis-

ambiguation scores. By traversing upward through

parent edges from the DUMMY-V edge, all features

can be efficiently extracted (see the third column in

Table 1).

It should be noted that none of these features are

used to deterministically dictate the predicted VPC

category. Instead, the acquired features are used as

inputs to a statistical classifier for predicting the type

of the VPC candidate at the token level (in the con-

text of the given sentence). In our experiment, we

used a maximum entropy-based model to do a 3-

13

Feature Description Examples

LE:MAXCONS
A lexical entry together with the maximal constituent

constructed from it

v - le:subjh, v np le:hadj,

v p le:subjh, v p-np le:subj

LE:MAXSPAN
A lexical entry together with the length of the span of

the maximal constituent constructed from the LE

v - le:7, v np le:5, v p le:4,

v p-np le:7

LE:MAXLEVEL
A lexical entry together with the levels of projections

before it reaches its maximal constituent

v - le:2, v np le:1, v p le:2,

v p-np le:3

LE:MAXCRANK
A lexical entry together with the relative disambigua-

tion score ranking of its maximal constituent among

all MaxCons from different LEs

v - le:4, v np le:3, v p le:1,

v p-np le:2

PARTICLE The stem of the particle in the candidate VPC off

Table 1: Chart mining features used for VPC extraction

his new toysoffshows

PREPPRTL

v_−_le

NP1

VP4−hcomp

NP2

VP5−hcomp

PP−hcomp

0 2 3 4 7

DUMMY−V

S1−subjh(.125)

S3−subjh(.875)

VP1−hadj VP3−hcomp

S2−subjh(.925)

VP2−hadj(.325)

v_p−np_lev_np_le v_p_le

the boy

Figure 1: Example of a parsing chart in chart-mining for VPC extraction with the ERG

category classification: non-VPC, transitive VPC,

or intransitive VPC. For the parameter estimation

of the ME model, we use the TADM open source

toolkit (Malouf, 2002). The token-level predictions

are then combined with a simple majority voting to

derive the type-level prediction for the VPC candi-

date. In the case of a tie, the method backs off to

the naı̈ve baseline model described in Section 4.2,

which relies on the combined probability of the verb

and particle forming a VPC.

We have also experimented with other ways of de-

riving type-level predictions from token-level classi-

fication results. For instance, we trained a separate

classifier that takes the token-level prediction as in-

put in order to determine the type-level VPC predic-

tion. Our results indicate no significant difference

between these methods and the basic majority vot-

ing approach, so we present results exclusively for

this simplistic approach in this paper.

4 Evaluation

4.1 Experiment Setup

To evaluate the proposed chart mining-based VPC

extraction model, we use the dataset from the LREC

2008 Multiword Expression Workshop shared task

(see Section 2). We use this dataset to perform three

distinct DLA tasks, as detailed in Table 2.

The chart mining feature extraction is imple-

mented as an extension to the PET parser (Callmeier,

14

Task Description

GOLD VPC Determine the valence for a verb–preposition combination which is known to occur

as a non-compositional VPC (i.e. known VPC, with unknown valence(s))

FULL Determine whether each verb–preposition combination is a VPC or not, and further

predict its valence(s) (i.e. unknown if VPC, and unknown valence(s))

VPC Determine whether each verb–preposition combination is a VPC or not ignoring va-

lence (i.e. unknown if VPC, and don’t care about valence)

Table 2: Definitions of the three DLA tasks

2001). We use a slightly modified version of the

ERG in our experiments, based on the nov-06 re-

lease. The modifications include 4 newly-added

dummy lexical entries for the verb DUMMY-V and

the corresponding inflectional rules, and a lexical

type prediction model (Zhang and Kordoni, 2006)

trained on the LOGON Treebank (Oepen et al., 2004)

for unknown word handling. The parse disambigua-

tion model we use is also trained on the LOGON

Treebank. Since the parser has no access to any of

the verbs under investigation (due to the DUMMY-

V substitution), those VPC types attested in the

LOGON Treebank do not directly impact on the

model’s performance. The chart mining feature ex-

traction process took over 10 CPU days, and col-

lected a total of 44K events for 4,090 candidate VPC

triples.4 5-fold cross validation is used to train/test

the model. As stated above (Section 2), the VPC

triples attested in the WSJ training sections of the

Penn Treebank are excluded in each testing fold for

comparison with the Charniak parser-based model

(see Section 4.2).

4.2 Baseline and Benchmark

For comparison, we first built a naı̈ve baseline model

using the combined probabilities of the verb and par-

ticle being part of a VPC. More specifically, P (c|v)
and P (c|p) are the probabilities of a given verb

v and particle p being part of a VPC candidate

of type s ∈ {intrans , trans , null}, for transitive

4Not all sentences in the dataset are successfully chart-

mined. Due to the complexity of the precision grammar we

use, the parser is unlikely to complete the parsing chart for ex-

tremely long sentences (over 50 words). Moreover, sentences

which do not receive any spanning edge over the verb and the

particle are not considered as an indicative event. Nevertheless,

the coverage of the chart mining is much higher than the full-

parse coverage of the grammar.

VPC, intransitive VPC, and non-VPC, respectively.

P̃ (s|v, p) = P (s|v) · P (s|p) is used to approxi-

mate the joint probability of verb-particle (v, p) be-

ing of type s, and the prediction type is chosen ran-

domly based on this probabilistic distribution. Both

P (s|v) and P (s|p) can be estimated from a list of

VPC candidate types. If v is unseen, P (s|v) is set to

be 1

|V |

∑
vi∈V P (s|vi) estimated over all verbs |V |

seen in the list of VPC candidates. The naı̈ve base-

line performed poorly, mainly because there is not

enough knowledge about the context of use of VPCs.

This also indicates that the task of VPC extraction

is non-trivial, and that context (evidence from sen-

tences in which the VPC putatively occurs) must be

incorporated in order to make more accurate predic-

tions.

As a benchmark VPC extraction system, we use

the Charniak parser (Charniak, 2000). This sta-

tistical parser induces a context-free grammar and

a generative parsing model from a training set of

gold standard parse trees. Traditionally, it has been

trained over the WSJ component of the Penn Tree-

bank, and for this work we decided to take the same

approach and train over sections 1 to 22, and use sec-

tion 23 for parameter-tuning. After parsing, we sim-

ply search for the VPC triples in each token instance

with tgrep2,5 and decide on the classification of

the candidate by majority voting over all instances,

breaking ties randomly.

5Noting that the Penn POS tagset captures essentially the

compositional vs. non-compositional VPC distinction required

in the extraction task, through the use of the RP (prepositional

particle, for non-compositional VPCs) and RB (adverb, for com-

positional VPCs) tags.

15

4.3 Results

The results of our experiments are summarised in

Table 3. For the naı̈ve baseline and the chart mining-

based models, the results are averaged over 5-fold

cross validation.

We evaluate the methods in the form of the three

tasks described in Table 2. Formally, GOLD VPC

equates to extracting 〈v, p, s〉 tuples from the sub-

set of gold-standard 〈v, p〉 tuples; FULL equates to

extracting 〈v, p, s〉 tuples for all VPC candidates;

and VPC equates to extracting 〈v, p〉 tuples (ignor-

ing valence) over all VPC candidates. In each case,

we present the precision (P), recall (R) and F-score

(β = 1: F). For multi-category classifications (i.e.

the two tasks where we predict the valence s, indi-

cated as “All” in Table 3), we micro-average the pre-

cision and recall over the two VPC categories, and

calculate the F-score as their harmonic mean.

From the results, it is obvious that the chart

mining-based model performs best overall, and in-

deed for most of the measures presented. The Char-

niak parser-based extraction method performs rea-

sonably well, especially in the VPC+valence extrac-

tion task over the FULL task, where the recall was

higher than the chart mining method. Although

not reported here, we observe a marked improve-

ment in the results for the Charniak parser when

the VPC types attested in the WSJ are not filtered

from the test set. This indicates that the statisti-

cal parser relies heavily on lexicalised VPC infor-

mation, while the chart mining model is much more

syntax-oriented. In error analysis of the data, we ob-

served that the Charniak parser was noticeably more

accurate at extracting VPCs where the verb was fre-

quent (our method, of course, did not have access

to the base frequency of the simplex verb), under-

lining again the power of lexicalisation. This points

to two possibilities: (1) the potential for our method

to similarly benefit from lexicalisation if we were to

remove the constraint on ignoring any pre-existing

lexical entries for the verb; and (2) the possibility

for hybridising between lexicalised models for fre-

quent verbs and unlexicalised models for infrequent

verbs. Having said this, it is important to reinforce

that lexical acquisition is usually performed in the

absence of lexicalised probabilities, as if we have

prior knowledge of the lexical item, there is no need

to extract it. In this sense, the first set of results in

Table 3 over Gold VPCs are the most informative,

and illustrate the potential of the proposed approach.

From the results of all the models, it would ap-

pear that intransitive VPCs are more difficult to ex-

tract than transitive VPCs. This is partly because the

dataset we use is unbalanced: the number of transi-

tive VPC types is about twice the number of intran-

sitive VPCs. Also, the much lower numbers over

the FULL set compared to the GOLD VPC set are due

to the fact that only 1/8 of the candidates are true

VPCs.

5 Discussion and Future Work

The inventory of features we propose for VPC ex-

traction is just one illustration of how partial parse

results can be used in lexical acquisition tasks.

The general chart mining technique can easily be

adapted to learn other challenging linguistic phe-

nomena, such as the countability of nouns (Bald-

win and Bond, 2003), subcategorization properties

of verbs or nouns (Korhonen, 2002), and general

multiword expression (MWE) extraction (Baldwin

and Kim, 2009). With MWE extraction, e.g., even

though some MWEs are fixed and have no internal

syntactic variability, such as ad hoc, there is a very

large proportion of idioms that allow various de-

grees of internal variability, and with a variable num-

ber of elements. For example, the idiom spill the

beans allows internal modification (spill mountains

of beans), passivisation (The beans were spilled in

the latest edition of the report), topicalisation (The

beans, the opposition spilled), and so forth (Sag et

al., 2002). In general, however, the exact degree of

variability of an idiom is difficult to predict (Riehe-

mann, 2001). The chart mining technique we pro-

pose here, which makes use of partial parse results,

may facilitate the automatic recognition task of even

more flexible idioms, based on the encouraging re-

sults for VPCs.

The main advantage, though, of chart mining is

that parsing with precision grammars does not any

longer have to assume complete coverage, as has

traditionally been the case. As an immediate con-

sequence, the possibility of applying our chart min-

ing technique to evolving medium-sized grammars

makes it especially interesting for lexical acquisi-

16

Task VPC Type
Naı̈ve Baseline Charniak Parser Chart-Mining

P R F P R F P R F

GOLD VPC

Intrans-VPC 0.300 0.018 0.034 0.549 0.753 0.635 0.845 0.621 0.716

Trans-VPC 0.676 0.348 0.459 0.829 0.648 0.728 0.877 0.956 0.915

All 0.576 0.236 0.335 0.691 0.686 0.688 0.875 0.859 0.867

FULL

Intrans-VPC 0.060 0.018 0.028 0.102 0.593 0.174 0.153 0.155 0.154

Trans-VPC 0.083 0.348 0.134 0.179 0.448 0.256 0.179 0.362 0.240

All 0.080 0.236 0.119 0.136 0.500 0.213 0.171 0.298 0.218

VPC 0.123 0.348 0.182 0.173 0.782 0.284 0.259 0.332 0.291

Table 3: Results for the different methods over the three VPC extraction tasks detailed in Table 2

tion over low-density languages, for instance, where

there is a real need for rapid-prototyping of language

resources.

The chart mining approach we propose in this

paper is couched in the bottom-up chart parsing

paradigm, based exclusively on passive edges. As

future work, we would also like to look into the

top-level active edges (those active edges that are

never completed), as an indication of failed assump-

tions. Moreover, it would be interesting to investi-

gate the applicability of the technique in other pars-

ing strategies, e.g., head-corner or left-corner pars-

ing. Finally, it would also be interesting to in-

vestigate whether by using the features we acquire

from chart mining enhanced with information on the

prevalence of certain patterns, we could achieve per-

formance improvements over broader-coverage tree-

bank parsers such as the Charniak parser.

6 Conclusion

We have proposed a chart mining technique for lex-

ical acquisition based on partial parsing with preci-

sion grammars. We applied the proposed method

to the task of extracting English verb particle con-

structions from a prescribed set of corpus instances.

Our results showed that simple unlexicalised fea-

tures mined from the chart can be used to effec-

tively extract VPCs, and that the model outperforms

a probabilistic baseline and the Charniak parser at

VPC extraction.

Acknowledgements

NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communica-
tions and the Digital Economy and the Australian Re-

search Council through the ICT Centre of Excellence pro-
gram. The first was supported by the German Excellence
Cluster of Multimodal Computing and Interaction.

References

Steven Abney. 1997. Stochastic attribute-value gram-
mars. Computational Linguistics, 23:597–618.

Timothy Baldwin and Francis Bond. 2003. Learning
the countability of English nouns from corpus data.
In Proceedings of the 41st Annual Meeting of the As-
sociation for Computational Linguistics (ACL 2003),
pages 463–470, Sapporo, Japan.

Timothy Baldwin and Su Nam Kim. 2009. Multiword
expressions. In Nitin Indurkhya and Fred J. Damerau,
editors, Handbook of Natural Language Processing.
CRC Press, Boca Raton, USA, 2nd edition.

Timothy Baldwin. 2005. The deep lexical acquisition of
English verb-particle constructions. Computer Speech
and Language, Special Issue on Multiword Expres-
sions, 19(4):398–414.

Timothy Baldwin. 2008. A resource for evaluating the
deep lexical acquisition of English verb-particle con-
structions. In Proceedings of the LREC 2008 Work-
shop: Towards a Shared Task for Multiword Expres-
sions (MWE 2008), pages 1–2, Marrakech, Morocco.

Ulrich Callmeier. 2001. Efficient parsing with large-
scale unification grammars. Master’s thesis, Univer-
sität des Saarlandes, Saarbrücken, Germany.

John Carroll and Stephan Oepen. 2005. High efficiency
realization for a wide-coverage unification grammar.
In Proceedings of the 2nd International Joint Confer-
ence on Natural LanguageProcessing (IJCNLP 2005),
pages 165–176, Jeju Island, Korea.

Eugene Charniak. 2000. A maximum entropy-based
parser. In Proceedings of the 1st Annual Meeting of
the North American Chapter of Association for Com-
putational Linguistics (NAACL2000), Seattle, USA.

Daniel de Kok, Jianqiang Ma, and Gertjan van Noord.
2009. A generalized method for iterative error min-
ing in parsing results. In Proceedings of the ACL2009
Workshop on Grammar Engineering Across Frame-
works (GEAF), Singapore.

17

Nicole Dehé. 2002. Particle Verbs in English: Syn-
tax, Information, Structure and Intonation. John Ben-
jamins, Amsterdam, Netherlands/Philadelphia, USA.

Dan Flickinger. 2002. On building a more efficient
grammar by exploiting types. In Stephan Oepen, Dan
Flickinger, Jun’ichi Tsujii, and Hans Uszkoreit, edi-
tors, Collaborative Language Engineering, pages 1–
17. CSLI Publications.

Anette Frank, Hans-Ulrich Krieger, Feiyu Xu, Hans
Uszkoreit, Berthold Crysmann, Brigitte Jörg, and Ul-
rich Schäfer. 2006. Question answering from struc-
tured knowledge sources. Journal of Applied Logic,
Special Issue on Questions and Answers: Theoretical
and Applied Perspectives., 5(1):20–48.

Rodney Huddleston and Geoffrey K. Pullum. 2002. The
Cambridge Grammar of the English Language. Cam-
bridge University Press, Cambridge, UK.

Mark Johnson, Stuart Geman, Stephen Canon, Zhiyi Chi,
and Stefan Riezler. 1999. Estimators for stochas-
tic unifcation-based grammars. In Proceedings of the
37th Annual Meeting of the Association for Computa-
tional Linguistics (ACL 1999), pages 535–541, Mary-
land, USA.

Bernd Kiefer, Hans-Ulrich Krieger, John Carroll, and
Rob Malouf. 1999. A Bag of Useful Techniques for
Efficient and Robust Parsing. In Proceedings of the
37th Annual Meeting of the Association for Computa-
tional Linguistics, pages 473–480, Maryland, USA.

Anna Korhonen. 2002. Subcategorization Acquisition.
Ph.D. thesis, University of Cambridge.

Andrew MacKinlay, David Martinez, and Timothy Bald-
win. 2009. Biomedical event annotation with CRFs
and precision grammars. In Proceedings of BioNLP
2009: Shared Task, pages 77–85, Boulder, USA.

Robert Malouf. 2002. A comparison of algorithms
for maximum entropy parameter estimation. In Pro-
ceedings of the 6th Conferencde on Natural Language
Learning (CoNLL 2002), pages 49–55, Taipei, Taiwan.

Christopher D. Manning and Hinrich Schütze. 1999.
Foundations of Statistical Natural Language Process-
ing. MIT Press.

Kathleen R. McKeown and Dragomir R. Radev. 2000.
Collocations. In Robert Dale, Hermann Moisl, and
Harold Somers, editors, Handbook of Natural Lan-
guage Processing.

Stephan Oepen and John Carroll. 2000. Ambiguity pack-
ing in constraint-based parsing — practical results. In
Proceedings of the 1st Annual Meeting of the North
American Chapter of Association for Computational
Linguistics (NAACL 2000), pages 162–169, Seattle,
USA.

Stephan Oepen, Helge Dyvik, Jan Tore Lønning, Erik
Velldal, Dorothee Beermann, John Carroll, Dan
Flickinger, Lars Hellan, Janne Bondi Johannessen,
Paul Meurer, Torbjørn Nordgård, and Victoria Rosén.
2004. Som å kapp-ete med trollet? Towards MRS-
Based Norwegian–English Machine Translation. In
Proceedings of the 10th International Conference on
Theoretical and Methodological Issues in Machine
Translation, Baltimore, USA.

Carlos Ramisch, Paulo Schreiner, Marco Idiart, and Aline
Villavicencio. 2008. An evaluation of methods for the
extraction of multiword expressions. In Proceedings
of the LREC 2008 Workshop: Towards a Shared Task
for Multiword Expressions (MWE 2008), pages 50–53,
Marrakech, Morocco.

Susanne Riehemann. 2001. A Constructional Approach
to Idioms and Word Formation. Ph.D. thesis, Stanford
University, CA, USA.

Ivan A. Sag, Timothy Baldwin, Francis Bond, Ann
Copestake, and Dan Flickinger. 2002. Multiword ex-
pressions: A pain in the neck for NLP. In Proceedings
of the 3rd International Conference on Intelligent Text
Processing and Computational Linguistics (CICLing-
2002), pages 1–15, Mexico City, Mexico.

Frank Smadja. 1993. Retrieving collocations from text:
Xtract. Computational Linguistics, 19(1):143–178.

Masaru Tomita. 1985. An efficient context-free parsing
algorithm for natural languages. In Proceedings of the
9th International Joint Conference on Artificial Intel-
ligence, pages 756–764, Los Angeles, USA.

Kristina Toutanova, Christoper D. Manning, Stuart M.
Shieber, Dan Flickinger, and Stephan Oepen. 2002.
Parse ranking for a rich HPSG grammar. In Proceed-
ings of the 1st Workshop on Treebanks and Linguistic
Theories (TLT 2002), pages 253–263, Sozopol, Bul-
garia.

Hans Uszkoreit. 2002. New chances for deep linguis-
tic processing. In Proceedings of the 19th interna-
tional conference on computational linguistics (COL-
ING 2002), Taipei, Taiwan.

Gertjan van Noord. 2004. Error mining for wide-
coverage grammar engineering. In Proceedings of the
42nd Annual Meeting of the Association for Computa-
tional Linguistics), pages 446–453, Barcelona, Spain.

Aline Villavicencio and Ann Copestake. 2002. Verb-
particle constructions in a computational grammar of
English. In Proceedings of the 9th International Con-
ference on Head-Driven Phrase Structure Grammar
(HPSG-2002), Seoul, Korea.

Yi Zhang and Valia Kordoni. 2006. Automated deep
lexical acquisition for robust open texts processing.
In Proceedings of the 5th International Conference
on Language Resources and Evaluation (LREC 2006),
pages 275–280, Genoa, Italy.

Yi Zhang and Valia Kordoni. 2008. Robust parsing
with a large HPSG grammar. In Proceedings of the
Sixth International Language Resources and Evalua-
tion (LREC’08), Marrakech, Morocco.

Yi Zhang, Valia Kordoni, and Erin Fitzgerald. 2007a.
Partial parse selection for robust deep processing. In
Proceedings of ACL 2007 Workshop on Deep Linguis-
tic Processing, pages 128–135, Prague, Czech Repub-
lic.

Yi Zhang, Stephan Oepen, and John Carroll. 2007b. Ef-
ficiency in unification-based N-best parsing. In Pro-
ceedings of the 10th International Conference on Pars-
ing Technologies (IWPT 2007), pages 48–59, Prague,
Czech.

18

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 19–27,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Products of Random Latent Variable Grammars

Slav Petrov
Google Research

New York, NY, 10011
slav@google.com

Abstract

We show that the automatically induced latent
variable grammars of Petrov et al. (2006) vary
widely in their underlying representations, de-
pending on their EM initialization point. We
use this to our advantage, combining multiple
automatically learned grammars into an un-
weighted product model, which gives signif-
icantly improved performance over state-of-
the-art individual grammars. In our model,
the probability of a constituent is estimated as
a product of posteriors obtained from multi-
ple grammars that differ only in the random
seed used for initialization, without any learn-
ing or tuning of combination weights. Despite
its simplicity, a product of eight automatically
learned grammars improves parsing accuracy
from 90.2% to 91.8% on English, and from
80.3% to 84.5% on German.

1 Introduction

Learning a context-free grammar for parsing re-
quires the estimation of a more highly articulated
model than the one embodied by the observed tree-
bank. This is because the naive treebank grammar
(Charniak, 1996) is too permissive, making unreal-
istic context-freedom assumptions. For example, it
postulates that there is only one type of noun phrase
(NP), which can appear in all positions (subject, ob-
ject, etc.), regardless of case, number or gender. As
a result, the grammar can generate millions of (in-
correct) parse trees for a given sentence, and has a
flat posterior distribution. High accuracy grammars
therefore add soft constraints on the way categories
can be combined, and enrich the label set with addi-
tional information. These constraints can be lexical-
ized (Collins, 1999; Charniak, 2000), unlexicalized

(Johnson, 1998; Klein and Manning, 2003b) or au-
tomatically learned (Matsuzaki et al., 2005; Petrov
et al., 2006). The constraints serve the purpose of
weakening the independence assumptions, and re-
duce the number of possible (but incorrect) parses.

Here, we focus on the latent variable approach of
Petrov et al. (2006), where an Expectation Maxi-
mization (EM) algorithm is used to induce a hier-
archy of increasingly more refined grammars. Each
round of refinement introduces new constraints on
how constituents can be combined, which in turn
leads to a higher parsing accuracy. However, EM is a
local method, and there are no guarantees that it will
find the same grammars when initialized from dif-
ferent starting points. In fact, it turns out that even
though the final performance of these grammars is
consistently high, there are significant variations in
the learned refinements.

We use these variations to our advantage, and
treat grammars learned from different random seeds
as independent and equipotent experts. We use a
product distribution for joint prediction, which gives
more peaked posteriors than a sum, and enforces all
constraints of the individual grammars, without the
need to tune mixing weights. It should be noted here
that our focus is on improving parsing performance
using a single underlying grammar class, which is
somewhat orthogonal to the issue of parser combina-
tion, that has been studied elsewhere in the literature
(Sagae and Lavie, 2006; Fossum and Knight, 2009;
Zhang et al., 2009). In contrast to that line of work,
we also do not restrict ourselves to working with k-
best output, but work directly with a packed forest
representation of the posteriors, much in the spirit
of Huang (2008), except that we work with several
forests rather than rescoring a single one.

19

In our experimental section we give empirical an-
swers to some of the remaining theoretical ques-
tions. We address the question of averaging versus
multiplying classifier predictions, we investigate dif-
ferent ways of introducing more diversity into the
underlying grammars, and also compare combining
partial (constituent-level) and complete (tree-level)
predictions. Quite serendipitously, the simplest ap-
proaches work best in our experiments. A product
of eight latent variable grammars, learned on the
same data, and only differing in the seed used in
the random number generator that initialized EM,
improves parsing accuracy from 90.2% to 91.8%
on English, and from 80.3% to 84.5% on German.
These parsing results are even better than those ob-
tained by discriminative systems which have access
to additional non-local features (Charniak and John-
son, 2005; Huang, 2008).

2 Latent Variable Grammars

Before giving the details of our model, we briefly
review the basic properties of latent variable gram-
mars. Learning latent variable grammars consists of
two tasks: (1) determining the data representation
(the set of context-free productions to be used in the
grammar), and (2) estimating the parameters of the
model (the production probabilities). We focus on
the randomness introduced by the EM algorithm and
refer the reader to Matsuzaki et al. (2005) and Petrov
et al. (2006) for a more general introduction.

2.1 Split & Merge Learning

Latent variable grammars split the coarse (but ob-
served) grammar categories of a treebank into more
fine-grained (but hidden) subcategories, which are
better suited for modeling the syntax of natural
languages (e.g. NP becomes NP1 through NPk).
Accordingly, each grammar production A→BC
over observed categories A,B,C is split into a set
of productions Ax→ByCz over hidden categories
Ax,By,Cz. Computing the joint likelihood of the ob-
served parse treesT and sentencesw requires sum-
ming over all derivationst over split subcategories:

∏

i

P(wi, Ti) =
∏

i

∑

t:Ti

P(wi, t) (1)

Matsuzaki et al. (2005) derive an EM algorithm
for maximizing the joint likelihood, and Petrov et

al. (2006) extend this algorithm to use a split&merge
procedure to adaptively determine the optimal num-
ber of subcategories for each observed category.
Starting from a completely markovized X-Bar gram-
mar, each category is split in two, generating eight
new productions for each original binary production.
To break symmetries, the production probabilities
are perturbed by 1% of random noise. EM is then
initialized with this starting point and used to climb
the highly non-convex objective function given in
Eq. 1. Each splitting step is followed by a merging
step, which uses a likelihood ratio test to reverse the
least useful half of the splits. Learning proceeds by
iterating between those two steps for six rounds. To
prevent overfitting, the production probabilities are
linearly smoothed by shrinking them towards their
common base category.

2.2 EM induced Randomness

While the split&merge procedure described above
is shown in Petrov et al. (2006) to reduce the vari-
ance in final performance, we found after closer
examination that there are substantial differences
in the patterns learned by the grammars. Since
the initialization is not systematically biased in any
way, one can obtain different grammars by simply
changing the seed of the random number genera-
tor. We trained 16 different grammars by initial-
izing the random number generator with seed val-
ues 1 through 16, but without biasing the initial-
ization in any other way. Figure 1 shows that the
number of subcategories allocated to each observed
category varies significantly between the different
initialization points, especially for the phrasal cate-
gories. Figure 2 shows posteriors over the most fre-
quent subcategories given their base category for the
first four grammars. Clearly, EM is allocating the la-
tent variables in very different ways in each case.

As a more quantitative measure of difference,1 we
evaluated all 16 grammars on sections 22 and 24 of
the Penn Treebank. Figure 3 shows the performance
on those two sets, and reveals that there is no single
grammar that achieves the best score on both. While
the parsing accuracies are consistently high,2 there

1While cherry-picking similarities is fairly straight-forward,
it is less obvious how to quantify differences.

2Note that despite their variance, the performance is always
higher than the one of the lexicalized parser of Charniak (2000).

20

 10

 20

 30

 40

 50

 60

N
P

V
P P
P

A
D

V
P

A
D

JP S
S

B
A

R
Q

P

N
N

P JJ
N

N
S

N
N

R
B

V
B

N
V

B
G

V
B IN C
D

V
B

D
V

B
Z

D
T

V
B

P

Automatically determined number of subcategories

Figure 1: There is large variance in the number of subcat-
egories (error bars correspond to one standard deviation).

is only a weak correlation between the accuracies
on the two evaluation sets (Pearson coefficient 0.34).
This suggests that no single grammar should be pre-
ferred over the others. In previous work (Petrov et
al., 2006; Petrov and Klein, 2007) the final grammar
was chosen based on its performance on a held-out
set (section 22), and corresponds to the second best
grammar in Figure 3 (because only 8 different gram-
mars were trained).

A more detailed error analysis is given in Fig-
ure 4, where we show a breakdown of F1 scores for
selected phrasal categories in addition to the overall
F1 score and exact match (on the WSJ development
set). While grammar G2 has the highest overall F1
score, its exact match is not particularly high, and
it turns out to be the weakest at predicting quanti-
fier phrases (QP). Similarly, the performance of the
other grammars varies between the different error
measures, indicating again that no single grammar
dominates the others.

3 A Simple Product Model

It should be clear by now that simply varying the
random seed used for initialization causes EM to
discover very different latent variable grammars.
While this behavior is worrisome in general, it turns
out that we can use it to our advantage in this partic-
ular case. Recall that we are using EM to learn both,
the data representation, as well as the parameters of
the model. Our analysis showed that changing the
initialization point results in learning grammars that
vary quite significantly in the errors they make, but
have comparable overall accuracies. This suggests
that the different local maxima found by EM corre-
spond to different data representations rather than to

4%

7%

10%

1 2 3 4 5 6 7 8

NP

0%

15%

25%

1 2 3 4 5 6 7 8

PP

0%

15%

30%

1 2 3 4 5 6 7 8

IN

0%

30%

60%

1 2 3 4 5 6 7 8

DT

Figure 2: Posterior probabilities of the eight most fre-
quent hidden subcategories given their observed base cat-
egories. The four grammars (indicated by shading) are
populating the subcategories in very different ways.

suboptimal parameter estimates.
To leverage the strengths of the individual gram-

mars, we combine them in a product model. Product
models have the nice property that their Kullback-
Liebler divergence from the true distribution will
always be smaller than the average of the KL di-
vergences of the individual distributions (Hinton,
2001). Therefore, as long as no individual gram-
mar Gi is significantly worse than the others, we can
only benefit from combining multiple latent variable
grammars and searching for the tree that maximizes

P(T |w) ∝
∏

i

P(T |w, Gi) (2)

Here, we are making the assumption that the individ-
ual grammars are conditionally independent, which
is of course not true in theory, but holds surprisingly
well in practice. To avoid this assumption, we could
use a sum model, but we will show in Section 4.1
that the product formulation performs significantly
better. Intuitively speaking, products have the ad-
vantage that the final prediction has a high poste-
rior underall models, giving each model veto power.
This is exactly the behavior that we need in the case
of parsing, where each grammar has learned differ-
ent constraints for ruling out improbable parses.

3.1 Learning

Joint training of our product model would couple the
parameters of the individual grammars, necessitat-
ing the computation of an intractable global parti-
tion function (Brown and Hinton, 2001). Instead,
we use EM to train each grammar independently,

21

 89.5

 89.6

 89.7

 89.8

 89.9

 90

 90.1

 90.2

 90.6 90.7 90.8 90.9 91 91.1 91.2 91.3 91.4

F
1

S
co

re
 o

n
S

ec
tio

n
24

F1 Score on Section 22

Figure 3: Parsing accuracies for grammars learned from
different random seeds. The large variance and weak cor-
relation suggest that no single grammar is to be preferred.

but from a different, randomly chosen starting point.
To emphasize, we do not introduce any systematic
bias (but see Section 4.3 for some experiments), or
attempt to train the models to be maximally dif-
ferent (Hinton, 2002) – we simply train a random
collection of grammars by varying the random seed
used for initialization. We found in our experiments
that the randomness provided by EM is sufficient
to achieve diversity among the individual grammars,
and gives results that are as good as more involved
training procedures. Xu and Jelinek (2004) made
a similar observation when learning random forests
for language modeling.

Our model is reminiscent of Logarithmic Opinion
Pools (Bordley, 1982) and Products of Experts (Hin-
ton, 2001).3 However, because we believe that none
of the underlying grammars should be favored, we
deliberately do not use any combination weights.

3.2 Inference

Computing the most likely parse tree is intractable
for latent variable grammars (Sima’an, 2002), and
therefore also for our product model. This is because
there are exponentially many derivations over split
subcategories that correspond to a single parse tree
over unsplit categories, and there is no dynamic pro-
gram to efficiently marginalize out the latent vari-
ables. Previous work on parse risk minimization has
addressed this problem in two different ways: by
changing the objective function, or by constraining

3As a matter of fact, Hinton (2001) mentions syntactic pars-
ing as one of the motivating examples for Products of Experts.

G1
G2
G3
G4

P

90% 91.5% 93%

F1 Score
G1
G2
G3
G4

P

40% 45% 50%

Exact Match

G1
G2
G3
G4

P

91% 93% 95%

NP
G1
G2
G3
G4

P

90% 92% 94%

VP

G1
G2
G3
G4

P

85% 88% 91%

PP
G1
G2
G3
G4

P

90% 92.5% 95%

QP

Figure 4: Breakdown of different accuracy measures for
four randomly selected grammars (G1-G4), as well as a
product model (P) that uses those four grammars. Note
that no single grammar does well on all measures, while
the product model does significantly better on all.

the search space (Goodman, 1996; Titov and Hen-
derson, 2006; Petrov and Klein, 2007).

The simplest approach is to stick to likelihood as
the objective function, but to limit the search space
to a set of high quality candidatesT :

T ∗ = argmax
T∈T

P(T |w) (3)

Because the likelihood of a given parse tree can be
computed exactly for our product model (Eq. 2), the
quality of this approximation is only limited by the
quality of the candidate list. To generate the candi-
date list, we produce k-best lists of Viterbi deriva-
tions with the efficient algorithm of Huang and Chi-
ang (2005), and erase the subcategory information
to obtain parse trees over unsplit categories. We re-
fer to this approximation as TREE-LEVEL inference,
because it considers a list of complete trees from
the underlying grammars, and selects the tree that
has the highest likelihood under the product model.
While the k-best lists are of very high quality, this is
a fairly crude and unsatisfactory way of approximat-
ing the posterior distribution of the product model,
as it does not allow the synthesis of new trees based
on tree fragments from different grammars.

An alternative is to use a tractable objective func-
tion that allows the efficient exploration of the entire

22

SINV

“ S

NP
S

u
ch

ag
e
n
cy

‘s
e
lf-

h
e
lp

’
b
o
rr

o
w

in
g

VP

is ADJP

ADJP
u
n
a
u
th

o
ri

ze
d

a
n
d

ex
p
e
n
si

ve

, ADJP

ADJP

fa
r

m
o
re

ex
p
e
n
si

ve

ADJP

ADVP

fa
r

m
o
re

PP

th
a
n

d
ire

ct
T

re
a
su

ry
b
o
rr

o
w

in
g

,

” VP

sa
id

NP

NP

R
e
p
.

Fo
rt

n
ey

S
ta

rk

PRN

(D
.C

a
lif

.)

NP

NP

R
e
p
.

Fo
rt

n
ey

S
ta

rk

PRN

(D
.C

a
lif

.)

, NP

th
e

b
ill

’s
ch

ie
f

sp
o
n
so

r

.

ex
p
e
n
si

ve

? ?

G1

-11.7-12.4

G2

-12.9-11.5

z
}
|

{
,

|
{
z

}

?
?

G1 G2

-68.8-65.9 -66.7-67.4

z
}
|

{

,

|
{
z

}

Legend: log G1-scorelog G2-score

Figure 5: Grammar G1 has a preference for flat structures, while grammar G2 prefers deeper hierarchical structures.
Both grammars therefore make one mistake each on their own. However, the correct parse tree (which uses a flat
ADJP in the first slot and a hierarchical NP in the second) scores highest under the product model.

search space. Petrov and Klein (2007) present such
an objective function, which maximizes the product
of expected correct productionsr:

T ∗ = argmax
T

∏

r∈T

E(r|w) (4)

These expectations can be easily computed from the
inside/outside scores, similarly as in the maximum
bracket recall algorithm of Goodman (1996), or in
the variational approximation of Matsuzaki et al.
(2005). We extend the algorithm to work over poste-
rior distributions from multiple grammars, by aggre-
gating their expectations into a product. In practice,
we use a packed forest representation to approxi-
mate the posterior distribution, as in Huang (2008).
We refer to this approximation as CONSTITUENT-
LEVEL, because it allows us to form new parse trees
from individual constituents.

Figure 5 illustrates a real case where the prod-
uct model was able to construct a completely correct
parse tree from two partially correct ones. In the ex-
ample, one of the underlying grammars (G1) had an
imperfect recall score, because of its preference for
flat structures (it missed an NP node in the second
part of the sentence). In contrast, the other gram-
mar (G2) favors deeper structures, and therefore in-
troduced a superfluous ADVP node. The product
model gives each underlying grammar veto power,
and picks the least controversial tree (which is the
correct one in this case). Note that a sum model al-
lows the most confident model to dominate the de-

cision, and would chose the incorrect hierarchical
ADJP construction here (as one can verify using the
provided model scores).

To make inference efficient, we can use the
same coarse-to-fine pruning techniques as Petrov
and Klein (2007). We generate a hierarchy of pro-
jected grammars for each individual grammar and
parse with each one in sequence. Because only the
very last pass requires scores from the different un-
derlying grammars, this computation can be trivially
parallelized across multiple CPUs. Additionally, the
first (X-Bar) pruning pass needs to be computed
only once because it is shared among all grammars.
Since the X-Bar pass is the bottleneck of the multi-
pass scheme (using nearly 50% of the total process-
ing time), the overhead of using a product model is
quite manageable. It would have also been possi-
ble to use A*-search for factored models (Klein and
Manning, 2003a; Sun and Tsujii, 2009), but we did
not attempt this in the present work.

4 Experiments

In our experiments, we follow the standard setups
described in Table 1, and use the EVALB tool for
computing parsing figures. Unless noted other-
wise, we use CONSTITUENT-LEVEL inference. All
our experiments are based on the publicly available
BerkeleyParser.4

4http://code.google.com/p/berkeleyparser

23

Training Set Dev. Set Test Set
ENGLISH-WSJ Sections

Section 22 Section 23
(Marcus et al., 1993) 2-21
ENGLISH-BROWN see 10% of 10% of the
(Francis et al. 1979) ENGLISH-WSJ the data5 the data5

GERMAN Sentences Sentences Sentences
(Skut et al., 1997) 1-18,602 18,603-19,60219,603-20,602

Table 1: Corpora and standard experimental setups.

4.1 (Weighted) Product vs. (Weighted) Sum

A great deal has been written on the topic of prod-
ucts versus sums of probability distributions for joint
prediction (Genest and Zidek, 1986; Tax et al.,
2000). However, those theoretical results do not
apply directly here, because we are using multi-
ple randomly permuted models from the same class,
rather models from different classes. To shed some
light on this issue, we addressed the question em-
pirically, and combined two grammars into an un-
weighted product model, and also an unweighted
sum model. The individual grammars had parsing
accuracies (F1) of 91.2 and 90.7 respectively, and
their product (91.7) clearly outperformed their sum
(91.3). When more grammars are added, the gap
widens even further, and the trends persist indepen-
dently of whether the models use TREE-LEVEL or
CONSTITUENT-LEVEL inference. At least for the
case of unweighted combinations, the product dis-
tribution seems to be superior.

In related work, Zhang et al. (2009) achieve ex-
cellent results with a weighted sum model. Using
weights learned on a held-out set and rescoring 50-
best lists from Charniak (2000) and Petrov et al.
(2006), they obtain an F1 score of 91.0 (which they
further improve to 91.4 using a voting scheme). We
replicated their experiment, but used an unweighted
product of the two model scores. Using TREE-
LEVEL inference, we obtained an F1 score of 91.6,
suggesting that weighting is not so important in the
product case, as long as the classifiers are of compa-
rable quality.6 This is in line with previous work on
product models, where weighting has been impor-
tant when combining heterogenous classifiers (Hes-
kes, 1998), and less important when the classifiers
are of similar accuracy (Smith et al., 2005).

5See Gildea (2001) for the exact setup.
6The unweighted sum model, however, underperforms the

individual models with an F1 score of only 90.3.

 90.5

 91

 91.5

 92

 92.5

1 2 4 8 16

Number of grammars in product model

Parsing accuracy on the WSJ development set

Constituent-Level Inference
Tree-Level Inference

Figure 6: Adding more grammars to the product model
improves parsing accuracy, while CONSTITUENT-LEVEL

inference gives consistently better results.

4.2 Tree-Level vs. Constituent-Level Inference

Figure 6 shows that accuracy increases when more
grammars are added to the product model, but levels
off after eight grammars. The plot also compares
our two inference approximations, and shows that
CONSTITUENT-LEVEL inference results in a small
(0.2), but consistent improvement in F1 score.

A first thought might be that the improvement is
due to the limited scope of the k-best lists. How-
ever, this is not the case, as the results hold even
when the candidate set for CONSTITUENT-LEVEL

inference is constrained to trees from the k-best lists.
While the packed forrest representation can very ef-
ficiently encode an exponential set of parse trees, in
our case the k-best lists appear to be already very di-
verse because they are generated by multiple gram-
mars. Starting at 96.1 for a single latent variable
grammar, merging two 50-best lists from different
grammars gives an oracle score of 97.4, and adding
more k-best lists further improves the oracle score to
98.6 for 16 grammars. This compares favorably to
the results of Huang (2008), where the oracle score
over a pruned forest is shown to be 97.8 (compared
to 96.7 for a 50-best list).

The accuracy improvement can instead be ex-
plained by the change in the objective function. Re-
call from section Section 3.2, that CONSTITUENT-
LEVEL inference maximizes the expected number
of correct productions, while TREE-LEVEL infer-
ence maximizes tree-likelihood. It is therefore not
too surprising that the two objective functions se-
lect the same tree only 41% of the time, even when
limited to the same candidate set. Maximizing the

24

expected number of correct productions is superior
for F1 score (see the one grammar case in Figure 6).
However, as to be expected, likelihood is better for
exact match, giving a score of 47.6% vs. 46.8%.

4.3 Systematic Bias

Diversity among the underlying models is what
gives combined models their strength. One way of
increasing diversity is by modifying the feature sets
of the individual models (Baldridge and Osborne,
2008; Smith and Osborne, 2007). This approach
has the disadvantage that it reduces the performance
of the individual models, and is not directly appli-
cable for latent variable grammars because the fea-
tures are automatically learned. Alternatively, one
can introduce diversity by changing the training dis-
tribution. Bagging (Breiman, 1996) and Boosting
(Freund and Shapire, 1996) fall into this category,
but have had limited success for parsing (Hender-
son and Brill, 2000). Furthermore boosting is im-
practical here, because it requires training dozens of
grammars in sequence.

Since training a single grammar takes roughly one
day, we opted for a different, parallelizable way of
changing the training distribution. In a first exper-
iment, we divided the training set into two disjoint
sets, and trained separate grammars on each half.
These truly disjoint grammars had low F1 scores
of 89.4 and 89.6 respectively (because they were
trained on less data). Their combination unfortu-
nately also achieves only an accuracy of 90.9, which
is lower than what we get when training a single
grammar on the entire training set. In another exper-
iment, we used a cross-validation setup where indi-
vidual sections of the treebank were held out. The
resulting grammars had parsing accuracies of about
90.5, and the product model was again not able to
overcome the lower starting point, despite the poten-
tially larger diversity among the underlying gram-
mars. It appears that any systematic bias that lowers
the accuracy of the individual grammars also hurts
the final performance of the product model.

4.4 Product Distribution as Smoothing

Smith et al. (2005) interpret Logarithmic Opinion
Pools (LOPs) as a smoothing technique. They
compare regularizing Conditional Random Fields
(CRFs) with Gaussian priors (Lafferty et al., 2001),

to training a set of unregularized CRFs over differ-
ent feature sets and combining them in an LOP. In
their experiments, both approaches work compara-
bly well, but their combination, an LOP of regular-
ized CRFs works best.

Not too surprisingly, we find this to be the case
here as well. The parameters of each latent vari-
able grammar are typically smoothed in a linear
fashion to prevent excessive overfitting (Petrov et
al., 2006). While all the experiments so far used
smoothed grammars, we reran the experiments also
with a set of unsmoothed grammars. The individ-
ual unsmoothed grammars have on average an 1.2%
lower accuracy. Even though our product model
is able to increase accuracy by combining multiple
grammars, the gap to the smoothed models remains
consistent. This suggests that the product model is
doing more than just smoothing. In fact, because the
product distribution is more peaked, it seems to be
doing the opposite of smoothing.

4.5 Final Results

Our final model uses an unweighted product of eight
grammars trained by initializing the random number
generator with seeds 1 through 8. Table 2 shows
our test set results (obtained with CONSTITUENT-
LEVEL inference), and compares them to related
work. There is a large body of work that has re-
ported parsing accuracies for English, and we have
grouped the different methods into categories for
better overview.

Our results on the English in-domain test set are
higher than those obtained by any single component
parser (SINGLE). The other methods quoted in Ta-
ble 2 operate over the output of one or more single
component parsers and are therefore largely orthog-
onal to our line of work. It is nonetheless exciting
to see that our product model is competitive with
the discriminative rescoring methods (RE) of Char-
niak and Johnson (2005) and Huang (2008), achiev-
ing higher F1 scores but lower exact match. These
two methods work on top of the Charniak (2000)
parser, and it would be possible to exchange that
parser with our product model. We did not attempt
this experiment, but we expect that those methods
would stack well with our model, because they use
primarily non-local features that are not available in
a context-free grammar.

25

Techniques like self-training (SELF) and system
combinations (COMBO) can further improve pars-
ing accuracies, but are also orthogonal to our work.
In particular the COMBO methods seem related to
our work, but are very different in their nature.
While we use multiple grammars in our work, all
grammars are from the same model class for us. In
contrast, those methods rely on a diverse set of in-
dividual parsers, each of which requires a signifi-
cant effort to build. Furthermore, those techniques
have largely relied on different voting schemes in the
past (Henderson and Brill, 1999; Sagae and Lavie,
2006), and only more recently have started using ac-
tual posteriors from the underlying models (Fossum
and Knight, 2009; Zhang et al., 2009). Even then,
those methods operate only over k-best lists, and we
are the first to work directly with parse forests from
multiple grammars.

It is also interesting to note that the best results
in Zhang et al. (2009) are achieved by combining k-
best lists from a latent variable grammar of Petrov
et al. (2006) with the self-trained reranking parser of
McClosky et al. (2006). Clearly, replacing the sin-
gle latent variable grammar with a product of latent
variable grammars ought to improve performance.

The results on the other two corpora are similar.
A product of latent variable grammars very signifi-
cantly outperforms a single latent variable grammar
and sets new standards for the state-of-the-art.

We also analyzed the errors of the product mod-
els. In addition to the illustrative example in Fig-
ure 5, we computed detailed error metrics for differ-
ent phrasal categories. Figure 4 shows that a product
of four random grammars is always better than even
the best underlying grammar. The individual gram-
mars seem to learn different sets of constraints, and
the product model is able to model them all at once,
giving consistent accuracy improvements across all
metrics.

5 Conclusions

We presented a simple product model that signifi-
cantly improves parsing accuracies on different do-
mains and languages. Our model leverages multi-
ple automatically learned latent variable grammars,
which differ only in the seed of the random num-
ber generator used to initialize the EM learning al-

Ty
pe all sentences

Parser LP LR EX

ENGLISH-WSJ

This Paper 92.0 91.7 41.9

S
IN

G
L

E Charniak (2000) 89.9 89.5 37.2
Petrov and Klein (2007) 90.2 90.1 36.7
Carreras et al. (2008) 91.4 90.7 -

R
E Charniak et al. (2005) 91.8 91.2 44.8

Huang (2008) 92.2 91.2 43.5

S
E

L
F Huang and Harper (2009) 91.37 91.57 39.37

McClosky et al. (2006) 92.5 92.1 45.3

C
O

M
B

O Sagae and Lavie (2006) 93.2 91.0 -
Fossum and Knight (2009) 93.2 91.7 -
Zhang et al. (2009) 93.3 92.0 -

ENGLISH-BROWN

This Paper 86.5 86.3 35.8

S
IN

G Charniak (2000) 82.9 82.9 31.7
Petrov and Klein (2007) 83.9 83.8 29.6

R
E

Charniak et al. (2005) 86.1 85.2 36.8

GERMAN

This Paper 84.5 84.0 51.2
S

IN
G Petrov and Klein (2007) 80.0 80.2 42.4

Petrov and Klein (2008) 80.6 80.8 43.9

Table 2: Final test set accuracies for English and German.

gorithm. As our analysis showed, the grammars vary
widely, making very different errors. This is in part
due to the fact that EM is used not only for estimat-
ing the parameters of the grammar, but also to deter-
mine the set of context-free productions that under-
lie it. Because the resulting data representations are
largely independent, they can be easily combined in
an unweighted product model. The product model
does not require any additional training and is ca-
pable of significantly improving the state-of-the-art
in parsing accuracy. It remains to be seen if a sim-
ilar approach can be used in other cases where EM
converges to widely varying local maxima.

Acknowledgements

I would like to thank Ryan McDonald for numerous
discussions on this topic and his feedback on earlier
versions of this paper. This work also benefited from
conversations with Gideon Mann, Fernando Pereira,
Dan Klein and Mehryar Mohri.

7Note that these results are on a modified version of the tree-
bank where unary productions are removed.

26

References

J. Baldridge and M. Osborne. 2008. Active learning and
logarithmic opinion pools for HPSG parse selection.
Natural Language Engineering.

R. F. Bordley. 1982. A multiplicative formula for aggre-
gating probability assessments.Management Science.

L. Breiman. 1996. Bagging predictors.Machine Learn-
ing.

A. Brown and G. Hinton. 2001. Products of hidden
Markov models. InAISTATS ’01.

X. Carreras, M. Collins, and T. Koo. 2008. TAG, dy-
namic programming, and the perceptron for efficient,
feature-rich parsing. InCoNLL ’08.

E. Charniak and M. Johnson. 2005. Coarse-to-Fine N-
Best Parsing and MaxEnt Discriminative Reranking.
In ACL’05.

E. Charniak. 1996. Tree-bank grammars. InAAAI ’96.
E. Charniak. 2000. A maximum–entropy–inspired

parser. InNAACL ’00.
M. Collins. 1999. Head-Driven Statistical Models for

Natural Language Parsing. Ph.D. thesis, UPenn.
V. Fossum and K. Knight. 2009. Combining constituent

parsers. InNAACL ’09.
W. N. Francis and H. Kucera. 1979. Manual of infor-

mation to accompany a standard corpus of present-day
edited American English. Technical report, Brown
University.

Y. Freund and R. E. Shapire. 1996. Experiments with a
new boosting algorithm. InICML ’96.

C. Genest and J. V. Zidek. 1986. Combining probability
distributions: A critique and an annotated bibliogra-
phy. Statistical Science.

D. Gildea. 2001. Corpus variation and parser perfor-
mance.EMNLP ’01.

J. Goodman. 1996. Parsing algorithms and metrics.ACL
’96.

J. Henderson and E. Brill. 1999. Exploiting diversity
in natural language processing: combining parsers. In
EMNLP ’99.

J. Henderson and E. Brill. 2000. Bagging and boosting a
treebank parser. InNAACL ’00.

T. Heskes. 1998. Selecting weighting factors in logarith-
mic opinion pools. InNIPS ’98.

G. Hinton. 2001. Products of experts. InICANN ’01.
G. Hinton. 2002. Training products of experts by mini-

mizing contrastive divergence.Neural Computation.
L. Huang and D. Chiang. 2005. Better k-best parsing. In

IWPT ’05.
Z. Huang and M. Harper. 2009. Self-training PCFG

grammars with latent annotations across languages. In
EMNLP ’09.

L. Huang. 2008. Forest reranking: Discriminative pars-
ing with non-local features. InACL ’08.

M. Johnson. 1998. PCFG models of linguistic tree rep-
resentations.Computational Linguistics, 24.

D. Klein and C. Manning. 2003a. A* parsing: fast exact
viterbi parse selection. InNAACL ’03.

D. Klein and C. Manning. 2003b. Accurate unlexicalized
parsing. InACL ’03.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Con-
ditional Random Fields: Probabilistic models for seg-
menting and labeling sequence data. InICML ’01.

M. Marcus, B. Santorini, and M. Marcinkiewicz. 1993.
Building a large annotated corpus of English: The
Penn Treebank. InComputational Linguistics.

T. Matsuzaki, Y. Miyao, and J. Tsujii. 2005. Probabilis-
tic CFG with latent annotations. InACL ’05.

D. McClosky, E. Charniak, and M. Johnson. 2006. Ef-
fective self-training for parsing. InNAACL ’06.

S. Petrov and D. Klein. 2007. Improved inference for
unlexicalized parsing. InNAACL ’07.

S. Petrov and D. Klein. 2008. Sparse multi-scale gram-
mars for discriminative latent variable parsing. In
EMNLP ’08.

S. Petrov, L. Barrett, R. Thibaux, and D. Klein. 2006.
Learning accurate, compact, and interpretable tree an-
notation. InACL ’06.

K. Sagae and A. Lavie. 2006. Parser combination by
reparsing. InNAACL ’06.

K. Sima’an. 2002. Computatoinal complexity of proba-
bilistic disambiguation.Grammars.

W. Skut, B. Krenn, T. Brants, and H. Uszkoreit. 1997.
An annotation scheme for free word order languages.
In ANLP ’97.

A. Smith and M. Osborne. 2007. Diversity in logarith-
mic opinion pools.Lingvisticae Investigationes.

A. Smith, T. Cohn, and M. Osborne. 2005. Logarithmic
opinion pools for conditional random fields. InACL
’05.

X. Sun and J. Tsujii. 2009. Sequential labeling with la-
tent variables: An exact inference algorithm and its
efficient approximation. InEACL ’09.

D. Tax, M. Van Breukelen, R. Duin, and J. Kittler. 2000.
Combining multiple classifiers by averaging or by
multiplying? Pattern Recognition.

I. Titov and J. Henderson. 2006. Loss minimization in
parse reranking. InEMNLP ’06.

P. Xu and F. Jelinek. 2004. Random forests in language
modeling. InEMNLP ’04.

H. Zhang, M. Zhang, C. L. Tan, and H. Li. 2009. K-best
combination of syntactic parsers. InEMNLP ’09.

27

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 28–36,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Automatic Domain Adaptation for Parsing

David McCloskya,b

aStanford University
Stanford, CA, USA

mcclosky@stanford.edu

Eugene Charniakb

bBrown University
Providence, RI, USA
ec@cs.brown.edu

Mark Johnsonc,b

cMacquarie University
Sydney, NSW, Australia

mjohnson@science.mq.edu.au

Abstract

Current statistical parsers tend to perform well
only on their training domain and nearby gen-
res. While strong performance on a few re-
lated domains is sufficient for many situations,
it is advantageous for parsers to be able to gen-
eralize to a wide variety of domains. When
parsing document collections involving het-
erogeneous domains (e.g. the web), the op-
timal parsing model for each document is typ-
ically not obvious. We study this problem as
a new task —multiple source parser adapta-
tion. Our system trains on corpora from many
different domains. It learns not only statistics
of those domains but quantitative measures of
domain differences and how those differences
affect parsing accuracy. Given a specific tar-
get text, the resulting system proposes linear
combinations of parsing models trained on the
source corpora. Tested across six domains,
our system outperforms all non-oracle base-
lines including the best domain-independent
parsing model. Thus, we are able to demon-
strate the value of customizing parsing models
to specific domains.

1 Introduction

In statistical parsing literature, it is common to see
parsers trained and tested on the same textual do-
main (Charniak and Johnson, 2005; McClosky et
al., 2006a; Petrov and Klein, 2007; Carreras et al.,
2008; Suzuki et al., 2009, among others). Unfor-
tunately, the performance of these systems degrades
on sentences drawn from a different domain. This
issue can be seen across different parsing models
(Sekine, 1997; Gildea, 2001; Bacchiani et al., 2006;
McClosky et al., 2006b). Given that some aspects of

syntax are domain dependent (typically at the lexi-
cal level), single parsing models tend to not perform
well across all domains (see Table 1). Thus, statis-
tical parsers inevitably learn some domain-specific
properties in addition to the more general properties
of a language’s syntax. Recently, Daumé III (2007)
and Finkel and Manning (2009) showed techniques
for training models that attempt to separate domain-
specific and general properties. However, even when
given models for multiple training domains, it is not
straightforward to determine which model performs
best on an arbitrary piece of novel text.

This problem comes to the fore when one wants
to parse document collections where each document
is potentially its own domain. This shows up par-
ticularly when parsing the web. Recently, there
has been much interest in applying parsers to the
web for the purposes of information extraction and
other forms of analysis (c.f. the CLSP 2009 summer
workshop “Parsing the Web: Large-Scale Syntactic
Processing”). The scale of the web demands an au-
tomatic solution to the domain detection and adap-
tation problems. Furthermore, it is not obvious that
human annotators can determine the optimal parsing
models for each web page.

Our goal is to study this exact problem. We create
a new parsing task,multiple source parser adapta-
tion, designed to capture cross-domain performance
along with evaluation metrics and baselines. Our
new task involves training parsing models on labeled
and unlabeled corpora from a variety of domains
(source domains). This is in contrast to standard do-
main adaptation tasks where there is a single source
domain. For evaluation, one is given a text (target
text) but not the identity of its domain. The chal-
lenge is determining how to best use the available

28

Test
Train BNC GENIA BROWN SWBD ETT WSJ Average
GENIA 66.3 83.6 64.6 51.6 69.0 66.6 67.0
BROWN 81.0 71.5 86.3 79.0 80.9 80.6 79.9
SWBD 70.8 62.9 75.5 89.0 75.9 69.1 73.9
ETT 72.7 65.3 75.4 75.2 81.9 73.2 73.9
WSJ 82.5 74.9 83.8 78.5 83.4 89.0 82.0

Table 1: Cross-domainf-score performance of the Charniak (2000) parser. Averagesare macro-averages.
Performance drops as training and test domains diverge. On average, theWSJmodel is the most accurate.

resources from training to maximize accuracy across
multiple target texts.

Broadly put, we model how domain differences
influence parsing accuracy. This is done by taking
several computational measures of domain differ-
ences between the target text and each source do-
main. We use these features in a simple linear re-
gression model which is trained to predict the accu-
racy of a parsing model (or, more generally, a mix-
ture of parsing models) on a target text. To parse
the target text, one simply uses the mixture of pars-
ing models with the highest predicted accuracy. We
show that our method is able to predict these accu-
racies quite well and thus effectively rank parsing
models formed from mixtures of labeled and auto-
matically labeled corpora.

In Section 2, we detail recent work on similar
tasks. Our regression-based approach is covered in
Section 3. We describe an evaluation strategy in Sec-
tion 4. Section 5 presents new baselines which are
intended to give a sense of current approaches and
their limitations. The results of our experiments are
detailed in Section 6 where we show that our system
outperforms all non-oracle baselines. We conclude
with a discussion and future work (Section 7).

2 Related work

The closest work to ours is Plank and Sima’an
(2008), where unlabeled text is used to group sen-
tences fromWSJ into subdomains. The authors cre-
ate a model for each subdomain which weights trees
from its subdomain more highly than others. Given
the domain specific models, they consider different
parse combination strategies. Unfortunately, these
methods do not yield a statistically significant im-
provement.

Multiple source domain adaptation has been done
for other tasks (e.g. classification in (Blitzer et
al., 2007; Daumé III, 2007; Dredze and Cram-
mer, 2008)) and is related to multitask learning.
Daumé III (2007) shows that an extremely sim-
ple method delivers solid performance on a num-
ber of domain adaptation classification tasks. This is
achieved by making a copy of each feature for each
source domain plus the “general” pseudodomain
(for capturing domain independent features). This
allows the classifier to directly model which features
are domain-specific. Finkel and Manning (2009)
demonstrate the hierarchical Bayesian extension of
this where domain-specific models draw from a gen-
eral base distribution. This is applied to classifica-
tion (named entity recognition) as well as depen-
dency parsing. These works describe how to train
models in many different domains but sidestep the
problem of domain detection. Thus, our work is or-
thogonal to theirs.

Our domain detection strategy draws on work in
parser accuracy prediction (Ravi et al., 2008; Kawa-
hara and Uchimoto, 2008). These works aim to pre-
dict the parser performance on a given target sen-
tence. Ravi et al. (2008) frame this as a regression
problem. Kawahara and Uchimoto (2008) treat it
as a binary classification task and predict whether
a specific parse is at a certain level of accuracy or
higher. Ravi et al. (2008) show that their system
can be used to return a ranking over different parsing
models which we extend to the multiple domain set-
ting. They also demonstrate that training their model
on WSJ allows them to accurately predict parsing
accuracy on theBROWN corpus. In contrast, our
models are trained over multiple domains to model
which factors influence cross-domain performance.

29

3 Approach

We start with the assumption that all target domains
are mixtures of our source domains.1 Intuitively,
these mixtures should give higher probability mass
to more similar source domains. This raises the
question of how to measure the similarity between
domains. Our method uses multiple complemen-
tary similarity measures between the target and each
source. We feed these similarity measures into a re-
gression model which learns how domain dissimi-
larities hurt parse accuracy. Thus, to parse a target
domain, we need only find the input that maximizes
the regression function — that is, the highest scoring
mixture of source domains. Our system is similar to
Ravi et al. (2008) in that both use regression to pre-
dict f-scores and some of the features are related.

3.1 Features

Our features are designed to help the regression
model determine if a particular source domain mix-
ture is well suited for a target domain as well as the
quality of a source domain mixture. While we ex-
plored a large number of features, we present here
only the three that were chosen by our feature selec-
tion method (Section 6.2).

Two of our features, COSINETOP50 and UN-
KWORDS, are designed to approximate how simi-
lar the target domain is to a specific source domain.
Only the surface form of the target text and auto-
matic analyses are available (e.g. we can tag or parse
the target text, but cannot use gold tags or trees).

Relative word frequencies are an important in-
dicator of domain. Cosine similarity uses a spa-
tial representation to summarize the word frequen-
cies in a corpus as a single vector. A common
method is to represent each corpus as a vector of
frequencies of thek most frequent words (Schütze,
1995). This method assigns high similarity to do-
mains with a large amount of overlap in the high-
frequency vocabulary items. We experimented with
several orders of magnitude fork (our feature selec-
tion method later chosek = 50 — see Section 6.2).

Our second feature for comparing domains, UN-

1This may seem like a major limitation, but as we will show
later, our method works quite well at incorporating self-trained
(automatically parsed) corpora which can typically be obtained
for any domain.

KWORDS, returns the percentage of words in one
domain which never appear in the other domain.
This can be done on the word type or token level.
We opt for tokens since unknown words pose prob-
lems for parsing each time they occur. UNKWORDS

provides the percentage of words in the source
domain that are never seen in the target domain.
Whereas COSINETOP50 examines how similar the
high frequency words are from one domain, UN-
KWORDS tends to focus on the overlap of low fre-
quency words.

As described, COSINETOP50 and UNKWORDS

are functions only of two source domains and do not
take the mixing weights of source domains into ac-
count. We experimented with several methods of in-
corporating mixing weights into the feature value.
In practice, the one which worked best for us is to
divide the mixture weight of the source domain by
the raw feature value. This has the nice property that
when a source is not used, the adjusted feature value
is zero regardless of the raw feature value.

From pilot studies, we learned that a uniform mix-
ture of available source domains gave strong results
(further details on this in Section 5). Our last feature,
ENTROPY, is intended to let the regression system
leverage this and measures the entropy of the distri-
bution over source domains. This provides a sense
of uniformity.

3.2 Predicting cross-domain accuracy

For a given source domain mixture, we can create
a parsing model by linearly interpolating the pars-
ing model statistics from each source domain. The
key component of our approach is a domain-aware
linear regression model which predicts how well a
specific parsing model will do on a given target text.
The linear regressor is given values from the three
features from the previous section (COSINETOP50,
UNKWORDS, and ENTROPY) and returns an esti-
mate of thef-score the parsing model would achieve
the target text.

Training data for the regressor consists of ex-
amples of source domain mixtures and their ac-
tual f-scores on target texts. To produce this, we
randomly sampled source domain mixtures, created
parsing models for those mixtures, and then evalu-
ated the parsing models on all of our target texts.

We used a simple technique for randomly sam-

30

0 200 400 600 800 1000
Number of mixed parsing model samples

84.0

84.5

85.0

85.5

86.0

86.5

87.0

87.5
o
ra

cl
e
 f

-s
co

re

Figure 1: Cumulative oraclef-score (averaged over
all target domains) as more models are randomly
sampled. Most of the improvement comes the first
200 samples indicating that our samples seem to be
sufficient to cover the space of good source domain
mixtures.

pling source domain mixtures. First, we sample the
number of source domains to use. We draw values
from an exponential distribution and take their inte-
ger value until we obtain a number between two and
the number of source domains. This is parametrized
so that we typically only use a few corpora but still
have some chance of using all of them. Once we
know the number of source domains, we sample
their identities uniformly at random without replace-
ment from the list of all source domains. Finally,
we sample the weights for the source domains uni-
formly from a simplex. The dimension of the sim-
plex is the same as the number of source domains
so we end up with a probability distribution over the
sampled source domains.

In total, we sampled 1,040 source domain mix-
tures. We evaluated each of these source domain
mixtures on the six target domains giving us 6,240
data points in total. One may be concerned that
this is insufficient to cover the large space of source
domain mixtures. However, we show in Figure 1
that only about 200 samples are sufficient to achieve
good oracle performance2 in practice.

2We calculate this by picking the best available model for
each target domain and taking the average of theirf-scores.

Train Test
Source Target Source Target
C \ {t} C \ {t} C \ {t} {t}

(a) Out-of-domain evaluation

Train Test
Source Target Source Target

C C \ {t} C {t}

(b) In-domain evaluation

Table 2: List of domains allowed in single round of
evaluation. In each round, the evaluation corpus ist.
C is the set of all target domains.

4 Evaluation

Multiple-source domain adaptation is a new task for
parsing and thus some thought must be given to eval-
uation methodology. We describe two evaluation
scenarios which differ in how foreign the target text
is from our source domains. Schemas for these eval-
uation scenarios are shown in Table 2. Note that
training and testing here refer to training and testing
of our regression model,not the parsing models.

In the first scenario,out-of-domain evaluation,
one target domain is completely removed from con-
sideration and only used to evaluate proposed mod-
els at test time. The regressor is trained on training
points that use any of the remaining corpora,C\{t},
as sources or targets. For example, ift = WSJ, we
can train the regressor on all data points which don’t
use WSJ (or any self-trained corpora derived from
WSJ) as a source or target domain. At test time, we
are given the text ofWSJ’s test set. From this, our
system creates a parsing model using the remaining
available corpora for parsing the rawWSJ text.

This evaluation scenario is intended to evaluate
how well our system can adapt to an entirely new
domain with only raw text from the new domain
(for example, parsing biomedical text when none
is available in our list of source domains). Ide-
ally, we would have a large number of web pages
or other documents from other domains which we
could use solely for evaluation. Unfortunately, at
this time, only a handful of domains have been an-
notated with constituency structures under the same

This can pick different models for each target domain.

31

annotation guidelines. Instead, we hold out each
hand-annotated domain,t, (including any automat-
ically parsed corpora derived from that source do-
main) as a test set in a round-robin fashion.3 For
each round of the round robin we obtain anf-score
and we report the mean and variance of thef-scores
for each model.

The second scenario,in-domain evaluation, al-
lows the target domain,t, to be used as a source
domain in training but not as a target domain. This
is intended to evaluate the situation where the target
domain is not actually that different from our source
domains. The in-domain evaluation can approxi-
mate how our system would perform when, for ex-
ample, we haveWSJas a source domain and the tar-
get text is news from a source other thanWSJ. Thus,
our model still has to learn thatWSJ and the North
American News Text corpus (NANC) are good for
parsing news text likeWSJwithout seeing any direct
evaluations of the sort (WSJ andNANC can be used
in models which are evaluated on allother corpora,
though).

5 Baselines

Given that this is a new task for parsing, we needed
to create baselines which demonstrate the current
approaches to multiple-source domain adaptation.
One approach is to take all available corpora and
mix them together uniformly.4 The UNIFORM base-
line does exactly this using the available hand-built
training corpora. SELF-TRAINED UNIFORM uses
self-trained corpora as well. In the out-of-domain
scenario, these exclude the held out domain, but in
the in-domain setting, the held out domain is in-
cluded. These baselines are similar to the ALL and
WEIGHTED baselines in Daumé III (2007).

Another simple baseline is to use the same pars-
ing model regardless of target domain. This is how
large heterogeneous document collections are typi-
cally parsed currently. We use theWSJ corpus since
it is the best single corpus for parsing all six target
domains (see Table 1). We refer to this baseline as
FIXED SET: WSJ. In the out-of-domain scenario,
we fall back to SELF-TRAINED UNIFORM when the

3Thus, the schemas in Table 2 are schemas for each round.
4Accounting for size so that the larger corpora don’t over-

whelm the smaller ones.

target domain isWSJ while the in-domain scenario
uses theWSJmodel throughout.

There are several interesting oracle baselines as
well which serve to measure the limits of our ap-
proach. These baselines examine the resulting
f-scores of models and pick the best model accord-
ing to some criteria. The first oracle baseline is
BEST SINGLE CORPUS which parses each corpus
with the source domain that maximizes performance
on the target domain. In almost all cases, this base-
line selects each corpus to parse itself.

Our second oracle baseline, BEST SEEN, chooses
the best parsing model from all those explored for
each test set. Recall that while training the regres-
sion model in Section 3.2, we needed to explore
many possible source domain mixtures to approxi-
mate the complete space of mixed parsing models.
To the extent that we can fully explore the space of
mixed parsing models, this baseline represents an
upper bound for model mixing approaches. Since
fully exploring the space of possible weightings is
intractable, it is not a true upper bound. While it
is theoretically possible to beat this pseudo-upper
bound, (indeed, this is the mark of a good domain
detection system) it is far from easy. We provide
BEST SINGLE CORPUS and BEST SEEN for both
in-domain and out-of-domain scenarios. The out-of-
domain scenario restricts the set of possible models
to those not including the target domain.

Finally, we searched for the BEST OVERALL

MODEL. This is the model with the highest aver-
agef-score across all six target domains. This base-
line can be thought of as an oracle version of FIXED

SET: WSJ and demonstrates the limit of using a sin-
gle parsing model regardless of target domain. Natu-
rally, the very nature of this baseline places it only in
the in-domain evaluation scenario. Since it was able
to select the model according tof-scores on our six
target domains, its performance on domains outside
that set is not guaranteed.

To provide a better sense of the space of mixed
parsing models, we also provide the WORST SEEN

baseline which picks the worst model available for a
specific target corpus.5

5This turns out to beGENIA for all corpora other thanGENIA

andSWBD when the target domain isGENIA.

32

6 Experiments

Our experiments use the Charniak (2000) generative
parser. We describe the corpora used in our nine
source and six target domains in Section 6.1. In Sec-
tion 6.2, we provide a greedy strategy for picking
features to include in our regression model. The re-
sults of our experiments are in Section 6.3.

6.1 Corpora

We aimed to include as many different domains as
possible annotated under compatible schemes. We
also tried to include human-annotated corpora and
automatically labeled corpora (self-trained corpora
as in McClosky et al. (2006a) which have been
shown to work well across domains). Our final
set includes text from news (WSJ, NANC), broad-
cast news (ETT), literature (BROWN, GUTENBERG),
biomedical (GENIA, MEDLINE), spontaneous speech
(SWBD), and the British National Corpus (BNC). In
our experiments, self-trained corpora cannot be used
as target domains since we lack gold annotations and
BNC is not used as a source domain due to its size.
An overview of our corpora is shown in Table 3.

We use news articles portion of the Wall Street
Journal corpus (WSJ) from the Penn Treebank (Mar-
cus et al., 1993) in conjunction with the self-trained
North American News Text Corpus (NANC, Graff
(1995)). The English Translation Treebank,ETT

(Bies, 2007), is the translation6 of broadcast news
in Arabic. For literature, we use theBROWN cor-
pus (Francis and Kučera, 1979) and the same di-
vision as (Gildea, 2001; Bacchiani et al., 2006;
McClosky et al., 2006b). We also use raw sen-
tences which we downloaded from Project Guten-
berg7 as a self-trained corpus. The Switchboard cor-
pus (SWBD) consists of transcribed telephone con-
versations. While the original trees include disflu-
ency information, we assume our speech corpora
have had speech repairs excised (e.g. using a sys-
tem such as Johnson et al. (2004)). Our biomedi-
cal data comes from theGENIA treebank8 (Tateisi
et al., 2005), a corpus of abstracts from the Med-
line database.9 We downloaded additional sentences

6The transcription and translation were done by humans.
7http://gutenberg.org/
8http://www-tsujii.is.s.u-tokyo.ac.jp/

GENIA/
9http://www.ncbi.nlm.nih.gov/PubMed/

from Medline for our self-trainedMEDLINE corpus.
Unlike the other two self-trained corpora, we include
two versions ofMEDLINE. These differ on whether
they were parsed usingGENIA or WSJ as a base
model to study the effect on cross-domain perfor-
mance. Finally, we use a small number of sentences
from the British National Corpus (BNC) (Foster and
van Genabith, 2008).10 The sentences were chosen
randomly, so each one is potentially from a different
domain. On the other hand,BNC can be thought of
as its own domain in that it contains significant lex-
ical differences from the American English used in
our other corpora.

We preprocessed the corpora to standardize many
of the annotation differences. Thus, our results on
them may be slightly different than other works on
these corpora. Nevertheless, these changes should
not significantly impact overall the performance.

6.2 Feature selection

While our final model uses only three features, we
considered many other possible features (not de-
scribed due to space constraints). In order to explore
these without hill climbing on our test data, we cre-
ated a round-robin tuning scenario. Since the out-
of-domain evaluation scenario holds out one target
domain, this gives us six test evaluation rounds. For
each of these six rounds, we hold out one of the re-
maining five target domains for tuning. This gives
us 30 tuning evaluation rounds and we pick our fea-
tures to optimize our aggregate performance over all
of them. A model that performs well in this situation
has proven that it has useful features which transfer
to unknown target domains.

The next step is to determine the loss function
to minimize. Our primary guide isoracle f-score
loss which we determine as follows. We take all
test data points (i.e. mixed parsing models evalu-
ated on the target domain) and predict theirf-scores
with our model. In particular for this measure, we
are interested in the point with the highest predicted
f-score. We take its actualf-score which we call
the candidate f-score. When tuning, we know the
true f-scores of all test points. The difference be-
tween the highestf-score (the oraclef-score for

10http://nclt.computing.dcu.ie/ ˜ jfoster/
resources/ , downloaded January 8th, 2009.

33

Corpus Source? Target? Average length Train Tune Test
BNC • 28.3 — — 1,000
BROWN • • 20.0 19,786 2,082 2,439
ETT • • 25.6 2,639 1,029 1,166
GENIA • • 27.5 14,326 1,361 1,360

MEDLINE • 27.2 278,192 — —
SWBD • • 9.2 92,536 5,895 6,051
WSJ • • 25.5 39,832 1,346 2,416

NANC • 23.2 915,794 — —
GUTENBERG • 26.2 689,782 — —
MEDLINE • 27.2 278,192 — —

Table 3: List of source and target domains, sizes of each division in trees, and average sentence length.
Indented rows indicate self-trained corpora parsed using the non-indented row as a base parser.

this dataset) and the candidatef-score is the oracle
f-score loss. Ties need to be handled correctly to
avoid degenerate models.11 If there is a tie for high-
est predictedf-score, the candidatef-score is the
one with thelowest actualf-score. This approach
is conservative but ensures that regression models
which give everything the same predictedf-score do
not receive zero oraclef-score loss.

Armed with a tuning regime and a loss function,
we created a procedure to pick the combination of
features to use. We used a parallelized best-first
search procedure. At each round, it expanded the
current best set of features by adding or removing
each feature where ‘best’ was determined by the loss
function. We explored over 6,000 settings, though
the best setting of (UNKWORDS, COSINETOP50,
ENTROPY) was found within the first 200 settings
explored. The best setting obtains an oraclef-score
loss of 0.37 and a root mean squared error of 0.48
— these numbers are quite low and show the high
accuracy of our regression model (similar to those
in Ravi et al. (2008)). Additionally, the features are
complementary in that UNKWORDS focuses on low
frequency words whereas COSINETOP50 looks only
at high frequency words and ENTROPY functions as
a regularizer.

6.3 Results

We present an overview of our final results for out-
of-domain and in-domain evaluation in Table 4. The

11For example, regression models which assign every parsing
model the samef-score.

results include thef-score macro-averaged over the
six target domains and their standard deviation.

In both situations, the FIXED SET: WSJ baseline
performs fairly poorly. Not surprisingly, assuming
all of our target domains are close enough toWSJ

works badly for our set of target domains and it
does particularly poorly onSWBD and GENIA. On
average, the UNIFORM baseline does slightly bet-
ter for out-of-domain and over 3% better for in-
domain. UNIFORM actually does fairly well on out-
of-domain except onGENIA. In general, using more
source domains is better which partially explains the
success of UNIFORM. This seems to be the case
since even if a source domain is terribly mismatched
with the target domain, it may still be able to fill
in some holes left by the other source domains. Of
course, if it overpowers more relevant domains, per-
formance may suffer. The SELF-TRAINED UNI-
FORM baseline uses even more source domains as
well as the largest ones. In both scenarios, this dra-
matically improves performance and is the second
best non-oracle system. This baseline provides more
evidence as to the power of self-training for improv-
ing parser adaptation. If we excluded all self-trained
corpora, our performance on this task would be sub-
stantially worse. We believe the self-trained cor-
pora are beneficial in this task since they help reduce
data sparsity of smaller corpora. The BEST SINGLE

CORPUSbaseline is poor in the out-of-domain sce-
nario primarily because the actual best single corpus
is excluded by the task specification in most cases.
When we move to in-domain, this baseline improves

34

Oracle Baseline or model Averagef-score
• Worst seen 62.0± 6.1
• Best single corpus 81.0± 2.9

Fixed set:WSJ 81.0± 3.5
Uniform 81.4± 3.6
Self-trained uniform 83.4± 2.5
Our model 84.0± 2.5

• Best seen 84.3± 2.6

(a) Out-of-domain evaluation

Oracle Baseline or model Averagef-score
Fixed set:WSJ 82.0± 4.8
Uniform 85.4± 2.4

• Best single corpus 85.6± 2.9
Self-trained uniform 86.1± 2.0

• Best overall model 86.2± 1.9
Our model 86.9± 2.4

• Best seen 87.5± 2.1

(b) In-domain evaluation

Table 4: Baselines and final results for the two multiple-source domain adaptation evaluation scenarios.
Results includef-scores, macro-averaged over all six target domains and their standard deviations.

but is still worse than SELF-TRAINED UNIFORM on
average. It beats SELF-TRAINED UNIFORM primar-
ily on WSJ, SWBD, andGENIA indicating that these
three domains are best when not diluted by others.
By definition, the WORST SEENbaseline does terri-
bly, almost 20% worse then BEST SINGLE CORPUS.

Our model is the best non-oracle system for both
evaluation scenarios. For out-of-domain evaluation,
our system is only 0.3% worse than the BEST SEEN

models for each target domain. For the in-domain
scenario, we are within 0.6% of the BEST SEEN

models. For a sense of scale, our out-of-domain and
in-domain f-scores onWSJ are 83.1% and 89.8%
respectively. Both numbers are quite close to the
BEST SEEN baseline. Additionally, our model is
0.7% better than the BEST OVERALL MODEL. Re-
call that the BEST OVERALL MODEL is the single
model with the best performance across all six tar-
get domains.12 By beating this baseline, we show
that there is value in customizing parsing models
to the target domain. It is also interesting that the
BEST OVERALL MODEL is only marginally better
than SELF-TRAINED UNIFORM. Without any fur-
ther information about the target corpus, an unin-
formed prior appears best.

7 Discussion

We have shown that for both out-of-domain and in-
domain evaluations, our system is well adapted to
predicting the effects of domain divergence on pars-

12Somewhat surprisingly, the best overall model uses almost
entirely self-trained corpora consisting of 9.5%GUTENBERG,
60.3%NANC, 26.0%MEDLINE (by GENIA), and 4.2%SWBD.

ing accuracy. Using the parsing model with the
highest predictedf-score leads to great performance
in practice. There is a substantial benefit to doing
this over existing approaches (using the same model
for all domains or mixing all training data together
uniformly). Creating a number of domain-specific
models and mixing them together as needed is a vi-
able approach.

One can think of our system as trying to esti-
mate document-level context. Our representation of
this context is simply a distribution over our source
domains, but one can imagine more complex op-
tions such as a high-dimensional vector space. Ad-
ditionally, our model separates domain and syntax
estimation, but a future direction is to learn these
jointly. This would combine our work with (Daumé
III, 2007; Finkel and Manning, 2009).

We have focused on the Charniak (2000) parser,
the first stage in the two stage Charniak and John-
son (2005) reranking parser. Applying our methods
to other generative parsers (such as (Collins, 1999;
Petrov and Klein, 2007)) is trivial, but it is less clear
how our methods can be applied to the discrimina-
tive reranker component of the two stage parser. One
avenue of approach is to incorporate the domain rep-
resentation into the feature space, as in Daumé III
(2007) but with more complex domain information.

Acknowledgments

This work was performed while the first author was
at Brown and supported by DARPA GALE contract
HR0011-06-2-0001. We would like to thank the BLLIP
team and our anonymous reviewers for their comments.

35

References

Michiel Bacchiani, Michael Riley, Brian Roark, and
Richard Sproat. 2006. MAP adaptation of stochas-
tic grammars. Computer Speech and Language,
20(1):41–68.

Ann Bies. 2007. GALE Phase 3 Release 1 - English
Translation Treebank. Linguistic Data Consortium.
LDC2007E105.

John Blitzer, Mark Dredze, and Fernando Pereira. 2007.
Biographies, bollywood, boom-boxes and blenders:
Domain adaptation for sentiment classification. In
Association for Computational Linguistics, Prague,
Czech Republic.

Xavier Carreras, Michael Collins, and Terry Koo. 2008.
TAG, dynamic programming, and the perceptron for
efficient, feature-rich parsing. InProceedings of
CoNLL 2008, pages 9–16, Manchester, England, Au-
gust.

Eugene Charniak and Mark Johnson. 2005. Coarse-to-
fine n-best parsing and MaxEnt discriminative rerank-
ing. In Proceedings of the ACL 2005, pages 173–180.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. InProceedings of the North American Chapter
of the ACL (NAACL), pages 132–139.

Michael Collins. 1999.Head-driven Statistical Models
for Natural Language Parsing. Ph.D. thesis, The Uni-
versity of Pennsylvania.

Hal Daumé III. 2007. Frustratingly easy domain adap-
tation. In Proceedings of ACL 2007, Prague, Czech
Republic.

Mark Dredze and Koby Crammer. 2008. Online methods
for multi-domain learning and adaptation. InProceed-
ings of the EMNLP 2008, pages 689–697, Honolulu,
Hawaii, October.

Jenny Rose Finkel and Christopher D. Manning. 2009.
Hierarchical bayesian domain adaptation. InProceed-
ings of HLT-NAACL 2009, pages 602–610, Boulder,
Colorado, June.

Jennifer Foster and Josef van Genabith. 2008. Parser
evaluation and the bnc: Evaluating 4 constituency
parsers with 3 metrics. InProceedings LREC 2008,
Marrakech, Morocco, May.

W. Nelson Francis and Henry Kučera. 1979.Manual
of Information to accompany a Standard Corpus of
Present-day Edited American English, for use with
Digital Computers. Brown University, Providence,
Rhode Island.

Daniel Gildea. 2001. Corpus variation and parser per-
formance. InEmpirical Methods in Natural Language
Processing (EMNLP), pages 167–202.

David Graff. 1995.North American News Text Corpus.
Linguistic Data Consortium. LDC95T21.

Mark Johnson, Eugene Charniak, and Matthew Lease.
2004. An improved model for recognizing disfluen-
cies in conversational speech. InProc. of the Rich Text
2004 Fall Workshop (RT-04F).

Daisuke Kawahara and Kiyotaka Uchimoto. 2008.
Learning reliability of parses for domain adaptation
of dependency parsing. InThird International Joint
Conference on Natural Language Processing (IJCNLP
’08).

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank.Comp. Linguis-
tics, 19(2):313–330.

David McClosky, Eugene Charniak, and Mark Johnson.
2006a. Effective self-training for parsing. InProceed-
ings of HLT-NAACL 2006, pages 152–159.

David McClosky, Eugene Charniak, and Mark John-
son. 2006b. Reranking and self-training for parser
adaptation. InProceedings of COLING-ACL 2006,
pages 337–344, Sydney, Australia, July. Association
for Computational Linguistics.

Slav Petrov and Dan Klein. 2007. Improved inference
for unlexicalized parsing. InHuman Language Tech-
nologies 2007: The Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics; Proceedings of the Main Conference, pages
404–411, Rochester, New York, April. Association for
Computational Linguistics.

Barbara Plank and Khalil Sima’an. 2008. Subdomain
sensitive statistical parsing using raw corpora. In
Proceedings of the Sixth International Language Re-
sources and Evaluation (LREC’08), Marrakech, Mo-
rocco, May.

Sujith Ravi, Kevin Knight, and Radu Soricut. 2008. Au-
tomatic prediction of parser accuracy. InProceedings
of the 2008 Conference on Empirical Methods in Nat-
ural Language Processing, pages 887–896, Honolulu,
Hawaii, October. Association for Computational Lin-
guistics.

Hinrich Schütze. 1995. Distributional part-of-speech
tagging. InProceedings of the 7th conference of the
EACL, pages 141–148.

Satoshi Sekine. 1997. The domain dependence of pars-
ing. In Proc. Applied Natural Language Processing
(ANLP), pages 96–102.

Jun Suzuki, Hideki Isozaki, Xavier Carreras, and Michael
Collins. 2009. An empirical study of semi-supervised
structured conditional models for dependency parsing.
In Proceedings EMNLP 2009, pages 551–560, Singa-
pore, August.

Yuka Tateisi, Akane Yakushiji, Tomoko Ohta, and
Jun’ichi Tsujii. 2005. Syntax Annotation for the GE-
NIA corpus. Proceedings of IJCNLP 2005, Compan-
ion volume, pages 222–227.

36

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 37–45,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Appropriately Handled Prosodic Breaks Help PCFG Parsing

Zhongqiang Huang1, Mary Harper1,2

1Laboratory for Computational Linguistics and Information Processing
Institute for Advanced Computer Studies

University of Maryland, College Park, MD USA
2Human Language Technology Center of Excellence

Johns Hopkins University, Baltimore, MD USA
{zqhuang,mharper}@umiacs.umd.edu

Abstract

This paper investigates using prosodic infor-

mation in the form of ToBI break indexes for

parsing spontaneous speech. We revisit two

previously studied approaches, one that hurt

parsing performance and one that achieved

minor improvements, and propose a new

method that aims to better integrate prosodic

breaks into parsing. Although these ap-

proaches can improve the performance of ba-

sic probabilistic context free grammar (PCFG)

parsers, they all fail to produce fine-grained

PCFG models with latent annotations (PCFG-

LA) (Matsuzaki et al., 2005; Petrov and Klein,

2007) that perform significantly better than the

baseline PCFG-LA model that does not use

break indexes, partially due to mis-alignments

between automatic prosodic breaks and true

phrase boundaries. We propose two alterna-

tive ways to restrict the search space of the

prosodically enriched parser models to the n-

best parses from the baseline PCFG-LA parser

to avoid egregious parses caused by incor-

rect breaks. Our experiments show that all

of the prosodically enriched parser models can

then achieve significant improvement over the

baseline PCFG-LA parser.

1 Introduction

Speech conveys more than a sequence of words to

a listener. An important additional type of informa-

tion that phoneticians investigate is called prosody,

which includes phenomena such as pauses, pitch,

energy, duration, grouping, and emphasis. For a

review of the role of prosody in processing spo-

ken language, see (Cutler et al., 1997). Prosody

can help with the disambiguation of lexical meaning

(via accents and tones) and sentence type (e.g., yes-

no question versus statement), provide discourse-

level information like focus, prominence, and dis-

course segment, and help a listener to discern a

speaker’s emotion or hesitancy, etc. Prosody often

draws a listener’s attention to important information

through contrastive pitch or duration patterns associ-

ated words or phrases. In addition, prosodic cues can

help one to segment speech into chunks that are hy-

pothesized to have a hierarchical structure, although

not necessarily identical to that of syntax. This sug-

gests that prosodic cues may help in the parsing of

speech inputs, the topic of this paper.

Prosodic information such as pause length, du-

ration of words and phones, pitch contours, en-

ergy contours, and their normalized values have

been used in speech processing tasks like sentence

boundary detection (Liu et al., 2005). In contrast,

other researchers use linguistic encoding schemes

like ToBI (Silverman et al., 1992), which encodes

tones, the degree of juncture between words, and

prominence symbolically. For example, a simplified

ToBI encoding scheme uses the symbol 4 for ma-

jor intonational breaks, p for hesitation, and 1 for all

other breaks (Dreyer and Shafran, 2007). In the lit-

erature, there have been several attempts to integrate

prosodic information to improve parse accuracy of

speech transcripts. These studies have used either

quantized acoustic measurements of prosody or au-

tomatically detected break indexes.

Gregory et al. (2004) attempted to integrate quan-

tized prosodic features as additional tokens in the

same manner that punctuation marks are added

into text. Although punctuation marks can signif-

icantly improve parse accuracy of newswire text,

the quantized prosodic tokens were found harm-

37

ful to parse accuracy when inserted into human-

generated speech transcripts of the Switchboard cor-

pus. The authors hypothesized that the inserted

pseudo-punctuation break n-gram dependencies in

the parser model, leading to lower accuracies. How-

ever, another possible cause is that the prosody has

not been effectively utilized due to the fact that

it is overloaded; it not only provides information

about phrases, but also about the state of the speaker

and his/her sentence planning process. Hence, the

prosodic information may at times be more harmful

than helpful to parsing performance.

In a follow-on experiment, Kahn et al. (2005), in-

stead of using raw quantized prosodic features, used

three classes of automatically detected ToBI break

indexes (1, 4, or p) and their posteriors. Rather than

directly incorporating the breaks into the parse trees,

they used the breaks to generate additional features

for re-ranking the n-best parse trees from a gener-

ative parsing model trained without prosody. They

were able to obtain a significant 0.6% improvement

on Switchboard over the generative parser, and a

more modest 0.1% to 0.2% improvement over the

reranking model that also utilizes syntactic features.

Dreyer and Shafran (2007) added prosodic breaks

into a generative parsing model with latent vari-

ables. They utilized three classes of ToBI break in-

dexes (1, 4, and p), automatically predicted by the

approach described in (Dreyer and Shafran, 2007;

Harper et al., 2005). Breaks were modeled as a se-

quence of observations parallel to the sentence and

each break was generated by the preterminal of the

preceding word, assuming that the observation of a

break, b, was conditionally independent of its pre-

ceding word, w, given preterminal X:

P (w, b|X) = P (w|X)P (b|X) (1)

Their approach has advantages over (Gregory et al.,

2004) in that it does not break n-gram dependencies

in parse modeling. It also has disadvantages in that

the breaks are modeled by preterminals rather than

higher level nonterminals, and thus cannot directly

affect phrasing in a basic PCFG grammar. How-

ever, they addressed this independence drawback by

splitting each nonterminal into latent tags so that the

impact of prosodic breaks could be percolated into

the phrasing process through the interaction of la-

tent tags. They achieved a minor 0.2% improvement

over their baseline model without prosodic cues and

also found that prosodic breaks can be used to build

more compact grammars.

In this paper, we re-investigate the models of

(Gregory et al., 2004) and (Dreyer and Shafran,

2007), and propose a new way of modeling that

can potentially address the shortcomings of the two

previous approaches. We also attribute part of the

failure or ineffectiveness of the previously investi-

gated approaches to errors in the quantized prosodic

tokens or automatic break indexes, which are pre-

dicted based only on acoustic cues and could mis-

align with phrase boundaries. We illustrate that

these prosodically enriched models are in fact highly

effective if we systematically eliminate bad phrase

and hesitation breaks given their projection onto the

reference parse trees. Inspired by this, we pro-

pose two alternative rescoring methods to restrict

the search space of the prosodically enriched parser

models to the n-best parses from the baseline PCFG-

LA parser to avoid egregious parse trees. The effec-

tiveness of our rescoring method suggests that the

reranking approach of (Kahn et al., 2005) was suc-

cessful not only because of their prosodic feature de-

sign, but also because they restrict the search space

for reranking to n-best lists generated by a syntactic

model alone.

2 Experimental Setup

Due to our goal of investigating the effect of

prosodic information on the accuracy of state of the

art parsing of conversational speech, we utilize both

Penn Switchboard (Godfrey et al., 1992) and Fisher

treebanks (Harper et al., 2005; Bies et al., 2006), for

which we also had automatically generated break in-

dexes from (Dreyer and Shafran, 2007; Harper et al.,

2005)1. The Fisher treebank is a higher quality pars-

ing resource than Switchboard due to its greater use

of audio and refined specifications for sentence seg-

mentation and disfluency markups, and so we utilize

its eval set for our parser evaluation; the first 1,020

trees (7,184 words) were used for development and

the remaining 3,917 trees (29,173 words) for eval-

uation. We utilized the Fisher dev1 and dev2 sets

containing 16,519 trees (112,717 words) as the main

training data source and used the Penn Switchboard

1A small fraction of words in the Switchboard treebank

could not be aligned with the break indexes that were produced

based on a later refinement of the transcription. We chose not

to alter the Switchboard treebank, so in cases of missing break

values, we heuristically added break *1* to words in the middle

of a sentence and *4* to words that end a sentence.

38

treebank containing 110,504 trees (837,863 words)

as an additional training source to evaluate the ef-

fect of training data size on parsing performance.

The treebank trees are normalized by downcasing

all terminal strings and deleting punctuation, empty

nodes, and nonterminal-yield unary rules that are not

related to edits.

We will compare2 three prosodically enriched

PCFG models described in the next section, with a

baseline PCFG parser. We will also utilize a state

of the art PCFG-LA parser (Petrov and Klein, 2007;

Huang and Harper, 2009) to examine the effect of

prosodic enrichment3. Unlike (Kahn et al., 2005),

we do not remove EDITED regions prior to parsing

because parsing of EDITED regions is likely to ben-

efit from prosodic information. Also, parses from all

models are compared with the gold standard parses

in the Fisher evaluation set using SParseval bracket

scoring (Harper et al., 2005; Roark et al., 2006)

without flattening the EDITED constituents.

3 Methods of Integrating Breaks

Rather than using quantized raw acoustic features as

in (Gregory et al., 2004), we use automatically gen-

erated ToBI break indexes as in (Dreyer and Shafran,

2007; Kahn et al., 2005) as the prosodic cues, and

investigate three alternative methods of modeling

prosodic breaks. Figure 1 shows parse trees for the

four models for processing the spontaneous speech

transcription she’s she would do, where the speaker

hesitated after saying she’s and then resumed with

another utterance she would do. Each word input

into the parser has an associated break index repre-

sented by the symbol 1, 4, or p enclosed in asterisks

indicating the break after the word. The automat-

ically detected break *4* after the contraction is a

strong indicator of an intonational phrase boundary

that might provide helpful information for parsing if

modeled appropriately. Figure 1 (a) shows the ref-

erence parse tree (thus the name REGULAR) where

the break indexes are not utilized.
The first method to incorporate break indexes,

BRKINSERT, shown in Figure 1 (b), treats the *p*

and *4* breaks as tokens, placing them under the

2We use Bikel’s randomized parsing evaluation comparator

to determine the significance (p < 0.005) of the difference be-

tween two parsers’ outputs.
3Due to the randomness of parameter initialization in the

learning of PCFG-LA models with increasing numbers of latent

tags, we train each latent variable grammar with 10 different

seeds and report the average F score on the evaluation set.

would

MD

do

VB

VP

VP

she

PRP

NP

’s

VBZ

VP

she

PRP

NP

S

EDITED

S

4 *4**1* *1* *1*

MD VB

VP

VP

PRP

NP

VBZ

VP

PRP

NP

S

EDITED

S

BREAK BREAK

would doshe’sshe *4* *4**1* *1* *1*

(a) REGULAR (b) BRKINSERT(a) REGULAR

would

MD

do

VB

VP

VP

she

PRP

NP

’s

VBZ

VP

she

PRP

NP

S

EDITED

S

4 *4**1* *1* *1*

(b) BRKINSERT

would

MD

do

VB

VP

VP

she

PRP

NP

’s

VBZ

VP

she

PRP

NP

S

EDITED

S

4 *4**1* *1* *1*

(c) BRKPOS (d) BRKPHRASE

Figure 1: Modeling Methods

highest nonterminal nodes so that the order of words

and breaks remain unchanged in the terminals. This

is similar to (Gregory et al., 2004), except that auto-

matically generated ToBI breaks are used rather than

quantized raw prosodic tokens.

The second method, BRKPOS, shown in Fig-

ure 1 (c), treats breaks as a sequence of observa-

tions parallel to the words in the sentence as in

(Dreyer and Shafran, 2007). The dotted edges in

Figure 1 (c) represent the relation between pretermi-

nals and prosodic breaks, and we call them prosodic

rewrites, with analogy to grammar rewrites and lex-

ical rewrites. The generation of words and prosodic

breaks is assumed to be conditionally independent

given the preterminal, as in Equation 1.

The third new method, BRKPHRASE, shown in

Figure 1 (d), also treats breaks as a sequence of ob-

servations parallel to the sentence; however, rather

than associating the prosodic breaks with the preter-

minals, each is generated by the highest nonterminal

(including preterminal) in the parse tree that covers

the preceding word as the right-most terminal. The

observation of break, b, is assumed to be condition-

ally independent of grammar or lexical rewrite, r,

given the nonterminal X:

P (r, b|X) = P (r|X)P (b|X) (2)

The relation is indicated by the dotted edges in Fig-

ure 1 (d), and it is also called a prosodic rewrite.

The potential advantage of BRKPHRASE is that it

does not break or fragment n-gram dependencies of

the grammar rewrites, as in the BRKINSERT method,

and it directly models the dependency between

breaks and phrases, which the BRKPOS method ex-

plicitly lacks.

4 Model Training

Since automatically generated prosodic breaks are

incorporated into the parse trees deterministi-

39

cally for all of the three enrichment methods

(BRKINSERT, BRKPOS, and BRKPHRASE), train-

ing a basic PCFG is straightforward; we simply pull

the counts of grammar rules, lexical rewrites, or

prosodic rewrites from the treebank and normalize

them to obtain their probabilities.

As is well known in the parsing community, the

basic PCFG does not provide state-of-the-art per-

formance due to its strong independence assump-

tions. We can relax these assumptions by explicitly

incorporating more information into the conditional

history, as in Charniak’s parser (Charniak, 2000);

however, this would require sophisticated engineer-

ing efforts to decide what to include in the history

and how to smooth probabilities appropriately due

to data sparsity. In this paper, we utilize PCFG-LA

models (Matsuzaki et al., 2005; Petrov and Klein,

2007) that split each nonterminal into a set of latent

tags and learn complex dependencies among the la-

tent tags automatically during training. The result-

ing model is still a PCFG, but it is probabilistically

context free on the latent tags, and the interaction

among the latent tags is able to implicitly capture

higher order dependencies among the original non-

terminals and observations. We follow the approach

in (Huang and Harper, 2009) to train the PCFG-LA

models.

5 Parsing

In a basic PCFG without latent variables, the goal

of maximum probability parsing is to find the most

likely parse tree given a sentence based on the gram-

mar. Suppose our grammar is binarized (so it con-

tains only unary and binary grammar rules). Given

an input sentence wn
1 = w1, w2, · · · , wn, the inside

probability, P (i, j, X), of the most likely sub-tree

that is rooted at nonterminal X and generates sub-

sequence w
j
i can be computed recursively by:

P (i, j, X) = max(max
Y

P (i, j, Y)P (X → Y),

max
i<k<j,Y,Z

P (i, k, Y)P (k + 1, j, Z)P (X → Y Z)) (3)

Backtracing the search process then returns the most

likely parse tree for the REGULAR grammar.

The same parsing algorithm can be directly ap-

plied to the BRKINSERT grammar given that the

break indexes are inserted appropriately into the in-

put sentence as additional tokens. Minor modifica-

tion is needed to extend the same parsing algorithm

to the BRKPOS grammar. The only difference is that

the inside probability of a preterminal is set accord-

ing to Equation 1. The rest of the algorithm proceeds

as in Equation 3.

However, parsing with the BRKPHRASE grammar

is more complicated because whether a nonterminal

generates a break or not is determined by whether

it is the highest nonterminal that covers the preced-

ing word as its right-most terminal. In this case,

the input observation also contains a sequence of

break indexes bn
1 = b1, b2, · · · , bn that is parallel

to the input sentence wn
1 = w1, w2, · · · , wn. Let

P (i, j, X, 0) be the probability of the most likely

sub-tree rooted at nonterminal X over span (i, j)

that generates word sequence w
j
i , as well as break

index sequence b
j−1
i , excluding bj . According to

the independence assumption in Equation 2, with

the addition of prosodic edge X → bj , the same

sub-tree also has the highest probability, denoted by

P (i, j, X, 1), of generating word sequence w
j
i to-

gether with the break index sequence b
j
i . Thus we

have:

P (i, j, X, 1) = P (i, j, X, 0)P (bj |X) (4)

The structural constraint that a break index is only

generated by the highest nonterminal that covers

the preceding word as the right-most terminal en-

ables a dynamic programming algorithm to compute

P (i, j, X, 0) and thus P (i, j, X, 1) efficiently. If the

sub-tree (without the prosodic edge that generates

bj) over span (i, j) is constructed from a unary rule

rewrite X → Y , then the root nonterminal Y of

some best sub-tree over the same span (i, j) can not

generate break bj because it has a higher nontermi-

nal X that also covers word wj as its right-most ter-

minal. If the sub-tree is constructed from a binary

rule rewrite X → Y Z, then the root nonterminal Y

of some best sub-tree over some span (i, k) will gen-

erate break bk because Y is the highest nonterminal

that covers word wk as the right-most terminal4. In

contrast, the root nonterminal Z of some best sub-

tree over some span (k+1, j) can not generate break

bj because Z has a higher nonterminal X that also

covers word wj as its right-most terminal. Hence,

4Use of left-branching is required for the BRKPHRASE

method to ensure that the prosodic breaks are associated with

the original nonterminals, not intermediate nonterminals in-

troduced by binarization. Binarization is needed for efficient

parametrization of PCFG-LA models and left- versus right-

branching binarization does not significantly affect model per-

formance; hence, we use left-branching for all models.

40

P (i, j, X, 1) and P (i, j, X, 0) can be computed re-

cursively by Equation 4 above and Equation 5 be-

low:
P (i, j, X, 0) = max(max

Y
P (i, j, Y, 0)P (X → Y),

max
i<k<j,Y,Z

P (i, k, Y, 1)P (k + 1, j, Z, 0)P (X → Y Z)) (5)

Although dynamic programming algorithms exist

for maximum probability decoding of basic PCFGs

without latent annotations for all four methods, it is

an NP hard problem to find the most likely parse tree

using PCFG-LA models. Several alternative decod-

ing algorithms have been proposed in the literature

for parsing with latent variable grammars. We use

the best performing max-rule-product decoding al-

gorithm, which searches for the best parse tree that

maximizes the product of the posterior rule (either

grammar, lexical, or prosodic) probabilities, as de-

scribed in (Petrov and Klein, 2007) for our models

with latent annotations and extend the dynamic pars-

ing algorithm described in Equation 5 for the BRK-

PHRASE grammar with latent annotations.

6 Results on the Fisher Corpus

6.1 Prosodically Enriched Models

Table 1 reports the parsing accuracy of the four basic

PCFGs without latent annotations when trained on

the Fisher training data. All of the grammars have a

low F score of around 65% due to the overly strong

and incorrect independence assumptions. We ob-

serve that the BRKPHRASE grammar benefits most

from breaks, significantly improving the baseline

accuracy from 64.9% to 67.2%, followed by the

BRKINSERT grammar, which at 66.2% achieves a

smaller improvement. The BRKPOS grammar ben-

efits the least among the three because breaks are

attached to the preterminals and thus have less im-

pact on phrasing due to the independence assump-

tions in the basic PCFG. In contrast, both the BRK-

PHRASE and BRKINSERT methods directly model

the relationship between breaks and phrase bound-

aries through governing nonterminals; however, the

BRKPHRASE method does not directly change any

of the grammar rules in contrast to the BRKINSERT

method that more or less breaks n-gram dependen-

cies and fragments rule probabilities.

The bars labeled DIRECT in Figure 2 report the

parsing performance of the four PCFG-LA models

trained on Fisher. The introduction of latent anno-

tations significantly boosts parsing accuracies, pro-

viding relative improvements ranging from 16.8%

REGULAR BRKINSERT BRKPOS BRKPHRASE

64.9 66.2 65.2 67.2

Table 1: Fisher evaluation parsing results for the basic

PCFGs without latent annotations trained on the Fisher

training set.

up to 19.0% when trained on Fisher training data

due to the fact that the PCFG-LA models are able

to automatically learn more complex dependencies

not captured by basic PCFGs.

 82.5

 83.5

 84.5

 85.5

Regular BrkInsert BrkPos BrkPhrase

83.9

83.2

84.2 84.2
84.4

84.0

85.0

84.5
84.7

84.0

85.1

84.7
84.8

Direct

Oracle

OracleRescore

DirectRescore

Figure 2: Parsing results on the Fisher evaluation set

of the PCFG-LA models trained on the Fisher training

data. The DIRECT bars represent direct parsing results for

models trained and evaluated on the original data, ORA-

CLE bars for models trained and evaluated on the modi-

fied oracle data (see Subsection 6.2), and the ORACLE-

RESCORE and DIRECTRESCORE bars for results of the

two rescoring approaches (described in Subsection 6.3)

on the original evaluation data.

However, the prosodically enriched methods do

not significantly improve upon the REGULAR base-

line after the introduction of latent annotations. The

BRKPHRASE method only achieves a minor in-

significant 0.1% improvement over the REGULAR

baseline; whereas, the BRKINSERT method is a sig-

nificant 0.7% worse than the baseline. Similar re-

sults for BRKINSERT were reported in (Gregory et

al., 2004), where they attributed the degradation to

the fact that the insertion of the prosodic “punctua-

tion” breaks the n-gram dependencies. Another pos-

sible cause is that the insertion of “bad” breaks that

do not align with true phrase boundaries hurts per-

formance more than the benefits gained from “good”

breaks due to the tightly integrated relationship be-

tween phrases and breaks. For the BRKPOS method,

the impact of break indexes is implicitly percolated

to the nonterminals through the interaction among

latent tags, as discussed in (Dreyer and Shafran,

2007), and its performance may thus be less affected

by the “bad” breaks. With latent annotations (in con-

trast to the basic PCFG), the model is now signif-

icantly better than BRKINSERT and is on par with

BRKPHRASE.

41

6.2 Models with Oracle Breaks

In order to determine whether “bad” breaks limit

the improvements in parsing performance from

prosodic enrichment, we conducted a simple ora-

cle experiment where all *p* and *4* breaks that

did not align with phrase boundaries in the tree-

bank were systematically converted to *1* breaks5.

When trained and evaluated on this modified ora-

cle data, all three prosodically enriched latent vari-

able models improve by about 1% and were then

able to achieve significant improvements over the

REGULAR PCFG-LA baseline, as shown by the bars

labeled ORACLE in Figure 2. It should be noted,

however, that the BRKINSERT method is much less

effective than the other two methods in the oracle

experiment, suggesting that broken n-gram depen-

dencies affect the model in addition to the erroneous

breaks.

6.3 N-Best Re-Scoring

As mentioned previously, prosody does not only

provide information about phrases, but also about

the state of the speaker and his/her sentence plan-

ning process. Given that our break detector uti-

lizes only acoustic knowledge to predict breaks, the

recognized *p* and *4* breaks may not correctly

reflect hesitations and phrase boundaries. Incor-

rectly recognized breaks could hurt parsing more

than the benefit brought from the correctly recog-

nized breaks, as demonstrated by superior perfor-

mance of the prosodically enhanced models in the

oracle experiment. We next describe two alternative

methods to make better use of automatic breaks.

In the first approach, which is called ORACLE-

RESCORE, we train the prosodically enhanced

grammars on cleaned-up break-annotated training

data, where misclassified *p* and *4* breaks are

converted to *1* breaks (as in the oracle experi-

ment). If these grammars were used to directly parse

the test sentences with automatically detected (un-

modified) breaks, the results would be quite poor

due to mismatch between the training and testing

conditions. However, we can automatically bias

against potentially misclassified *p* and *4* breaks

if we utilize information provided by n-best parses

from the baseline REGULAR PCFG-LA grammar.

5Other sources of errors include misclassification of *p*

breaks as *1* or *4* and misclassification of *4* breaks as *1*

or *p*. Although these errors are not repaired in the oracle ex-

periment, fixing them could potentially provide greater gains.

For each hypothesized parse tree in the n-best list,

the *p* and *4* breaks that do not align with the

phrase boundaries of the hypothesized parse tree are

converted to *1* breaks, and then a new score is

computed using the product of posterior rule proba-

bilities6, as in the max-rule-product criterion, for the

hypothesized parse tree using the grammars trained

on the cleaned-up training data. In this approach,

we convert the posterior probability, P (T |W, B),
of parse tree T given words W and breaks B

to P (B′|W, B)P (T |W, B′), where B′ is the new

break sequence constrained by T , and simplify it to

P (T |W, B′), assuming that conversions to a new se-

quence of breaks as constrained by a hypothesized

parse tree are equally probable given the original se-

quence of breaks. We consider this to be a reason-

able assumption for a small n-best (n = 50) list with

reasonably good quality.

In the second approach, called DIRECTRESCORE,

we train the prosodically enhanced PCFG-LA mod-

els using unmodified, automatic breaks, and then

use them to rescore the n-best lists produced by

the REGULAR PCFG-LA model to avoid the poorer

parse trees caused by fully trusting automatic break

indexes. The size of the n-best list should not be too

small or too large, or the results would be like di-

rectly parsing with REGULAR when n = 1 or with

the prosodically enriched model when n →∞.

The ORACLERESCORE and DIRECTRESCORE

bars in Figure 2 report the performance of the

prosodically enriched models with the correspond-

ing rescoring method. Both methods use the same

50-best lists produced by the baseline REGULAR

PCFG-LA model using the max-rule-product cri-

terion. Both rescoring methods produce signifi-

cant improvements in the performance of all three

prosodically enriched PCFG-LA models. The pre-

viously ineffective (0.7% worse than REGULAR)

BRKINSERT PCFG-LA model is now 0.3% and

0.5% better than the REGULAR baseline using

the ORACLERESCORE and DIRECTRESCORE ap-

proaches, respectively. The best performing BRK-

POS and BRKPHRASE rescoring models are 0.6-

0.9% better than the REGULAR baseline. It is in-

teresting to note that rescoring with models trained

on cleaned up prosodic breaks is somewhat poorer

6The product of posterior rule probabilities of a parse tree

is more suitable for rescoring than the joint probability of the

parse tree and the observables (words and breaks) because the

breaks are possibly different for different trees.

42

than models trained using all automatic breaks.

7 Models with Augmented Training Data

Figure 3 reports the evaluation results for mod-

els that are trained on the combination of Fisher

and Switchboard training data. With the additional

Switchboard training data, the nonterminals can be

split into more fine-grained latent tags, enabling the

learning of deeper dependencies without over-fitting

the limited sized Fisher training data. This improved

all models by at least 2.6% absolute. Note also that

the patterns observed for models trained using the

larger training set are quite similar to those from us-

ing the smaller training set in Figure 2. The prosod-

ically enriched models all benefit significantly from

the oracle breaks and from the rescoring methods.

The BRKPOS and BRKPHRASE methods, with the

additional training data, also achieve significant im-

provements over the REGULAR baseline without

rescoring.

 85

 86

 87

 88

Regular BrkInsert BrkPos BrkPhrase

86.5
86.3

87.4

86.8

87.1

86.8

87.7

87.2
87.3

86.8

87.5

87.2
87.3

Direct

Oracle

OracleRescore

DirectRescore

Figure 3: Parsing results on the Fisher evaluation set of

the PCFG-LA models trained on the Fisher+Switchboard

training data.

8 Error Analysis

In this section, we compare the errors of the

BRKPHRASE PCFG-LA model and the DIRECT-

RESCORE approach for that model to each other and

to the baseline PCFG-LA model without prosodic

breaks. All models are trained and tested on Fisher

as in Section 6. The results using other prosodically

enhanced PCFG-LA models and their rescoring al-

ternatives show similar patterns.

Figure 4 depicts the difference in F scores be-

tween BRKPHRASE and REGULAR and between

BRKPHRASE+DIRECTRESCORE and REGULAR on

a tree-by-tree basis in a 2D plot. Each quad-

rant also contains +/– signs roughly describing how

much BRKPHRASE+DIRECTRESCORE is better (+)

or worse (–) than BRKPHRASE and a pair of num-

bers (a, b), in which a represents the percentage of

sentences in that quadrant containing *p* or *4*

-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20

F
(B

r
k
P
h
r
a
s
e
+

D
ir

e
c
t
R

e
s
c
o
r
e

)-
F

(R
e
g
u
l
a
r

)

F(BrkPhrase)-F(Regular)

-
(47.2%, 25.3%)

+++
(70.2%, 30.0%)

++
(48.2%, 27.6%)

(66.7%, 28.1%)

Figure 4: 2D plot of the difference in F scores be-

tween BRKPHRASE and REGULAR and between BRK-

PHRASE+DIRECTRESCORE and REGULAR, on a tree-

by-tree basis, where each dot represents a test sentence.

Each quadrant also contains +/– signs roughly describ-

ing how much BRKPHRASE+DIRECTRESCORE is better

(+) or worse (–) than BRKPHRASE and a pair of numbers

(a, b), in which a represents the percentage of sentences

in that quadrant containing *p* or *4* breaks that do not

align with true phrase boundaries, and b represents the

percentage of such *p* and *4* breaks among the total

number of *p* and *4* breaks in that quadrant.

breaks that do not align with true phrase bound-

aries, and b represents the percentage of such *p*

and *4* breaks among the total number of *p* and

4 breaks in that quadrant.

Each dot in the top-right quadrant represents a

test sentence for which both BRKPHRASE and BRK-

PHRASE+DIRECTRESCORE produce better trees

than the baseline REGULAR PCFG-LA model. The

BRKPHRASE+DIRECTRESCORE approach is on av-

erage slightly worse than the BRKPHRASE method

(hence the single minus sign), although it also often

produces better parses than BRKPHRASE alone. In

contrast, the BRKPHRASE+DIRECTRESCORE ap-

proach on average makes many fewer errors than

BRKPHRASE (hence + +) as can be observed in the

bottom-left quadrant, where both approaches pro-

duce worse parse trees than the REGULAR base-

line. The most interesting quadrant is on the top-left

where the BRKPHRASE approach always produces

worse parses than the REGULAR baseline while the

BRKPHRASE+DIRECTRESCORE approach is able

to avoid these errors while producing better parses

than the baseline (hence + + +). Although the BRK-

PHRASE+DIRECTRESCORE approach can also pro-

duce worse parses than REGULAR, as in the bottom-

right quadrant (hence – – –), altogether the quad-

rants suggest that, by restricting the search space

43

to the n-best lists produced by the baseline REG-

ULAR parser, the BRKPHRASE+DIRECTRESCORE

approach is able to avoid many bad parses trees

at the expense of somewhat poorer parses in cases

when BRKPHRASE is able to benefit from the full

search space.

The reader should note that the top-left quadrant

of Figure 4 has the highest percentage (70.2%) of

sentences with “bad” *p* and *4* breaks and the

highest percentage (30.0%) of such “bad” breaks

among all breaks. This evidence supports our argu-

ment that “bad” breaks are harmful to parsing per-

formance and some parse errors caused by mislead-

ing breaks can be resolved by limiting the search

space of the prosodically enriched models to the

n-best lists produced by the baseline REGULAR

parser. However, the significant presence of “bad”

breaks in the top-right quadrant also suggests that

the prosodically enriched models are able to pro-

duce better parses than the baseline despite the pres-

ence of “bad” breaks, probably because the models

are trained on the mixture of both “good” and “bad”

breaks and are able to somehow learn to use “good”

breaks while avoiding being misled by “bad” breaks.

BRKPHRASE

REGULAR BRKPHRASE +DIRECTRESCORE

NP 90.4 90.4 90.9

VP 84.7 84.7 85.6

S 84.4 84.3 85.2

INTJ 93.0 93.4 93.4

PP 76.5 76.7 77.9

EDITED 60.4 62.2 63.3

SBAR 67.2 67.0 68.8

Table 2: F scores of the seven most frequent non-

terminals of the REGULAR, BRKPHRASE, and BRK-

PHRASE+DIRECTRESCORE models.

Table 2 reports the F scores of the seven most fre-

quent phrases for the REGULAR, BRKPHRASE, and

BRKPHRASE+DIRECTRESCORE methods trained

on Fisher. When comparing the BRKPHRASE

method to REGULAR, the break indexes help to im-

prove the score for edits most, followed by inter-

jections and prepositional phrases; however, they do

not improve the accuracy of any of the other phrases.

The BRKPHRASE+DIRECTRESCORE approach ob-

tains improvements on all of the major phrases.

Figure 5 (a) shows a reference parse tree of a

test sentence. The REGULAR approach correctly

parses the first half (omitted) of the sentence but

it fails to correctly interpret the second half (as

shown). The BRKPHRASE approach, in contrast,

is misguided by the incorrectly classified inter-

ruption point *p* after word “has”, and so pro-

duces an incorrect parse early in the sentence. The

BRKPHRASE+DIRECTRESCORE approach is able

to provide the correct tree given the n-best list pro-

duced by the REGULAR approach, despite the break

index errors.

(a) Reference, BRKPHRASE+DIRECTRESCORE

(b) REGULAR (c) BRKPHRASE

Figure 5: Parses for like∗1∗ has∗p∗ anything∗1∗ like∗1∗
affected∗1∗ you∗4∗ personally∗4∗ or∗1∗ anything∗4∗

9 Conclusions

We have investigated using prosodic information in

the form of automatically detected ToBI break in-

dexes for parsing spontaneous speech by compar-

ing three prosodic enrichment methods. Although

prosodic enrichment improves the basic PCFGs, that

performance gain disappears when latent variables

are used, partly due to the impact of misclassified

(“bad”) breaks that are assigned to words that do not

occur at phrase boundaries. However, we find that

by simply restricting the search space of the three

prosodically enriched latent variable parser models

to the n-best parses from the baseline PCFG-LA

parser, all of them attain significant improvements.

Our analysis more fully explains the positive results

achieved by (Kahn et al., 2005) from reranking with

prosodic features and suggests that the hypothesis

that inserted prosodic punctuation breaks n-gram de-

pendencies only partially explains the negative re-

sults of (Gregory et al., 2004). Our findings from

the oracle experiment suggest that integrating ToBI

classification with syntactic parsing should increase

the accuracy of both tasks.

Acknowledgments

We would like to thank Izhak Shafran for providing

break indexes for Fisher and Switchboard and for

44

comments on an earlier draft of this paper. This re-

search was supported in part by NSF IIS-0703859.

Opinions, findings, and recommendations expressed

in this paper are those of the authors and do not nec-

essarily reflect the views of the funding agency or

the institutions where the work was completed.

References

Ann Bies, Stephanie Strassel, Haejoong Lee, Kazuaki

Maeda, Seth Kulick, Yang Liu, Mary Harper, and

Matthew Lease. 2006. Linguistic resources for speech

parsing. In LREC.

Eugene Charniak. 2000. A maximum-entropy-inspired

parser. In ACL.

Anne Cutler, Delphine Dahan, and Wilma v an Donselaar.

1997. Prosody in comprehension of spoken language:

A literature review. Language and Speech.

Markus Dreyer and Izhak Shafran. 2007. Exploiting

prosody for PCFGs with latent annotations. In Inter-

speech.

John J. Godfrey, Edward C. Holliman, and Jane Mc-

Daniel. 1992. SWITCHBOARD: Telephone speech

corpus for research and development. In ICASSP.

Michelle L. Gregory, Mark Johnson, and Eugene Char-

niak. 2004. Sentence-internal prosody does not help

parsing the way punctuation does. In NAACL.

Mary P. Harper, Bonnie J. Dorr, John Hale, Brian Roark,

Izhak Shafran, Matthew Lease, Yang Liu, Matthew

Snover, Lisa Yung, Anna Krasnyanskaya, and Robin

Stewart. 2005. 2005 Johns Hopkins Summer Work-

shop Final Report on Parsing and Spoken Structural

Event Detection. Technical report, Johns Hopkins

University.

Zhongqiang Huang and Mary Harper. 2009. Self-

training PCFG grammars with latent annotations

across languages. In EMNLP.

Jeremy G. Kahn, Matthew Lease, Eugene Charniak,

Mark Johnson, and Mari Ostendorf. 2005. Effective

use of prosody in parsing conversational speech. In

EMNLP-HLT.

Yang Liu, Andreas Stolcke, Elizabeth Shriberg, and Mary

Harper. 2005. Using conditional random fields for

sentence boundary detection in speech. In ACL.

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii.

2005. Probabilistic CFG with latent annotations. In

ACL.

Slav Petrov and Dan Klein. 2007. Improved inference

for unlexicalized parsing. In HLT-NAACL.

Brian Roark, Mary Harper, Yang Liu, Robin Stewart,

Matthew Lease, Matthew Snover, Izhak Shafran, Bon-

nie J. Dorr, John Hale, Anna Krasnyanskaya, and Lisa

Yung. 2006. Sparseval: Evaluation metrics for pars-

ing speech. In LREC.

Kim Silverman, Mary Beckman, John Pitrelli, Mari Os-

tendorf, Colin Wightman, Patti Price, Janet Pierrehum-

bert, and Julia Hirshberg. 1992. ToBI: A standard for

labeling English prosody. In ICSLP.

45

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 46–54,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Using Confusion Networks for Speech Summarization

Shasha Xie and Yang Liu
Department of Computer Science
The University of Texas at Dallas

{shasha,yangl}@hlt.utdallas.edu

Abstract

For extractive meeting summarization, previ-
ous studies have shown performance degrada-
tion when using speech recognition transcripts
because of the relatively high speech recogni-
tion errors on meeting recordings. In this pa-
per we investigated using confusion networks
to improve the summarization performance
on the ASR condition under an unsupervised
framework by considering more word candi-
dates and their confidence scores. Our ex-
perimental results showed improved summa-
rization performance using our proposed ap-
proach, with more contribution from leverag-
ing the confidence scores. We also observed
that using these rich speech recognition re-
sults can extract similar or even better sum-
mary segments than using human transcripts.

1 Introduction

Speech summarization has received increasing in-
terest recently. It is a very useful technique that
can help users to browse a large amount of speech
recordings. The problem we study in this paper is
extractive meeting summarization, which selects the
most representative segments from the meeting tran-
scripts to form a summary. Compared to text sum-
marization, speech summarization is more challeng-
ing because of not only its more spontaneous style,
but also word errors in automatic speech recogni-
tion (ASR) output. Intuitively the incorrect words
have a negative impact on downstream summariza-
tion performance. Previous research has evaluated
summarization using either the human transcripts or

ASR output with word errors. Most of the prior
work showed that performance using ASR output is
consistently lower (to different extent) comparing to
that using human transcripts no matter whether su-
pervised or unsupervised approaches were used.

To address the problem caused by imperfect
recognition transcripts, in this paper we investigate
using rich speech recognition results for summariza-
tion. N-best hypotheses, word lattices, and confu-
sion networks have been widely used as an inter-
face between ASR and subsequent spoken language
processing tasks, such as machine translation, spo-
ken document retrieval (Chelba et al., 2007; Chia
et al., 2008), and shown outperforming using 1-
best hypotheses. However, studies using these rich
speech recognition results for speech summariza-
tion are very limited. In this paper, we demonstrate
the feasibility of using confusion networks under an
unsupervised MMR (maximum marginal relevance)
framework to improve summarization performance.
Our experimental results show better performance
over using 1-best hypotheses with more improve-
ment observed from using confidence measure of the
words. Moreover, we find that the selected summary
segments are similar to or even better than those gen-
erated using human transcripts.

2 Related Work

Many techniques have been proposed for the meet-
ing summarization task, including both unsuper-
vised and supervised approaches. Since we use un-
supervised methods in this study, we will not de-
scribe previous work using supervised approaches
because of the space limit. Unsupervised meth-

46

ods are simple and robust to different corpora, and
do not need any human labeled data for training.
MMR was introduced in (Carbonell and Goldstein,
1998) for text summarization, and was used widely
in meeting summarization (Murray et al., 2005a; Xie
and Liu, 2008). Latent semantic analysis (LSA) ap-
proaches have also been used (Murray et al., 2005a),
which can better measure document similarity at the
semantic level rather than relying on literal word
matching. In (Gillick et al., 2009), the authors intro-
duced a concept-based global optimization frame-
work using integer linear programming (ILP), where
concepts were used as the minimum units, and the
important sentences were extracted to cover as many
concepts as possible. They showed better perfor-
mance than MMR. In a follow-up study, (Xie et al.,
2009) incorporated sentence information in this ILP
framework. Graph-based methods, such as LexRank
(Erkan and Radev, 2004), have been originally used
for extractive text summarization, where the docu-
ment is modeled as a graph and sentences as nodes,
and sentences are ranked according to its similarity
with other nodes. (Garg et al., 2009) proposed Clus-
terRank, a modified graph-based method in order
to take into account the conversational speech style
in meetings. Recently (Lin et al., 2009) suggested
to formulate the summarization task as optimizing
submodular functions defined on the document’s se-
mantic graph, and showed better performance com-
paring to other graph-based approaches.

Rich speech recognition results, such as N-best
hypotheses and confusion networks, were first used
in multi-pass ASR systems to improve speech recog-
nition performance (Stolcke et al., 1997; Mangu et
al., 2000). They have been widely used in many sub-
sequent spoken language processing tasks, such as
machine translation, spoken document understand-
ing and retrieval. Confusion network decoding was
applied to combine the outputs of multiple machine
translation systems (Sim et al., 2007; Matusov et
al., 2006). In the task of spoken document retrieval,
(Chia et al., 2008) proposed to compute the expected
word counts from document and query lattices, and
estimate the statistical models from these counts,
and reported better retrieval accuracy than using
only 1-best transcripts. (Hakkani-Tur et al., 2006)
investigated using confusion networks for name en-
tity detection and extraction and user intent classifi-

cation. They also obtained better performance than
using ASR 1-best output.

There is very limited previous work using more
than 1-best ASR output for speech summarization.
Several studies used acoustic confidence scores in
the 1-best ASR hypothesis in the summarization sys-
tems (Valenza et al., 1999; Zechner and Waibel,
2000; Hori and Furui, 2003). (Liu et al., 2010) eval-
uated using n-best hypotheses for meeting summa-
rization, and showed improved performance with the
gain coming mainly from the first few candidates. In
(Lin and Chen, 2009), confusion networks and po-
sition specific posterior lattices were considered in
a generative summarization framework for Chinese
broadcast news summarization, and they showed
promising results by using more ASR hypotheses.
We investigate using confusion networks for meet-
ing summarization in this study. This work differs
from (Lin and Chen, 2009) in terms of the language
and genre used in the summarization task, as well
as the summarization approaches. We also perform
more analysis on the impact of confidence scores,
different pruning methods, and different ways to
present system summaries.

3 Summarization Approach

In this section, we first describe the baseline sum-
marization framework, and then how we apply it to
confusion networks.

3.1 Maximum Marginal Relevance (MMR)

MMR is a widely used unsupervised approach in
text and speech summarization, and has been shown
perform well. We chose this method as the basic
framework for summarization because of its sim-
plicity and efficiency. We expect this is a good
starting point for the study of feasibility of us-
ing confusion networks for summarization. For
each sentence segment Si in one document D, its
score (MMR(i)) is calculated using Equation 1
according to its similarity to the entire document
(Sim1(Si, D)) and the similarity to the already ex-
tracted summary (Sim2(Si, Summ)).

MMR(i) =
λ× Sim1(Si, D)− (1− λ)× Sim2(Si, Summ)

(1)

47

where parameter λ is used to balance the two factors
to ensure the selected summary sentences are rel-
evant to the entire document (thus important), and
compact enough (by removing redundancy with the
currently selected summary sentences). Cosine sim-
ilarity can be used to compute the similarity of two
text segments. If each segment is represented as a
vector, cosine similarity between two vectors (V1,
V2) is measured using the following equation:

sim(V1, V2) =
∑

i t1it2i√∑
i t

2
1i ×

√∑
i t

2
2i

(2)

where ti is the term weight for a word wi, for which
we can use the TFIDF (term frequency, inverse doc-
ument frequency) value, as widely used in the field
of information retrieval.

3.2 Using Confusion Networks for
Summarization

Confusion networks (CNs) have been used in many
natural language processing tasks. Figure 1 shows
a CN example for a sentence segment. It is a di-
rected word graph from the starting node to the end
node. Each edge represents a word with its associ-
ated posterior probability. There are several word
candidates for each position. “-” in the CN repre-
sents a NULL hypothesis. Each path in the graph is
a sentence hypothesis. For the example in Figure 1,
“I HAVE IT VERY FINE” is the best hypothesis
consisting of words with the highest probabilities for
each position. Compared to N-best lists, confusion
networks are a more compact and powerful repre-
sentation for word candidates. We expect the rich in-
formation contained in the confusion networks (i.e.,
more word candidates and associated posterior prob-
abilities) can help to determine words’ importance
for summarization.

Figure 1: An example of confusion networks.

The core problems when using confusion net-
works under the MMR summarization framework
are the definitions for Si, D, and Summ, as shown
in Equation 1. The extractive summary unit (for

each Si) we use is the segment provided by the rec-
ognizer. This is often different from syntactic or se-
mantic meaningful unit (e.g., a sentence), but is a
more realistic setup. Most of the previous studies
for speech summarization used human labeled sen-
tences as extraction units (for human transcripts, or
map them to ASR output), which is not the real sce-
nario when performing speech summarization on the
ASR condition. In the future, we will use automatic
sentence segmentation results, which we expect are
better units than pause-based segmentation used in
ASR. We still use a vector space model to represent
each summarization unit Si. The entire document
(D) and the current selected summary (Summ) are
formed by simply concatenating the corresponding
segments Si together. In the following, we describe
different ways to represent the segments and how to
present the final summary.

A. Segmentation representation

First, we construct the vector for each segment
simply using all the word candidates in the CNs,
without considering any confidence measure or pos-
terior probability information. The same TFIDF
computation is used as before, i.e., counting the
number of times a word appears (TF) and how many
documents it appears (used to calculate IDF).

Second, we leverage the confidence scores to
build the vector. For the term frequency of word wi,
we calculate it by summing up its posterior proba-
bilities p(wik) at each position k, that is,

TF (wi) =
∑

k

p(wik) (3)

Similarly, the IDF values can also be computed us-
ing the confidence scores. The traditional method
for calculating a word’s IDF uses the ratio of the
total number of documents (N) and the number of
documents containing this word. Using the confi-
dence scores, we calculate the IDF values as follows,

IDF (wi) = log(
N∑

D (maxk p(wik))
) (4)

If a word wi appears in the document, we find its
maximum posterior probability among all the posi-
tions it occurs in the CNs, which is used to signal
wi’s soft appearance in this document. We add these
soft counts for all the documents as the denomina-
tor in Equation 4. Different from the traditional IDF

48

calculation method, where the number of documents
containing a word is an integer number, here the de-
nominator can be any real number.

B. Confusion network pruning

The above vectors are constructed using the entire
confusion networks. We may also use the pruned
ones, in which the words with low posterior prob-
abilities are removed beforehand. This can avoid
the impact of noisy words, and increase the system
speed as well. We investigate three different pruning
methods, listed below.

• absolute pruning: In this method, we delete
words if their posterior probabilities are lower
than a predefined threshold, i.e., p(wi) < θ.

• max diff pruning: First for each position k,
we find the maximum probability among all
the word candidates: Pmaxk = maxj p(wjk).
Then we remove a word wi in this position if
the absolute difference of its probability with
the maximum score is larger than a predefined
threshold, i.e., Pmaxk − p(wik) > θ.

• max ratio pruning: This is similar to the above
one, but instead of absolute difference, we use
the ratio of their probabilities, i.e., p(wik)

Pmaxk
< θ.

Again, for the last two pruning methods, the com-
parison is done for each position in the CNs.

C. Summary rendering

With a proper way of representing the text seg-
ments, we then extract the summary segments using
the MMR method described in Section 3.1. Once the
summary segments are selected using the confusion
network input, another problem we need to address
is how to present the final summary. When using
the human transcripts or the 1-best ASR hypothesis
for summarization, we can simply concatenate the
corresponding transcripts of the selected sentence
segments as the final summary for the users. How-
ever, when using the confusion networks as the rep-
resentation of each sentence segment, we only know
which segments are selected by the summarization
system. To provide the final summary to the users,
there are two choices. We can either use the best hy-
pothesis from CNs of those selected segments as a

text summary; or return the speech segments to the
users to allow them to play it back. We will evaluate
both methods in this paper. For the latter, in order to
use similar word based performance measures, we
will use the corresponding reference transcripts in
order to focus on evaluation of the correctness of the
selected summary segments.

4 Experiments

4.1 Corpus and Evaluation Measurement

We use the ICSI meeting corpus, which contains 75
recordings from natural meetings (most are research
discussions) (Janin et al., 2003). Each meeting is
about an hour long and has multiple speakers. These
meetings have been transcribed, and annotated with
extractive summaries (Murray et al., 2005b). The
ASR output is obtained from a state-of-the-art SRI
speech recognition system, including the confusion
network for each sentence segment (Stolcke et al.,
2006). The word error rate (WER) is about 38.2%
on the entire corpus.

The same 6 meetings as in (Murray et al., 2005a;
Xie and Liu, 2008; Gillick et al., 2009; Lin et al.,
2009) are used as the test set in this study. Fur-
thermore, 6 other meetings were randomly selected
from the remaining 69 meetings in the corpus to
form a development set. Each meeting in the de-
velopment set has only one human-annotated sum-
mary; whereas for the test meetings, we use three
summaries from different annotators as references
for performance evaluation. The lengths of the ref-
erence summaries are not fixed and vary across an-
notators and meetings. The average word compres-
sion ratio for the test set is 14.3%, and the mean de-
viation is 2.9%. We generated summaries with the
word compression ratio ranging from 13% to 18%,
and only provide the best results in this paper.

To evaluate summarization performance, we use
ROUGE (Lin, 2004), which has been widely used
in previous studies of speech summarization (Zhang
et al., 2007; Murray et al., 2005a; Zhu and Penn,
2006). ROUGE compares the system generated
summary with reference summaries (there can be
more than one reference summary), and measures
different matches, such as N-gram, longest com-
mon sequence, and skip bigrams. In this paper,
we present our results using both ROUGE-1 and

49

ROUGE-2 F-scores.

4.2 Characteristics of CNs
First we perform some analysis of the confusion net-
works using the development set data. We define
two measurements:

• Word coverage. This is to verify that CNs con-
tain more correct words than the 1-best hy-
potheses. It is defined as the percentage of
the words in human transcripts (measured us-
ing word types) that appear in the CNs. We
use word types in this measurement since we
are using a vector space model and the multi-
ple occurrence of a word only affects its term
weights, not the dimension of the vector. Note
that for this analysis, we do not perform align-
ment that is needed in word error rate measure
— we do not care whether a word appears in the
exact location; as long as a word appears in the
segment, its effect on the vector space model is
the same (since it is a bag-of-words model).

• Average node density. This is the average num-
ber of candidate words for each position in the
confusion networks.

Figure 2 shows the analysis results for these two
metrics, which are the average values on the devel-
opment set. In this analysis we used absolute prun-
ing method, and the results are presented for dif-
ferent pruning thresholds. For a comparison, we
also include the results using the 1-best hypotheses
(shown as the dotted line in the figure), which has an
average node density of 1, and the word coverage of
71.55%. When the pruning threshold is 0, the results
correspond to the original CNs without pruning.

We can see that the confusion networks include
much more correct words than 1-best hypotheses
(word coverage is 89.3% vs. 71.55%). When in-
creasing the pruning thresholds, the word coverage
decreases following roughly a linear pattern. When
the pruning threshold is 0.45, the word coverage of
the pruned CNs is 71.15%, lower than 1-best hy-
potheses. For node density, the non-pruned CNs
have an average density of 11.04. With a very small
pruning threshold of 0.01, the density decreases
rapidly to 2.11. The density falls less than 2 when
the threshold is 0.02, which means that for some

0

1

2

3

4

5

6

7

8

9

10

11

12

0 0.01 0.02 0.03 0.04 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Pruning Threshold

N
o

d
e
 D

e
n

si
ty

70

75

80

85

90

W
o

rd
 C

o
v
e
ra

g
e
 (

%
)

node density word coverage

Figure 2: Average node density and word coverage of the
confusion networks on the development set.

nodes there is only one word candidate preserved
after pruning (i.e., only one word has a posterior
probability higher than 0.02). When the threshold
increases to 0.4, the density is less than 1 (0.99),
showing that on average there is less than one candi-
date left for each position. This is consistent with the
word coverage results — when the pruning thresh-
old is larger than 0.45, the confusion networks have
less word coverage than 1-best hypotheses because
even the top word hypotheses are deleted. There-
fore, for our following experiments we only use the
thresholds θ ≤ 0.45 for absolute pruning.

Note that the results in the figure are based on
absolute pruning. We also performed analysis us-
ing the other two pruning methods described in Sec-
tion 3.2. For those methods, because the decision
is made by comparing each word’s posterior proba-
bility with the maximum score for that position, we
can guarantee that at least the best word candidate is
included in the pruned CNs. We varied the pruning
threshold from 0 to 0.95 for these pruning methods,
and observed similar patterns as in absolute prun-
ing for the word coverage and node density analysis.
As expected, the fewer word candidates are pruned,
the better word coverage and higher node density the
pruned CNs have.

4.3 Summarization Results
4.3.1 Results on dev set using 1-best hypothesis

and human transcripts
We generate the baseline summarization result

using the best hypotheses from the confusion net-

50

works. The summary sentences are extracted using
the MMR method introduced in Section 3.1. The
term weighting is the traditional TFIDF value. The
ROUGE-1 and ROUGE-2 scores for the baseline are
listed in Table 1.

Because in this paper our task is to evaluate the
summarization performance using ASR output, we
generate an oracle result, where the summary ex-
traction and IDF calculation are based on the human
transcripts for each ASR segment. These results are
also presented in Table 1. Comparing the results for
the two testing conditions, ASR output and human
transcripts, we can see the performance degradation
due to recognition errors. The difference between
them seems to be large enough to warrant investiga-
tion of using rich ASR output for improved summa-
rization performance.

ROUGE-1 ROUGE-2
Baseline: best hyp 65.60 26.83
Human transcript 69.98 33.21

Table 1: ROUGE results (%) using 1-best hypotheses and
human transcripts on the development set.

4.3.2 Results on the dev set using CNs

A. Effect of segmentation representation

We evaluate the effect on summarization using
different vector representations based on confusion
networks. Table 2 shows the results on the develop-
ment set using various input under the MMR frame-
work. We also include the results using 1-best and
human transcripts in the table as a comparison. The
third row in the table uses the 1-best hypothesis, but
the term weight for each word is calculated by con-
sidering its posterior probability in the CNs (denoted
by “wp”). We calculate the TF and IDF values us-
ing Equation 3 and 4 introduced in Section 3.2. The
other representations in the table are for the non-
pruned and pruned CNs based on different pruning
methods, and with or without using the posteriors to
calculate term weights.

In general, we find that using confusion networks
improves the summarization performance compar-
ing with the baseline. Since CNs contain more can-
didate words and posterior probabilities, a natural

segment representation ROUGE-1 ROUGE-2
Best hyp 65.60 26.83

Best hyp (wp) 66.83 29.84
Non-pruned CNs 66.58 28.22

Non-pruned CNs (wp) 66.47 29.27

Pruned CNs

Absolute 67.44 29.02
Absolute (wp) 66.98 29.99

Max diff 67.29 28.97
Max diff (wp) 67.10 29.76

Max ratio 67.43 28.97
Max ratio (wp) 67.06 29.90

Human transcript 69.98 33.21

Table 2: ROUGE results (%) on the development set us-
ing different vector representations based on confusion
networks: non-pruned and pruned, using posterior prob-
abilities (“wp”) and without using them.

question to ask is, which factor contributes more to
the improved performance? We can compare the re-
sults in Table 2 across different conditions that use
the same candidate words, one with standard TFIDF,
and the other with posteriors for TFIDF, or that use
different candidate words and the same setup for
TFIDF calculation. Our results show that there is
more improvement using our proposed method for
TFIDF calculation based on posterior probabilities,
especially ROUGE-2 scores. Even when just us-
ing 1-best hypotheses, if we consider posteriors, we
can obtain very competitive results. There is also
a difference in the effect of using posterior proba-
bilities. When using the top hypotheses representa-
tion, posteriors help both ROUGE-1 and ROUGE-2
scores; when using confusion networks, non-pruned
or pruned, using posterior probabilities improves
ROUGE-2 results, but not ROUGE-1.

Our results show that adding more candidates in
the vector representation does not necessarily help
summarization. Using the pruned CNs yields bet-
ter performance than the non-pruned ones. There is
not much difference among different pruning meth-
ods. Overall, the best results are achieved by using
pruned CNs: best ROUGE-1 result without using
posterior probabilities, and best ROUGE-2 scores
when using posteriors.

B. Presenting summaries using human tran-
scripts

51

segment representation ROUGE-1 ROUGE-2
Best hyp 68.26 32.25

Best hyp (wp) 69.16 33.99
Non-pruned CNs 69.28 33.49

Non-pruned CNs (wp) 67.84 32.95

Pruned CNs

Absolute 69.66 34.06
Absolute (wp) 69.37 34.25

Max diff 69.88 34.17
Max diff (wp) 69.38 33.94

Max ratio 69.76 34.06
Max ratio (wp) 69.44 34.39

Human transcript 69.98 33.21

Table 3: ROUGE results (%) on the development set
using different segment representations, with the sum-
maries constructed using the corresponding human tran-
scripts for the selected segments.

In the above experiments, we construct the final
summary using the best hypotheses from the con-
fusion networks once the summary sentence seg-
ments are determined. Although we notice obvious
improvement comparing with the baseline results,
the ROUGE scores are still much lower than using
the human transcripts. One reason for this is the
speech recognition errors. Even if we select the cor-
rect utterance segment as in the reference summary
segments, the system performance is still penalized
when calculating the ROUGE scores. In order to
avoid the impact of word errors and focus on evalu-
ating whether we have selected the correct segments,
next we use the corresponding human transcripts of
the selected segments to obtain performance mea-
sures. The results from this experiment are shown in
Table 3 for different segment representations.

We can see that the summaries formed using hu-
man transcripts are much better comparing with the
results presented in Table 2. These two setups use
the same utterance segments. The only difference
lies in the construction of the final summary for
performance measurement, using the top hypothe-
ses or the corresponding human transcripts for the
selected segments. We also notice that the differ-
ence between using 1-best hypothesis and human
transcripts is greatly reduced using this new sum-
mary formulation. This suggests that the incorrect
word hypotheses do not have a very negative im-
pact in terms of selecting summary segments; how-

ever, word errors still account for a significant part
of the performance degradation on ASR condition
when using word-based metrics for evaluation. Us-
ing the best hypotheses with their posterior proba-
bilities we can obtain similar ROUGE-1 score and
a little higher ROUGE-2 score comparing to the re-
sults using human transcripts. The performance can
be further improved using the pruned CNs.

Note that when using the non-pruned CNs and
posterior probabilities for term weighting, the
ROUGE scores are worse than most of other condi-
tions. We performed some analysis and found that
one reason for this is the selection of some poor
segments. Most of the word candidates in the non-
pruned CNs have very low confidence scores, result-
ing in high IDF values using our proposed methods.
Since some top hypotheses are NULL words in the
poorly selected summary segments, it did not affect
the results when using the best hypothesis for eval-
uation, but when using human transcripts, it leads to
lower precision and worse overall F-scores. This is
not a problem for the pruned CNs since words with
low probabilities have been pruned beforehand, and
thus do not impact segment selection. We will inves-
tigate better methods for term weighting to address
this issue in our future work.

These experimental results prove that using the
confusion networks and confidence scores can help
select the correct sentence segments. Even though
the 1-best WER is quite high, if we can con-
sider more word candidates and/or their confidence
scores, this will not impact the process of select-
ing summary segments. We can achieve similar
performance as using human transcripts, and some-
times even slightly better performance. This sug-
gests using more word candidates and their confi-
dence scores results in better term weighting and
representation in the vector space model. Some
previous work showed that using word confidence
scores can help minimize the WER of the extracted
summaries, which then lead to better summarization
performance. However, we think the main reason
for the improvement in our study is from selecting
better utterances, as shown in Table 3. In our ex-
periments, because different setups select different
segments as the summary, we can not directly com-
pare the WER of extracted summaries, and analyze
whether lower WER is also helpful for better sum-

52

output summary
best hypotheses human transcripts
R-1 R-2 R-1 R-2

Best hyp 65.73 26.79 68.60 32.03
Best hyp (wp) 65.92 27.27 68.91 32.69
Pruned CNs 66.47 27.73 69.53 34.05

Human transcript N/A N/A 69.08 33.33

Table 4: ROUGE results (%) on the test set.

marization performance. In our future work, we will
perform more analysis along this direction.

4.3.3 Experimental results on test set
The summarization results on the test set are pre-

sented in Table 4. We show four different evalua-
tion conditions: baseline using the top hypotheses,
best hypotheses with posterior probabilities, pruned
CNs, and using human transcripts. For each condi-
tion, the final summary is evaluated using the best
hypotheses or the corresponding human transcripts
of the selected segments. The summarization system
setups (the pruning method and threshold, λ value in
MMR function, and word compression ratio) used
for the test set are decided based on the results on
the development set.

For the results on the test set, we observe sim-
ilar trends as on the development set. Using the
confidence scores and confusion networks can im-
prove the summarization performance comparing
with the baseline. The performance improvements
from “Best hyp” to “Best hyp (wp)” and from “Best
hyp (wp)” to “Pruned CNs” using both ROUGE-1
and ROUGE-2 measures are statistically significant
according to the paired t-test (p < 0.05). When the
final summary is presented using the human tran-
scripts of the selected segments, we observe slightly
better results using pruned CNs than using human
transcripts as input for summarization, although the
difference is not statistically significant. This shows
that using confusion networks can compensate for
the impact from recognition errors and still allow us
to select correct summary segments.

5 Conclusion and Future Work

Previous research has shown performance degrada-
tion when using ASR output for meeting summa-
rization because of word errors. To address this

problem, in this paper we proposed to use confu-
sion networks for speech summarization. Under the
MMR framework, we introduced a vector represen-
tation for the segments by using more word can-
didates in CNs and their associated posterior prob-
abilities. We evaluated the effectiveness of using
different confusion networks, the non-pruned ones,
and the ones pruned using three different methods,
i.e., absolute, max diff and max ratio pruning. Our
experimental results on the ICSI meeting corpus
showed that even when we only use the top hypothe-
ses from the CNs, considering the word posterior
probabilities can improve the summarization perfor-
mance on both ROUGE-1 and ROUGE-2 scores.
By using the pruned CNs we can obtain further im-
provement. We found that more gain in ROUGE-
2 results was yielded by our proposed soft term
weighting method based on posterior probabilities.
Our experiments also demonstrated that it is pos-
sible to use confusion networks to achieve similar
or even better performance than using human tran-
scripts if the goal is to select the right segments. This
is important since one possible rendering of summa-
rization results is to return the audio segments to the
users, which does not suffer from recognition errors.

In our experiments, we observed less improve-
ment from considering more word candidates than
using the confidence scores. One possible reason is
that the confusion networks we used are too confi-
dent. For example, on average 90.45% of the can-
didate words have a posterior probability lower than
0.01. Therefore, even though the correct words were
included in the confusion networks, their contribu-
tion may not be significant enough because of low
term weights. In addition, low probabilities also
cause problems to our proposed soft IDF computa-
tion. In our future work, we will investigate prob-
ability normalization methods and other techniques
for term weighting to cope with these problems.

6 Acknowledgment

This research is supported by NSF award IIS-
0845484. Any opinions expressed in this work are
those of the authors and do not necessarily reflect
the views of NSF. The authors thank Shih-Hsiang
Lin and Fei Liu for useful discussions.

53

References

Jaime Carbonell and Jade Goldstein. 1998. The use of
MMR, diversity-based reranking for reordering docu-
ments and producing summaries. In Proceedings of
SIGIR.

Ciprian Chelba, Jorge Silva, and Alex Acero. 2007.
Soft indexing of speech content for search in spoken
documents. In Computer Speech and Language, vol-
ume 21, pages 458–478.

Tee Kiah Chia, Khe Chai Sim, Haizhou Li, and Hwee Tou
Ng. 2008. A lattice-based approach to query-by-
example spoken document retrieval. In Proceedings
of SIGIR.

Gunes Erkan and Dragomir R. Radev. 2004. LexRank:
graph-based lexical centrality as salience in text sum-
marization. Artificial Intelligence Research, 22:457–
479.

Nikhil Garg, Benoit Favre, Korbinian Reidhammer, and
Dilek Hakkani-Tur. 2009. ClusterRank: a graph based
method for meeting summarization. In Proceedings of
Interspeech.

Dan Gillick, Korbinian Riedhammer, Benoit Favre, and
Dilek Hakkani-Tur. 2009. A global optimization
framework for meeting summarization. In Proceed-
ings of ICASSP.

Dilek Hakkani-Tur, Frederic Behet, Giuseppe Riccardi,
and Gokhan Tur. 2006. Beyond ASR 1-best: using
word confusion networks in spoken language under-
standing. Computer Speech and Language, 20(4):495
– 514.

Chiori Hori and Sadaoki Furui. 2003. A new approach to
automatic speech summarization. IEEE Transactions
on Multimedia, 5(3):368–378.

Adam Janin, Don Baron, Jane Edwards, Dan Ellis,
David Gelbart, Nelson Morgan, Barbara Peskin, Thilo
Pfau, Elizabeth Shriberg, Andreas Stolcke, and Chuck
Wooters. 2003. The ICSI meeting corpus. In Pro-
ceedings of ICASSP.

Shih-Hsiang Lin and Berlin Chen. 2009. Improved
speech summarization with multiple-hypothesis repre-
sentations and Kullback-Leibler divergence measures.
In Proceedings of Interspeech.

Hui Lin, Jeff Bilmes, and Shasha Xie. 2009. Graph-
based submodular selection for extractive summariza-
tion. In Proceedings of ASRU.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In the Workshop on
Text Summarization Branches Out.

Yang Liu, Shasha Xie, and Fei Liu. 2010. Using n-best
recognition output for extractive summarization and
keyword extraction in meeting speech. In Proceedings
of ICASSP.

Lidia Mangu, Eric Brill, and Andreas Stolcke. 2000.
Finding consensus in speech recognition: word error
minimization and other applications of confusion net-
works. Computer Speech and Language, 14:373–400.

Evgeny Matusov, Nicola Ueffing, and Hermann Ney.
2006. Computing consensus translation from multiple
machine translation systems using enhanced hypothe-
ses alignment. In Proceedings of EACL.

Gabriel Murray, Steve Renals, and Jean Carletta. 2005a.
Extractive summarization of meeting recordings. In
Proceedings of Interspeech.

Gabriel Murray, Steve Renals, Jean Carletta, and Johanna
Moore. 2005b. Evaluating automatic summaries of
meeting recordings. In Proceedings of the ACL Work-
shop on Intrinsic and Extrinsic Evaluation Measures
for Machine Translation.

Khe Chai Sim, William Byrne, Mark Gales, Hichem
Sahbi, and Phil Woodland. 2007. Consensus net-
work decoding for statistical machine translation sys-
tem combination. In Proceedings of ICASSP.

Andreas Stolcke, Yochai Konig, and Mitchel Weintraub.
1997. Explicit word error minimization in N-best list
rescoring. In Proceedings of Eurospeech.

Andreas Stolcke, Barry Chen, Horacio Franco,
Venkata Ra mana Rao Gadde, Martin Graciarena,
Mei-Yuh Hwang, Katrin Kirchhoff, Arindam Mandal,
Nelson Morgan, Xin Lei, Tim Ng, and et al. 2006.
Recent innovations in speech-to-text transcription at
SRI-ICSI-UW. IEEE Transactions on Audio, Speech,
and Language Processing, 14(5):1729–1744.

Robin Valenza, Tony Robinson, Marianne Hickey, and
Roger Tucker. 1999. Summarization of spoken audio
through information extraction. In Proceedings of the
ESCA Workshop on Accessing Information in Spoken
Audio, pages 111–116.

Shasha Xie and Yang Liu. 2008. Using corpus
and knowledge-based similarity measure in maximum
marginal relevance for meeting summarization. In
Proceedings of ICASSP.

Shasha Xie, Benoit Favre, Dilek Hakkani-Tur, and Yang
Liu. 2009. Leveraging sentence weights in concept-
based optimization framework for extractive meeting
summarization. In Proceedings of Interspeech.

Klaus Zechner and Alex Waibel. 2000. Minimizing word
error rate in textual summaries of spoken language. In
Proceedings of NAACL.

Jian Zhang, Ho Yin Chan, Pascale Fung, and Lu Cao.
2007. A comparative study on speech summarization
of broadcast news and lecture speech. In Proceedings
of Interspeech.

Xiaodan Zhu and Gerald Penn. 2006. Summarization of
spontaneous conversations. In Proceedings of Inter-
speech.

54

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 55–63,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Qme! : A Speech-based Question-Answering system on Mobile Devices
Taniya Mishra

AT&T Labs-Research
180 Park Ave

Florham Park, NJ
taniya@research.att.com

Srinivas Bangalore
AT&T Labs-Research

180 Park Ave
Florham Park, NJ

srini@research.att.com

Abstract

Mobile devices are becoming the dominant
mode of information access despite being
cumbersome to input text using small key-
boards and browsing web pages on small
screens. We present Qme!, a speech-based
question-answering system that allows for
spoken queries and retrieves answers to the
questions instead of web pages. We present
bootstrap methods to distinguish dynamic
questions from static questions and we show
the benefits of tight coupling of speech recog-
nition and retrieval components of the system.

1 Introduction

Access to information has moved from desktop and
laptop computers in office and home environments
to be an any place, any time activity due to mo-
bile devices. Although mobile devices have small
keyboards that make typing text input cumbersome
compared to conventional desktop and laptops, the
ability to access unlimited amount of information,
almost everywhere, through the Internet, using these
devices have made them pervasive.

Even so, information access using text input on
mobile devices with small screens and soft/small
keyboards is tedious and unnatural. In addition, by
the mobile nature of these devices, users often like
to use them in hands-busy environments, ruling out
the possibility of typing text. We address this issue
by allowing the user to query an information repos-
itory using speech. We expect that spoken language
queries to be a more natural and less cumbersome
way of information access using mobile devices.

A second issue we address is related to directly
and precisely answering the user’s query beyond
serving web pages. This is in contrast to the current
approach where a user types in a query using key-
words to a search engine, browses the returned re-
sults on the small screen to select a potentially rele-
vant document, suitably magnifies the screen to view
the document and searches for the answer to her
question in the document. By providing a method

for the user to pose her query in natural language and
presenting the relevant answer(s) to her question, we
expect the user’s information need to be fulfilled in
a shorter period of time.

We present a speech-driven question answering
system, Qme!, as a solution toward addressing these
two issues. The system provides a natural input
modality – spoken language input – for the users
to pose their information need and presents a col-
lection of answers that potentially address the infor-
mation need directly. For a subclass of questions
that we term static questions, the system retrieves
the answers from an archive of human generated an-
swers to questions. This ensures higher accuracy
for the answers retrieved (if found in the archive)
and also allows us to retrieve related questions on
the user’s topic of interest. For a second subclass of
questions that we term dynamic questions, the sys-
tem retrieves the answer from information databases
accessible over the Internet using web forms.

The layout of the paper is as follows. In Section 2,
we review the related literature. In Section 3, we
illustrate the system for speech-driven question an-
swering. We present the retrieval methods we used
to implement the system in Section 4. In Section 5,
we discuss and evaluate our approach to tight cou-
pling of speech recognition and search components.
In Section 6, we present bootstrap techniques to dis-
tinguish dynamic questions from static questions,
and evaluate the efficacy of these techniques on a
test corpus. We conclude in Section 7.

2 Related Work

Early question-answering (QA) systems, such as
Baseball (Green et al., 1961) and Lunar (Woods,
1973) were carefully hand-crafted to answer ques-
tions in a limited domain, similar to the QA
components of ELIZA (Weizenbaum, 1966) and
SHRDLU (Winograd, 1972). However, there has
been a resurgence of QA systems following the
TREC conferences with an emphasis on answering
factoid questions. This work on text-based question-
answering which is comprehensively summarized

55

in (Maybury, 2004), range widely in terms of lin-
guistic sophistication. At one end of the spectrum,
There are linguistically motivated systems (Katz,
1997; Waldinger et al., 2004) that analyze the user’s
question and attempt to synthesize a coherent an-
swer by aggregating the relevant facts. At the other
end of the spectrum, there are data intensive sys-
tems (Dumais et al., 2002) that attempt to use the
redundancy of the web to arrive at an answer for
factoid style questions. There are also variants of
such QA techniques that involve an interaction and
use context to resolve ambiguity (Yang et al., 2006).
In contrast to these approaches, our method matches
the user’s query against the questions in a large cor-
pus of question-answer pairs and retrieves the asso-
ciated answer.

In the information retrieval community, QA sys-
tems attempt to retrieve precise segments of a doc-
ument instead of the entire document. In (To-
muro and Lytinen, 2004), the authors match the
user’s query against a frequently-asked-questions
(FAQ) database and select the answer whose ques-
tion matches most closely to the user’s question.
An extension of this idea is explored in (Xue et al.,
2008; Jeon et al., 2005), where the authors match the
user’s query to a community collected QA archive
such as (Yahoo!, 2009; MSN-QnA, 2009). Our ap-
proach is similar to both these lines of work in spirit,
although the user’s query for our system originates
as a spoken query, in contrast to the text queries in
previous work. We also address the issue of noisy
speech recognition and assess the value of tight in-
tegration of speech recognition and search in terms
of improving the overall performance of the system.
A novelty in this paper is our method to address dy-
namic questions as a seamless extension to answer-
ing static questions.

Also related is the literature on voice-search ap-
plications (Microsoft, 2009; Google, 2009; Yellow-
Pages, 2009; vlingo.com, 2009) that provide a spo-
ken language interface to business directories and
return phone numbers, addresses and web sites of
businesses. User input is typically not a free flowing
natural language query and is limited to expressions
with a business name and a location. In our system,
users can avail of the full range of natural language
expressions to express their information need.

And finally, our method of retrieving answers to
dynamic questions has relevance to the database and
meta search community. There is growing interest
in this community to mine the “hidden” web – infor-

mation repositories that are behind web forms – and
provide a unified meta-interface to such informa-
tion sources, for example, web sites related travel,
or car dealerships. Dynamic questions can be seen
as providing a natural language interface (NLI) to
such web forms, similar to early work on NLI to
databases (Androutsopoulos, 1995).

3 Speech-driven Question Retrieval
System

We describe the speech-driven query retrieval appli-
cation in this section. The user of this application
provides a spoken language query to a mobile device
intending to find an answer to the question. Some
example users’ inputs are1 what is the fastest ani-
mal in water, how do I fix a leaky dishwasher, why
is the sky blue. The result of the speech recognizer
is used to search a large corpus of question-answer
pairs to retrieve the answers pertinent to the user’s
static questions. For the dynamic questions, the an-
swers are retrieved by querying a web form from
the appropriate web site (e.g www.fandango.com for
movie information). The result from the speech rec-
ognizer can be a single-best string or a weighted
word lattice.2 The retrieved results are ranked using
different metrics discussed in the next section. In
Figure 2, we illustrate the answers that Qme!returns
for static and dynamic quesitons.

Lattice

1−best

Q&A corpus

ASR
Speech

Dynamic

Classify

from Web
Retrieve

Rank

Search

Ranked ResultsMatch

Figure 1: The architecture of the speech-driven question-
answering system

4 Methods of Retrieval

We formulate the problem of answering static
questions as follows. Given a question-answer
archive QA = {(q1, a1), (q2, a2), . . . , (qN , aN)}

1The query is not constrained to be of any specific question
type (for example, what, where, when, how).

2For this paper, the ASR used to recognize these utterances
incorporates an acoustic model adapted to speech collected
from mobile devices and a four-gram language model that is
built from the corpus of questions.

56

Figure 2: Retrieval results for static and dynamic ques-
tions using Qme!

of N question-answer pairs, and a user’s ques-
tion qu, the task is to retrieve a subset QAr =
{(qr

1, a
r
1), (q

r
2, a

r
2), . . . , (q

r
M , ar

M)} M << N us-
ing a selection function Select and rank the mem-
bers of QAr using a scoring function Score such
that Score(qu, (qr

i , a
r
i)) > Score(qu, (qr

i+1, a
r
i+1)).

Here, we assume
Score(qu, (qr

i , a
r
i)) = Score(qu, qr

i).
The Select function is intended to select the

matching questions that have high “semantic” simi-
larity to the user’s question. However, given there is
no objective function that measures semantic simi-
larity, we approximate it using different metrics dis-
cussed below.

Ranking of the members of the retrieved set can
be based on the scores computed during the selec-
tion step or can be independently computed based
on other criteria such as popularity of the question,
credibility of the source, temporal recency of the an-
swer, geographical proximity to the answer origin.

4.1 Question Retrieval Metrics

We retrieve QA pairs from the data repository based
on the similarity of match between the user’s query
and each of the set of questions (d) in the repos-
itory. To measure the similarity, we have experi-
mented with the following metrics.

1. TF-IDF metric: The user input query and the
document (in our case, questions in the repos-
itory) are represented as bag-of-n-grams (aka
terms). The term weights are computed using a
combination of term frequency (tf) and inverse
document frequency (idf) (Robertson, 2004).
If Q = q1, q2, . . . , qn is a user query, then the

aggregated score for a document d using a un-
igram model of the query and the document is
given as in Equation 1. For a given query, the
documents with the highest total term weight
are presented as retrieved results. Terms can
also be defined as n-gram sequences of a query
and a document. In our experiments, we have
used up to 4-grams as terms to retrieve and rank
documents.

Score(d) =
∑
w∈Q

tfw,d × idfw (1)

2. String Comparison Metrics: Since the length
of the user query and the query to be retrieved
are similar in length, we use string compar-
ison methods such as Levenshtein edit dis-
tance (Levenshtein, 1966) and n-gram overlap
(BLEU-score) (Papineni et al., 2002) as simi-
larity metrics.

We compare the search effectiveness of these sim-
ilarity metrics in Section 5.3.

5 Tightly coupling ASR and Search

Most of the speech-driven search systems use the
1-best output from the ASR as the query for the
search component. Given that ASR 1-best output
is likely to be erroneous, this serialization of the
ASR and search components might result in sub-
optimal search accuracy. A lattice representation
of the ASR output, in particular, a word-confusion
network (WCN) transformation of the lattice, com-
pactly encodes the n-best hypothesis with the flexi-
bility of pruning alternatives at each word position.
An example of a WCN is shown in Figure 3. The
weights on the arcs are to be interpreted as costs and
the best path in the WCN is the lowest cost path
from the start state (0) to the final state (4). Note
that the 1-best path is how old is mama, while the
input speech was how old is obama which also is in
the WCN, but at a higher cost.

0 1
how/0.001

who/6.292
2

old/0.006

does/12.63

late/14.14

was/14.43

_epsilon/5.010

3

is/0.000

a/12.60

_epsilon/8.369
4/1

obama/7.796

lil/7.796

obamas/13.35

mama/0.000

bottle/12.60

Figure 3: A sample word confusion network with arc
costs as negative logarithm of the posterior probabilities.

57

0

how:qa25/c1
old:qa25/c2
is:qa25/c3

obama:qa25/c4
old:qa150/c5
how:qa12/c6

obama:qa450/c7
is:qa1450/c8

Figure 4: Example of an FST representing the search in-
dex.

5.1 Representing Search Index as an FST

Lucene (Hatcher and Gospodnetic., 2004) is an off-
the-shelf search engine that implements the TF-IDF
metric. But, we have implemented our own search
engine using finite-state transducers (FST) for this
reason. The oracle word/phrase accuracy using n-
best hypotheses of an ASR is usually far greater than
the 1-best output. However, using each of the n-best
(n > 1) hypothesis as a separate query to the search
component is computationally sub-optimal since the
strings in the n-best hypotheses usually share large
subsequences with each other. The FST representa-
tion of the search index allows us to efficiently con-
sider lattices/WCNs as input queries.

The FST search index is built as follows. We in-
dex each question-answer (QA) pair from our repos-
itory ((qi, ai), qai for short) using the words (wqi) in
question qi. This index is represented as a weighted
finite-state transducer (SearchFST) as shown in Fig-
ure 4. Here a word wqi (e.g old) is the input symbol
for a set of arcs whose output symbol is the index
of the QA pairs where old appears in the question.
The weight of the arc c(wqi ,qi) is one of the simi-
larity based weights discussed in Section 4.1. As
can be seen from Figure 4, the words how, old, is
and obama contribute a score to the question-answer
pair qa25; while other pairs, qa150, qa12, qa450 are
scored by only one of these words.

5.2 Search Process using FSTs

A user’s speech query, after speech recognition, is
represented as an FSA (either 1-best or WCN), a
QueryFSA. The QueryFSA (denoted as q) is then
transformed into another FSA (NgramFSA(q)) that
represents the set of n-grams of the QueryFSA.
Due to the arc costs from WCNs, the NgramFSA
for a WCN is a weighted FSA. The NgramFSA is
composed with the SearchFST and we obtain all
the arcs (wq, qawq

, c(wq ,qawq
)) where wq is a query

term, qawq
is a QA index with the query term and,

c(wq ,qawq
) is the weight associated with that pair. Us-

ing this information, we aggregate the weight for a
QA pair (qaq) across all query words and rank the
retrieved QAs in the descending order of this aggre-
gated weight. We select the top N QA pairs from
this ranked list. The query composition, QA weight
aggregation and selection of top N QA pairs are
computed with finite-state transducer operations as
shown in Equations 2 to 5.3

D1 = π2(NgramFSA(q) ◦ SearchFST) (2)

R1 = fsmbestpath(D1, 1) (3)

D2 = π2(NgramFSA(R1) ◦ SearchFST) (4)

TopN = fsmbestpath(fsmdeterminize(D2), N)
(5)

The process of retrieving documents using the
Levenshtein-based string similarity metric can also
be encoded as a composition of FSTs.

5.3 Experiments and Results
We have a fairly large data set consisting of over a
million question-answer pairs collected by harvest-
ing the web. In order to evaluate the retrieval meth-
ods discussed earlier, we use two test sets of QA
pairs: a Seen set of 450 QA pairs and an Unseen set
of 645 QA pairs. The queries in the Seen set have
an exact match with some question in the database,
while the queries in the Unseen set may not match
any question in the database exactly. 4 The questions
in the Unseen set, however, like those in the Seen set,
also have a human generated answer that is used in
our evaluations.

For each query, we retrieve the twenty most rel-
evant QA pairs, ranked in descending order of the
value of the particular metric under consideration.
However, depending on whether the user query is a
seen or an unseen query, the evaluation of the rele-
vance of the retrieved question-answer pairs is dif-
ferent as discussed below.5

3We have dropped the need to convert the weights into the
real semiring for aggregation, to simplify the discussion.

4There may however be semantically matching questions.
5The reason it is not a recall and precision curve is that, for

the “seen” query set, the retrieval for the questions is a zero/one
boolean accuracy. For the “unseen” query set there is no perfect
match with the input question in the query database, and so we
determine the closeness of the questions based on the closeness
of the answers. Coherence attempts to capture the homogen-
ity of the questions retrieved, with the assumption that the user
might want to see similar questions as the returned results.

58

5.3.1 Evaluation Metrics
For the set of Seen queries, we evaluate the rele-

vance of the retrieved top-20 question-answer pairs
in two ways:

1. Retrieval Accuracy of Top-N results: We eval-
uate whether the question that matches the user
query exactly is located in the top-1, top-5,
top-10, top-20 or not in top-20 of the retrieved
questions.

2. Coherence metric: We compute the coherence
of the retrieved set as the mean of the BLEU-
score between the input query and the set of
top-5 retrieved questions. The intuition is that
we do not want the top-5 retrieved QA pairs
to distract the user by not being relevant to the
user’s query.

For the set of Unseen queries, since there are no
questions in the database that exactly match the in-
put query, we evaluate the relevance of the top-20 re-
trieved question-answer pairs in the following way.
For each of the 645 Unseen queries, we know the
human-generated answer. We manually annotated
each unseen query with the Best-Matched QA pair
whose answer was the closest semantic match to the
human-generated answer for that unseen query. We
evaluate the position of the Best-Matched QA in the
list of top twenty retrieved QA pairs for each re-
trieval method.

5.3.2 Results
On the Seen set of queries, as expected the re-

trieval accuracy scores for the various retrieval tech-
niques performed exceedingly well. The unigram
based tf.idf method retrieved 93% of the user’s query
in the first position, 97% in one of top-5 positions
and 100% in one of top-10 positions. All the other
retrieval methods retrieved the user’s query in the
first position for all the Seen queries (100% accu-
racy).

In Table 1, we tabulate the results of the Coher-
ence scores for the top-5 questions retrieved using
the different retrieval techniques for the Seen set of
queries. Here, the higher the n-gram the more co-
herent is the set of the results to the user’s query. It
is interesting to note that the BLEU-score and Lev-
enshtein similarity driven retrieval methods do not
differ significantly in their scores from the n-gram
tf.idf based metrics.

Method Coherence Metric
for top-5 results

TF-IDF unigram 61.58
bigram 66.23
trigram 66.23
4-gram 69.74

BLEU-score 66.29
Levenshtein 67.36

Table 1: Coherence metric results for top-5 queries re-
trieved using different retrieval techniques for the seen
set.

In Table 2, we present the retrieval results using
different methods on the Unseen queries. For 240 of
the 645 unseen queries, the human expert found that
that there was no answer in the data repository that
could be considered semantically equivalent to the
human-generated response to that query. So, these
240 queries cannot be answered using the current
database. For the remaining 405 unseen queries,
over 60% have their Best-Matched question-answer
pair retrieved in the top-1 position. We expect the
coverage to improve considerably by increasing the
size of the QA archive.

Method Top-1 Top-20
TFIDF Unigram 69.13 75.81

Bigram 62.46 67.41
Trigram 61.97 65.93
4-gram 56.54 58.77
WCN 70.12 78.52

Levenshtein 67.9 77.29
BLEU-score 72.0 75.31

Table 2: Retrieval results for the Unseen queries

5.3.3 Speech-driven query retrieval
In Equation 6, we show the tight integration of

WCNs and SearchFST using the FST composition
operation (◦). λ is used to scale the weights6 from
the acoustic/language models on the WCNs against
the weights on the SearchFST. As before, we use
Equation 3 to retrieve the top N QA pairs. The tight
integration is expected to improve both the ASR and
Search accuracies by co-constraining both compo-
nents.

D = π2(Unigrams(WCN)λ◦SearchFST) (6)

For this experiment, we use the speech utterances
corresponding to the Unseen set as the test set. We
use a different set of 250 speech queries as the

6fixed using the development set

59

development set. In Table 3, we show the Word
and Sentence Accuracy measures for the best path
in the WCN before and after the composition of
SearchFST with the WCN on the development and
test sets. We note that by integrating the constraints
from the search index, the ASR accuracies can be
improved by about 1% absolute.

Set # of Word Sentence
utterances Accuracy Accuracy

Dev Set 250 77.1(78.2) 54(54)
Test Set 645 70.8(72.1) 36.7(37.1)

Table 3: ASR accuracies of the best path before and after
(in parenthesis) the composition of SearchFST

Since we have the speech utterances of the Un-
seen set, we were also able to compute the search
results obtained by integrating the ASR WCNs with
the SearchFST, as shown in line 5 of Table 2. These
results show that the the integration of the ASR
WCNs with the SearchFST produces higher search
accuracy compared to ASR 1-best.

6 Dynamic and Static Questions
Storing previously answered questions and their an-
swers allows Qme!to retrieve the answers to a sub-
class of questions quickly and accurately. We term
this subclass as static questions since the answers
to these questions remain the same irrespective of
when and where the questions are asked. Examples
of such questions are What is the speed of light?,
When is George Washington’s birthday?. In con-
trast, there is a subclass of questions, which we term
dynamic questions, for which the answers depend
on when and where they are asked. For such ques-
tions the above method results in less than satisfac-
tory and sometimes inaccurate answers. Examples
of such questions are What is the stock price of Gen-
eral Motors?, Who won the game last night?, What
is playing at the theaters near me?.

We define dynamic questions as questions whose
answers change more frequently than once a year.
In dynamic questions, there may be no explicit ref-
erence to time, unlike the questions in the TERQAS
corpus (Radev and Sundheim., 2002) which explic-
itly refer to the temporal properties of the entities
being questioned or the relative ordering of past and
future events. The time-dependency of a dynamic
question lies in the temporal nature of its answer.
For example, consider the dynamic question, “What
is the address of the theater ‘White Christmas’ is

playing at in New York?”. White Christmas is a sea-
sonal play that plays in New York every year for a
few weeks in December and January, but it does not
necessarily at the same theater every year. So, de-
pending when this question is asked, the answer will
be different.

Interest in temporal analysis for question-
answering has been growing since the late 1990’s.
Early work on temporal expressions identifica-
tion using a tagger led to the development of
TimeML (Pustejovsky et al., 2001), a markup
language for annotating temporal expressions and
events in text. Other examples include QA-by-
Dossier with Constraints (Prager et al., 2004), a
method of improving QA accuracy by asking auxil-
iary questions related to the original question in or-
der to temporally verify and restrict the original an-
swer. (Moldovan et al., 2005) detect and represent
temporally related events in natural language using
logical form representation. (Saquete et al., 2009)
use the temporal relations in a question to decom-
pose it into simpler questions, the answers of which
are recomposed to produce the answers to the origi-
nal question.

6.1 Dynamic/Static Classification
We automatically classify questions as dynamic and
static questions. Answers to static questions can be
retrieved from the QA archive. To answer dynamic
questions, we query the database(s) associated with
the topic of the question through web forms on the
Internet. We use a topic classifier to detect the topic
of a question followed by a dynamic/static classifier
trained on questions related to a topic, as shown in
figure 5. Given the question what movies are play-
ing around me?, we detect it is a movie related dy-
namic question and query a movie information web
site (e.g. www.fandango.com) to retrieve the results
based on the user’s GPS information.

Figure 5: Chaining two classifiers

We used supervised learning to train the topic

60

classifier, since our entire dataset is annotated by hu-
man experts with topic labels. In contrast, to train a
dynamic/static classifier, we experimented with the
following three different techniques.
Baseline: We treat questions as dynamic if they
contain temporal indexicals, e.g. today, now, this
week, two summers ago, currently, recently, which
were based on the TimeML corpus. We also in-
cluded spatial indexicals such as here, and other sub-
strings such as cost of and how much is. A question
is considered static if it does not contain any such
words/phrases.
Self-training with bagging: The general self-
training with bagging algorithm (Banko and Brill,
2001) is presented in Table 6 and illustrated in Fig-
ure 7(a). The benefit of self-training is that we can
build a better classifier than that built from the small
seed corpus by simply adding in the large unlabeled
corpus without requiring hand-labeling.
1. Create k bags of data, each of size |L|, by sampling
with replacement from labeled set L.
2. Train k classifiers; one classifier on each of k bags.
3. Each classifier predicts labels of the unlabeled set.
4. The N labeled instances that j of k classifiers agree
on with the highest average confidence is added to the
labeled set L, to produce a new labeled set L′.
5. Repeat all 5 steps until stopping criteria is reached.

Figure 6: Self-training with bagging

(a) (b)

Figure 7: (a) Self-training with bagging (b) Committee-
based active-learning

In order to prevent a bias towards the majority
class, in step 4, we ensure that the distribution of
the static and dynamic questions remains the same
as in the annotated seed corpus. The benefit of bag-
ging (Breiman, 1996) is to present different views of
the same training set, and thus have a way to assess
the certainty with which a potential training instance
can be labeled.

Active-learning: This is another popular method for
training classifiers when not much annotated data is
available. The key idea in active learning is to anno-
tate only those instances of the dataset that are most
difficult for the classifier to learn to classify. It is
expected that training classifiers using this method
shows better performance than if samples were cho-
sen randomly for the same human annotation effort.
Figure 7(b) illustrates the algorithm and Figure 8
describes the algorithm, also known as committee-
based active-learning (Banko and Brill, 2001).

1. Create k bags of data, each of size |L|, by sampling
with replacement from the labeled set L.
2. Train k classifiers, one on each bag of the k bags.
3. Each classifier predicts the labels of the unlabeled set.
4. Choose N instances from the unlabeled set for human
labeling. N/2 of the instances are those whose labels the
committee of classifiers have highest vote entropy (un-
certainity). The other N/2 of the instances are selected
randomly from the unlabeled set.
5. Repeat all 5 steps until stopping criteria is reached.

Figure 8: Active Learning algorithm

We used the maximum entropy classifier in
Llama (Haffner, 2006) for all of the above classi-
fication tasks.

6.2 Experiments and Results

6.2.1 Topic Classification
The topic classifier was trained using a training

set consisted of over one million questions down-
loaded from the web which were manually labeled
by human experts as part of answering the questions.
The test set consisted of 15,000 randomly selected
questions. Word trigrams of the question are used
as features for a MaxEnt classifier which outputs a
score distribution on all of the 104 possible topic
labels. The error rate results for models selecting
the top topic and the top two topics according to the
score distribution are shown in Table 4. As can be
seen these error rates are far lower than the baseline
model of selecting the most frequent topic.

Model Error Rate
Baseline 98.79%
Top topic 23.9%

Top-two topics 12.23%

Table 4: Results of topic classification

61

Figure 9: Change in classification results

6.2.2 Dynamic/static Classification
As mentioned before, we experimented with

three different approaches to bootstrapping a dy-
namic/static question classifier. We evaluate these
methods on a 250 question test set drawn from the
broad topic of Movies. For the baseline model, we
used the words/phrases discussed earlier based on
temporal and spatial indexicals. For the “super-
vised” model, we use the baseline model to tag 500K
examples and use the machine-annotated corpus to
train a MaxEnt binary classifier with word trigrams
as features. The error rate in Table 5 shows that it
performs better than the baseline model mostly due
to better lexical coverage contributed by the 500K
examples.

Training approach Lowest Error rate
Baseline 27.70%

“Supervised” learning 22.09%
Self-training 8.84%

Active-learning 4.02%

Table 5: Best Results of dynamic/static classification

In the self-training approach, we start with a small
seed corpus of 250 hand-labeled examples from the
Movies topic annotated with dynamic or static tags.
We used the same set of 500K unlabeled examples
as before and word trigrams from the question were
used as the features for a MaxEnt classifier. We used
11 bags in the bagging phase of this approach and
required that all 11 classifiers agree unanimously
about the label of a new instance. Of all such in-
stances, we randomly selected N instances to be
added to the training set of the next iteration, while

maintaining the distribution of the static and dy-
namic questions to be the same as that in the seed
corpus. We experimented with various values of N ,
the number of newly labeled instances added at each
iteration. The error rate at initialization is 10.4%
compared to 22.1% of the “supervised” approach
which can be directly attributed to the 250 hand-
labeled questions. The lowest error rate of the self-
training approach, obtained at N=100, is 8.84%, as
shown in Table 5. In Figure 9, we show the change
in error rate for N=40 (line S1 in the graph) and
N=100 (line S2 in the graph).

For the active learning approach, we used the
same set of 250 questions as the seed corpus, the
same set of 500K unlabeled examples, the same test
set, and the same set of word trigrams features as in
the self-training approach. We used 11 bags for the
bagging phase and selected top 20 new unlabeled in-
stances on which the 11 classifiers had the greatest
vote entropy to be presented to the human labeler for
annotation. We also randomly selected 20 instances
from the rest of the unlabeled set to be presented for
annotation. The best error rate of this classifier on
the test set is 4.02%, as shown in Table 5. The error
rate over successive iterations is shown by line A1
in Figure 9.

In order to illustrate the benefits of selecting the
examples actively, we repeated the experiment de-
scribed above but with all 40 unlabeled instances se-
lected randomly for annotation. The error rate over
successive iterations is shown by line R1 in Fig-
ure 9. Comparing A1 to R1, we see that the error de-
creases faster when we select some of the unlabeled
instances for annotation actively at each iteration.

7 Conclusion

In this paper, we have presented a system Qme!,
a speech-driven question-answering system for mo-
bile devices. We have proposed a query retrieval
model for question-answering and demonstrated the
mutual benefits of tightly coupling the ASR and
Search components of the system. We have pre-
sented a novel concept of distinguishing questions
that need dynamic information to be answered from
those questions whose answers can be retrieved from
an archive. We have shown results on bootstrap-
ping such a classifier using semi-supervised learning
techniques.

62

References

L. Androutsopoulos. 1995. Natural language interfaces
to databases - an introduction. Journal of Natural Lan-
guage Engineering, 1:29–81.

M. Banko and E. Brill. 2001. Scaling to very very large
corpora for natural language disambiguation. In Pro-
ceedings of the 39th annual meeting of the association
for computational linguistics: ACL 2001, pages 26–
33.

L. Breiman. 1996. Bagging predictors. Machine Learn-
ing, 24(2):123–140.

S. Dumais, M. Banko, E. Brill, J. Lin, and A. Ng. 2002.
Web question answering: is more always better? In
SIGIR ’02: Proceedings of the 25th annual interna-
tional ACM SIGIR conference on Research and devel-
opment in information retrieval, pages 291–298, New
York, NY, USA. ACM.

Google, 2009. http://www.google.com/mobile.
B.F. Green, A.K. Wolf, C. Chomsky, and K. Laughery.

1961. Baseball, an automatic question answerer. In
Proceedings of the Western Joint Computer Confer-
ence, pages 219–224.

P. Haffner. 2006. Scaling large margin classifiers for spo-
ken language understanding. Speech Communication,
48(iv):239–261.

E. Hatcher and O. Gospodnetic. 2004. Lucene in Action
(In Action series). Manning Publications Co., Green-
wich, CT, USA.

J. Jeon, W. B. Croft, and J. H. Lee. 2005. Finding sim-
ilar questions in large question and answer archives.
In CIKM ’05: Proceedings of the 14th ACM interna-
tional conference on Information and knowledge man-
agement, pages 84–90, New York, NY, USA. ACM.

B. Katz. 1997. Annotating the world wide web using
natural language. In Proceedings of RIAO.

V.I. Levenshtein. 1966. Binary codes capable of correct-
ing deletions, insertion and reversals. Soviet Physics
Doklady, 10:707–710.

M. T. Maybury, editor. 2004. New Directions in Question
Answering. AAAI Press.

Microsoft, 2009. http://www.live.com.
D. Moldovan, C. Clark, and S. Harabagiu. 2005. Tem-

poral context representation and reasoning. In Pro-
ceedings of the 19th International Joint Conference on
Artificial Intelligence, pages 1009–1104.

MSN-QnA, 2009. http://qna.live.com/.
K. Papineni, S. Roukos, T. Ward, and W.J. Zhu. 2002.

Bleu: A method for automatic evaluation of machine
translation. In Proceedings of 40th Annual Meeting
of the Association of Computational Linguistics, pages
313–318, Philadelphia, PA, July.

J. Prager, J. Chu-Carroll, and K. Czuba. 2004. Ques-
tion answering using constraint satisfaction: Qa-by-
dossier-with-contraints. In Proceedings of the 42nd
annual meeting of the association for computational
linguistics: ACL 2004, pages 574–581.

J. Pustejovsky, R. Ingria, R. Saurı́, J. Casta no, J. Littman,
and R. Gaizauskas., 2001. The language of time: A
reader, chapter The specification languae – TimeML.
Oxford University Press.

D. Radev and B. Sundheim. 2002. Using timeml in ques-
tion answering. Technical report, Brandies University.

S. Robertson. 2004. Understanding inverse document
frequency: On theoretical arguments for idf. Journal
of Documentation, 60.

E. Saquete, J. L. Vicedo, P. Martı́nez-Barco, R. Mu
noz, and H. Llorens. 2009. Enhancing qa sys-
tems with complex temporal question processing ca-
pabilities. Journal of Artificial Intelligence Research,
35:775–811.

N. Tomuro and S. L. Lytinen. 2004. Retrieval models
and Q and A learning with FAQ files. In New Direc-
tions in Question Answering, pages 183–202.

vlingo.com, 2009. http://www.vlingomobile.com/downloads.html.
R. J. Waldinger, D. E. Appelt, J. L. Dungan, J. Fry, J. R.

Hobbs, D. J. Israel, P. Jarvis, D. L. Martin, S. Riehe-
mann, M. E. Stickel, and M. Tyson. 2004. Deductive
question answering from multiple resources. In New
Directions in Question Answering, pages 253–262.

J. Weizenbaum. 1966. ELIZA - a computer program
for the study of natural language communication be-
tween man and machine. Communications of the
ACM, 1:36–45.

T. Winograd. 1972. Understanding Natural Language.
Academic Press.

W. A. Woods. 1973. Progress in natural language un-
derstanding - an application to lunar geology. In Pro-
ceedings of American Federation of Information Pro-
cessing Societies (AFIPS) Conference.

X. Xue, J. Jeon, and W. B. Croft. 2008. Retrieval models
for question and answer archives. In SIGIR ’08: Pro-
ceedings of the 31st annual international ACM SIGIR
conference on Research and development in informa-
tion retrieval, pages 475–482, New York, NY, USA.
ACM.

Yahoo!, 2009. http://answers.yahoo.com/.
F. Yang, J. Feng, and G. DiFabbrizio. 2006. A data

driven approach to relevancy recognition for contex-
tual question answering. In HLT-NAACL 2006 Work-
shop on Interactive Question Answering, New York,
USA, June 8-9.

YellowPages, 2009. http://www.speak4it.com.

63

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 64–72,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Dialogue-Oriented Review Summary Generation for Spoken Dialogue

Recommendation Systems

Jingjing Liu, Stephanie Seneff, Victor Zue
MIT Computer Science & Artificial Intelligence Laboratory

32 Vassar Street, Cambridge, MA 02139
{jingl, seneff, zue}@csail.mit.edu

Abstract

In this paper we present an opinion summari-

zation technique in spoken dialogue systems.

Opinion mining has been well studied for

years, but very few have considered its appli-

cation in spoken dialogue systems. Review

summarization, when applied to real dialogue

systems, is much more complicated than pure

text-based summarization. We conduct a sys-

tematic study on dialogue-system-oriented

review analysis and propose a three-level

framework for a recommendation dialogue

system. In previous work we have explored a

linguistic parsing approach to phrase extrac-

tion from reviews. In this paper we will de-

scribe an approach using statistical models

such as decision trees and SVMs to select the

most representative phrases from the ex-

tracted phrase set. We will also explain how

to generate informative yet concise review

summaries for dialogue purposes. Experimen-

tal results in the restaurant domain show that

the proposed approach using decision tree al-

gorithms achieves an outperformance of 13%

compared to SVM models and an improve-

ment of 36% over a heuristic rule baseline.

Experiments also show that the decision-tree-

based phrase selection model can achieve ra-

ther reliable predictions on the phrase label,

comparable to human judgment. The pro-

posed statistical approach is based on do-

main-independent learning features and can

be extended to other domains effectively.

1 Introduction

Spoken dialogue systems are presently available

for many purposes, such as weather inquiry (Zue

et al., 2000), bus schedules and route guidance

(Raux et al., 2003), customer service (Gorin et al.,

1997), and train timetable inquiry (Eckert et al.,

1993). These systems have been well developed

for laboratory research, and some have become

commercially viable.

The next generation of intelligent dialogue sys-

tems is expected to go beyond factoid question

answering and straightforward task fulfillment, by

providing active assistance and subjective recom-

mendations, thus behaving more like human

agents. For example, an intelligent dialogue sys-

tem may suggest which airline is a better choice,

considering cost, flight duration, take-off time,

available seats, etc.; or suggest which digital cam-

era is the most popular among teenagers or highest

rated by professional photographers; or which res-

taurant is a perfect spot for a semi-formal business

meeting or a romantic date.

Luckily, there are enormous amounts of reviews

published by general users on the web every day.

These are perfect resources for providing subjec-

tive recommendations and collective opinions. If

there exists a systematic framework that harvests

these reviews from general users, extracts the es-

sence from the reviews and presents it appropriate-

ly in human-computer conversations, then we can

enable dialogue systems to behave like a human

shopping assistant, a travel agent, or a local friend

who tells you where to find the best restaurant.

Summarization from online reviews, therefore,

plays an important role for such dialogue systems.

There have been previous studies on review analy-

sis for text-based summarization systems (Mei et

al., 2007; Titov and McDonald, 2008a; Branavan

et al., 2008). Mixture models and topic models are

used to predict the underlying topics of each doc-

ument and generate a phrase-level summary. An

aspect rating on each facet is also automatically

64

learned with statistical models (Snyder and Barzi-

lay, 2007; Titov and McDonald, 2008b; Baccia-

nella et al., 2009). These approaches are all very

effective, and the review databases generated are

well presented.

So the first thought for developing a recom-

mendation dialogue system is to use such a cate-

gorized summary in a table-lookup fashion. For

example, a dialogue system for restaurant recom-

mendations can look up a summary table as exem-

plified in Table 1, and generate a response

utterance from each row: “Restaurant A has good

service and bad food; restaurant B has good ser-

vice and good food; restaurant C has great service

and nice atmosphere; restaurant D has poor service

and reasonable price.”

Restaurant Summary

A Good service, bad food,

B Good service, good food

C Great service, nice atmosphere

D Poor service, reasonable price

Table 1. A partial table of categorization-based review

summaries.

Such a dialogue system is, however, not very

informative. First of all, there is too much redun-

dancy. Long utterances repeated in the same pat-

tern on the same topic are quite boring, and the

information density is very low. Second, such a

summary is too coarse-grained to be helpful. A

user querying a restaurant recommendation system

expects more fine-grained information such as

house specials, wine selections and choices on

desserts rather than just general ‘good food.’

In contrast to a ‘text’ summarization system, the

textual space in a dialogue turn is often very li-

mited. Speech is inherently serial, and it cannot be

skipped and scanned easily. A dialogue system

which speaks long diatribes in each single conver-

sation turn would likely not be well received. We

believe that the best unit of review summary for

dialogue purposes is short succinct phrases (e.g.,

‘amazing sauce’ and ‘romantic ambiance’) which

are catalogued into categories to answer high-level
questions such as “How is the food at this restau-

rant?” or “What about the atmosphere?” Also,

domain-specific phrases are greatly needed to

generate correct answers to specific queries, such

as “Which restaurants have fresh sushi?” and

“Show me restaurants that serve fantastic cock-
tails.”

Thus, the generally used correlated topic mod-

els, although very effective in text-based systems,

are not quite suitable for interactive dialogue sys-

tems. The missing piece is an HCI-oriented (hu-
man computer interaction), fine-grained,

informative yet concise review summarization. A

good recommendation system should be able to

provide sufficient yet specific information to help

users choose a restaurant, a movie or a consumer

product. Figure 1 shows an example of a conversa-

tion with a good recommendation system, which 1)

provides a generalized yet high-density review

summary in human-friendly dialogue; 2) provides

both a coarse-grained summary (e.g., ‘authentic

food’) and fine-grained information such as house

specialties.

U: Are there any French restaurants in Cambridge?

S: There are five French restaurants in Cambridge.
Most of them are on Backbay Street. And most of

them have attentive service.
U: Show me the ones that have nice ambiance.

S: Two of them have nice ambiance, Pierrot Bistrot

Francais and Coriander.
U: How about the food?

S: Pierrot Bistrot Francais has authentic food,
fresh salad, and absolutely delicious spaghetti

carbonara. The food at Coriander is below aver-

age. It has very greasy chicken tikka masala and
dry bread.

Figure 1. Example of a conversation with a good rec-

ommendation dialogue system (‘U’ denotes the user

and ‘S’ denotes the dialogue system. The responses to

the user queries are produced by our system and the

actual dialogue was an illustration of system capacities).

Therefore, the task of developing recommenda-

tion dialogue systems is decomposed into three

problems: 1) how to extract context-related phras-

es, both coarse-grained and fine-grained, from

online reviews; 2) how to select a representative

set from the extracted phrases to create an infor-
mative yet concise dialogue-oriented summary

database; 3) how to generate human-friendly di-

alogue responses from the review summary data-

base.

To tackle these problems, we propose a three-
level framework. In previous work (Liu and Seneff,

2009), we explored the first level by proposing a

linguistic parse-and-paraphrase paradigm for re-

65

view phrase extraction. In this paper, we address

the second problem: dialogue-oriented review

summary generation. We propose an automatic

approach to classifying high/low informative

phrases using statistical models. Experiments con-

ducted on a restaurant-domain dataset indicate that

the proposed approach can predict phrase labels

consistently with human judgment and can gener-

ate high-quality review summaries for dialogue

purposes.

The rest of the paper is organized as follows:

Section 2 gives an overview of the three-level

framework for recommendation dialogue systems.

In Section 3, we explain the proposed approach to

dialogue-oriented review summary generation.

Section 4 provides a systematic evaluation of the

proposed approach, and Section 5 gives a further

discussion on the experimental results. Section 6

summarizes the paper as well as pointing to future

work.

2 System Overview

The three-level framework of a review-summary-

based recommendation dialogue system is shown

in Figure 2. The bottom level is linguistic phrase

extraction. In previous work (Liu and Seneff,

2009), we employed a probabilistic lexicalized

grammar to parse review sentences into a hierar-

chical representation, which we call a linguistic
frame. From the linguistic frames, phrases are ex-

tracted by capturing a set of adjective-noun rela-

tionships. Adverbs and negations conjoined with

the adjectives are also captured. We also calcu-

lated a numerical score for sentiment strength for

each adjective and adverb, and further applied a

cumulative offset model to assign a sentiment

score to each phrase.

The approach relies on linguistic features that

are independent of frequency statistics; therefore it

can retrieve very rare phrases such as ‘very greasy

chicken tikka masala’ and ‘absolutely delicious

spaghetti carbonara’, which are very hard to derive

from correlated topic models. Experimental results

showed that the linguistic paradigm outperforms

existing methods of phrase extraction which em-

ploy shallow parsing features (e.g., part-of-speech).

The main contribution came from the linguistic

frame, which preserves linguistic structure of a

sentence by encoding different layers of semantic

dependencies. This allows us to employ more so-

phisticated high-level linguistic features (e.g., long

distance semantic dependencies) for phrase extrac-

tion.

However, the linguistic approach fails to distin-

guish highly informative and relevant phrases

from uninformative ones (e.g., ‘drunken husband’,

‘whole staff’). To apply these extracted phrases

within a recommendation dialogue system, we

have to filter out low quality or irrelevant phrases

and maintain a concise summary database. This is

the second level: dialogue-oriented review sum-

mary generation.

Figure 2. Three-level framework of review-based rec-

ommendation dialogue systems.

The standard of highly informative and relevant
phrases is a very subjective problem. To gain in-

sights on human judgment on this, the first two

authors separately labeled a set of review-related

phrases in a restaurant domain as ‘good’ and ‘bad’

summary phrases. We surveyed several subjects,

all of whom indicated that, when querying a dialo-

gue system for information about a restaurant,

they care much more about special dishes served

in this restaurant than generic descriptions such as

‘good food.’ This knowledge informed the annota-

tion task: to judge whether a phrase delivered by a

dialogue recommendation system would be help-

66

ful for users to make a decision. Surprisingly, al-

though this is a difficult and subjective problem,

the judgment from the two annotators is substan-

tially consistent. By examining the annotations we

observed that phrases such as ‘great value’ and

‘good quality’ are often treated as ‘uninformative’

as they are too common to be representative for a

particular product, a restaurant or a movie. Phrases

with neutral sentiment (e.g., ‘green beans’ and

‘whole staff’) are often considered as uninforma-

tive too. Phrases on specific topics such as house

specialties (e.g., ‘absolutely delicious spaghetti

carbonara’) are what the annotators care about

most and are often considered as highly relevant,

even though they may have only been seen once in

a large database.

Driven by these criteria, from each phrase we

extract a set of statistical features such as uni-

gram/bigram probabilities and sentiment features

such as sentiment orientation degree of the phrase,

as well as underlying semantic features (e.g.,

whether the topic of the phrase fits in a domain-

specific ontology). Classification models such as

SVMs and decision tree algorithms are then

trained on these features to automatically classify

high/low informative phrases. Phrases identified

as ‘good’ candidates are further pruned and cata-

logued to create concise summaries for dialogue

purposes.

After generating the review summary database,

the third level is to modify the response generation

component in dialogue systems to create genera-

lized and interactive conversations, as exemplified

in Figure 1. The utterance from users is piped

through speech recognition and language under-

standing. The meaning representation is then sent

to the dialogue management component for re-
view-summary database lookup. A response is

then generated by the language generation compo-

nent, and a speech utterance is generated by the

synthesizer and sent back to the user. The dialogue

system implementation is beyond the scope of this

paper and will be discussed later in a separate pa-

per.

3 Dialogue-oriented Review Summary

Generation

Given an inquiry from users, the answer from a

recommendation system should be helpful and

relevant. So the first task is to identify a phrase as

‘helpful’ or not. The task of identifying a phrase as

informative and relevant, therefore, is defined as a

classification problem:

� = ̅ ∙ #̅ = ∑ %#%
&
%=1 (1)

where y is the label of a phrase, assigned as ‘1’ if

the phrase is highly informative and relevant, and

‘-1’ if the phrase is uninformative. #̅ is the feature

vector extracted from the phrase, and ̅ is the

coefficient vector.

We employ statistical models such as SVMs

(Joachims, 1998) and decision trees (Quinlan,

1986) to train the classification model. For model

learning, we employ a feature set including statis-

tical features, sentiment features and semantic
features.

Generally speaking, phrases with neutral senti-

ment are less informative than those with strong

sentiment, either positive or negative. For example,

‘fried seafood appetizer’, ‘baked halibut’, ‘elec-

tronic bill’ and ‘red drink’ do not indicate whether

a restaurant is worth trying, as they did not express

whether the fried seafood appetizer or the baked

halibut are good or bad. Therefore, we take the

sentiment score of each phrase generated from a

cumulative offset model (Liu and Seneff, 2009) as

a sentiment feature. Sentiment scores of phrases

are exemplified in Table 2 (on a scale of 1 to 5).

Phrase Sc. Phrase Sc.

really welcoming

atmosphere
4.8 truly amazing flavor 4.6

perfect portions 4.4 very tasty meat 4.3

busy place 3.1 typical Italian restaurant 3.1

a little bit high

price
2.2 pretty bad soup 1.8

sloppy service 1.8 absolute worst service 1.4

Table 2. Examples of sentiment scores of phrases.

We also employ a set of statistical features for

model training, such as the unigram probability of

the adjective in a phrase, the unigram probability

of the noun in a phrase, the unigram probability of

the phrase and the bigram probability of the adjec-

tive-noun pair in a phrase.

Statistical features, however, fail to reveal the

underlying semantic meaning of phrases. For ex-

ample, phrases ‘greasy chicken tikka masala’ and

‘drunken husband’ have the same n-gram proba-

bilities in our corpus (a single observation), but

67

they should certainly not be treated as the same.

To capture the semantic meanings of phrases, we

first cluster the topics of phrases into generic se-

mantic categories. The language-model based al-

gorithm is given by:

 '(() | (%) = ∑ '(() |+) ∙ '(+|(%)+∈.

 = ∑
'(+ ,())

'(+)
∙
'(+ ,(%)

'((%)
+∈.

 =
1

'((%)
∑

1

'(+)
∙ '(+, ()) ∙ '(+, (%)+∈. (2)

where A represents the set of all the adjectives in

the corpus. We select a small set of initial topics

with the highest frequency counts (e.g., ‘food’,

‘service’ and ‘atmosphere’). For each of the other

topics tc (e.g., ‘chicken’, ‘waitress’ and ‘décor’),

we calculate its similarity with each initial topic (%
based on the bigram probability statistics. For

those topics with conditional probability higher

than a threshold for an initial topic (%, we assign

them to the cluster of (%. We use this as a semantic
feature, e.g., whether the topic of a phrase belongs

to a generic semantic category. Table 3 gives some

clustering examples.

Category Relevant Topics

food

appetizer, beer, bread, fish, fries, ice

cream, margaritas, menu, pizza, pasta,
rib, roll, sauce, seafood, sandwich,

steak, sushi, dessert, cocktail, brunch

service
waiter, staff, management, server,
hostess, chef, bartender, waitstaff

atmosphere
décor, ambiance, music, vibe, setting,

environment, crowd

price bill, pricing, prices
Table 3. Topic to semantic category clustering.

This language-model-based method relies on

bigram probability statistics and can well cluster

highly frequent topics. Categories such as ‘service’

and ‘atmosphere’ contain very limited related top-

ics, most of which have high frequencies (e.g.,

‘waiter’, ‘staff’, ‘ambiance’ and ‘vibe’). The cate-

gory ‘food’, however, is very domain-specific and

contains a very large vocabulary, from generic

sub-categories such as ‘sushi’, ‘dessert’ and

‘sandwich’ as shown in the examples, to specific

courses such as ‘bosc pear bread pudding’ and

‘herb roasted vermont pheasant wine cap mu-

shrooms’. These domain-specific topics have very

low frequencies, yet they are very relevant and

valuable. But many of them are discarded by the

clustering. It would be a similar case in other do-

mains. For example, consumer products, movies

and books all have domain-independent semantic

categories (e.g., ‘price’ and ‘released date’) and

domain-specific categories (e.g., technical features

of consumer products, casts of movies and authors

of books).

To recover these context-relevant topics, we

employ domain context relations such as a con-
text-related ontology. A context-related ontology

can be constructed from structured web resources

such as online menus of restaurants, names of ac-

tors and actresses from movie databases, and spe-

cifications of products from online shops. An

example of a partial online menu of a restaurant is

shown in Figure 3. From these structured web re-

sources, we can build up a hierarchical ontology,

based on which a set of semantic features can be

extracted (e.g., whether a phrase contains a course

name, or an actress’s name, or a dimension of

technical features of a consumer product).

Entree

Roasted Pork Loin Wrapped In Bacon with watermelon and

red onion salad spicy honey-mustard bbq sauce

Spicy Halibut And Clam Roast with bacon braised greens,

white beans and black trumpet mushrooms

Parmesan and Caramelized Shallot Wrapper Style Ravi-

oli turnip greens and white truffle oil

Herb Roasted Vermont Pheasant Wine Cap Mushrooms,

Pearl Onions and Fava Beans

Dessert

Chocolate Tasting Plate of white chocolate bombe milk choc-

olate creme brulée and dark chocolate flourless cake

White Fruit Tasting Plate of warm apple strudel butterscotch,

Bosc Pear bread pudding and toasted coconut panna cotta

Entrée Pork loin, bacon, watermelon, red onion

salad, honey, mustard, bbq sauce

Dessert Chocolate, milk, crème brulee, cake

Figure 3. Example of a partial online menu and an ex-

emplary ontology derived.

After the classification, phrases identified as

‘highly informative and relevant’ are clustered

into different aspects according to the semantic

category clustering and the hierarchical ontology.

An average sentiment score for each aspect is then

calculated:

+/0(1() =
∑ 233∈41

|41|
 (3)

68

where 1(represents the aspect s of entry t (e.g., a

restaurant, a movie, or a consumer product), 41
represents the set of phrases in the cluster of as-

pect s, and 23 represents the sentiment score of

phrase j in the cluster.

The set of phrases selected for one entry may

come from several reviews on this single entry,

and many of them may include the same noun

(e.g., ‘good fish’, ‘not bad fish’ and ‘above-

average fish’ for one restaurant). Thus, the next

step is multi-phrase redundancy resolution. We

select the phrase with a sentiment score closest to

the average score of its cluster as the most repre-

sentative phrase on each topic:

5 = +265%&3∈4%
(|23 − +/0(1()|) (4)

where +/0(1() represents the average sentiment

score of aspect 1, 4% represents the set of phrases

on the same topic % in the cluster 1 , and 23

represents the sentiment score of phrase 3.
This sequence of topic categorization, ontology

construction, phrase pruning and redundancy eli-

mination leads to a summary database, which can

be utilized for dialogue generation in spoken rec-

ommendation systems. A review summary data-

base entry generated by the proposed approaches

is exemplified in Figure 4.

{ restaurant "dali restaurant and tapas bar"

 :atmosphere ("wonderful evening", "cozy atmos-

phere", "fun decor", "romantic date")

 :atmosphere_rating "4.1"
 :food ("very fresh ingredients", "tasty fish",

"creative dishes", "good sangria")

 :food_rating "3.9"

 :service ("fast service")

 :service_rating "3.9"
 :general ("romantic restaurant","small space")

 :general_rating "3.6" }

Figure 4. Example of a review summary database entry

generated by the proposed approaches.

4 Experiments

In this project, we substantiate the proposed ap-

proach in a restaurant domain for our spoken di-

alogue system (Gruenstein and Seneff, 2007),

which is a web-based multimodal dialogue system

allowing users to inquire about information about

restaurants, museums, subways, etc. We harvested

a data collection of 137,569 reviews on 24,043

restaurants in 9 cities in the U.S. from an online

restaurant evaluation website
1
. From the dataset,

857,466 sentences were subjected to parse analysis;

and a total of 434,372 phrases (114,369 unique

ones) were extracted from the parsable subset

(78.6%) of the sentences.

Most pros/cons consist of well-formatted phras-

es; thus, we select 3,000 phrases extracted from

pros/cons as training data. To generate a human

judgment-consistent training set, we manually la-

bel the training samples with ‘good’ and ‘bad’ la-

bels. We then randomly select a subset of 3,000

phrases extracted from review texts as the test set

and label the phrases. The kappa agreement be-

tween two sets of annotations is 0.73, indicating

substantial consistency. We use the two annotation

sets as the ground truth.

To extract context-related semantic features, we

collect a large pool of well-formatted menus from

an online resource
2
, which contains 16,141 restau-

rant menus. Based on the hierarchical structure of

these collected menus, we build up a context-

related ontology and extract a set of semantic fea-

tures from the ontology, such as whether the topic

of a phrase is on category-level (e.g., ‘entrée’,

‘dessert’, ‘appetizers’, ‘salad’), whether the topic

is on course-level (e.g., ‘Roasted Pork Loin’, ‘Spi-

cy Halibut and Clam Roast’), and whether the top-

ic is on ingredient-level (e.g., ‘beans’, ‘chicken’,

‘mushrooms’, ‘scallop’).

We employ the three types of features as afore-

mentioned to train the SVMs and the decision tree

models. To select the most valuable features for

model training, we conducted a set of leave-one-

feature-out experiments for both the SVMs and the

decision tree models. We found that all the fea-

tures except the adjective unigram probability

contribute positively to model learning. From fur-

ther data analysis we observed that many phrases

with popular adjectives have context-unrelated

nouns, which makes the adjective unigram proba-

bility fail to become a dominant factor for phrase

relevance. Using the adjective unigram probability

as a learning feature will mislead the system into

trusting an adjective that is common but has a poor

bigram affinity to the noun in the phrase. Thus, we

eliminate this feature for both the SVMs and the

decision tree learning.

1 http://www.citysearch.com
2 http://www.menupages.com

69

 To evaluate the performance of the classifica-

tion models, we take a set of intuitively motivated

heuristic rules as the baseline. Figure 5 gives the

pseudo-code of the heuristic rule algorithm, which

uses variations of all the features except the uni-

gram probability of adjectives.

If(sentiment score of the phrase exists)

if(sentiment score is within neutral range) label=-1;

else

if(phrase appeared in the training data)

 if((3<frequency of phrase < 100)) label = 1;

 else

 if(frequency of phrase >= 100) label = -1;

 else if(topic belongs to ontology) label = 1;

 else label = -1;

 else

 if(topic belongs to ontology) label = 1;

 else label = -1;

else

if(phrase appeared in the training data)

 if((3<frequency of phrase < 100))

if(topic belongs to ontology) label = 1;

 else label = -1;

 else

 if(frequency of phrase >= 100) label = -1;

 else

 if(topic belongs to ontology) label = 1;

 else if(frequency of noun > 100) label = 1;

 else label = -1;

 else

 if(topic belongs to ontology) label = 1;

 else if(frequency of noun > 100) label = 1;

 else label = -1;

Figure 5. Pseudo-code of the heuristic rule algorithm.

The performance of classification by different

models is shown in Table 4. Although the heuris-

tic rule algorithm is complicated and involves hu-

man knowledge, the statistical models trained by

SVMs and the decision tree algorithms both out-

perform the baseline significantly. The SVM mod-

el outperforms the baseline by 10.5% and 11.9%

on the two annotation sets respectively. The deci-

sion tree model outperforms the baseline by 16.4%

and 23.2% (average relative improvement of 36%),

and it also outperforms the SVM model by 5.9%

and 11.3% (average relative improvement of 13%).

The classification model using the decision tree

algorithm can achieve a precision of 77.9% and

74.5% compared with the ground truth, which is

quite comparable to human judgment (the preci-

sion of one annotation set based on the other is

74%). This shows that the decision tree model can

predict phrase labels as reliably as human judg-

ment.

 Baseline SVM
Decision

tree

Annotation 1 61.5% 72.0% 77.9%

Annotation 2 51.3% 63.2% 74.5%

Table 4. Precision of phrase classification using the

heuristic rule baseline, the SVM model, and the deci-

sion tree algorithm.

To gain further insight on the contributions of

each feature set to the decision tree learning, Table

5 gives the experimental results on leaving each

feature out of model training. As shown, without

semantic features, the precision is 70.6% and 65.4%

on the two annotation sets, lower by 7.3% and 9.1%

than the case of training the model with all the

features (77.9% and 74.5%). This shows that the

semantic features significantly contribute to the

decision tree learning.

Feature set A1 A2

all features 77.9% 74.5%

without bigram probability

of adjective-noun pair

56.6%

(-21.3%)

63.9%

(-10.6%)

without unigram probability

of the phrase

57.6%

(-20.3%)

64.3%

(-10.2%)

without unigram probability
of the noun

59.8%
(-18.1%)

67.8%
(-6.7%)

without sentiment score of

the phrase

63.4%

(-14.5%)

66.6%

(-7.9%)

without underlying semantic
features

70.6%
(-7.3%)

65.4%
(-9.1%)

Table 5. Performance of the decision tree model by

leaving each feature out of model training (‘A1’ and

‘A2’ represent the annotation set 1 and 2 respectively).

The experimental results also show that the fea-

ture of bigram probability of the adjective-noun

pair contributes the most to the model learning.

Without this feature, the precision drops by 21.3%

and 10.6%, reaching the lowest precision among

all the leave-one-out experiments. This confirms

our observation that although a single adjective is

not dominant, the pair of the adjective and the

noun that co-occurs with it plays an important role

in the classification.

The sentiment of phrases also plays an impor-

tant role. Without sentiment features, the precision

70

drops to 63.4% and 66.6% respectively on the two

annotations, decreasing by 14.5% and 7.9%. This

shows that the sentiment features contribute sig-

nificantly to the classification.

5 Discussions

Experimental results show that the decision tree

algorithm outperforms the SVMs on this particular

classification problem, and it outperforms the heu-

ristic rule baseline significantly. Thus, although

the identification of informativeness and relevance

of phrases is a rather subjective problem, which is

difficult to predict using only human knowledge, it

can be well defined by decision trees. Part of the

reason is that the decision tree algorithm can make

better use of a combination of Boolean value fea-

tures (e.g., whether a topic belongs to a context-

related ontology) and continuous value features.

Also, as the phrase classification task is very sub-

jective, it is very similar to a ‘hierarchical if-else
decision problem’ in human cognition, where de-

cision tree algorithms can fit well. Figure 6 shows

a partial simplified decision tree learned from our

model, which can give an intuitive idea of the de-

cision tree models.

6 Related Work

Sentiment classification and opinion mining have

been well studied for years. Most studies have fo-

cused on text-based systems, such as document-

level sentiment classification and sentence-level

opinion aggregation (Turney, 2002; Pang et al.,

2002; Dave et al., 2003; Hu and Liu, 2004; Popes-

cu and Etzioni, 2005; Wilson et al., 2005; Zhuang

et al., 2006; Kim and Hovy, 2006).

There was a study conducted by Carenini et al.

in 2006, which proposed a combination of a sen-

tence extraction-based approach and a language

generation-based approach for summarizing eva-

luative arguments. In our work, we utilize a lower-

level phrase-based extraction approach, which uti-

lizes high level linguistic features and syntactic

structure to capture phrase patterns.

There was also a study on using reviews to gen-

erate a dictionary of mappings between semantic

representations and realizations of concepts for

dialogue systems (Higashinaka et al., 2006; Higa-

shinaka, 2007). They also used the association

between user ratings and reviews to capture se-

mantic-syntactic structure mappings. A set of fil-

tering rules was manually created to eliminate

low-quality mappings. In our approach, we use an

automatic approach to classifying high/low infor-

mative phrases. The learning features are domain-

independent with no hand-crafted rules, and can

be extended to other domains effortlessly.

7 Conclusions

In this paper we proposed a three-level framework

for review-based recommendation dialogue sys-

tems, including linguistic phrase extraction, dialo-

gue-oriented review summary generation, and

human-friendly dialogue generation. The contribu-

tions of this paper are three-fold: 1) it identified

and defined the research goal of utilizing opinion

summarization for real human-computer conversa-

tion; 2) it formulated an evaluation methodology

for high-density review summary for dialogue

purposes; 3) it proposed an approach to automatic

classification of high/low informative phrases us-

ing a decision tree model. Experimental results

showed that the decision tree model significantly

outperforms a heuristic rule baseline and the SVM

model, and can resolve the phrase classification

problem comparably to humans consistently.

Future work will focus on: 1) applying the sen-

timent scoring model to noun/verb sentiment as-

sessment; 2) application of the review summary

generation approach in other domains and other

languages; 3) data collection on user engagement

with our dialogue systems involving review-

summary evaluation.

Figure 6. A partial simplified decision tree learned from

our model.

71

References

Stefano Baccianella, Andrea Esuli, and Fabrizio Sebas-

tiani. 2009. Multi-facet Rating of Product Reviews.

In Proceedings of European Conference on Informa-
tion Retrieval.

S.R.K. Branavan, Harr Chen, Jacob Eisenstein, and

Regina Barzilay. 2008. Learning document-level

semantic properties from free-text annotations. In

Proc. of ACL.

Giuseppe Carenini, Raymond Ng, and Adam Pauls.

2006. Multi-Document Summarization of Evaluative

Text. In Proceedings of the Conference of the Euro-

pean Chapter of the Association for Computational

Linguistics.

Kushal Dave, Steve Lawrence, and David M. Pennock.

2003. Mining the peanut gallery: opinion extraction

and semantic classification of product reviews. In

Proceedings of the International Conference on

World Wide Web.

W. Eckert, T. Kuhn, H. Niemann, S. Rieck, A. Scheuer,

and E. G. Schukat-talamazzini. 1993. A Spoken Di-

alogue System for German Intercity Train Timetable

Inquiries. In Proc. European Conf. on Speech Tech-

nology.

Alexander Gruenstein and Stephanie Seneff. 2007. Re-

leasing a Multimodal Dialogue System into the

Wild: User Support Mechanisms. In Proceedings of
the 8th SIGdial Workshop on Discourse and Dialo-

gue, Antwerp, pages 111-119.

A. L. Gorin, G. Riccardi and J. H. Wright. 1997. “How

may I help you?” Speech Communication, vol. 23,

pp. 113–127.

Ryuichiro Higashinaka, Rashmi Prasad and Marilyn

Walker. 2006. Learning to Generate

Naturalistic Utterances Using Reviews in Spoken

Dialogue Systems. In Proceedings of COLING-ACL.

Ryuichiro Higashinaka, Marilyn Walker and Rashmi

Prasad. 2007. An Unsupervised Method

for Learning Generation Dictionaries for Spoken Di-

alogue Systems by Mining User Reviews.

Journal of ACM Transactions on Speech and Lan-

guage Processing.

Minqing Hu and Bing Liu. 2004. Mining and summa-

rizing customer reviews. In Proceedings of the 2004
ACM SIGKDD international conference on Know-

ledge Discovery and Data mining.

S.M. Kim and E.H. Hovy. 2006. Identifying and Ana-

lyzing Judgment Opinions. In Proc. of HLT/NAACL.

Jingjing Liu and Stephanie Seneff. 2009. Review Sen-

timent Scoring via a Parse-and-Paraphrase Para-

digm. In proceedings of EMNLP.

Qiaozhu Mei, Xu Ling, Matthew Wondra, Hang Su,

and ChengXiang Zhai. 2007. Topic Sentiment Mix-

ture: Modeling Facets and Opinions in Weblogs. In

Proc. of WWW.

Bo Pang, Lillian Lee, and S. Vaithyanathan. 2002.

Thumbs up? Sentiment classification using machine

learning techniques. In Proceedings of EMNLP.

A.M. Popescu and O. Etzioni. 2005. Extracting product

features and opinions from reviews. In Proceedings

of EMNLP.

JR Quinlan, 1986. Induction of decision trees. Machine

learning, Springer-Netherlands.

A. Raux, B. Langner, A. Black, and M. Eskenazi. 2003.

LET'S GO: Improving Spoken Dialog Systems for

the Elderly and Non-natives. In Proc. Eurospeech.

Benjamin Snyder and Regina Barzilay. 2007. Multiple

Aspect Ranking using the Good Grief Algorithm. In

Proceedings of NAACL-HLT.

Ivan Titov and Ryan McDonald. 2008a. Modeling On-

line Reviews with Multi-Grain Topic Models. In

Proc. of WWW.

Ivan Titov and Ryan McDonald. 2008b. A Joint Model

of Text and Aspect Ratings for Sentiment Summari-

zation. In Proceedings of the Annual Conference of

the Association for Computational Linguistics.

Peter D. Turney. 2002. Thumbs up or thumbs down?

Sentiment orientation applied to unsupervised classi-

fication of reviews. In Proceedings of the Annual

Conference of the Association for Computational
Linguistics.

T. Joachims. 1998. Text categorization with support

vector machines: Learning with many relevant fea-

tures. In Proc. of ECML, p. 137–142.

T. Wilson, J. Wiebe, and P. Hoffmann. 2005. Recog-

nizing Contextual Polarity in Phrase-Level Senti-

ment Analysis. In Proc. of HLT/EMNLP.

Victor Zue, Stephanie Seneff, James Glass, Joseph Po-

lifroni, Christine Pao, Timothy J. Hazen, and Lee

Hetherington. 2000. JUPITER: A Telephone-Based

Conversational Interface for Weather Information. In

IEEE Transactions on Speech and Audio Processing,

Vol. 8 , No. 1.

Li Zhuang, Feng Jing, and Xiao-Yan Zhu. 2006. Movie

review mining and summarization. In Proceedings of

the 15th ACM international conference on Informa-

tion and knowledge management.

72

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 73–81,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Minimally-Supervised Extraction of Entities from Text Advertisements

Sameer Singh
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
sameer@cs.umass.edu

Dustin Hillard
Advertising Sciences

Yahoo! Labs Silicon Valley
Santa Clara, CA 95054

dhillard@yahoo-inc.com

Chris Leggetter
Advertising Sciences

Yahoo! Labs Silicon Valley
Santa Clara, CA 95054
cjl@yahoo-inc.com

Abstract

Extraction of entities from ad creatives is an
important problem that can benefit many com-
putational advertising tasks. Supervised and
semi-supervised solutions rely on labeled data
which is expensive, time consuming, and dif-
ficult to procure for ad creatives. A small
set of manually derived constraints on fea-
ture expectations over unlabeled data can be
used to partially and probabilistically label
large amounts of data. Utilizing recent work
in constraint-based semi-supervised learning,
this paper injects light weight supervision
specified as these “constraints” into a semi-
Markov conditional random field model of en-
tity extraction in ad creatives. Relying solely
on the constraints, the model is trained on a set
of unlabeled ads using an online learning al-
gorithm. We demonstrate significant accuracy
improvements on a manually labeled test set
as compared to a baseline dictionary approach.
We also achieve accuracy that approaches a
fully supervised classifier.

1 Introduction

Growth and competition in web search in recent
years has created an increasing need for improve-
ments in organic and sponsored search. While foun-
dational approaches still focus on matching the exact
words of a search to potential results, there is emerg-
ing need to better understand the underlying intent in
queries and documents. The implicit intent is partic-
ularly important when little text is available, such as
for user queries and advertiser creatives.

This work specifically explores the extraction of
named-entities, i.e. discovering and labeling phrases
in ad creatives. For example, for an ad “Move to

San Francisco!”, we would like to extract the entity
san francisco and label it a CITY. Similarly, for an
ad “Find DVD players at Amazon”, we would ex-
tract dvd players as a PRODUCT and amazon as a
ORGNAME. The named-entities provide important
features to downstream tasks about what words and
phrases are important, as well as information on the
intent. Much recent research has focused on extract-
ing useful information from text advertisement cre-
atives that can be used for better retrieval and rank-
ing of ads. Semantic annotation of queries and ad
creatives allows for more powerful retrieval models.
Structured representations of semantics, like the one
studied in our task, can be directly framed as infor-
mation extraction tasks, such as segmentation and
named-entity recognition.

Information extraction methods commonly rely
on labeled data for training the models. The hu-
man labeling of ad creatives would have to pro-
vide the complete segmentation and entity labels for
the ads, which the information extraction algorithm
would then rely on as the truth. For entity extraction
from advertisements this involves familiarity with
a large number of different domains, such as elec-
tronics, transportation, apparel, lodging, sports, din-
ing, services, etc. This leads to an arduous and time
consuming labeling process that can result in noisy
and error-prone data. The problem is further com-
pounded by the inherent ambiguity of the task, lead-
ing to the human editors often presenting conflicting
and incorrect labeling.

Similar problems, to a certain degree, are also
faced by a number of other machine learning tasks
where completely relying on the labeled data leads
to unsatisfactory results. To counter the noisy
and sparse labels, semi-supervised learning meth-

73

ods utilize unlabeled data to improve the model
(see (Chapelle et al., 2006) for an overview). Fur-
thermore, recent work on constraint-based semi-
supervised learning allows domain experts to eas-
ily provide additional light supervision, enabling the
learning algorithm to learn using the prior domain
knowledge, labeled and unlabeled data (Chang et
al., 2007; Mann and McCallum, 2008; Bellare et al.,
2009; Singh et al., 2010).

Prior domain knowledge, if it can be easily ex-
pressed and incorporated into the learning algo-
rithm, can often be a high-quality and cheap sub-
stitute for labeled data. For example, previous
work has often used dictionaries or lexicons (lists
of phrases of a particular label) to bootstrap the
model (Agichtein and Ganti, 2004; Canisius and
Sporleder, 2007), leading to a partial labeling of the
data. Domain knowledge can also be more proba-
bilistic in nature, representing the probability of cer-
tain token taking on a certain label. For most tasks,
labeled data is a convenient representation of the do-
main knowledge, but for complex domains such as
structured information extraction from ads, these al-
ternative easily expressible representations may be
as effective as labeled data.

Our approach to solving the the named entity ex-
traction problem for ads relies completely on do-
main knowledge not expressed as labeled data, an
approach that is termed minimally supervised. Each
ad creative is represented as a semi-Markov condi-
tional random field that probabilistically represents
the segmentation and labeling of the creative. Exter-
nal domain knowledge is expressed as a set of targets
for the expectations of a small subset of the features
of the model. We use alternating projections (Bel-
lare et al., 2009) to train our model using this knowl-
edge, relying on the rest of the features of the model
to “dissipate” the knowledge. Topic model and co-
occurrence based features help this propagation by
generalizing the supervision to a large number of
similar ads.

This method is applied to a large dataset of text
advertisements sampled from a variety of different
domains. The minimally supervised model performs
significantly better than a model that incorporates
the domain knowledge as hard constraints. Our
model also performs competitively when compared
to a supervised model trained on labeled data from a

similar domain (web search queries).
Background material on semi-CRFs and con-

straint based semi-supervised learning is summa-
rized in Section 2. In Section 3, we describe the
problem of named entity recognition in ad creatives
as a semi-CRF, and describe the features in Sec-
tion 4. The constraints that we use to inject super-
vision into our model are listed in Section 5. We
demonstrate the success of our approach in Sec-
tion 6. This work is compared with related literature
in Section 7.

2 Background
This section covers introductory material on

the probabilistic representation of our model
(semi-Markov conditional random fields) and the
constraint-driven semi-supervised method that we
use to inject supervision into the model.

2.1 Semi-Markov Conditional Random Fields

Conditional Random Fields (CRFs) (Lafferty et
al., 2001) use a Markov random field to model the
conditional probability P (y|x). CRFs are com-
monly used to learn sequential models, where the
Markov field is a linear-chain, and y is a linear se-
quence of labels and each label yi ∈ Y . Let f be a
vector of local feature functions f = 〈f1, . . . , fK〉,
each of which maps a pair (x,y) and an index i to
a measurement fk(i,x,y) ∈ <. Let f(i,x,y) be
the vector of these measurements, and let F(x,y) =∑|x|

i f(i,x,y). CRFs use these feature functions in
conjunction with the parameters θ to represent the
conditional probability as follows:

P (y|x, θ) =
1

Z(x)
eθ·F(x,y)

where Z(x) =
∑

y′ e
θ·F(x,y′).

For sequential models where the same labels ap-
pear within a sequence as contiguous blocks (e.g.,
named entity recognition) it is more convenient to
represent these blocks directly as segments. This
representation was formulated as semi-Markov con-
ditional random fields (Semi-CRFs) in (Sarawagi
and Cohen, 2004). The segmentation of a sequence
is represented by s = 〈s1, . . . , sp〉 where each seg-
ment sj = 〈tj , uj , yj〉 consists of a start position
tj , an end position uj , and a label yj ∈ Y . Similar
to the CRF, let g be the vector of segment feature

74

functions g = 〈g1, . . . , gK〉, each of which maps
the pair (x, s) and an index j to a measurement
gk(j,x, s) ∈ <, and G(x, s) =

∑|s|
j g(j,x, s). The

conditional probability is represented as:

P (s|x, θ) =
1

Z(x)
eθ·G(x,s)

where Z(x) =
∑

s′ e
θ·G(x,s′). To assert the Marko-

vian assumption, each gk(j,x, s) only computes
features based on x, sj , and yj−1

1.
An exact inference algorithm was described in

(Sarawagi and Cohen, 2004), and was later im-
proved to be more efficient (Sarawagi, 2006).

2.2 Constraint Driven Learning Using
Alternating Projections

Recent work in semi-supervised learning uses
constraints as external supervision (Chang et al.,
2007; Mann and McCallum, 2008; Bellare et al.,
2009; Singh et al., 2010). These external constraints
are specified as constraints on the expectations of a
set of auxiliary features g′ = {g′1, . . . , g′k} over the
unlabeled data. In particular, given the targets u =
{u1, . . . , uk} corresponding to the auxiliary features
g′, the constraints can take different forms, for ex-
ample L2 penalty (1

2β‖ui−
∑

j Ep[g
′
i(xj , s)]‖22 = 0),

L1 box constraints (|ui −
∑

j Ep[g
′
i(xj , s)]| ≤ β)

and Affine constraints2 (Ep[g′i(x, s)] ≤ ui). In this
work, we only use the affine form of the constraints.

For an example, using domain knowledge, we
may know that token “arizona” should get the label
STATE in at least half of the occurrences in our data.
To capture this, we introduce an auxiliary feature g′ :
[[Label=STATE given Token=“arizona”]]. The
affine constraint is written as Ep[g′(x, y)] ≥ 0.5.

These constraints have been incorporated into
learning using Alternating Projections (Bellare et
al., 2009). Instead of directly optimizing an ob-
jective function that includes the constraints, this
method considers two distributions, pλ and qλ,µ,
where pλ(s|x) = 1

Z(x)e
λ·G(x,s) is the usual semi-

Markov model, and qλ,µ = 1
Z(x)e

(λ·G(x,s)+µ·G′(x,s))

is an auxiliary distribution that satisfies the con-
straints and has low divergence with the model pλ.

1i.e. gk(j,x, s) can be written as gk(yj−1,x, sj)
2where Ep[g] represents the expectation of g over the unla-

beled data using the model p.

In the batch setting, parameters λ and µ are
learned using an EM-like algorithm, where µ is fixed
while optimizing λ and vice versa. Each of the up-
dates in these steps decomposes according to the in-
stances, leading to a stochastic gradient based online
algorithm, as follows:

1. For t = 1, . . . , T , let η = 1
t+t0

where t0 =
1/η0, η0 the initial learning rate. Let labeled
and unlabeled data set sizes be m and n − m
respectively. Let the initial parameters be λ0

and µ0, and α be the weight of L2 regulariza-
tion on λ.

2. For a new labeled instance xt with segmen-
tation st, set µt = µt−1 and λt = λt−1 +

η
[
g(xt, st)− Epλt−1 [g(xt, s)]− αλt−1

n

]
.

3. For a new unlabeled instance xt, µt =

µt−1 + η
[

u
(n−m) − Eqλt−1,µt−1 [g

′(xt, s)]
]

and λt = λt−1 +
η

[
Eqλt−1,µt−1 [g(xt, s)]− Epλt−1 [g(xt, s)]− αλt−1

n

]
.

Online training enables scaling the approach to
large data sets, as is the case with ads. In our ap-
proach we rely only on unlabeled data (m = 0, and
step 2 of the above algorithm does not apply).

3 Model
Most text ads consist of a brief title and an ac-

companying abstract that provides additional infor-
mation. The objective of our paper is to extract
the named-entity phrases within these titles and ab-
stracts, then label them with a type from a pre-
determined taxonomy. An example of such an ex-
traction is shown in Fig 1.

We represent the ad creatives as a sequence of
individual tokens, with a special token inserted be-
tween the title and the abstract of the ad. The dis-
tribution over possible phrases and labels of the ad
is expressed as a semi-Markov conditional random
field, as described earlier in Section 2.1.

3.1 Label Taxonomy

In most applications of CRFs and semi-CRFs, the
domain of labels is a fixed set Y , where each label
indexes into one value. Instead, in our approach, we
represent our set of labels as a taxonomy (tree). The
labels higher in the taxonomy are more generic (for

75

Ad Title: Bradley International Airport Hotel
Ad Abstract: Marriott Hartford, CT Airport hotel - free shuttle service & parking.

Output: Bradley International Airport Hotel

Marriott Hartford, CT Airport hotel free shuttle service & parking.

Label Segment
PLACE: AIRPORT Bradley International

BUSINESS: TRAVEL Hotel
ORGNAME: LODGING Marriott

PLACE: CITY Hartford
PLACE: STATE CT

BUSINESS: TRAVEL hotel
PRODUCT: TRAVEL shuttle service & parking.

Figure 1: Example Prediction: An example of an ad creative (title and abstract), along with a set of probable ex-
tracted entities. Note that even in this relatively simple example, there is some ambiguity about what is the correct
segmentation and labeling.

instance, PLACE) and the labels lower in the taxon-
omy are more specific (for instance, STATE may be
a child of PLACE). The taxonomy of labels that we
use for tagging phrases is shown in Figure 2.

When the model predicts a label for a segment,
it can be from any of the levels in the tree. The
benefits of this is multi-fold. First, this allows the
model to be flexible in predicting labels at a lower
(or higher) level based on its confidence. For ex-
ample, the model may have enough evidence to la-
bel “san francisco” a CITY, however, for “georgia”
it may not have enough context to discriminate be-
tween STATE or COUNTRY, but could confidently
label it a PLACE. Secondly, this also allows us to
design the features over multiple levels of label gran-
ularity, which leads to a more expressive model. Ex-
pectation constraints can be specified over this ex-
panded set of features, at any level of the taxonomy.

In order to incorporate the nested labels into our
model, we observe that every feature that fires for
a non-leaf label should also fire for all descendants
of that label, e.g. every feature that is active for la-
bel PLACE should also be active for a label CITY,
COUNTRY, etc 3. Following the observation, for ev-
ery feature gk(x, 〈tj , uj , yj〉) that is active, we also

3Note that this argument works similarly for the taxonomy
represented as a DAG, where the descendants are of a node are
all nodes reachable from it. We do not explore this structure of
the taxonomy in this paper.

fire ∀y′ ∈ desc(yj), gk(x, 〈tj , uj , y′〉)4. The same
procedure is applied to the constraints.

4 Features

Our learning algorithm relies on constraints g′ as
supervision to extract entities, but even though con-
straints are designed to be generic they do not cover
the whole dataset. The learning algorithm needs
to propagate the supervision to instances where the
constraints are not applicable, guided by the set
of feature functions g. More expressive and rele-
vant features will provide better propagation. Even
though these feature functions represent the “unsu-
pervised” part of the model (in that they are only
dependent on the unlabeled sequences), they play
an important role in propagating the supervision
throughout the dataset.

4.1 Sequence and Segment Features

Our first set of features are the commonly used
features employed in linear-chain sequence models
such as CRFs and HMMs. These consist of factors
between each token and its corresponding label, and
neighboring labels. They also include transition fac-
tors between the labels. These are local feature func-
tions that are defined only over pairs of token-wise

4This example describes when gk(yj−1,x, sj) ignores
yj−1. For the usual case gk(yj−1,x, sj), features between all
pairs of descendants of yj−1 and yj are enabled.

76

Proper Nouns Common Nouns

PLACE

CITY STATE

COUNTRY CONTINENT

AIRPORT ZIPCODE

PERSON

MANUFACTURER

PRODUCTNAME

MEDIATITLE

EVENT

PRODUCT and BUSINESS

FINANCE MEDIA

EDUCATION APPAREL

TRAVEL AUTO

TECHNOLOGY RESTAURANT

ORGNAME

AIRLINE SPORTSLEAGUE APPAREL AUTO

MEDIA TECHNOLOGY FINANCE LODGING

EDUCATION SPORTSTEAM RESTAURANT

OCCASION

Figure 2: Label Taxonomy: The set of labels that are used are shown grouped by the parent label. PRODUCT and
BUSINESS labels have been merged for brevity, i.e. there are two labels of each child label shown (e.g. PRODUCT:
AUTO and BUSINESS: AUTO). An additional label OTHER is used for the tokens that do not belong to any entities.

labels yj and yj−1. To utilize the semi-Markov rep-
resentation that allows features over the predicted
segmentation, we add the segment length and pre-
fix/suffix tokens of the segment as features.

4.2 Segment Clusters

Although the sequence and segment features cap-
ture a lot of useful information, they are not suffi-
cient for propagation. For example, if we have a
constraint about the token “london” being a CITY,
but not about “boston”, the model can only rely on
similar contexts between ‘london” and ‘boston” to
propagate the information. To allow more compli-
cated propagation to occur, we use features based
on a clustering of segments.

The segment cluster features are based on simi-
larity between segments from English sentences. A
large corpus of English documents were taken from
web, from which 5.1 billion unique sentences were
extracted. Using the co-occurrence of segments in
the sentences as a distance measure, K-Means is
used to identify clusters of segments as described in
(Pantel et al., 2009). The cluster identity of each seg-
ment is added as a feature to the model, capturing
the intuition that segments that appear in the same
cluster should get the same label.

4.3 Topic Model

Most of the ads lie in separate domains with
very little overlap, for example travel and electron-
ics. Additional information about the domain can
be very useful for identifying entities in the ad. For

example, consider the token “amazon”. It may be
difficult to discern whether the token refers to the
geographical region or the website from just the fea-
tures in the model, however given that the domain
of the ad is travel (or conversely, electronics), the
choice becomes easier.

The problem of domain identification is often
posed as a document classification task, which re-
quires labeled data to train and thus is not applica-
ble for our task. Additionally, we are not concerned
with accurately specifying the exact domain of each
ad, instead any information about similarity between
ads according to their domains is helpful. This kind
of representation can be obtained in an unsupervised
fashion by using topic cluster models (Steyvers and
Griffiths, 2007; Blei et al., 2003). Given a large
set of unlabeled documents, topic models define a
distribution of topics over each document, such that
documents that are similar to each other have similar
topic distributions.

The LDA (Blei et al., 2003) implementation of
topic models in the Mallet toolkit (McCallum, 2002)
was used to construct a model with 1000 topics for
a dataset containing 3 million ads. For each ad, the
discrete distribution over the topics, in conjunction
with each possible label, was added as a feature.
This captures a potential for each label given an ap-
proximation of the ad’s domain captured as topics.

77

5 Constraints

Constraints are used to inject light supervision
into the learning algorithm and are defined as tar-
gets u for expectations of features G′ over the data.
Any feature that can be included in the model can be
used as a constraint. This allows us to capture a va-
riety of different forms of domain knowledge, some
of which we shall explore in this section.

Labeled data xl, sl can be incorporated as a spe-
cial case when constraints have a target expectation
of 1.0 for the features that are defined only for the
sequence xl and with segmentation sl. This allows
us to easily use labeled data in form of constraints,
but in this work we do not include any labeled data.
A more interesting case is that of partial labeling,
where the domain expert may have prior knowledge
about the probability that certain tokens and/or con-
texts result in a specific label. These constraints
can cover more instances than labeled data, however
they only provide partial and stochastic labels. All
of the constraints described in this section are also
included as simple features.

Many different methods have been suggested in
recent work for finding the correct target values for
the feature expectations. First, if ample labeled data
is available, features expectations can be calculated,
and assumptions can be made that the same expec-
tations hold for the unlabeled data. This method
cannot be applied to our work due to lack of la-
beled data. Second, for certain constraints, the prior
knowledge can be used directly to specify these val-
ues. Third, if the constraints are an output of a
previous machine learning model, we can use that
model’s confidence in the prediction as the target
expectation of the constraint. Finally, a search for
the ideal values of the target expectations can be
performed by evaluating on small evaluation data.
Our target values for feature expectations were set
based on domain knowledge, then adjusted manu-
ally based on minimal manual examination of ex-
amples on a small held-out data set.

5.1 Dictionary-Based

Dictionary constraints are the form of constraints
that apply to the feature between an individual token
and its label. For a set of tokens in the dictionary, the
constraints specify which label they are likely to be.

Dictionaries can be easily constructed using various
sources, for example product databases, lexicons,
manual collections, or predictions from other mod-
els. These dictionary constraints are often used to
bootstrap models (Agichtein and Ganti, 2004; Cani-
sius and Sporleder, 2007) and have also been used in
the ads domain (Li et al., 2009). For our application,
we rely on dictionary constraints from two sources.

First, the predictions of a previous model are used
to construct a dictionary. A model for entity extrac-
tion is trained on a large amount of labeled search
query data. The domain and style of web queries
differs from advertisements, but the set of labels is
essentially the same. The supervised query entity
extraction model is used to infer segments and la-
bels for the ads domain, and each of the predicted
segments are added to the dictionary of the corre-
sponding predicted label. Even though the predic-
tions of the model are not perfect (see Section 6.1)
the predictions of some of the labels are of high pre-
cision, and thus can be used for supervision in form
of noisy dictionary constraints.

The second source of prior information for dictio-
nary constraints are external databases. Lists of vari-
ous types of places can be obtained easily, for exam-
ple CITY, COUNTRY, STATE, AIRPORT, etc. Ad-
ditionally, product databases available internally to
our research group are used for MANUFACTURERS,
BRANDS, PRODUCTS, MEDIATITLE, etc. Some of
these databases are noisy, and the constraints based
on them are given lower target expectations.

5.2 Pattern-Based

Prior knowledge can often be easily expressed as
patterns that appear for a specific domain. Pattern
based matching has been used to express supervision
for information extraction tasks (Califf and Mooney,
1999; Muslea, 1999). The usual use case involves
a domain expert specifying a number of “prototyp-
ical” patterns, while additional patterns are discov-
ered based on these initial patterns.

We incorporate noisy forms of patterns as con-
straints. Simple regular expression based patterns
were used to identify and label segments for a few
domains (e.g. “flights to {PLACE}” and “looking
for {PRODUCT}?”). We do not employ a pattern-
discovery algorithm for finding other contexts; the
model propagates these labels, as before, using the

78

features of the rest of the model. However if the
output of a pattern-discovery algorithm is available,
it can be directly incorporated into the model as ad-
ditional constraints.

5.3 Domain-Based

A number of label-independent constraints are
also added to avoid unrealistic segmentation predic-
tions. For example, an expectation over segment
lengths was included, which denotes that the seg-
ment length is usually 1 or 2, and almost never more
than 6. A constraint is also added to avoid segments
that overlap the separator token between title and
abstract by ensuring that the segment that includes
the separator token is always of length 1 and of la-
bel OTHER. Finally, an additional constraint ensures
that the label OTHER is the most common label.

6 Results
The feature expectations of the model are cal-

culated with modifications to an open source
semi-CRF package5. We collect two datasets of
ad creatives randomly sampled from Yahoo!’s ads
database: a smaller dataset contains 14k ads and a
larger dataset of 42k ads. The ads were not restricted
to any particular domain (such as travel, electronics,
etc.). The average length of the complete ad text
was ∼14 tokens. Preprocessing of the text involved
lower-casing, basic cleaning, and stemming.

The training time for each iteration through the
data was ∼90 minutes for the smaller dataset and
∼360 minutes for the larger dataset. Inference over
the dataset, using Viterbi decoding for semi-CRFs,
took a total of ∼8 and ∼32 minutes. The initial
learning rate η is set to 10.0.

6.1 Discussion

We compare our approach to a baseline “Dictio-
nary” system that deterministically selects a label
based on the dictionaries described in Section 5.1.
A segment is given a label corresponding to the dic-
tionary it appears in, or OTHER if it does not ap-
pear in any dictionary. In addition, we compare to
an external supervised system that has been trained
on tens-of-thousands of manually-annotated search
queries that use the same taxonomy (the same sys-
tem as used in Section 5.1 to derive dictionaries).

5Available on http://crf.sourceforge.net/

This CRF-based model contains mostly the same
features as our unsupervised system, and approxi-
mates what a fully supervised system might achieve,
although it is trained on search queries. Results for
our approach and these two systems are presented
in Table 1. Our evaluation data consists of 2,157
randomly sampled ads that were manually labeled
by professional editors. This labeled data size was
too small to sufficiently train a supervised semi-CRF
model that out-performed the dictionary baseline for
our task (which consists of 45 potential labels).

We measure the token-wise accuracy and macro
F-score over the manually labeled dataset. Typi-
cally, these metrics measure only exact matches be-
tween the true and the predicted label, but this leads
to cases where the model may predict PLACE for a
true CITY. To allow a “partial credit” for these cases,
we introduce “weighted” version of these measures,
where a predicted label is given 0.5 credit if the true
label is its direct child or parent, and 0.25 credit if
the true label is a sibling. Our F-score measures the
recall of all true labels except OTHER and similarly
the precision of all predicted labels except OTHER.
We focus on these labels because the OTHER la-
bel is mostly uninformative for downstream tasks.
The token-wise accuracy over all labels (including
OTHER) is included as “Overall Accuracy”.

Our method significantly outperforms the base-
line dictionary method while approaching the results
obtained with the sophisticated supervised model.
Overall accuracy is 50% greater than the dictionary
baseline, and comes within 10% of the supervised
model6. Increasing unlabeled data from 14k to 42k
ads provides an increase in overall accuracy and
non-OTHER precision, but somewhat reduces recall
for the remaining labels. We also include the F2-
score which gives more weight to recall, because
we are interested in extracting informative labels for
downstream models (which may be able to com-
pensate for a lower precision in label prediction).
Our model trained on 14k samples out-performs the
query-based supervised model in terms of F2, which
is promising for future work that will incorporate
predicted labels in ad retrieval and ranking systems.

6Comparisons and trends for normal and weighted measures
are consistent throughout the results.

79

Table 1: Evaluation: Token-wise accuracy and F-score for the methods evaluated on labeled data (Normal / Weighted)

Metric Dictionary Our Method (14k) Our Method (42k) Query-based Sup. Model
Overall Accuracy 0.454 / 0.466 0.596 / 0.627 0.629 / 0.649 0.665 / 0.685

non-OTHER Recall 0.170 / 0.205 0.329 / 0.412 0.271 / 0.325 0.286 / 0.342
non-OTHER Precision 0.136 / 0.163 0.265 / 0.333 0.297 / 0.357 0.392 / 0.469

F1-score 0.151 / 0.182 0.293 / 0.368 0.283 / 0.340 0.331 / 0.395
F2-score 0.162 / 0.195 0.313 / 0.393 0.276 / 0.331 0.303 / 0.361

7 Related Work

Extraction of structured information from text is
of interest to a large number of communities. How-
ever, in the ads domain, the task has usually been
simplified to that of classification or ranking. Pre-
vious work has focused on retrieval (Raghavan and
Iyer, 2008), user click prediction (Shaparenko et
al., 2009; Richardson et al., 2007; Ciaramita et al.,
2008), ad relevance (Hillard et al., 2010) and bounce
rate prediction (Sculley et al., 2009). As far we
know, our method is the only one that aims to solve a
much more complex task of segmentation and entity
extraction from ad creatives. Supervised methods
are a poor choice to solve this task as they require
large amounts of labeled ads, which is expensive,
time-consuming and noisy. Most semi-supervised
methods also rely on some labeled data, and scale
badly with the size of unlabeled data, which is in-
tractable for most ad databases.

Considerable research has been undertaken to ex-
ploit forms of domain knowledge other than la-
beled data to efficiently train a model while utiliz-
ing the unlabeled data. These include methods that
express domain knowledge as constraints on fea-
tures, which have shown to provide high accuracy
on natural language datasets (Chang et al., 2007;
Chang et al., 2008; Mann and McCallum, 2008;
Bellare et al., 2009; Singh et al., 2010). We use
the method of alternating projections for constraint-
driven learning (Bellare et al., 2009) since it spec-
ifies constraints on feature expectations instead of
less intuitive constraints on feature parameters (as
in (Chang et al., 2008)). Additionally, the alternat-
ing projection method is computationally more effi-
cient than Generalized Expectation (Mann and Mc-
Callum, 2008) and can be applied in an online fash-
ion using stochastic gradient.

Our approach is most similar to (Li et al., 2009),
which uses semi-supervised learning for CRFs to ex-
tract structured information from user queries. They
also use a constraint-driven method that utilizes an
external data source. Their method, however, relies
on labeled data for part of the supervision while our
method uses only unlabeled data. Also, evaluation
was only shown for a small domain of user queries,
while our work does not restrict itself to any specific
domain of ads for evaluation.

8 Conclusions
Although important for a number of tasks in spon-

sored search, extraction of structured information
from text advertisements is not a well-studied prob-
lem. The difficulty of the problem lies in the expen-
sive, time-consuming and error-prone labeling pro-
cess. In this work, the aim was to explore machine
learning methods that do not use labeled data, re-
lying instead on light supervision specified as con-
straints on feature expectations. The results clearly
show this minimally-supervised method performs
significantly better than a dictionary based baseline.
Our method also approaches the performance of a
supervised model trained to extract entities from
web search queries. These findings strongly suggest
that domain knowledge expressed in forms other
than directly labeled data may be preferable in do-
mains for which labeling data is unsuitable.

The most important limitation lies in the fact
that specifying the target expectations of constraints
is an ad-hoc process, and robustness of the semi-
supervised learning method to noise in these target
values needs to be investigated. Further research
will also explore using the extracted entities from
advertisements to improve downstream sponsored
search tasks.

80

References
Eugene Agichtein and Venkatesh Ganti. 2004. Min-

ing reference tables for automatic text segmentation.
In KDD: ACM SIGKDD International Conference on
Knowledge Discovery and Data mining, pages 20–29,
New York, NY, USA.

Kedar Bellare, Gregory Druck, and Andrew McCallum.
2009. Alternating projections for learning with expec-
tation constraints. In UAI: Conference on Uncertainty
in Artificial Intelligence.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent dirichlet allocation. Journal on Machine
Learning Research, 3:993–1022.

Mary Elaine Califf and Raymond J. Mooney. 1999. Re-
lational learning of pattern-match rules for information
extraction. In AAAI / IAAI ’99: National conference
on Artificial intelligence and the Innovative Applica-
tions of Artificial Intelligence conference, pages 328–
334.

Sander Canisius and Caroline Sporleder. 2007. Boot-
strapping information extraction from field books.
In EMNLP-CoNLL: Joint Conference on Empirical
Methods in Natural Language Processing and Compu-
tational Natural Language Learning, pages 827–836.

Ming-Wei Chang, Lev Ratinov, and Dan Roth.
2007. Guiding semi-supervision with constraint-
driven learning. In ACL: Annual meeting of the Asso-
ciation for Computational Linguistics, pages 280–287.

Ming-Wei Chang, Lev Ratinov, Nicholas Rizzolo, and
Dan Roth. 2008. Learning and inference with con-
straints. In AAAI: National Conference on Artificial
Intelligence, pages 1513–1518.

O. Chapelle, B. Schölkopf, and A. Zien, editors.
2006. Semi-Supervised Learning (Adaptive Computa-
tion and Machine Learning). The MIT Press, Septem-
ber.

Massimiliano Ciaramita, Vanessa Murdock, and Vassilis
Plachouras. 2008. Online learning from click data for
sponsored search. In WWW: International World Wide
Web Conference.

Dustin Hillard, Stefan Schroedl, Eren Manavoglu, Hema
Raghavan, and Chris Leggetter. 2010. Improving
ad relevance in sponsored search. In WSDM: Inter-
national conference on Web search and data mining,
pages 361–370.

John Lafferty, Andrew Mccallum, and Fernando Pereira.
2001. Conditional random fields: Probabilistic models
for segmenting and labeling sequence data. In ICML:
International Conference on Machine Learning, pages
282–289.

Xiao Li, Ye-Yi Wang, and Alex Acero. 2009. Extracting
structured information from user queries with semi-
supervised conditional random fields. In SIGIR: In-

ternational Conference on research and development
in information retrieval, pages 572–579. ACM.

Gideon S. Mann and Andrew McCallum. 2008. General-
ized expectation criteria for semi-supervised learning
of conditional random fields. In ACL: Annual meet-
ing of the Association for Computational Linguistics,
pages 870–878.

Andrew McCallum. 2002. Mallet: A machine learning
for language toolkit. http://mallet.cs.umass.edu.

Ion Muslea. 1999. Extraction patterns for information
extraction tasks: A survey. In AAAI: Workshop on Ma-
chine Learning for Information Extraction, pages 1–6.

Patrick Pantel, Eric Crestan, Arkady Borkovsky, Ana-
Maria Popescu, and Vishnu Vyas. 2009. Web-scale
distributional similarity and entity set expansion. In
EMNLP: Conference on Empirical Methods in Natu-
ral Language Processing, pages 938–947.

Hema Raghavan and Rukmini Iyer. 2008. Evaluating
vector-space and probabilistic models for query to ad
matching. In SIGIR Workshop on Information Re-
trieval in Advertising (IRA).

Matthew Richardson, Ewa Dominowska, and Robert
Ragno. 2007. Predicting clicks: estimating the click-
through rate for new ads. In WWW: International
World Wide Web Conference.

Sunita Sarawagi and William W. Cohen. 2004. Semi-
markov conditional random fields for information ex-
traction. In NIPS: Neural Information Processing Sys-
tems.

Sunita Sarawagi. 2006. Efficient inference on sequence
segmentation models. In ICML: International Confer-
ence on Machine Learning, pages 793–800.

D. Sculley, Robert G. Malkin, Sugato Basu, and
Roberto J. Bayardo. 2009. Predicting bounce
rates in sponsored search advertisements. In KDD:
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data mining, pages 1325–1334.

Benyah Shaparenko, Ozgur Cetin, and Rukmini Iyer.
2009. Data driven text features for sponsored search
click prediction. In AdKDD: Workshop on Data min-
ing and audience intelligence for advertising.

Sameer Singh, Limin Yao, Sebastian Riedel, and Andrew
McCallum. 2010. Constraint-driven rank-based learn-
ing for information extraction. In North American
Chapter of the Association for Computational Linguis-
tics - Human Language Technologies (NAACL HLT).

Mark Steyvers and Tom Griffiths. 2007. Probabilistic
Topic Models. Lawrence Erlbaum Associates.

81

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 82–90,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Taxonomy Learning Using Word Sense Induction

Ioannis P. Klapaftis
Department of Computer Science

The University of York
York, UK, YO10 5DD

giannis@cs.york.ac.uk

Suresh Manandhar
Department of Computer Science

The University of York
York, UK, YO10 5DD

suresh@cs.york.ac.uk

Abstract

Taxonomies are an important resource for a
variety of Natural Language Processing (NLP)
applications. Despite this, the current state-
of-the-art methods in taxonomy learning have
disregarded word polysemy, in effect, devel-
oping taxonomies that conflate word senses.
In this paper, we present an unsupervised
method that builds a taxonomy of senses
learned automatically from an unlabelled cor-
pus. Our evaluation on two WordNet-derived
taxonomies shows that the learned taxonomies
capture a higher number of correct taxonomic
relations compared to those produced by tradi-
tional distributional similarity approaches that
merge senses by grouping the features of each
word into a single vector.

1 Introduction

A concept or a sense, s, can be defined as the mean-
ing of a word or a multiword expression. A con-
cept s can be linguistically realised by more than one
word while at the same time a wordw can be the lin-
guistic realisation of more than one concept. Given
a set of concepts S, taxonomy learning is the task of
hierarchically classifying the elements in S in an au-
tomatic manner. For example, consider a set of con-
cepts linguistically realised by the words/multiword
expressions LAN, computer network, internet, mesh-
work, gauze, snood. Taxonomy learning methods
produce taxonomies, such as the ones shown in Fig-
ures 1 (a) and 1 (b).

By observing Figure 1 (a), we can express IS-
A statements, such as Internet IS-A Computer Net-
work etc. However, the same does not apply to the

Figure 1: A labelled and an unlabelled concept taxonomy

taxonomy in Figure 1 (b), since this taxonomy is not
fully labelled. Despite this, its hierarchical organ-
isation clearly shows that the concepts are divided
into groups, which are further subdivided into sub-
groups and so forth, until we reach a level where
each concept belongs to its own group. Unlabelled
taxonomies are typically produced by agglomera-
tive hierarchical clustering algorithms (King, 1967;
Sneath and Sokal, 1973).

The knowledge encoded in taxonomies can be
utilised in a range of NLP applications. For in-
stance, taxonomies can be used in information re-
trieval to expand a user query with semantically re-
lated words or to enhance document representation
by abstracting from plain words and adding concep-
tual information (Cimiano, 2006). WordNet’s (Fell-
baum, 1998) taxonomic relations have also been
used in Word Sense Disambiguation (WSD) (Nav-
igli and Velardi, 2004b). In named entity recog-
nition, methods relying on gazetteers could make

82

use of automatically acquired taxonomies (Cimiano,
2006), while question answering systems have also
benefited (Moldovan and Novischi, 2002).

Despite the wide uses of taxonomies, the majority
of methods disregard or do not deal effectively with
word polysemy, in effect, developing taxonomies
that conflate the senses of words (see Section 2).
In this work, we show that Word Sense Induction
(WSI) can be effectively employed to address this
limitation of existing methods.

We present a novel method that employs WSI to
generate the different senses of a set of target words
from an unlabelled corpus and then produces a tax-
onomy of senses using Hierarchical Agglomerative
Clustering (HAC) (King, 1967; Sneath and Sokal,
1973). We evaluate our method on two WordNet-
derived sub-taxonomies and show that our method
leads to the development of concept hierarchies that
capture a higher number of correct taxonomic rela-
tions in comparison to those generated by current
distributional similarity approaches.

2 Related work

Initial research on taxonomy learning focused on
identifying in a given text lexico-syntactic patterns
that suggest hyponymy relations (Hearst, 1992). For
instance, the pattern NP0 such as NP1,. . . ,NPn
suggests that NP0 is a hypernym of NPi. For ex-
ample, given the phrase Fruits, such as oranges, ap-
ples,..., the above pattern would suggest that fruit
is a hypernym of orange and apple. These pattern-
based approaches operate at the word level by learn-
ing lexical relations between words rather than be-
tween senses of words.

In the same spirit, other work attempted to exploit
the regularities of dictionary entries to identify hy-
ponymy relations (Amsler, 1981). For example in
WordNet, WAN is defined as a computer network
that spans Hence, one can easily induce that
WAN is a hyponym of computer network by assum-
ing that the first noun phrase in the definition is a hy-
pernym of the target word. These approaches learn
lexical relations at the sense level since dictionaries
separate the senses of a word. However this would
be true if and only if the glosses of the dictionaries
were sense-annotated, which is not the case for the
majority of electronic dictionaries (Cimiano, 2006).

Another limitation is that taxonomies are built ac-
cording to the sense distinctions present in dictio-
naries and not according to the actual use of words
in the corpus.

The majority of taxonomy learning approaches
are based on the distributional hypothesis (Harris,
1968). Typically, distributional similarity methods
(Cimiano et al., 2004; Cimiano et al., 2005; Faure
and Nédellec, 1998; Reinberger and Spyns, 2004;
Caraballo, 1999) utilise syntactic dependencies such
as subject/verb, object/verb relations, conjunctive
and appositive constructions and others. These de-
pendencies are used to extract the features that serve
as the dimensions of the vector space. Each target
noun is then represented as a vector of extracted fea-
tures where the frequency of co-occurrence of the
target noun with each feature is used to calculate the
weight of that feature. The constructed vectors are
the input to hierarchical clustering or formal concept
analysis (Ganter and Wille, 1999) to produce a tax-
onomy. These approaches assume that a target noun
is monosemous creating one vector of features for
each target noun. This limitation can lead to a num-
ber of problems.

Firstly, the constructed taxonomies might be bi-
ased towards the inclusion of taxonomic relation-
ships between the most frequent senses of tar-
get nouns, ignoring interesting taxonomic relations
where less frequent senses are present. For exam-
ple, consider the word house. Current distributional
similarity methods would possibly capture the hy-
ponyms of its Most Frequent Sense (MFS1), how-
ever ignoring the hyponyms of less frequent senses
of house, e.g. casino, theater, etc. Given that word
senses typically follow a Zipf distribution, these
methods construct vectors dominated by the MFS of
words. This bias significantly degrades the useful-
ness of learned taxonomies.

Secondly, given that distributional similarity ap-
proaches rely on the computation of pairwise simi-
larities between target words, merging their senses
to a single vector might lead to unreliable similarity
estimates. For example, merging the features of the
different senses of house could provide a lower sim-
ilarity with its monosemous hyponym beach house,
since only the first sense of house is related to beach

1WordNet: A dwelling that serves as living quarters . . .

83

house. This problem might lead both to inclusion
of incorrect or loss of correct taxonomic relations.
In our work, we aim to overcome these drawbacks
by identifying the different senses with which target
words appear in text and then building a hierarchy
of the identified senses.

Soft clustering approaches (Reinberger and
Spyns, 2004; Reinberger et al., 2003) have also been
applied to taxonomy learning to deal with polysemy.
These methods associate each verb with a vector of
features, where each feature is a noun appearing as
a subject or object of that verb. That way a noun can
appear in different vectors, hence in different clus-
ters during hierarchical clustering as a result of its
polysemy. However, the underlying assumption is
that a verb is monosemous with respect to its associ-
ated vector of nouns. This assumption is not always
valid and can cause the problems mentioned above.

Other work in taxonomy learning exploits the
head/modifier relationships to create taxonomic re-
lations (Buitelaar et al., 2004; Hwang, 1999;
Sánchez and Moreno, 2005). These relations are
used to create: (1) a class (concept) for each head,
and (2) subclasses by adding nominal or adjectival
modifiers. For example, credit card IS-A card. The
corresponding hyponymy relations are learned at the
lexical level disregarding word polysemy. Some of
these approaches identified the problem of polysemy
and applied sense disambiguation with respect to
WordNet in order to capture the different senses of a
target term (Navigli and Velardi, 2004b; Navigli and
Velardi, 2004a). Specifically, the taxonomy built by
exploiting head/modifiers relations was modified ac-
cording to WordNet’s hyponymy relations between
senses of disambiguated terms. One important de-
ficiency of using sense disambiguation is that dic-
tionaries miss many domain-specific senses. Addi-
tionally, the fixed-list of senses paradigm prohibits
learning word senses according to their use in con-
text. The use of sense induction we propose in this
paper aims to overcome these limitations.

3 Method

Given a set of words W , a WSI method is applied
to each wi ∈ W (Section 3.1). The outcome of the
first stage is a set of senses, S, where each swi ∈ S
denotes the i-th sense of word w ∈ W . This set

Figure 2: WSI for network & LAN

of senses is the input to hierarchical clustering that
produces a hierarchy of senses (Section 3.2).

3.1 Word sense induction

WSI is the task of identifying the senses of a tar-
get word in a given text. Recent WSI methods
were evaluated under the framework of SemEval-
2007 WSI task (SWSI) (Agirre and Soroa, 2007).
The evaluation framework defines two types of as-
sessment, i.e. evaluation in: (1) a clustering and
(2) a WSD setting. Based on this evaluation, we se-
lected the method of Klapaftis & Manandhar (2008)
(henceforth referred to as KM) that achieves high F-
score in both evaluation schemes as compared to the
systems participating in SWSI. We briefly describe
KM mentioning its parameters used in our evalua-
tion (Section 4). Figures 2 (a) and 2 (b) describe the
different steps for inducing the senses of the target
words network and LAN.

Corpus preprocessing: The input to KM is a
base corpus bc, in which the target word w appears
in each paragraph. In Figure 2 (a), the base cor-
pus consists of the paragraphs A, B, C and D. The
aim of this stage is to capture nouns contextually

84

related to w. Initially, the target word is removed
from bc, part-of-speech tagging is applied to each
paragraph, only nouns are kept and lemmatised. In
the next step, the distribution of each noun is com-
pared to the distribution of the same noun in a ref-
erence corpus2 using the log-likelihood ratio (G2)
(Dunning, 1993). Nouns with a G2 below a pre-
specified threshold (parameter p1) are removed from
each paragraph. Figure 2 (a) shows the remaining
nouns for each paragraph of bc.

Graph creation & clustering: In the setting of
KM, a collocation is a juxtaposition of two nouns
within the same paragraph. Thus, each noun is com-
bined with any other noun yielding a total of

(
N
2

)
collocations for a paragraph with N nouns. Each
collocation, cij , is assigned a weight that measures
the relative frequency of two nouns co-occurring.
This weight is the average of the conditional prob-
abilities p(ni|nj) and p(nj |ni), where p(ni|nj) =
f(cij)
f(nj)

, f(cij) is the number of paragraphs nouns ni,
nj co-occur and f(nj) is the number of paragraphs
in which nj appears. Collocations are filtered with
respect to their frequency (parameter p2) and weight
(parameter p3). Each retained collocation is rep-
resented as a vertex. Edges between vertices are
present, if two collocations co-occur in one or more
paragraphs. Figure 2 (a) shows that this process has
generated 24 collocations for the target word net-
work. On the top right of the figure we also observe
the collocations associated with each paragraph.

In the next step, a smoothing technique is applied
to discover new edges between vertices. The weight
applied to each edge connecting vertices vi and vj
(collocations cab, cde) is the maximum of their con-
ditional probabilities (max(p(cab|cde), p(cde|cab))).
Finally, the graph is clustered using Chinese whis-
pers (Biemann, 2006). The final output is a set of
senses, each one represented by a set of contextually
related collocations. In Figure 2, we generated two
senses for network and one sense for LAN.

3.2 Hierarchical clustering of senses

Given the set of senses S, our task at this point is to
hierarchically classify the senses using HAC. Con-
sider for example the words network and LAN, and

2The British National Corpus, 2001, Distributed by Oxford
University Computing Services.

Senses computer meshwork LAN
network

computer network 1 0.0 0.66
meshwork 0.0 1 0.14
LAN 0.66 0.14 1

Table 1: Similarity matrix for HAC.

Figure 3: WSI & HAC example

let us assume that the WSI process has generated
the senses in Figures 2 (a) and 2 (b). HAC oper-
ates by treating each sense as a singleton cluster and
then successively merging the most similar clusters
according to a pre-defined similarity function. This
process iterates until all clusters have been merged
into a single cluster taken to be the root.

To calculate the pairwise similarities between
senses we exploit the attributes that represent each
sense, i.e. their collocations. Let BC be the cor-
pus resulting from the union of the base corpora of
all words in W . In our example, BC would consist
of the paragraphs, in which the words network and
LAN appear, i.e. A, B, ..., G. An induced sense tags
a paragraph, if one or more of its collocations ap-
pear in that paragraph. Thus, each induced sense is
associated with a set of paragraph labels that denote
the paragraphs tagged by that sense. Figure 3 shows
the paragraph labels tagged by each sense of our ex-
ample. Finally, given two senses sai , sbi and their
corresponding sets of tagged paragraphs fai and f bi ,
we use the Jaccard coefficient to calculate their sim-
ilarity, i.e. JC(sai , s

b
i) = |fa

i ∩fb
i |

|fa
i ∪fb

i |
, where skj denotes

the j-th sense of word k. The resulting similarity
matrix of our example is shown in Table 1. Given
that matrix, HAC would first group computer net-
work and LAN as they have the highest similarity
(Figure 3). In the final iteration, the remaining two
clusters (Cluster 1 & meshwork) would be grouped
to the root.

An important parameter of HAC is the choice
of the technique for calculating cluster similarities.
Note that as we move towards the higher levels of

85

the taxonomy clusters contain more than one sets of
tagged paragraphs (Figure 3 - Cluster 1), hence the
choice of the similarity function is crucial. We ex-
periment with three techniques, i.e. single-linkage,
complete-linkage and average-linkage. The first one
defines the similarity between two clusters as the
maximum similarity among all the pairs of their cor-
responding feature sets. The second considers the
minimum similarity among all the pairs, while the
third calculates the average similarity of all the pairs.

4 Evaluation

We evaluate our method with respect to two
WordNet-derived sub-taxonomies (Section 4.3). For
that reason, it is necessary to map the induced senses
to WordNet before applying HAC. Note that the
mapping process might map more than one induced
senses to the same WordNet sense. In that case,
these induced senses are merged to a single one
along with their corresponding collocations.

4.1 Mapping WSI clusters to WordNet senses

The process of mapping the induced senses to Word-
Net is straightforward. Let w ∈ W be a word with
n senses in WordNet. A WordNet sense i of w is de-
noted bywswi , i = [1, n]. Let us also assume that the
WSI method has produced m senses for w, where
each sense j is denoted as swj , j = [1,m]. Each in-
duced sense swj is associated with a set of features
fwj as in the previous section. These features are the
paragraphs (paragraph labels) of BC tagged by swj .
In the next step, each WordNet sense wswi is associ-
ated with its WordNet signature gwi that contains the
following semantic features: hypernyms/hyponyms,
meronyms/holonyms and synonyms of wswi . For
example, the signature of the fifth WordNet sense
of network would contain internet, cyberspace and
other semantically related words. Table 2 shows par-
tial signatures for each sense of network.

The signature gwi is used to formalise the Word-
Net sense wswi as a set of features qwi . These fea-
tures are the paragraphs (paragraph labels) of BC
that contain one or more of the aforementioned se-
mantically related to wswi words that exist in gwi .
Given an induced sense swj , a similarity score is cal-
culated between swj and each WordNet sense of w.
The maximum score determines the WordNet sense

WordNet sense Semantically related words/phrases
1 reticulum, RF, RAS
2 communication system/equipment
3 gauze, snood, tulle
4 reseau, reticle, reticulation
5 net, internet, cyberspace

Table 2: Semantically related words/phrases to network

label that will be assigned to swj , i.e. label(swj) =
argmaxi JC(fwj , q

w
i), where JC is the Jaccard sim-

ilarity coefficient. In the example of Figure 2 (a),
the computer network sense would be mapped to the
fifth WordNet sense of network, since there is a sig-
nificant overlap between the paragraphs tagged by
the induced and that WordNet sense.

4.2 Evaluation measures

For the purposes of this section we present one gold
standard taxonomy (Figure 1 (a)) and a second de-
rived from our method (Figure 1 (b)). The compari-
son of these taxonomies is based on the semantic co-
topy of a node, which has also been used in (Maed-
che and Staab, 2002; Cimiano et al., 2005). In par-
ticular, the semantic cotopy of a node is defined as
the set of all its super- and subnodes excluding the
root and including that node. For example, the se-
mantic cotopy of computer network in Figure 1 (a)
is {computer network, internet, LAN}. There are
two issues, which make the evaluation difficult.

The first one is that HAC produces a taxonomy in
which all internal nodes are unlabelled, as opposed
to the gold standard taxonomy. In Figure 1 (b), we
have manually labelled internal nodes with their IDs
for clarity. For example, the semantic cotopy of the
node New Cluster 1 in Figure 1 (b) is {computer net-
work, internet, LAN, New Cluster 1, New Cluster
0}. By comparing the cotopies of nodes computer
network in Figure 1 (a) and New Cluster 1 in Fig-
ure 1 (b), we observe that the automatic method has
successfully grouped all of the hypernyms and hy-
ponyms of computer network under New Cluster 1.
However, the corresponding cotopies are not iden-
tical, because the cotopy of New Cluster 1 also in-
cludes the labels produced by HAC.

To deal with this problem, we use a version of se-
mantic cotopy for nodes in the automatically learned
taxonomy which excludes nodes that do not exist in
WordNet. That way the semantic cotopies of New
Cluster 1 in Figure 1 (b) and computer network in

86

Figure 1 (a) will yield maximum similarity.
The second issue is that the nodes that exist in the

gold standard taxonomy are leaf nodes in the auto-
matically learned taxonomy. As a result, the seman-
tic cotopy of LAN in Figure 1 (b) is {LAN} since
all of its supernodes do not exist in WordNet. In
contrast, the semantic cotopy of LAN in Figure 1
(a) is {LAN, computer network}. We observe that
there is an overlap between the two cotopies derived
by the existence of the same concept in both tax-
onomies, i.e. LAN. In fact, all of the leaf nodes of
a learned taxonomy will have a small overlap with
the corresponding concept in the gold standard. For
this problem, we observe that in our automatically
learned taxonomies it does not make sense to cal-
culate the semantic cotopy of leaf nodes. On the
contrary, we need to evaluate the internal nodes that
group the leaf nodes. Let us assume the following
notation:
TA = automatically learned taxonomy
ηi = node in a taxonomy
C(TA) = internal nodes + leaf nodes of TA
I(TA) = internal nodes of TA
TG = gold standard taxonomy
C(TG) = internal nodes + leaf nodes of TG
I(TG) = internal nodes of TG
hyper(ηi) = supernodes of ηi excluding the root
hypo(ηi) = subnodes of ηi including ηi
For ηi ∈ I(TA), the semantic cotopy is defined as:
SC ′(ηi) = (hyper(ηi) ∪ hypo(ηi)) ∩ C(TG)
For ηi ∈ C(TG), the semantic cotopy is defined as:
SC ′′(ηi) = (hyper(ηi) ∪ hypo(ηi))

P (ηi, ηj) =
|SC ′(ηi) ∩ SC ′′(ηj)|

|SC ′(ηi)|
(1)

R(ηi, ηj) =
|SC ′(ηi) ∩ SC ′′(ηj)|

|SC ′′(ηj)|
(2)

F (ηi, ηj) =
2P (ηi, ηj)R(ηi, ηj)
P (ηi, ηj) +R(ηi, ηj)

(3)

Precision, recall and harmonic mean of node ηi ∈
I(TA) with respect to node ηj ∈ C(TG) are de-
fined in Equations 1, 2 and 3. The F-score, FS, of
node ηi ∈ I(TA) is the maximum F attained at any
ηj ∈ C(TG) (FS(ηi) = argmaxj F (ηi, ηj)). Fi-
nally, the similarity TS of the entire taxonomy to
the gold standard taxonomy is the average of the
F-scores of each ηi ∈ I(TA) (Equation 4). The

TS(TA, TG) in Figure 1 is 0.9. All nodes of TA
have a perfect match, apart from New Cluster 0 and
New Cluster 2, which are matched against computer
network and meshwork respectively, having a per-
fect precision but a lower recall since the cotopies
of computer network and meshwork consist of three
concepts. The automatically learned taxonomy has
two redundant clusters that decrease its similarity.

TS(TA, TG) =
1

|I(TA)|
∑

ηi∈I(TA)

FS(ηi) (4)

The similarity measure TS(TA, TG) provides the
similarity of the automatically learned taxonomy to
the gold standard one, but it is not symmetric. Cal-
culating the taxonomic similarity one way might not
provide accurate results, in cases where TA misses
senses of the gold standard. This is due to the
fact that we would only evaluate the internal nodes
of TA, partially ignoring the fact that TA might
have missed some parts of the gold standard taxon-
omy. For that reason, we also calculate TS(TG, TA)
which provides the similarity of the gold standard
taxonomy to the automatically learned one. Fi-
nally, taxonomic similarities are combined to pro-
duce their harmonic mean (Equation 5).

TxSm(TA, TG) =
2TS(TG, TA)TS(TA, TG)
TS(TG, TA) + TS(TA, TG)

(5)

4.3 Evaluation datasets & setting
The first gold standard taxonomy is derived by ex-
tracting from WordNet all the hyponyms of the
senses of the word network. The extracted taxonomy
contains 29 senses linguistically realized by 24 word
sets (one sense might be expressed with more than
one words), since network has 5 senses and reseau
has 2 senses in the gold standard taxonomy. Note
that we have disregarded senses only expressed by
multiword expressions. The average polysemy of
words is around 1.7. The second taxonomy is de-
rived by extracting the concepts under the senses of
the word speaker. The speaker taxonomy contains
52 senses linguistically realized by 50 word sets,
since speaker has 3 senses included in the taxonomy.
The average polysemy of words is around 1.58.

To create our datasets3 we use the Yahoo! search
api4. For each word w in each of the datasets, we is-

3Available in http://www.cs.york.ac.uk/aig/projects/indect/taxlearn
4http://developer.yahoo.com/search/ [Accessed:10/06/2009]

87

Parameter Range
G2 threshold (p1) 5,10
Collocation frequency (p2) 4,6,8
Collocation weight (p3) 0.1,0.2,0.3,0.4

Table 3: Chosen parameters for the KM WSI method.

sue a query to Yahoo! that contains w and we down-
load a maximum of 1000 pages. In cases where
a particular sense is expressed by more than one
word, the query was formulated by including all the
words and putting the keyword OR between them.
For each page we extracted fragments of text (para-
graphs) that occur in <p> </p> html tags. We ex-
tracted 58956 and 78691 paragraphs for the network
and speaker dataset respectively. The reason we ex-
tracted on average less content for the second dataset
was that Yahoo! provided a small number of results
for rare words such as alliterator, anecdotist, etc.

Table 3 shows the parameter ranges for the WSI
method. Our method is evaluated according to these
parameters. Our first baseline is RAND, which per-
forms a random hierarchical clustering of senses to
produce a binary tree. In each iteration two clusters
are randomly chosen and form a new cluster, until
we end up with one cluster taken to be the root. The
performance of RAND is calculated by executing the
random algorithm 10 times and then averaging the
results. The second baseline is the taxonomy most
frequent sense baseline (TL MFS), in which we do
not perform WSI. Instead, given a parameter setting
and a word w, all the collocations of w are grouped
into one vector, which will possibly be dominated
by collocations related to the MFS of w. WordNet
mapping takes place and finally HAC with average-
linkage is applied to create the taxonomy.

4.4 Results & discussion

Figures 4 (a) and 4 (b) show the performance
of HAC with single-linkage (HAC SNG), average-
linkage (HAC AVG) and complete-linkage (HAC
CMP) against RAND for p1 = 5 and different com-
binations of p2 and p3. It is clear that HAC SNG and
HAC AVG outperform RAND by very large margins
under all parameter combinations. In the network
dataset, both of them achieve their highest distance
from RAND (27.84%) at p2 = 8 and p3 = 0.2. In the
speaker dataset, their highest distance from RAND
(20.97% and 19.63% respectively) is achieved at
p2 = 4 and p3 = 0.1. HAC CMP performs worse

than the other HAC versions, yet it clearly outper-
forms RAND in all but one parameter combinations
(p1 = 5, p2 = 6, p3 = 0.4) in the speaker dataset.

Generally, for collocation weight equal to 0.4 the
performance of all HAC versions drops. At this
high collocation weight the WSI method produces a
larger number of small clusters than in lower thresh-
olds. This issue negatively affects both the map-
ping process and HAC. For example in the speaker
dataset, for p1 = 5, p2 = 8 and p3 = 0.1 our tax-
onomies contained 86.54% of the gold standard tax-
onomy senses. Increasing the collocation weight to
0.2 did not have any effect, but increasing the weight
to 0.3 and then 0.4 led to 71.15% and 65.38% sense
coverage. Overall, our conclusion is that all HAC
versions exploit the WSI method and learn useful
information better than chance. The picture is the
same for p1 = 10.

Figures 4 (c) and 4 (d) show the performance of
HAC versions against the TL MFS baseline in the
same parameter setting as above. We observe that
both HAC SNG and HAC AVG perform significantly
better than TL MFS apart from p3 = 0.4, in which
case all HAC versions perform worse. In the network
dataset, the largest performance difference for HAC
SNG is 10.12% and for HAC AVG 9.9% at p2 = 6
and p3 = 0.2. In the speaker dataset, the largest per-
formance difference for HAC SNG is 10.83% and
for HAC AVG 7.83% at p2 = 8 and p3 = 0.2. HAC
CMP performs worse than TL MFS under most pa-
rameter settings in both datasets. The picture is the
same for p1 = 10.

Overall, the analysis of the WSI-based taxonomy
learning approach against TL MFS shows that HAC
SNG and HAC AVG perform better than TL MFS
under all parameter combinations for both datasets.
The main reason for their superior performance is
that their learned taxonomies contain a higher num-
ber of senses than TL MFS as a result of the sense
induction process. This greater sense coverage leads
to the discovery of a higher number of correct taxo-
nomic relations between senses than TL MFS, hence
in a better performance. To conclude, our results
verify our hypothesis and suggest that the unsuper-
vised learning of word senses contributes to produc-
ing taxonomies with a higher similarity to the gold
standard ones than traditional distributional similar-
ity methods.

88

Figure 4: Performance analysis of the proposed method for p1 = 5 and different combinations of p2 and p3.

Despite that, our evaluation also shows that in
most cases HAC CMP is unable to exploit the in-
duced senses and performs worse than TL MFS,
HAC SNG and HAC AVG. This result was not ex-
pected, since HAC SNG employs a local criterion to
merge two clusters and does not consider the global
structure of the clusters, in effect, being biased to-
wards elongated clusters. The observation of the
gold standard taxonomies shows that they consist
both of cohyponym concepts which are expected
to be contextually related, but also of cohyponyms
which are not expected to appear in similar contexts.
For example, someone would expect a high similar-
ity between WAN, LAN, or between snood and tulle.
However, the same does not apply for snood and
cheesecloth or tulle and grillwork, because cheese-
cloth and grillwork appear in significantly different
contexts than snood and tulle. Despite that, all of
them are cohyponyms. This issue is more prevalent
in the speaker dataset, where concepts such as loud-
speaker, tannoy, woofer are expected to be contex-
tually related, while cohyponyms such as whisperer,
lecturer and interviewer are not. This means that the
gold standard taxonomies include elongated clusters
and explains the superior performance of HAC SNG.

This issue is not affecting HAC AVG, but it has a sig-
nificant effect on HAC CMP. Generally, HAC CMP
employs a non-local criterion by considering the di-
ameter of a candidate cluster. This results in com-
pact clusters with small diameters, as opposed to
elongated ones.

5 Conclusion

We presented an unsupervised method for taxonomy
learning that employs WSI to identify the senses of
target words and then builds a taxonomy of these
senses using HAC. We have shown that dealing with
polysemy by means of sense induction helps to de-
velop taxonomies that capture a higher number of
correct taxonomic relations than traditional distribu-
tional similarity methods, which associate each tar-
get word with one vector of features, in effect, merg-
ing its senses.

Acknowledgements

This work is supported by the European Commis-
sion via the EU FP7 INDECT project, Grant No.
218086, Research area: SEC-2007-1.2-01 Intelli-
gent Urban Environment Observation System.

89

References
E. Agirre and A. Soroa. 2007. SemEval-2007 Task

02: Evaluating Word Sense Induction and Discrimi-
nation Systems. In Proceedings of the Fourth Interna-
tional Workshop on Semantic Evaluations, pages 7–12,
Prague, Czech Republic.

R. A. Amsler. 1981. A Taxonomy for English Nouns and
Verbs. In Proceedings of the 19th ACL Conference,
pages 133–138, Stanford, California.

C. Biemann. 2006. Chinese Whispers - An Efficient
Graph Clustering Algorithm and its Application to
Natural Language Processing Problems. In Proceed-
ings of TextGraphs, pages 73–80, New York,USA.

P. Buitelaar, D. Olejnik, and M. Sintek. 2004. A Ptotégé
Plug-in for Ontology Extraction from Text Based on
Linguistic Analysis. In Proceedings of the 1st Euro-
pean Semantic Web Symposium, pages 31–44, Crete,
Greece. CEUR-WS.org.

S. A. Caraballo. 1999. Automatic Construction of a
Hypernym-labeled Noun Hierarchy from Text. In Pro-
ceedings of the 37th ACL Conference, pages 120–126,
College Park, Maryland.

P. Cimiano, A. Hotho, and S. Staab. 2004. Compar-
ing Conceptual, Divisive and Agglomerative Cluster-
ing for Learning Taxonomies from Text. In Proceed-
ings of the 16th ECAI Conference, pages 435–439, Va-
lencia, Spain.

P. Cimiano, A. Hotho, and S. Staab. 2005. Learning
Concept Hieararchies from Text Corpora Using For-
mal Concept Analysis. Journal of Artificial Intelli-
gence Research, 24:305–339.

P. Cimiano. 2006. Ontology Learning and Population
from Text: Algorithms, Evaluation and Applications.
Springer-Verlag New York, Inc., Secaucus, NJ, USA.

T. Dunning. 1993. Accurate Methods for the Statistics of
Surprise and Coincidence. Computational Linguistics,
19(1):61–74.

D. Faure and C. Nédellec. 1998. A Corpus-based Con-
ceptual Clustering Method for Verb Frames and On-
tology Acquisition. In LREC workshop on Adapting
lexical and corpus resources to sublanguages and ap-
plications, pages 5–12, Granada, Spain.

C. Fellbaum. 1998. Wordnet: An Electronic Lexical
Database. MIT Press, Cambridge, Massachusetts,
USA.

B. Ganter and R. Wille. 1999. Formal Concept Anal-
ysis: Mathematical Foundations. Springer-Verlag
New York, Inc., Secaucus, NJ, USA. Translator-C.
Franzke.

Z. Harris. 1968. Mathematical Structures of Language.
Wiley, New York, USA.

M. A. Hearst. 1992. Automatic Acquisition of Hy-
ponyms from Large Text Corpora. In Proceedings of

the 14th Coling Conference, pages 539–545, Nantes,
France.

C. H. Hwang. 1999. Incompletely and Imprecisely
Speaking: Using Dynamic Ontologies for Represent-
ing and Retrieving Information. In Proceedings of
the 6th International Workshop on Knowledge Repre-
sentation Meets Databases, pages 14–20, Linkoping,
Sweden. CEUR-WS.org.

B. King. 1967. Step-wise Clustering Procedures. Jour-
nal of the American Statistical Association, 69:86–
101.

I. P. Klapaftis and S. Manandhar. 2008. Word Sense In-
duction Using Graphs of Collocations. In Proceedings
of the 18th ECAI Conference, pages 298–302, Patras,
Greece. IOS Press.

A. Maedche and S. Staab. 2002. Measuring Similarity
between Ontologies. In Proceedings of the European
Conference on Knowledge Acquisition and Manage-
ment (EKAW), pages 251–263, London,UK. Springer-
Verlag.

D. Moldovan and A. Novischi. 2002. Lexical Chains
for Question Answering. In Proceedings of the 19th
Coling Conference, pages 1–7, Taipei, Taiwan.

R. Navigli and P. Velardi. 2004a. Learning Domain On-
tologies from Document Warehouses and Dedicated
web Sites. Computational Linguistics, 30(2):151–179.

R. Navigli and P. Velardi. 2004b. Structural Semantic In-
terconnection: a Knowledge-based Approach to Word
Sense Disambiguation. In Proceedings of Senseval-
3: Third International Workshop on the Evaluation of
Systems for the Semantic Analysis of Text, pages 179–
182, Barcelona, Spain.

M.L. Reinberger and P. Spyns. 2004. Discovering
Knowledge in Texts for the Learning of Dogma-
inspired Ontologies. In Proceedings of the ECAI
Workshop on Ontology Learning and Population,
pages 19–24, Valencia, Spain.

M. L. Reinberger, P. Spyns, W. Daelemans, and R. Meers-
man. 2003. Mining for Lexons: Applying Unsuper-
vised Learning Methods to create ontology bases. In
CoopIS/DOA/ODBASE, pages 803–819.

D. Sánchez and A. Moreno. 2005. Web-scale Taxon-
omy Learning. In Proceedings of the Workshop on
Learning and Extending Ontologies by using Machine
Learning methods, pages 53–60, Bonn, Germany.

P. H. A. Sneath and R. R. Sokal. 1973. Numerical Taxon-
omy, The Principles and Practice of Numerical Clas-
sification. W. H. Freeman, San Francisco, USA.

90

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 91–99,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Visual Information in Semantic Representation

Yansong Feng and Mirella Lapata
School of Informatics, University of Edinburgh
10 Crichton Street, Edinburgh, EH8 9AB, UK

Y.Feng-4@sms.ed.ac.uk, mlap@inf.ed.ac.uk

Abstract

The question of how meaning might be ac-
quired by young children and represented by
adult speakers of a language is one of the most
debated topics in cognitive science. Existing
semantic representation models are primarily
amodal based on information provided by the
linguistic input despite ample evidence indi-
cating that the cognitive system is also sensi-
tive to perceptual information. In this work we
exploit the vast resource of images and associ-
ated documents available on the web and de-
velop a model of multimodal meaning repre-
sentation which is based on the linguistic and
visual context. Experimental results show that
a closer correspondence to human data can be
obtained by taking the visual modality into ac-
count.

1 Introduction

The representation and modeling of word mean-
ing has been a central problem in cognitive science
and natural language processing. Both disciplines
are concerned with how semantic knowledge is ac-
quired, organized, and ultimately used in language
processing and understanding. A popular tradition
of studying semantic representation has been driven
by the assumption that word meaning can be learned
from the linguistic environment. Words that are sim-
ilar in meaning tend to behave similarly in terms
of their distributions across different contexts. Se-
mantic space models, among which Latent Semantic
Analysis (LSA, Landauer and Dumais 1997) is per-
haps known best, operationalize this idea by captur-
ing word meaning quantitatively in terms of simple
co-occurrence statistics. Each word w is represented
by a k element vector reflecting the local distribu-
tional context of w relative to k context words. More
recently, topic models have been gaining ground as
a more structured representation of word meaning.

In contrast to more standard semantic space mod-
els where word senses are conflated into a single
representation, topic models assume that words ob-
served in a corpus manifest some latent structure —
word meaning is a probability distribution over a set
of topics (corresponding to coarse-grained senses).
Each topic is a probability distribution over words,
and the content of the topic is reflected in the words
to which it assigns high probability.

Semantic space (and topic) models are extracted
from real language corpora, and thus provide a direct
means of investigating the influence of the statistics
of language on semantic representation. They have
been successful in explaining a wide range of be-
havioral data — examples include lexical priming,
deep dyslexia, text comprehension, synonym selec-
tion, and human similarity judgments (see Landauer
and Dumais 1997 and the references therein). They
also underlie a large number of natural language
processing (NLP) tasks including lexicon acquisi-
tion, word sense discrimination, text segmentation
and notably information retrieval. Despite their pop-
ularity, these models offer a somewhat impoverished
representation of word meaning based solely on in-
formation provided by the linguistic input.

Many experimental studies in language acquisi-
tion suggest that word meaning arises not only from
exposure to the linguistic environment but also from
our interaction with the physical world. For ex-
ample, infants are from an early age able to form
perceptually-based category representations (Quinn
et al., 1993). Perhaps unsurprisingly, words that re-
fer to concrete entities and actions are among the
first words being learned as these are directly ob-
servable in the environment (Bornstein et al., 2004).
Experimental evidence also shows that children re-
spond to categories on the basis of visual features,
e.g., they generalize object names to new objects of-
ten on the basis of similarity in shape (Landau et al.,
1998) and texture (Jones et al., 1991).

In this paper we aim to develop a unified mod-

91

eling framework of word meaning that captures the
mutual dependence between the linguistic and visual
context. This is a challenging task for at least two
reasons. First, in order to emulate the environment
within which word meanings are acquired, we must
have recourse to a corpus of verbal descriptions and
their associated images. Such corpora are in short
supply compared to the large volumes of solely tex-
tual data. Secondly, our model should integrate lin-
guistic and visual information in a single representa-
tion. It is unlikely that we have separate representa-
tions for different aspects of word meaning (Rogers
et al., 2004).

We meet the first challenge by exploiting mul-
timodal corpora, namely collections of documents
that contain pictures. Although large scale corpora
with a one-to-one correspondence between words
and images are difficult to come by, datasets that
contain images and text are ubiquitous. For exam-
ple, online news documents are often accompanied
by pictures. Using this data, we develop a model
that combines textual and visual information to learn
semantic representations. We assume that images
and their surrounding text have been generated by
a shared set of latent variables or topics. Our model
follows the general rationale of topic models — it is
based upon the idea that documents are mixtures of
topics. Importantly, our topics are inferred from the
joint distribution of textual and visual words. Our
experimental results show that a closer correspon-
dence to human word similarity and association can
be obtained by taking the visual modality into ac-
count.

2 Related Work

The bulk of previous work has focused on models of
semantic representation that are based solely on tex-
tual data. Many of these models represent words as
vectors in a high-dimensional space (e.g., Landauer
and Dumais 1997), whereas probabilistic alterna-
tives view documents as mixtures of topics, where
words are represented according to their likelihood
in each topic (e.g., Steyvers and Griffiths 2007).
Both approaches allow for the estimation of similar-
ity between words. Spatial models compare words
using distance metrics (e.g., cosine), while proba-
bilistic models measure similarity between terms ac-
cording to the degree to which they share the same
topic distributions.

Within cognitive science, the problem of how

words are grounded in perceptual representations
has attracted some attention. Previous modeling ef-
forts have been relatively small-scale, using either
artificial images, or data gathered from a few sub-
jects in the lab. Furthermore, the proposed models
work well for the tasks at hand (e.g., either word
learning or object categorization) but are not de-
signed as a general-purpose meaning representation.
For example, Yu (2005) integrates visual informa-
tion in a computational model of lexical acquisi-
tion and object categorization. The model learns a
mapping between words and visual features from
data provided by (four) subjects reading a children’s
story. In a similar vein, Roy (2002) considers the
problem of learning which words or word sequences
refer to objects in a synthetic image consisting of ten
rectangles. Andrews et al. (2009) present a proba-
bilistic model that incorporates perceptual informa-
tion (indirectly) by combining distributional infor-
mation gathered from corpus data with speaker gen-
erated feature norms1 (which are also word-based).

Much work in computer vision attempts to learn
the underlying connections between visual features
and words from examples of images annotated with
description keywords. The aim here is to enhance
image-based applications (e.g., search or retrieval)
by developing models that can label images with
keywords automatically. Most methods discover
the correlations between visual features and words
by introducing latent variables. Standard latent se-
mantic analysis (LSA) and its probabilistic variant
(PLSA) have been applied to this task (Pan et al.,
2004; Hofmann, 2001; Monay and Gatica-Perez,
2007). More sophisticated approaches estimate the
joint distribution of words and regional image fea-
tures, whilst treating annotation as a problem of sta-
tistical inference in a graphical model (Blei and Jor-
dan, 2003; Barnard et al., 2002).

Our own work aims to develop a model of se-
mantic representation that takes visual context into
account. We do not model explicitly the correspon-
dence of words and visual features, or learn a map-
ping between words and visual features. Rather,
we develop a multimodal representation of meaning
which is based on visual information and distribu-
tional statistics. We hypothesize that visual features
are crucial in acquiring and representing meaning

1Participants are given a series of object names and for each
object they are asked to name all the properties they can think
of that are characteristic of the object.

92

Michelle Obama fever hits the UK

In the UK on her first
visit as first lady, Michelle
Obama seems to be mak-
ing just as big an im-
pact. She has attracted as
much interest and column
inches as her husband on
this London trip; creating
a buzz with her dazzling outfits, her own schedule
of events and her own fanbase. Outside Bucking-
ham Palace, as crowds gathered in anticipation of
the Obamas’ arrival, Mrs Obama’s star appeal was
apparent.

Table 1: Each article in the document collection contains
a document (the title is shown in boldface), and image
with related content.

and conversely, that linguistic information can be
useful in isolating salient visual features. Our model
extracts a semantic representation from large docu-
ment collections and their associated images without
any human involvement. Contrary to Andrews et al.
(2009) we use visual features directly without rely-
ing on speaker generated norms. Furthermore, un-
like most work in image annotation, we do not em-
ploy any goldstandard data where images have been
manually labeled with their description keywords.

3 Semantic Representation Model

Much like LSA and the related topic models our
model creates semantic representations from large
document collections. Importantly, we assume that
the documents are paired with images which in turn
describe some of the document’s content. Our ex-
periments make use of news articles which are of-
ten accompanied with images illustrating events, ob-
jects or people mentioned in the text. Other datasets
with similar properties include Wikipedia entries
and their accompanying pictures, illustrated stories,
and consumer photo collections. An example news
article and its associated image is shown in Table 1
(we provide more detail on the database we used in
our experiments in Section 4).

Our model exploits the redundancy inherent in
this multimodal collection. Specifically, we assume
that the images and their surrounding text have been
generated by a shared set of topics. A potential

stumbling block here is the fact that images and
documents represent distinct modalities: images are
commonly described by a continuous feature space
(e.g., color, shape, texture; Barnard et al. 2002; Blei
and Jordan 2003), whereas words are discrete. For-
tunately, we can convert the visual features from a
continuous onto a discrete space, thereby rendering
image features more like word units. In the follow-
ing we describe how we do this and then move on to
present an extension of Latent Dirichlet Allocation
(LDA, Blei and Jordan 2003), a topic model that can
be used to represent meaning as a probability distri-
bution over a set of multimodal topics. Finally, we
discuss how word similarity can be measured under
this model.

3.1 Image Processing
A large number of image processing techniques have
been developed in computer vision for extracting
meaningful features which are subsequently used
in a modeling task. For example, a common first
step to all automatic image annotation methods is
partitioning the image into regions, using either an
image segmentation algorithm (such as normalized
cuts; Shi and Malik 2000) or a fixed-grid layout
(Feng et al., 2004). In the first case the image is
represented by irregular regions (see Figure 1(a)),
whereas in the second case the image is partitioned
into smaller scale regions which are uniformly ex-
tracted from a fixed grid (see Figure 1(b)). The ob-
tained regions are further represented by a standard
set of features including color, shape, and texture.
These can be treated as continuous vectors (Blei and
Jordan, 2003) or in quantized form (Barnard et al.,
2002).

Despite much progress in image segmentation,
there is currently no automatic algorithm that can
reliably divide an image into meaningful parts. Ex-
tracting features from small local regions is thus
preferable, especially for image collections that are
diverse and have low resolution (this is often the case
for news images). In our work we identify local re-
gions using a difference-of-Gaussians point detector
(see Figure 1(c)). This representation is based on de-
scriptors computed over automatically detected im-
age regions. It provides a much richer (and hopefully
more informative) feature space compared to the
alternative image representations discussed above.
For example, an image segmentation algorithm,
would extract at most 20 regions from the image
in Figure 1; uniform grid segmentation yields 143

93

(a) (b) (c)

Figure 1: Image partitioned into regions of varying granularity using (a) the normalized cut image segmentation algo-
rithm, (b) uniform grid segmentation, and (c) the SIFT point detector.

(11 × 13) regions, whereas an average of 240 points
(depending on the image content) are detected. A
non-sparse feature representation is critical in our
case, since we usually do not have more than one
image per document.

We compute local image descriptors using the
the Scale Invariant Feature Transform (SIFT) algo-
rithm (Lowe, 1999). Importantly, SIFT descriptors
are designed to be invariant to small shifts in posi-
tion, changes in illumination, noise, and viewpoint
and can be used to perform reliable matching be-
tween different views of an object or scene (Mikola-
jczyk and Schmid, 2003; Lowe, 1999). We further
quantize the SIFT descriptors using the K-means
clustering algorithm to obtain a discrete set of vi-
sual terms (visiterms) which form our visual vo-
cabulary VocV . Each entry in this vocabulary stands
for a group of image regions which are similar
in content or appearance and assumed to origi-
nate from similar objects. More formally, each im-
age I is expressed in a bag-of-words format vector,
[v1,v2, ...,vL], where vi = n only if I has n regions
labeled with vi. Since both images and documents
in our corpus are now represented as bags-of-words,
and since we assume that the visual and textual
modalities express the same content, we can go a
step further and represent the document and its as-
sociated image as a mixture of verbal and visual
words dMix. We will then learn a topic model on this
concatenated representation of visual and textual in-
formation.

3.2 Topic Model
Latent Dirichlet Allocation (Blei et al., 2003; Grif-
fiths et al., 2007) is a probabilistic model of text gen-

eration. LDA models each document using a mix-
ture over K topics, which are in turn characterized
as distributions over words. The words in the docu-
ment are generated by repeatedly sampling a topic
according to the topic distribution, and selecting a
word given the chosen topic. Under this framework,
the problem of meaning representation is expressed
as one of statistical inference: given some data —
textual and visual words — infer the latent structure
from which it was generated. Word meaning is thus
modeled as a probability distribution over a set of
latent multimodal topics.

LDA can be represented as a three level hierarchi-
cal Bayesian model. Given a corpus consisting of M
documents, the generative process for a document d
is as follows. We first draw the mixing proportion
over topics θd from a Dirichlet prior with parame-
ters α. Next, for each of the Nd words wdn in doc-
ument d, a topic zdn is first drawn from a multino-
mial distribution with parameters θdn. The probabil-
ity of a word token w taking on value i given that
topic z = j is parametrized using a matrix β with
bi j = p(w = i|z = j). Integrating out θd’s and zdn’s,
gives P(D|α,β), the probability of a corpus (or doc-
ument collection):

M

∏
d=1

Z
P(θd |α)

(
Nd

∏
n=1

∑
zdn

P(zdn|θd)P(wdn|zdn,β)

)
dθd

The central computational problem in topic
modeling is to compute the posterior distribu-
tion P(θ,z|w,α,β) of the hidden variables given
a document w = (w1,w2, . . . ,wN). Although this
distribution is intractable in general, a variety of ap-

94

proximate inference algorithms have been proposed
in the literature including variational inference
which our model adopts. Blei et al. (2003) introduce
a set of variational parameters, γ and φ, and show
that a tight lower bound on the log likelihood of
the probability can be found using the following
optimization procedure:

(γ∗,φ∗) = argmin
γ,φ

D(q(θ,z|γ,φ)||p(θ,z|w,α,β))

Here, D denotes the Kullback-Leibler (KL) diver-
gence between the true posterior and the variational
distribution q(θ,z|γ,φ) defined as: q(θ,z|γ,φ) =
q(θ|γ)∏

N
n=1 q(zn|φn), where the Dirichlet parame-

ter γ and the multinomial parameters (φ1, . . . ,φN) are
the free variational parameters. Notice that the opti-
mization of parameters (γ∗(w),φ∗(w)) is document-
specific (whereas α is corpus specific).

Previous applications of LDA (e.g., to docu-
ment classification or information retrieval) typi-
cally make use of the posterior Dirichlet parame-
ters γ∗(w) associated with a given document. We are
not so much interested in γ as we wish to obtain a
semantic representation for a given word across doc-
uments. We therefore train the LDA model sketched
above on a corpus of multimodal documents {dMix}
consisting of both textual and visual words. We se-
lect the number of topics, K, and apply the LDA al-
gorithm to obtain the β parameters, where β repre-
sents the probability of a word wi given a topic z j,
p(wi|z j) = βi j. The meaning of wi is thus extracted
from β and is a K-element vector, whose compo-
nents correspond to the probability of wi given each
latent topic assumed to have generated the document
collection.

3.3 Similarity Measures
The ability to accurately measure the similarity or
association between two words is often used as a di-
agnostic for the psychological validity of semantic
representation models. In the topic model described
above, the similarity between two words w1 and w2
can be intuitively measured by the extent to which
they share the same topics (Griffiths et al., 2007).
For example, we may use the KL divergence to mea-
sure the difference between the distributions p and q:

D(p,q) =
K

∑
j=1

p j log2
p j

q j

where p and q are shorthand for P(w1|z j)
and P(w2|z j), respectively.

The KL divergence is asymmetric and in many ap-
plications, it is preferable to apply a symmetric mea-
sure such as the Jensen Shannon (JS) divergence.
The latter measures the “distance” between p and q
through (p+q)

2 , the average of p and q:

JS(p,q) =
1
2

[
D(p,

(p+q)
2

)+D(q,
(p+q)

2
)
]

An alternative approach to expressing the similar-
ity between two words is proposed in Griffiths et al.
(2007). The underlying idea is that word association
can be expressed as a conditional distribution. If we
have seen word w1, then we can determine the prob-
ability that w2 will be also generated by comput-
ing P(w2|w1). Although the LDA generative model
allows documents to contain multiple topics, here it
is assumed that both w1 and w2 came from a single
topic:

P(w2|w1) =
K
∑

z=1
P(w2|z)P(z|w1)

P(z|w1) ∝ P(w1|z)P(z)

where p(z) is uniform, a single topic is sampled
from the distribution P(z|w1), and an overall esti-
mate is obtained by averaging over all topics K.

Griffiths et al. (2007) report results on mod-
eling human association norms using exclu-
sively P(w2|w1). We are not aware of any previous
work that empirically assesses which measure is best
at capturing semantic similarity. We undertake such
an empirical comparison as it is not a priory obvious
how similarity is best modeled under a multimodal
representation.

4 Experimental Setup

In this section we discuss our experimental design
for assessing the performance of the model pre-
sented above. We give details on our training proce-
dure and parameter estimation and present the base-
line method used for comparison with our model.

Data We trained the multimodal topic model on
the corpus created in Feng and Lapata (2008). It
contains 3,361 documents that have been down-
loaded from the BBC News website.2 Each doc-
ument comes with an image that depicts some of
its content. The images are usually 203 pixels wide

2http://news.bbc.co.uk/

95

and 152 pixels high. The average document length
is 133.85 words. The corpus has 542,414 words in
total. Our experiments used a vocabulary of 6,253
textual words. These were words that occurred at
least five times in the whole corpus, excluding
stopwords. The accompanying images were prepro-
cessed as follows. We first extracted SIFT features
from each image (150 on average) which we subse-
quently quantized into a discrete set of visual terms
using K-means. As we explain below, we deter-
mined an optimal value for K experimentally.

Evaluation Our evaluation experiments compared
the multimodal topic model against a standard text-
based topic model trained on the same corpus whilst
ignoring the images. Both models were assessed on
two related tasks, that have been previously used
to evaluate semantic representation models, namely
word association and word similarity.

In order to simulate word association, we used
the human norms collected by Nelson et al. (1999).3

These were established by presenting a large num-
ber of participants with a cue word (e.g., rice) and
asking them to name an associate word in response
(e.g., Chinese, wedding, food, white). For each word,
the norms provide a set of associates and the fre-
quencies with which they were named. We can thus
compute the probability distribution over associates
for each cue. Analogously, we can estimate the de-
gree of similarity between a cue and its associates
using our model (and any of the measures in Sec-
tion 3.3). And consequently examine (using corre-
lation analysis) the degree of linear relationship be-
tween the human cue-associate probabilities and the
automatically derived similarity values. We also re-
port how many times the word with the highest prob-
ability under the model was the first associate in the
norms. The norms contain 10,127 unique words in
total. Of these, we created semantic representations
for the 3,895 words that appeared in our corpus.

Our word similarity experiment used the Word-
Sim353 test collection (Finkelstein et al., 2002)
which consists of relatedness judgments for word
pairs. For each pair, a similarity judgment (on
a scale of 0 to 10) was elicited from human
subjects (e.g., tiger-cat are very similar, whereas
delay–racism are not). The average rating for each
pair represents an estimate of the perceived sim-
ilarity of the two words. The task varies slightly
from word association. Here, participants are asked

3http://www.usf.edu/Freeassociation.

Figure 2: Performance of multimodal topic model on pre-
dicting word association under varying topics and visual
terms (development set).

to rate perceived similarity rather than generate the
first word that came into their head in response to a
cue word. The collection contains similarity ratings
for 353 word pairs. Of these, we constructed seman-
tic representations for the 254 that appeared in our
corpus. We also evaluated how well model produced
similarities correlate with human ratings. Through-
out this paper we report correlation coefficients us-
ing Pearson’s r.

5 Experimental Results

Model Selection The multimodal topic model has
several parameters that must be instantiated. These
include the quantization of the image features, the
number of topics, the choice of similarity function,
and the values for α and β. We explored the pa-
rameter space on held-out data. Specifically, we fit
the parameters for the word association and similar-
ity models separately using a third of the associa-
tion norms and WordSim353 similarity judgments,
respectively. As mentioned in Section 3.1 we used
K-means to quantize the image features into a dis-
crete set of visual terms. We varied K from 250
to 2000. We also varied the number of topics from 25
to 750 for both the multimodal and text-based topic
models. The parameter α was set to 0.1 and β was
initialized randomly. The model was trained using
variational Bayes until convergence of its bound on
the likelihood objective. This took 1,000 iterations.

Figure 2 shows how word association perfor-
mance varies on the development set with different
numbers of topics (t) and visual terms (r) according

96

Figure 3: Performance of multimodal topic model on pre-
dicting word similarity under varying topics and visual
terms (development set).

to three similarity measures: KL divergence, JS di-
vergence, and P(w2|w1), the probability of word w2
given w1 (see Section 3.3). Figure 3 shows results on
the development set for the word similarity task. As
far as word association is concerned, we obtain best
results with P(w2|w1), 750 visual terms and 750 top-
ics (r = 0.188). On word similarity, JS performs best
with 500 visual terms and 25 topics (r = 0.374). It is
not surprising that P(w2|w1) works best for word as-
sociation. The measure expresses the associative re-
lations between words as a conditional distribution
over potential response words w2 for cue word w1.
A symmetric function is more appropriate for word
similarity as the task involves measuring the degree
to which to words share some meaning (expressed
as topics in our model) rather than whether a word is
likely to be generated as a response to another word.
These differences also lead to different parametriza-
tions of the semantic space. A rich visual term vo-
cabulary (750 terms) is needed for modeling associ-
ation as broader aspects of word meaning are taken
into account, whereas a sparser more focused repre-
sentation (with 500 visual terms and 25 overall top-
ics) is better at isolating the common semantic con-
tent between two words. We explored the parame-
ter space for the text-based topic model in a sim-
ilar fashion. On the word association task the best
correlation coefficient was achieved with 750 top-
ics and P(w2|w1) (r = 0.139). On word similarity,
the best results were obtained with 75 topics and the
JS divergence (r = 0.309).

Model Word Association Word Similarity
UpperBnd 0.400 0.545
MixLDA 0.123 0.318
TxtLDA 0.077 0.247

Table 2: Model performance on word association and
similarity (test set).

Model Comparison Table 2 summarizes our re-
sults on the test set using the optimal set of pa-
rameters as established on the development set. The
first row shows how well humans agree with each
other on the two tasks (UpperBnd). We estimated
the intersubject correlation using leave-one-out re-
sampling4 (Weiss and Kulikowski, 1991). As can
be seen, in all cases the topic model based on tex-
tual and visual modalities (MixLDA) outperforms
the model relying solely on textual information
(TxtLDA). The differences in performance are sta-
tistically significant (p < 0.05) using a t-test (Cohen
and Cohen, 1983).

Steyvers and Griffiths (2007) also predict word
association using Nelson’s norms and a state-of-the-
art LDA model. Although they do not report correla-
tions, they compute how many times the word with
the highest probability P(w2|w1) under the model
was the first associate in the human norms. Using
a considerably larger corpus (37,651 documents),
they reach an accuracy of 16.15%. Our corpus con-
tains 3,361 documents, the MixLDA model per-
forms at 14.15% and the LDA model at 13.16%. Us-
ing a vector-based model trained on the BNC corpus
(100M words), Washtell and Markert (2009) report a
correlation of 0.167 on the same association data set,
whereas our model achieves a correlation of 0.123.
With respect to word similarity, Marton et al. (2009)
report correlations within the range of 0.31–0.54 us-
ing different instantiations of a vector-based model
trained on the BNC with a vocabulary of 33,000
words. Our MixLDA model obtains a correlation
of 0.318 with a vocabulary five times smaller (6,253
words). Although these results are not strictly com-
parable due to the different nature and size of the
training data, they give some indication of the qual-
ity of our model in the context of other approaches
that exploit only the textual modality. Besides, our
intent is not to report the best performance possible,

4We correlated the data obtained from each participant with
the ratings obtained from all other participants and report the
average.

97

GAME, CONSOLE, XBOX, SECOND, SONY, WORLD,
TIME, JAPAN, JAPANESE, SCHUMACHER, LAP, MI-
CROSOFT, ALONSO, RACE, TITLE, WIN, GAMERS,
LAUNCH, RENAULT, MARKET

PARTY, MINISTER, BLAIR, LABOUR, PRIME, LEADER,
GOVERNMENT, TELL, BROW, MP, TONY, SIR, SECRE-
TARY, ELECTION, CONFERENCE, POLICY, NEW, WANT,
PUBLIC, SPEECH

SCHOOL, CHILD, EDUCATION, STUDENT, WORK,
PUPIL, PARENT, TEACHER, GOVERNMENT, YOUNG,
SKILL, AGE, NEED, UNIVERSITY, REPORT, LEVEL,
GOOD, HELL, NEW, SURVEY

Table 3: Most frequent words in three topics learnt from
a corpus of image-document pairs.

but to show that a model of meaning representation
is more accurate when taking visual information into
account.

Table 3 shows some examples of the topics
found by our model, which largely form coher-
ent blocks of semantically related words. In gen-
eral, we observe that the model using image fea-
tures tends to prefer words that visualize easily
(e.g., CONSOLE, XBOX). Furthermore, the visual
modality helps obtain crisper meaning distinctions.
Here, SCHUMACHER is a very probable world for
the “game” cluster. This is because the Formula One
driver appears as a character in several video games
discussed and depicted in our corpus. For com-
parison the “game” cluster for the text-based LDA
model contains the words: GAME, USE, INTERNET,
SITE, USE, SET, ONLINE, WEB, NETWORK, MUR-
RAY, PLAY, MATCH, GOOD, WAY, BREAK, TECH-
NOLOGY, WORK, NEW, TIME, SECOND.

We believe the model presented here works bet-
ter than a vanilla text-based topic model for at least
three reasons: (1) the visual information helps cre-
ate better clusters (i.e., conceptual representations)
which in turn are used to measure similarity or as-
sociation; these clusters themselves are amodal but
express commonalities across the visual and textual
modalities; (2) the model is also able to capture per-
ceptual correlations between words. For example,
RED is the most frequent associate for APPLE in Nel-
son’s norms. This association is captured in our vi-
sual features (pictures with apples cluster with pic-
tures showing red objects) even though RED does not
co-occur with APPLE in our data; (3) finally, even in
cases where two words are visually very different in
terms of shape or color (e.g., BANANA and APPLE),

they tend to appear in images with similar structure
(e.g., on tables, in bowls, as being held or eaten by
someone) and thus often share some common ele-
ment of meaning.

6 Conclusion

In this paper we developed a computational model
that unifies visual and linguistic representations of
word meaning. The model learns from natural lan-
guage corpora paired with images under the assump-
tion that visual terms and words are generated by
mixtures of latent topics. We have shown that a
closer correspondence to human data can be ob-
tained by explicitly taking the visual modality into
account in comparison to a model that estimates the
topic structure solely from the textual modality. Be-
yond word similarity and association, the approach
is promising for modeling word learning and cate-
gorization as well as a wide range of priming stud-
ies. Outwith cognitive science, we hope that some
of the work described here might be of relevance
to more applied tasks such as thesaurus acquisition,
word sense disambiguation, multimodal search, im-
age retrieval, and summarization.

Future improvements include developing a non-
parametric version that jointly learns how many vi-
sual terms and topics are optimal. Currently, the size
of the visual vocabulary and the number of topics
are parameters in the model, that must be tuned sep-
arately for different tasks and corpora. Another ex-
tension concerns the creation of visual terms. Our
model assumes that an image is a bag of words. The
assumption is convenient for modeling purposes, but
clearly false in the context of visual processing. Im-
age descriptors found closely to each other are likely
to represent the same object and should form one
term rather than several distinct ones (Wang and
Grimson, 2007). Taking the spatial structure among
visual words into account would yield better topics
and overall better semantic representations. Analo-
gously, we could represent documents by their syn-
tactic structure (Boyd-Graber and Blei, 2009).

References
Andrews, M., G. Vigliocco, and D. Vinson. 2009. In-

tegrating experiential and distributional data to learn
semantic representations. Psychological Review
116(3):463–498.

Barnard, K., P. Duygulu, D. Forsyth, N. de Freitas,
D. Blei, and M. Jordan. 2002. Matching words and pic-

98

tures. Journal of Machine Learning Research 3:1107–
1135.

Blei, D. and M. Jordan. 2003. Modeling annotated data.
In Proceedings of the 26th Annual International ACM
SIGIR Conference. Toronto, ON, pages 127–134.

Blei, D. M., A. Y. Ng, and M. I. Jordan. 2003. Latent
Dirichlet allocation. Journal of Machine Learning Re-
search 3:993–1022.

Bornstein, M. H., L. R. Cote, S. Maital, K. Painter, S.-
Y. Park, and L. Pascual. 2004. Cross-linguistic analy-
sis of vocabulary in young children: Spanish, Dutch,
French, Hebrew, Italian, Korean, and American En-
glish. Child Development 75(4):1115–1139.

Boyd-Graber, J. and D. Blei. 2009. Syntactic topic
models. In Proceedings of the 22nd Conference on
Advances in Neural Information Processing Systems.
MIT, Press, Cambridge, MA, pages 185–192.

Cohen, J. and P. Cohen. 1983. Applied Multiple Regres-
sion/Correlation Analysis for the Behavioral Sciences.
Hillsdale, NJ: Erlbaum.

Feng, S., V. Lavrenko, and R. Manmatha. 2004. Mul-
tiple Bernoulli relevance models for image and video
annotation. In Proceedings of the International Con-
ference on Computer Vision and Pattern Recognition.
Washington, DC, pages 1002–1009.

Feng, Y. and M. Lapata. 2008. Automatic image annota-
tion using auxiliary text information. In Proceedings
of the ACL-08: HLT . Columbus, pages 272–280.

Finkelstein, L., E. Gabrilovich, Y. Matias, E. Rivlin,
Z. Solan, G. Wolfman, and E. Ruppin. 2002. Placing
search in context: The concept revisited. ACM Trans-
actions on Information Systems 20(1):116–131.

Griffiths, T. L., M. Steyvers, and J. B. Tenenbaum. 2007.
Topics in semantic representation. Psychological Re-
view 114(2):211–244.

Hofmann, T. 2001. Unsupervised learning by proba-
bilistic latent semantic analysis. Machine Learning
41(2):177–196.

Jones, S. S., L. B. Smith, and B. Landau. 1991. Ob-
ject properties and knowledge in early lexical learning.
Child Development (62):499–516.

Landau, B., L. Smith, and S. Jones. 1998. Object percep-
tion and object naming in early development. Trends
in Cognitive Science 27:19–24.

Landauer, T. and S. T. Dumais. 1997. A solution to
Plato’s problem: the latent semantic analysis theory
of acquisition, induction, and representation of knowl-
edge. Psychological Review 104(2):211–240.

Lowe, D. 1999. Object recognition from local scale-
invariant features. In Proceedings of International
Conference on Computer Vision. IEEE Computer So-
ciety, pages 1150–1157.

Marton, Y., S. Mohammad, and P. Resnik. 2009. Estimat-
ing semantic distance using soft semantic constraints
in knowledge-source – corpus hybrid models. In Pro-

ceedings of the 2009 Conference on Empirical Meth-
ods in Natural Language Processing. Singapore, pages
775–783.

Mikolajczyk, K. and C. Schmid. 2003. A performance
evaluation of local descriptors. In Proceedings of the
9th International Conference on Computer Vision and
Pattern Recognition. Nice, France, volume 2, pages
257–263.

Monay, F. and D. Gatica-Perez. 2007. Modeling semantic
aspects for cross-media image indexing. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence
29(10):1802–1817.

Nelson, D. L., C. L. McEvoy, and T.A. Schreiber. 1999.
The university of South Florida word association
norms.

Pan, J., H. Yang, P. Duygulu, and C. Faloutsos. 2004. Au-
tomatic image captioning. In Proceedings of the 2004
International Conference on Multimedia and Expo.
Taipei, pages 1987–1990.

Quinn, P., P. Eimas, and S. Rosenkrantz. 1993. Evidence
for representations of perceptually similar natural cate-
gories by 3-month and 4-month old infants. Perception
22:463–375.

Rogers, T. T., M. A. Lambon Ralph, P. Garrard,
S. Bozeat, J. L. McClelland, J. R. Hodges, and K. Pat-
terson. 2004. Structure and deterioration of semantic
memory: A neuropsychological and computational in-
vestigation. Psychological Review 111(1):205–235.

Roy, D. 2002. Learning words and syntax for a visual de-
scription task. Computer Speech and Language 16(3).

Shi, J. and J. Malik. 2000. Normalized cuts and image
segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence 22(8):888–905.

Steyvers, M. and T. Griffiths. 2007. Probabilistic topic
models. In T. Landauer, D. McNamara, S Dennis, and
W Kintsch, editors, A Handbook of Latent Semantic
Analysis, Psychology Press.

Wang, X. and E. Grimson. 2007. Spatial latent Dirichlet
allocation. In Proceedings of the 20th Conference on
Advances in Neural Information Processing Systems.
MI Press, Cambridge, MA, pages 1577–1584.

Washtell, J. and K. Markert. 2009. A comparison of win-
dowless and window-based computational association
measures as predictors of syntagmatic human associa-
tions. In Proceedings of the 2009 Conference on Em-
pirical Methods in Natural Language Processing. Sin-
gapore, pages 628–637.

Weiss, S. M. and C. A. Kulikowski. 1991. Computer Sys-
tems that Learn: Classification and Prediction Meth-
ods from Statistics, Neural Nets, Machine Learning,
and Expert Systems. Morgan Kaufmann, San Mateo,
CA.

Yu, C. 2005. The emergence of links between lexical
acquisition and object categorization: A computational
study. Connection Science 17(3):381–397.

99

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 100–108,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Automatic Evaluation of Topic Coherence

David Newman,♠♣ Jey Han Lau,♥ Karl Grieser♦, and Timothy Baldwin,♠♥
♠ NICTA Victoria Research Laboratory, Australia

♣ Dept of Computer Science, University of California, Irvine
♥ Dept of Computer Science and Software Engineering, University of Melbourne, Australia

♦ Dept of Information Systems, University of Melbourne, Australia
newman@uci.edu, depthchargex@gmail.com,

kgrieser@csse.unimelb.edu.au, tb@ldwin.net

Abstract

This paper introduces the novel task of topic
coherence evaluation, whereby a set of words,
as generated by a topic model, is rated for
coherence or interpretability. We apply a
range of topic scoring models to the evaluation
task, drawing on WordNet, Wikipedia and the
Google search engine, and existing research
on lexical similarity/relatedness. In compar-
ison with human scores for a set of learned
topics over two distinct datasets, we show a
simple co-occurrence measure based on point-
wise mutual information over Wikipedia data
is able to achieve results for the task at or
nearing the level of inter-annotator correla-
tion, and that other Wikipedia-based lexical
relatedness methods also achieve strong re-
sults. Google produces strong, if less consis-
tent, results, while our results over WordNet
are patchy at best.

1 Introduction

There has traditionally been strong interest within
computational linguistics in techniques for learning
sets of words (aka topics) which capture the latent
semantics of a document or document collection, in
the form of methods such as latent semantic analysis
(Deerwester et al., 1990), probabilistic latent seman-
tic analysis (Hofmann, 2001), random projection
(Widdows and Ferraro, 2008), and more recently, la-
tent Dirichlet allocation (Blei et al., 2003; Griffiths
and Steyvers, 2004). Such methods have been suc-
cessfully applied to a myriad of tasks including word
sense discrimination (Brody and Lapata, 2009), doc-
ument summarisation (Haghighi and Vanderwende,
2009), areal linguistic analysis (Daume III, 2009)
and text segmentation (Sun et al., 2008). In each

case, extrinsic evaluation has been used to demon-
strate the effectiveness of the learned topics in the
application domain, but standardly, no attempt has
been made to perform intrinsic evaluation of the top-
ics themselves, either qualitatively or quantitatively.
In machine learning, on the other hand, researchers
have modified and extended topic models in a vari-
ety of ways, and evaluated intrinsically in terms of
model perplexity (Wallach et al., 2009), but there has
been less effort on qualitative understanding of the
semantic nature of the learned topics.

This research seeks to fill the gap between topic
evaluation in computational linguistics and machine
learning, in developing techniques to perform intrin-
sic qualitative evaluation of learned topics. That
is, we develop methods for evaluating the qual-
ity of a given topic, in terms of its coherence to
a human. After learning topics from a collection
of news articles and a collection of books, we ask
humans to decide whether individual learned top-
ics are coherent, in terms of their interpretability
and association with a single over-arching seman-
tic concept. We then propose models to predict
topic coherence, based on resources such as Word-
Net, Wikipedia and the Google search engine, and
methods ranging from ontological similarity to link
overlap and term co-occurrence. Over topics learned
from two distinct datasets, we demonstrate that there
is remarkable inter-annotator agreement on what is
a coherent topic, and additionally that our methods
based on Wikipedia are able to achieve nearly perfect
agreement with humans over the evaluation of topic
coherence.

This research forms part of a larger research
agenda on the utility of topic modelling in gist-
ing and visualising document collections, and ulti-
mately enhancing search/discovery interfaces over

100

document collections (Newman et al., to appeara).
Evaluating topic coherence is a component of the
larger question of what are good topics, what char-
acteristics of a document collection make it more
amenable to topic modelling, and how can the po-
tential of topic modelling be harnessed for human
consumption (Newman et al., to appearb).

2 Related Work

Most earlier work on intrinsically evaluating learned
topics has been on the basis of perplexity results,
where a model is learned on a collection of train-
ing documents, then the log probability of the un-
seen test documents is computed using that learned
model. Usually perplexity is reported, which is the
inverse of the geometric mean per-word likelihood.
Perplexity is useful for model selection and adjust-
ing parameters (e.g. number of topics T), and is
the standard way of demonstrating the advantage of
one model over another. Wallach et al. (2009) pre-
sented efficient and unbiased methods for computing
perplexity and evaluating almost any type of topic
model.

While statistical evaluation of topic models is
reasonably well understood, there has been much
less work on evaluating the intrinsic semantic qual-
ity of topics learned by topic models, which could
have a far greater impact on the overall value of
topic modeling for end-user applications. Some re-
searchers have started to address this problem, in-
cluding Mei et al. (2007) who presented approaches
for automatic labeling of topics (which is core to the
question of coherence and semantic interpretabil-
ity), and Griffiths and Steyvers (2006) who applied
topic models to word sense discrimination tasks.
Misra et al. (2008) used topic modelling to identify
semantically incoherent documents within a docu-
ment collection (vs. coherent topics, as targeted in
this research). Chang et al. (2009) presented the
first human-evaluation of topic models by creating
a task where humans were asked to identify which
word in a list of five topic words had been ran-
domly switched with a word from another topic.
This work showed some possibly counter-intuitive
results, where in some cases humans preferred mod-
els with higher perplexity. This type of result shows
the need for further exploring measures other than

perplexity for evaluating topic models. In earlier
work, we carried out preliminary experimentation
using pointwise mutual information and Google re-
sults to evaluate topic coherence over the same set
of topics as used in this research (Newman et al.,
2009).

Part of this research takes inspiration from the
work on automatic evaluation in machine translation
(Papineni et al., 2002) and automatic summarisation
(Lin, 2004). Here, the development of automated
methods with high correlation with human subjects
has opened the door to large-scale automated evalua-
tion of system outputs, revolutionising the respective
fields. While our aspirations are more modest, the
basic aim is the same: to develop a fully-automated
method for evaluating a well-grounded task, which
achieves near-human correlation.

3 Topic Modelling

In order to evaluate topic modelling, we require a
topic model and set of topics for a given document
collection. While the evaluation methodology we
describe generalises to any method which gener-
ates sets of words, all of our experiments are based
on Latent Dirichlet Allocation (LDA, aka Discrete
Principal Component Analysis), on the grounds that
it is a state-of-the-art method for generating topics.

LDA is a Bayesian graphical model for text docu-
ment collections represented by bags-of-words (see
Blei et al. (2003), Griffiths and Steyvers (2004),
Buntine and Jakulin (2004)). In a topic model, each
document in the collection of D documents is mod-
elled as a multinomial distribution over T topics,
where each topic is a multinomial distribution over
W words. Typically, only a small number of words
are important (have high likelihood) in each topic,
and only a small number of topics are present in each
document.

The collapsed Gibbs sampled topic model simul-
taneously learns the topics and the mixture of topics
in documents by iteratively sampling the topic as-
signment z to every word in every document, using
the Gibbs sampling update:

p(zid = t|xid = w, z¬id) ∝
N¬id

wt + β∑
w N¬id

wt + Wβ

N¬id
td + α∑

t N¬id
td + Tα

101

where zid = t is the assignment of the ith word in
document d to topic t, xid = w indicates that the
current observed word is w, and z¬id is the vector of
all topic assignments not including the current word.
Nwt represents integer count arrays (with the sub-
scripts denoting what is counted), and α and β are
Dirichlet priors.

The maximum a posterior (MAP) estimates of the
topics p(w|t), t = 1 . . . T are given by:

p(w|t) =
Nwt + β∑

w Nwt + Wβ

We will follow the convention of representing a
topic via its top-n words, ordered by p(w|t). Here,
we use the top-ten words, as they usually provide
sufficient detail to convey the subject of a topic,
and distinguish one topic from another. For the
remainder of this paper, we will refer to individ-
ual topics by its list of top-ten words, denoted by
w = (w1, . . . , w10).

4 Topic Evaluation Methods

We experiment with scoring methods based on
WordNet (Section 4.1), Wikipedia (Section 4.2) and
the Google search engine (Section 4.3). In the case
of Google, we query for the entire topic, but with
WordNet and Wikipedia, this takes the form of scor-
ing each word-pair in a given topic w based on the
component words (w1, . . . , w10). Given some (sym-
metric) word-similarity measure D(wi, wj), two
straightforward ways of producing a combined score
from the 45 (i.e.

(
10
2

)
) word-pair scores are: (1) the

arithmetic mean, and (2) the median, as follows:

Mean-D-Score(w) =
mean{D(wi, wj), ij ∈ 1 . . . 10, i < j}

Median-D-Score(w) =
median{D(wi, wj), ij ∈ 1 . . . 10, i < j}

Intuitively, the median seems the more natural rep-
resentation, as it is less affected by outlier scores,
but we experiment with both, and fall back to empir-
ical verification of which is the better combination
method.

4.1 WordNet similarity

WordNet (Fellbaum, 1998) is a lexical ontology
that represents word sense via “synsets”, which
are structured in a hypernym/hyponym hierarchy
(nouns) or hypernym/troponym hierarchy (verbs).
WordNet additionally links both synsets and words
via lexical relations including antonymy, morpho-
logical derivation and holonymy/meronym.

In parallel with the development of WordNet, a
number of computational methods for calculating
the semantic relatedness/similarity between synset
pairs (i.e. sense-specified word pairs) have been de-
veloped, as we outline below. These methods ap-
ply to synset rather than word pairs, so to generate a
single score for a given word pair, we look up each
word in WordNet and exhaustively generate scores
for each sense pairing defined by them, and calcu-
late their arithmetic mean.1

The majority of the methods (all methods other
than HSO, VECTOR and LESK) are restricted to op-
erating strictly over hierarchical links within a sin-
gle hierarchy. As the verb and noun hierarchies are
not connected (other than via derivational links), this
means that it is generally not possible to calculate
the similarity between noun and verb senses, for ex-
ample. In such cases, we simply drop the synset
pairing in question from our calculation of the mean.

The least common subsumer (LCS) is a common
feature to a number of the measures, and is defined
as the deepest node in the hierarchy that subsumes
both of the synsets under question.

For all our experiments over WordNet, we use the
WordNet::Similarity package.

Path distance (PATH)
The simplest of the WordNet-based measures is

to count the number of nodes visited while going
from one word to another via the hypernym hierar-
chy. The path distance between two nodes is de-
fined as the number of nodes that lie on the short-
est path between two words in the hierarchy. This

1We also experimented with the median, and trialled filter-
ing the set of senses in a variety of ways, e.g. using only the
first sense (the sense with the highest prior) for a given word,
or using only the word senses associated with the POS with the
highest prior. In all cases, the overall trend was for the correla-
tion with the human scores to drop relative to the mean, so we
only present the numbers for the mean in this paper.

102

count of nodes includes the beginning and ending
word nodes.

Leacock-Chodorow (LCH)
The measure of semantic similarity devised by

Leacock et al. (1998) finds the shortest path between
two WordNet synsets (sp(c1, c2)) using hypernym
and synonym relationships. This path length is then
scaled by the maximum depth of WordNet (D), and
the log likelihood taken:

simlch(c1, c2) = − log
sp(c1, c2)

2 ·D
Wu-Palmer (WUP)

Wu and Palmer (1994) proposed to scale the depth
of the two synset nodes (depthc1 and depthc2) by
the depth of their LCS (depth(lcsc1,c2)):

simwup(c1, c2) =
2 · depth(lcsc1,c2)

depthc1 + depthc2 + 2 · depth(lcsc1,c2)

The scaling means that specific terms (deeper in the
hierarchy) that are close together are more semanti-
cally similar than more general terms, which have a
short path distance between them. Only hypernym
relationships are used in this measure, as the LCS
is defined by the common member in the concepts’
hypernym path.

Hirst-St Onge (HSO)
Hirst and St-Onge (1998) define a measure of se-

mantic similarity based on length and tortuosity of
the path between nodes. Hirst and St-Onge attribute
directions (up, down and horizontal) to the larger set
of WordNet relationships, and identify the path from
one word to another utilising all of these relation-
ships. The relatedness score is then computed by
the weighted sum of the path length between the two
words (len(c1, c2)) and the number of turns the path
makes (turns(c1, c2)) to take this route:

relhso(c1, c2) =
C − len(c1, c2)− k × turns(c1, c2)

where C and k are constants. Additionally, a set of
restrictions is placed on the path so that it may not
be more than a certain length, may not contain more
than a set number of turns, and may only take turns
in certain directions.

Resnik Information Content (RES)
Resnik (1995) presents a method for weighting

edges in WordNet (avoiding the assumption that all
edges between nodes have equal importance), by
weighting edges between nodes by their frequency
of use in textual corpora.

Resnik found that the most effective measure of
comparison using this methodology was to measure
the Information Content (IC(c) = − log p(c)) of
the subsumer with the greatest Information Content
from the set of all concepts that subsumed the two
initial concepts (S(c1, c2)) being compared:

simres(c1, c2) = max
c∈S(c1,c2)

[− log p(c)]

Lin (LIN)
Lin (1998) expanded on the Information Theo-

retic approach presented by Resnik by scaling the
Information Content of each node by the informa-
tion content of their LCS:

simlin(c1, c2) =
2× log p(lcsc1,c2)

log p(c1) + log p(c2)

This measure contrasts the joint content of the two
concepts with the difference between them.

Jiang-Conrath (JCN)
Jiang and Conrath (1997) define a measure that

utilises the components of the information content
of the LCS in a different manner:

simjcn(c1, c2) =
1

IC(a) + IC(b)− 2× IC(lcsa,b)

Instead of defining commonality and difference as
with Lin’s measure, the key determinant is the speci-
ficity of the two nodes compared with their LCS.

Lesk (LESK)
Lesk (1986) proposed a significantly different ap-

proach to lexical similarity to that proposed in the
methods presented above, using the lexical over-
lap in dictionary definitions (or glosses) to disam-
biguate word sense. The sense definitions that con-
tain the most words in common indicate the most
likely sense of the word given its co-occurrence with
similar word senses. Banerjee and Pedersen (2002)

103

adapted this method to utilise WordNet sense glosses
rather than dictionary definitions, and expand the
dictionary definitions via ontological links, and it is
this method we experiment with in this paper.

Vector (VECTOR)
Schütze (1998) uses the words surrounding a term

in a piece of text to form a context vector that de-
scribes the context in which the word sense appears.
For a set of words associated with a target sense, a
context vector is computed as the centroid vector of
these words. The centroid context vectors each rep-
resent a word sense. To compare word senses, the
cosine similarity of the context vectors is used.

4.2 Wikipedia
In the last few years, there has been a surge of in-
terest in using Wikipedia to calculate semantic sim-
ilarity, using the Wikipedia article content, in-article
links and document categories (Strübe and Ponzetto,
2006; Gabrilovich and Markovitch, 2007; Milne and
Witten, 2008). We present a selection of such meth-
ods below. There are a number of Wikipedia-based
scoring methods which we do not present results
for here (notably Strübe and Ponzetto (2006) and
Gabrilovich and Markovitch (2007)), due to their
computational complexity and uncertainty about the
full implementation details of the methods.

As with WordNet, a given word will often have
multiple entries in Wikipedia, grouped in a disam-
biguation page. For MIW, RACO and DOCSIM,
we apply the same strategy as we did with Word-
Net, in exhaustively calculating the pairwise scores
between the sets of documents associated with each
term, and averaging across them.

Milne-Witten (MIW)
Milne and Witten (2008) adapted the Resnik

(1995) methodology to utilise the count of links
pointing to an article. As Wikipedia is self-
referential (articles link to related articles), no ex-
ternal data is needed to find the “referred-to-edness”
of a concept. Milne and Witten use an adapted In-
formation Content measure that weights the number
of links from one article to another (c1 → c2) by the
total number of links to the second article:

w(c1 → c2) = |c1 → c2| × log
∑
x∈W

|W |
|c1, x)|

where x is an article in W , Wikipedia. This mea-
sure provides the similarity of one article to another,
however this is asymmetrical. The above metric is
used to find the weights of all outlinks from the two
articles being compared:

~c1 = (w(c1 → l1), w(c1 → l2), · · · , w(c1 → ln))
~c2 = (w(c2 → l1), w(c2 → l2), · · · , w(c2 → ln))

for the set of links l that is the union of the sets of
outlinks from both articles. The overall similarity
of the two articles is then calculated by taking the
cosine similarity of the two vectors.

Related Article Concept Overlap (RACO)
We also determine the category overlap of two

articles by examining the outlinks of both articles,
in the form of the Related Article Concept Overlap
(RACO) measure. The concept overlap of the sets
of respective outlinks is given by the union of the
two sets of categories from the outlinks from each
article:

overlap(c1, c1) =∣∣(∪
l∈ol(c1)

cat(l)
) ∩(∪

l∈ol(c2)

cat(l)
)∣∣

where ol(c1) is the set of outlinks from article c1,
and cat(l) is the set of categories of which the arti-
cle at outlink l is a member. To account for article
size (and differing number of outlinks), the Jaccard
coefficient is used:

relraco(c1, c2) =∣∣(∪
l∈ol(c1) cat(l)

) ∩(∪
l∈ol(c2) cat(l)

)∣∣∣∣∪
l∈ol(c1) cat(l)

∣∣ +
∣∣∪

l∈ol(c2) cat(l)
∣∣

Document Similarity (DOCSIM)
In addition to these two measures of semantic re-

latedness, we experiment with simple cosine simi-
larity of the text of Wikipedia articles as a measure
of semantic relatedness.

Term Co-occurrence (PMI)
Another variant is to treat Wikipedia as a single

meta-document and score word pairs using term co-
occurrence. Here, we calculate the pointwise mu-
tual information (PMI) of each word pair, estimated

104

Selected high-scoring topics (unanimous score=3):
[NEWS] space earth moon science scientist light nasa mission planet mars ...
[NEWS] health disease aids virus vaccine infection hiv cases infected asthma ...
[BOOKS] steam engine valve cylinder pressure piston boiler air pump pipe ...
[BOOKS] furniture chair table cabinet wood leg mahogany piece oak louis ...

Selected low-scoring topics (unanimous score=1):
[NEWS] king bond berry bill ray rate james treas byrd key ...
[NEWS] dog moment hand face love self eye turn young character ...
[BOOKS] soon short longer carried rest turned raised filled turn allowed ...
[BOOKS] act sense adv person ppr plant sax genus applied dis ...

Table 1: A selection of high-scoring and low-scoring topics

from the entire corpus of over two million English
Wikipedia articles (∼1 billion words). PMI has been
studied variously in the context of collocation ex-
traction (Pecina, 2008), and is one measure of the
statistical independence of observing two words in
close proximity. Using a sliding window of 10-
words to identify co-occurrence, we computed the
PMI of all a given word pair (wi, wj) as, following
Newman et al. (2009):

PMI(wi, wj) = log
p(wi, wj)

p(wi)p(wj)

4.3 Search engine-based similarity

Finally, we present two search engine-based scor-
ing methods, based on Newman et al. (2009). In
this case the external data source is the entire World
Wide Web, via the Google search engine. Unlike
the methods presented above, here we query for the
topic in its entirety,2 meaning that we return a topic-
level score rather than scores for individual word or
word sense pairs. In each case, we mark each search
term with the advanced search option + to search
for the terms exactly as is and prevent Google from
using synonyms or lexical variants of the term. An
example query is: +space +earth +moon +science
+scientist +light +nasa +mission +planet +mars.

Google title matches (TITLES)
Firstly, we score topics by the relative occurrence

of their component words in the titles of documents
returned by Google:

Google-titles-match(w) = 1 [wi = vj]

2All queries were run on 15/09/2009.

where i = 1, . . . , 10 and j = 1, . . . , |V |, vj are
all the unique terms mentioned in the titles from the
top-100 search results, and 1 is the indicator function
to count matches. For example, in the top-100 re-
sults for our query above, there are 194 matches with
the ten topic words, so Google-titles-match(w) =
194.

Google log hits matches (LOGHITS)
Second, we issue queries as above, but return the

log number of hits for our query:

Google-log-hits(w) =
log10(# results from search for w)

where w is the search string +w1 +w2 +w3 . . .
+w10. For example, our query above returns
171,000 results, so Google-log-hits(w) = 5.2. and
the URL titles from the top-100 results include a to-
tal of 194 matches with the ten topic words, so for
this topic Google-titles-match(w)=194.

5 Experimental Setup

We learned topics for two document collections: a
collection of news articles, and a collection of books.
These collections were chosen to produce sets of
topics that have more variable quality than one typi-
cally observes when topic modeling highly uniform
content. The collection of D = 55, 000 news arti-
cles was selected from English Gigaword, and the
collection of D = 12, 000 books was downloaded
from the Internet Archive. We refer to these collec-
tions as NEWS and BOOKS, respectively.

Standard procedures were used to tokenize each
collection and create the bags-of-words. We learned

105

Resource Method Median Mean

WordNet

HSO −0.29 0.34
JCN 0.08 0.22
LCH −0.18 −0.07
LESK 0.38 0.37
LIN 0.18 0.25
PATH 0.19 0.11
RES −0.10 0.13
VECTOR 0.07 0.20
WUP 0.03 0.10

Wikipedia

RACO 0.61 0.63
MIW 0.69 0.60
DOCSIM 0.45 0.50
PMI 0.78 0.77

Google
TITLES 0.80
LOGHITS 0.46

Gold-standard IAA 0.79 0.73

Table 2: Spearman rank correlation ρ values for the
different scoring methods over the NEWS dataset (best-
performing method for each resource underlined; best-
performing method overall in boldface)

topic models of NEWS and BOOKS using T = 200
and T = 400 topics respectively. We randomly
selected a total of 237 topics from the two collec-
tions for user scoring. We asked N = 9 users to
score each of the 237 topics on a 3-point scale where
3=“useful” (coherent) and 1=“useless” (less coher-
ent).

We provided annotators with a rubric and guide-
lines on how to judge whether a topic was useful
or useless. In addition to showing several examples
of useful and useless topics, we instructed users to
decide whether the topic was to some extent coher-
ent, meaningful, interpretable, subject-heading-like,
and something-you-could-easily-label. For our pur-
poses, the usefulness of a topic can be thought of
as whether one could imagine using the topic in a
search interface to retrieve documents about a par-
ticular subject. One indicator of usefulness is the
ease by which one could think of a short label to de-
scribe a topic.

Table 1 shows a selection of high- and low-
scoring topics, as scored by the N = 9 users. The
first topic illustrates the notion of labelling coher-
ence, as space exploration, e.g., would be an obvi-
ous label for the topic. The low-scoring topics dis-
play little coherence, and one would not expect them

Resource Method Median Mean

WordNet

HSO 0.15 0.59
JCN −0.20 0.19
LCH −0.31 −0.15
LESK 0.53 0.53
LIN 0.09 0.28
PATH 0.29 0.12
RES 0.57 0.66
VECTOR −0.08 0.27
WUP 0.41 0.26

Wikipedia

RACO 0.62 0.69
MIW 0.68 0.70
DOCSIM 0.59 0.60
PMI 0.74 0.77

Google
TITLES 0.51
LOGHITS −0.19

Gold-standard IAA 0.82 0.78

Table 3: Spearman rank correlation ρ values for the dif-
ferent scoring methods over the BOOKS dataset (best-
performing method for each resource underlined; best-
performing method overall in boldface)

to be useful as categories or facets in a search inter-
face. Note that the useless topics from both collec-
tions are not chance artifacts produced by the mod-
els, but are in fact stable and robust statistical fea-
tures in the data sets.

6 Results

The results for the different topic scoring methods
over the NEWS and BOOKS collections are pre-
sented in Tables 2 and 3, respectively. In each ta-
ble, we separate out the scoring methods into those
based on WordNet (from Section 4.1), those based
on Wikipedia (from Section 4.2), and those based on
Google (from Section 4.3).

As stated in Section 4, we experiment with two
methods for combining the word-pair scores (for all
methods other than the two Google methods, which
operate natively over a word set), namely the arith-
metic mean and median. We present the numbers
for these two methods in each table. In each case,
we evaluate via Spearman rank correlation, revers-
ing the sign of the calculated ρ value for PATH (as it
is the only instance of a distance metric, where the
gold-standard is made up of similarity values).

We include the inter-annotator agreement (IAA)
in the final row of each table, which we consider

106

to be the upper bound for the task. This is calcu-
lated as the average Spearman rank correlation be-
tween each annotator and the mean/median of the
remaining annotators for that topic. Encouragingly,
there is relatively little difference in the IAA be-
tween the two datasets; the median-based calcula-
tion produces slightly higher ρ values and is empiri-
cally the method of choice.3

Of all the topic scoring methods tested, PMI
(term co-occurrence via simple pointwise mutual in-
formation) is the most consistent performer, achiev-
ing the best or near-best results over both datasets,
and approaching or surpassing the inter-annotator
agreement. This indicates both that the task of
topic evaluation as defined in this paper is com-
putationally tractable, and that word-pair based co-
occurrence is highly successful at modelling topic
coherence.

Comparing the different resources, Wikipedia is
far and away the most consistent performing, with
PMI producing the best results, followed by MIW
and RACO, and finally DOCSIM. There is rela-
tively little difference in results between NEWS and
BOOKS for the Wikipedia methods. Google achieves
the best results over NEWS, for TITLES (actually
slightly above the IAA), but the results fall away
sharply over BOOKS. The reason for this can be
seen in the sample topics in Table 1: the topics for
BOOKS tend to be more varied in word class than
for NEWS, and contain less proper names; also, the
genre of BOOKS is less well represented on the web.
We hypothesise that Wikipedia’s encyclopedic na-
ture means that it has good coverage over both do-
mains, and thus more robust.

Turning to WordNet, the overall results are
markedly better over BOOKS, again largely because
of the relative sparsity of proper names in the re-
source. The results for individual methods are some-
what surprising. Whereas JCN and LCH have been
shown to be two of the best-performing methods
over lexical similarity tasks (Budanitsky and Hirst,
2005; Agirre et al., 2009), they perform abysmally
at the topic scoring task. Indeed, the spread of re-
sults across the WordNet similarity methods (no-

3Note that the choice of mean or median for IAA is in-
dependent of that for the scoring methods, as they are com-
bining different things: annotator scores in the one hand, and
word/concept pair scores on the other.

tably HSO, JCN, LCH, LIN, RES and WUP) is
much greater than we had expected. The single most
consistent method is LESK, which is based on lexi-
cal overlap in definition sentences and makes rela-
tively modest use of the WordNet hierarchy. Supple-
mentary evaluation where we filtered out all proper
nouns from the topics (based on simple POS priors
for each word learned from an automatically-tagged
version of the British National Corpus) led to a slight
increase in results for the WordNet methods; the full
results are omitted for reasons of space. In future
work, we intend to carry out error analysis to deter-
mine why some of the methods performed so badly,
or inconsistently across the two datasets.

There is no clear answer to the question of
whether the mean or median is the best method for
combining the pair-wise scores.

7 Conclusions

We have proposed the novel task of topic coher-
ence evaluation as a form of intrinsic topic evalu-
ation with relevance in document search/discovery
and visualisation applications. We constructed
a gold-standard dataset of topic coherence scores
over the output of a topic model for two distinct
datasets, and evaluated a wide range of topic scor-
ing methods over this dataset, drawing on WordNet,
Wikipedia and the Google search engine. The sin-
gle best-performing method was term co-occurrence
within Wikipedia based on pointwise mutual infor-
mation, which achieve results very close to the inter-
annotator agreement for the task. Google was also
found to perform well over one of the two datasets,
while the results for the WordNet-based methods
were overall surprisingly low.

Acknowledgements
NICTA is funded by the Australian government as rep-
resented by Department of Broadband, Communication
and Digital Economy, and the Australian Research Coun-
cil through the ICT centre of Excellence programme. DN
has also been supported by a grant from the Institute of
Museum and Library Services, and a Google Research
Award.

References
E Agirre, E Alfonseca, K Hall, J Kravalova, M Paşca,

and A Soroa. 2009. A study on similarity and re-

107

latedness using distributional and WordNet-based ap-
proaches. In Proc. of HLT: NAACL 2009, pages 19–
27, Boulder, Colorado.

S Banerjee and T Pedersen. 2002. An adapted Lesk algo-
rithm for word sense disambiguation using WordNet.
Proc. of CICLing’02, pages 136–145.

DM Blei, AY Ng, and MI Jordan. 2003. Latent Dirich-
let allocation. Journal of Machine Learning Research,
3:993–1022.

S Brody and M Lapata. 2009. Bayesian word sense
induction. In Proc. of EACL 2009, pages 103–111,
Athens, Greece.

A Budanitsky and G Hirst. 2005. Evaluating WordNet-
based Measures of Lexical Sematic Relatedness.
Computational Linguistics, 32(1):13–47.

WL Buntine and A Jakulin. 2004. Applying discrete
PCA in data analysis. In Proc. of UAI 2004, pages
59–66.

J Chang, J Boyd-Graber, S Gerris, C Wang, and D Blei.
2009. Reading tea leaves: How humans interpret topic
models. In Proc. of NIPS 2009.

H Daume III. 2009. Non-parametric bayesian areal lin-
guistics. In Proc. of HLT: NAACL 2009, pages 593–
601, Boulder, USA.

Scott Deerwester, Susan T. Dumais, George W. Furnas,
Thomas K. Landauer, and Richard Harshman. 1990.
Indexing by latent semantic analysis. Journal of the
American Society of Information Science, 41(6).

C Fellbaum, editor. 1998. WordNet: An Electronic Lexi-
cal Database. MIT Press, Cambridge, USA.

E Gabrilovich and S Markovitch. 2007. Computing se-
mantic relatedness using Wikipedia-based explicit se-
mantic analysis. In Proc. of IJCAI’07, pages 1606–
1611, Hyderabad, India.

T Griffiths and M Steyvers. 2004. Finding scientific top-
ics. In Proc. of the National Academy of Sciences, vol-
ume 101, pages 5228–5235.

T Griffiths and M Steyvers. 2006. Probabilistic topic
models. In Latent Semantic Analysis: A Road to
Meaning.

A Haghighi and L Vanderwende. 2009. Exploring con-
tent models for multi-document summarization. In
Proc. of HLT: NAACL 2009, pages 362–370, Boulder,
USA.

G Hirst and D St-Onge. 1998. Lexical chains as repre-
sentations of context for the detection and correction
of malapropism. In Fellbaum (Fellbaum, 1998), pages
305–332.

T Hofmann. 2001. Unsupervised learning by proba-
bilistic latent semantic analysis. Machine Learning,
42(1):177–196.

JJ Jiang and DW Conrath. 1997. Semantic similarity
based on corpus statistics and lexical taxonomy. In
Proc. of COLING’97, pages 19–33, Taipei, Taiwan.

C Leacock, G A Miller, and M Chodorow. 1998. Using
corpus statistics and WordNet relations for sense iden-
tification. Computational Linguistics, 24(1):147–65.

M Lesk. 1986. Automatic sense disambiguation us-
ing machine readable dictionaries: how to tell a pine
cone from an ice cream cone. In Proc. of SIGDOC’86,
pages 24–26, Toronto, Canada.

D Lin. 1998. Automatic retrieval and clustering of sim-
ilar words. In Proc. of COLING/ACL’98, pages 768–
774, Montreal, Canada.

C-Y Lin. 2004. ROUGE: a package for automatic
evaluation of summaries. In Proc. of the ACL 2004
Workshop on Text Summarization Branches Out (WAS
2004), pages 74–81, Barcelona, Spain.

Q Mei, X Shen, and CX Zhai. 2007. Automatic labeling
of multinomial topic models. In Proc. of KDD 2007,
pages 490–499.

D Milne and IH Witten. 2008. An effective, low-
cost measure of semantic relatedness obtained from
Wikipedia links. In Proc. of AAAI Workshop on
Wikipedia and Artificial Intelligence, pages 25–30,
Chicago, USA.

H Misra, O Cappe, and F Yvon. 2008. Using LDA to
detect semantically incoherent documents. In Proc. of
CoNLL 2008, pages 41–48, Manchester, England.

D Newman, S Karimi, and L Cavedon. 2009. External
evaluation of topic models. In Proc. of ADCS 2009,
pages 11–18, Sydney, Australia.

D Newman, T Baldwin, L Cavedon, S Karimi, D Mar-
tinez, and J Zobel. to appeara. Visualizing docu-
ment collections and search results using topic map-
ping. Journal of Web Semantics.

D Newman, Y Noh, E Talley, S Karimi, and T Bald-
win. to appearb. Evaluating topic models for digital
libraries. In Proc. of JCDL/ICADL 2010, Gold Coast,
Australia.

K Papineni, S Roukos, T Ward, and W-J Zhu. 2002.
BLEU: a method for automatic evaluation of machine
translation. In Proc. of ACL 2002, pages 311–318,
Philadelphia, USA.

P Pecina. 2008. Lexical Association Measures: Colloca-
tion Extraction. Ph.D. thesis, Charles University.

P Resnik. 1995. Using information content to evalu-
ate semantic similarity in a taxonomy. In Proc. of IJ-
CAI’95, pages 448–453, Montreal, Canada.

H Schütze. 1998. Automatic word sense discrimination.
Computational Linguistics, 24(1):97–123.

M Strübe and SP Ponzetto. 2006. WikiRelate! comput-
ing semantic relateness using Wikipedia. In Proc. of
AAAI’06, pages 1419–1424, Boston, USA.

Q Sun, R Li, D Luo, and X Wu. 2008. Text segmentation
with LDA-based Fisher kernel. In Proc. of ACL-08:
HLT, pages 269–272.

HM Wallach, I Murray, R Salakhutdinov, and
DM Mimno. 2009. Evaluation methods for
topic models. In Proc. of ICML 2009, page 139.

D Widdows and K Ferraro. 2008. Semantic Vectors:
A scalable open source package and online technol-
ogy management application. In Proc. of LREC 2008,
Marrakech, Morocco.

Z Wu and M Palmer. 1994. Verb selection and lexical
selection. In Proc. of ACL’94, pages 133–138, Las
Cruces, USA.

108

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 109–117,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Multi-Prototype Vector-Space Models of Word Meaning

Joseph Reisinger
Department of Computer Science
The University of Texas at Austin

1 University Station C0500
Austin, TX 78712-0233

joeraii@cs.utexas.edu

Raymond J. Mooney
Department of Computer Science
The University of Texas at Austin

1 University Station C0500
Austin, TX 78712-0233

mooney@cs.utexas.edu

Abstract

Current vector-space models of lexical seman-
tics create a single “prototype” vector to rep-
resent the meaning of a word. However, due
to lexical ambiguity, encoding word mean-
ing with a single vector is problematic. This
paper presents a method that uses cluster-
ing to produce multiple “sense-specific” vec-
tors for each word. This approach provides
a context-dependent vector representation of
word meaning that naturally accommodates
homonymy and polysemy. Experimental com-
parisons to human judgements of semantic
similarity for both isolated words as well as
words in sentential contexts demonstrate the
superiority of this approach over both proto-
type and exemplar based vector-space models.

1 Introduction

Automatically judging the degree of semantic sim-
ilarity between words is an important task useful
in text classification (Baker and McCallum, 1998),
information retrieval (Sanderson, 1994), textual en-
tailment, and other language processing tasks. The
standard empirical approach to this task exploits the
distributional hypothesis, i.e. that similar words ap-
pear in similar contexts (Curran and Moens, 2002;
Lin and Pantel, 2002; Pereira et al., 1993). Tra-
ditionally, word types are represented by a sin-
gle vector of contextual features derived from co-
occurrence information, and semantic similarity is
computed using some measure of vector distance
(Lee, 1999; Lowe, 2001).

However, due to homonymy and polysemy, cap-
turing the semantics of a word with a single vector is
problematic. For example, the word club is similar

to both bat and association, which are not at all simi-
lar to each other. Word meaning violates the triangle
inequality when viewed at the level of word types,
posing a problem for vector-space models (Tver-
sky and Gati, 1982). A single “prototype” vector
is simply incapable of capturing phenomena such as
homonymy and polysemy. Also, most vector-space
models are context independent, while the meaning
of a word clearly depends on context. The word club
in “The caveman picked up the club” is similar to bat
in “John hit the robber with a bat,” but not in “The
bat flew out of the cave.”

We present a new resource-lean vector-space
model that represents a word’s meaning by a set of
distinct “sense specific” vectors. The similarity of
two isolated words A and B is defined as the mini-
mum distance between one of A’s vectors and one of
B’s vectors. In addition, a context-dependent mean-
ing for a word is determined by choosing one of the
vectors in its set based on minimizing the distance
to the vector representing the current context. Con-
sequently, the model supports judging the similarity
of both words in isolation and words in context.

The set of vectors for a word is determined by un-
supervised word sense discovery (WSD) (Schütze,
1998), which clusters the contexts in which a word
appears. In previous work, vector-space lexical sim-
ilarity and word sense discovery have been treated
as two separate tasks. This paper shows how they
can be combined to create an improved vector-space
model of lexical semantics. First, a word’s contexts
are clustered to produce groups of similar context
vectors. An average “prototype” vector is then com-
puted separately for each cluster, producing a set of
vectors for each word. Finally, as described above,
these cluster vectors can be used to determine the se-

109

mantic similarity of both isolated words and words
in context. The approach is completely modular, and
can integrate any clustering method with any tradi-
tional vector-space model.

We present experimental comparisons to human
judgements of semantic similarity for both isolated
words and words in sentential context. The results
demonstrate the superiority of a clustered approach
over both traditional prototype and exemplar-based
vector-space models. For example, given the iso-
lated target word singer our method produces the
most similar word vocalist, while using a single pro-
totype gives musician. Given the word cell in the
context: “The book was published while Piasecki
was still in prison, and a copy was delivered to his
cell.” the standard approach produces protein while
our method yields incarcerated.

The remainder of the paper is organized as fol-
lows: Section 2 gives relevant background on pro-
totype and exemplar methods for lexical semantics,
Section 3 presents our multi-prototype method, Sec-
tion 4 presents our experimental evaluations, Section
5 discusses future work, and Section 6 concludes.

2 Background

Psychological concept models can be roughly di-
vided into two classes:

1. Prototype models represented concepts by an
abstract prototypical instance, similar to a clus-
ter centroid in parametric density estimation.

2. Exemplar models represent concepts by a con-
crete set of observed instances, similar to non-
parametric approaches to density estimation in
statistics (Ashby and Alfonso-Reese, 1995).

Tversky and Gati (1982) famously showed that con-
ceptual similarity violates the triangle inequality,
lending evidence for exemplar-based models in psy-
chology. Exemplar models have been previously
used for lexical semantics problems such as selec-
tional preference (Erk, 2007) and thematic fit (Van-
dekerckhove et al., 2009). Individual exemplars can
be quite noisy and the model can incur high com-
putational overhead at prediction time since naively
computing the similarity between two words using
each occurrence in a textual corpus as an exemplar
requires O(n2) comparisons. Instead, the standard

... chose Zbigniew Brzezinski
for the position of ...
... thus the symbol s position
on his clothing was ...
... writes call options against
the stock position ...
... offered a position with ...
... a position he would hold
until his retirement in ...
... endanger their position as
a cultural group...
... on the chart of the vessel s
current position ...
... not in a position to help...

(cluster#2)
post
appointme
nt, role, job

(cluster#4)
lineman,
tackle, role,
scorer

(cluster#1)
location
importance
bombing

(collect contexts) (cluster)

(cluster#3)
intensity,
winds,
hour, gust

(similarity)

single
prototype

Figure 1: Overview of the multi-prototype approach
to near-synonym discovery for a single target word
independent of context. Occurrences are clustered
and cluster centroids are used as prototype vectors.
Note the “hurricane” sense of position (cluster 3) is
not typically considered appropriate in WSD.

approach is to compute a single prototype vector for
each word from its occurrences.

This paper presents a multi-prototype vector space
model for lexical semantics with a single parame-
ter K (the number of clusters) that generalizes both
prototype (K = 1) and exemplar (K = N , the total
number of instances) methods. Such models have
been widely studied in the Psychology literature
(Griffiths et al., 2007; Love et al., 2004; Rosseel,
2002). By employing multiple prototypes per word,
vector space models can account for homonymy,
polysemy and thematic variation in word usage.
Furthermore, such approaches require only O(K2)
comparisons for computing similarity, yielding po-
tential computational savings over the exemplar ap-
proach when K � N , while reaping many of the
same benefits.

Previous work on lexical semantic relatedness has
focused on two approaches: (1) mining monolin-
gual or bilingual dictionaries or other pre-existing
resources to construct networks of related words
(Agirre and Edmond, 2006; Ramage et al., 2009),
and (2) using the distributional hypothesis to au-
tomatically infer a vector-space prototype of word
meaning from large corpora (Agirre et al., 2009;
Curran, 2004; Harris, 1954). The former approach
tends to have greater precision, but depends on hand-

110

crafted dictionaries and cannot, in general, model
sense frequency (Budanitsky and Hirst, 2006). The
latter approach is fundamentally more scalable as it
does not rely on specific resources and can model
corpus-specific sense distributions. However, the
distributional approach can suffer from poor preci-
sion, as thematically similar words (e.g., singer and
actor) and antonyms often occur in similar contexts
(Lin et al., 2003).

Unsupervised word-sense discovery has been
studied by number of researchers (Agirre and Ed-
mond, 2006; Schütze, 1998). Most work has also
focused on corpus-based distributional approaches,
varying the vector-space representation, e.g. by in-
corporating syntactic and co-occurrence information
from the words surrounding the target term (Pereira
et al., 1993; Pantel and Lin, 2002).

3 Multi-Prototype Vector-Space Models

Our approach is similar to standard vector-space
models of word meaning, with the addition of a per-
word-type clustering step: Occurrences for a spe-
cific word type are collected from the corpus and
clustered using any appropriate method (§3.1). Sim-
ilarity between two word types is then computed as
a function of their cluster centroids (§3.2), instead of
the centroid of all the word’s occurrences. Figure 1
gives an overview of this process.

3.1 Clustering Occurrences

Multiple prototypes for each word w are generated
by clustering feature vectors v(c) derived from each
occurrence c ∈ C(w) in a large textual corpus and
collecting the resulting cluster centroids πk(w), k ∈
[1,K]. This approach is commonly employed in un-
supervised word sense discovery; however, we do
not assume that clusters correspond to traditional
word senses. Rather, we only rely on clusters to cap-
ture meaningful variation in word usage.

Our experiments employ a mixture of von Mises-
Fisher distributions (movMF) clustering method
with first-order unigram contexts (Banerjee et al.,
2005). Feature vectors v(c) are composed of indi-
vidual features I(c, f), taken as all unigrams occur-
ring f ∈ F in a 10-word window around w.

Like spherical k-means (Dhillon and Modha,
2001), movMF models semantic relatedness using

cosine similarity, a standard measure of textual sim-
ilarity. However, movMF introduces an additional
per-cluster concentration parameter controlling its
semantic breadth, allowing it to more accurately
model non-uniformities in the distribution of cluster
sizes. Based on preliminary experiments comparing
various clustering methods, we found movMF gave
the best results.

3.2 Measuring Semantic Similarity
The similarity between two words in a multi-
prototype model can be computed straightforwardly,
requiring only simple modifications to standard dis-
tributional similarity methods such as those pre-
sented by Curran (2004). Given words w and w′, we
define two noncontextual clustered similarity met-
rics to measure similarity of isolated words:

AvgSim(w,w′) def=
1
K2

K∑
j=1

K∑
k=1

d(πk(w), πj(w′))

MaxSim(w,w′) def= max
1≤j≤K,1≤k≤K

d(πk(w), πj(w′))

where d(·, ·) is a standard distributional similarity
measure. In AvgSim, word similarity is computed
as the average similarity of all pairs of prototype
vectors; In MaxSim the similarity is the maximum
over all pairwise prototype similarities. All results
reported in this paper use cosine similarity, 1

Cos(w,w′) =

∑
f∈F I(w, f) · I(w′, f)√∑

f∈F I(w, f)2
√∑

f∈F I(w′, f)2

We compare across two different feature functions
tf-idf weighting and χ2 weighting, chosen due to
their ubiquity in the literature (Agirre et al., 2009;
Curran, 2004).

In AvgSim, all prototype pairs contribute equally
to the similarity computation, thus two words are
judged as similar if many of their senses are simi-
lar. MaxSim, on the other hand, only requires a sin-
gle pair of prototypes to be close for the words to be
judged similar. Thus, MaxSim models the similarity
of words that share only a single sense (e.g. bat and
club) at the cost of lower robustness to noisy clusters
that might be introduced when K is large.

When contextual information is available,
AvgSim and MaxSim can be modified to produce

1The main results also hold for weighted Jaccard similarity.

111

more precise similarity computations:

AvgSimC(w,w′) def=

1
K2

K∑
j=1

K∑
k=1

dc,w,kdc′,w′,jd(πk(w), πj(w′))

MaxSimC(w,w′) def= d(π̂(w), π̂(w′))

where dc,w,k
def= d(v(c), πk(w)) is the likelihood of

context c belonging to cluster πk(w), and π̂(w) def=
πarg max1≤k≤K dc,w,k

(w), the maximum likelihood
cluster for w in context c. Thus, AvgSimC corre-
sponds to soft cluster assignment, weighting each
similarity term in AvgSim by the likelihood of the
word contexts appearing in their respective clus-
ters. MaxSimC corresponds to hard assignment,
using only the most probable cluster assignment.
Note that AvgSim and MaxSim can be thought of as
special cases of AvgSimC and MaxSimC with uni-
form weight to each cluster; hence AvgSimC and
MaxSimC can be used to compare words in context
to isolated words as well.

4 Experimental Evaluation

4.1 Corpora
We employed two corpora to train our models:

1. A snapshot of English Wikipedia taken on Sept.
29th, 2009. Wikitext markup is removed, as
are articles with fewer than 100 words, leaving
2.8M articles with a total of 2.05B words.

2. The third edition English Gigaword corpus,
with articles containing fewer than 100 words
removed, leaving 6.6M articles and 3.9B words
(Graff, 2003).

Wikipedia covers a wider range of sense distribu-
tions, whereas Gigaword contains only newswire
text and tends to employ fewer senses of most am-
biguous words. Our method outperforms baseline
methods even on Gigaword, indicating its advan-
tages even when the corpus covers few senses.

4.2 Judging Semantic Similarity
To evaluate the quality of various models, we first
compared their lexical similarity measurements to
human similarity judgements from the WordSim-
353 data set (Finkelstein et al., 2001). This test

corpus contains multiple human judgements on 353
word pairs, covering both monosemous and poly-
semous words, each rated on a 1–10 integer scale.
Spearman’s rank correlation (ρ) with average human
judgements (Agirre et al., 2009) was used to mea-
sure the quality of various models.

Figure 2 plots Spearman’s ρ on WordSim-353
against the number of clusters (K) for Wikipedia
and Gigaword corpora, using pruned tf-idf and χ2

features.2 In general pruned tf-idf features yield
higher correlation than χ2 features. Using AvgSim,
the multi-prototype approach (K > 1) yields higher
correlation than the single-prototype approach (K =
1) across all corpora and feature types, achieving
state-of-the-art results with pruned tf-idf features.
This result is statistically significant in all cases for
tf-idf and for K ∈ [2, 10] on Wikipedia and K > 4
on Gigaword for χ2 features.3 MaxSim yields simi-
lar performance when K < 10 but performance de-
grades as K increases.

It is possible to circumvent the model-selection
problem (choosing the best value of K) by simply
combining the prototypes from clusterings of dif-
ferent sizes. This approach represents words using
both semantically broad and semantically tight pro-
totypes, similar to hierarchical clustering. Table 1
and Figure 2 (squares) show the result of such a com-
bined approach, where the prototypes for clusterings
of size 2-5, 10, 20, 50, and 100 are unioned to form a
single large prototype set. In general, this approach
works about as well as picking the optimal value of
K, even outperforming the single best cluster size
for Wikipedia.

Finally, we also compared our method to a pure
exemplar approach, averaging similarity across all
occurrence pairs.4 Table 1 summarizes the results.
The exemplar approach yields significantly higher
correlation than the single prototype approach in all
cases except Gigaword with tf-idf features (p <
0.05). Furthermore, it performs significantly worse

2(Feature pruning) We find that results using tf-idf features
are extremely sensitive to feature pruning while χ2 features are
more robust. In all experiments we prune tf-idf features by their
overall weight, taking the top 5000. This setting was found to
optimize the performance of the single-prototype approach.

3Significance is calculated using the large-sample approxi-
mation of the Spearman rank test; (p < 0.05).

4Averaging across all pairs was found to yield higher corre-
lation than averaging over the most similar pairs.

112

Spearman’s ρ prototype exemplar multi-prototype (AvgSim) combined
K = 5 K = 20 K = 50

Wikipedia tf-idf 0.53±0.02 0.60±0.06 0.69±0.02 0.76±0.01 0.76±0.01 0.77±0.01
Wikipedia χ2 0.54±0.03 0.65±0.07 0.58±0.02 0.56±0.02 0.52±0.03 0.59±0.04
Gigaword tf-idf 0.49±0.02 0.48±0.10 0.64±0.02 0.61±0.02 0.61±0.02 0.62±0.02
Gigaword χ2 0.25±0.03 0.41±0.14 0.32±0.03 0.35±0.03 0.33±0.03 0.34±0.03

Table 1: Spearman correlation on the WordSim-353 dataset broken down by corpus and feature type.

Figure 2: WordSim-353 rank correlation vs. num-
ber of clusters (log scale) for both the Wikipedia
(left) and Gigaword (right) corpora. Horizontal bars
show the performance of single-prototype. Squares
indicate performance when combining across clus-
terings. Error bars depict 95% confidence intervals
using the Spearman test. Squares indicate perfor-
mance when combining across clusterings.

than combined multi-prototype for tf-idf features,
and does not differ significantly for χ2 features.
Overall this result indicates that multi-prototype per-
forms at least as well as exemplar in the worst case,
and significantly outperforms when using the best
feature representation / corpus pair.

4.3 Predicting Near-Synonyms

We next evaluated the multi-prototype approach on
its ability to determine the most closely related
words for a given target word (using the Wikipedia
corpus with tf-idf features). The top k most simi-
lar words were computed for each prototype of each
target word. Using a forced-choice setup, human
subjects were asked to evaluate the quality of these
near synonyms relative to those produced by a sin-

homonymous
carrier, crane, cell, company, issue, interest, match,
media, nature, party, practice, plant, racket, recess,
reservation, rock, space, value
polysemous
cause, chance, journal, market, network, policy,
power, production, series, trading, train

Table 2: Words used in predicting near synonyms.

gle prototype. Participants on Amazon’s Mechani-
cal Turk5 (Snow et al., 2008) were asked to choose
between two possible alternatives (one from a proto-
type model and one from a multi-prototype model)
as being most similar to a given target word. The
target words were presented either in isolation or in
a sentential context randomly selected from the cor-
pus. Table 2 lists the ambiguous words used for this
task. They are grouped into homonyms (words with
very distinct senses) and polysemes (words with re-
lated senses). All words were chosen such that their
usages occur within the same part of speech.

In the non-contextual task, 79 unique raters com-
pleted 7,620 comparisons of which 72 were dis-
carded due to poor performance on a known test set.6

In the contextual task, 127 raters completed 9,930
comparisons of which 87 were discarded.

For the non-contextual case, Figure 3 left plots
the fraction of raters preferring the multi-prototype
prediction (using AvgSim) over that of a single pro-
totype as the number of clusters is varied. When
asked to choose between the single best word for

5http://mturk.com
6(Rater reliability) The reliability of Mechanical Turk

raters is quite variable, so we computed an accuracy score for
each rater by including a control question with a known cor-
rect answer in each HIT. Control questions were generated by
selecting a random word from WordNet 3.0 and including as
possible choices a word in the same synset (correct answer) and
a word in a synset with a high path distance (incorrect answer).
Raters who got less than 50% of these control questions correct,
or spent too little time on the HIT were discarded.

113

Non-contextual Near-Synonym Prediction Contextual Near-Synonym Prediction

Figure 3: (left) Near-synonym evaluation for isolated words showing fraction of raters preferring multi-
prototype results vs. number of clusters. Colored squares indicate performance when combining across
clusterings. 95% confidence intervals computed using the Wald test. (right) Near-synonym evaluation for
words in a sentential context chosen either from the minority sense or the majority sense.

each method (top word), the multi-prototype pre-
diction is chosen significantly more frequently (i.e.
the result is above 0.5) when the number of clus-
ters is small, but the two methods perform sim-
ilarly for larger numbers of clusters (Wald test,
α = 0.05.) Clustering more accurately identi-
fies homonyms’ clearly distinct senses and produces
prototypes that better capture the different uses of
these words. As a result, compared to using a sin-
gle prototype, our approach produces better near-
synonyms for homonyms compared to polysemes.
However, given the right number of clusters, it also
produces better results for polysemous words.

The near-synonym prediction task highlights one
of the weaknesses of the multi-prototype approach:
as the number of clusters increases, the number of
occurrences assigned to each cluster decreases, in-
creasing noise and resulting in some poor prototypes
that mainly cover outliers. The word similarity task

is somewhat robust to this phenomenon, but syn-
onym prediction is more affected since only the top
predicted choice is used. When raters are forced
to chose between the top three predictions for each
method (presented as top set in Figure 3 left), the ef-
fect of this noise is reduced and the multi-prototype
approach remains dominant even for a large num-
ber of clusters. This indicates that although more
clusters can capture finer-grained sense distinctions,
they also can introduce noise.

When presented with words in context (Figure
3 right),7 raters found no significant difference in
the two methods for words used in their majority
sense.8 However, when a minority sense is pre-

7Results for the multi-prototype method are generated using
AvgSimC (soft assignment) as this was found to significantly
outperform MaxSimC.

8Sense frequency determined using Google; senses labeled
manually by trained human evaluators.

114

sented (e.g. the “prison” sense of cell), raters pre-
fer the choice predicted by the multi-prototype ap-
proach. This result is to be expected since the sin-
gle prototype mainly reflects the majority sense, pre-
venting it from predicting appropriate synonyms for
a minority sense. Also, once again, the perfor-
mance of the multi-prototype approach is better for
homonyms than polysemes.

4.4 Predicting Variation in Human Ratings

Variance in pairwise prototype distances can help
explain the variance in human similarity judgements
for a given word pair. We evaluate this hypothe-
sis empirically on WordSim-353 by computing the
Spearman correlation between the variance of the
per-cluster similarity computations, V[D], D def=
{d(πk(w), πj(w′)) : 1 ≤ k, j ≤ K}, and the vari-
ance of the human annotations for that pair. Cor-
relations for each dataset are shown in Figure 4 left.
In general, we find a statistically significant negative
correlation between these values using χ2 features,
indicating that as the entropy of the pairwise cluster
similarities increases (i.e., prototypes become more
similar, and similarities become uniform), rater dis-
agreement increases. This result is intuitive: if the
occurrences of a particular word cannot be easily
separated into coherent clusters (perhaps indicating
high polysemy instead of homonymy), then human
judgement will be naturally more difficult.

Rater variance depends more directly on the ac-
tual word similarity: word pairs at the extreme
ranges of similarity have significantly lower vari-
ance as raters are more certain. By removing word
pairs with similarity judgements in the middle two
quartile ranges (4.4 to 7.5) we find significantly
higher variance correlation (Figure 4 right). This
result indicates that multi-prototype similarity vari-
ance accounts for a secondary effect separate from
the primary effect that variance is naturally lower for
ratings in extreme ranges.

Although the entropy of the prototypes correlates
with the variance of the human ratings, we find that
the individual senses captured by each prototype do
not correspond to human intuition for a given word,
e.g. the “hurricane” sense of position in Figure 1.
This notion is evaluated empirically by computing
the correlation between the predicted similarity us-

Figure 4: Plots of variance correlation; lower num-
bers indicate higher negative correlation, i.e. that
prototype entropy predicts rater disagreement.

ing the contextual multi-prototype method and hu-
man similarity judgements for different usages of
the same word. The Usage Similarity (USim) data
set collected in Erk et al. (2009) provides such simi-
larity scores from human raters. However, we find
no evidence for correlation between USim scores
and their corresponding prototype similarity scores
(ρ = 0.04), indicating that prototype vectors may
not correspond well to human senses.

5 Discussion and Future Work

Table 3 compares the inferred synonyms for several
target words, generally demonstrating the ability of
the multi-prototype model to improve the precision
of inferred near-synonyms (e.g. in the case of singer
or need) as well as its ability to include synonyms
from less frequent senses (e.g., the experiment sense
of research or the verify sense of prove). However,
there are a number of ways it could be improved:

Feature representations: Multiple prototypes im-
prove Spearman correlation on WordSim-353 com-
pared to previous methods using the same under-
lying representation (Agirre et al., 2009). How-
ever we have not yet evaluated its performance
when using more powerful feature representations
such those based on Latent or Explicit Semantic
Analysis (Deerwester et al., 1990; Gabrilovich and
Markovitch, 2007). Due to its modularity, the multi-
prototype approach can easily incorporate such ad-
vances in order to further improve its effectiveness.

115

Inferred Thesaurus
bass

single guitar, drums, rhythm, piano, acoustic
multi basses, contrabass, rhythm, guitar, drums

claim
single argue, say, believe, assert, contend
multi assert, contend, allege, argue, insist

hold
single carry, take, receive, reach, maintain
multi carry, maintain, receive, accept, reach

maintain
single ensure, establish, achieve, improve, promote
multi preserve, ensure, establish, retain, restore

prove
single demonstrate, reveal, ensure, confirm, say
multi demonstrate, verify, confirm, reveal, admit

research
single studies, work, study, training, development
multi studies, experiments, study, investigations,

training
singer

single musician, actress, actor, guitarist, composer
multi vocalist, guitarist, musician, singer-

songwriter, singers

Table 3: Examples of the top 5 inferred near-
synonyms using the single- and multi-prototype ap-
proaches (with results merged). In general such
clustering improves the precision and coverage of
the inferred near-synonyms.

Nonparametric clustering: The success of the
combined approach indicates that the optimal num-
ber of clusters may vary per word. A more prin-
cipled approach to selecting the number of proto-
types per word is to employ a clustering model with
infinite capacity, e.g. the Dirichlet Process Mixture
Model (Rasmussen, 2000). Such a model would al-
low naturally more polysemous words to adopt more
flexible representations.

Cluster similarity metrics: Besides AvgSim and
MaxSim, there are many similarity metrics over
mixture models, e.g. KL-divergence, which may
correlate better with human similarity judgements.

Comparing to traditional senses: Compared to
WordNet, our best-performing clusterings are sig-
nificantly more fine-grained. Furthermore, they of-
ten do not correspond to agreed upon semantic dis-
tinctions (e.g., the “hurricane” sense of position in
Fig. 1). We posit that the finer-grained senses actu-
ally capture useful aspects of word meaning, leading
to better correlation with WordSim-353. However, it

would be good to compare prototypes learned from
supervised sense inventories to prototypes produced
by automatic clustering.

Joint model: The current method independently
clusters the contexts of each word, so the senses dis-
covered forw cannot influence the senses discovered
for w′ 6= w. Sharing statistical strength across simi-
lar words could yield better results for rarer words.

6 Conclusions

We presented a resource-light model for vector-
space word meaning that represents words as col-
lections of prototype vectors, naturally accounting
for lexical ambiguity. The multi-prototype approach
uses word sense discovery to partition a word’s con-
texts and construct “sense specific” prototypes for
each cluster. Doing so significantly increases the ac-
curacy of lexical-similarity computation as demon-
strated by improved correlation with human similar-
ity judgements and generation of better near syn-
onyms according to human evaluators. Further-
more, we show that, although performance is sen-
sitive to the number of prototypes, combining pro-
totypes across a large range of clusterings performs
nearly as well as the ex-post best clustering. Finally,
variance in the prototype similarities is found to cor-
relate with inter-annotator disagreement, suggesting
psychological plausibility.

Acknowledgements

We would like to thank Katrin Erk for helpful dis-
cussions and making the USim data set available.
This work was supported by an NSF Graduate Re-
search Fellowship and a Google Research Award.
Experiments were run on the Mastodon Cluster, pro-
vided by NSF Grant EIA-0303609.

References
Eneko Agirre and Phillip Edmond. 2006. Word Sense

Disambiguation: Algorithms and Applications (Text,
Speech and Language Technology). Springer-Verlag
New York, Inc., Secaucus, NJ, USA.

Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana
Kravalova, Marius Paşca, and Aitor Soroa. 2009. A
study on similarity and relatedness using distributional
and WordNet-based approaches. In Proc. of NAACL-
HLT-09, pages 19–27.

116

F. Gregory Ashby and Leola A. Alfonso-Reese. 1995.
Categorization as probability density estimation. J.
Math. Psychol., 39(2):216–233.

L. Douglas Baker and Andrew K. McCallum. 1998. Dis-
tributional clustering of words for text classification.
In Proceedings of 21st International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, pages 96–103.

Arindam Banerjee, Inderjit Dhillon, Joydeep Ghosh, and
Suvrit Sra. 2005. Clustering on the unit hypersphere
using von Mises-Fisher distributions. Journal of Ma-
chine Learning Research, 6:1345–1382.

Alexander Budanitsky and Graeme Hirst. 2006. Evalu-
ating wordnet-based measures of lexical semantic re-
latedness. Computational Linguistics, 32(1):13–47.

James R. Curran and Marc Moens. 2002. Improvements
in automatic thesaurus extraction. In Proceedings of
the ACL-02 workshop on Unsupervised lexical acqui-
sition, pages 59–66.

James R. Curran. 2004. From Distributional to Seman-
tic Similarity. Ph.D. thesis, University of Edinburgh.
College of Science.

Scott C. Deerwester, Susan T. Dumais, George W. Fur-
nas, Thomas K. Landauer, and Richard A. Harshman.
1990. Indexing by latent semantic analysis. Jour-
nal of the American Society for Information Science,
41:391–407.

Inderjit S. Dhillon and Dharmendra S. Modha. 2001.
Concept decompositions for large sparse text data us-
ing clustering. Machine Learning, 42:143–175.

Katrin Erk, Diana McCarthy, Nicholas Gaylord Investi-
gations on Word Senses, and Word Usages. 2009. In-
vestigations on word senses and word usages. In Proc.
of ACL-09.

Katrin Erk. 2007. A simple, similarity-based model for
selectional preferences. In Proceedings of the 45th
Annual Meeting of the Association for Computational
Linguistics. Association for Computer Linguistics.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Eytan
Ruppin. 2001. Placing search in context: the concept
revisited. In Proc. of WWW-01, pages 406–414, New
York, NY, USA. ACM.

Evgeniy Gabrilovich and Shaul Markovitch. 2007. Com-
puting semantic relatedness using Wikipedia-based ex-
plicit semantic analysis. In Proc. of IJCAI-07, pages
1606–1611.

David Graff. 2003. English Gigaword. Linguistic Data
Consortium, Philadephia.

Tom L. Griffiths, Kevin. R. Canini, Adam N. Sanborn,
and Daniel. J. Navarro. 2007. Unifying rational mod-
els of categorization via the hierarchical Dirichlet pro-
cess. In Proc. of CogSci-07.

Zellig Harris. 1954. Distributional structure. Word,
10(23):146–162.

Lillian Lee. 1999. Measures of distributional similarity.
In 37th Annual Meeting of the Association for Compu-
tational Linguistics, pages 25–32.

Dekang Lin and Patrick Pantel. 2002. Concept discovery
from text. In Proc. of COLING-02, pages 1–7.

Dekang Lin, Shaojun Zhao, Lijuan Qin, and Ming Zhou.
2003. Identifying synonyms among distributionally
similar words. In Proceedings of the Interational Joint
Conference on Artificial Intelligence, pages 1492–
1493. Morgan Kaufmann.

Bradley C. Love, Douglas L. Medin, and Todd M.
Gureckis. 2004. SUSTAIN: A network model of cat-
egory learning. Psych. Review, 111(2):309–332.

Will Lowe. 2001. Towards a theory of semantic space.
In Proceedings of the 23rd Annual Meeting of the Cog-
nitive Science Society, pages 576–581.

Patrick Pantel and Dekang Lin. 2002. Discovering word
senses from text. In Proc. of SIGKDD-02, pages 613–
619, New York, NY, USA. ACM.

Fernando C. N. Pereira, Naftali Tishby, and Lillian Lee.
1993. Distributional clustering of English words. In
Proceedings of the 31st Annual Meeting of the Associ-
ation for Computational Linguistics (ACL-93), pages
183–190, Columbus, Ohio.

Daniel Ramage, Anna N. Rafferty, and Christopher D.
Manning. 2009. Random walks for text seman-
tic similarity. In Proc. of the 2009 Workshop on
Graph-based Methods for Natural Language Process-
ing (TextGraphs-4), pages 23–31.

Carl E. Rasmussen. 2000. The infinite Gaussian mixture
model. In Advances in Neural Information Processing
Systems, pages 554–560. MIT Press.

Yves Rosseel. 2002. Mixture models of categorization.
J. Math. Psychol., 46(2):178–210.

Mark Sanderson. 1994. Word sense disambiguation and
information retrieval. In Proc. of SIGIR-94, pages
142–151.

Hinrich Schütze. 1998. Automatic word sense discrimi-
nation. Computational Linguistics, 24(1):97–123.

Rion Snow, Brendan O’Connor, Daniel Jurafsky, and An-
drew Ng. 2008. Cheap and fast—but is it good? Eval-
uating non-expert annotations for natural language
tasks. In Proc. of EMNLP-08.

Amos Tversky and Itamar Gati. 1982. Similarity, sepa-
rability, and the triangle inequality. Psychological Re-
view, 89(2):123–154.

Bram Vandekerckhove, Dominiek Sandra, and Walter
Daelemans. 2009. A robust and extensible exemplar-
based model of thematic fit. In Proc. of EACL 2009,
pages 826–834. Association for Computational Lin-
guistics.

117

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 118–126,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Unsupervised Syntactic Alignment with Inversion Transduction Grammars

Adam Pauls Dan Klein
Computer Science Division

University of California at Berkeley
{adpauls,klein}@cs.berkeley.edu

David Chiang Kevin Knight
Information Sciences Institute

University of Southern California
{chiang,knight}@isi.edu

Abstract

Syntactic machine translation systems cur-
rently use word alignments to infer syntactic
correspondences between the source and tar-
get languages. Instead, we propose an un-
supervised ITG alignment model that directly
aligns syntactic structures. Our model aligns
spans in a source sentence to nodes in a target
parse tree. We show that our model produces
syntactically consistent analyses where possi-
ble, while being robust in the face of syntactic
divergence. Alignment quality and end-to-end
translation experiments demonstrate that this
consistency yields higher quality alignments
than our baseline.

1 Introduction

Syntactic machine translation has advanced signif-
icantly in recent years, and multiple variants cur-
rently achieve state-of-the-art translation quality.
Many of these systems exploit linguistically-derived
syntactic information either on the target side (Gal-
ley et al., 2006), the source side (Huang et al., 2006),
or both (Liu et al., 2009). Still others induce their
syntax from the data (Chiang, 2005). Despite differ-
ences in detail, the vast majority of syntactic meth-
ods share a critical dependence on word alignments.
In particular, they infer syntactic correspondences
between the source and target languages through
word alignment patterns, sometimes in combination
with constraints from parser outputs.

However, word alignments are not perfect indi-
cators of syntactic alignment, and syntactic systems
are very sensitive to word alignment behavior. Even
a single spurious word alignment can invalidate a
large number of otherwise extractable rules, while
unaligned words can result in an exponentially large
set of extractable rules to choose from. Researchers

have worked to incorporate syntactic information
into word alignments, resulting in improvements to
both alignment quality (Cherry and Lin, 2006; DeN-
ero and Klein, 2007), and translation quality (May
and Knight, 2007; Fossum et al., 2008).

In this paper, we remove the dependence on word
alignments and instead directly model the syntactic
correspondences in the data, in a manner broadly
similar to Yamada and Knight (2001). In particu-
lar, we propose an unsupervised model that aligns
nodes of a parse tree (or forest) in one language to
spans of a sentence in another. Our model is an in-
stance of the inversion transduction grammar (ITG)
formalism (Wu, 1997), constrained in such a way
that one side of the synchronous derivation respects
a syntactic parse. Our model is best suited to sys-
tems which use source- or target-side trees only.

The design of our model is such that, for divergent
structures, a structurally integrated backoff to flatter
word-level (or null) analyses is available. There-
fore, our model is empirically robust to the case
where syntactic divergence between languages pre-
vents syntactically accurate ITG derivations.

We show that, with appropriate pruning, our
model can be efficiently trained on large parallel cor-
pora. When compared to standard word-alignment-
backed baselines, our model produces more con-
sistent analyses of parallel sentences, leading to
high-count, high-quality transfer rules. End-to-
end translation experiments demonstrate that these
higher quality rules improve translation quality by
1.0 BLEU over a word-alignment-backed baseline.

2 Syntactic Rule Extraction

Our model is intended for use in syntactic transla-
tion models which make use of syntactic parses on
either the target (Galley et al., 2006) or source side
(Huang et al., 2006; Liu et al., 2006). Our model’s

118

S

NP

DT* NN NN

VP

VBZ ADVP

RB VBN

the trade surplus has drastically fallen

!易

"差

大幅度

 减少

 了

trade

surplus

drastically

fall

(past)

Figure 1: A single incorrect alignment removes an ex-
tractable node, and hence several desirable rules. We
represent correct extractable nodes in bold, spurious ex-
tractable nodes with a *, and incorrectly blocked ex-
tractable nodes in bold strikethrough.

chief purpose is to align nodes in the syntactic parse
in one language to spans in the other – an alignment
we will refer to as a “syntactic” alignment. These
alignments are employed by standard syntactic rule
extraction algorithms, for example, the GHKM al-
gorithm of Galley et al. (2004). Following that work,
we will assume parses are present in the target lan-
guage, though our model applies in either direction.

Currently, although syntactic systems make use of
syntactic alignments, these alignments must be in-
duced indirectly from word-level alignments. Pre-
vious work has discussed at length the poor interac-
tion of word-alignments with syntactic rule extrac-
tion (DeNero and Klein, 2007; Fossum et al., 2008).
For completeness, we provide a brief example of this
interaction, but for a more detailed discussion we re-
fer the reader to these presentations.

2.1 Interaction with Word Alignments
Syntactic systems begin rule extraction by first iden-
tifying, for each node in the target parse tree, a
span of the foreign sentence which (1) contains ev-
ery source word that aligns to a target word in the
yield of the node and (2) contains no source words
that align outside that yield. Only nodes for which
a non-empty span satisfying (1) and (2) exists may
form the root or leaf of a translation rule; for that
reason, we will refer to these nodes as extractable
nodes.

Since extractable nodes are inferred based on
word alignments, spurious word alignments can rule
out otherwise desirable extraction points. For exam-

ple, consider the alignment in Figure 1. This align-
ment, produced by GIZA++ (Och and Ney, 2003),
contains 4 correct alignments (the filled circles),
but incorrectly aligns the to the Chinese past tense
marker了 (the hollow circle). This mistaken align-
ment produces the incorrect rule (DT → the ; 了),
and also blocks the extraction of (VBN → fallen ;
减少了).

More high-level syntactic transfer rules are also
ruled out, for example, the “the insertion rule” (NP
→ the NN1 NN2 ; NN1 NN2) and the high-level (S
→ NP1 VP2 ; NP1 VP2).

3 A Syntactic Alignment Model

The most common approach to avoiding these prob-
lems is to inject knowledge about syntactic con-
straints into a word alignment model (Cherry and
Lin, 2006; DeNero and Klein, 2007; Fossum et al.,
2008).1 While syntactically aware, these models re-
main limited by the word alignment models that un-
derly them.

Here, we describe a model which directly infers
alignments of nodes in the target-language parse tree
to spans of the source sentence. Formally, our model
is an instance of a Synchronous Context-Free Gram-
mar (see Chiang (2004) for a review), or SCFG,
which generates an English (target) parse tree T and
foreign (source) sentence f given a target sentence e.
The generative process underlying this model pro-
duces a derivation d of SCFG rules, from which T
and f can be read off; because we condition on e,
the derivations produce e with probability 1. This
model places a distribution over T and f given by

p(T, f | e) =
∑

d

p(d | e) =
∑

d

∏
r∈d

p(r | e)

where the sum is over derivations d which yield T
and f . The SCFG rules r come from one of 4 types,
pictured in Table 1. In general, because our model
can generate English trees, it permits inference over
forests. Although we will restrict ourselves to a sin-
gle parse tree for our experiments, in this section, we
discuss the more general case.

1One notable exception is May and Knight (2007), who pro-
duces syntactic alignments using syntactic rules derived from
word-aligned data.

119

Rule Type Root English Foreign Example Instantiation
TERMINAL E e ft FOUR → four ;四
UNARY A B fl B fr CD → FOUR ; ε FOUR 个
BINARYMONO A B C fl B fm C fr NP → NN NN ; ε NN 的 NN ε
BINARYINV A B C fl C fm B fr PP → IN NP ;在 NP ε IN ε

Table 1: Types of rules present in the SCFG describing our model, along with some sample instantiations of each type.
Empty word sequences f have been explicitly marked with an ε.

The first rule type is the TERMINAL production,
which rewrites a terminal symbol2 E as its En-
glish word e and a (possibly empty) sequence of
foreign words ft. Generally speaking, the majority
of foreign words are generated using this rule. It
is only when a straightforward word-to-word corre-
spondence cannot be found that our model resorts to
generating foreign words elsewhere.

We can also rewrite a non-terminal symbol A us-
ing a UNARY production, which on the English side
produces a single symbol B, and on the foreign side
produces the symbol B, with sequences of words fl
to its left and fr to its right.

Finally, there are two binary productions: BINA-
RYMONO rewrites A with two non-terminals B and
C on the English side, and the same non-terminals
B and C in monotonic order on the foreign side,
with sequences of words fl, fr, and fm to the left,
right, and the middle. BINARYINV inverts the or-
der in which the non-terminals B and C are written
on the source side, allowing our model to capture a
large subset of possible reorderings (Wu, 1997).

Derivations from this model have two key prop-
erties: first, the English side of a derivation is con-
strained to form a valid constituency parse, as is re-
quired in a syntax system with target-side syntax;
and second, for each parse node in the English pro-
jection, there is exactly one (possibly empty) con-
tiguous span of the foreign side which was gener-
ated from that non-terminal or one of its descen-
dants. Identifying extractable nodes from a deriva-
tion is thus trivial: any node aligned to a non-empty
foreign span is extractable.

In Figure 2, we show a sample sentence pair frag-

2For notational convenience, we imagine that for each par-
ticular English word e, there is a special preterminal symbol E
which produces it. These symbols E act like any other non-
terminal in the grammar with respect to the parameterization in
Section 3.1. To denote standard non-terminals, we will use A,
B, and C.

PP[0,4]

IN[3,4]

NP[1,3]

DT[1,1] NNS[1,3]

the[1,1] elections[1,3]

在 !会 "# 之前
at parliament election before

before[3,4]

PP

NP IN

NNSDT

0 1 2 3 4

!

PP → IN NP ; 在 NP IN
NP → DT NNS ; DT NNS
IN → before ; before
before → before ; 之前
DT → the ; the
the → the ; ε
NNS → elections ; elections
elections → elections ; 议会 选举

Figure 2: Top: A synchronous derivation of a small sen-
tence pair fragment under our model. The English pro-
jection of the derivation represents a valid constituency
parse, while the foreign projection is less constrained.
We connect each foreign terminal with a dashed line to
the node in the English side of the synchronous deriva-
tion at which it is generated. The foreign span assigned
to each English node is indicated with indices. All nodes
with non-empty spans, shown in boldface, are extractable
nodes. Bottom: The SCFG rules used in the derivation.

ment as generated by our model. Our model cor-
rectly identifies that the English the aligns to nothing
on the foreign side. Our model also effectively cap-
tures the one-to-many alignment3 of elections to议

3While our model does not explicitly produce many-to-one
alignments, many-to-one rules can be discovered via rule com-
position (Galley et al., 2006).

120

会 选举. Finally, our model correctly analyzes the
Chinese circumposition在 . . .之前 (before . . .). In
this construction, 之前 carries the meaning of “be-
fore”, and thus correctly aligns to before, while 在
functions as a generic preposition, which our model
handles by attaching it to the PP. This analysis per-
mits the extraction of the general rule (PP → IN1

NP2 ;在 NP2 IN1), and the more lexicalized (PP→
before NP ;在 NP之前).

3.1 Parameterization
In principle, our model could have one parameter for
each instantiation r of a rule type. This model would
have an unmanageable number of parameters, pro-
ducing both computational and modeling issues – it
is well known that unsupervised models with large
numbers of parameters are prone to degenerate anal-
yses of the data (DeNero et al., 2006). One solution
might be to apply an informed prior with a compu-
tationally tractable inference procedure (e.g. Cohn
and Blunsom (2009) or Liu and Gildea (2009)). We
opt here for the simpler, statistically more robust so-
lution of making independence assumptions to keep
the number of parameters at a reasonable level.

Concretely, we define the probability of the BI-
NARYMONO rule,4

p(r = A→ B C; fl B fm C fr|A, eA)

which conditions on the root of the rule A and the
English yield eA, as

pg(A→ B C | A, eA) · pinv(I | B,C)·

pleft(fl | A, eA)·pmid(fm | A, eA)·pright(fr | A, eA)

In words, we assume that the rule probability de-
composes into a monolingual PCFG grammar prob-
ability pg, an inversion probability pinv, and a proba-
bility of left, middle, and right word sequences pleft,
pmid, and pright.5 Because we condition on e, the
monolingual grammar probability pg must form a
distribution which produces e with probability 1.6

4In the text, we only describe the factorization for the BI-
NARYMONO rule. For a parameterization of all rules, we refer
the reader to Table 2.

5All parameters in our model are multinomial distributions.
6A simple case of such a distribution is one which places all

of its mass on a single tree. More complex distributions can be
obtained by conditioning an arbitrary PCFG on e (Goodman,
1998).

We further assume that the probability of produc-
ing a foreign word sequence fl decomposes as:

pleft(fl | A, eA) = pl(|fl| = m | A)
m∏

j=1

p(fj | A, eA)

where m is the length of the sequence fl. The pa-
rameter pl is a left length distribution. The prob-
abilities pmid, pright, decompose in the same way,
except substituting a separate length distribution pm

and pr for pl. For the TERMINAL rule, we emit ft
with a similarly decomposed distribution pterm us-
ing length distribution pw.

We define the probability of generating a foreign
word fj as

p(fj | A, eA) =
∑
i∈eA

1
| eA |

pt(fj | ei)

with i ∈ eA denoting an index ranging over the in-
dices of the English words contained in eA. The
reader may recognize the above expressions as the
probability assigned by IBM Model 1 (Brown et al.,
1993) of generating the words fl given the words eA,
with one important difference – the length m of the
foreign sentence is often not modeled, so the term
pl(|fl| = m | A) is set to a constant and ignored.
Parameterizing this length allows our model to ef-
fectively control the number of words produced at
different levels of the derivation.

It is worth noting how each parameter affects the
model’s behavior. The pt distribution is a standard
“translation” table, familiar from the IBM Models.
The pinv distribution is a “distortion” parameter, and
models the likelihood of inverting non-terminals B
and C. This parameter can capture, for example,
the high likelihood that prepositions IN and noun
phrases NP often invert in Chinese due to its use
of postpositions. The non-terminal length distribu-
tions pl, pm, and pr model the probability of “back-
ing off” and emitting foreign words at non-terminals
when a more refined analysis cannot be found. If
these parameters place high mass on 0 length word
sequences, this heavily penalizes this backoff be-
haviour. For the TERMINAL rule, the length distri-
bution pw parameterizes the number of words pro-
duced for a particular English word e, functioning
similarly to the “fertilities” employed by IBM Mod-
els 3 and 4 (Brown et al., 1993). This allows us

121

to model, for example, the tendency of English de-
terminers the and a translate to nothing in the Chi-
nese, and of English names to align to multiple Chi-
nese words. In general, we expect an English word
to usually align to one Chinese word, and so we
place a weak Dirichlet prior on on the pe distribution
which puts extra mass on 1-length word sequences.
This is helpful for avoiding the “garbage collection”
(Moore, 2004) problem for rare words.

3.2 Exploiting Non-Terminal Labels

There are often foreign words that do not correspond
well to any English word, which our model must
also handle. We elected for a simple augmentation
to our model to account for these words. When gen-
erating foreign word sequences f at a non-terminal
(i.e. via the UNARY or BINARY productions), we
also allow for the production of foreign words from
the non-terminal symbol A. We modify p(fj | eA)
from the previous section to allow production of fj

directly from the non-terminal7 A:

p(fj | eA) = pnt · p(fj | A)

+ (1− pnt) ·
∑
i∈eA

1
|eA|

pt(fj | ei)

where pnt is a global binomial parameter which con-
trols how often such alignments are made.

This necessitates the inclusion of parameters like
pt(的 | NP) into our translation table. Generally,
these parameters do not contain much information,
but rather function like a traditional NULL rooted
at some position in the tree. However, in some
cases, the particular annotation used by the Penn
Treebank (Marcus et al., 1993) (and hence most
parsers) allows for some interesting parameters to
be learned. For example, we found that our aligner
often matched the Chinese word 了, which marks
the past tense (among other things), to the preter-
minals VBD and VBN, which denote the English
simple past and perfect tense. Additionally, Chinese
measure words like个 and名 often align to the CD
(numeral) preterminal. These generalizations can be
quite useful – where a particular number might pre-
dict a measure word quite poorly, the generalization
that measure words co-occur with the CD tag is very
robust.

7For terminal symbols E, this production is not possible.

3.3 Membership in ITG

The generative process which describes our model
contains a class of grammars larger than the com-
putationally efficient class of ITG grammars. For-
tunately, the parameterization described above not
only reduces the number of parameters to a man-
ageable level, but also introduces independence as-
sumptions which permit synchronous binarization
(Zhang et al., 2006) of our grammar. Any SCFG that
can be synchronously binarized is an ITG, meaning
that our parameterization permits efficient inference
algorithms which we will make use of in the next
section. Although several binarizations are possi-
ble, we give one such binarization and its associated
probabilities in Table 2.

3.4 Robustness to Syntactic Divergence

Generally speaking, ITG grammars have proven
more useful without the monolingual syntactic con-
straints imposed by a target parse tree. When deriva-
tions are restricted to respect a target-side parse tree,
many desirable alignments are ruled out when the
syntax of the two languages diverges, and align-
ment quality drops precipitously (Zhang and Gildea,
2004), though attempts have been made to address
this issue (Gildea, 2003).

Our model is designed to degrade gracefully in
the case of syntactic divergence. Because it can pro-
duce foreign words at any level of the derivation,
our model can effectively back off to a variant of
Model 1 in the case where an ITG derivation that
both respects the target parse tree and the desired
word-level alignments cannot be found.

For example, consider the sentence pair fragment
in Figure 3. It is not possible to produce an ITG
derivation of this fragment that both respects the
English tree and also aligns all foreign words to
their obvious English counterparts. Our model han-
dles this case by attaching the troublesome 明天 at
the uppermost VP. This analysis captures 3 of the
4 word-level correspondences, and also permits ex-
traction of abstract rules like (S→ NP VP ; NP VP)
and (NP→ the NN ; NN).

Unfortunately, this analysis leaves the English
word tomorrow with an empty foreign span, permit-
ting extraction of the incorrect translation (VP →
announced tomorrow ; 公布), among others. Our

122

Rule Type Root English side Foreign side Probability
TERMINAL E e wt pterm(wt | E)

UNARY A Bu wl Bu pg(A → B | A)pleft(wl | A, eA)
Bu B B wr pright(wr | A, eA)

BINARY A A1 wl A1 pleft(wl | A, eA)
A1 B C1 B C1 pg(A → B C | A)pinv(I=false | B, C)
A1 B C1 C1 B pg(A → B C | A)pinv(I=true | B, C)
C1 C2 fm C2 pmid(fm | A, eA)
C2 C C fr pright(fr | A, eA)

Table 2: A synchronous binarization of the SCFG describing our model.

S[0,4]

NP[3,4]

DT[3,3] NN[3,4]

VP[0,3]

VB[2,2]

VP[2,3]

VBN[2,3] NN[3,3]

VP[2,3]

MD[1,2]

明天 将 公布 名!
listannouncewilltomorrow0 1 2 3 4

the[3,3] list[3,4] be[2,2] announced[2,3] tomorrow[3,3]will[1,2]

(a)

Figure 3: The graceful degradation of our model in the
face of syntactic divergence. It is not possible to align
all foreign words with their obvious English counterparts
with an ITG derivation. Instead, our model analyzes as
much as possible, but must resort to emitting 明天 high
in the tree.

point here is not that our model’s analysis is “cor-
rect”, but “good enough” without resorting to more
computationally complicated models. In general,
our model follows an “extract as much as possi-
ble” approach. We hypothesize that this approach
will capture important syntactic generalizations, but
it also risks including low-quality rules. It is an em-
pirical question whether this approach is effective,
and we investigate this issue further in Section 5.3.

There are possibilities for improving our model’s
treatment of syntactic divergence. One option is
to allow the model to select trees which are more
consistent with the alignment (Burkett et al., 2010),
which our model can do since it permits efficient in-
ference over forests. The second is to modify the
generative process slightly, perhaps by including the
“clone” operator of Gildea (2003).

4 Learning and Inference

4.1 Parameter Estimation

The parameters of our model can be efficiently
estimated in an unsupervised fashion using the
Expectation-Maximization (EM) algorithm. The E-
step requires the computation of expected counts un-
der our model for each multinomial parameter. We
omit the details of obtaining expected counts for
each distribution, since they can be obtained using
simple arithmetic from a single quantity, namely, the
expected count of a particular instantiation of a syn-
chronous rule r. This expectation is a standard quan-
tity that can be computed in O(n6) time using the
bitext Inside-Outside dynamic program (Wu, 1997).

4.2 Dynamic Program Pruning

While our model permits O(n6) inference over a
forest of English trees, inference over a full forest
would be very slow, and so we fix a single n-ary En-
glish tree obtained from a monolingual parser. How-
ever, it is worth noting that the English side of the
ITG derivation is not completely fixed. Where our
English trees are more than binary branching, we
permit any binarization in our dynamic program.

For efficiency, we also ruled out span alignments
that are extremely lopsided, for example, a 1-word
English span aligned to a 20-word foreign span.
Specifically, we pruned any span alignment in which
one side is more than 5 times larger than the other.

Finally, we employ pruning based on high-
precision alignments from simpler models (Cherry
and Lin, 2007; Haghighi et al., 2009). We com-
pute word-to-word alignments by finding all word
pairs which have a posterior of at least 0.7 according
to both forward and reverse IBM Model 1 parame-
ters, and prune any span pairs which invalidate more
than 3 of these alignments. In total, this pruning re-

123

Span P R F1
Syntactic Alignment 50.9 83.0 63.1
GIZA++ 56.1 67.3 61.2
Rule P R F1
Syntactic Alignment 39.6 40.3 39.9
GIZA++ 46.2 34.7 39.6

Table 3: Alignment quality results for our syntactic
aligner and our GIZA++ baseline.

duced computation from approximately 1.5 seconds
per sentence to about 0.3 seconds per sentence, a
speed-up of a factor of 5.

4.3 Decoding

Given a trained model, we extract a tree-to-string
alignment as follows: we compute, for each node
in the English tree, the posterior probability of a
particular foreign span assignment using the same
dynamic program needed for EM. We then com-
pute the set of span assignments which maximizes
the sum of these posteriors, constrained such that
the foreign span assignments nest in the obvious
way. This algorithm is a natural synchronous gener-
alization of the monolingual Maximum Constituents
Parse algorithm of Goodman (1996).

5 Experiments

5.1 Alignment Quality

We first evaluated our alignments against gold stan-
dard annotations. Our training data consisted of the
2261 manually aligned and translated sentences of
the Chinese Treebank (Bies et al., 2007) and approx-
imately half a million unlabeled sentences of parallel
Chinese-English newswire. The unlabeled data was
subsampled (Li et al., 2009) from a larger corpus by
selecting sentences which have good tune and test
set coverage, and limited to sentences of length at
most 40. We parsed the English side of the train-
ing data with the Berkeley parser.8 For our baseline
alignments, we used GIZA++, trained in the stan-
dard way.9 We used the grow-diag-final alignment
heuristic, as we found it outperformed union in early
experiments.

We trained our unsupervised syntactic aligner on
the concatenation of the labelled and unlabelled

8http://code.google.com/p/berkeleyparser/
95 iterations of model 1, 5 iterations of HMM, 3 iterations

of Model 3, and 3 iterations of Model 4.

data. As is standard in unsupervised alignment mod-
els, we initialized the translation parameters pt by
first training 5 iterations of IBM Model 1 using the
joint training algorithm of Liang et al. (2006), and
then trained our model for 5 EM iterations. We
extracted syntactic rules using a re-implementation
of the Galley et al. (2006) algorithm from both our
syntactic alignments and the GIZA++ alignments.
We handle null-aligned words by extracting every
consistent derivation, and extracted composed rules
consisting of at most 3 minimal rules.

We evaluate our alignments against the gold stan-
dard in two ways. We calculated Span F-score,
which compares the set of extractable nodes paired
with a foreign span, and Rule F-score (Fossum et al.,
2008) over minimal rules. The results are shown in
Table 3. By both measures, our syntactic aligner ef-
fectively trades recall for precision when compared
to our baseline, slightly increasing overall F-score.

5.2 Translation Quality
For our translation system, we used a re-
implementation of the syntactic system of Galley et
al. (2006). For the translation rules extracted from
our data, we computed standard features based on
relative frequency counts, and tuned their weights
using MERT (Och, 2003). We also included a
language model feature, using a 5-gram language
model trained on 220 million words of English text
using the SRILM Toolkit (Stolcke, 2002).

For tuning and test data, we used a subset of the
NIST MT04 and MT05 with sentences of length at
most 40. We used the first 1000 sentences of this set
for tuning and the remaining 642 sentences as test
data. We used the decoder described in DeNero et
al. (2009) during both tuning and testing.

We provide final tune and test set results in Ta-
ble 4. Our alignments produce a 1.0 BLEU improve-
ment over the baseline. Our reported syntactic re-
sults were obtained when rules were thresholded by
count; we discuss this in the next section.

5.3 Analysis
As discussed in Section 3.4, our aligner is designed
to extract many rules, which risks inadvertently ex-
tracting low-quality rules. To quantify this, we
first examined the number of rules extracted by our
aligner as compared with GIZA++. After relativiz-

124

Tune Test
Syntactic Alignment 29.78 29.83
GIZA++ 28.76 28.84
GIZA++ high count 25.51 25.38

Table 4: Final tune and test set results for our grammars
extracted using the baseline GIZA++ alignments and our
syntactic aligner. When we filter the GIZA++ grammars
with the same count thresholds used for our aligner (“high
count”), BLEU score drops substantially.

ing to the tune and test set, we extracted approx-
imately 32 million unique rules using our aligner,
but only 3 million with GIZA++. To check that
we were not just extracting extra low-count, low-
quality rules, we plotted the number of rules with
a particular count in Figure 4. We found that while
our aligner certainly extracts many more low-count
rules, it also extracts many more high-count rules.

Of course, high-count rules are not guaranteed
to be high quality. To verify that frequent rules
were better for translation, we experimented with
various methods of thresholding to remove rules
with low count extracted from using aligner. We
found in early development found that removing
low-count rules improved translation performance
substantially. In particular, we settled on the follow-
ing scheme: we kept all rules with a single foreign
terminal on the right-hand side. For entirely lexical
(gapless) rules, we kept all rules occurring at least
3 times. For unlexicalized rules, we kept all rules
occurring at least 20 times per gap. For rules which
mixed gaps and lexical items, we kept all rules oc-
curring at least 10 times per gap. This left us with
a grammar about 600 000 rules, the same grammar
which gave us our final results reported in Table 4.

In contrast to our syntactic aligner, rules extracted
using GIZA++ could not be so aggressively pruned.
When pruned using the same count thresholds, ac-
curacy dropped by more than 3.0 BLEU on the tune
set, and similarly on the test set (see Table 4). To
obtain the accuracy shown in our final results (our
best results with GIZA++), we had to adjust the
count threshold to include all lexicalized rules, all
unlexicalized rules, and mixed rules occurring at
least twice per gap. With these count thresholds, the
GIZA++ grammar contained about 580 000 rules,
roughly the same number as our syntactic grammar.

We also manually searched the grammars for
rules that had high count in the syntactically-

0 200 400 600 800 1000

1e
+0
0

1e
+0
2

1e
+0
4

1e
+0
6

Count

N
um

be
r o

f r
ul

es
 w

ith
 c

ou
nt Syntactic

GIZA++

Figure 4: Number of extracted translation rules with a
particular count. Grammars extracted from our syntactic
aligner produce not only more low-count rules, but also
more high-count rules than GIZA++.

extracted grammar and low (or 0) count in the
GIZA++ grammar. Of course, we can always
cherry-pick such examples, but a few rules were il-
luminating. For example, for the 在 . . .之前 con-
struction discussed earlier, our aligner permits ex-
traction of the general rule (PP→ IN1 NP2 ;在 NP2

IN1) 3087 times, and the lexicalized rule (PP→ be-
fore NP ; 在 NP 之前) 118 times. In constrast, the
GIZA++ grammar extracts the latter only 23 times
and the former not at all. The more complex rule
(NP→ NP2 , who S1 , ; S1的 NP2), which captures
a common appositive construction, was absent from
the GIZA++ grammar but occurred 63 in ours.

6 Conclusion

We have described a syntactic alignment model
which explicitly aligns nodes of a syntactic parse in
one language to spans in another, making it suitable
for use in many syntactic translation systems. Our
model is unsupervised and can be efficiently trained
with a straightforward application of EM. We have
demonstrated that our model can accurately capture
many syntactic correspondences, and is robust in the
face of syntactic divergence between language pairs.
Our aligner permits the extraction of more reliable,
high-count rules when compared to a standard word-
alignment baseline. These high-count rules also pro-
duce improvements in BLEU score.

Acknowledgements
This project is funded in part by the NSF under grant 0643742;
by BBN under DARPA contract HR0011-06-C-0022; and an
NSERC Postgraduate Fellowship. The authors would like to
thank Michael Auli for his input.

125

References
Ann Bies, Martha Palmer, Justin Mott, and Colin Warner. 2007.

English chinese translation treebank v 1.0. web download.
In LDC2007T02.

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra,
and Robert L. Mercer. 1993. The mathematics of statistical
machine translation: Parameter estimation. Computational
Linguistics, 19:263–311.

David Burkett, John Blitzer, and Dan Klein. 2010. Joint pars-
ing and alignment with weakly synchronized grammar. In
Proceedings of the North American Association for Compu-
tational Linguistics.

Colin Cherry and Dekang Lin. 2006. Soft syntactic constraints
for word alignment through discriminative training. In Pro-
ceedings of the Association of Computational Linguistics.

Colin Cherry and Dekang Lin. 2007. Inversion transduction
grammar for joint phrasal translation modeling. In Workshop
on Syntax and Structure in Statistical Translation.

David Chiang. 2004. Evaluating grammar formalisms for ap-
plications to natural language processing and biological se-
quence analysis. Ph.D. thesis, University of Pennsylvania.

David Chiang. 2005. A hierarchical phrase-based model for
statistical machine translation. In The Annual Conference of
the Association for Computational Linguistics.

Trevor Cohn and Phil Blunsom. 2009. A Bayesian model of
syntax-directed tree to string grammar induction. In Pro-
ceedings of the Conference on Emprical Methods for Natural
Language Processing.

John DeNero and Dan Klein. 2007. Tailoring word alignments
to syntactic machine translation. In The Annual Conference
of the Association for Computational Linguistics.

John DeNero, Dan Gillick, James Zhang, and Dan Klein. 2006.
Why generative phrase models underperform surface heuris-
tics. In Workshop on Statistical Machine Translation at
NAACL.

John DeNero, Mohit Bansal, Adam Pauls, and Dan Klein.
2009. Efficient parsing for transducer grammars. In Pro-
ceedings of NAACL.

Victoria Fossum, Kevin Knight, and Steven Abney. 2008. Us-
ing syntax to improve word alignment precision for syntax-
based machine translation. In Proceedings of the Third
Workshop on Statistical Machine Translation.

Michel Galley, Mark Hopkins, Kevin Knight, and Daniel
Marcu. 2004. What’s in a translation rule? In Proceed-
ings of the North American Chapter of the Association for
Computational Linguistics.

Michel Galley, Jonathan Graehl, Kevin Knight, Daniel Marcu,
Steve DeNeefe, Wei Wang, and Ignacio Thayer. 2006. Scal-
able inference and training of context-rich syntactic transla-
tion models. In Proceedings of the Association for Compu-
tational Linguistics.

Daniel Gildea. 2003. Loosely tree-based alignment for ma-
chine translation. In Proceedings of the Association for
Computational Linguistics.

Joshua Goodman. 1996. Parsing algorithms and metrics. In
Proceedings of the Association for Computational Linguis-
tics.

Joshua Goodman. 1998. Parsing Inside-Out. Ph.D. thesis,
Harvard University.

Aria Haghighi, John Blitzer, John Denero, and Dan Klein.
2009. Better word alignments with supervised itg models.
In Proceedings of the Association for Computational Lin-
guistics.

Liang Huang, Kevin Knight, and Aravind Joshi. 2006. A
syntax-directed translator with extended domain of locality.
In Proceedings of CHSLP.

Zhifei Li, Chris Callison-Burch, Chris Dyer, Juri Ganitkevitch,
Sanjeev Khudanpur, Lane Schwartz, Wren N. G. Thornton,
Jonathan Weese, and Omar F. Zaidan. 2009. Joshua: an
open source toolkit for parsing-based machine translation.
In Proceedings of the Fourth Workshop on Statistical Ma-
chine Translation.

Percy Liang, Ben Taskar, and Dan Klein. 2006. Alignment by
agreement. In Proceedings of the North American Chapter
of the Association for Computational Linguistics.

Ding Liu and Daniel Gildea. 2009. Bayesian learning of
phrasal tree-to-string templates. In Proceedings of EMNLP.

Yang Liu, Qun Liu, and Shouxun Lin. 2006. Tree-to-string
alignment template for statistical machine translation. In
Proceedings of the Association for Computational Linguis-
tics.

Yang Liu, Yajuan Lü, and Qun Liu. 2009. Improving tree-to-
tree translation with packed forests. In Proceedings of ACL.

M. Marcus, B. Santorini, and M. Marcinkiewicz. 1993. Build-
ing a large annotated corpus of English: The Penn Treebank.
In Computational Linguistics.

Jonathan May and Kevin Knight. 2007. Syntactic re-alignment
models for machine translation. In Proceedings of the Con-
ference on Emprical Methods for Natural Language Pro-
cessing.

Robert C. Moore. 2004. Improving ibm word alignment model
1. In The Annual Conference of the Association for Compu-
tational Linguistics.

Franz Josef Och and Hermann Ney. 2003. A systematic com-
parison of various statistical alignment models. Computa-
tional Linguistics, 29:19–51.

Franz Josef Och. 2003. Minimum error rate training in statis-
tical machine translation. In Proceedings of the Association
for Computational Linguistics.

Andreas Stolcke. 2002. SRILM: An extensible language mod-
eling toolkit. In ICSLP 2002.

Dekai Wu. 1997. Stochastic inversion transduction grammars
and bilingual parsing of parallel corpora. Computational
Linguistics, 23:377–404.

Kenji Yamada and Kevin Knight. 2001. A syntax-based statis-
tical translation model. In Proceedings of the Association of
Computational Linguistics.

Hao Zhang and Daniel Gildea. 2004. Syntax-based alignment:
supervised or unsupervised? In Proceedings of the Confer-
ence on Computational Linguistics.

Hao Zhang, Liang Huang, Daniel Gildea, and Kevin Knight.
2006. Synchronous binarization for machine translation. In
Proceedings of the North American Chapter of the Associa-
tion for Computational Linguistics.

126

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 127–135,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Joint Parsing and Alignment with Weakly Synchronized Grammars

David Burkett John Blitzer Dan Klein
Computer Science Division

University of California, Berkeley
{dburkett,blitzer,klein}@cs.berkeley.edu

Abstract

Syntactic machine translation systems extract
rules from bilingual, word-aligned, syntacti-
cally parsed text, but current systems for pars-
ing and word alignment are at best cascaded
and at worst totally independent of one an-
other. This work presents a unified joint model
for simultaneous parsing and word alignment.
To flexibly model syntactic divergence, we de-
velop a discriminative log-linear model over
two parse trees and an ITG derivation which
is encouraged but not forced to synchronize
with the parses. Our model gives absolute
improvements of 3.3 F1 for English pars-
ing, 2.1 F1 for Chinese parsing, and 5.5 F1

for word alignment over each task’s indepen-
dent baseline, giving the best reported results
for both Chinese-English word alignment and
joint parsing on the parallel portion of the Chi-
nese treebank. We also show an improvement
of 1.2 BLEU in downstream MT evaluation
over basic HMM alignments.

1 Introduction

Current syntactic machine translation (MT) sys-
tems build synchronous context free grammars from
aligned syntactic fragments (Galley et al., 2004;
Zollmann et al., 2006). Extracting such grammars
requires that bilingual word alignments and mono-
lingual syntactic parses be compatible. Because of
this, much recent work in both word alignment and
parsing has focused on changing aligners to make
use of syntactic information (DeNero and Klein,
2007; May and Knight, 2007; Fossum et al., 2008)
or changing parsers to make use of word align-
ments (Smith and Smith, 2004; Burkett and Klein,

2008; Snyder et al., 2009). In the first case, how-
ever, parsers do not exploit bilingual information.
In the second, word alignment is performed with a
model that does not exploit syntactic information.
This work presents a single, joint model for parsing
and word alignment that allows both pieces to influ-
ence one another simultaneously.

While building a joint model seems intuitive,
there is no easy way to characterize how word align-
ments and syntactic parses should relate to each
other in general. In the ideal situation, each pair
of sentences in a bilingual corpus could be syntacti-
cally parsed using a synchronous context-free gram-
mar. Of course, real translations are almost always
at least partially syntactically divergent. Therefore,
it is unreasonable to expect perfect matches of any
kind between the two sides’ syntactic trees, much
less expect that those matches be well explained at
a word level. Indeed, it is sometimes the case that
large pieces of a sentence pair are completely asyn-
chronous and can only be explained monolingually.

Our model exploits synchronization where pos-
sible to perform more accurately on both word
alignment and parsing, but also allows indepen-
dent models to dictate pieces of parse trees and
word alignments when synchronization is impossi-
ble. This notion of “weak synchronization” is pa-
rameterized and estimated from data to maximize
the likelihood of the correct parses and word align-
ments. Weak synchronization is closely related to
the quasi-synchronous models of Smith and Eis-
ner (2006; 2009) and the bilingual parse reranking
model of Burkett and Klein (2008), but those models
assume that the word alignment of a sentence pair is
known and fixed.

To simultaneously model both parses and align-

127

ments, our model loosely couples three separate
combinatorial structures: monolingual trees in the
source and target languages, and a synchronous ITG
alignment that links the two languages (but is not
constrained to match linguistic syntax). The model
has no hard constraints on how these three struc-
tures must align, but instead contains a set of “syn-
chronization” features that are used to propagate
influence between the three component grammars.
The presence of synchronization features couples
the parses and alignments, but makes exact inference
in the model intractable; we show how to use a vari-
ational mean field approximation, both for comput-
ing approximate feature expectations during train-
ing, and for performing approximate joint inference
at test time.

We train our joint model on the parallel, gold
word-aligned portion of the Chinese treebank.
When evaluated on parsing and word alignment, this
model significantly improves over independently-
trained baselines: the monolingual parser of Petrov
and Klein (2007) and the discriminative word
aligner of Haghighi et al. (2009). It also improves
over the discriminative, bilingual parsing model
of Burkett and Klein (2008), yielding the highest
joint parsing F1 numbers on this data set. Finally,
our model improves word alignment in the context
of translation, leading to a 1.2 BLEU increase over
using HMM word alignments.

2 Joint Parsing and Alignment

Given a source-language sentence, s, and a target-
language sentence, s′, we wish to predict a source
tree t, a target tree t′, and some kind of alignment
a between them. These structures are illustrated in
Figure 1.

To facilitate these predictions, we define a condi-
tional distribution P(t, a, t′|s, s′). We begin with a
generic conditional exponential form:

P(t, a, t′|s, s′) ∝ exp θ>φ(t, a, t′, s, s′) (1)

Unfortunately, a generic model of this form is in-
tractable, because we cannot efficiently sum over
all triples (t, a, t′) without some assumptions about
how the features φ(t, a, t′, s, s′) decompose.

One natural solution is to restrict our candidate
triples to those given by a synchronous context free

grammar (SCFG) (Shieber and Schabes, 1990). Fig-
ure 1(a) gives a simple example of generation from
a log-linearly parameterized synchronous grammar,
together with its features. With the SCFG restric-
tion, we can sum over the necessary structures using
the O(n6) bitext inside-outside algorithm, making
P(t, a, t′|s, s′) relatively efficient to compute expec-
tations under.

Unfortunately, an SCFG requires that all the con-
stituents of each tree, from the root down to the
words, are generated perfectly in tandem. The re-
sulting inability to model any level of syntactic di-
vergence prevents accurate modeling of the individ-
ual monolingual trees. We will consider the run-
ning example from Figure 2 throughout the paper.
Here, for instance, the verb phrase established in
such places as Quanzhou, Zhangzhou, etc. in En-
glish does not correspond to any single node in the
Chinese tree. A synchronous grammar has no choice
but to analyze this sentence incorrectly, either by ig-
noring this verb phrase in English or postulating an
incorrect Chinese constituent that corresponds to it.

Therefore, instead of requiring strict synchroniza-
tion, our model treats the two monolingual trees and
the alignment as separate objects that can vary arbi-
trarily. However, the model rewards synchronization
appropriately when the alignment brings the trees
into correspondence.

3 Weakly Synchronized Grammars

We propose a joint model which still gives probabil-
ities on triples (t, a, t′). However, instead of using
SCFG rules to synchronously enforce the tree con-
straints on t and t′, we only require that each of t
and t′ be well-formed under separate monolingual
CFGs.

In order to permit efficient enumeration of all pos-
sible alignments a, we also restrict a to the set of
unlabeled ITG bitrees (Wu, 1997), though again we
do not require that a relate to t or t′ in any particular
way. Although this assumption does limit the space
of possible word-level alignments, for the domain
we consider (Chinese-English word alignment), the
reduced space still contains almost all empirically
observed alignments (Haghighi et al., 2009).1 For

1See Section 8.1 for some new terminal productions re-
quired to make this true for the parallel Chinese treebank.

128

NP VP

S

NP

VP

IP

b0

b1

b2

Features

!((IP, b0, S), s, s’)

!((NP, b1, NP), s, s’)

!((VP, b2, VP), s, s’)

NP VP

S

NP

IP

b0

b1

b2

VP

AP

FeaturesFeatures

 (IP, s) (b0, s, s’)

 (NP, s) (b1, s, s’)

 (VP, s) (b2, s, s’)

 (S, s’) (IP, b0)

 (NP, s’) (b0, S)

 (AP, s’) (b1, NP)

 (VP, s’) (IP, b0, S)

Parsing

Alignment

Synchronization

φE

φE
φE

φE

φF
φF

φF

φA
φA

φA

φ!

φ!
φ!"

φ!

(a) Synchronous Rule (b) Asynchronous Rule

Figure 1: Source trees, t (right), alignments, a (grid), and target trees, t′ (top), and feature decompositions for syn-
chronous (a) and weakly synchronous (b) grammars. Features always condition on bispans and/or anchored syntactic
productions, but weakly synchronous grammars permit more general decompositions.

example, in Figure 2, the word alignment is ITG-
derivable, and each of the colored rectangles is a bi-
span in that derivation.

There are no additional constraints beyond the
independent, internal structural constraints on t, a,
and t′. This decoupling permits derivations like that
in Figure 1(b), where the top-level syntactic nodes
align, but their children are allowed to diverge. With
the three structures separated, our first model is a
completely factored decomposition of (1).

Formally, we represent a source tree t as a set of
nodes {n}, each node representing a labeled span.
Likewise, a target tree t′ is a set of nodes {n′}.2 We
represent alignments a as sets of bispans {b}, indi-
cated by rectangles in Figure 1.3 Using this notation,
the initial model has the following form:

P(t, a, t′|s, s′) ∝ exp

∑
n∈t

θ>φF (n, s)+

∑
b∈a

θ>φA(b, s, s′)+
∑
n′∈t′

θ>φE(n
′, s′)

 (2)

Here φF (n, s) indicates a vector of source node fea-
tures, φE(n′, s′) is a vector of target node features,
and φA(b, s, s′) is a vector of alignment bispan fea-
tures. Of course, this model is completely asyn-

2For expositional clarity, we describe n and n′ as labeled
spans only. However, in general, features that depend on n or
n′ are permitted to depend on the entire rule, and do in our final
system.

3Alignments a link arbitrary spans of s and s′ (including
non-constituents and individual words). We discuss the relation
to word-level alignments in Section 4.

chronous so far, and fails to couple the trees and
alignments at all. To permit soft constraints between
the three structures we are modeling, we add a set of
synchronization features.

For n ∈ t and b ∈ a, we say that n� b if n and b
both map onto the same span of s. We define b� n′

analogously for n′ ∈ t′. We now consider three
different types of synchronization features. Source-
alignment synchronization features φ�(n, b) are ex-
tracted whenever n � b. Similarly, target-alignment
features φ�(b, n′) are extracted if b � n′. These
features capture phenomena like that of bispan b7
in Figure 2. Here the Chinese noun地 synchronizes
with the ITG derivation, but the English projection
of b7 is a distituent. Finally, we extract source-target
features φ./(n, b, n′) whenever n�b�n′. These fea-
tures capture complete bispan synchrony (as in bi-
span b8) and can be expressed over triples (n, b, n′)
which happen to align, allowing us to reward syn-
chrony, but not requiring it. All of these licensing
conditions are illustrated in Figure 1(b).

With these features added, the final form of the
model is:

P(t, a, t′|s, s′) ∝ exp

∑
n∈t

θ>φF (n, s)+

∑
b∈a

θ>φA(b, s, s′)+
∑
n′∈t′

θ>φE(n
′, s′)+∑

n�b

θ>φ�(n, b)+
∑
b�n′

θ>φ�(b, n′)+

∑
n�b�n′

θ>φ./(n, b, n
′)

(3)

129

We emphasize that because of the synchronization
features, this final form does not admit any known
efficient dynamic programming for the exact com-
putation of expectations. We will therefore turn to a
variational inference method in Section 6.

4 Features

With the model’s locality structure defined, we
just need to specify the actual feature function,
φ. We divide the features into three types: pars-
ing features (φF (n, s) and φE(n

′, s′)), alignment
features (φA(b, s, s′)) and synchronization features
(φ�(n, b), φ�(b, n′), and φ./(n, b, n

′)). We detail
each of these in turn here.

4.1 Parsing

The monolingual parsing features we use are sim-
ply parsing model scores under the parser of Petrov
and Klein (2007). While that parser uses heavily re-
fined PCFGs with rule probabilities defined at the
refined symbol level, we interact with its posterior
distribution via posterior marginal probabilities over
unrefined symbols. In particular, to each unrefined
anchored production iAj → iBkCj , we associate a
single feature whose value is the marginal quantity
log P(iBkCj |iAj , s) under the monolingual parser.
These scores are the same as the variational rule
scores of Matsuzaki et al. (2005).4

4.2 Alignment

We begin with the same set of alignment features
as Haghighi et al. (2009), which are defined only for
terminal bispans. In addition, we include features on
nonterminal bispans, including a bias feature, fea-
tures that measure the difference in size between
the source and target spans, features that measure
the difference in relative sentence position between
the source and target spans, and features that mea-
sure the density of word-to-word alignment poste-
riors under a separate unsupervised word alignment
model.

4Of course the structure of our model permits any of the
additional rule-factored monolingual parsing features that have
been described in the parsing literature, but in the present work
we focus on the contributions of joint modeling.

4.3 Synchronization

Our synchronization features are indicators for the
syntactic types of the participating nodes. We de-
termine types at both a coarse (more collapsed
than Treebank symbols) and fine (Treebank sym-
bol) level. At the coarse level, we distinguish be-
tween phrasal nodes (e.g. S, NP), synthetic nodes
introduced in the process of binarizing the grammar
(e.g. S′, NP′), and part-of-speech nodes (e.g. NN,
VBZ). At the fine level, we distinguish all nodes
by their exact label. We use coarse and fine types
for both partially synchronized (source-alignment or
target-alignment) features and completely synchro-
nized (source-alignment-target) features. The inset
of Figure 2 shows some sample features. Of course,
we could devise even more sophisticated features by
using the input text itself. As we shall see, however,
our model gives significant improvements with these
simple features alone.

5 Learning

We learn the parameters of our model on the paral-
lel portion of the Chinese treebank. Although our
model assigns probabilities to entire synchronous
derivations of sentences, the parallel Chinese tree-
bank gives alignments only at the word level (1 by
1 bispans in Figure 2). This means that our align-
ment variable a is not fully observed. Because of
this, given a particular word alignment w, we max-
imize the marginal probability of the set of deriva-
tions A(w) that are consistent with w (Haghighi et
al., 2009).5

L(θ)=log
∑

a∈A(wi)

P(ti, a, t
′
i|si, s′i)

We maximize this objective using standard gradient
methods (Nocedal and Wright, 1999). As with fully
visible log-linear models, the gradient for the ith sen-
tence pair with respect to θ is a difference of feature
expectations:

∇L(θ) =EP(a|ti,wi,t′i,si,s′i)
[
φ(ti, a, t

′
i, si, s

′
i)
]

− EP(t,a,t′|si,s′i)
[
φ(t, a, t′, si, s

′
i)
] (4)

5We also learn from non-ITG alignments by maximizing the
marginal probability of the set of minimum-recall error align-
ments in the same way as Haghighi et al. (2009)

130

NP

NP

IN

PP

NPIN

PPVBN

VPVBD

VPNP

S

JJ NNS

... were established in such places as Quanzhou Zhangzhou etc.

在
泉州
漳州
等
地
!立
了
...

NP

P

NN

NP

PP

VP

VV

AS

NP

VP

b8

b7

b4

Sample Synchronization Features

NP, b8,NP

NN, b7

φ!"() = CoarseSourceTarget〈phrasal, phrasal〉 : 1

FineSourceTarget〈NP,NP〉 : 1

φ!() = CoarseSourceAlign〈pos〉 : 1

FineSourceAlign〈NN〉 : 1

Figure 2: An example of a Chinese-English sentence pair with parses, word alignments, and a subset of the full optimal
ITG derivation, including one totally unsynchronized bispan (b4), one partially synchronized bispan (b7), and and fully
synchronized bispan (b8). The inset provides some examples of active synchronization features (see Section 4.3) on
these bispans. On this example, the monolingual English parser erroneously attached the lower PP to the VP headed by
established, and the non-syntactic ITG word aligner misaligned等 to such instead of to etc. Our joint model corrected
both of these mistakes because it was rewarded for the synchronization of the two NPs joined by b8.

We cannot efficiently compute the model expecta-
tions in this equation exactly. Therefore we turn next
to an approximate inference method.

6 Mean Field Inference

Instead of computing the model expectations from
(4), we compute the expectations for each sentence
pair with respect to a simpler, fully factored distri-
bution Q(t, a, t′) = q(t)q(a)q(t′). Rewriting Q in
log-linear form, we have:

Q(t, a, t′) ∝ exp

∑
n∈t

ψn +
∑
b∈a

ψb +
∑
n′∈t′

ψn′

Here, the ψn, ψb and ψn′ are variational parameters
which we set to best approximate our weakly syn-
chronized model from (3):

ψ∗ = argmin
ψ

KL
(

Qψ||Pθ(t, a, t′|s, s′)
)

Once we have found Q, we compute an approximate
gradient by replacing the model expectations with

expectations under Q:

EQ(a|wi)
[
φ(ti, a, t

′
i, si, s

′
i)
]

− EQ(t,a,t′|si,s′i)
[
φ(t, a, t′, si, s

′
i)
]

Now, we will briefly describe how we compute Q.
First, note that the parameters ψ of Q factor along
individual source nodes, target nodes, and bispans.
The combination of the KL objective and our par-
ticular factored form of Q make our inference pro-
cedure a structured mean field algorithm (Saul and
Jordan, 1996). Structured mean field techniques are
well-studied in graphical models, and our adaptation
in this section to multiple grammars follows stan-
dard techniques (see e.g. Wainwright and Jordan,
2008).

Rather than derive the mean field updates for ψ,
we describe the algorithm (shown in Figure 3) pro-
cedurally. Similar to block Gibbs sampling, we it-
eratively optimize each component (source parse,
target parse, and alignment) of the model in turn,
conditioned on the others. Where block Gibbs sam-
pling conditions on fixed trees or ITG derivations,
our mean field algorithm maintains uncertainty in

131

Input: sentence pair (s, s′)
parameter vector θ

Output: variational parameters ψ

1. Initialize
ψ0
n ← θ>φF (n, s)

ψ0
b←θ>φA(b, s, s′)

ψ0
n′←θ>φE(n

′, s′)

µ0
n ←

∑
t qψ0(t)I(n ∈ t), etc for µ0

b , µ0
n′

2. While not converged, for each n, n′, b in
the monolingual and ITG charts

ψin ← θ>
(
φF (n, s) +

∑
b,n�b µ

i−1
b φ�(n, b)+∑

b,n�b

∑
n′,b�n′ µ

i−1
b µi−1

n′ φ./(n, b, n
′)
)

µin ←
∑
t qψ(t)I(n ∈ t) (inside-outside)

ψib ← θ>
(
φA(b, s, s′) +

∑
n,n�b µ

i−1
n φ�(n, b)+∑

n′,b�n′ µ
i−1
n′ φ�(b, n′)+∑

n,n�b

∑
n′,b�n′ µ

i−1
n µi−1

n′ φ./(n, b, n
′)
)

µb ←
∑
a qψ(a)I(b ∈ a) (bitext inside-outside)

updates for ψin′ , µin′ analogous to ψin, µin

3. Return variational parameters ψ
Figure 3: Structured mean field inference for the weakly
synchronized model. I(n ∈ t) is an indicator value for
the presence of node n in source tree t.

the form of monolingual parse forests or ITG forests.
The key components to this uncertainty are the
expected counts of particular source nodes, target
nodes, and bispans under the mean field distribution:

µn =
∑
t

qψ(t)I(n ∈ t)

µn′ =
∑
t′

qψ(t′)I(n′ ∈ t′)

µb =
∑
a

qψ(a)I(b ∈ a)

Since dynamic programs exist for summing over
each of the individual factors, these expectations can
be computed in polynomial time.

6.1 Pruning

Although we can approximate the expectations from
(4) in polynomial time using our mean field distribu-
tion, in practice we must still prune the ITG forests
and monolingual parse forests to allow tractable in-
ference. We prune our ITG forests using the same

basic idea as Haghighi et al. (2009), but we em-
ploy a technique that allows us to be more aggres-
sive. Where Haghighi et al. (2009) pruned bispans
based on how many unsupervised HMM alignments
were violated, we first train a maximum-matching
word aligner (Taskar et al., 2005) using our super-
vised data set, which has only half the precision er-
rors of the unsupervised HMM. We then prune ev-
ery bispan which violates at least three alignments
from the maximum-matching aligner. When com-
pared to pruning the bitext forest of our model with
Haghighi et al. (2009)’s HMM technique, this new
technique allows us to maintain the same level of ac-
curacy while cutting the number of bispans in half.

In addition to pruning the bitext forests, we also
prune the syntactic parse forests using the mono-
lingual parsing model scores. For each unrefined
anchored production iAj → iBkCj , we com-
pute the marginal probability P(iAj ,i Bk,k Cj |s) un-
der the monolingual parser (these are equivalent to
the maxrule scores from Petrov and Klein 2007). We
only include productions where this probability is
greater than 10−20. Note that at training time, we are
not guaranteed that the gold trees will be included
in the pruned forest. Because of this, we replace the
gold trees ti, t′i with oracle trees from the pruned for-
est, which can be found efficiently using a variant of
the inside algorithm (Huang, 2008).

7 Testing

Once the model has been trained, we still need to
determine how to use it to predict parses and word
alignments for our test sentence pairs. Ideally, given
the sentence pair (s, s′), we would find:

(t∗, w∗, t′∗) = argmax
t,w,t′

P(t, w, t′|s, s′)

= argmax
t,w,t′

∑
a∈A(w)

P(t, a, t′|s, s′)

Of course, this is also intractable, so we once again
resort to our mean field approximation. This yields
the approximate solution:

(t∗, w∗, t′∗) = argmax
t,w,t′

∑
a∈A(w)

Q(t, a, t′)

However, recall that Q incorporates the model’s mu-
tual constraint into the variational parameters, which

132

factor into q(t), q(a), and q(t′). This allows us to
simplify further, and find the maximum a posteriori
assignments under the variational distribution. The
trees can be found quickly using the Viterbi inside
algorithm on their respective qs. However, the sum
for computing w∗ under q is still intractable.

As we cannot find the maximum probability word
alignment, we provide two alternative approaches
for finding w∗. The first is to just find the Viterbi
ITG derivation a∗ = argmaxa q(a) and then set w∗

to contain exactly the 1x1 bispans in a∗. The second
method, posterior thresholding, is to compute poste-
rior marginal probabilities under q for each 1x1 cell
beginning at position i, j in the word alignment grid:

m(i, j) =
∑
a

q(a)I((i, i+ 1, j, j + 1) ∈ a)

We then include w(i, j) in w∗ if m(w(i, j)) > τ ,
where τ is a threshold chosen to trade off precision
and recall. For our experiments, we found that the
Viterbi alignment was uniformly worse than poste-
rior thresholding. All the results from the next sec-
tion use the threshold τ = 0.25.

8 Experiments

We trained and tested our model on the translated
portion of the Chinese treebank (Bies et al., 2007),
which includes hand annotated Chinese and English
parses and word alignments. We separated the data
into three sets: train, dev, and test, according to the
standard Chinese treebank split. To speed up train-
ing, we only used training sentences of length ≤ 50
words, which left us with 1974 of 2261 sentences.
We measured the results in two ways. First, we
directly measured F1 for English parsing, Chinese
parsing, and word alignment on a held out section of
the hand annotated corpus used to train the model.
Next, we further evaluated the quality of the word
alignments produced by our model by using them as
input for a machine translation system.

8.1 Dataset-specific ITG Terminals

The Chinese treebank gold word alignments include
significantly more many-to-many word alignments
than those used by Haghighi et al. (2009). We are
able to produce some of these many-to-many align-
ments by including new many-to-many terminals in

the en
tir
e
co
un
try

in rec
en
t

ye
ars

bo
th
sid
es

全
国

两
岸

近年
来

(a) 2x2

the en
tir
e
co
un
try

in rec
en
t

ye
ars

bo
th
sid
es

全
国

两
岸

近年
来

(b) 2x3

the en
tir
e
co
un
try

in rec
en
t

ye
ars

bo
th
sid
es

全
国

两
岸

近年
来

(c) Gapped 2x3

Figure 4: Examples of phrasal alignments that can be rep-
resented by our new ITG terminal bispans.

our ITG word aligner, as shown in Figure 4. Our
terminal productions sometimes capture non-literal
translation like both sides or in recent years. They
also can allow us to capture particular, systematic
changes in the annotation standard. For example,
the gapped pattern from Figure 4 captures the stan-
dard that English word the is always aligned to the
Chinese head noun in a noun phrase. We featurize
these non-terminals with features similar to those
of Haghighi et al. (2009), and all of the alignment
results we report in Section 8.2 (both joint and ITG)
employ these features.

8.2 Parsing and Word Alignment
To compute features that depend on external models,
we needed to train an unsupervised word aligner and
monolingual English and Chinese parsers. The un-
supervised word aligner was a pair of jointly trained
HMMs (Liang et al., 2006), trained on the FBIS cor-
pus. We used the Berkeley Parser (Petrov and Klein,
2007) for both monolingual parsers, with the Chi-
nese parser trained on the full Chinese treebank, and
the English parser trained on a concatenation of the
Penn WSJ corpus (Marcus et al., 1993) and the En-
glish side of train.6

We compare our parsing results to the mono-
lingual parsing models and to the English-Chinese
bilingual reranker of Burkett and Klein (2008),
trained on the same dataset. The results are in
Table 1. For word alignment, we compare to

6To avoid overlap in the data used to train the monolingual
parsers and the joint model, at training time, we used a separate
version of the Chinese parser, trained only on articles 400-1151
(omitting articles in train). For English parsing, we deemed it
insufficient to entirely omit the Chinese treebank data from the
monolingual parser’s training set, as otherwise the monolingual
parser would be trained entirely on out-of-domain data. There-
fore, at training time we used two separate English parsers: to
compute model scores for the first half of train, we used a parser
trained on a concatenation of the WSJ corpus and the second
half of train, and vice versa for the remaining sentences.

133

Test Results
Ch F1 Eng F1 Tot F1

Monolingual 83.6 81.2 82.5
Reranker 86.0 83.8 84.9
Joint 85.7 84.5 85.1

Table 1: Parsing results. Our joint model has the highest
reported F1 for English-Chinese bilingual parsing.

Test Results
Precision Recall AER F1

HMM 86.0 58.4 30.0 69.5
ITG 86.8 73.4 20.2 79.5
Joint 85.5 84.6 14.9 85.0

Table 2: Word alignment results. Our joint model has the
highest reported F1 for English-Chinese word alignment.

the baseline unsupervised HMM word aligner and
to the English-Chinese ITG-based word aligner
of Haghighi et al. (2009). The results are in Table 2.

As can be seen, our model makes substantial im-
provements over the independent models. For pars-
ing, we improve absolute F1 over the monolingual
parsers by 2.1 in Chinese, and by 3.3 in English.
For word alignment, we improve absolute F1 by 5.5
over the non-syntactic ITG word aligner. In addi-
tion, our English parsing results are better than those
of the Burkett and Klein (2008) bilingual reranker,
the current top-performing English-Chinese bilin-
gual parser, despite ours using a much simpler set
of synchronization features.

8.3 Machine Translation

We further tested our alignments by using them to
train the Joshua machine translation system (Li and
Khudanpur, 2008). Table 3 describes the results of
our experiments. For all of the systems, we tuned

Rules Tune Test
HMM 1.1M 29.0 29.4
ITG 1.5M 29.9 30.4†

Joint 1.5M 29.6 30.6

Table 3: Tune and test BLEU results for machine transla-
tion systems built with different alignment tools. † indi-
cates a statistically significant difference between a sys-
tem’s test performance and the one above it.

on 1000 sentences of the NIST 2004 and 2005 ma-
chine translation evaluations, and tested on 400 sen-
tences of the NIST 2006 MT evaluation. Our train-
ing set consisted of 250k sentences of newswire dis-
tributed with the GALE project, all of which were
sub-sampled to have high Ngram overlap with the
tune and test sets. All of our sentences were of
length at most 40 words. When building the trans-
lation grammars, we used Joshua’s default “tight”
phrase extraction option. We ran MERT for 4 itera-
tions, optimizing 20 weight vectors per iteration on
a 200-best list.

Table 3 gives the results. On the test set, we also
ran the approximate randomization test suggested by
Riezler and Maxwell (2005). We found that our joint
parsing and alignment system significantly outper-
formed the HMM aligner, but the improvement over
the ITG aligner was not statistically significant.

9 Conclusion

The quality of statistical machine translation mod-
els depends crucially on the quality of word align-
ments and syntactic parses for the bilingual training
corpus. Our work presented the first joint model
for parsing and alignment, demonstrating that we
can improve results on both of these tasks, as well
as on downstream machine translation, by allowing
parsers and word aligners to simultaneously inform
one another. Crucial to this improved performance
is a notion of weak synchronization, which allows
our model to learn when pieces of a grammar are
synchronized and when they are not. Although ex-
act inference in the weakly synchronized model is
intractable, we developed a mean field approximate
inference scheme based on monolingual and bitext
parsing, allowing for efficient inference.

Acknowledgements

We thank Adam Pauls and John DeNero for their
help in running machine translation experiments.
We also thank the three anonymous reviewers for
their helpful comments on an earlier draft of this
paper. This project is funded in part by NSF
grants 0915265 and 0643742, an NSF graduate re-
search fellowship, the CIA under grant HM1582-09-
1-0021, and BBN under DARPA contract HR0011-
06-C-0022.

134

References
Ann Bies, Martha Palmer, Justin Mott, and Colin Warner.

2007. English Chinese translation treebank v 1.0.
Web download. LDC2007T02.

David Burkett and Dan Klein. 2008. Two languages are
better than one (for syntactic parsing). In EMNLP.

John DeNero and Dan Klein. 2007. Tailoring word
alignments to syntactic machine translation. In ACL.

Victoria Fossum, Kevin Knight, and Steven Abney. 2008.
Using syntax to improve word alignment for syntax-
based statistical machine translation. In ACL MT
Workshop.

Michel Galley, Mark Hopkins, Kevin Knight, and Daniel
Marcu. 2004. What’s in a translation rule? In HLT-
NAACL.

Aria Haghighi, John Blitzer, John DeNero, and Dan
Klein. 2009. Better word alignments with supervised
ITG models. In ACL.

Liang Huang. 2008. Forest reranking: Discriminative
parsing with non-local features. In ACL.

Zhifei Li and Sanjeev Khudanpur. 2008. A scalable
decoder for parsing-based machine translation with
equivalent language model state maintenance. In ACL
SSST.

Percy Liang, Ben Taskar, and Dan Klein. 2006. Align-
ment by agreement. In HLT-NAACL.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beat-
rice Santorini. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Takuya Matsuzaki, Yusuki Miyao, and Jun’ichi Tsujii.
2005. Probabilistic CFG with latent annotations. In
ACL.

Jon May and Kevin Knight. 2007. Syntactic re-
alignment models for machine translation. In EMNLP.

Jorge Nocedal and Stephen J. Wright. 1999. Numerical
Optimization. Springer.

Slav Petrov and Dan Klein. 2007. Improved inference
for unlexicalized parsing. In HLT-NAACL.

Stefan Riezler and John Maxwell. 2005. On some pit-
falls in automatic evaluation and significance testing
for MT. In Workshop on Intrinsic and Extrinsic Eval-
uation Methods for MT and Summarization, ACL.

Lawrence Saul and Michael Jordan. 1996. Exploit-
ing tractable substructures in intractable networks. In
NIPS.

Stuart M. Shieber and Yves Schabes. 1990. Synchronous
tree-adjoining grammars. In ACL.

David A. Smith and Jason Eisner. 2006. Quasi-
synchronous grammars: Alignment by soft projection
of syntactic dependencies. In HLT-NAACL.

David A. Smith and Jason Eisner. 2009. Parser adapta-
tion and projection with quasi-synchronous grammar
features. In EMNLP.

David A. Smith and Noah A. Smith. 2004. Bilin-
gual parsing with factored estimation: using English
to parse Korean. In EMNLP.

Benjamin Snyder, Tahira Naseem, and Regina Barzilay.
2009. Unsupervised multilingual grammar induction.
In ACL.

Ben Taskar, Simon Lacoste-Julien, and Dan Klein. 2005.
A discriminative matching approach to word align-
ment. In EMNLP.

Martin J Wainwright and Michael I Jordan. 2008.
Graphical Models, Exponential Families, and Varia-
tional Inference. Now Publishers Inc., Hanover, MA,
USA.

Dekai Wu. 1997. Stochastic inversion transduction
grammars and bilingual parsing of parallel corpora.
Computational Linguistics, 23(3):377–404.

Andreas Zollmann, Ashish Venugopal, Stephan Vogel,
and Alex Waibel. 2006. The CMU-AKA syntax aug-
mented machine translation system for IWSLT-06. In
IWSLT.

135

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 136–144,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Learning Translation Boundaries for Phrase-Based Decoding

Deyi Xiong, Min Zhang, Haizhou Li
Human Language Technology

Institute for Infocomm Research
1 Fusionopolis Way, #21-01 Connexis, Singapore 138632.
{dyxiong, mzhang, hli}@i2r.a-star.edu.sg

Abstract

Constrained decoding is of great importance
not only for speed but also for translation qual-
ity. Previous efforts explore soft syntactic con-
straints which are based on constituent bound-
aries deduced from parse trees of the source
language. We present a new framework to es-
tablish soft constraints based on a more nat-
ural alternative: translation boundary rather
than constituent boundary. We propose sim-
ple classifiers to learn translation boundaries
for any source sentences. The classifiers are
trained directly on word-aligned corpus with-
out using any additional resources. We report
the accuracy of our translation boundary clas-
sifiers. We show that using constraints based
on translation boundaries predicted by our
classifiers achieves significant improvements
over the baseline on large-scale Chinese-to-
English translation experiments. The new
constraints also significantly outperform con-
stituent boundary based syntactic constrains.

1 Introduction

It has been known that phrase-based decoding
(phrase segmentation/translation/reordering (Chi-
ang, 2005)) should be constrained to some extent not
only for transferring the NP-hard problem (Knight,
1999) into a tractable one in practice but also for im-
proving translation quality. For example, Xiong et
al. (2008) find that translation quality can be signif-
icantly improved by either prohibiting reorderings
around punctuation or restricting reorderings within
a 15-word window.

Recently, more linguistically motivated con-
straints are introduced to improve phrase-based de-
coding. (Cherry, 2008) and (Marton and Resnik,

2008) introduce syntactic constraints into the stan-
dard phrase-based decoding (Koehn et al., 2003) and
hierarchical phrase-based decoding (Chiang, 2005)
respectively by using a counting feature which ac-
cumulates whenever hypotheses violate syntactic
boundaries of source-side parse trees. (Xiong et al.,
2009) further presents a bracketing model to include
thousands of context-sensitive syntactic constraints.
All of these approaches achieve their improvements
by guiding the phrase-based decoder to prefer trans-
lations which respect source-side parse trees.

One major problem with such constituent bound-
ary based constraints is that syntactic structures of
the source language do not necessarily reflect trans-
lation structures where the source and target lan-
guage correspond to each other. In this paper,
we investigate building classifiers that directly ad-
dress the problem of translation boundary, rather
than extracting constituent boundary from source-
side parsers built for a different purpose. A trans-
lation boundary is a position in the source sequence
which begins or ends a translation zone 1 spanning
multiple source words. In a translation zone, the
source phrase is translated as a unit. Reorderings
which cross translation zones are not desirable.

Inspired by (Roark and Hollingshead, 2008)
which introduces classifiers to decide if a word can
begin/end a multi-word constituent, we build two
discriminative classifiers to tag each word in the
source sequence with a binary class label. The first
classifier decides if a word can begin a multi-source-
word translation zone; the second classifier decides
if a word can end a multi-source-word translation

1We will give a formal definition of translation zone in Sec-
tion 2.

136

zone. Given a partial translation covering source se-
quence (i, j) with start word ci and end word cj

2,
this translation can be penalized if the first classifier
decides that the start word ci can not be a beginning
translation boundary or the second classifier decides
that the end word cj can not be an ending translation
boundary. In such a way, we can guide the decoder
to boost hypotheses that respect translation bound-
aries and therefore the common translation structure
shared by the source and target language, rather than
the syntactic structure of the source language.

We report the accuracy of such classifiers by com-
paring their outputs with “gold” translation bound-
aries obtained from reference translations on the de-
velopment set. We integrate translation boundary
based constraints into phrase-based decoding and
display that they improve translation quality signif-
icantly in large-scale experiments. Furthermore, we
confirm that they also significantly outperform con-
stituent boundary based syntactic constraints.

2 Beginning and Ending Translation Zones

To better understand the particular task that we ad-
dress in this paper, we study the distribution of
classes of translation boundaries in real-world data.
First, we introduce some notations. Given a source
sentence c1...cn, we will say that a word ci (1 < i <
n) is in the class By if there is a translation zone τ
spanning ci...cj for some j > i; and ci ∈ Bn oth-
erwise. Similarly, we will say that a word cj is in
the class Ey if there is a translation zone spanning
ci...cj for some j > i; and cj ∈ En otherwise.

Here, a translation zone τ is a pair of aligned
source phrase and target phrase

τ = (cj
i , e

q
p)

where τ must be consistent with the word alignment
M

∀(u, v) ∈ M, i ≤ u ≤ j ↔ p ≤ v ≤ q

By this, we require that no words inside the source
phrase cj

i are aligned to words outside the target
phrase eq

p and that no words outside the source
phrase are aligned to words inside the target phrase.

2In this paper, we use c to denote the source language and e
the target language.

Item Count (M) P (%)
Sentences 3.8 –
Words 96.9 –
Words ∈ By 22.7 23.4
Words ∈ Ey 41.0 42.3
Words /∈ By and /∈ Ey 33.2 34.3

Table 1: Statistics on word classes from our bilingual
training data. All numbers are calculated on the source
side. P means the percentage.

This means, in other words, that the source phrase
cj
i is mapped as a unit onto the target phrase eq

p.
When defining the By and Ey class, we also re-

quire that the source phrase cj
i in the translation zone

must contain multiple words (j > i). Our interest
is the question of whether a sequence of consecu-
tive source words can be translated as a unit (i.e.
whether there is a translation zone covering these
source words). For a single-word source phrase, if
it can be translated separately, it is always translated
as a unit in the context of phrase-based decoding.
Therefore this question does not exist.

Note that the first word c1 and the last word cn

are unambiguous in terms of whether they begin or
end a translation zone. The first word c1 must begin
a translation zone spanning the whole source sen-
tence. The last word cn must end a translation zone
spanning the whole source sentence. Therefore, our
classifiers only need to predict the other n−2 words
for a source sentence of length n.

Table 1 shows statistics of word classes from our
training data which contain nearly 100M words in
approximately 4M sentences. Among these words,
only 22.7M words can begin a translation zone
which covers multiple source words. 41M words
can end a translation zone spanning multiple source
words, which accounts for more than 42% in all
words. We still have more than 33M words, ac-
counting for 34.3%, which neither begin nor end
a multi-source-word translation zone. Apparently,
translations that begin/end on words ∈ By/∈ Ey are
preferable to those which begin/end on other words.

Yet another interesting study is to compare trans-
lation boundaries with constituent boundaries de-
duced from source-side parse trees. In doing so,
we can know further how well constituent boundary

137

Classification Task Avg. Accuracy (%)
By/Bn 46.9
Ey/En 52.2

Table 2: Average classification accuracy on the develop-
ment set when we treat constituent boundary deducer (ac-
cording to source-side parse trees) as a translation bound-
ary classifier.

based syntactic constraints can improve translation
quality. We pair the source sentences of our devel-
opment set with each of the reference translations
and include the created sentence pairs in our bilin-
gual training corpus. Then we obtain word align-
ments on the new corpus (see Section 5.1 for the de-
tails of learning word alignments). From the word
alignments we obtain translation boundaries (see de-
tails in the next section). We parse the source sen-
tences of our development set and obtain constituent
boundaries from parse trees.

To make a clear comparison with our transla-
tion boundary classifiers (see Section 3.3), we treat
constituent boundaries deduced from source-side
parse trees as output from beginning/ending bound-
ary classifiers: the constituent beginning boundary
corresponds to By; the constituent ending boundary
corresponds to Ey. We have four reference transla-
tions for each source sentence. Therefore we have
four translation boundary sets, each of which is pro-
duced from word alignments between source sen-
tences and one reference translation set. Each of
the four translation boundary sets will be used as a
gold standard. We calculate classification accuracy
for our constituent boundary deducer on each gold
standard and average them finally.

Table 2 shows the accuracy results. The average
accuracies on the four gold standard sets are very
low, especially for the By/Bn classification task. In
section 3.3, we will show that our translation bound-
ary classifiers achieve higher accuracy than that of
constituent boundary deducer. This suggests that
pure constituent boundary based constraints are not
the best choice to constrain phrase-based decoding.

3 Learning Translation Boundaries

In this section, we investigate building classifiers
to predict translation boundaries. First, we elabo-

rate the acquisition of training instances from word
alignments. Second, we build two classifiers with
simple features on the obtained training instances.
Finally, we evaluate our classifiers on the develop-
ment set using the “gold” translation boundaries ob-
tained from reference translations.

3.1 Obtaining Translation Boundaries from
Word Alignments

We can easily obtain constituent boundaries from
parse trees. Similarly, if we have a tree covering
both source and target sentence, we can easily get
translation boundaries from this tree. Fortunately,
we can build such a tree directly from word align-
ments. We use (Zhang et al., 2008)’s shift-reduce al-
gorithm (SRA) to decompose word alignments into
hierarchical trees.

Given an arbitrary word-level alignment as an in-
put, SRA is able to output a tree representation of the
word alignment (a.k.a decomposition tree). Each
node of the tree is a translation zone as we defined
in the Section 2. Therefore the first word on the
source side of each multi-source-word node is a be-
ginning translation boundary (∈ By); the last word
on the source side of each multi-source-word node
is an ending translation boundary (∈ Ey).

Figure 1a shows an example of many-to-many
alignment, where the source language is Chinese
and the target language is English. Each word is
indexed with their occurring position from left to
right. Figure 1b is the tree representation of the word
alignment after hierarchical analysis using SRA. We
use ([i, j], [p, q]) to denote a tree node, where i, j
and p, q are the beginning and ending index in the
source and target language, respectively. By check-
ing nodes which cover multiple source words, we
can easily decide that the source words {过去, 五,
因故} are in the class By and any other words are
in the class Bn if we want to train a By/Bn classi-
fier with class labels {By, Bn}. Similarly, the source
words {次,飞行,都,失败} are in the class Ey and
any other words are in the class En when we train a
Ey/En classifier with class labels {Ey, En}.

By using SRA on each word-aligned bilingual
sentence, as described above, we can tag each source
word with two sets of class labels: {By, Bn} and
{Ey, En}. The tagged source sentences will be used
to train our two translation boundary classifiers.

138

过去 次飞行 都 因故 失败

The last five flights all failed due to accidents

五

1 2 3 4 5 6 7

1 2 3 4 5 6 7 8 9

([1, 7], [1, 9])

([6, 7], [6, 9])

([6, 6], [7, 9]) ([7, 7], [6, 6])

([1, 5], [1, 5])

([1, 4], [1, 4]) ([5, 5], [5, 5])

([1, 3], [1, 3]) ([4, 4], [4, 4])

([1, 1], [1, 2]) ([2, 3], [3, 3])

a) b)

Figure 1: An example of many-to-many word alignment and its tree representation produced by (Zhang et al., 2008)’s
shift-reduce algorithm.

3.2 Building Translation Boundary Classifiers

We build two discriminative classifiers based on
Maximum Entropy Markov Models (MEMM) (Mc-
Callum et al., 2000). One classifier is to predict the
word class ζ ∈ {By, Bn} for each source word. The
other is to predict the word class ζ ∈ {Ey, En}.
These two classifiers are separately trained using
training instances obtained from our word-aligned
training data as demonstrated in the last section.

We use features from surrounding words, includ-
ing 2 before and 2 after the current word position
(c−2, c−1, c+1, c+2). We also use class features to
train models with Markov order 1 (including class
feature ζc−1), and Markov order 2 (including class
features ζc−1 , ζc−2).

3.3 Evaluating Translation Boundary
Classifiers

How well can we perform these binary classifica-
tion tasks using the classifiers described above? Can
we obtain better translation boundary predictions
than extracting constituent boundary from source-
side parse trees? To investigate these questions, we
evaluate our MEMM based classifiers. We trained
them on our 100M-word word-aligned corpus. We
ran the two trained classifiers on the development
set separately to obtain the By/Bn words and Ey/En

words. Then we built our four gold standards using
four reference translation sets as described in Sec-

Avg. Accuracy (%)
Classification Task MEMM 1 MEMM 2
By/Bn 71.7 70.2
Ey/En 59.2 58.8

Table 3: Average classification accuracy on the develop-
ment set for our MEMM based translation boundary clas-
sifiers with various Markov orders.

tion 2. The average classification accuracy results
are shown in Table 3.

Comparing Table 3 with Table 2, we find that our
MEMM based classifiers significantly outperform
constituent boundary deducer in predicting transla-
tion boundaries, especially in the By/Bn classifi-
cation task, where our MEMM based By/Bn clas-
sifier (Markov order 1) achieves a relative increase
of 52.9% in accuracy over the constituent bound-
ary deducer. In the Ey/En classification task, our
classifiers also perform much better than constituent
boundary deducer.

Then are our MEMM based translation boundary
classifiers good enough? The accuracies are still low
although they are higher than those of constituent
boundary deducer. One reason why we have low
accuracies is that our gold standard based evalua-
tion is not established on real gold standards. In
other words, we don’t have gold standards in terms
of translation boundary since different translations

139

Classification Task Avg. Accuracy (%)
By/Bn 80.6
Ey/En 75.7

Table 4: Average classification accuracy on the develop-
ment set when treating each reference translation set as a
boundary classifier.

generate very different translation boundaries. We
can measure these differences in reference transla-
tions using the same evaluation metric (classification
accuracy). We treat each reference translation set
as a translation boundary classifier while the other
three reference translation sets as gold standards.
We calculate the classification accuracy for the cur-
rent reference translation set and finally average all
four accuracies. Table 4 presents the results.

Comparing Table 4 with Table 3, we can see that
the accuracy of our translation boundary classifica-
tion approach is not that low when considering vast
divergences of reference translations. The question
now becomes, how can classifier output be used to
constrain phrase-based decoding, and what is the
impact on the system performance of using such
constraints.

4 Integrating Translation Boundaries into
Decoding

By running the two trained classifiers on the source
sentence separately, we obtain two classified word
sets: By/Bn words, and Ey/En words. We can pro-
hibit any translations or reorderings spanning ci...cj

(j > i) where ci /∈ By according to the first classi-
fier or cj /∈ Ey according to the second classifier. In
such a way, we integrate translation boundaries into
phrase-based decoding as hard constraints, which,
however, is at the risk of producing no translation
covering the whole source sentence.

Alternatively, we introduce soft constraints based
on translation boundary that our classifiers pre-
dict, similar to constituent boundary based soft con-
straints in (Cherry, 2008) and (Marton and Resnik,
2008). We add a new feature to the decoder’s log-
linear model: translation boundary violation count-
ing feature. This counting feature accumulates
whenever hypotheses have a partial translation span-
ning ci...cj (j > i) where ci /∈ By or cj /∈ Ey. The

LDC ID Description
LDC2004E12 United Nations
LDC2004T08 Hong Kong News
LDC2005T10 Sinorama Magazine
LDC2003E14 FBIS
LDC2002E18 Xinhua News V1 beta
LDC2005T06 Chinese News Translation
LDC2003E07 Chinese Treebank
LDC2004T07 Multiple Translation Chinese

Table 5: Training corpora.

weight λv of this feature is tuned via minimal error
rate training (MERT) (Och, 2003) with other feature
weights.

Unlike hard constraints, which simply prevent
any hypotheses from violating translation bound-
aries, soft constraints allow violations of translation
boundaries but with a penalty of exp(−λvCv) where
Cv is the violation count. By using soft constraints,
we can enable the model to prefer hypotheses which
are consistent with translation boundaries.

5 Experiment

Our baseline system is a phrase-based system us-
ing BTGs (Wu, 1997), which includes a content-
dependent reordering model discriminatively trained
using reordering examples (Xiong et al., 2006). We
carried out various experiments to evaluate the im-
pact of integrating translation boundary based soft
constraints into decoding on the system performance
on the Chinese-to-English translation task of the
NIST MT-05 using large scale training data.

5.1 Experimental Setup

Our training corpora are listed in Table 5. The
whole corpora consist of 96.9M Chinese words and
109.5M English words in 3.8M sentence pairs. We
ran GIZA++ (Och and Ney, 2000) on the par-
allel corpora in both directions and then applied
the “grow-diag-final” refinement rule (Koehn et al.,
2005) to obtain many-to-many word alignments.
From the word-aligned corpora, we extracted bilin-
gual phrases and trained our translation model.

We used all corpora in Table 5 except for the
United Nations corpus to train our MaxEnt based
reordering model (Xiong et al., 2006), which con-

140

sist of 33.3M Chinese words and 35.8M English
words. We built a four-gram language model us-
ing the SRILM toolkit (Stolcke, 2002), which was
trained on Xinhua section of the English Gigaword
corpus (181.1M words).

To train our translation boundary classifiers, we
extract training instances from the whole word-
aligned corpora, from which we obtain 96.9M train-
ing instances for the By/Bn and Ey/En classifier.
We ran the off-the-shelf MaxEnt toolkit (Zhang,
2004) to tune classifier feature weights with Gaus-
sian prior set to 1 to avoid overfitting.

We used the NIST MT-03 evaluation test data as
our development set (919 sentences in total, 27.1
words per sentence). The NIST MT-05 test set in-
cludes 1082 sentences with an average of 27.4 words
per sentence. Both the reference corpus for the NIST
MT-03 set and the reference corpus for the NIST
MT-05 set contain 4 translations per source sen-
tence. To compare with constituent boundary based
constraints, we parsed source sentences of both the
development and test sets using a Chinese parser
(Xiong et al., 2005) which was trained on the Penn
Chinese Treebank with an F1-score of 79.4%.

Our evaluation metric is case-insensitive BLEU-4
(Papineni et al., 2002) using the shortest reference
sentence length for the brevity penalty. Statistical
significance in BLEU score differences was tested
by paired bootstrap re-sampling (Koehn, 2004).

5.2 Using Translation Boundaries from
Reference Translations

The most direct way to investigate the impact on the
system performance of using translation boundaries
is to integrate “right” translation boundaries into de-
coding which are directly obtained from reference
translations. For both the development set and test
set, we have four reference translation sets, which
are named ref1, ref2, ref3 and ref4, respectively.
For the development set, we used translation bound-
aries obtained from ref1. Based on these boundaries,
we built our translation boundary violation counting
feature and tuned its feature weight with other fea-
tures using MERT. When we obtained the best fea-
ture weights λs, we evaluated on the test set using
translation boundaries produced from ref1, ref2, ref3
and ref4 of the test set respectively.

Table 6 shows the results. We clearly see that us-

System BLEU-4 (%)
Base 33.05
Ref1 33.99*
Ref2 34.17*
Ref3 33.93*
Ref4 34.21*

Table 6: Results of using translation boundaries obtained
from reference translations. *: significantly better than
baseline (p < 0.01).

ing “right” translation boundaries to build soft con-
straints significantly improve the performance mea-
sured by BLEU score. The best result comes from
ref4, which achieves an absolute increase of 1.16
BLEU points over the baseline. We believe that the
best result here only indicates the lower bound of
potential improvement when using right translation
boundaries. If we have consistent translation bound-
aries on the development and test set (for example,
we have the same 4 translators build reference trans-
lations for both the development and test set), the
performance improvement will be higher.

5.3 Using Automatically Learned Translation
Boundaries

The success of using translation boundaries from
reference translations inspires us to pursue trans-
lation boundaries predicted by our MEMM based
classifiers. We ran our MEMM1 (Markov order 1)
and MEMM2 (Markov order 2) By/Bn and Ey/En

classifiers on both the development and test set.
Based on translation boundaries output by MEMM1
and MEMM2 classifiers, we built our translation
boundary violation feature and tuned it on the de-
velopment set. The evaluation results on the test set
are shown in Table 7.

From Table 7 we observe that using soft con-
straints based on translation boundaries from both
our MEMM 1 and MEMM 2 significantly outper-
form the baseline. Impressively, when using outputs
from MEMM 2, we achieve an absolute improve-
ment of almost 1 BLEU point over the baseline. This
result is also very close to the best result of using
translation boundaries from reference translations.

To compare with constituent boundary based syn-
tactic constraints, we also carried out experiments
using two kinds of such constraints. One is the

141

System BLEU-4 (%)
Base 33.05
Condeducer 33.18
XP+ 33.58*
BestRef 34.21*+
MEMM 1 33.70*
MEMM 2 34.04*+

Table 7: Results of using automatically learned trans-
lation boundaries. Condeducer means using pure con-
stituent boundary based soft constraint. XP+ is another
constituent boundary based soft constraint but with dis-
tinction among special constituent types (Marton and
Resnik, 2008). BestRef is the best result using reference
translation boundaries in Table 6. MEMM 1 and MEMM
2 are our MEMM based translation boundary classifiers
with Markov order 1 and 2. *: significantly better than
baseline (p < 0.01). +: significantly better than XP+
(p < 0.01).

Condeducer which uses pure constituent bound-
ary based syntactic constraint: any partial transla-
tions which cross any constituent boundaries will
be penalized. The other is the XP+ from (Marton
and Resnik, 2008) which only penalizes hypotheses
which violate the boundaries of a constituent with
a label from {NP, VP, CP, IP, PP, ADVP, QP, LCP,
DNP}. The XP+ is the best syntactic constraint
among all constraints that Marton and Resnik (2008)
use for Chinese-to-English translation.

Still in Table 7, we find that both syntactic con-
straint Condeducer and XP+ are better than the base-
line. But only XP+ is able to obtain significant im-
provement. Both our MEMM 1 and MEMM 2 out-
perform Condeducer. MEMM 2 achieves significant
improvement over XP+ by approximately 0.5 BLEU
points. This comparison suggests that translation
boundary is a better option than constituent bound-
ary when we build constraints to restrict phrase-
based decoding.

5.4 One Classifier vs. Two Classifiers

Revisiting the classification task in this paper, we
can also consider it as a sequence labeling task
where the first source word of a translation zone
is labeled “B”, the last source word of the trans-
lation zone is labeled “E”, and other words are la-
beled “O”. To complete such a sequence labeling

task, we built only one classifier which is still based
on MEMM (with Markov order 2) with the same
features as described in Section 3.2. We built soft
constraints based on the outputs of this classifier and
evaluated them on the test set. The case-insensitive
BLEU score is 33.62, which is lower than the per-
formance of using two separate classifiers (34.04).

We calculated the accuracy for class “B” by map-
ping “B” to By and “E” and “O” to Bn. The result is
67.9%. Similarly, we obtained the accuracy of class
“E”, which is as low as 48.6%. These two accura-
cies are much lower than those of using two separate
classifiers, especially the accuracy of “E”. This sug-
gests that the By and Ey are not interrelated tightly.
It is better to learn them separately with two classi-
fiers.

Another advantage of using two separate classi-
fiers is that we can explore more constraints. A word
ck can be possibly labeled as By by the first classifier
and Ey by the second classifier. Therefore we can
build soft constraints on span (ci, ck) (ci ∈ By, ck ∈
Ey) and span (ck, cj) (ck ∈ By, cj ∈ Ey). This is
impossible if we use only one classifier since each
word can have only one class label. We can build
only one constraint on span (ci, ck) or span (ck, cj).

6 Related Work

Various approaches incorporate constraints into
phrase-based decoding in a soft or hard manner. Our
introduction has already briefly mentioned (Cherry,
2008) and (Marton and Resnik, 2008), which utilize
source-side parse tree boundary violation counting
feature to build soft constraints for phrase-based de-
coding, and (Xiong et al., 2009), which calculates a
score to indicate to what extent a source phrase can
be translated as a unit using a bracketing model with
richer syntactic features. More previously, (Chi-
ang, 2005) rewards hypotheses whenever they ex-
actly match constituent boundaries of parse trees on
the source side.

In addition, hard linguistic constraints are also ex-
plored. (Wu and Ng, 1995) employs syntactic brack-
eting information to constrain search in order to im-
prove speed and accuracy. (Collins et al., 2005) and
(Wang et al., 2007) use hard syntactic constraints to
perform reorderings according to source-side parse
trees. (Xiong et al., 2008) prohibit any swappings

142

which violate punctuation based constraints.
Non-linguistic constraints are also widely used

in phrase-based decoding. The IBM and ITG con-
straints (Zens et al., 2004) are used to restrict re-
orderings in practical phrase-based systems.

(Berger et al., 1996) introduces the concept of rift
into a machine translation system, which is similar
to our definition of translation boundary. They also
use a maximum entropy model to predict whether a
source position is a rift based on features only from
source sentences. Our work differs from (Berger et
al., 1996) in three major respects.

1) We distinguish a segment boundary into two
categories: beginning and ending boundary due
to their different distributions (see Table 1).
However, Berger et al. ignore this difference.

2) We train two classifiers to predict beginning
and ending boundary respectively while Berger
et al. build only one classifier. Our experiments
show that two separate classifiers outperform
one classifier.

3) The last difference is how segment bound-
aries are integrated into a machine transla-
tion system. Berger et al. use predicted
rifts to divide a long source sentence into a
series of smaller segments, which are then
translated sequentially in order to increase de-
coding speed (Brown et al., 1992; Berger
et al., 1996). This can be considered as a
hard integration, which may undermine trans-
lation accuracy given wrongly predicted rifts.
We integrate predicted translation boundaries
into phrase-based decoding in a soft manner,
which improves translation accuracy in terms
of BLEU score.

7 Conclusion and Future Work

In this paper, we have presented a simple approach
to learn translation boundaries on source sentences.
The learned translation boundaries are used to con-
strain phrase-based decoding in a soft manner. The
whole approach has several properties.

• First, it is based on a simple classification task
that can achieve considerably high accuracy
when taking translation divergences into ac-
count using simple models and features.

• Second, the classifier output can be straightfor-
wardly used to constrain phrase-based decoder.

• Finally, we have empirically shown that, to
build soft constraints for phrase-based decod-
ing, translation boundary predicted by our clas-
sifier is a better choice than constituent bound-
ary deduced from source-side parse tree.

Future work in this direction will involve trying
different methods to define more informative trans-
lation boundaries, such as a boundary to begin/end
a swapping. We would also like to investigate new
methods to incorporate automatically learned trans-
lation boundaries more efficiently into decoding in
an attempt to further improve search in both speed
and accuracy.

References
Adam L. Berger, Stephen A. Della Pietra and Vincent J.

Della Pietra. 1996. A Maximum Entropy Approach
to Natural Language Processing. Computational Lin-
guistics, 22(1):39-71.

Peter F. Brown, Stephen A. Della Pietra, Vincent J.
Della Pietra, Robert L. Mercer, and Surya Mohanty.
1992. Dividing and Conquering Long Sentences in a
Translation System. In Proceedings of the workshop
on Speech and Natural Language, Human Language
Technology.

Colin Cherry. 2008. Cohesive Phrase-based Decoding
for Statistical Machine Translation. In Proceedings of
ACL.

David Chiang. 2005. A Hierarchical Phrase-based
Model for Statistical Machine Translation. In Pro-
ceedings of ACL, pages 263–270.

Michael Collins, Philipp Koehn and Ivona Kucerova.
2005. Clause Restructuring for Statistical Machine
Translation. In Proceedings of ACL.

Kevin Knight. 1999. Decoding Complexity in Word Re-
placement Translation Models. In Computational Lin-
guistics, 25(4):607– 615.

Philipp Koehn, Franz Joseph Och, and Daniel Marcu.
2003. Statistical Phrase-based Translation. In Pro-
ceedings of HLT-NAACL.

Philipp Koehn. 2004. Statistical Significance Tests for
Machine Translation Evaluation. In Proceedings of
EMNLP.

Philipp Koehn, Amittai Axelrod, Alexandra Birch
Mayne, Chris Callison-Burch, Miles Osborne and
David Talbot. 2005. Edinburgh System Description
for the 2005 IWSLT Speech Translation Evaluation.
In Proceedings of IWSLT.

143

Yuval Marton and Philip Resnik. 2008. Soft Syntactic
Constraints for Hierarchical Phrase-Based Translation.
In Proceedings of ACL.

Andrew McCallum, Dayne Freitag and Fernando Pereira
2000. Maximum Entropy Markov Models for Infor-
mation Extraction and Segmentation. In Proceedings
of the Seventeenth International Conference on Ma-
chine Learning 2000.

Franz Josef Och and Hermann Ney. 2000. Improved
Statistical Alignment Models. In Proceedings of ACL
2000.

Franz Josef Och. 2003. Minimum Error Rate Training
in Statistical Machine Translation. In Proceedings of
ACL 2003.

Kishore Papineni, Salim Roukos, Todd Ward and Wei-
Jing Zhu. 2002. BLEU: a Method for Automatically
Evaluation of Machine Translation. In Proceedings of
ACL 2002.

Brian Roark and Kristy Hollingshead. 2008. Classifying
Chart Cells for Quadratic Complexity Context-Free In-
ference. In Proceedings of COLING 2008.

Andreas Stolcke. 2002. SRILM - an Extensible Lan-
guage Modeling Toolkit. In Proceedings of Interna-
tional Conference on Spoken Language Processing,
volume 2, pages 901-904.

Chao Wang, Michael Collins and Philipp Koehn 2007.
Chinese Syntactic Reordering for Statistical Machine
Translation. In Proceedings of EMNLP.

Dekai Wu and Cindy Ng. 1995. Using Brackets to Im-
prove Search for Statistical Machine Translation In
Proceedings of PACLIC-IO, Pacific Asia Conference
on Language, Information and Computation.

Dekai Wu. 1997. Stochastic Inversion Transduction
Grammars and Bilingual Parsing of Parallel Corpora.
Computational Linguistics, 23(3):377-403.

Deyi Xiong, Shuanglong Li, Qun Liu, Shouxun Lin,
Yueliang Qian. 2005. Parsing the Penn Chinese Tree-
bank with Semantic Knowledge. In Proceedings of
IJCNLP, Jeju Island, Korea.

Deyi Xiong, Qun Liu and Shouxun Lin. 2006. Maxi-
mum Entropy Based Phrase Reordering Model for Sta-
tistical Machine Translation. In Proceedings of ACL-
COLING 2006.

Deyi Xiong, Min Zhang, Ai Ti Aw, Haitao Mi, Qun Liu
and Shouxun Lin. 2008. Refinements in BTG-based
Statistical Machine Translation. In Proceedings of
IJCNLP 2008.

Deyi Xiong, Min Zhang, Ai Ti Aw, and Haizhou Li.
2009. A Syntax-Driven Bracketing Model for Phrase-
Based Translation. In Proceedings of ACL-IJCNLP
2009.

Richard Zens, Hermann Ney, Taro Watanabe and Eiichiro
Sumita 2004. Reordering Constraints for Phrase-
Based Statistical Machine Translation. In Proceedings
of COLING.

Hao Zhang, Daniel Gildea, and David Chiang. 2008.
Extracting Synchronous Grammars Rules from Word-
Level Alignments in Linear Time. In Proceeding of
COLING 2008.

Le Zhang. 2004. Maximum Entropy Model-
ing Tooklkit for Python and C++. Available at
http://homepages.inf.ed.ac.uk/s0450736
/maxent toolkit.html.

144

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 145–153,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Hitting the Right Paraphrases in Good Time

Stanley Kok
Department of Computer Science & Engineering

University of Washington
Seattle, WA 98195, USA

koks@cs.washington.edu

Chris Brockett
Microsoft Research
One Microsoft Way

Redmond, WA 98052, USA
chrisbkt@microsoft.com

Abstract

We present a random-walk-based approach to
learning paraphrases from bilingual parallel
corpora. The corpora are represented as a
graph in which a node corresponds to a phrase,
and an edge exists between two nodes if their
corresponding phrases are aligned in a phrase
table. We sample random walks to compute
the average number of steps it takes to reach
a ranking of paraphrases with better ones be-
ing “closer” to a phrase of interest. This ap-
proach allows “feature” nodes that represent
domain knowledge to be built into the graph,
and incorporates truncation techniques to pre-
vent the graph from growing too large for ef-
ficiency. Current approaches, by contrast, im-
plicitly presuppose the graph to be bipartite,
are limited to finding paraphrases that are of
length two away from a phrase, and do not
generally permit easy incorporation of domain
knowledge. Manual evaluation of generated
output shows that our approach outperforms
the state-of-the-art system of Callison-Burch
(2008).

1 Introduction

Automatically learning paraphrases, or alternative
ways of expressing the same meaning, is an ac-
tive area of NLP research because of its useful-
ness in a variety of applications, e.g., question an-
swering (Lin and Pantel, 2001; Ravichandran and
Hovy, 2002; Reizler et al., 2007), document sum-
marization (Barzilay et al., 1999; McKeown et al.,
2002), natural language generation (Iordanskaja et
al., 1991; Lenke, 1994; Stede, 1999), machine trans-

lation (Kauchak and Barzilay, 2006; Callison-Burch
et al., 2006; Madnani et al., 2007).

Early work on paraphrase acquisition has focused
on using monolingual parallel corpora (Barzilay and
McKeown, 2001; Barzilay and Lee, 2003; Pang et
al., 2003; Quirk et al., 2004). While effective, such
methods are hampered by the scarcity of monolin-
gual parallel corpora, an obstacle that limits both
the quantity and quality of the paraphrases learned.
To address this limitation, Bannard and Callison-
Burch (2005) focused their attention on the abun-
dance of bilingual parallel corpora. The crux of
this system (referred to below as ”BCB”) is to align
phrases in a bilingual parallel corpus and hypothe-
size English phrases as potential paraphrases if they
are aligned to the same phrase in another language
(the “pivot”). Callison-Burch (2008) further refines
BCB with a system that constrains paraphrases to
have the same syntactic structure (Syntactic Bilin-
gual Phrases: SBP).

We take a graphical view of the state-of-the-art
BCB and SBP approaches by representing the bilin-
gual parallel corpora as a graph. A node corresponds
to a phrase, and an edge exists between two nodes if
their corresponding phrases are aligned. This graph-
ical form makes the limitations of the BCB/SBP ap-
proaches more evident. The BCB/SBP graph is lim-
ited to be bipartite with English nodes on one side
and foreign language nodes on the other, and an
edge can only exist between nodes on different sides.
This neglects information between foreign language
nodes that may aid in learning paraphrases. Further,
by only considering English nodes that are linked
via a foreign language node as potential paraphrases,

145

these approaches will fail to find paraphrases sepa-
rated by distances greater than length two.

In this paper, we present HTP (Hitting Time
Paraphraser), a paraphrase learning approach that is
based on random walks (Lovász, 1996) and hitting
times (Aldous and Fill, 2001). Hitting time mea-
sures the average number of steps one needs to take
in a random traversal of a graph before reaching a
destination node from a source node. Intuitively, the
smaller the hitting time from a phrase E to E′ (i.e.,
the closer E′ is to E), the more likely it is that E′ is
a good paraphrase of E. The advantages of HTP are
as follows:

• By traversing paths of lengths greater than two,
our approach is able to find more paraphrases
of a given phrase.

• We do not require the graph to be bipartite.
Edges can exist between nodes of different for-
eign languages if their corresponding phrases
are aligned. This allows information from for-
eign phrase alignments to be used in finding
English paraphrases.

• We permit domain knowledge to be easily in-
corporated as nodes in the graph. This allows
domain knowledge to favor good paraphrases
over bad ones, thereby improving performance.

In this paper, we focus on learning English para-
phrases. However, our system can be applied to
learning paraphrases in any language.

We begin by reviewing random walks and hitting
times in the next section. Then we describe our para-
phrase learning algorithm (Section 3), and report our
experiments (Section 4). We discuss related work in
Section 5. Finally, we conclude with future work
(Section 6).

2 Background

A directed graph consists of a set of nodes V , and a
set of edges E. A directed edge is a pair (i, j) where
i, j ∈ V . Associated with the graph is a |V | × |V |
adjacency matrix W . Each entry Wij in the matrix
is the weight of edge (i, j), or zero if the edge does
not exist.

In a random walk (Lovász, 1996), we traverse
from node to node via the edges. Suppose at time

step t, we are at node i. In the next step, we move
to its neighbor j with probability proportional to
the weight of the edge (i, j), i.e., with probability
Wij/

∑
jWij . This probability is known as the tran-

sition probability from i to j. Note that the transition
probabilities from a node to its neighbors sum to 1.

The hitting time hij (Aldous and Fill, 2001) from
node i to j is defined as the average number of steps
one takes in a random walk starting from i to visit j
for the first time. Hitting time has the property of be-
ing robust to noise. This is a desirable property for
our system which works on bilingual parallel cor-
pora containing numerous spurious alignments be-
tween phrases (i.e., edges between nodes). However,
as observed by Liben-Nowell and Kleinberg (2003),
hitting time has the drawback of being sensitive to
portions of the graph that are far from the start node
because it considers paths of length up to∞.

To circumvent this problem, Sarkar and Moore
(2007) introduced the notion of truncated hitting
time where random walks are limited to have at most
T steps. The truncated hitting time hTij from node i
to j is defined as the average number of steps one
takes to reach j for the first time starting from i in a
random walk that is limited to at most T steps. hTij
is defined to be 0 if i = j or T = 0, and to be T if j
is not reach in T steps. As T →∞, hTij → hij .

In a recent work, Sarkar et al. (2008) showed that
truncated hitting time can be approximated accu-
rately with high probability by sampling. They run
M independent length-T random walks from node
i. In m of these runs, node j is visited for the first
time at time steps t1j , . . . , t

m
j . The estimated trun-

cated hitting time is given by

ĥTij =
∑m
k=1 t

k
j

M
+ (1− m

M
)T (1)

They also showed that the number of samples of ran-
dom walks M has to be at least 1

2ε2
log 2n

d in order
for the estimated truncated hitting time to be a good
estimate of the actual truncated hitting time with
high probability, i.e., for P (|ĥTij−hTij |≤εT)≥1− δ,
where n is the number of nodes in the graph, ε and δ
are user-specified parameters, and 0 ≤ ε, δ ≤ 1.

3 Hitting Time Paraphraser (HTP)

HTP takes a query phrase as input, and outputs a list
of paraphrases, with better paraphrases at the top of

146

Figure 1: Graph created from English-French (E-F),
English-German (E-G), and French-German (F-G) bilin-
gual parallel corpora. Bold edges have large positive
weights (high transition probabilities).

the list. HTP also requires as input a set of bilin-
gual parallel corpora that have been processed into
phrase tables of the kind used in statistical machine
translation.

A bilingual parallel corpus is made up of sen-
tences in two languages. Two sentences that are
translations of one another are paired together, and
a phrase in one sentence is aligned with a phrase in
the other with the same meaning. From such align-
ments, we can count for a phrase E both the num-
ber of times it occurs (CountE), and the number of
times it is aligned with a phrase F in the other lan-
guage (CountE,F). With these counts we can es-
timate the probability of F given E as P (F |E) =
CountE,F

CountE
.

HTP represents the aligned phrases as a graph. A
node corresponds to a phrase, and a directed edge
exists from node i to j if their corresponding phrases
are aligned. The weight of edge (i, j) is given by
P (j|i) which is computed as described in the previ-
ous paragraph.

Figure 1 gives an example of a graph created
from English-French, English-German, and French-
German parallel corpora. We use this figure to il-
lustrate the strengths of HTP. First, by using moder-
ately long random walks, HTP is able to find para-
phrases that are separated by long paths. For ex-
ample, there is a high probability path of length 4
(E1, F1, E2, F2, E3) from E1 to E3. Because of the
path’s high probability, it will appear in many of the
random walks starting from E1 that are sampled on
the graph, and thus E3 will be visited in many of
the samples. This causes the truncated hitting time
hTE1E3

to be small, allowing HTP to find E3 as a
plausible paraphrase of E1. Second, by allowing
edges between nodes of different foreign languages

Table 1: The HTP algorithm.

function HTP (E,C, d, n,m, T, δ, l)
input: E, query phrase

C, tables of aligned phrases
d, maximum distance of nodes from E
n, maximum number of nodes in graph
m, number of samples of random walks
T , maximum number of steps taken by a

random walk
δ, probability that estimated truncated hitting

time deviates from actual value by a large
margin (see Equation 1)

l, number of top outgoing edges to select at
each node in a random walk

output:(E′
1, . . . , E

′
k), paraphrases of E ranked in

order of increasing hitting times
calls: CreateGraph(E,C, d, n) creates graph G

from C containing at most n nodes that are
at most d steps from E

EstimateHitT imes(E,G,m, T, δ), estimates
the truncated hitting times of each node in G
by running m random walks

PruneNodes((E1, . . . , Ek), G), removes nodes
from G if their hitting times is equal to T .

AddFeatureNodes(G), adds nodes
representing domain knowledge to G

G← CreateGraph(E,C, d, n)
(E1, . . . , Ek)← EstimateHitT imes(E,G,m, T, δ)
G′←PruneNodes((E1, . . . , Ek), G)
G′′←AddFeatureNodes(G′)
(E′

1, . . . , E
′
k)← EstimateHitT imes(E,G′′,m, T, δ)

return (E′
1, . . . , E

′
k)

(i.e., by not requiring the graph to be bipartite), HTP
allows strong correlation between foreign language
nodes to aid in finding paraphrases. In the figure,
even though E4 and E5 are not linked via a com-
mon foreign language node, there is a high proba-
bility path linking them (E4, F3, G1, E5). This al-
lows HTP to find E5 as a reasonable paraphrase of
E4. Third, HTP enables domain knowledge to be
incorporated as nodes in the graph. For example,
we could incorporate the domain knowledge that
phrases with lots of unigrams in common are likely
to be paraphrases. In Figure 1, the “feature” node
represents such knowledge, linking E4 and E1 as
possible paraphrases even though they have no for-
eign language nodes in common. Note that such

147

domain knowledge nodes can be linked to arbitrary
nodes, not just English ones.

The HTP algorithm is shown in Table 1. It takes
as input a query phrase and a set of bilingual phrase
tables. The algorithm begins by creating a graph
from the phrase tables. Then it estimates the trun-
cated hitting times of each node from the query node
by sampling random walks of length T . Next it
prunes nodes (and their associated edges) if their
truncated hitting times are equal to T . To the result-
ing graph, it then adds nodes representing domain
knowledge and estimates the truncated hitting times
of the nodes by sampling random walks as before.
Finally, it returns the nodes in the same language as
the query phrase in order of increasing hitting times.

3.1 Graph Creation

An obvious approach to creating a graph from bilin-
gual parallel corpora is to create a node for every
phrase in the corpora, and two directed edges (i, j)
and (j, i) for every aligned phrase pair i and j. Let
H refer to the graph that is created in this manner.
Such an approach is only tractable for small bilin-
gual parallel corpora that would result in a small
H , but not for large corpora containing millions of
sentences, such as those described in Section 4.1.
Therefore we approximate H with a graph H ′ that
only contains nodes “near” to the node representing
the query phrase. Specifically, we perform breadth-
first search starting from the query node up to a
depth d, or until the number of nodes visited in the
search has reached a maximum of n nodes. Some
nodes at the periphery of H ′ have edges to nodes
that are not in H ′ but are in H . For a periph-
ery node j that has edges to nodes j1, . . . , jk out-
side H ′, we create a “dummy” node a, and replace
edges (j, j1), . . . , (j, jk) with a single edge (j, a)
with weight

∑k
x=1Wj,jx . We also add edges (a, j)

and (a, a) (each with a heuristic weight of 0.5). The
dummy nodes and their edges approximate the tran-
sition probabilities at H ′’s periphery. Our empirical
results show that this approximation works well in
practice.

3.2 Graph Pruning

After H ′ is created, we run M independent length-
T random walks on it starting from the query node
to estimate the truncated hitting times of all nodes.

Figure 2: Feature nodes representing domain knowledge.
Feature nodes are shaded. The bold node represents a
query phrase. (a) n-gram nodes (b) “syntax” nodes (c)
“not-substring/superstring-of” nodes.

A node in H ′ may have many outgoing edges, most
of which may be due to spurious phrase alignments.
For efficiency, and to reduce the noise due to spuri-
ous edges, we select among a node’s top l outgoing
edges with the highest transition probabilities, when
deciding which node to visit next at each step of a
random walk

For each random walk k, we record the first time
that a node j is visited tkj . Using Equation 1, we es-
timate the truncated hitting time of each node. Then
we remove nodes (and their associated edges) that
are far from the query node, i.e., with times equal
to T . Such nodes either are not visited in any of the
random walks, or are always visited for the first time
at step T .

3.3 Adding Domain Knowledge

Next we add nodes representing domain knowledge
to the pruned graph. In this version of HTP, we im-
plemented three types of feature nodes.

First, we have n-gram nodes. These nodes cap-
ture the domain knowledge that phrases containing
many words in common are likely to be paraphrases.
For each 1 to 4-gram that appears in English phrases,
we create an n-gram node a. We add directed edges
(a, j) and (j, a) if node j represents an English
phrase containing n-gram a. For example, in Fig-
ure 2(a), “reach the objective” is connected to “ob-

148

jective” because it contains that unigram. Note that
such nodes create short paths between nodes with
many n-grams in common, thereby reducing the hit-
ting times between them.

Second, we have “syntax” nodes, which repre-
sent syntactic classes of the start and end words of
English phrases. We created classes such as inter-
rogatives (“whose”, “what”, “where”, etc.), articles
(“the”, “a”, “an”), etc. For each class c, we cre-
ate syntax nodes ac and a′c to respectively represent
the conditions that a phrase begins and ends with a
word in class c. Directed edges (ac, j) and (j, ac)
are added if node j starts with a word in class c (sim-
ilarly we add (a′c, j) and (j, a′c) if it ends with a word
in class c). For example, in Figure 2(b), “the objec-
tive is” is linked to “starts with article” because it
begins with “the”. These syntax nodes allow HTP to
capture broad commonalities about structural distri-
bution, without requiring syntactic equivalence as in
Callison-Burch 2008 (or the use of a parser).

Third, we have “not-substring/superstring-of”
nodes. We observed that many English phrases (e.g.,
“reach the objective” and “reach the”) that are super-
strings or substrings of each other tend to be aligned
to several shared non-English phrases in the bilin-
gual parallel corpora used in our experiments. Most
such English phrase pairs are not paraphrases, but
they are linked by many short paths via their com-
mon aligned foreign phrase, and thus have small
hitting times. To counteract this, we create a “not-
substring/superstring-of” node a. The query node i
is always connected to a via edges (i, a) and (a, i).
We add edges (a, j) and (j, a) if English phrase j
is not a substring or superstring of the query phrase
(see Figure 2(c)).

With the addition of the above, each node rep-
resenting an English phrase can have four kinds
of outgoing edges: edges to foreign phrase nodes,
and edges to the three kinds of feature nodes. Let
fphrase, fngram, fsyntax, fsubstring denote the distri-
bution of transition probabilities among the four
kinds of outgoing edges. Note that fphrase +
fngram + fsyntax + fsubstring = 1.0. These values
are user-specified or can be set with tuning data. An
outgoing edge from English phrase node i that orig-
inally had weight (transition probability) Wij will
now have weight Wij × fphrase. All k edges from i

to n-gram nodes will have weight fngram

k . Likewise
for edges to the other two kinds of feature nodes.
Each of the k outgoing edges from a feature node is
simply set to have a weight of 1

k .
After adding the feature nodes, we again run M

independent length-T random walks to estimate the
truncated hitting times of the nodes, and return the
English phrase nodes in order of increasing hitting
times.

4 Experiments

We conducted experiments to investigate how HTP
compares with the state of the art, and to evaluate
the contributions of its components.

4.1 Dataset

We used the Europarl dataset (Koehn, 2005) for
our experiments. This dataset contains English
transcripts of the proceedings of the European
Parliament, and their translations into 10 other
European languages. In the dataset, there are
about a million sentences per language, and En-
glish sentences are aligned with sentences in the
other languages. Callison-Burch (2008) aligned
English phrases with phrases in each of the
other languages using Giza++ (Och and Ney,
2004). We used his English-foreign phrasal align-
ments which are publicly available on the web at
http://ironman.jhu.edu/emnlp08.tar. In addition, we
paired sentences of different non-English languages
that correspond to the same English sentence, and
aligned the phrases using 5 iterations of IBM model
1 in each direction, followed by 5 iterations of HMM
alignment with paired training using the algorithm
described in Liang et al. (2006). We further used the
technique of Chen et al. (2009) to remove a phrase
alignment F -G (where F and G are phrases in dif-
ferent foreign languages) if it was always aligned
to different phrases in a third “bridge” foreign lan-
guage. As observed by Chen et al., this helped to
remove spurious alignments. We used Finnish as the
bridge language; when either F or G is Finnish, we
used Spanish as the bridge language; when F and
G were Finnish and Spanish, we used English as
the bridge language. In our experiments, we used
phrases of length 1 to 4 of the following six lan-
guages: English, Danish, German, Spanish, Finnish,

149

and Dutch. All the phrasal alignments between each
pair of languages (15 in total) were used as input to
HTP and its comparison systems. A small subset of
the remaining phrase alignments were used for tun-
ing parameters.

4.2 Systems
We compared HTP to the state-of-the-art SBP sys-
tem (Callison-Burch, 2008). We also investigated
the contribution of the feature nodes by running HTP
without them. In addition, we ran HTP on a bipartite
graph, i.e., one created from English-foreign phrase
alignments only without any phrase alignments be-
tween foreign languages.

We used Callison-Burch (2008)’s implemen-
tation of SBP that is publicly available at
http://ironman.jhu.edu/emnlp08.tar. SBP is based
on BCB (Bannard and Callison- Burch, 2005) which
computes the probability that English phrase E′ is a
paraphrase of E using the following formula:

P (E′|E) ≈
∑
C∈C

∑
F∈C

P (E′|F)P (F |E) (2)

where C is set of bilingual parallel corpora, and F is
a foreign language phrase. Representing phrases as
nodes, and viewing P (E′|F) and P (F |E) as tran-
sition probabilities of edges (F,E′) and (E,F), we
see that BCB is summing over the transition prob-
abilities of all length-two paths between E and E′.
All E′ paraphrases of E can then be ranked in or-
der of decreasing probability as given by Equation 2.
The SBP system modifies Equation 2 to incorporate
syntactic information, thus:

P (E′|E) ≈
1
|C|

∑
C∈C

∑
F∈C

P (E′|F, synE))P (F |E, synE) (3)

where synE is the syntax of phrase E, and
P (E′|F, synE)) = 0 ifE′ is not of the same syntac-
tic category. From Equation 3, we can see that SBP
constrains E′ to have the same syntactic structure
as E. To obtain the syntactic structure of each En-
glish phrase, each English sentence in every parallel
corpus has to be parsed to obtain its parse tree. An
English phrase can have several syntactic structures
because different parse trees can have the phrase as
their leaves, and in each of these, SBP associates the

Table 2: Scoring Standards.

0 Clearly wrong; grammatically incorrect, or
does not preserve meaning

1 Minor grammatical errors (e.g., subject-verb
disagreement or wrong tense), or meaning is
largely preserved but not completely

2 Totally correct; grammatically correct and
meaning is preserved

phrase with all subtrees that have the phrase as their
leaves. SBP thus offers several ways of choosing
which syntactic structure a phrase should be asso-
ciated with. In our experiments, we used the best
performing method of averaging Equation 3 over all
syntactic structures that E is associated with.

4.3 Methodology

To evaluate performance, we used 33,216 En-
glish translations from the Linguistic Data Con-
sortium’s Multiple Translation Chinese (MTC) cor-
pora (Huang et al., 2002). We randomly selected
100 1- to 4-grams that appeared in both Europarl
and MTC sentences (excluding stop words, num-
bers, and phrases containing periods and commas).
For each of those 100 phrases, we randomly se-
lected a MTC sentence containing that phrase. We
then replaced the phrase in the sentence with each
paraphrase output by the systems, and evaluated the
correctness of the paraphrase in the context of the
sentence. We had two volunteers manually score
the paraphrases on a 3-point scale (Table 2), using
a simplified version of the scoring system used by
Callison-Burch (2008). We deemed a paraphrase
to be correct if it was scored 1 or 2, and wrong
if it was scored 0. Evaluation was blind, and the
paraphrases were presented randomly to the volun-
teers. The Kappa measure of inter-annotator agree-
ment was 0.62, which indicates substantial agree-
ment between the evaluators. We took the average
score for each paraphrase.

The parameters used for HTP were as follows
(see Table 1 for parameter descriptions): d =
6, n = 50, 000,m = 1, 000, 000, T = 10, δ =
0.05, l= 20, fphrase = 0.1, fngram = 0.1, fsyntax =
0.4, fsubstring = 0.4. (ε≤ 0.03 with these values of
n,m, T, and δ.)

150

Table 3: HTP vs. SBP.
HTP SBP

Correct top-1 paraphrases 71% 53%
Correct top-k paraphrases 54% 39%

Count of correct paraphrases 420 145
Correct paraphrases 43% 39%

Table 4: HTP vs. HTP without feature nodes.
HTP HTP-

NoFeatNodes
Correct top-1 paraphrases 61% 41%
Correct top-k paraphrases 43% 29%

Count of correct paraphrases 420 283
Correct paraphrases 43% 29%

4.4 Results

HTP versus SBP. Comparison between HTP and
SBP is complicated by the fact that the two systems
did not output the same number of paraphrases for
the 100 query phrases. HTP output paraphrases for
all the query phrases, but SBP only did so for 49
query phrases. Of those 49 query phrases, HTP re-
turned at least as many paraphrases as SBP, and for
many it returned more.

To provide a fair comparison, we present results
both for these 49 query phrases, and for all para-
phrases returned by each of the systems. The up-
per half of Table 3 shows results for the 49 query
phrases. The first row of Table 3 reports the per-
centage of top-1 paraphrases from this set that are
correct, while the second row reports the percentage
of correct top-k paraphrases from this set, where k is
the number of queries returned by SBP, and is lim-
ited to at most 10. The value of k may differ for
each query: if SBP and HTP return 3 and 20 para-
phrases respectively, we only consider the top 3. On
the third and fourth rows, we present the number
of correct paraphrases and the percentage of correct
paraphrases among the top 10 paraphrases returned
by HTP for all 100 queries and the corresponding
figures for the 49 queries for SBP. (When a sys-
tem returned fewer than 10 paraphrases for a query,
we consider all the paraphrases for that query.) It
is evident from Table 3 that HTP consistently out-
performs SBP: not only does it return more cor-
rect paraphrases overall (420 versus 145), it also has

Table 5: HTP vs. HTP with bipartite graph.

HTP HTP-
Bipartite

Correct top-1 paraphrases 62% 58%
Correct top-k paraphrases 46% 41%

Count of correct paraphrases 420 361
Correct paraphrases 43% 41%

higher precision (43% versus 39%)
HTP and SBP respectively took 48 and 468 sec-

onds per query on a 3 GHz machine. The times are
not directly comparable because the systems are im-
plemented in different languages (HTP in C# and
SBP in Java), and use different data structures.

HTP without Feature Nodes. Both HTP and HTP
minus feature nodes output paraphrases for each of
the 100 query phrases. Table 4 compares perfor-
mance in the same manner as in Table 3, except that
the “top-1” and “top-k” results are over all 100 query
phrases. We see that feature nodes boost HTP’s per-
formance, allowing HTP to return more correct para-
phrases (420 versus 283), and at higher precision
(43% versus 29%).

HTP with Bipartite Graph. Lastly, we investi-
gate the contribution of alignments between foreign
phrases to HTP’s performance. HTP-Bipartite refers
to HTP that is given a set consisting only of English-
foreign phrase alignment as input. HTP-Bipartite
does not return paraphrases for 5 query phrases.
Thus, in Table 5, the “top-1” and “top-k” results are
for the 95 query phrases for which both systems re-
turn paraphrases. From the better performance of
HTP, we see that the foreign phrase alignments help
in finding English paraphrases.

5 Related Work

Random walks and hitting times have been suc-
cessfully applied to a variety of applications.
Brand (2005) has used hitting times for collabora-
tive filtering, in which product recommendations to
users are made based on purchase history. In com-
puter vision, hitting times have been used to de-
termine object shape from silhouettes (Gorelick et
al., 2004), and for image segmentation (Grady and
Schwartz, 2006). In social network analysis, Liben-
Nowell and Kleinberg (2003) have investigated the

151

use of hitting times for predicting relationships be-
tween entities. Recently, Mei et al. (2008) have used
the hitting times of nodes in a bipartite graph cre-
ated from search engine query logs to find related
queries. They used an iterative algorithm to compute
the hitting time, which converges slowly on large
graphs. In HTP, we have sought to obviate this issue
by using truncated hitting time that can be computed
efficiently by sampling random walks.

Several approaches have been proposed to learn
paraphrases. Barzilay and Mckeown (2001) acquire
paraphrases from a monolingual parallel corpus us-
ing a co-training algorithm. Their co-trained classi-
fier determines whether two phrases are paraphrases
of one another using their surrounding contexts. Lin
and Pantel (2001) learn paraphrases using the dis-
tributional similarity of paths in dependency trees.
Ibrahim et al. (2003) generalize syntactic paths in
aligned monolingual sentence pairs in order to gen-
erate paraphrases. Pang et al. (2003) merge parse
trees of monolingual sentence pairs, and then com-
press the merged tree into a word lattice that can sub-
sequently be used to generate paraphrases. Recently,
Zhao et al. (2008) used dependency parses to learn
paraphrase patterns that include part-of-speech slots.
In other recent work, Das and Smith (2009) use a
generative model for paraphrase detection. Rather
than outputing paraphrases of an input phrase, their
system detects whether two input sentences are para-
phrases of one another.

6 Conclusion and Future Work

We have introduced HTP, a novel approach based
on random walks and hitting times for the learning
of paraphrases from bilingual parallel corpora. HTP
works by converting aligned phrases into a graph,
and finding paraphrases that are “close” to a phrase
of interest. Compared to previous approaches, HTP
is able to find more paraphrases by traversing paths
of lengths longer than 2; utilizes information in the
edges between foreign phrase nodes; and allows do-
main knowledge to be easily incorporated. Empir-
ical results show its effectiveness in learning new
paraphrases.

As future work, we plan to learn the distribution
of weights on edges to phrase nodes and feature
nodes automatically from data, rather than tuning

them manually, and to develop a probabilistic model
supporting HTP. We intend also to apply HTP to
learning paraphrases in languages other than English
and investigate the impact of the learned paraphrases
on resource-sparse machine translation systems.

Acknowledgments

This work was done while the first author was an
intern at Microsoft Research. We would like to
thank Xiaodong He, Jianfeng Gao, Chris Quirk,
Kristina Toutanova, Bob Moore, and other mem-
bers of the MSR NLP group, along with Dengyong
Zhou (TMSN) for their insightful comments and as-
sistance in the course of this project.

References
David Aldous and Jim Fill. 2001. Reversible

Markov Chains and Random Walks on Graphs.
http://www.stat.berkeley.edu/~aldous/RWG/book.html.

Colin Bannard and Chris Callison-Burch. 2005. Para-
phrasing with bilingual parallel corpora. In Proceed-
ings of the 43rd Annual Meeting of the ACL, pages
597–604.

Regina Barzilay and Lillian Lee. 2003. Learning to
paraphrase: an unsupervised approach using multiple-
sequence alignment. In Proceedings of HLT/NAACL,
pages 16–23.

Regina Barzilay and Kathleen McKeown. 2001. Extract-
ing paraphrases from a parallel corpus. In Proceedings
of the 39th Annual Meeting of the ACL, pages 50–57.

Regina Barzilay, Kathleen McKeown, and Michael El-
hadad. 1999. Information fusion in the context of
multi-document summarization. In Proceedings of the
37th Annual Meeting of the ACL, pages 550–557.

Matthew Brand. 2005. A random walks perspective on
maximizing satisfaction and profit. In Proceedings of
the 8th SIAM Conference on Optimization.

Chris Callison-Burch, Philipp Koehn, and Miles Os-
borne. 2006. Improved statistical machine translation
using paraphrases. In Proceedings of HLT/NAACL,
pages 17–24.

Chris Callison-Burch. 2008. Syntactic constraints on
paraphrases extracted from parallel corpora. In Pro-
ceedings of EMNLP, pages 196–205.

Yu Chen, Martin Kay, and Andreas Eisele. 2009. Inter-
secting multilingual data for faster and better statistical
translations. In Proceedings of HLT/NAACL.

Dipanjan Das and Noah A. Smith. 2009. Paraphrase
identification as probabilistic quasi-synchronous
recognition. In Proceedings of the Joint Conference

152

of the Annual Meeting of the Association for Com-
putational Linguistics and the International Joint
Conference on Natural Language Processing.

Lena Gorelick, Meirav Galun, Eitan Sharon, Ronen
Basri, and Achi Brandt. 2004. Shape representation
and classification using the Poisson equation. In Pro-
ceedings of the Conference on Computer Vision and
Pattern Recognition.

Leo Grady and Eric L. Schwartz. 2006. Isoperimet-
ric graph partitioning for image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 28:469–475.

Shudong Huang, David Graff, and George Doddington.
2002. Multiple-translation Chinese corpus. Linguistic
Data Consortium, Philadelphia.

Ali Ibrahim, Boris Katz, and Jimmy Lin. 2003. Ex-
tracting structural paraphrases from aligned monolin-
gual corpora. In Proceedings of the 2nd International
Workshop on Paraphrasing, pages 57–64.

Lidija Iordanskaja, Richard Kittredge, and Alain
Polguère. 1991. Lexical selection and paraphrase in
a meaning-text generation model. In Cécile L. Paris,
William R. Swartout, and William C. Mann, editors,
Natural Language Generation in Artificial Intelligence
and Computational Linguistics. Kluwer Academic.

David Kauchak and Regina Barzilay. 2006. Para-
phrasing for automatic evaluation. In Proceedings of
HLT/NAACL, pages 455–462.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In Proceedings of the
10th Machine Translation Summit.

Nils Lenke. 1994. Anticipating the reader’s problems
and the automatic generation of paraphrases. In Pro-
ceedings of the 15th Conference on Computational
Linguistics, pages 319–323.

Percy Liang, Ben Taskar, and Dan Klein. 2006. Align-
ment by agreement. In Proceedings of HLT/NAACL,
pages 104–111.

David Liben-Nowell and Jon Kleinberg. 2003. The link
prediction problem for social networks. In Proceed-
ings of the 12th International Conference on Informa-
tion and Knowledge, pages 556–559.

Dekang Lin and Patrick Pantel. 2001. Discovery of in-
ference rules for question answering. In Proceedings
of ACM SIGKDD Conference on Knowledge Discov-
ery and Data Mining, pages 323–328.

László Lovász. 1996. Random walks on graphs: A sur-
vey. In D. Miklós, V. T. Sós, and T. Szőnyi, editors,
Combinatorics, Paul Erdős is Eighty, Vol. 2, pages
353–398.

Nitin Madnani, Necip Fazil Ayan, Philip Resnik, and
Bonnie J. Dorr. 2007. Using paraphrases for param-
eter tuning in statistical machine translation. In Pro-

ceedings of the 2nd Workshop on Statistical Machine
Translation, pages 120–127.

Kathleen R. McKeown, Regina Barzilay, David Evans,
Vasileios Hatzivassiloglou, Judith L. Klavans, Ani
Nenkova, Carl Sable, Barry Schiffman, and Sergey
Sigelman. 2002. Tracking and summarizing news on
a daily basis with Columbia’s Newsblaster. In Pro-
ceedings of the 2nd International Conference on HLT
Research, pages 280–285.

Qiaozhu Mei, Dengyong Zhou, and Kenneth Church.
2008. Query suggestion using hitting time. In Pro-
ceeding of the 17th ACM Conference on Information
and Knowledge Management, pages 469–478.

Franz J. Och and Hermann Ney. 2004. The alignment
template approach to statistical machine translation.
Computational Linguistics, 30:417–449.

Bo Pang, Kevin Knight, and Daniel Marcu. 2003.
Syntax-based alignment of multiple translations: Ex-
tracting paraphrases and generating new sentences. In
Proceedings of HLT/NAACL, pages 102–109.

Chris Quirk, Chris Brockett, and William B. Dolan.
2004. Monolingual machine translation for paraphrase
generation. In Proceedings of EMNLP, pages 142–
149.

Deepak Ravichandran and Eduard Hovy. 2002. Learning
surface text patterns for a question answering system.
In Proceedings of the 40th Annual Meeting of the ACL,
pages 41–47.

Stefan Reizler, Alexander Vasserman, Ioannis Tsochan-
taridis, Vibhu Mittal, and Yi Liu. 2007. Statistical
machine translation for query expansion in answer re-
trieval. In Proceedings of the 45th Annual Meeting of
the ACL.

Purnamrita Sarkar and Andrew W. Moore. 2007.
A tractable approach to finding closest truncated-
commute-time neighbors in large graphs. In Proceed-
ings of the 23th Conference on Uncertainty in Artificial
Intelligence.

Purnamrita Sarkar, Andrew W. Moore, and Amit Prakash.
2008. Fast incremental proximity search in large
graphs. In Proceedings of the 25th International Con-
ference on Machine Learning.

Manfred Stede. 1999. Lexical Semantics and Knowl-
edge Representation in Multilingual Text Generation.
Kluwer Academic Publishers.

Shiqi Zhao, Haifeng Wang, Ting Liu, and Sheng Li.
2008. Pivot approach for extracting paraphrase pat-
terns from bilingual corpora. In Proceedings of ACL.

153

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 154–162,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Training Paradigms for Correcting Errors in Grammar and Usage

Alla Rozovskaya and Dan Roth
University of Illinois at Urbana-Champaign

Urbana, IL 61801
{rozovska,danr}@illinois.edu

Abstract

This paper proposes a novel approach to the
problem of training classifiers to detect and
correct grammar and usage errors in text by
selectively introducing mistakes into the train-
ing data. When training a classifier, we would
like the distribution of examples seen in train-
ing to be as similar as possible to the one seen
in testing. In error correction problems, such
as correcting mistakes made by second lan-
guage learners, a system is generally trained
on correct data, since annotating data for train-
ing is expensive. Error generation methods
avoid expensive data annotation and create
training data that resemble non-native data
with errors.

We apply error generation methods and train
classifiers for detecting and correcting arti-
cle errors in essays written by non-native En-
glish speakers; we show that training on data
that contain errors produces higher accuracy
when compared to a system that is trained on
clean native data. We propose several train-
ing paradigms with error generation and show
that each such paradigm is superior to training
a classifier on native data. We also show that
the most successful error generation methods
are those that use knowledge about the arti-
cle distribution and error patterns observed in
non-native text.

1 Introduction

This paper considers the problem of training clas-
sifiers to detect and correct errors in grammar and
word usage in text. Both native and non-native
speakers make a variety of errors that are not always

easy to detect. Consider, for example, the problem
of context-sensitive spelling correction (e.g., (Gold-
ing and Roth, 1996; Golding and Roth, 1999; Carl-
son et al., 2001)). Unlike spelling errors that result in
non-words and are easy to detect, context-sensitive
spelling correction task involves correcting spelling
errors that result in legitimate words, such as confus-
ing peace and piece or your and you’re. The typical
training paradigm for these context-sensitive ambi-
guities is to use text assumed to be error free, replac-
ing each target word occurrence (e.g. peace) with a
confusion set consisting of, say {peace, piece}, thus
generating both positive and negative examples, re-
spectively, from the same context.

This paper proposes a novel error generation ap-
proach to the problem of training classifiers for the
purpose of detecting and correcting grammar and
usage errors in text. Unlike previous work (e.g.,
(Sjöbergh and Knutsson, 2005; Brockett et al., 2006;
Foster and Andersen, 2009)), we selectively intro-
duce mistakes in an appropriate proportion. In par-
ticular, to create training data that closely resemble
text with naturally occurring errors, we use error fre-
quency information and error distribution statistics
obtained from corrected non-native text. We apply
the method to the problem of detecting and correct-
ing article mistakes made by learners of English as
a Second Language (ESL).

The problem of correcting article errors is gener-
ally viewed as that of article selection, cast as a clas-
sification problem and is trained as described above:
a machine learning algorithm is used to train a clas-
sifier on native English data, where the possible se-
lections are used to generate positive and negative

154

examples (e.g., (Izumi et al., 2003; Han et al., 2006;
De Felice and Pulman, 2008; Gamon et al., 2008)).
The classifier is then applied to non-native text to
predict the correct article in context. But the article
correction problem differs from the problem of ar-
ticle selection in that we know the original (source)
article that the writer used. When proposing a cor-
rection, we would like to use information about the
original article. One reason for this is that about 90%
of articles are used correctly by ESL learners; this is
higher than the performance of state-of-the-art clas-
sifiers for article selection. Consequently, not us-
ing the writer’s article, when making a prediction,
may result in making more mistakes than there are
in the data. Another reason is that statistics on ar-
ticle errors (e.g., (Han et al., 2006; Lee and Sen-
eff, 2008)) and in the annotation performed for the
present study reveal that non-native English speak-
ers make article mistakes in a consistent manner.

The system can consider the article used by the
writer at evaluation time, by proposing a correction
only when the confidence of the classifier is high
enough, but the article cannot be used in training
if the classifier is trained on clean native data that
do not have errors. Learning Theory says that the
distribution of examples seen in testing should be
as similar as possible to the one seen in training, so
one would like to train on errors similar to those ob-
served in testing. Ideally, we would like to train us-
ing corrected non-native text. In that case, the orig-
inal article of the writer can be used as a feature for
the classifier and the correct article, as judged by
a native English speaker, will be viewed as the la-
bel. However, obtaining annotated data for training
is expensive and, since the native training data do
not contain errors, we cannot use the writer’s article
as a feature for the classifier.

This paper compares the traditional training
paradigm that uses native data to training paradigms
that use data with artificial mistakes. We propose
several methods of generating mistakes in native
training data and demonstrate that they outperform
the traditional training paradigm. We also show that
the most successful error generation methods use
knowledge about the article distribution and error
patterns observed in the ESL data.

The rest of the paper is organized as follows.
First, we discuss the baseline on the error correc-

tion task and show why the baselines used in selec-
tion tasks are not relevant for the error correction
task. Next, we describe prior work in error genera-
tion and show the key difference of our approach.
Section 4 presents the ESL data that we use and
statistics on article errors. Section 5 describes train-
ing paradigms that employ error generation. In Sec-
tions 6 and 7 we present the results and discuss the
results. The key findings are summarized in Table 7
in Section 6. We conclude with a brief discussion of
directions for future work.

2 Measuring Success in Error Correction
Tasks

The distinction between the selection and the error
correction tasks alluded to earlier is important not
only for training but also in determining an appro-
priate evaluation method.

The standard baseline used in selection tasks is
the relative frequency of the most common class.
For example, in word sense disambiguation, the
baseline is the most frequent sense. In the task
of article selection, the standard baseline used is
to predict the article that occurs most frequently in
the data (usually, it is the zero article, whose fre-
quency is 60-70%). In this context, the performance
of a state-of-the-art classifier (Knight and Chander,
1994; Minnen et al., 2000; Turner and Charniak,
2007; Gamon et al., 2008) whose accuracy is 85-
87% is a significant improvement over the base-
line. The majority has been used as the baseline also
in the context-sensitive spelling task (e.g., (Golding
and Roth, 1999)).

However, in article correction, spelling correc-
tion, and other text correction applications the split
of the classes is not an appropriate baseline since the
majority of the words in the confusion set are used
correctly in the text. Han et al. (2006) report an av-
erage error rate of 13% on article data from TOEFL
essays, which gives a baseline of 87%, versus the
baseline of 60-70% used in the article selection task.
Statistics on article mistakes in our data suggest a
baseline of about 90%, depending on the source lan-
guage of the writer. So the real baseline on the task
is ”do nothing”. Therefore, to determine the base-
line for a correction task, one needs to consider the
error rate in the data.

155

Using the definitions of precision and recall and
the “real” baseline, we can also relate the resulting
accuracy of the classifier to the precision and recall
on an error correction task as follows: Let P and R
denote the precision and recall, respectively, of the
system on an error correction task, and Base denote
the error rate in the data. Then the task baseline (i.e.,
accuracy of the data before running the system) is:

Baseline = 1−Base

It can be shown that the error rate after running the
classifier is:

Error =
Base ∗ (P + R− 2RP)

P

It follows that the accuracy of the system on the task
is 1− Error.

For example, we can obtain a rough estimate on
the accuracy of the system in Han et al. (2006), us-
ing precision and recall numbers by error type. Ex-
cluding the error type of category other, we can esti-
mate that Base = 0.1, so the baseline is 0.9, average
precision and recall are 0.85 and 0.25, respectively,
and the resulting overall accuracy of the system is
92.2%.

3 Related Work

3.1 Generating Errors in Text

In text correction, adding mistakes in training has
been explored before. Although the general ap-
proach has been to produce errors similar to those
observed in the data to be corrected, mistakes were
added in an ad-hoc way, without respecting the er-
ror frequencies and error patterns observed in non-
native text. Izumi et al. (2003) train a maxi-
mum entropy model on error-tagged data from the
Japanese Learners of English corpus (JLE, (Izumi et
al., 2004)) to detect 8 error types in the same cor-
pus. They show improvement when the training set
is enhanced with sentences from the same corpus
to which artificial article mistakes have been added.
Though it is not clear in what proportion mistakes
were added, it is also possible that the improvement
was due to a larger training set. Foster and Ander-
sen (2009) attempt to replicate naturally occurring
learner mistakes in the Cambridge Learner Corpus

(CLC)1, but show a drop in accuracy when the orig-
inal error-tagged data in training are replaced with
corrected CLC sentences containing artificial errors.

Brockett et al. (2006) generate mass noun er-
rors in native English data using relevant exam-
ples found in the Chinese Learners English Cor-
pus (CLEC, (Gui and Yang, 2003)). Training data
consist of an equal number of correct and incor-
rect sentences. Sjöbergh and Knutsson (2005) in-
troduce split compound and agreement errors into
native Swedish text: agreement errors are added in
every sentence and for compound errors, the train-
ing set consists of an equal number of negative and
positive examples. Their method gives higher recall
at the expense of lower precision compared to rule-
based grammar checkers.

To sum up, although the idea of using data with ar-
tificial mistakes is not new, the advantage of training
on such data has not been investigated. Moreover,
training on error-tagged data is currently unrealistic
in the majority of error correction scenarios, which
suggests that using text with artificial mistakes is the
only alternative to using clean data. However, it has
not been shown whether training on data with artifi-
cial errors is beneficial when compared to utilizing
clean data. More importantly, error statistics have
not been considered for error correction tasks. Lee
and Seneff (2008) examine statistics on article and
preposition mistakes in the JLE corpus. While they
do not suggest a specific approach, they hypothesize
that it might be helpful to incorporate this knowl-
edge into a correction system that targets these two
language phenomena.

3.2 Approaches to Detecting Article Mistakes

Automated methods for detecting article mistakes
generally use a machine learning algorithm. Ga-
mon et al. (2008) use a decision tree model and a
5-gram language model trained on the English Giga-
word corpus (LDC2005T12) to correct errors in En-
glish article and preposition usage. Han et al. (2006)
and De Felice and Pulman (2008) train a maximum
entropy classifier. Yi et al. (2008) propose a web
count-based system to correct determiner errors. In
the above approaches, the classifiers are trained on
native data. Therefore the classifiers cannot use the

1http://www.cambridge.org/elt

156

original article that the writer used as a feature. Han
et al. (2006) use the source article at evaluation time
and propose a correction only when the score of the
classifier is high enough, but the source article is not
used in training.

4 Article Errors in ESL Data

Article errors are one of the most common mistakes
that non-native speakers make, especially those
whose native language does not have an article sys-
tem. For example, Han et al. (2006) report that in
the annotated TOEFL data by Russian, Chinese, and
Japanese speakers 13% of all noun phrases have an
incorrect article. It is interesting to note that article
errors are present even with very advanced speakers.
While the TOEFL data include essays by students of
different proficiency levels, we use data from very
advanced learners and find that error rates on articles
are similar to those reported by Han et al. (2006).

We use data from speakers of three first language
backgrounds: Chinese, Czech, and Russian. None
of these languages has an article system. The Czech
and the Russian data come from the ICLE corpus
(Granger et al., 2002), which is a collection of es-
says written by advanced learners of English. The
Chinese data is a part of the CLEC corpus that con-
tains essays by students of all levels of proficiency.

4.1 Data Annotation

A portion of data for each source language was cor-
rected and error-tagged by native speakers. The an-
notation was performed at the sentence level: a sen-
tence was presented to the annotator in the context
of the entire essay. Essay context can become nec-
essary, when an article is acceptable in the context
of a sentence, but is incorrect in the context of the
essay. Our goal was to correct all article errors, in-
cluding those that, while acceptable in the context of
the sentence, were not correct in the context of the
essay. The annotators were also encouraged to pro-
pose more than one correction, as long as all of their
suggestions were consistent with the essay context.

The annotators were asked to correct all mistakes
in the sentence. The annotation schema included
the following error types: mistakes in article and
preposition usage, errors in noun number, spelling,

verb form, and word form2. All other corrections
were marked as word replacement, word deletion,
and word insertion. For details about annotation and
data selection, please refer to the companion paper
(Rozovskaya and Roth, 2010).

4.2 Statistics on Article Errors

Traditionally, three article classes are distinguished:
the, a(an)3 and None (no article). The training and
the test data are thus composed of two types of
events:

1. All articles in the data

2. Spaces in front of a noun phrase if that noun
phrase does not start with an article. To identify
the beginning of a noun phrase, we ran a part-
of-speech tagger and a phrase chunker4 and ex-
cluded all noun phrases not headed5 by a per-
sonal or demonstrative pronoun.

Table 1 shows the size of the test data by source
language, proportion of errors and distribution of ar-
ticle classes before and after annotation and com-
pares these distributions to the distribution of articles
in English Wikipedia. The distribution before anno-
tation shows statistics on article usage by the writers
and the distribution after annotation shows statistics
after the corrections made by the annotators were
applied. As the table shows, the distribution of arti-
cles is quite different for native data (Wikipedia) and
non-native text. In particular, non-native data have a
lower proportion of the.

The annotation statistics also reveal that learn-
ers do not confuse articles randomly. From Table
2, which shows the distribution of article errors by
type, we observe that the majority of mistakes are
omissions and extraneous articles. Table 3 shows
statistics on corrections by source and label, where
source refers to the article used by the writer, and
label refers to the article chosen by the annotator.
Each entry in the table indicates Prob(source =

2Our classification, was inspired by the classification pre-
sented in Tetreault and Chodorow (2008)

3Henceforth, we will use a to refer to both a and an
4The tagger and the chunker are available at http://

L2R.cs.uiuc.edu/˜cogcomp/software.php
5We assume that the last word of the noun phrase is its head.

157

Source Number of Proportion of Errors Article Classes
language test examples errors total distribution a the None

Chinese 1713 9.2% 158 Before annotation 8.5 28.2 63.3
After annotation 9.9 24.9 65.2

Czech 1061 9.6% 102 Before annotation 9.1 22.9 68.0
After annotation 9.9 22.3 67.8

Russian 2146 10.4% 224 Before annotation 10.5 21.7 67.9
After annotation 12.5 20.1 67.4

English Wikipedia 9.6 29.1 61.4

Table 1: Statistics on articles in the annotated data before and after annotation.

Source Proportion of Errors total Errors by Type
language errors in the data Extraneous Missing a Missing the Confusion
Chinese 9.2% 158 57.0% 13.3% 22.8% 7.0%
Czech 9.6% 102 45.1% 14.7% 33.3% 6.9%
Russian 10.4% 224 41.5% 20.1% 25.5% 12.3%

Table 2: Distribution of article errors in the annotated data by error type. Extraneous refers to using a or the where
None (no article) is correct. Confusion is using a instead of the or vice versa.

Label Source Source
language a the None

a
Chinese 81.7% 5.9% 12.4%
Czech 81.0% 4.8% 14.3%
Russian 75.3% 7.9% 16.9%

the
Chinese 0.2% 91.3% 8.5%
Czech 0.9% 84.7% 14.4%
Russian 1.9% 84.9% 13.2%

None
Chinese 0.6% 7.4%% 92.0%
Czech 1.3% 5.2% 93.6%
Russian 1.0% 5.4%% 93.6%

Table 3: Statistics on article corrections by the original
article (source) and the annotator’s choice (label). Each
entry in the table indicates Prob(source = s|label = l)
for each article pair.

s|label = l) for each article pair. We can also ob-
serve specific error patterns. For example, the is
more likely than a to be used superfluously.

5 Introducing Article Errors into Training
Data

This section describes experiments with error gener-
ation methods. We conduct four sets of experiments.
Each set differs in how article errors are generated in
the training data. We now give a description of error
generation paradigms in each experimental set.

5.1 Methods of error generation

We refer to the article that the writer used in the ESL
data as source, and label refers to the article that
the annotator chose. Similarly, when we introduce
errors into the training data, we refer to the original

article as label and to the replacement as source.
This is because the original article is the correct
article choice, and the replacement that the classifier
will see as a feature can be an error. We call this
feature source feature. In other words, both for
training (native data) and test (ESL data), source
denotes the form that the classifier sees as a feature
(which could be an error) and label denotes the
correct article. Below we describe how errors are
generated in each set of experiments.

Method 1: General With probability x each ar-
ticle in the training data is replaced with
a different article uniformly at random, and
with probability (1 − x) it remains un-
changed. We build six classifiers, where x
∈ {5%, 10%, 12%, 14%, 16%, 18%}. We call
this method general since it uses no informa-
tion about article distribution in the ESL data.

Method 2: ArticleDistrBeforeAnnot We use the
distribution of articles in the ESL data before
the annotation to change the distribution of ar-
ticles in the training. Specifically, we change
the articles so that their distribution approxi-
mates the distribution of articles in the ESL
data. For example, the relative frequency of
the in English Wikipedia data is 29.1%, while
in the writing by Czech speakers it is 22.3%.
It should be noted that this method changes
the distribution only of source articles, but the

158

distribution of labels is not affected. An ad-
ditional constraint that we impose is the mini-
mum error rate r for each article class, so that
Prob(s|l) ≥ r ∀l ∈ labels. In this fashion, for
each source language we train four classifiers,
where we use article distribution from Chinese,
Czech, and Russian, and where we set the min-
imum error rate r to be ∈ {2%, 3%, 4%, 5%}.

Method 3: ArticleDistrAfterAnnot This method
is similar to the one above but we use the dis-
tribution of articles in the ESL data after the
corrections have been made by the annotators.

Method 4: ErrorDistr This method uses informa-
tion about error patterns in the annotated ESL
data. For example, in the Czech annotated sub-
corpus, label the corresponds to source the in
85% of the cases and corresponds to source
None in 14% of the cases. In other words, in
14% of the cases where the article the should
have been used, the writer used no article at all.
Thus, with probability 14% we change the in
the training data to None.

6 Experimental Results

In this section, we compare the quality of the sys-
tem trained on clean native English data to the qual-
ity of the systems trained on data with errors. The
errors were introduced into the training data using
error generation methods presented in Section 5.

In each training paradigm, we follow a discrimi-
native approach, using an online learning paradigm
and making use of the Averaged Perceptron Al-
gorithm (Freund and Schapire, 1999) implemented
within the Sparse Network of Winnow framework
(Carlson et al., 1999) – we use the regularized
version in Learning Based Java6 (LBJ, (Rizzolo
and Roth, 2007)). While classical Perceptron
comes with generalization bound related to the mar-
gin of the data, Averaged Perceptron also comes
with a PAC-like generalization bound (Freund and
Schapire, 1999). This linear learning algorithm is
known, both theoretically and experimentally, to
be among the best linear learning approaches and
is competitive with SVM and Logistic Regression,

6LBJ code is available at http://L2R.cs.uiuc.edu/
˜cogcomp/asoftware.php?skey=LBJ

while being more efficient in training. It also has
been shown to produce state-of-the-art results on
many natural language applications (Punyakanok et
al., 2008).

Since the methods of error generation described in
Section 5 rely on the distribution of articles and ar-
ticle mistakes and these statistics are specific to the
first language of the writer, we conduct evaluation
separately for each source language. Thus, for each
language group, we train five system types: one sys-
tem is trained on clean English data without errors
(the same classifier for the three language groups)
and four systems are trained on data with errors,
where errors are produced using the four methods
described in Section 5. Training data are extracted
from English Wikipedia.

All of the five systems employ the same set of fea-
tures based on three tokens to the right and to the left
of the target article. For each context word, we use
its relative position, its part-of-speech tag and the
word token itself. We also use the head of the noun
phrase and the conjunctions of the pairs and triples
of the six tokens and their part-of-speech tags7. In
addition to these features, the classifiers trained on
data with errors also use the source article as a fea-
ture. The classifier that is trained on clean English
data cannot use the source feature, since in training
the source always corresponds to the label. By con-
trast, when the training data contain mistakes, the
source is not always the same as the label, the situa-
tion that we also have with the test (ESL) data.

We refer to the classifier trained on clean data
as TrainClean. We refer to the classifiers trained
on data with mistakes as TWE (TrainWithErrors).
There are four types of TWE systems for each lan-
guage group, one for each of the methods of error
generation described in Section 5. All results are the
averaged results of training on three random sam-
ples from Wikipedia with two million training ex-
amples on each round. All five classifiers are trained
on exactly the same set of Wikipedia examples, ex-
cept that we add article mistakes to the data used
by the TWE systems. The TrainClean system
achieves an accuracy of 87.10% on data from En-
glish Wikipedia. This performance is state-of-the-

7Details about the features are given in the paper’s web page,
accessible from http://L2R.cs.uiuc.edu/˜cogcomp/

159

art compared to other systems reported in the lit-
erature (Knight and Chander, 1994; Minnen et al.,
2000; Turner and Charniak, 2007; Han et al., 2006;
De Felice and Pulman, 2008). The best results
of 92.15% are reported by De Felice and Pulman
(2008). But their system uses sophisticated syntac-
tic features and they observe that the parser does not
perform well on non-native data.

As mentioned in Section 4, the annotation of the
ESL data consisted of correcting all errors in the sen-
tence. We exclude from evaluation examples that
have spelling errors in the 3-word window around
the target article and errors on words that immedi-
ately precede or immediately follow the article, as
such examples would obscure the evaluation of the
training paradigms.

Tables 4, 5 and 6 show performance by language
group. The tables show the accuracy and the er-
ror reduction on the test set. The results of systems
TWE (methods 2 and 3) that use the distribution of
articles before and after annotation are merged and
appear as ArtDistr in the tables, since, as shown
in Table 1, these distributions are very similar and
thus produce similar results. Each table compares
the performance of the TrainClean system to the
performance of the four systems trained on data with
errors.

For all language groups, all classifiers of type
TWE outperform the TrainClean system. The
reduction in error rate is consistent when the TWE
classifiers are compared to the TrainClean system.

Table 7 shows results for all three languages, com-
paring for each language group the TrainClean
classifier to the best performing system of type
TWE.

Training Errors in Accuracy Error
paradigm training reduction
TrainClean 0.0% 91.85% -2.26%
TWE(General) 10.0% 92.57% 6.78%
TWE(ArtDistr) 13.2% 92.67% 8.33%
TWE(ErrorDistr) 9.2% 92.31% 3.51%
Baseline 92.03%

Table 4: Chinese speakers: Performance of the
TrainClean system (without errors in training) and of
the best classifiers of type TWE. Rows 2-4 show the
performance of the systems trained with error generation
methods described in 5. Error reduction denotes the per-
centage reduction in the number of errors when compared
to the number of errors in the ESL data.

Training Errors in Accuracy Error
paradigm training reduction
TrainClean 0.0% 91.82% 10.31%
TWE(General) 18.0% 92.22% 14.69%
TWE(ArtDistr) 21.6% 92.00% 12.28%
TWE(ErrorDistr) 10.2% 92.15% 13.93%
Baseline 90.88%

Table 5: Czech speakers: Performance of the
TrainClean system (without errors in training) and of
the best classifiers of type TWE. Rows 2-4 show the
performance of the systems trained with error generation
methods described in 5. Error reduction denotes the per-
centage reduction in the number of errors when compared
to the number of errors in the ESL data.

Training Errors in Accuracy Error
paradigm training reduction
TrainClean 0.0% 90.62% 5.92%
TWE(General) 14.0% 91.25% 12.24%
TWE(ArtDistr) 18.8% 91.52% 14.94%
TWE(ErrorDistr) 10.7% 91.63% 16.05%
Baseline 90.03%

Table 6: Russian speakers: Performance of the
TrainClean system (without errors in training) and of
the best classifiers of type TWE. Rows 2-4 show the
performance of the systems trained with error generation
methods described in 5. Error reduction denotes the per-
centage reduction in the number of errors when compared
to the number of errors in the ESL data.

7 Discussion

As shown in Section 6, training a classifier on
data that contain errors produces better results when
compared to the TrainClean classifier trained on
clean native data. The key results for all language
groups are summarized in Table 7. It should be
noted that the TrainClean system also makes use
of the article chosen by the author through a confi-
dence threshold8; it prefers to keep the article chosen
by the user. The difference is that the TrainClean
system does not consider the author’s article in train-
ing. The results of training with error generation
are better, which shows that training on automati-
cally corrupted data indeed helps. While the per-
formance is different by language group, there is an
observable reduction in error rate for each language
group when TWE systems are used compared to
TrainClean approach. The reduction in error rate

8The decision threshold is found empirically on a subset of
the ESL data set aside for development.

160

achieved by the best performing TWE system when
compared to the error rate of the TrainClean sys-
tem is 10.06% for Chinese, 4.89% for Czech and
10.77% for Russian, as shown in Table 7. We also
note that the best performing TWE systems for Chi-
nese and Russian speakers are those that rely on the
distribution of articles (Chinese) and the distribution
of errors (Russian), but for Czech it is the General
TWE system that performs the best, maybe because
we had less data for Czech speakers, so their statis-
tics are less reliable.

There are several additional observations to be
made. First, training paradigms that use error gen-
eration methods work better than the training ap-
proach of using clean data. Every system of type
TWE outperforms the TrainClean system, as ev-
idenced by Tables 4, 5, and 6. Second, the propor-
tion of errors in the training data should be similar
to the error rate in the test data. The proportion of
errors in training is shown in Tables 4, 5 and 6 in col-
umn 2. Furthermore, TWE systems ArtDistr and
ErrorDistr that use specific knowledge about arti-
cle and error distributions, respectively, work better
for Russian and Chinese groups than the General
method that adds errors to the data uniformly at ran-
dom. Since ArtDistr and ErrorDistr depend on
the statistics of learner mistakes, the success of the
systems that use these methods for error generation
depends on the accuracy of these statistics, and we
only have between 100 and 250 errors for each lan-
guage group. It would be interesting to see whether
better results can be achieved with these methods if
more annotated data are available. Finally, for the
same reason, there is no significant difference in the
performance of methods ArtDistrBeforeAnnot
and ArtDistrAfterAnnot: With small sizes of an-
notated data there is no difference in article distribu-
tions before and after annotation.

8 Conclusion and Future Work

We have shown that error correction training
paradigms that introduce artificial errors are supe-
rior to training classifiers on clean data. We pro-
posed several methods of error generation that ac-
count for error frequency information and error dis-
tribution statistics from non-native text and demon-
strated that the methods that work best are those that

Source Accuracy Error
language Train TWE reduction

Clean
Chinese 91.85% 92.67% 10.06%
Czech 91.82% 92.22% 4.89%
Russian 90.62% 91.63% 10.77%

Table 7: Improvement due to training with errors. For
each source language, the last column of the table shows
the reduction in error rate achieved by the best perform-
ing TWE system when compared to the error rate of the
TrainClean system. The error rate for each system is
computed by subtracting the accuracy achieved by the
system, as shown in columns 2 and 3.

result in a training corpus that statistically resembles
the non-native text. Adding information about arti-
cle distribution in non-native data and statistics on
specific error types is even more helpful.

We have also argued that the baselines used ear-
lier in the relevant literature – all based on the major-
ity of the most commonly used class – suit selection
tasks, but are inappropriate for error correction. In-
stead, the error rate in the data should be taken into
account when determining the baseline.

The focus of the present study was on training
paradigms. While it is quite possible that the article
correction system presented here can be improved
– we would like to explore improving the system
by using a more sophisticated feature set – we be-
lieve that the performance gap due to the error driven
training paradigms shown here will remain. The rea-
son is that even with better features, some of the fea-
tures that hold in the native data will not be active in
in the ESL writing.

Finally, while this study focused on the problem
of correcting article mistakes, we plan to apply the
proposed training paradigms to similar text correc-
tion problems.

Acknowledgments

We thank Nick Rizzolo for helpful discussions on
LBJ. We also thank Peter Chew and the anonymous
reviewers for their insightful comments. This re-
search is partly supported by a grant from the U.S.
Department of Education.

161

References
C. Brockett, W. B. Dolan, and M. Gamon. 2006. Cor-

recting ESL errors using phrasal SMT techniques. In
Proceedings of the 21st COLING and the 44th ACL,
Sydney.

A. Carlson, C. Cumby, J. Rosen, and D. Roth. The
SNoW learning architecture. Technical report.

A. J. Carlson and J. Rosen and D. Roth. 2001. Scaling
Up Context Sensitive Text Correction. IAAI, 45–50.

R. De Felice and S. Pulman. 2008. A Classifier-Based
Approach to Preposition and Determiner Error Correc-
tion in L2 English. In Proceedings of COLING-08.

J. Foster and Ø. Andersen. 2009. GenERRate: Gener-
ating Errors for Use in Grammatical Error Detection.
In Proceedings of the NAACL Workshop on Innovative
Use of NLP for Building Educational Applications.

Y. Freund and R. E. Schapire. 1999. Large margin clas-
sification using the perceptron algorithm. Machine
Learning, 37(3):277-296.

M. Gamon, J. Gao, C. Brockett, A. Klementiev, W.
Dolan, D. Belenko and L. Vanderwende. 2008. Using
Contextual Speller Techniques and Language Model-
ing for ESL Error Correction. Proceedings of IJCNLP.

A. R. Golding and D. Roth. 1996. Applying Winnow
to Context-Sensitive Spelling Correction. ICML, 182–
190.

A. R. Golding and D. Roth. 1999. A Winnow based ap-
proach to Context-Sensitive Spelling Correction. Ma-
chine Learning, 34(1-3):107–130.

S. Granger, E. Dagneaux and F. Meunier 2002. Interna-
tional Corpus of Learner English.

S. Gui and H. Yang. 2003. Zhongguo Xuexizhe Yingyu
Yuliaohu. (Chinese Learner English Corpus). Shang-
hai Waiyu Jiaoyu Chubanshe. (In Chinese).

N. Han, M. Chodorow and C. Leacock. 2006. De-
tecting Errors in English Article Usage by Non-native
Speakers. Journal of Natural Language Engineering,
12(2):115–129.

E. Izumi, K. Uchimoto, T. Saiga and H. Isahara. 2003.
Automatic Error Detection in the Japanese Leaners
English Spoken Data. ACL.

E. Izumi, K. Uchimoto and H. Isahara. 2004. The
NICT JLE Corpus: Exploiting the Language Learner’s
Speech Database for Research and Education. Inter-
national Journal of the Computer, the Internet and
Management, 12(2):119–125.

K. Knight and I. Chander. 1994. Automatic Postediting
of Documents. In Proceedings of the American Asso-
ciation of Artificial Intelligence, pp 779–784.

J. Lee and S. Seneff. 2008. An analysis of grammatical
errors in non-native speech in English. In Proceedings
of the 2008 Spoken Language Technology Workshop,
Goa.

G. Minnen, F. Bond and A. Copestake 2000. Memory-
Based Learning for Article Generation. In Proceed-
ings of the Fourth Conference on Computational Nat-
ural Language Learning and of the Second Learning
Language in Logic Workshop, pp 43–48.

V. Punyakanok, D. Roth, and W. Yih. The importance of
syntactic parsing and inference in semantic role label-
ing. Computational Linguistics, 34(2).

N. Rizzolo and D. Roth 2007. Modeling Discriminative
Global Inference. In Proceedings of the First Interna-
tional Conference on Semantic Computing (ICSC), pp
597–604.

A. Rozovskaya and D. Roth 2010. Annotating ESL Er-
rors: Challenges and Rewards. In Proceedings of the
NAACL Workshop on Innovative Use of NLP for Build-
ing Educational Applications.

J. Sjöbergh and O. Knutsson. 2005. Faking errors to
avoid making errors. In Proceedings of RANLP 2005,
Borovets.

J. Tetreault and M. Chodorow. 2008. Native Judgments
of Non-Native Usage: Experiments in Preposition Er-
ror Detection. COLING Workshop on Human Judg-
ments in Computational Linguistics, Manchester, UK.

J. Turner and E. Charniak. 2007. Language Modeling
for Determiner Selection. In Human Language Tech-
nologies 2007: The Conference of the North American
Chapter of the Association for Computational Linguis-
tics; Companion Volume, Short Papers, pp 177–180.

J. Wagner, J. Foster, and J. van Genabith. 2009. Judg-
ing grammaticality: Experiments in sentence classifi-
cation. CALICO Journal. Special Issue on the 2008
Automatic Analysis of Learner Language CALICO
Workshop.

Y. Xing, J. Gao, and W. Dolan. 2009. A web-based En-
glish proofing system for ESL users. In Proceedings
of IJCNLP.

162

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 163–171,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Using Mostly Native Data to Correct Errors in Learners' Writing:

A Meta-Classifier Approach

Michael Gamon
Microsoft Research

One Microsoft Way

Redmond, WA 98052

mgamon@microsoft.com

Abstract

We present results from a range of experi-

ments on article and preposition error correc-

tion for non-native speakers of English. We

first compare a language model and error-

specific classifiers (all trained on large Eng-

lish corpora) with respect to their performance

in error detection and correction. We then

combine the language model and the classifi-

ers in a meta-classification approach by com-

bining evidence from the classifiers and the

language model as input features to the meta-

classifier. The meta-classifier in turn is trained

on error-annotated learner data, optimizing the

error detection and correction performance on

this domain. The meta-classification approach

results in substantial gains over the classifier-

only and language-model-only scenario. Since

the meta-classifier requires error-annotated

data for training, we investigate how much

training data is needed to improve results over

the baseline of not using a meta-classifier. All

evaluations are conducted on a large error-

annotated corpus of learner English.

1 Introduction

Research on the automatic correction of grammati-

cal errors has undergone a renaissance in the past

decade. This is, at least in part, based on the recog-

nition that non-native speakers of English now

outnumber native speakers by 2:1 in some esti-

mates, so any tool in this domain could be of tre-

mendous value. While earlier work in both native

and non-native error correction was focused on the

construction of grammars and analysis systems to

detect and correct specific errors (see Heift and

Schulze, 2005 for a detailed overview), more re-

cent approaches have been based on data-driven

methods.

The majority of the data-driven methods use a

classification technique to determine whether a

word is used appropriately in its context, continu-

ing the tradition established for contextual spelling

correction by Golding (1995) and Golding and

Roth (1996). The words investigated are typically

articles and prepositions. They have two distinct

advantages as the subject matter for investigation:

They are a closed class and they comprise a sub-

stantial proportion of learners’ errors. The investi-

gation of preposition corrections can even be

narrowed further: amongst the more than 150 Eng-

lish prepositions, the usage of the ten most fre-

quent prepositions accounts for 82% of preposition

errors in the 20 million word Cambridge Universi-

ty Press Learners’ Corpus. Learning correct article

use is most difficult for native speakers of an L1

that does not overtly mark definiteness and indefi-

niteness as English does. Prepositions, on the oth-

er hand, pose difficulties for language learners

from all L1 backgrounds (Dalgish, 1995; Bitchener

et al., 2005).

Contextual classification methods represent the

context of a preposition or article as a feature vec-

tor gleaned from a window of a few words around

the preposition/article. Different systems typically

vary along three dimensions: choice of features,

choice of classifier, and choice of training data.

Features range from words and morphological in-

formation (Knight and Chander, 1994) to the inclu-

sion of part-of-speech tags (Minnen et al., 2000;

Han et al., 2004, 2006; Chodorow et al., 2007;

Gamon et al., 2008, 2009; Izumi et al., 2003, 2004;

Tetrault and Chodorow, 2008) to features based on

linguistic analysis and on WordNet (Lee, 2004;

DeFelice and Pulman, 2007, 2008). Knight and

Chander (1994) and Gamon et al. (2008) used de-

cision tree classifiers but, in general, maximum

entropy classifiers have become the classification

163

algorithm of choice. Training data are normally

drawn from sizeable corpora of native English text

(British National Corpus for DeFelice and Pulman

(2007, 2008), Wall Street Journal in Knight and

Chander (1994), a mix of Reuters and Encarta in

Gamon et al. (2008, 2009). In order to partially

address the problem of domain mismatch between

learners’ writing and the news-heavy data sets of-

ten used in data-driven NLP applications, Han et

al. (2004, 2006) use 31.5 million words from the

MetaMetrics corpus, a diverse corpus of fiction,

non-fiction and textbooks categorized by reading

level.

In addition to the classification approach to error

detection, there is a line of research - going back to

at least Atwell (1987) - that uses language models.

The idea here is to detect errors in areas where the

language model score is suspiciously low. Atwell

(1987) uses a part-of-speech tag language model to

detect errors, Chodorow and Leacock (2000) use

mutual information and chi square statistics to

identify unlikely function word and part-of-speech

tag sequences, Turner and Charniak (2007) employ

a language model based on a generative statistical

parser, and Stehouwer and van Zaanen (2009) in-

vestigate a diverse set of language models with

different backoff strategies to determine which

choice, from a set of confusable words, is most

likely in a given context. Gamon et al. (2008,

2009) use a combination of error-specific classifi-

ers and a large generic language model with hand-

tuned heuristics for combining their scores to max-

imize precision. Finally, Yi et al. (2008) and Her-

met et al. (2008) use n-gram counts from the web

as a language model approximation to identify

likely errors and correction candidates.

2 Our Approach

We combine evidence from the two kinds of data-

driven models that have been used for error detec-

tion and correction (error-specific classifiers and a

language model) through a meta-classifier. We use

the term primary models for both the initial error-

specific classifiers and a large generic language

model. The meta-classifier takes the output of the

primary models (language model scores and class

probabilities) as input. Using a meta-classifier for

ensemble learning has been proven effective for

many machine learning problems (see e.g. Diette-

rich 1997), especially when the combined models

are sufficiently different to make distinct kinds of

errors. The meta-classification approach also has

an advantage in terms of data requirements: Our

primary models are trained on large sets of widely

available well-formed English text. The meta-

classifier, in contrast, is trained on a smaller set of

error-annotated learner data. This allows us to ad-

dress the problem of domain mismatch: We can

leverage large well-formed data sets that are sub-

stantially different from real-life learner language

for the primary models, and then fine-tune the out-

put to learner English using a much smaller set of

expensive and hard-to-come-by annotated learner

writing.

For the purpose of this paper, we restrict our-

selves to article and preposition errors. The ques-

tions we address are:

1. How effective is the meta-classification ap-

proach compared to either a classifier or a lan-

guage model alone?

2. How much error-annotated data are sufficient

to produce positive results above the baseline

of using either a language model or a classifier

alone?

Our evaluation is conducted on a large data set

of error-annotated learner data.

3 Experimental Design

3.1 Primary Models

Our error-specific primary models are maximum

entropy classifiers (Rathnaparki 1997) for articles

and for prepositions. Features include contextual

features from a window of six tokens to the right

and left, such as lexical features (word), part-of-

speech tags, and a handful of “custom features”,

for example lexical head of governing VP or go-

verned NP (as determined by part-of-speech-tag

based heuristics). For both articles and preposi-

tions, we employ two classifiers: the first deter-

mines the probability that a preposition/article is

present in a given context (presence classifier), the

second classifier determines the probability that a

specific article or preposition is chosen (choice

classifier). A training event for the presence clas-

sifier is any noun phrase boundary that is a poten-

tial location for a preposition or article. Whether a

location is an NP boundary and a potential site for

an article/preposition is determined by a simple

heuristic based on part-of-speech tags.

164

The candidates for article choice are the and

a/an, and the choice for prepositions is limited to

twelve very frequent prepositions (in, at, on, for,
since, with, to, by, about, from, of, as) which ac-

count for 86.2 % of preposition errors in our learn-

er data. At prediction time, the presence and choice

classifiers produce a list of potential changes in

preposition/article usage for the given context.

Since the application of our system consists of

suggesting corrections to a user, we do not consid-

er identity operations where the suggested word

choice equals the actual word choice. For a poten-

tial preposition/article location where there is no

preposition/article, each of the candidates is consi-

dered for an insertion operation. For a potential

location that contains a preposition/article, the

possible operations include deletion of the existing

token or substitution with another preposi-

tion/article from the candidate set. Training data

for the classifiers is a mix of primarily well-formed

data sources: There are about 2.5 million sen-

tences, distributed roughly equally across Reuters

newswire, Encarta encyclopedia, UN proceedings,

Europarl and web-scraped general domain data
1
.

From the total set of candidate operations (substi-

tutions, insertions, and deletions) that each combi-

nation of presence and choice classifier produces

for prepositions, we consider only the top three

highest-scoring operations
2
.

Our language model is trained on the Gigaword

corpus (Linguistic Data Consortium, 2003) and

utilizes 7-grams with absolute discount smoothing

(Gao, Goodman, and Miao, 2001; Nguyen, Gao,

and Mahajan, 2007). Each suggested revision from

the preposition/article classifiers (top three for pre-

positions, all revisions from the article classifiers)

are scored by the language model: for each revi-

sion, the language model score of the original and

the suggested rewrite is recorded, as is the lan-

guage model entropy (defined as the language

model probability of the sentence, normalized by

sentence length).

1 We are not able to train the error-specific classifiers on a

larger data set like the one we use for the language model.

Note that the 2.5 million sentences used in the classifier train-

ing already produce 16.5 million training vectors.
2 This increases runtime performance because fewer calls need

to be made to the language model which resides on a server. In

addition, we noticed that overall precision is increased by not

considering the less likely suggestions by the classifier.

3.2 Meta-Classifier

For the meta-classifier we chose to use a decision

tree, trained with the WinMine toolkit (Chickering

2002). The motivation for this choice is that deci-

sion trees are well-suited for continuously valued

features and for non-linear decision surfaces. An

obvious alternative would be to use a support vec-

tor machine with non-linear kernels, a route that

we have not explored yet. The feature set for the

meta-classifier consists of the following scores

from the primary models, including some arithmet-

ic combinations of scores:

 Ratio and delta of Log LM score of the origi-

nal word choice and the suggested revision (2

features)

 Ratio and delta of the LM entropy for origi-

nal and suggested revision (2 features).

 Products of the above ratios/deltas and clas-

sifier choice/presence probabilities

 Type of operation: deletion, insertion, substi-

tution (3 features)

 P(presence) (1 feature)

 For each preposition/article choice:

P(choice): 13 features for prepositions (12

prepositions and other for a preposition not

in that set), 2 for articles

 Original token: none (for insertion) or the

original preposition/article (13 features for

prepositions, 2 for articles)

 Suggested token: none (for deletion) or the

suggested preposition/article (13 features for

prepositions, 2 for articles)

The total number of features is 63 for preposi-

tions and 36 for articles.

The meta-classifier is trained by collecting sug-

gested corrections from the primary models on the

error annotated data. The error-annotation provides

the binary class label, i.e. whether the suggested

revision is correct or incorrect. If the suggested

revision matches an annotated correction, it counts

as correct, if it does not match it counts as incor-

rect. To give an example, the top three preposition

operations for the position before this test in the

sentence I rely to this test are:

Change_to_on

Delete_to

Change_to_of

The class label in this example is "suggestion

correct", assuming that the change of preposition is

165

annotated in the data. The operation Change_to_on

in this example has the following feature values for

the basic classifier and LM scores:

classifier P(choice): 0.755

classifier P(presence): 0.826

LM logP(original): -17.373

LM logP(rewrite): -14.184

An example of a path through the decision tree

meta-classifier for prepositions is:

LMLogDelta is Not < -8.59 and

LMLogDelta is Not < -3.7 and

ProductRewriteLogRatioConf is Not < -

0.00115 and

LMLogDelta is Not < -1.58 and

ProductOrigEntropyRatioChoiceConf is Not < -

0.00443 and

choice_prob is Not < 0.206 and

Original_of is 0 and

choice_prob is Not < 0.329 and

to_prob is < 0.108 and

Suggested_on is 1 and

Original_in is 0 and

choice_prob is Not < 0.497 and

choice_prob is Not < 0.647 and

presence_prob is Not < 0.553

The leaf node at the end of this path has a 0.21

probability of changing “to” to “on” being a cor-

rect rewrite suggestion.

The features selected by the decision trees range

across all of the features discussed above. For both

the article and preposition meta-classifiers, the

ranking of features by importance (as measured by

how close to the root the decision tree uses the fea-

ture) follows the order in which features are listed.

3.3 Data

In contrast to the training data for the primary

models, the meta-classifier is trained on error-

annotated data from the Cambridge University
Press Learners’ Corpus (CLC). The version of

CLC that we have licensed currently contains a

total of 20 million words from learner English es-

says written as part of one of Cambridge’s English

Language Proficiency Tests (ESOL) – at all profi-

ciency levels. The essays are annotated for error

type, erroneous span and suggested correction.

We first perform a random split of the essays in-

to 70% training, 20% test and 10% for parameter

tuning. Next, we create error-specific training, tun-

ing and test sets by performing a number of clean-

up steps on the data. First, we correct all errors that

were flagged as being spelling errors, since we

presume that the user will perform a spelling check

on the data before proceeding to grammatical

proofing. Spelling errors that were flagged as mor-

phology errors were left alone. By the same token,

we corrected confused words that are covered by

MS Word. We then revised British English spel-

ling to American English spelling conventions. In

addition, we eliminated all annotations for non-

pertinent errors (i.e., non-preposition/article errors,

or errors that do not involve any of the targeted

prepositions), but we maintained the original (er-

roneous) text for these. This makes our task harder

since we will have to learn how to make predic-

tions in text containing multiple errors, but it also

is a more realistic scenario given real learner writ-

ing. Finally, we eliminated sentences containing

nested errors and immediately adjacent errors

when they involve pertinent (preposition/article)

errors. For example, an annotated error "take a pic-

ture" with the correction "take pictures" is anno-

tated as two consecutive errors: "delete a" and

"rewrite picture as pictures". Since the error in-

volves operations on both the article and the noun,

which our article correction module is not designed

to cover, we eliminated the sentence from the data.

(This last step eliminated 31% of the sentences

annotated with preposition errors and 29% or the

sentences annotated with article errors.) Sentences

that were flagged for a replacement error but con-

tained no replacement were also eliminated from

the data.

The final training, tuning and test set sizes are as

follows (note that for prepositions we had to re-

duce the size of the training set by an additional

20% in order to avoid memory limitations of our

decision tree tools).

Prepositions:

 train: 584,485 sentences, 68,806 prep errors

 tuning: 105,166 sentences, 9918 prep errors

 test: 208,724 sentences, 19,706 prep errors

Articles:

 train: 737,091 sentences, 58,356 article errors

 tuning: 106,052 sentences, 8341 article errors

 test: 210,577 sentences, 16,742 article errors

This mix is strongly biased towards “correct”

usage. After all, there are many more correct uses

of articles and prepositions in the CLC data than

incorrect ones. Again, this is likely to make our

task harder, but more realistic, since both at train-

166

ing and test time we are working with the error

distribution that is observed in learner data.

3.4 Evaluation

To evaluate, we run our meta-classifier system on

the preposition and article test sets described in

above and calculate precision and recall. Precision

and recall for the overall system are controlled by

thresholding the meta-classifier class probability.

As a point of comparison, we also evaluate the per-

formance of the primary models (the error-specific

classifier and the language model) in isolation.

Precision and recall for the error-specific classifier

is controlled by thresholding class probability. To

control the precision-recall tradeoff for the lan-

guage model, we calculate the difference between

the log probabilities of the original user input and

the suggested correction. We then vary that differ-

ence across all observed values in small incre-

ments, which affects precision and recall: the

higher the difference, the fewer instances we find,

but the higher the reliability of these instances is.

This evaluation differs from many of the evalua-

tions reported in the error detection/correction lite-

rature in several respects. First, the test set is a

broad random sample across all proficiency levels

in the CLC data. Second, it is far larger than any

sets that have been so far to report results of prepo-

sition/article correction on learner data. Finally, we

are only considering cases in which the system

suggests a correction. In other words, we do not

count as correct instances where the system's pre-

diction matches a correct preposition/article.

This evaluation scheme, however, ignores one

aspect of a real user scenario. Of all the suggested

changes that are counted as wrong in our evalua-

tion because they do not match an annotated error,

some may in fact be innocuous or even helpful for

a real user. Such a situation can arise for a variety

of reasons: In some cases, there are legitimate al-

ternative ways to correct an error. In other cases,

the classifier has identified the location of an error

although that error is of a different kind (which can

be beneficial because it causes the user to make a

correction - see Leacock et al., 2009). Gamon et al.

(2009), for example manually evaluate preposition

suggestions as belonging to one of three catego-

ries: (a) properly correcting an existing error, (b)

offering a suggestion that neither improves nor

degrades the user sentence, (c) offering a sugges-

tion that would degrade the user input. Obviously,

(c) is a more serious error than (b). Similarly, Te-

trault and Chodorow (2008) annotate their test set

with preposition choices that are valid alternatives.

We do not have similar information in the CLC

data, but we can perform a manual analysis of a

random subset of test data to estimate an "upper

bound" for our precision/recall curve. Our annota-

tor manually categorized each suggested correction

into one of seven categories.

Details of the distribution of suggested correc-

tions into the seven categories are shown in Table

1.

Category preps. articles

Corrects a CLC error 32.87% 33.34%

Corrects an error that

was not annotated as be-

ing that error type in CLC 11.67% 12.16%

Corrects a CLC error, but

uses an alternative cor-

rection 3.62% 2.26%

Original and suggested

correction are equally

good 9.60% 11.30%

Error correctly detected,

but the correction is

wrong 8.73% 5.03%

Identifies an error site,

but the actual error is not

a preposition error 19.17% 12.64%

Introduces an error
14.65% 23.26%

Table 1: Manual analysis of suggested corrections on

CLC data.

This analysis involves costly manual evaluation,

so we only performed it at one point of the preci-

sion/recall curve (our current runtime system set-

ting). The sample size was 6,000 sentences for

prepositions and 5981 sentences for articles (half

of the sentences were flagged as containing at least

one article/preposition error while the other half

were not). On this manual evaluation, we achieve

32.87% precision if we count all flags that do not

perfectly match a CLC annotation as a false posi-

tive. Only counting the last category (introduction

of an error) as a false positive, precision is at

85.34%. Similarly, for articles, the manual estima-

tion arrives at 76.74% precision, where pure CLC

annotation matching gives us 33.34%.

167

4 Results

Figure 1 and Figure 2 show the evaluation results

of the meta-classifier for prepositions and articles,

compared to the performance of the error-specific

classifier and language model alone. For both pre-

positions and articles, the first notable observation

is that the language model outperforms the clas-

sifier by a large margin. This came as a surprise to

us, given the recent prevalence of classification

approaches in this area of research and the fact that

our classifiers produce state-of-the art performance

when compared to other systems, on well-formed

data. Second, the combination of scores from the

classifier and language model through a meta-

classifier clearly outperforms either one of them in

isolation. This result, again, is consistent across

prepositions and articles.

We had previously used a hand-tuned score

combination instead of a meta-classifier. We also

established that this heuristic performs worse than

the language model for prepositions, and just about

at the same level as the language model for ar-

ticles. Note, though, that the manual tuning was

performed to optimize performance against a dif-

ferent data set (the Chinese Learners of English
Corpus: CLEC), so the latter point is not really

comparable and hence is not included in the charts.

Figure 1: Precision and recall for prepositions.

Figure 2: Precision and recall for articles.

We now turn to the question of the required

amount of annotated training data for the meta-

classifier. CLC is commercially available, but it is

obvious that for many researchers such a corpus

will be too expensive and they will have to create

or license their own error-annotated corpus. Thus

the question of whether one could use less anno-

tated data to train a meta-classifier and still achieve

reasonable results becomes important. Figure 3 and

Figure 4 show results obtained by using decreasing

amounts of training data. The dotted line shows the

language model baseline. Any result below the

language model performance shows that the train-

ing data is insufficient to warrant the use of a meta-

classifier. In these experiments there is a clear dif-

ference between prepositions and articles. We can

reduce the amount of training data for prepositions

to 10% of the original data and still outperform the

language model baseline. 10% of the data corres-

ponds to 6,800 annotated preposition errors and

58,400 sentences. When we reduce the training

data to 1% of the original amount (680 annotated

errors, 5,800 sentences) we clearly see degraded

results compared to the language model. With ar-

ticles, the system is much less data-hungry. Reduc-

ing the training data to 1% (580 annotated errors,

7,400 sentences) still outperforms the language

model alone. This result can most likely be ex-

plained by the different complexity of the preposi-

tion and article tasks. Article operations include

only six distinct operations: deletion of the, dele-

tion of a/an, insertion of the, insertion of a/an,

change of the to a/an, and change of a/an to the.

For the twelve prepositions that we work with, the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6

P
re

ci
si

o
n

Recall

Prepositions

LM only classifier only

learned thresholds

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Recall

Articles

Learned thresholds classifier only

LM only

168

total number of insertions, deletions and substitu-

tions that require sufficient training events and

might need different score combinations is 168,

making the problem much harder.

Figure 3: Using different amounts of annotated training

data for the preposition meta-classifier.

Figure 4: Using different amounts of annotated training

data for the article meta-classifier.

To find out if it is possible to reduce the re-

quired amount of annotated preposition errors for a

system that still covers more than one third of the

preposition errors, we ran the same learning curve

experiments but now only taking the four most

frequent prepositions into account: to, of, in, for. In

the CLC, these four prepositions account for

39.8% of preposition error flags. As in the previous

experiments, however, we found that we are not

able to outperform the baseline by using just 1% of

annotated data.

5 Error Analysis

We have conducted a failure analysis on examples

where the system produces a blatantly bad sugges-

tion in order to see whether this decision could be

attributed to the error-specific classifier or to the

language model, or both, and what the underlying

cause is. This preliminary analysis highlights two

common causes for bad flags. One is that of fre-

quent lower order n-grams that dominate the lan-

guage model score. Consider the CLEC sentence I
get to know the world outside the campus by news-
paper and television. The system suggests deleting

by. The cause of this bad decision is that the bi-

gram campus newspaper is extremely likely,

trumping all other n-grams, and leading to a high

probability for the suggested string compared to

the original: Log (P(original)) = -26.2 and Log

(P(suggestion)) = -22.4. This strong imbalance of

the language model score causes the meta-

classifier to assign a relatively high probability to

this being a correct revision, even though the error-

specific classifier is on the right track and gives a

relatively high probability for the presence of a

preposition and the choice of by. A similar exam-

ple, but for substitution, occurs in They give dis-
counts to their workers on books. Here the bigram

in books has a very high probability and the system

incorrectly suggests replacing on with in. An ex-

ample for insertion is seen in Please send me the

letter back writing what happened. Here, the bi-

gram back to causes the bad suggestion of inserting

to after back. Since the language model is general-

ly more accurate than the error-specific classifier,

the meta-classifier tends to trust its score more than

that of the classifier. As a result we see this kind of

error quite frequently.

Another common error class is the opposite situ-

ation: the language model is on the right track, but

the classifier makes a wrong assessment. Consider

Whatever direction my leg fought to stretch, with

the suggested insertion of on before my leg. Here

Log (P(original)) = -31.5 and Log (P(suggestion))

= -32.1, a slight preference for the original string.

The error-specific classifier, however, assigns a

probability of 0.65 for a preposition to be present,

and 0.80 for that preposition to be on. The contex-

tual features that are important in that decision are:

the insertion site is between a pronoun and a noun,

it is relatively close to the beginning of the sen-

tence, and the head of the NP my leg has a possible

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6

P
re

ci
si

o
n

Recall

Prepositions

100% training data LM only

10% training data 1% training data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Recall

Articles

100% training data 10% training data

Language model alone 1% training data

169

mass noun sense. An example involving deletion is

in Someone came to sort of it. While the language

model assigns a high probability for deleting of,
the error-specific classifier does not. Similarly, for

substitution, in Your experience is very interesting
for our company, the language model suggests

substituting for with to while the classifier gives

the substitution a very low probability.

As can be seen from the learner sentences cited

above, often, even though the sentences are gram-

matical, they are not idiomatic, which can confuse

all of the classifiers.

6 Conclusion and Future Work

We have addressed two questions in this paper:

1. How effective is a meta-classification ap-

proach that combines language modeling and

error-specific classification to the detection

and correction of preposition and article errors

by non-native speakers?

2. How much error-annotated data is sufficient to

produce positive results using that approach?

We have shown that a meta-classifier approach

outperforms using a language model or a classifier

alone. An interesting side result is that the lan-

guage model solidly outperforms the contextual

classifier for both article and preposition correc-

tion, contrary to current practice in the field. Train-

ing data requirements for the meta-classifier vary

significantly between article and preposition error

detection. The article meta-classifier can be trained

with as few as 600 annotated errors, but the prepo-

sition meta-classifier requires more annotated data

by an order of magnitude. Still, the overall amount

of expensive error-annotated data is relatively

small, and the meta-classification approach makes

it possible to leverage large amounts of well-

formed text in the primary models, tuning to the

non-native domain in the meta-classifier.

We believe that the logical next step is to com-

bine more primary models in the meta-classifier.

Candidates for additional primary models include

(1) more classifiers trained either on different data

sets or with a different classification algorithm, and

(2) more language models, such as skip models or

part-of-speech n-gram language models.

Acknowledgments

We thank Claudia Leacock from the Butler Hill

Group for detailed error analysis and the anonym-

ous reviewers for helpful and constructive feed-

back.

References

Eric Steven Atwell. 1987. How to detect grammatical

errors in a text without parsing it. In Proceedings of
the 3rd EACL (pp 38 – 45). Copenhagen.

John Bitchener, Stuart Young, and Denise Cameron.

2005. The effect of different types of corrective feed-

back on ESL student writing. Journal of Second Lan-

guage Writing, 14(3), 191-205.

David Maxwell Chickering. 2002. The WinMine Tool-

kit. Microsoft Technical Report 2002-103. Redmond.

Martin Chodorow, Joel Tetreault, and Na-Rae Han.

2007. Detection of grammatical errors involving pre-

positions. In Proceedings of the Fourth ACL-

SIGSEM Workshop on Prepositions (pp. 25-30). Pra-

gue.

Gerard M. Dalgish. 1985. Computer-assisted ESL re-

search and courseware development. Computers and

Composition, 2(4), 45-62.

Rachele De Felice and Stephen G. Pulman. 2007. Au-

tomatically acquiring models of preposition use. In

Proceedings of the Fourth ACL-SIGSEM Workshop

on Prepositions (pp. 45-50). Prague.

Rachele De Felice and Stephen Pulman. 2008. A clas-

sifier-based approach to preposition and determiner

error correction in L2 English. In Proceedings of

COLING. Manchester, UK.

Thomas G. Dietterich. 1997. Machine learning research:

Four current directions. AI Magazine, 18(4), 97-136.

Ted Dunning. 1993. Accurate Methods for the Statistics

of Surprise and Coincidence. Computational Linguis-

tics, 19, 61-74.

Michael Gamon, Claudia Leacock, Chris Brockett, Wil-

liam B. Dolan, Jianfeng Gao, Dmitriy Belenko, and

Alexandre Klementiev,. 2009. Using statistical tech-

niques and web search to correct ESL errors.

CALICO Journal, 26(3).

Michael Gamon, Jianfeng Gao, Chris Brockett, Alexan-

der Klementiev, William Dolan, Dmitriy Belenko,

and Lucy Vanderwende. 2008. Using contextual

speller techniques and language modeling for ESL

error correction. In Proceedings of IJCNLP, Hydera-

bad, India.

Jianfeng Gao, Joshua Goodman, and Jiangbo Miao.

2001. The use of clustering techniques for language

modeling—Application to Asian languages. Compu-

170

tational Linguistics and Chinese Language

Processing, 6(1), 27-60.

Andrew Golding. 1995. A Bayesian Hybrid for Context

Sensitive Spelling Correction. In Proceedings of the

3rd Workshop on Very Large Corpora (pp. 39–53).

Cambridge, USA.

Andrew R. Golding and Dan Roth. 1996. Applying

Winnow to context-sensitive spelling correction. In

Proceedings of the Int. Conference on Machine
Learning (pp 182 –190).

Na-Rae Han, Martin Chodorow, and Claudia Leacock.

2004. Detecting errors in English article usage with a

maximum entropy classifier trained on a large, di-

verse corpus. In Proceedings of the 4th International

Conference on Language Resources and Evaluation.
Lisbon.

Na-Rae Han, Martin Chodorow, and Claudia Leacock.

2006. Detecting errors in English article usage by

non-native speakers. Natural Language Engineering,

12(2), 115-129.

Trude Heift and Mathias Schulze. 2007. Errors and
Intelligence in Computer-Assisted Language Learn-

ing: Parsers and Pedagogues. New York & London:

Routledge.

Matthieu Hermet, Alain Désilets, and Stan Szpakowicz.

2008. Using the web as a linguistic resource to auto-

matically correct lexico-yyntactic errors. In Proceed-

ings of the 6th Conference on Language Resources

and Evaluation (LREC), (pp. 874 - 878).

Emi Izumi, Kiyotaka Uchimoto, Toyomi Saiga, Thep-

chai Supnithi and Hitoshi Isahara. 2003. Automatic

error detection in the Japanese learners' English spo-

ken data. In Proceedings of the 41st Annual Meeting

of the Association for Computational Linguistics

(pp. 145-148).

Emi Izumi, Kiyotaka Uchimoto and Hitoshi Isahara.

2004. SST speech corpus of Japanese learners' Eng-

lish and automatic detection of learners' errors. In

Proceedings of the 4th International Conference on

Language Resources and Evaluation (LREC), (Vol 4,

pp. 31-48).

Kevin Knight and Ishwar Chander,. 1994. Automatic

postediting of documents. In Proceedings of the 12th
National Conference on Artificial Intelligence (pp.

779-784). Seattle: Morgan Kaufmann.

Claudia Leacock, Michael Gamon, and Chris Brockett.

2009. User Input and Interactions on Microsoft ESL

Assistant. In Proceedings of the Fourth Workshop on

Innovative Use of NLP for Building Educational Ap-
plications (pp. 73-81).

John Lee. 2004. Automatic article restoration. In Pro-

ceedings of the Human Language Technology Confe-

rence of the North American Chapter of the
Association for Computational Linguistics, (pp. 31-

36). Boston.

Guido Minnen, Francis Bond, and Anne Copestake.

2000. Memory-based learning for article generation.

In Proceedings of the Fourth Conference on Compu-

tational Natural Language Learning and of the
Second Learning Language in Logic Workshop (pp.

43-48). Lisbon.

Patrick Nguyen, Jianfeng Gao, and Milind Mahajan.

2007. MSRLM: A scalable language modeling tool-

kit. Microsoft Technical Report 2007-144. Redmond.

Adwait Ratnaparkhi. 1997. A simple introduction to

maximum entropy models for natural language

processing. Technical Report IRCS Report 97-98, In-

stitute for Research in Cognitive Science, University

of Pennsylvania.

Herman Stehouwer and Menno van Zaanen. 2009. Lan-

guage models for contextual error detection and cor-

rection. In Proceedings of the EACL 2009 Workshop

on Computational Linguistic Aspects of Grammatical

Inference (pp. 41-48). Athens.

Joel Tetreault and Martin Chodorow. 2008a. The ups

and downs of preposition error detection in ESL. In

Proceedings of COLING. Manchester, UK.

Joel Tetreault and Martin Chodorow. 2008b. Native

judgments of non-native usage: Experiments in pre-

position error detection. In Proceedings of the Work-

shop on Human Judgments in Computational

Linguistics, 22nd International Conference on Com-
putational Linguistics (pp 43-48). Manchester, UK.

Jenine Turner and Eugene Charniak. 2007. Language

modeling for determiner selection. In Human Lan-

guage Technologies 2007: NAACL; Companion Vo-

lume, Short Papers (pp. 177-180). Rochester, NY.

Wikipedia. English Language.

http://en.wikipedia.org/wiki/English_language

Xing Yi, Jianfeng Gao, and Bill Dolan. 2008. A web-

based English proofing system for English as a

second language users. In Proceedings of the Third

International Joint Conference on Natural Language
Processing (IJCNLP). Hyderabad, India.

171

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 172–180,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Unsupervised Modeling of Twitter Conversations

Alan Ritter∗
Computer Sci. & Eng.

University of Washington
Seattle, WA 98195

aritter@cs.washington.edu

Colin Cherry∗
National Research Council Canada

Ottawa, Ontario, K1A 0R6
Colin.Cherry@nrc-cnrc.gc.ca

Bill Dolan
Microsoft Research

Redmond, WA 98052
billdol@microsoft.com

Abstract

We propose the first unsupervised approach
to the problem of modeling dialogue acts in
an open domain. Trained on a corpus of
noisy Twitter conversations, our method dis-
covers dialogue acts by clustering raw utter-
ances. Because it accounts for the sequential
behaviour of these acts, the learned model can
provide insight into the shape of communica-
tion in a new medium. We address the chal-
lenge of evaluating the emergent model with a
qualitative visualization and an intrinsic con-
versation ordering task. This work is inspired
by a corpus of 1.3 million Twitter conversa-
tions, which will be made publicly available.
This huge amount of data, available only be-
cause Twitter blurs the line between chatting
and publishing, highlights the need to be able
to adapt quickly to a new medium.

1 Introduction

Automatic detection of dialogue structure is an im-
portant first step toward deep understanding of hu-
man conversations. Dialogue acts1 provide an
initial level of structure by annotating utterances
with shallow discourse roles such as “statement”,
“question” and “answer”. These acts are useful in
many applications, including conversational agents
(Wilks, 2006), dialogue systems (Allen et al., 2007),
dialogue summarization (Murray et al., 2006), and
flirtation detection (Ranganath et al., 2009).

Dialogue act tagging has traditionally followed an
annotate-train-test paradigm, which begins with the

∗This work was conducted at Microsoft Research.
1Also called “speech acts”

design of annotation guidelines, followed by the col-
lection and labeling of corpora (Jurafsky et al., 1997;
Dhillon et al., 2004). Only then can one train a tag-
ger to automatically recognize dialogue acts (Stol-
cke et al., 2000). This paradigm has been quite suc-
cessful, but the labeling process is both slow and
expensive, limiting the amount of data available for
training. The expense is compounded as we con-
sider new methods of communication, which may
require not only new annotations, but new annota-
tion guidelines and new dialogue acts. This issue be-
comes more pressing as the Internet continues to ex-
pand the number of ways in which we communicate,
bringing us e-mail, newsgroups, IRC, forums, blogs,
Facebook, Twitter, and whatever is on the horizon.

Previous work has taken a variety of approaches
to dialogue act tagging in new media. Cohen et al.
(2004) develop an inventory of dialogue acts specific
to e-mail in an office domain. They design their in-
ventory by inspecting a large corpus of e-mail, and
refine it during the manual tagging process. Jeong et
al. (2009) use semi-supervised learning to transfer
dialogue acts from labeled speech corpora to the In-
ternet media of forums and e-mail. They manually
restructure the source act inventories in an attempt
to create coarse, domain-independent acts. Each ap-
proach relies on a human designer to inject knowl-
edge into the system through the inventory of avail-
able acts.

As an alternative solution for new media, we pro-
pose a series of unsupervised conversation models,
where the discovery of acts amounts to clustering
utterances with similar conversational roles. This
avoids manual construction of an act inventory, and
allows the learning algorithm to tell us something
about how people converse in a new medium.

172

There is surprisingly little work in unsupervised
dialogue act tagging. Woszczyna and Waibel (1994)
propose an unsupervised Hidden Markov Model
(HMM) for dialogue structure in a meeting schedul-
ing domain, but model dialogue state at the word
level. Crook et al. (2009) use Dirichlet process mix-
ture models to cluster utterances into a flexible num-
ber of acts in a travel-planning domain, but do not
examine the sequential structure of dialogue.2

In contrast to previous work, we address the prob-
lem of discovering dialogue acts in an informal,
open-topic domain, where an unsupervised learner
may be distracted by strong topic clusters. We also
train and test our models in a new medium: Twit-
ter. Rather than test against existing dialogue inven-
tories, we evaluate using qualitative visualizations
and a novel conversation ordering task, to ensure our
models have the opportunity to discover dialogue
phenomena unique to this medium.

2 Data

To enable the study of large-data solutions to di-
alogue modeling, we have collected a corpus of
1.3 million conversations drawn from the micro-
blogging service, Twitter. 3 To our knowledge,
this is the largest corpus of naturally occurring chat
data that has been available for study thus far. Sim-
ilar datasets include the NUS SMS corpus (How
and Kan, 2005), several IRC chat corpora (Elsner
and Charniak, 2008; Forsyth and Martell, 2007),
and blog datasets (Yano et al., 2009; Gamon et al.,
2008), which can display conversational structure in
the blog comments.

As it characterizes itself as a micro-blog, it should
not be surprising that structurally, Twitter conversa-
tions lie somewhere between chat and blogs. Like
blogs, conversations on Twitter occur in a public en-
vironment, where they can be collected for research
purposes. However, Twitter posts are restricted to be
no longer than 140 characters, which keeps interac-
tions chat-like. Like e-mail and unlike IRC, Twit-
ter conversations are carried out by replying to spe-
cific posts. The Twitter API provides a link from
each reply to the post it is responding to, allowing

2The Crook et al. model should be able to be combined with
the models we present here.

3Will be available at http://www.cs.washington.
edu/homes/aritter/twitter_chat/

1 2 3 4 5

0
2

4
6

8
10

12
14

log length

lo
g

fr
eq

ue
nc

y

Figure 1: Conversation length versus frequency

accurate thread reconstruction without requiring a
conversation disentanglement step (Elsner and Char-
niak, 2008). The proportion of posts on Twitter that
are conversational in nature are somewhere around
37% (Kelly, 2009).

To collect this corpus, we crawled Twitter using
its publicly available API. We monitored the public
timeline4 to obtain a sample of active Twitter users.
To expand our user list, we also crawled up to 10
users who had engaged in dialogue with each seed
user. For each user, we retrieved all posts, retain-
ing only those that were in reply to some other post.
We recursively followed the chain of replies to re-
cover the entire conversation. A simple function-
word-driven filter was used to remove non-English
conversations.

We crawled Twitter for a 2 month period during
the summer of 2009. The resulting corpus consists
of about 1.3 million conversations, with each con-
versation containing between 2 and 243 posts. The
majority of conversations on Twitter are very short;
those of length 2 (one status post and a reply) ac-
count for 69% of the data. As shown in Figure 1, the
frequencies of conversation lengths follow a power-
law relationship.

While the style of writing used on Twitter is
widely varied, much of the text is very similar to
SMS text messages. This is likely because many
users access Twitter through mobile devices. Posts
are often highly ungrammatical, and filled with
spelling errors. In order to illustrate the spelling
variation found on Twitter, we ran the Jcluster word
clustering algorithm (Goodman, 2001) on our cor-

4http://twitter.com/public_timeline pro-
vides the 20 most recent posts on Twitter

173

coming comming
enough enought enuff enuf
be4 b4 befor before
yuhr yur your yor ur youur yhur
msgs messages
couldnt culdnt cldnt cannae cudnt couldent
about bou abt abour abut bowt

Table 1: A sample of Twitter spelling variation.

pus, and manually picked out clusters of spelling
variants; a sample is displayed in Table 1.

Twitter’s noisy style makes processing Twitter
text more difficult than other domains. While mov-
ing to a new domain (e.g. biomedical text) is a chal-
lenging task, at least the new words found in the
vocabulary are limited mostly to verbs and nouns,
while function words remain constant. On Twit-
ter, even closed-class words such as prepositions and
pronouns are spelled in many different ways.

3 Dialogue Analysis

We propose two models to discover dialogue acts in
an unsupervised manner. An ideal model will give
insight into the sorts of conversations that happen
on Twitter, while providing a useful tool for later
processing. We first introduce the summarization
technology we apply to this task, followed by two
Bayesian extensions.

3.1 Conversation model

Our base model structure is inspired by the con-
tent model proposed by Barzilay and Lee (2004)
for multi-document summarization. Their sentence-
level HMM discovers the sequence of topics used
to describe a particular type of news event, such as
earthquakes. A news story is modeled by first gen-
erating a sequence of hidden topics according to a
Markov model, with each topic generating an ob-
served sentence according to a topic-specific lan-
guage model. These models capture the sequential
structure of news stories, and can be used for sum-
marization tasks such as sentence extraction and or-
dering.

Our goals are not so different: we wish to dis-
cover the sequential dialogue structure of conversa-
tion. Rather than learning a disaster’s location is
followed by its death toll, we instead wish to learn
that a question is followed by an answer. An initial

a0 a1 a2

w0,j w1,j w2,j

W0 W1 W2

Ck

Figure 2: Conversation Model

a0 a1 a2

w0,j w1,j w2,j

W0 W1 W2

Ck

s0,j s1,j s2,j

θk

ψE

πk

Figure 3: Conversation + Topic Model

conversation model can be created by simply apply-
ing the content modeling framework to conversation
data. We rename the hidden states acts, and assume
each post in a Twitter conversation is generated by
a single act.5 During development, we found that a
unigram language model performed best as the act
emission distribution.

The resulting conversation model is shown as a
plate diagram in Figure 2. Each conversation C is
a sequence of acts a, and each act produces a post,
represented by a bag of words shown using the W
plates. The number of acts available to the model
is fixed; we experimented with between 5 and 40.
Starting with a random assignment of acts, we train
our conversation model using EM, with forward-
backward providing act distributions during the ex-
pectation step. The model structure in Figure 2 is

5The short length of Twitter posts makes this assumption
reasonable.

174

sadly no. some pasta bake, but coffee and pasta bake is not a
contender for tea and toast... .
yum! Ground beef tacos? We ’re grilling out. Turkey dogs for
me, a Bubba Burger for my dh, and combo for the kids.
ha! They gotcha! You had to think about Arby’s to write that tweet.
Arby’s is conducting a psychlogical study. Of roast beef.
Rumbly tummy soon to be tamed by Dominos for lunch! Nom
nom nom!

Table 2: Example of a topical cluster discovered by
the EM Conversation Model.

similar to previous HMMs for supervised dialogue
act recognition (Stolcke et al., 2000), but our model
is trained unsupervised.

3.2 Conversation + Topic model
Our conversations are not restricted to any partic-
ular topic: Twitter users can and will talk about
anything. Therefore, there is no guarantee that our
model, charged with discovering clusters of posts
that aid in the prediction of the next cluster, will nec-
essarily discover dialogue acts. The sequence model
could instead partition entire conversations into top-
ics, such as food, computers and music, and then pre-
dict that each topic self-transitions with high proba-
bility: if we begin talking about food, we are likely
to continue to do so. Since we began with a content
model, it is perhaps not surprising that our Conversa-
tion Model tends to discover a mixture of dialogue
and topic structure. Several high probability posts
from a topic-focused cluster discovered by EM are
shown in Table 2. These clusters are undesirable, as
they have little to do with dialogue structure.

In general, unsupervised sentence clustering tech-
niques need some degree of direction when a par-
ticular level of granularity is desired. Barzilay and
Lee (2004) mask named entities in their content
models, forcing their model to cluster topics about
earthquakes in general, and not instances of specific
earthquakes. This solution is not a good fit for Twit-
ter. As explained in Section 2, Twitter’s noisiness
resists off-the-shelf tools, such as named-entity rec-
ognizers and noun-phrase chunkers. Furthermore,
we would require a more drastic form of prepro-
cessing in order to mask all topic words, and not
just alter the topic granularity. During development,
we explored coarse methods to abstract away con-
tent while maintaining syntax, such as replacing to-
kens with either parts-of-speech or automatically-

generated word clusters, but we found that these ap-
proaches degrade model performance.

Another approach to filtering out topic informa-
tion leaves the data intact, but modifies the model
to account for topic. To that end, we adopt a Latent
Dirichlet Allocation, or LDA, framework (Blei et al.,
2003) similar to approaches used recently in sum-
marization (Daumé III and Marcu, 2006; Haghighi
and Vanderwende, 2009). The goal of this extended
model is to separate content words from dialogue in-
dicators. Each word in a conversation is generated
from one of three sources:

• The current post’s dialogue act

• The conversation’s topic

• General English

The extended model is shown in Figure 3.6 In addi-
tion to act emission and transition parameters, the
model now includes a conversation-specific word
multinomial θk that represents the topic, as well as a
universal general English multinomial ψE . A new
hidden variable, s determines the source of each
word, and is drawn from a conversation-specific dis-
tribution over sources πk. Following LDA conven-
tions, we place a symmetric Dirichlet prior over
each of the multinomials. Dirichlet concentration
parameters for act emission, act transition, conver-
sation topic, general English, and source become the
hyper-parameters of our model.

The multinomials θk, πk and ψE create non-local
dependencies in our model, breaking our HMM dy-
namic programing. Therefore we adopt Gibbs sam-
pling as our inference engine. Each hidden vari-
able is sampled in turn, conditioned on a complete
assignment of all other hidden variables through-
out the data set. Again following LDA convention,
we carry out collapsed sampling, where the various
multinomials are integrated out, and are never ex-
plicitly estimated. This results in a sampling se-
quence where for each post we first sample its act,
and then sample a source for each word in the post.
The hidden act and source variables are sampled ac-
cording to the following transition distributions:

6This figure omits hyperparameters as well as act transition
and emission multinomials to reduce clutter. Dirichlet priors are
placed over all multinomials.

175

Ptrans(ai|a−i, s,w) ∝

P (ai|a−i)
Wi∏
j=1

P (wi,j |a, s,w−(i,j))

Ptrans(si,j |a, s−(i,j),w) ∝
P (si,j |s−(i,j))P (wi,j |a, s,w−(i,j))

These probabilities can be computed analogously to
the calculations used in the collapsed sampler for a
bigram HMM (Goldwater and Griffiths, 2007), and
those used for LDA (Griffiths and Steyvers, 2004).

Note that our model contains five hyperparame-
ters. Rather than attempt to set them using an ex-
pensive grid search, we treat the concentration pa-
rameters as additional hidden variables and sample
each in turn, conditioned on the current assignment
to all other variables. Because these variables are
continuous, we apply slice sampling (Neal, 2003).
Slice sampling is a general technique for drawing
samples from a distribution by sampling uniformly
from the area under its density function.

3.3 Estimating Likelihood on Held-Out Data

In Section 4.2 we evaluate our models by comparing
their probability on held-out test conversations. As
computing this probability exactly is intractable in
our model, we employ a recently proposed Chibb-
style estimator (Murray and Salakhutdinov, 2008;
Wallach et al., 2009). Chibb estimators estimate the
probability of unseen data, P (w) by selecting a high
probability assignment to hidden variables h∗, and
taking advantage of the following equality which
can be easily derived from the definition of condi-
tional probability:

P (w) =
P (w,h∗)
P (h∗|w)

As the numerator can be computed exactly, this re-
duces the problem of estimating P (w) to the eas-
ier problem of estimating P (h∗|w). Murray and
Salakhutdinov (2008) provide an unbiased estimator
for P (h∗|w), which is calculated using the station-
ary distribution of the Gibbs sampler.

3.4 Bayesian Conversation model

Given the infrastructure necessary for the Conver-
sation+Topic model described above, it is straight-
forward to also implement a Bayesian version of

of the conversation model described in Section 3.1.
This amounts to replacing the add-x smoothing of
dialogue act emission and transition probabilities
with (potentially sparse) Dirichlet priors, and replac-
ing EM with Gibbs sampling. There is reason to
believe that integrating out multinomials and using
sparse priors will improve the performance of the
conversation model, as improvements have been ob-
served when using a Bayesian HMM for unsuper-
vised part-of-speech tagging (Goldwater and Grif-
fiths, 2007).

4 Experiments

Evaluating automatically discovered dialogue acts
is a difficult problem. Unlike previous work, our
model automatically discovers an appropriate set of
dialogue acts for a new medium; these acts will
not necessarily have a close correspondence to di-
alogue act inventories manually designed for other
corpora. Instead of comparing against human anno-
tations, we present a visualization of the automati-
cally discovered dialogue acts, in addition to mea-
suring the ability of our models to predict post order
in unseen conversations. Ideally we would evaluate
performance using an end-use application such as a
conversational agent; however as this is outside the
scope of this paper, we leave such an evaluation to
future work.

For all experiments we train our models on a set of
10,000 randomly sampled conversations with con-
versation length in posts ranging from 3 to 6. Note
that our implementations can likely scale to larger
data by using techniques such as SparseLDA (Yao
et al., 2009). We limit our vocabulary to the 5,000
most frequent words in the corpus.

When using EM, we train for 100 iterations, eval-
uating performance on the test set at each iteration,
and reporting the maximum. Smoothing parameters
are set using grid search on a development set.

When performing inference with Gibbs Sam-
pling, we use 1,000 samples for burn-in and take
10 samples at a lag of 100. Although using multi-
ple samples introduces the possibility of poor results
due to “act drift”, we found this not to be a problem
in practice; in fact, taking multiple samples substan-
tially improved performance during development.

Recall that we infer hyperparameters using slice

176

sampling. The concentration parameters chosen in
this manner were always sparse (< 1), which pro-
duced a moderate improvement over an uninformed
prior.

4.1 Qualitative Evaluation

We are quite interested in what our models can tell
us about how people converse on Twitter. To vi-
sualize and interpret our competing models, we ex-
amined act-emission distributions, posts with high-
confidence acts, and act-transition diagrams. Of
the three competing systems, we found the Conver-
sation+Topic model by far the easiest to interpret:
the 10-act model has 8 acts that we found intuitive,
while the other 2 are used only with low probabil-
ity. Conversely, the Conversation model, whether
trained by EM or Gibbs sampling, suffered from
the inclusion of general terms and from the confla-
tion of topic and dialogue. For example, the EM-
trained conversation model discovered an “act” that
was clearly a collection of posts about food, with no
underlying dialogue theme (see Table 2).

In the remainder of this section, we reproduce
our visualization for the 10-act Conversation+Topic
model. Word lists summarizing the discovered dia-
logue acts are shown in Table 3. For each act, the
top 40 words are listed in order of decreasing emis-
sion probability. An example post, drawn from the
set of highest-confidence posts for that act, is also
included. Figure 4 provides a visualization of the
matrix of transition probabilities between dialogue
acts. An arrow is drawn from one act to the next
if the probability of transition is above 0.15.7 Note
that a uniform model would transition to each act
with probability 0.10. In both Table 3 and Figure 4,
we use intuitive names in place of cluster numbers.
These are based on our interpretations of the clus-
ters, and are provided only to benefit the reader when
interpreting the transition diagram.8

From inspecting the transition diagram (Figure 4),
one can see that the model employs three distinct
acts to initiate Twitter conversations. These initial
acts are quite different from one another, and lead to

7After setting this threshold, two Acts were cut off from the
rest of the graph (had no incoming edges), and were therefore
removed

8In some cases, the choice in name is somewhat arbitrary,
ie: answer versus response, reaction versus comment.

Figure 4: Transitions between dialogue acts. See
table 3 for word lists and example posts for each act

different sets of possible responses. We discuss each
of these in turn.

The Status act appears to represent a post in which
the user is broadcasting information about what they
are currently doing. This can be seen by the high
amount of probability mass given to words like I
and my, in addition to verbs such as go and get, as
well as temporal nouns such as today, tomorrow and
tonight.

The Reference Broadcast act consists mostly of
usernames and urls.9 Also prominent is the word rt,
which has special significance on Twitter, indicating
that the user is re-posting another user’s post. This
act represents a user broadcasting an interesting link
or quote to their followers. Also note that this node
transitions to the Reaction act with high probability.
Reaction appears to cover excited or appreciative re-
sponses to new information, assigning high proba-
bility to !, !!, !!!, lol, thanks, and haha.

Finally Question to Followers represents a user
asking a question to their followers. The presence
of the question mark and WH question words indi-
cate a question, while words like anyone and know
indicate that the user is asking for information or an
opinion. Note that this is distinct from the Question
act, which is in response to an initial post.

Another interesting point is the alternation be-

9As part of the preprocessing of our corpus we replaced all
usernames and urls with the special tokens -usr- and -url-.

177

Status I . to ! my , is for up in ... and going was today so at go get back day got this am but Im now tomorrow night work
tonight off morning home had gon need !! be just getting
I just changed my twitter page bkgornd and now I can’t stop looking at it, lol!!

Question to Followers ? you is do I to -url- what -usr- me , know if anyone why who can “ this or of that how does - : on your are need
any rt u should people want get did have would tell
anyone using google voice? just got my invite, should i?? don’t know what it is? -url- for the video and break
down

Reference Broadcast -usr- ! -url- rt : -usr-: - “ my the , is (you new – ? !!) this for at in follow of on ¡ lol u are twitter your thanks via
!!! by :) here 2 please check
rt -usr-: -usr- word that mac lip gloss give u lock jaw! lol

Question ? you what ! are is how u do the did your that , lol where why or ?? hey about was have who it in so haha on
doing going know good up get like were for there :) can
DWL!! what song is that??

Reaction ! you I :) !! , thanks lol it haha that love so good too your thank is are u !!! was for :d me -usr- ¡ hope ? my 3 omg
... oh great hey awesome - happy now aww
sweet! im so stoked now!

Comment you I . to , ! do ? it be if me your know have we can get will :) but u that see lol would are so want go let up well
need - come ca make or think them
why are you in tx and why am I just now finding out about it?! i’m in dfw, till I get a job. i’ll have to come to
Htown soon!

Answer . I , you it “ that ? is but do was he the of a they if not would know be did or does think) like (as have what in are
- no them said who say ‘
my fave was “keeping on top of other week”

Response . I , it was that lol but is yeah ! haha he my know yes you :) like too did well she so its ... though do had no - one
as im thanks they think would not good oh
nah im out in maryland, leaving for tour in a few days.

Table 3: Word lists and example posts for each Dialogue Act. Words are listed in decreasing order of
probability given the act. Example posts are in italics.

tween the personal pronouns you and I in the acts
due to the focus of conversation and speaker. The
Status act generates the word I with high probability,
whereas the likely response state Question generates
you, followed by Response which again generates I.

4.2 Quantitative Evaluation

Qualitative evaluations are both time-consuming
and subjective. The above visualization is useful for
understanding the Twitter domain, but it is of little
use when comparing model variants or selecting pa-
rameters. Therefore, we also propose a novel quan-
titative evaluation that measures the intrinsic qual-
ity of a conversation model by its ability to predict
the ordering of posts in a conversation. This mea-
sures the model’s predictive power, while requiring
no tagged data, and no commitment to an existing
tag inventory.

Our test set consists of 1,000 randomly selected
conversations not found in the training data. For
each conversation in the test set, we generate all
n! permutations of the posts. The probability of
each permutation is then evaluated as if it were an
unseen conversation, using either the forward algo-
rithm (EM) or the Chibb-style estimator (Gibbs).

Following work from the summarization community
(Barzilay and Lee, 2004), we employ Kendall’s τ to
measure the similarity of the max-probability per-
mutation to the original order.

The Kendall τ rank correlation coefficient mea-
sures the similarity between two permutations based
on their agreement in pairwise orderings:

τ =
n+ − n−(n

2

)
where n+ is the number of pairs that share the same
order in both permutations, and n− is the number
that do not. This statistic ranges between -1 and +1,
where -1 indicates inverse order, and +1 indicates
identical order. A value greater than 0 indicates a
positive correlation.

Predicting post order on open-domain Twitter
conversations is a much more difficult task than on
topic-focused news data (Barzilay and Lee, 2004).
We found that a simple bigram model baseline does
very poorly at predicting order on Twitter, achieving
only a weak positive correlation of τ = 0.0358 on
our test data as compared with 0.19-0.74 reported by
Barzilay and Lee on news data.

Note that τ is not a perfect measure of model qual-
ity for conversations; in some cases, multiple order-

178

5 10 15 20 25 30 35 40

EM Conversation
Conversation+Topic
Bayesian Conversation

acts

ta
u

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 5: Performance at conversation ordering task.

ings of the same set of posts may form a perfectly
acceptable conversation. On the other hand, there
are often strong constraints on the type of response
we might expect to follow a particular dialogue act;
for example, answers follow questions. We would
expect an effective model to use these constraints to
predict order.

Performance at the conversation ordering task
while varying the number of acts for each model is
displayed in Figure 5. In general, we found that us-
ing Bayesian inference outperforms EM. Also note
that the Bayesian Conversation model outperforms
the Conversation+Topic model at predicting conver-
sation order. This is likely because modeling conver-
sation content as a sequence can in some cases help
to predict post ordering; for example, adjacent posts
are more likely to contain similar content words. Re-
call though that we found the Conversation+Topic
model to be far more interpretable.

Additionally we compare the likelihood of these
models on held out test data in Figure 6. Note that
the Bayesian methods produce models with much
higher likelihood.10 For the EM models, likelihood
tends to decrease on held out test data as we increase
the number of hidden states, due to overfitting.

5 Conclusion

We have presented an approach that allows the
unsupervised induction of dialogue structure from
naturally-occurring open-topic conversational data.

10Likelihood of the test data is estimated using the Chibb
Style estimator described in (Murray and Salakhutdinov, 2008;
Wallach et al., 2009). This method under-estimates likelihood
in expectation. The maximum likelihood (EM) likelihoods are
exact.

5 10 15 20 25 30 35 40

EM Conversation
Conversation+Topic
Bayesian Conversation

acts

ne
ga

tiv
e

lo
g

lik
el

ih
oo

d

31
00

00
31

50
00

32
00

00
32

50
00

33
00

00
33

50
00

34
00

00

Figure 6: Negative log likelihood on held out test
data (smaller values indicate higher likelihood).

By visualizing the learned models, coherent patterns
emerge from a stew of data that human readers find
difficult to follow. We have extended a conversa-
tion sequence model to separate topic and dialogue
words, resulting in an interpretable set of automat-
ically generated dialogue acts. These discovered
acts have interesting differences from those found
in other domains, and reflect Twitter’s nature as a
micro-blog.

We have introduced the task of conversation or-
dering as an intrinsic measure of conversation model
quality. We found this measure quite useful in
the development of our models and algorithms, al-
though our experiments show that it does not nec-
essarily correlate with interpretability. We have di-
rectly compared Bayesian inference to EM on our
conversation ordering task, showing a clear advan-
tage for Bayesian methods.

Finally, we have collected a corpus of 1.3 million
Twitter conversations, which we will make available
to the research community, and which we hope will
be useful beyond the study of dialogue. In the fu-
ture, we wish to scale our models to the full corpus,
and extend them with more complex notions of dis-
course, topic and community. Ultimately, we hope
to put the learned conversation structure to use in the
construction of a data-driven, conversational agent.

Acknowledgements

We are grateful to everyone in the NLP and TMSN
groups at Microsoft Research for helpful discussions
and feedback. We thank Oren Etzioni, Michael Ga-
mon, Mausam and Fei Wu, and the anonymous re-
viewers for helpful comments on a previous draft.

179

References
James Allen, Nathanael Chambers, George Ferguson,

Lucian Galescu, Hyuckchul Jung, Mary Swift, and
William Taysom. 2007. Plow: a collaborative task
learning agent. In Proceedings of AAAI.

Regina Barzilay and Lillian Lee. 2004. Catching the
drift: Probabilistic content models, with applications
to generation and summarization. In Proceedings of
HLT-NAACL, pages 113–120.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent dirichlet allocation. J. Mach. Learn.
Res., 3:993–1022.

William W. Cohen, Vitor R. Carvalho, and Tom M.
Mitchell. 2004. Learning to classify email into
“speech acts”. In Proceedings of EMNLP.

Nigel Crook, Ramon Granell, and Stephen Pulman.
2009. Unsupervised classification of dialogue acts us-
ing a Dirichlet process mixture model. In Proceedings
of SIGDIAL, pages 341–348.

Hal Daumé III and Daniel Marcu. 2006. Bayesian query-
focused summarization. In Proceedings of ACL.

Rajdip Dhillon, Sonali Bhagat, Hannah Carvey, and Eliz-
abeth Shriberg. 2004. Meeting recorder project: Dia-
log act labeling guide. Technical report, International
Computer Science Institute.

Micha Elsner and Eugene Charniak. 2008. You talking
to me? A corpus and algorithm for conversation dis-
entanglement. In Proceedings of ACL-HLT.

Eric N. Forsyth and Craig H. Martell. 2007. Lexical and
discourse analysis of online chat dialog. In Proceed-
ings of ICSC.

Michael Gamon, Sumit Basu, Dmitriy Belenko, Danyel
Fisher, Matthew Hurst, and Arnd Christian Knig.
2008. Blews: Using blogs to provide context for news
articles. In Proceedings of ICWSM.

Sharon Goldwater and Tom Griffiths. 2007. A fully
bayesian approach to unsupervised part-of-speech tag-
ging. In Proceedings of ACL, pages 744–751.

Joshua T. Goodman. 2001. A bit of progress in language
modeling. Technical report.

T. L. Griffiths and M. Steyvers. 2004. Finding scientific
topics. Proc Natl Acad Sci, 101 Suppl 1:5228–5235.

Aria Haghighi and Lucy Vanderwende. 2009. Exploring
content models for multi-document summarization. In
Proceedings of HLT-NAACL, pages 362–370.

Yijue How and Min-Yen Kan. 2005. Optimizing pre-
dictive text entry for short message service on mobile
phones. In Proceedings of HCII.

Minwoo Jeong, Chin-Yew Lin, and Gary Geunbae Lee.
2009. Semi-supervised speech act recognition in
emails and forums. In Proceedings of EMNLP, pages
1250–1259.

Dan Jurafsky, Liz Shriberg, and Debra Biasca. 1997.
Switchboard swbd-damsl shallow-discourse-function
annotation coders manual, draft 13. Technical report,
University of Colorado Institute of Cognitive Science.

Ryan Kelly. 2009. Pear analytics twitter study. Whitepa-
per, August.

Iain Murray and Ruslan Salakhutdinov. 2008. Evalu-
ating probabilities under high-dimensional latent vari-
able models. In Proceedings of NIPS, pages 1137–
1144.

Gabriel Murray, Steve Renals, Jean Carletta, and Johanna
Moore. 2006. Incorporating speaker and discourse
features into speech summarization. In Proceedings of
HLT-NAACL, pages 367–374.

Radford M. Neal. 2003. Slice sampling. Annals of
Statistics, 31:705–767.

Rajesh Ranganath, Dan Jurafsky, and Dan Mcfarland.
2009. It’s not you, it’s me: Detecting flirting and
its misperception in speed-dates. In Proceedings of
EMNLP, pages 334–342.

Andreas Stolcke, Noah Coccaro, Rebecca Bates, Paul
Taylor, Carol Van Ess-Dykema, Klaus Ries, Eliza-
beth Shriberg, Daniel Jurafsky, Rachel Martin, and
Marie Meteer. 2000. Dialogue act modeling for
automatic tagging and recognition of conversational
speech. Computational Linguistics, 26(3):339–373.

Hanna M. Wallach, Iain Murray, Ruslan Salakhutdinov,
and David M. Mimno. 2009. Evaluation methods for
topic models. In Proceedings of ICML, page 139.

Yorick Wilks. 2006. Artificial companions as a new kind
of interface to the future internet. In OII Research Re-
port No. 13.

M. Woszczyna and A. Waibel. 1994. Inferring linguistic
structure in spoken language. In Proceedings of IC-
SLP.

Tae Yano, William W. Cohen, and Noah A. Smith. 2009.
Predicting response to political blog posts with topic
models. In Proceedings of NAACL, pages 477–485.

Limin Yao, David Mimno, and Andrew McCallum.
2009. Efficient methods for topic model inference on
streaming document collections. In Proceedings of
KDD, pages 937–946.

180

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 181–189,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Streaming First Story Detection with application to Twitter

Saša Petrović
School of Informatics

University of Edinburgh
sasa.petrovic@ed.ac.uk

Miles Osborne
School of Informatics

University of Edinburgh
miles@inf.ed.ac.uk

Victor Lavrenko
School of Informatics

University of Edinburgh
vlavrenk@inf.ed.ac.uk

Abstract

With the recent rise in popularity and size of
social media, there is a growing need for sys-
tems that can extract useful information from
this amount of data. We address the prob-
lem of detecting new events from a stream of
Twitter posts. To make event detection feasi-
ble on web-scale corpora, we present an algo-
rithm based on locality-sensitive hashing which
is able overcome the limitations of traditional
approaches, while maintaining competitive re-
sults. In particular, a comparison with a state-
of-the-art system on the first story detection
task shows that we achieve over an order of
magnitude speedup in processing time, while
retaining comparable performance. Event de-
tection experiments on a collection of 160 mil-
lion Twitter posts show that celebrity deaths
are the fastest spreading news on Twitter.

1 Introduction

In the recent years, the microblogging service Twit-
ter has become a very popular tool for express-
ing opinions, broadcasting news, and simply com-
municating with friends. People often comment on
events in real time, with several hundred micro-blogs
(tweets) posted each second for significant events.
Twitter is not only interesting because of this real-
time response, but also because it is sometimes ahead
of newswire. For example, during the protests fol-
lowing Iranian presidential elections in 2009, Iranian
people first posted news on Twitter, where they were
later picked up by major broadcasting corporations.
Another example was the swine flu outbreak when
the US Centre for disease control (CDC) used Twit-
ter to post latest updates on the pandemic. In ad-
dition to this, subjective opinion expressed in posts
is also an important feature that sets Twitter apart
from traditional newswire.

New event detection, also known as first story de-
tection (FSD)1 is defined within the topic detection
and tracking as one of the subtasks (Allan, 2002).
Given a sequence of stories, the goal of FSD is to
identify the first story to discuss a particular event.
In this context, an event is taken to be something
that happens at some specific time and place, e.g.,
an earthquake striking the town of L’Aquila in Italy
on April 6th 2009. Detecting new events from tweets
carries additional problems and benefits compared
to traditional new event detection from newswire.
Problems include a much higher volume of data to
deal with and also a higher level of noise. A major
benefit of doing new event detection from tweets is
the added social component – we can understand the
impact an event had and how people reacted to it.

The speed and volume at which data is coming
from Twitter warrants the use of streaming algo-
rithms to make first story detection feasible. In
the streaming model of computation (Muthukrish-
nan, 2005), items (tweets in our case) arrive contin-
uously in a chronological order, and we have to pro-
cess each new one in bounded space and time. Recent
examples of problems set in the streaming model in-
clude stream-based machine translation (Levenberg
and Osborne, 2009), approximating kernel matrices
of data streams (Shi et al., 2009), and topic mod-
elling on streaming document collections (Yao et al.,
2009). The traditional approach to FSD, where each
new story is compared to all, or a constantly grow-
ing subset, of previously seen stories, does not scale
to the Twitter streaming setting. We present a FSD
system that works in the streaming model and takes
constant time to process each new document, while
also using constant space. Constant processing time
is achieved by employing locality sensitive hashing
(LSH) (Indyk and Motwani, 1998), a randomized
technique that dramatically reduces the time needed

1We will be using the terms first story detection and new
event detection interchangeably.

181

to find a nearest neighbor in vector space, and the
space saving is achieved by keeping the amount of
stories in memory constant.

We find that simply applying pure LSH in a FSD
task yields poor performance and a high variance in
results, and so introduce a modification which vir-
tually eliminates variance and significantly improves
performance. We show that our FSD system gives
comparable results as a state-of-the-art system on
the standard TDT5 dataset, while achieving an order
of magnitude speedup. Using our system for event
detection on 160 million Twitter posts shows that i)
the number of users that write about an event is more
indicative than the volume of tweets written about
it, ii) spam tweets can be detected with reasonable
precision, and iii) news about deaths of famous peo-
ple spreads the fastest on Twitter.

2 First Story Detection

2.1 Traditional Approach

The traditional approach to first story detection is to
represent documents as vectors in term space, where
coordinates represent the (possibly IDF-weighted)
frequency of a particular term in a document. Each
new document is then compared to the previous ones,
and if its similarity to the closest document (or cen-
troid) is below a certain threshold, the new document
is declared to be a first story. For example, this ap-
proach is used in the UMass (Allan et al., 2000) and
the CMU system (Yang et al., 1998). Algorithm 1
shows the exact pseudocode used by the UMass sys-
tem. Note that dismin(d) is the novelty score as-
signed to document d. Often, in order to decrease
the running time, documents are represented using
only n features with the highest weights.

Algorithm 1: Traditional FSD system based on
nearest-neighbor search.

1 foreach document d in corpus do
2 foreach term t in d do
3 foreach document d’ that contains t do
4 update distance(d, d’)
5 end
6 end
7 dismin(d) = mind′{distance(d, d′)}
8 add d to inverted index
9 end

2.2 Locality Sensitive Hashing

The problem of finding the nearest neighbor to a
given query has been intensively studied, but as the

dimensionality of the data increases none of the cur-
rent solutions provide much improvement over a sim-
ple linear search (Datar et al., 2004). More recently,
research has focused on solving a relaxed version of
the nearest neighbor problem, the approximate near-
est neighbor, where the goal is to report any point
that lies within (1 + ε)r distance of the query point,
where r is the distance to the nearest neighbor. One
of the first approaches to solving the approximate-
NN problem in sublinear time was described in Indyk
and Motwani (1998), where the authors introduced a
new method called locality sensitive hashing (LSH).
This method relied on hashing each query point into
buckets in such a way that the probability of collision
was much higher for points that are near by. When a
new point arrived, it would be hashed into a bucket
and the points that were in the same bucket were
inspected and the nearest one returned.

Because we are dealing with textual documents,
a particularly interesting measure of distance is the
cosine between two documents. Allan et al. (2000)
report that this distance outperforms the KL diver-
gence, weighted sum, and language models as dis-
tance functions on the first story detection task. This
is why in our work we use the hashing scheme pro-
posed by Charikar (2002) in which the probability
of two points colliding is proportional to the cosine
of the angle between them. This scheme was used,
e.g., for creating similarity lists of nouns collected
from a web corpus in Ravichandran et al. (2005). It
works by intersecting the space with random hyper-
planes, and the buckets are defined by the subspaces
formed this way. More precisely, the probability of
two points x and y colliding under such a hashing
scheme is

Pcoll = 1− θ(x, y)
π

, (1)

where θ(x, y) is the angle between x and y. By us-
ing more than one hyperplane, we can decrease the
probability of collision with a non-similar point. The
number of hyperplanes k can be considered as a num-
ber of bits per key in this hashing scheme. In par-
ticular, if x · ui < 0, i ∈ [1 . . . k] for document x and
hyperplane vector ui, we set the i-th bit to 0, and
1 otherwise. The higher k is, the fewer collisions
we will have in our buckets but we will spend more
time computing the hash values.2 However, increas-
ing k also decreases the probability of collision with
the nearest neighbor, so we need multiple hash ta-
bles (each with k independently chosen random hy-
perplanes) to increase the chance that the nearest
neighbor will collide with our point in at least one of

2Probability of collision under k random hyperplanes will
be Pkcoll .

182

them. Given the desired number of bits k, and the
desired probability of missing a nearest neighbor δ,
one can compute the number of hash tables L as

L = log1−Pkcoll
δ. (2)

2.3 Variance Reduction Strategy

Unfortunately, simply applying LSH for nearest
neighbor search in a FSD task yields poor results
with a lot of variance (the exact numbers are given in
Section 6). This is because LSH only returns the true
near neighbor if it is reasonably close to the query
point. If, however, the query point lies far away
from all other points (i.e., its nearest neighbor is far
away), LSH fails to find the true near neighbor. To
overcome this problem, we introduce a strategy by
which, if the LSH scheme declares a document new
(i.e., sufficiently different from all others), we start a
search through the inverted index, but only compare
the query with a fixed number of most recent doc-
uments. We set this number to 2000; preliminary
experiments showed that values between 1000 and
3000 all yield very similar results. The pseudocode
shown in algorithm 2 summarizes the approach based
on LSH, with the lines 11 and 12 being the variance
reduction strategy.

Algorithm 2: Our LSH-based approach.
input: threshold t

1 foreach document d in corpus do
2 add d to LSH
3 S ← set of points that collide with d in LSH
4 dismin(d)← 1
5 foreach document d’ in S do
6 c = distance(d, d’)
7 if c < dismin(d) then
8 dismin(d)← c
9 end

10 end
11 if dismin(d) >= t then
12 compare d to a fixed number of most

recent documents as in Algorithm 1 and
update dismin if necessary

13 end
14 assign score dismin(d) to d
15 add d to inverted index
16 end

3 Streaming First Story Detection

Although using LSH in the way we just described
greatly reduces the running time, it is still too expen-
sive when we want to deal with text streams. Text

streams naturally arise on the Web, where millions
of new documents are published each hour. Social
media sites like Facebook, MySpace, Twitter, and
various blogging sites are a particularly interesting
source of textual data because each new document
is timestamped and usually carries additional meta-
data like topic tags or links to author’s friends. Be-
cause this stream of documents is unbounded and
coming down at a very fast rate, there is usually a
limit on the amount of space/time we can spend per
document. In the context of first story detection,
this means we are not allowed to store all of the pre-
vious data in main memory nor compare the new
document to all the documents returned by LSH.

Following the previous reasoning, we present the
following desiderata for a streaming first story de-
tection system: we first assume that each day we
are presented with a large volume of documents
in chronological order. A streaming FSD system
should, for each document, say whether it discusses a
previously unseen event and give confidence in its de-
cision. The decision should be made in bounded time
(preferably constant time per document), and using
bounded space (also constant per document). Only
one pass over the data is allowed and the decision
has to be made immediately after a new document
arrives. A system that has all of these properties can
be employed for finding first stories in real time from
a stream of stories coming down from the Web.

3.1 A constant space and time approach

In this section, we describe our streaming FSD sys-
tem in more depth. As was already mentioned in
Section 2.2, we use locality sensitive hashing to limit
our search to a small number of documents. How-
ever, because there is only a finite number of buck-
ets, in a true streaming setting the number of docu-
ments in any bucket will grow without a bound. This
means that i) we would use an unbounded amount
of space, and ii) the number of comparisons we need
to make would also grow without a bound. To alle-
viate the first problem, we limit the number of doc-
uments inside a single bucket to a constant. If the
bucket is full, the oldest document in the bucket is
removed. Note that the document is removed only
from that single bucket in one of the L hash tables
– it may still be present in other hash tables. Note
that this way of limiting the number of documents
kept is in a way topic-specific. Luo et al. (2007) use
a global constraint on the documents they keep and
show that around 30 days of data needs to be kept
in order to achieve reasonable performance. While
using this approach also ensures that the number of
comparisons made is constant, this constant can be

183

rather large. Theoretically, a new document can col-
lide with all of the documents that are left, and this
can be quite a large number (we have to keep a suffi-
cient portion of the data in memory to make sure we
have a representative sample of the stream to com-
pare with). That is why, in addition to limiting the
number of documents in a bucket, we also limit our-
selves to making a constant number of comparisons.
We do this by comparing each new document with
at most 3L documents it collided with. Unlike Datar
et al. (2004), where any 3L documents were used, we
compare to the 3L documents that collide most fre-
quently with the new document. That is, if S is the
set of all documents that collided with a new doc-
ument in all L hash tables, we order the elements
of S according to the number of hash tables where
the collision occurred. We take the top 3L elements
of that ordered set and compare the new document
only to them.

4 Detecting Events in Twitter Posts

While doing first story detection on a newspaper
stream makes sense because all of the incoming doc-
uments are actual stories, this is not the case with
Twitter posts (tweets). The majority of tweets are
not real stories, but rather updates on one’s personal
life, conversations, or spam. Thus, simply running a
first story detection system on this data would yield
an incredible amount of new stories each day, most
of which would be of no interest to anyone but a few
people. However, when something significant hap-
pens (e.g., a celebrity dies), a lot of users write about
this either to share their opinion or just to inform
others of the event. Our goal here is to automati-
cally detect these significant events, preferably with
a minimal number of non-important events.

Threading. We first run our streaming FSD
system and assign a novelty score to each tweet. In
addition, since the score is based on a cosine dis-
tance to the nearest tweet, for each tweet we also
output which other tweet it is most similar to. This
way, we can analyze threads of tweets, i.e., a subset
of tweets which all discuss the same topic (Nallap-
ati et al., 2004). To explain how we form threads
of tweets, we first introduce the links relation. We
say that tweet a links to tweet b if b is the nearest
neighbor of a and 1− cos(a, b) < t, where t is a user-
specified threshold. Then, for each tweet a we either
assign it to an existing thread if its nearest neighbor
is within distance t, or say that a is the first tweet in
a new thread. If we assign a to an existing thread,
we assign it to the same thread to which its nearest
neighbor belongs. By changing t we can control the
granularity of threads. If t is set very high, we will

have few very big and broad threads, whereas setting
t very low will result in many very specific and very
small threads. In our experiments, we set t = 0.5.
We experimented with different values of t and found
that for t ∈ [0.5, 0.6] results are very much the same,
whereas setting t outside this interval starts to im-
pact the results in the way we just explained.

Once we have threads of tweets, we are interested
in which threads grow fastest, as this will be an indi-
cation that news of a new event is spreading. There-
fore, for each time interval we only output the fastest
growing threads. This growth rate also gives us a way
to measure a thread’s impact.

5 Related Work

In the recent years, analysis of social media has at-
tracted a lot of attention from the research commu-
nity. However, most of the work that uses social
media focuses on blogs (Glance et al., 2004; Bansal
and Koudas, 2007; Gruhl et al., 2005). On the other
hand, research that uses Twitter has so far only
focused on describing the properties of Twitter it-
self (Java et al., 2007; Krishnamurthy et al., 2008).

The problem of online new event detection in
a large-scale streaming setting was previously ad-
dressed in Luo et al. (2007). Their system used the
traditional approach to FSD and then employed var-
ious heuristics to make computation feasible. These
included keeping only the first stories in memory,
limiting the number of terms per document, limiting
the number of total terms kept, and employing par-
allel processing. Our randomized framework gives us
a principled way to work out the errors introduced
and is more general than the previously mentioned
approach because we could still use all the heuris-
tics used by Luo et al. (2007) in our system. Fi-
nally, while Luo et al. (2007) achieved considerable
speedup over an existing system on a TDT corpus,
they never showed the utility of their system on a
truly large-scale task.

The only work we are aware of that analyzes so-
cial media in a streaming setting is Saha and Getoor
(2009). There, the focus was on solving the maxi-
mum coverage problem for a stream of blog posts.
The maximum coverage problem in their setting,
dubbed blog watch, was selecting k blogs that maxi-
mize the cover of interests specified by a user. This
work differs from Saha and Getoor (2009) in many
ways. Most notably, we deal with the problem of
detecting new events, and determining who was the
first to report them. Also, there is a difference in the
type and volume of data – while Saha and Getoor
(2009) use 20 days of blog data totalling two million
posts, we use Twitter data from a timespan of six

184

months, totalling over 160 million posts.

6 Experiments

6.1 TDT5 Experimental Setup

Baseline. Before applying our FSD system on
Twitter data, we first compared it to a state-of-the-
art FSD system on the standard TDT5 dataset. This
way, we can test if our system is on par with the best
existing systems, and also accurately measure the
speedup that we get over a traditional approach. In
particular, we compare our system with the UMass
FSD system (Allan et al., 2000). The UMass system
has participated in the TDT2 and TDT3 competi-
tions and is known to perform at least as well as other
existing systems who also took part in the competi-
tion (Fiscus, 2001). Note that the UMass system
uses an inverted index (as shown in Algorithm 1)
which optimizes the system for speed and makes sure
a minimal number of comparisons is made. We com-
pare the systems on the English part of the TDT5
dataset, consisting of 221, 306 documents from a time
period spanning April 2003 to September 2003. To
make sure that any difference in results is due to
approximations we make, we use the same settings
as the UMass system: 1-NN clustering, cosine as a
similarity measure, and TFIDF weighted document
representation, where the IDF weights are incremen-
tally updated. These particular settings were found
by Allan et al. (2000) to perform the best for the
FSD task. We limit both systems to keeping only
top 300 features in each document. Using more than
300 features barely improves performance while tak-
ing significantly more time for the UMass system.3

LSH parameters. In addition, our system has
two LSH parameters that need to be set. The num-
ber of hyperplanes k gives a tradeoff between time
spent computing the hash functions and the time
spent computing the distances. A lower k means
more documents per bucket and thus more distance
computations, whereas a higher k means less doc-
uments per bucket, but more hash tables and thus
more time spent computing hash functions. Given k,
we can use equation (2) to compute L. In our case,
we chose k to be 13, and L such that the probability
of missing a neighbor within the distance of 0.2 is
less than 2.5%. The distance of 0.2 was chosen as a
reasonable estimate of the threshold when two docu-
ments are very similar. In general, this distance will
depend on the application, and Datar et al. (2004)
suggest guessing the value and then doing a binary
search to set it more accurately. We set k to 13 be-

3In other words, using more features only increases the
advantage of our system over the UMass system.

cause it achieved a reasonable balance between time
spent computing the distances and the time spent
computing the hash functions.

Evaluation metric. The official TDT evalua-
tion requires each system to assign a confidence score
for its decision, and this assignment can be made
either immediately after the story arrives, or after
a fixed number of new stories have been observed.
Because we assume that we are working in a true
streaming setting, systems are required to assign a
confidence score as soon as the new story arrives.
The actual performance of a system is measured
in terms of detection error tradeoff (DET) curves
and the minimal normalized cost. Evaluation is car-
ried out by first sorting all stories according to their
scores and then performing a threshold sweep. For
each value of the threshold, stories with a score above
the threshold are considered new, and all others are
considered old. Therefore, for each threshold value,
one can compute the probability of a false alarm, i.e.,
probability of declaring a story new when it is actu-
ally not, and the miss probability, i.e., probability
of declaring a new story old (missing a new story).
Having computed all the miss and false alarm prob-
abilities, we can plot them on a graph showing the
tradeoff between these two quantities – such graphs
are called detection error tradeoff curves. The nor-
malized cost Cdet is computed as

Cdet = Cmiss ∗Pmiss ∗Ptarget +CFA∗PFA∗Pnon−target ,

where Cmiss and CFA are costs of miss and false
alarm, Pmiss and PFA are probabilities of a miss and
false alarm, and Ptarget and Pnon−target are the prior
target and non-target probabilities. Minimal nor-
malized cost Cmin is the minimal value of Cdet over
all threshold values (a lower value of Cmin indicates
better performance).

6.2 TDT5 Results

All the results on the TDT5 dataset are shown in
Table 1. In this section, we go into detail in explain-
ing them. As was mentioned in Section 2.2, simply
using LSH to find a nearest neighbor resulted in poor
performance and a high variance of results. In par-
ticular, the mean normalized cost of ten runs of our
system without the variance reduction strategy was
0.88, with a standard deviation of 0.046. When us-
ing the strategy explained in Section 2.2, the mean
result dropped to 0.70, with a standard deviation of
0.004. Therefore, the results were significantly im-
proved, while also reducing standard deviation by an
order of magnitude. This shows that there is a clear
advantage in using our variance reduction strategy,

185

Table 1: Summary of TDT5 results. Numbers next to LSH′ts indicate the maximal number of documents in a bucket,
measured in terms of percentage of the expected number of collisions.

Baseline Unbounded Bounded

Pure Variance Red. Time Space and Time

System UMass LSH LSH′ LSH′t LSH′ts 0.5 LSH′ts 0.3 LSH′ts 0.1

Cmin 0.69 0.88 0.70 0.71 0.76 0.75 0.73

1

2

5

10

20

40

60

80

90

.01 .02 .05 .1 .2 .5 1 2 5 10 20 40 60 80 90

M
is

s
pr

ob
ab

ili
ty

 (
in

 %
)

False Alarms probability (in %)

Random Performance

Our system

UMass system

Figure 1: Comparison of our system with the UMass FSD
system.

and all the following results we report were obtained
from a system that makes use of it.

Figure 1 shows DET curves for the UMass and for
our system. For this evaluation, our system was not
limited in space, i.e., buckets sizes were unlimited,
but the processing time per item was made constant.
It is clear that UMass outperforms our system, but
the difference is negligible. In particular, the min-
imal normalized cost Cmin was 0.69 for the UMass
system, and 0.71 for our system. On the other hand,
the UMass system took 28 hours to complete the
run, compared to two hours for our system. Figure 2
shows the time required to process 100 documents
as a function of number of documents seen so far.
We can see that our system maintains constant time,
whereas the UMass system processing time grows
without a bound (roughly linear with the number
of previously seen documents).

The last three columns in Table 1 show the effect
that limiting the bucket size has on performance.
Bucket size was limited in terms of the percent of
expected number of collisions, i.e., a bucket size of
0.5 means that the number of documents in a bucket
cannot be more than 50% of the expected number
of collisions. The expected number of collisions can

 0

 20

 40

 60

 80

 100

 120

 0 50000 100000 150000 200000 250000

T
im

e
pe

r
10

0
do

cu
m

en
ts

 (
se

c)

Number of documents processed

UMass system
Our system

Figure 2: Comparison of processing time per 100 docu-
ments for our and the UMass system.

be computed as n/2k, where n is the total number
of documents, and k is the LSH parameter explained
earlier. Not surprisingly, limiting the bucket size re-
duced performance compared to the space-unlimited
version, but even when the size is reduced to 10% of
the expected number of collisions, performance re-
mains reasonably close to the UMass system. Fig-
ure 3 shows the memory usage of our system on a
month of Twitter data (more detail about the data
can be found in Section 6.3). We can see that most
of the memory is allocated right away, after which
the memory consumption levels out. If we ran the
system indefinitely, we would see the memory usage
grow slower and slower until it reached a certain level
at which it would remain constant.

6.3 Twitter Experimental Setup

Corpus. We used our streaming FSD system to
detect new events from a collection of Twitter data
gathered over a period of six months (April 1st 2009
to October 14th 2009). Data was collected through
Twitter’s streaming API.4 Our corpus consists of
163.5 million timestamped tweets, totalling over 2
billion tokens. All the tweets in our corpus contain

4http://stream.twitter.com/

186

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 500 1000 1500 2000 2500 3000 3500 4000

P
er

ce
nt

 o
f m

em
or

y
us

ed

Minutes

Figure 3: Memory usage on a month of Twitter data.
X-axis shows how long the system has been running for.

only ASCII characters and we additionally stripped
the tweets of words beginning with the @ or # sym-
bol. This is because on Twitter words beginning with
@ indicate a reply to someone, and words beginning
with # are topic tags. Although these features would
probably be helpful for our task, we decided not to
use them as they are specific to Twitter and our ap-
proach should be independent of the stream type.

Gold standard. In order to measure how well
our system performs on the Twitter data, we em-
ployed two human experts to manually label all the
tweets returned by our system as either Event, Neu-
tral, or Spam. Note that each tweet that is returned
by our system is actually the first tweet in a thread,
and thus serves as the representative of what the
thread is about. Spam tweets include various ad-
vertisements, automatic weather updates, automatic
radio station updates, etc. For a tweet to be la-
beled as an event, it had to be clear from the tweet
alone what exactly happened without having any
prior knowledge about the event, and the event refer-
enced in the tweet had to be sufficiently important.
Important events include celebrity deaths, natural
disasters, major sports, political, entertainment, and
business events, shootings, plane crashes and other
disasters. Neutral tweets include everything not la-
beled as spam or event. Because the process of man-
ual labeling is tedious and time-consuming, we only
labeled the 1000 fastest growing threads from June
2009. Rate of growth of a thread is measured by the
number of tweets that belong to that thread in a win-
dow of 100,000 tweets, starting from the beginning
of the thread. Agreement between our two annota-
tors, measured using Cohen’s kappa coefficient, was
substantial (kappa = 0.65). We use 820 tweets on
which both annotators agreed as the gold standard.

Evaluation. Evaluation is performed by com-
puting average precision (AP) on the gold standard
sorted according to different criteria, where event
tweets are taken to be relevant, and neutral and spam
tweets are treated as non-relevant documents. Aver-
age precision is a common evaluation metric in tasks
like ad-hoc retrieval where only the set of returned
documents and their relevance judgements are avail-
able, as is the case here (Croft et al., 2009). Note
that we are not evaluating our FSD system here.
There are two main reasons for this: i) we already
have a very good idea about the first story detection
performance from the experiments on TDT5 data,
and ii) evaluating a FSD system on this scale would
be prohibitively expensive as it would involve hu-
man experts going through 30 million tweets looking
for first stories. Rather, we are evaluating different
methods of ranking threads which are output from a
FSD system for the purpose of detecting important
events in a very noisy and unstructured stream such
as Twitter.

6.4 Twitter Results

Results for the average precisions are given in Ta-
ble 2. Note that we were not able to compare our
system with the UMass FSD system on the Twit-
ter data, as the UMass system would not finish in
any reasonable amount of time. Different rows of
Table 2 correspond to the following ways of ranking
the threads:

• Baseline – random ordering of threads

• Size of thread – threads are ranked according to
number of tweets

• Number of users – threads are ranked according
to number of unique users posting in a thread

• Entropy + users – if the entropy of a thread is
< 3.5, move to the back of the list, otherwise
sort according to number of unique users

Results show that ranking according to size of thread
performs better than the baseline, and ranking ac-
cording to the number of users is slightly better.
However, a sign test showed that neither of the two
ranking strategies is significantly better than the
baseline. We perform the sign test by splitting the
labeled data into 50 stratified samples and ranking
each sample with different strategies. We then mea-
sure the number of times each strategy performed
better (in terms of AP) and compute the significance
levels based on these numbers. Adding the informa-
tion about the entropy of the thread showed to be

187

Table 2: Average precision for Events vs. Rest and for
Events and Neutral vs. Spam.

Ranking method events vs. rest spam vs. rest

Baseline 16.5 84.6
Size of thread 24.1 83.5
Number of users 24.5 83.9
Entropy + users 34.0 96.3

Table 3: Average precision as a function of the entropy
threshold on the Events vs. Rest task.

Entropy 2 2.5 3 3.5 4 4.5

AP 24.8 27.6 30.0 34.0 33.2 29.4

very beneficial. Entropy of a thread is computed as

Hthread = −
∑

i

ni
N

log
ni
N
,

where ni is the number of times word i appears in
a thread, and N =

∑
i ni is the total number of

words in a thread. We move the threads with low
entropy (< 3.5) to the back of the list, while we or-
der other threads by the number of unique users.
A sign test showed this approach to be significantly
better (p ≤ 0.01) than all of the previous ranking
methods. Table 3 shows the effect of varying the en-
tropy threshold at which threads are moved to the
back of the list. We can see that adding informa-
tion about entropy improves results regardless of the
threshold we choose. This approach works well be-
cause most spam threads have very low entropy, i.e.,
contain very little information.

We conducted another experiment where events
and neutral tweets are considered relevant, and spam
tweets non-relevant documents. Results for this ex-
periment are given in the third column of Table 2.
Results for this experiment are much better, mostly
due to the large proportion of neutral tweets in the
data. The baseline in this case is very strong and
neither sorting according to the size of the thread
nor according to the number of users outperforms
the baseline. However, adding the information about
entropy significantly (p ≤ 0.01) improves the perfor-
mance over all other ranking methods.

Finally, in Table 4 we show the top ten fastest
growing threads in our data (ranked by the number
of users posting in the thread). Each thread is repre-
sented by the first tweet. We can see from the table
that events which spread the fastest on Twitter are

Table 4: Top ten fastest growing threads in our data.

users First tweet

7814 TMZ reporting michael jackson has had a heart

attack. We r checking it out. And pulliing

video to use if confirmed

7579 RIP Patrick Swayze...

3277 Walter Cronkite is dead.

2526 we lost Ted Kennedy :(

1879 RT BULLETIN – STEVE MCNAIR

HAS DIED.

1511 David Carradine (Bill in ”Kill Bill”)

found hung in Bangkok hotel.

1458 Just heard Sir Bobby Robson has died. RIP.

1426 I just upgraded to 2.0 - The professional

Twitter client. Please RT!

1220 LA Times reporting Manny Ramirez tested

positive for performance enhancing drugs.

To be suspended 50 games.

1057 A representative says guitar legend

Les Paul has died at 94

mostly deaths of famous people. One spam thread
that appears in the list has an entropy of 2.5 and
doesn’t appear in the top ten list when using the
entropy + users ranking.

7 Conclusion

We presented an approach to first story detection in a
streaming setting. Our approach is based on locality
sensitive hashing adapted to the first story detection
task by introducing a backoff towards exact search.
This adaptation greatly improved performance of the
system and virtually eliminated variance in the re-
sults. We showed that, using our approach, it is pos-
sible to achieve constant space and processing time
while maintaining very good results. A comparison
with the UMass FSD system showed that we gain
more than an order of magnitude speedup with only a
minor loss in performance. We used our FSD system
on a truly large-scale task of detecting new events
from over 160 million Twitter posts. To the best of
our knowledge, this is the first work that does event
detection on this scale. We showed that our system
is able to detect major events with reasonable preci-
sion, and that the amount of spam in the output can
be reduced by taking entropy into account.

Acknowledgments

The authors would like to thank Donnla Osborne for
her work on annotating tweets.

188

References

James Allan, Victor Lavrenko, Daniella Malin, and Rus-
sell Swan. 2000. Detections, bounds, and timelines:
Umass and tdt-3. In Proceedings of Topic Detection
and Tracking Workshop, pages 167–174.

James Allan. 2002. Topic detection and tracking: event-
based information organization. Kluwer Academic
Publishers.

Nilesh Bansal and Nick Koudas. 2007. Blogscope: a
system for online analysis of high volume text streams.
In VLDB ’07: Proceedings of the 33rd international
conference on Very large data bases, pages 1410–1413.
VLDB Endowment.

Moses S. Charikar. 2002. Similarity estimation tech-
niques from rounding algorithms. In STOC ’02: Pro-
ceedings of the thiry-fourth annual ACM symposium on
Theory of computing, pages 380–388, New York, NY,
USA. ACM.

W.B. Croft, D. Metzler, and T. Strohman. 2009. Search
Engines: Information Retrieval in Practice. Addison-
Wesley Publishing.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Va-
hab Mirrokni. 2004. Locality-sensitive hashing scheme
based on p-stable distributions. In SCG ’04: Proceed-
ings of the twentieth annual symposium on Computa-
tional geometry, pages 253–262, New York, NY, USA.
ACM.

J. Fiscus. 2001. Overview of results (nist). In Proceed-
ings of the TDT 2001 Workshop.

N. Glance, M. Hurst, and T. Tomokiyo. 2004. BlogPulse:
Automated Trend Discovery for Weblogs. WWW 2004
Workshop on the Weblogging Ecosystem: Aggregation,
Analysis and Dynamics, 2004.

Daniel Gruhl, R. Guha, Ravi Kumar, Jasmine Novak,
and Andrew Tomkins. 2005. The predictive power
of online chatter. In KDD ’05: Proceedings of the
eleventh ACM SIGKDD international conference on
Knowledge discovery in data mining, pages 78–87, New
York, NY, USA. ACM.

Piotr Indyk and Rajeev Motwani. 1998. Approximate
nearest neighbors: towards removing the curse of di-
mensionality. In STOC ’98: Proceedings of the thirti-
eth annual ACM symposium on Theory of computing,
pages 604–613, New York, NY, USA. ACM.

Akshay Java, Xiaodan Song, Tim Finin, and Belle Tseng.
2007. Why we twitter: understanding microblogging
usage and communities. In WebKDD/SNA-KDD ’07:
Proceedings of the 9th WebKDD and 1st SNA-KDD
2007 workshop on Web mining and social network
analysis, pages 56–65, New York, NY, USA. ACM.

Balachander Krishnamurthy, Phillipa Gill, and Martin
Arlitt. 2008. A few chirps about twitter. In WOSP
’08: Proceedings of the first workshop on Online social
networks, pages 19–24, New York, NY, USA. ACM.

Abby Levenberg and Miles Osborne. 2009. Stream-based
randomised language models for smt. In Proceedings of
the 2009 Conference on Empirical Methods in Natural
Language Processing, pages 756–764.

Gang Luo, Chunqiang Tang, and Philip S. Yu. 2007.
Resource-adaptive real-time new event detection. In
SIGMOD ’07: Proceedings of the 2007 ACM SIG-
MOD international conference on Management of
data, pages 497–508, New York, NY, USA. ACM.

S. Muthukrishnan. 2005. Data streams: Algorithms and
applications. Now Publishers Inc.

Ramesh Nallapati, Ao Feng, Fuchun Peng, and James
Allan. 2004. Event threading within news topics. In
CIKM ’04: Proceedings of the thirteenth ACM interna-
tional conference on Information and knowledge man-
agement, pages 446–453, New York, NY, USA. ACM.

Deepak Ravichandran, Patrick Pantel, and Eduard Hovy.
2005. Randomized algorithms and nlp: using locality
sensitive hash function for high speed noun clustering.
In ACL ’05: Proceedings of the 43rd Annual Meeting
on Association for Computational Linguistics, pages
622–629, Morristown, NJ, USA. Association for Com-
putational Linguistics.

Barna Saha and Lise Getoor. 2009. On maximum cov-
erage in the streaming model & application to multi-
topic blog-watch. In 2009 SIAM International Con-
ference on Data Mining (SDM09), April.

Qinfeng Shi, James Petterson, Gideon Dror, John Lang-
ford, Alex Smola, Alex Strehl, and Vishy Vish-
wanathan. 2009. Hash kernels. In Proceedings of
the 12th International Conference on Artificial Intelli-
gence and Statistics (AISTATS), pages 496–503.

Yiming Yang, Tom Pierce, and Jaime Carbonell. 1998.
A study of retrospective and on-line event detection.
In SIGIR ’98: Proceedings of the 21st annual inter-
national ACM SIGIR conference on Research and de-
velopment in information retrieval, pages 28–36, New
York, NY, USA. ACM.

Limin Yao, David Mimno, and Andrew McCallum. 2009.
Efficient methods for topic model inference on stream-
ing document collections. In KDD ’09: Proceedings of
the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 937–946,
New York, NY, USA. ACM.

189

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 190–197,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Unsupervised Model Adaptation using Information-Theoretic Criterion

Ariya Rastrow1, Frederick Jelinek1, Abhinav Sethy2 and Bhuvana Ramabhadran2

1Human Language Technology Center of Excellence, and
Center for Language and Speech Processing, Johns Hopkins University

{ariya, jelinek}@jhu.edu
2IBM T.J. Watson Research Center, Yorktown Heights, NY, USA

{asethy, bhuvana}@us.ibm.com

Abstract

In this paper we propose a novel general
framework for unsupervised model adapta-
tion. Our method is based on entropy which
has been used previously as a regularizer in
semi-supervised learning. This technique in-
cludes another term which measures the sta-
bility of posteriors w.r.t model parameters, in
addition to conditional entropy. The idea is to
use parameters which result in both low con-
ditional entropy and also stable decision rules.
As an application, we demonstrate how this
framework can be used for adjusting language
model interpolation weight for speech recog-
nition task to adapt from Broadcast news data
to MIT lecture data. We show how the new
technique can obtain comparable performance
to completely supervised estimation of inter-
polation parameters.

1 Introduction

All statistical and machine learning techniques for
classification, in principle, work under the assump-
tion that

1. A reasonable amount of training data is avail-
able.

2. Training data and test data are drawn from the
same underlying distribution.

In fact, the success of statistical models is cru-
cially dependent on training data. Unfortunately,
the latter assumption is not fulfilled in many appli-
cations. Therefore, model adaptation is necessary
when training data is not matched (not drawn from

same distribution) with test data. It is often the case
where we have plenty of labeled data for one specific
domain/genre (source domain) and little amount of
labeled data (or no labeled data at all) for the de-
sired domain/genre (target domain). Model adapta-
tion techniques are commonly used to address this
problem. Model adaptation starts with trained mod-
els (trained on source domain with rich amount of la-
beled data) and then modify them using the available
labeled data from target domain (or instead unla-
beled data). A survey on different methods of model
adaptation can be found in (Jiang, 2008).

Information regularization framework has been
previously proposed in literature to control the la-
bel conditional probabilities via input distribution
(Szummer and Jaakkola, 2003). The idea is that la-
bels should not change too much in dense regions
of the input distribution. The authors use the mu-
tual information between input features and labels as
a measure of label complexity. Another framework
previously suggested is to use label entropy (condi-
tional entropy) on unlabeled data as a regularizer to
Maximum Likelihood (ML) training on labeled data
(Grandvalet and Bengio, 2004).

Availability of resources for the target domain cat-
egorizes these techniques into either supervised or
unsupervised. In this paper we propose a general
framework for unsupervised adaptation using Shan-
non entropy and stability of entropy. The assump-
tion is that in-domain and out-of-domain distribu-
tions are not too different such that one can improve
the performance of initial models on in-domain data
by little adjustment of initial decision boundaries
(learned on out-of-domain data).

190

2 Conditional Entropy based Adaptation

In this section, conditional entropy and its relation
to classifier performance are first described. Next,
we introduce our proposed objective function for do-
main adaptation.

2.1 Conditional Entropy
Considering the classification problem where X and
Y are the input features and the corresponding class
labels respectively, the conditional entropy is a mea-
sure of the class overlap and is calculated as follows

H(Y|X) = EX[H(Y|X = x)] =

−
∫
p(x)

(∑
y

p(y|x) log p(y|x)

)
dx (1)

Through Fano’s Inequality theorem, one can see
how conditional entropy is related to classification
performance.

Theorem 1 (Fano’s Inequality) Suppose
Pe = P{Ŷ 6= Y} where Ŷ = g(X) are the
assigned labels for the data points, based on the
classification rule. Then

Pe ≥
H(Y|X)− 1
log(|Y| − 1)

where Y is the number of possible classes and
H(Y |X) is the conditional entropy with respect to
true distibution.

The proof to this theorem can be found in (Cover and
Thomas, 2006). This inequality indicates that Y can
be estimated with low probability of error only if the
conditional entropy H(Y|X) is small.

Although the above theorem is useful in a sense
that it connects the classification problem to Shan-
non entropy, the true distributions are almost never
known to us1. In most classification methods, a spe-
cific model structure for the distributions is assumed
and the task is to estimate the model parameters
within the assumed model space. Given the model

1In fact, Theorem 1 shows how relevant the input features
are for the classification task by putting a lower bound on the
best possible classifier performance. As the overlap between
features from different classes increases, conditional entropy in-
creases as well, thus lowering the performance of the best pos-
sible classifier.

structure and parameters, one can modify Fano’s In-
equality as follows,

Corollary 1

Pe(θ) = P{Ŷ 6= Y |θ} ≥ Hθ(Y|X)− 1
log(|Y| − 1)

(2)

where Pe(θ) is the classifier probability of error
given model parameters, θ and

Hθ(Y|X) =

−
∫
p(x)

(∑
y

pθ(y|x) log pθ(y|x)

)
dx

Here, Hθ(Y|X) is the conditional entropy imposed
by model parameters.

Eqn. 2 indicates the fact that models with low
conditional entropy are preferable. However, a low
entropy model does not necessarily have good per-
formance (this will be reviewed later on) 2

2.2 Objective Function
Minimization of conditional entropy as a framework
in the classification task is not a new concept and
has been tried by researchers. In fact, (Grandvalet
and Bengio, 2004) use this along with the maxi-
mum likelihood criterion in a semi-supervised set
up such that parameters with both maximum like-
lihood on labeled data and minimum conditional en-
tropy on unlabeled data are chosen. By minimiz-
ing the entropy, the method assumes a prior which
prefers minimal class overlap. Entropy minimiza-
tion is used in (Li et al., 2004) as an unsupervised
non-parametric clustering method and is shown to
result in significant improvement over k-mean, hier-
archical clustering and etc.

These methods are all based on the fact that mod-
els with low conditional entropy have their decision
boundaries passing through low-density regions of
the input distribution, P (X). This is consistent with
the assumption that classes are well separated so that
one can expect to take advantage of unlabeled exam-
ples (Grandvalet and Bengio, 2004).

In many cases shifting from one domain to an-
other domain, initial trained decision boundaries (on

2Imagine a model which classifies any input as class 1.
Clearly for this model Hθ(Y|X) = 0.

191

out-of-domain data) result in high conditional en-
tropy for the new domain, due to mismatch be-
tween distributions. Therefore, there is a need to
adjust model parameters such that decision bound-
aries goes through low-density regions of the distri-
bution. This motivates the idea of using minimum
conditional entropy criterion for adapting to a new
domain. At the same time, two domains are often
close enough that one would expect that the optimal
parameters for the new domain should not deviate
too much from initial parameters. In order to formu-
late the technique mentioned in the above paragraph,
let us define Θinit to be the initial model parame-
ters estimated on out-of-domain data (using labeled
data). Assuming the availability of enough amount
of unlabeled data for in-domain task, we try to min-
imize the following objective function w.r.t the pa-
rameters,

θnew = argmin
θ

Hθ(Y|X) + λ ||θ − θinit||p

(3)

where ||θ − θinit||p is an Lp regularizer and tries to
prevent parameters from deviating too much from
their initial values3.

Once again the idea here is to adjust the param-
eters (using unlabeled data) such that low-density
separation between the classes is achieved. In the
following section we will discuss the drawback of
this objective function for adaptation in realistic sce-
narios.

3 Issues with Minimum Entropy Criterion

It is discussed in Section 2.2 that the model param-
eters are adapted such that a minimum conditional
entropy is achieved. It was also discussed how this is
related to finding decision boundaries through low-
density regions of input distribution. However, the
obvious assumption here is that the classes are well
separated and there in fact exists low-density regions
between classes which can be treated as boundaries.
Although this is a suitable/ideal assumption for clas-
sification, in most practical problems this assump-
tion is not satisfied and often classes overlap. There-
fore, we can not expect the conditional entropy to be

3The other reason for using a regularizer is to prevent trivial
solutions of minimum entropy criterion

convex in this situation and to achieve minimization
w.r.t parameters (other than the trivial solutions).

Let us clarify this through an example. Consider
X to be generated by mixture of two 2-D Gaus-
sians (each with a particular mean and covariance
matrix) where each Gaussian corresponds to a par-
ticular class (binary class situation) . Also in order
to have linear decision boundaries, let the Gaussians
have same covariance matrix and let the parameter
being estimated be the prior for class 1, P (Y = 1).
Fig. 1 shows two different situations with over-
lapping classes and non-overlapping classes. The
left panel shows a distribution in which classes are
well separated whereas the right panel corresponds
to the situation where there is considerable overlap
between classes. Clearly, in the later case there is
no low-density region separating the classes. There-
fore, as we change the parameter (here, the prior on
the class Y = 1), there will not be any well defined
point with minimum entropy. This can be seen from
Fig. 2 where model conditional entropy is plotted
vs. class prior parameter for both cases. In the case
of no-overlap between classes, entropy is a convex
function w.r.t the parameter (excluding trivial solu-
tions which happens at P (Y = 1) = 0, 1) and is
minimum at P (Y = 1) = 0.7 which is the true prior
with which the data was generated.

We summarize issues with minimum entropy cri-
terion and our proposed solutions as follows:

• Trivial solution: this happens when we put de-
cision boundaries such that both classes are
considered as one class (this can be avoided us-
ing the regularizer in Eqn. 3 and the assump-
tion that initial models have a reasonable solu-
tion, e.g. close to the optimal solution for new
domain)

• Overlapped Classes: As it was discussed in
this section, if the overlap is considerable then
the entropy will not be convex w.r.t to model
parameters. We will address this issue in
the next section by introducing the entropy-
stability concept.

4 Entropy-Stability

It was discussed in the previous section that a mini-
mum entropy criterion can not be used (by itself) in

192

3 2 1 0 1 2 3 4 5 6 7
4

2

0

2

4

6

8

10

X1

X
2

3 2 1 0 1 2 3 4 5 6 7
3

2

1

0

1

2

3

4

5

6

7

X1

X
2

Figure 1: Mixture of two Gaussians and the corresponding Bayes decision boundary: (left) with no class overlap
(right) with class overlap

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0	

0.005	

0.01	

0.015	

0.02	

0.025	

0.03	

0.035	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	

Co
nd

i&
on

al
	 E
nt
ro
py
	

P(Y=1)	

without	 overlap	

with	 overlap	

Figure 2: Condtional entropy vs. prior parameter, P (Y =
1)

situations where there is a considerable amount of
overlap among classes. Assuming that class bound-
aries happen in the regions close to the tail of class
distributions, we introduce the concept of Entropy-
Stability and show how it can be used to detect
boundary regions. Define Entropy-Stability to be the
reciprocal of the following∣∣∣∣∣∣∣∣∂Hθ(Y|X)

∂θ

∣∣∣∣∣∣∣∣
p

=∣∣∣∣∣∣
∣∣∣∣∣∣
∫
p(x)

∂
(∑

y pθ(y|x) log pθ(y|x)
)

∂θ
dx

∣∣∣∣∣∣
∣∣∣∣∣∣
p

(4)

Recall: since θ is a vector of parameters, ∂Hθ(Y|X)
∂θ

will be a vector and by using Lp norm Entropy-
stability will be a scalar.

The introduced concept basically measures the
stability of label entropies w.r.t the model parame-
ters. The idea is that we prefer models which not
only have low-conditional entropy but also have sta-
ble decision rules imposed by the model. Next, we
show through the following theorem how Entropy-
Stability measures the stability over posterior prob-
abilities (decision rules) of the model.

Theorem 2∣∣∣∣∣∣∣∣∂Hθ(Y|X)
∂θ

∣∣∣∣∣∣∣∣
p

=∣∣∣∣∣
∣∣∣∣∣
∫
p(x)

(∑
y

∂pθ(y|x)
∂θ

log pθ(y|x)

)
dx

∣∣∣∣∣
∣∣∣∣∣
p

where the term inside the parenthesis is the weighted
sum (by log-likelihood) over the gradient of poste-
rior probabilities of labels for a given sample x

Proof The proof is straight forward and uses the fact
that

∑ ∂pθ(y|x)
∂θ = ∂(

P
pθ(y|x))
∂θ = 0 .

Using Theorem 2 and Eqn. 4, it should be clear
how Entropy-Stability measures the expected sta-
bility over the posterior probabilities of the model.
A high value of

∣∣∣∣∣∣∂Hθ(Y|X)
∂θ

∣∣∣∣∣∣
p

implies models with

less stable decision rules. In order to explain how
this is used for detecting boundaries (overlapped

193

regions) we once again refer back to our mixture
of Gaussians’ example. As the decision boundary
moves from class specific regions to overlapped re-
gions (by changing the parameter which is here class
prior probability) we expect the entropy to continu-
ously decrease (due to the assumption that the over-
laps occur at the tail of class distributions). How-
ever, as we get close to the overlapping regions the
added data points from other class(es) will resist
changes in the entropy. resulting in stability over the
entropy until we enter the regions specific to other
class(es).

In the following subsection we use this idea to
propose a new objective function which can be used
as an unsupervised adaptation method even for the
case of input distribution with overlapping classes.

4.1 Better Objective Function
The idea here is to use the Entropy-Stability con-
cept to accept only regions which are close to the
overlapped parts of the distribution (based on our
assumption, these are valid regions for decision
boundaries) and then using the minimum entropy
criterion we find optimum solutions for our parame-
ters inside these regions. Therefore, we modify Eqn.
3 such that it also includes the Entropy-Stability
term

θnew = argmin
θ

(
Hθ(Y|X) + γ

∣∣∣∣∣∣∣∣∂Hθ(Y|X)
∂θ

∣∣∣∣∣∣∣∣
p′

+ λ ||θ − θinit||p
)

(5)

The parameter γ and λ can be tuned using small
amount of labeled data (Dev set).

5 Speech Recognition Task

In this section we will discuss how the proposed
framework can be used in a speech recognition task.
In the speech recognition task, Y is the sequence
of words and X is the input speech signal. For a
given speech signal, almost every word sequence is
a possible output and therefore there is a need for
a compact representation of output labels (words).
For this, word graphs (Lattices) are generated dur-
ing the recognition process. In fact, each lattice is
an acyclic directed graph whose nodes correspond

to particular instants of time, and arcs (edges con-
necting nodes) represent possible word hypotheses.
Associated with each arc is an acoustic likelihood
and language model likelihood scores. Fig. 3 shows
an example of recognition lattice 4 (for the purpose
of demonstration likelihood scores are not shown).L. Mangu et al.: Finding Consensus in Speech Recognition 6

(a) Input lattice (“SIL” marks pauses)

SIL

SIL

SIL

SIL

SIL

SIL

VEAL

VERY

HAVE

MOVE

HAVE

HAVE

IT

MOVE

HAVE IT

VERY

VERY

VEAL

VERY

VERY

VERY

OFTEN

OFTEN

FINE

FINE

FAST

I

I

I

(b) Multiple alignment (“-” marks deletions)

- -

I

MOVE

HAVE IT VEAL

VERY

FINE

OFTEN

FAST

Figure 1: Sample recognition lattice and corresponding multiple alignment represented as
confusion network.

alignment (which gives rise to the standard string edit distance WE (W, R)) with
a modified, multiple string alignment. The new approach incorporates all lattice
hypotheses7 into a single alignment, and word error between any two hypotheses
is then computed according to that one alignment. The multiple alignment thus
defines a new string edit distance, which we will call MWE (W, R). While the
new alignment may in some cases overestimate the word error between two
hypotheses, as we will show in Section 5 it gives very similar results in practice.

The main benefit of the multiple alignment is that it allows us to extract
the hypothesis with the smallest expected (modified) word error very efficiently.
To see this, consider an example. Figure 1 shows a word lattice and the corre-
sponding hypothesis alignment. Each word hypothesis is mapped to a position
in the alignment (with deletions marked by “-”). The alignment also supports
the computation of word posterior probabilities. The posterior probability of a
word hypothesis is the sum of the posterior probabilities of all lattice paths of
which the word is a part. Given an alignment and posterior probabilities, it is
easy to see that the hypothesis with the lowest expected word error is obtained
by picking the word with the highest posterior at each position in the alignment.
We call this the consensus hypothesis.

7In practice we apply some pruning of the lattice to remove low probability word hypotheses
(see Section 3.4).

Figure 3: Lattice Example

Since lattices contain all the likely hypotheses
(unlikely hypotheses are pruned during recognition
and will not be included in the lattice), conditional
entropy for any given input speech signal, x, can be
approximated by the conditional entropy of the lat-
tice. That is,

Hθ(Y|X = xi) = Hθ(Y|Li)

whereLi is the corresponding decoded lattice (given
speech recognizer parameters) of utterance xi.

For the calculation of entropy we need to
know the distribution of X because Hθ(Y|X) =
EX [Hθ(Y|X = x)] and since this distribution is not
known to us, we use Law of Large Numbers to ap-
proximate it by the empirical average

Hθ(Y|X) ≈ − 1
N

N∑
i=1

∑
y∈Li

pθ(y|Li) log pθ(y|Li) (6)

Here N indicates the number of unlabeled utter-
ances for which we calculate the empirical value of
conditional entropy. Similarly, expectation w.r.t in-
put distribution in entropy-stability term is also ap-
proximated by the empirical average of samples.

Since the number of paths (hypotheses) in the lat-
tice is very large, it would be computationally infea-
sible to compute the conditional entropy by enumer-
ating all possible paths in the lattice and calculating

4The figure is adopted from (Mangu et al., 1999)

194

Element 〈p, r〉
〈p1, r1〉⊗ 〈p2, r2〉 〈p1p2, p1r2 + p2r1〉
〈p1, r1〉⊕ 〈p2, r2〉 〈p1 + p2, r1 + r2〉

0 〈0, 0〉
1 〈1, 0〉

Table 1: First-Order (Expectation) semiring: Defining
multiplication and sum operations for first-order semir-
ings.

their corresponding posterior probabilities. Instead
we use Finite-State Transducers (FST) to represent
the hypothesis space (lattice). To calculate entropy
and the gradient of entropy, the weights for the FST
are defined to be First- and Second-Order semirings
(Li and Eisner, 2009). The idea is to use semirings
and their corresponding operations along with the
forward-backward algorithm to calculate first- and
second-order statistics to compute entropy and the
gradient of entropy respectively. Assume we are in-
terested in calculating the entropy of the lattice,

H(p) = −
∑
d∈Li

p(d)
Z

log(
p(d)
Z

)

= logZ − 1
Z

∑
d∈Li

p(d) log p(d)

= logZ − r̄

Z
(7)

where Z is the total probability of all the paths in
the lattice (normalization factor). In order to do so,
we need to compute 〈Z, r̄〉 on the lattice. It can
be proved that if we define the first-order semir-
ing 〈pe, pe log pe〉 (pe is the non-normalized score of
each arc in the lattice) as our FST weights and define
semiring operations as in Table. 1, then applying the
forward algorithm will result in the calculation of
〈Z, r̄〉 as the weight (semiring weight) for the final
node.

The details for using Second-Order semirings for
calculating the gradient of entropy can be found
in (Li and Eisner, 2009). The same paper de-
scribes how to use the forward-backward algorithm
to speed-up the this procedure.

6 Language Model Adaptation

Language Model Adaptation is crucial when the
training data does not match the test data being de-
coded. This is a frequent scenario for all Automatic

Speech Recognition (ASR) systems. The applica-
tion domain very often contains named entities and
N-gram sequences that are unique to the domain of
interest. For example, conversational speech has
a very different structure than class-room lectures.
Linear Interpolation based methods are most com-
monly used to adapt LMs to a new domain. As
explained in (Bacchiani et al., 2003), linear inter-
polation is a special case of Maximum A Posterior
(MAP) estimation, where an N-gram LM is built on
the adaptation data from the new domain and the two
LMs are combined using:

p(wi|h) = λpB(wi|h) + (1− λ)pA(wi|h)
0 ≤ λ ≤ 1

where pB refers to out-of-domain (background)
models and pA is the adaptation (in-domain) mod-
els. Here λ is the interpolation weight.

Conventionally, λ is calculated by optimizing per-
plexity (PPL) or Word Error Rate (WER) on some
held-out data from target domain. Instead using
our proposed framework, we estimate λ on enough
amount of unlabeled data from target domain. The
idea is that resources on the new domain have al-
ready been used to build domain specific models
and it does not make sense to again use in-domain
resources for estimating the interpolation weight.
Since we are trying to just estimate one parameter
and the performance of the interpolated model is
bound by in-domain/out-of-domain models, there is
no need to include a regularization term in Eqn. 5.
Also

∣∣∣∣∣∣∂Hθ(Y|X)
∂θ

∣∣∣∣∣∣
p

= |∂Hλ(Y|X)
∂λ | because we only

have one parameter. Therefore, interpolation weight
will be chosen by the following criterion

λ̂ = argmin
0≤λ≤1

Hλ(Y|X) + γ|∂Hλ(Y|X)
∂λ

| (8)

For the purpose of estimating one parameter λ, we
use γ = 1 in the above equation

7 Experimental Setup

The large vocabulary continuous speech recognition
(LVCSR) system used throughout this paper is based
on the 2007 IBM Speech transcription system for
GALE Distillation Go/No-go Evaluation (Chen et
al., 2006). The acoustic models used in this system

195

are state-of-the-art discriminatively trained models
and are the same ones used for all experiments pre-
sented in this paper.

For LM adaptation experiments, the out-of-
domain LM (pB , Broadcast News LM) training
text consists of 335M words from the follow-
ing broadcast news (BN) data sources (Chen et
al., 2006): 1996 CSR Hub4 Language Model
data, EARS BN03 closed captions, GALE Phase
2 Distillation GNG Evaluation Supplemental Mul-
tilingual data, Hub4 acoustic model training tran-
scripts, TDT4 closed captions, TDT4 newswire, and
GALE Broadcast Conversations and GALE Broad-
cast News. This language model is of order 4-gram
with Kneser-Ney smoothing and contains 4.6M n-
grams based on a lexicon size of 84K.

The second source of data is the MIT lectures data
set (J. Glass, T. Hazen, S. Cyphers, I. Malioutov, D.
Huynh, and R. Barzilay, 2007) . This serves as the
target domain (in-domain) set for language model
adaptation experiments. This set is split into 8 hours
for in-domain LM building, another 8 hours served
as unlabeled data for interpolation weight estimation
using criterion in Eqn. 8 (we refer to this as unsuper-
vised training data) and finally 2.5 hours Dev set for
estimating the interpolation weight w.r.t WER (su-
pervised tuning) . The lattice entropy and gradient
of entropy w.r.t λ are calculated on the unsupervised
training data set. The results are discussed in the
next section.

8 Results

In order to optimize the interpolation weight λ based
on criterion in Eqn. 8, we devide [0, 1] to 20 differ-
ent points and evaluate the objective function (Eqn.
8) on those points. For this, we need to calculate
entropy and gradient of the entropy on the decoded
lattices of the ASR system on 8 hours of MIT lecture
set which is used as an unlabeled training data. Fig.
4 shows the value of the objective function against
different values of model parameters (interpolation
weight λ). As it can be seen from this figure just
considering the conditional entropy will result in a
non-convex objective function whereas adding the
entropy-stability term will make the objective func-
tion convex. For the purpose of the evaluation, we
show the results for estimating λ directly on the tran-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Model Entropy
Model Entropy+Entropy-Stability

BN-LM MIT-LMλ

Figure 4: Objective function with and without including
Entropy-Stability term vs. interpolation weight λ on 8
hours MIT lecture unlabeled data

scription of the 8 hour MIT lecture data and compare
it to estimated value using our framework. The re-
sults are shown in Fig. 5. Using λ = 0 and λ = 1
the WERs are 24.7% and 21.1% respectively. Us-
ing the new proposed objective function, the optimal
λ is estimated to be 0.6 with WER of 20.1% (Red
circle on the figure). Estimating λ w.r.t 8 hour train-
ing data transcription (supervised adaptation) will
result in λ = 0.7 (green circle) andWER of 20.0%.
Instead λ = 0.8 will be chosen by tuning the inter-
polation weight on 2.5 hour Dev set with compara-
ble WER of 20.1%. Also it is clear from the figure
that the new objective function can be used to pre-
dict the WER trend w.r.t the interpolation weight
parameter.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Model Entropy + Entropy Stability
WER24.7%

20.0%

21.1%

supervised tuning

λ

Figure 5: Estimating λ based on WER vs. the
information-theoretic criterion

Therefore, it can be seen that the new unsuper-

196

vised method results in the same performance as su-
pervised adaptation in speech recognition task.

9 Conclusion and Future Work

In this paper we introduced the notion of entropy
stability and presented a new criterion for unsu-
pervised adaptation which combines conditional en-
tropy minimization with entropy stability. The en-
tropy stability criterion helps in selecting parameter
settings which correspond to stable decision bound-
aries. Entropy minimization on the other hand tends
to push decision boundaries into sparse regions of
the input distributions. We show that combining
the two criterion helps to improve unsupervised pa-
rameter adaptation in real world scenario where
class conditional distributions show significant over-
lap. Although conditional entropy has been previ-
ously proposed as a regularizer, to our knowledge,
the gradient of entropy (entropy-stability) has not
been used previously in the literature. We presented
experimental results where the proposed criterion
clearly outperforms entropy minimization. For the
speech recognition task presented in this paper, the
proposed unsupervised scheme results in the same
performance as the supervised technique.

As a future work, we plan to use the proposed
criterion for adapting log-linear models used in
Machine Translation, Conditional Random Fields
(CRF) and other applications. We also plan to ex-
pand linear interpolation Language Model scheme
to include history specific (context dependent)
weights.

Acknowledgments

The Authors want to thank Markus Dreyer and
Zhifei Li for their insightful discussions and sugges-
tions.

References
M. Bacchiani, B. Roark, and M. Saraclar. 2003. Un-

supervised language model adaptation. In Proc.
ICASSP, pages 224–227.

S. Chen, B. Kingsbury, L. Mangu, D. Povey, G. Saon,
H. Soltau, and G. Zweig. 2006. Advances in speech
transcription at IBM under the DARPA EARS pro-
gram. IEEE Transactions on Audio, Speech and Lan-
guage Processing, pages 1596–1608.

Thomas M. Cover and Joy A. Thomas. 2006. Elements
of information theory. Wiley-Interscience, 3rd edition.

Yves Grandvalet and Yoshua Bengio. 2004. Semi-
supervised learning by entropy minimization. In
Advances in neural information processing systems
(NIPS), volume 17, pages 529–536.

J. Glass, T. Hazen, S. Cyphers, I. Malioutov, D. Huynh,
and R. Barzilay. 2007. Recent progress in MIT spo-
ken lecture processing project. In Proc. Interspeech.

Jing Jiang. 2008. A literature survey on domain adapta-
tion of statistical classifiers, March.

Zhifei Li and Jason Eisner. 2009. First- and second-order
expectation semirings with applications to minimum-
risk training on translation forests. In EMNLP.

Haifeng Li, Keshu Zhang, and Tao Jiang. 2004. Min-
imum entropy clustering and applications to gene ex-
pression analysis. In Proceedings of IEEE Computa-
tional Systems Bioinformatics Conference, pages 142–
151.

Lidia Mangu, Eric Brill, and Andreas Stolcke. 1999.
Finding consensus among words: Lattice-based word
error minimization. In Sixth European Conference on
Speech Communication and Technology.

M. Szummer and T. Jaakkola. 2003. Information regu-
larization with partially labeled data. In Advances in
Neural Information Processing Systems, pages 1049–
1056.

197

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 198–206,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Formatting Time-Aligned ASR Transcripts for Readability

Maria Shugrina ∗

Google Inc.
New York, NY 10011
shumash@google.com

Abstract

We address the problem of formatting the out-
put of an automatic speech recognition (ASR)
system for readability, while preserving word-
level timing information of the transcript. Our
system enriches the ASR transcript with punc-
tuation, capitalization and properly written
dates, times and other numeric entities, and
our approach can be applied to other format-
ting tasks. The method we describe combines
hand-crafted grammars with a class-based lan-
guage model trained on written text and relies
on Weighted Finite State Transducers (WF-
STs) for the preservation of start and end time
of each word.

1 Introduction and Prior Work

The output of a typical ASR system lacks punctua-
tion, capitalization and proper formatting of entities
such as phone numbers, time expressions and dates.
Even if such automatic transcript is free of recogni-
tion errors, it is difficult for a human to parse. The
proper formatting of the transcript gains particular
importance in applications where the user relies on
ASR output for information and where information-
rich numeric entities (e.g. time expressions, mone-
tary amounts) are common. A good example of such
application is a voicemail transcription system. The
goal of our work is to transform the raw transcript
into its proper written form in order to optimize it for
the visual scanning task by the end user. We present
quantitative and qualitative evaluation of our system
with a focus on numeric entity formatting, punctua-
tion and capitalization (See Fig. 1).

Apart from text, the ASR output usually con-
tains word-level metadata such as time-alignment
and confidence. Such quantities may be useful for a
variety of applications. Although simple to recover

∗Thank you to Michiel Bacchiani, Martin Jansche, Michael
Riley and Cyril Allauzen for discussion and support.

Raw Transcript:
hi bill it’s tracy at around three thirty P M just got
an apartment for one thousand three thirty one thou-
sand four hundred a month my number is five five five
eight eight eight eight extension is three thirty bye

Our Result:
Hi Bill, it’s Tracy at around 3:30 PM, just got an
apartment for 1,330 1,400 a month. My number is
555-8888 extension is 330. Bye.

Figure 1: An example of a raw transcript with ambiguous
written forms and the output of our formatting system.

via word alignment after some types of formatting,
word-level quantities may be difficult to preserve if
the original text has undergone a significant transfor-
mation. We present a formal and general augmen-
tation of our WFST-based technique that preserves
word-level timing and confidence information dur-
ing arbitrary formatting.

The problems of sentence boundary detection and
punctuation of transcripts have received a substantial
amount of attention, e.g. (Beeferman et al., 1998;
Shriberg et al., 2000; Christensen et al., 2001; Liu
et al., 2006; Gravano et al., 2009). Capitalization of
ASR transcripts received less attention (Brown and
Coden, 2002; Gravano et al., 2009), but there has
also been work on case restoration in the context
of machine translation (Chelba and Acero, 2006;
Wang et al., 2006). Our work does not propose
competing methods for transcript punctuation and
capitalization. Instead, we aim to provide a com-
mon framework for a wide range of formatting tasks.
Our method extends the approach of Gravano et al.
(2009) with a general WFST formulation suitable
for formatting monetary amounts, time expressions,
dates, phone numbers, honorifics and more, in addi-
tion to punctuation and capitalization.

To our knowledge, this scope of the problem has
not been addressed in literature. Yet such format-
ting can have a high impact on transcript readabil-
ity. In this paper we focus on numeric entity format-

198

ting. In general, context independent rules fail to
adequately perform this task due to its inherent am-
biguity (See Fig. 1). For example, the spoken words
“three thirty” should be written differently in these
three contexts:
• meet me at3:30
• you owe me330
• dinner forthree 30minutes later

The proper written form of a numeric entity depends
on its class (time, monetary amount, etc). In this
sense, formatting is related to the problem of named
entity (NE) detection and value extraction, as de-
fined by MUC-7 (Chinchor, 1997). Several authors
have considered the problem of NE value extraction
from raw transcripts (Huang et al., 2001; Jansche
and Abney, 2002; B́echet et al., 2004; Levit et al.,
2004). This is an information extraction task that in-
volves identifying transcript words corresponding to
a particular NE class and extracting an unambigu-
ous value of that NE (e.g. the value of the date
NE “december first oh nine” is “12/01/2009”). Al-
though relevant, this information extraction does not
directly address the problem of proper formatting
and ordinarily requires a tagged corpus for training.

A parallel corpus containing raw transcriptions
and the corresponding formatted strings would facil-
itate the solution to the transcript formatting prob-
lem. However, there is no such corpus available.
Therefore, we follow the approach of Gravano et al.
and provide an approximation that exploits readily
available written text instead. In section 2 we de-
tail our method, provide a probabilistic interpreta-
tion and present a practical formulation of the solu-
tion in terms of WFSTs. Section 3 shows how to
augment the WFST formulation to preserve word-
level timing and confidence. Section 4 presents both
qualitative and quantitative evaluation of our system.

2 Method

First, handwritten grammars are used to generate
all plausible written forms. These variants are then
scored with a language model (LM) approximating
probability over written strings. To overcome data
sparsity associated with written numeric strings, we
introduce numeric classes into the LM. In section
2.1 we give a probabilistic formulation of this ap-
proach. In section 2.2 we comment on the hand-
written grammars, and in section 2.3 we discuss the

class-based language model used for scoring. Sec-
tion 2.4 provides the WFST formulation of the solu-
tion.

2.1 Probabilistic Formulation

The problem of estimating the best written form̂w
of a spoken sequence of wordss can be formulated
as a Machine Translation (MT) problem of translat-
ing a strings from the language of spoken strings
into a language of written strings. From a statistical
standpoint,ŵ can be estimated as follows:

ŵ = argmax
w

{P (w|s)} ≈ argmax
w

{P ′(s|w)P ′(w)},

whereP (·) denotes probability, andP ′(·) a prob-
ability approximation. The probability over written
stringsP (w) can be estimated by training ann-gram
language model on amply available written text. The
absence of a parallel corpus containing sequences of
spoken words and their written renditions makes the
conditional distributionP (s|w) impossible to esti-
mate. An approximationP ′(s|w) can be obtained by
defining handwritten grammars that generate multi-
ple unweighted written variants for any spoken se-
quence. For a givens, a collection of grammars en-
codes a uniform probability distribution across the
set of all written variants generated fors and as-
signs a zero probability to any string not in this set.
Such grammar-based modeling ofP (s|w) combined
with statistical estimation ofP (w) takes advantage
of prior knowledge, but does not share the disadvan-
tages of rigid, fully rule-based systems.

2.2 Handwritten Grammars

Handwritten grammarsG1...Gm are used to gener-
ate unweighted written variants for a raw strings. In
Gravano’s work (Gravano et al., 2009) the generated
variants include optional punctuation between every
two words and an optional capitalization for every
word. Our system supports a wider range of vari-
ants, including but not limited to multiple variants
of number formatting.

The handwritten grammars can be very restrictive
or very liberal, depending on the application require-
ments. For example, a grammar we use to generate
punctuation and capitalization only generates sen-
tences with the first word capitalized. This enforces
conventions and consistency, which the best scor-
ing variant could occasionally violate. On the other

199

0

2
three

1

3

3

<space>

<space>

<column>

<period>

ε

5
thirty

4

3 0

Figure 2: An FSA encoding all variants generated by the
number grammar for a spoken string “three thirty”.

hand, the grammar for number formatting could
be very liberal in producing written variants (See
Fig. 2). Jansche and Abney (2002) observe that
handwritten rules deterministically tagging numeric
strings of certain length as phone numbers perform
surprisingly well on phone number NE identification
in voicemail. If appropriate to the task, determinis-
tic grammars can be incorporated into the grammar
stack. The unweighted written variants generated by
applyingG1...Gm to s are then scored with the lan-
guage model.

2.3 Language Model

The probability distribution over written textP (w)
can be approximated by a Katz back-offn-gram lan-
guage model trained on written text in a domain
semantically similar to the domain for which the
ASR engine is deployed. Unlike some of the ap-
proaches used for NE identification (Jansche and
Abney, 2002; Levit et al., 2004) and sentence bound-
ary detection (Christensen et al., 2001; Shriberg et
al., 2000; Liu et al., 2006), LM-based scoring can-
not exploit a larger context thann tokens or prosodic
features. The advantage of the LM approach is the
ease of applying it to new formatting tasks: no new
tagged corpus, and only trivial changes to the pre-
processing of the training text would be required.

If the LM is to score written numeric strings, care
must be taken in modeling numbers. Representing
each written number as a token (e.g. tokens “1,235”,
“15”) during training results in a very large model
and suffers from data sparsity even with very large
training corpora. An alternative approach of model-
ing every digit as a token (e.g. “15” is comprised of
tokens “1” and “2”) fails to model sufficient context
for longer digit strings. A partially class-based LM
remedies the drawbacks of both approaches, and has
been used for tasks such as NE tagging (Béchet et

Class Set A
Numeric range Interpretation
2-9 single digits
10-12 up to hour in a 12-hour system
13-31 up to the largest day of the month
32-59 up to the largest minute in a time

expression
other 2-digit all other 2-digit numbers
other 3-digit all 3-digit numbers
1900 - 2099 common year numbers
other 4-digit all other 4-digit numbers
10000-99999 all 5-digit numbers; e.g. US zip-

codes
≥ 100000 all large numbers

Class Set B
Numeric range Interpretation
0-9 one digit string
10-99 two digit string
... ...
109 − (1010 − 1) ten-digit string
≥ 1010 longer digit string

Table 1: Two sets of number classes used in our system.
Each sequence of consecutive digit characters is mapped
to the appropriate class. For example, “$1,235.12” would
become “〈dollar〉 1 〈comma〉 〈num 100 999〉 〈period〉
〈num 10 12〉” in Class Set A and “〈dollar〉 〈num 1D〉
〈comma〉 〈num 3D〉 〈period〉 〈num 2D〉 in Class Set B.

al., 2004). The generalization provided by classes
eliminates data sparsity, and is able to model suffi-
cient context.

We experiment with two sets of classes (See Ta-
ble 1). Class Set B, based on (Béchet et al., 2004),
marks strings ofn consecutive digits as belonging to
an n-digit class, assuming nothing about the num-
ber distribution. Class Set A is based on intuition
about number distribution in text (See Table 1,Inter-
pretation). In section 4.4 we show that Class Set A
achieves better performance on number formatting.
Now that it is established that the choice of classes
affects performance, future research could focus on
finding an optimal set of number classes automat-
ically. Clustering techniques, often used to derive
class definitions from training text, could be applied.

Although more punctuation marks could be con-
sidered, we focus on periods and commas. Similarly
to Gravano et al. (2009), we map all other punctua-
tion marks in the training text to these two. In many
formatting scenarios (e.g. spelled out acronyms, nu-
meric ranges), spaces are ambiguous and significant,

200

and it is therefore important to consider whitespace
when scoring the written variants. Because of this,
we model space as a token in the LM.

2.4 WFST Formulation

The one-best1 ASR outputs can be represented by a
Finite State Acceptor (FSA)S. We describe a series
of standard WFST operations onS resulting in the
FSA Wbest encoding the best estimated formatted
variantŵ. Current section assumes familiarity with
WFSTs; for background see (Mohri, 2009).

(a)S FSA

(b) W variants FST

(c) Wout FSA

(d) Wclass FST

(e)Wbest FSA

Figure 3: An example showing transducers produced dur-
ing formatting.

We encode each grammarGi as an unweighted
FSTTi that transduces the raw transcript to its for-
matted versions. The necessity to encode them
as FSTs restricts the set of grammars to regular
grammars (Hopcroft and Ullman, 1979), sufficiently
powerful for most formatting tasks. The back-off
n-gram LM is naturally represented as a weighted
deterministic FSAG with negative log probability
weights (Mohri et al., 2008). The deterministic map-
ping of digit strings to number class tokens can also

1This WFST formulation can also be applied to the ASR lat-
tice orn-best list with some modification to the scoring phase.

be accomplished by an unweighted transducerK,
which passes all non-numeric strings unchanged.

Composing the input acceptorS with the gram-
mar transducersTi results in a transducerW with
all written variants on the output. Projected onto its
output labels,W becomes an acceptorWout. Wclass,
the result of the composition ofWout with K, has
all formatted written variants on the input side and
the formatted variants with digit strings replaced by
class tokens on the output. The output side ofWclass

can then be scored via composition withG to pro-
duce a weighted transducerWscored. The shortest
path in the Tropical Semiring onWscored contains
the estimate of the best written variant on the input
side. This algorithm can be summarized as follows
(See Fig. 3):

1. W = S ◦ T1 ◦ T2... ◦ Tm

2. Wout = Projout(W)

3. Wclass = Wout ◦K

4. Wscored = Wclass ◦G

5. Wbest = Projin(BestPath(Wscored))

where ◦ denotes FST composition,Projin and
Projout denote projection on input and output la-
bels respectively, andBestPath(X) as a function
returning an FST encoding the shortest path ofX.
The key Step 2 ensures that the target written vari-
ants are not consumed in the consequent composi-
tion operations. For efficiency reasons it is advisable
to apply optimizations such as epsilon removal and
determinization to the intermediate results.2

3 Preserving Word-Level Metadata

We extend the WFST formulation to preserve word-
level timing and confidence information.

3.1 Background

A WFST is a finite set of states and transitions
connecting them. Each transition has an input la-
bel, an output label and a weight in some semir-
ing K. A semiring is informally defined as a tou-
ple (K,⊕,⊗, 0, 1), whereK is the set of elements,
⊕ and⊗ are the addition and multiplication opera-
tions,0 is the additive identity and multiplicative an-
nihilator,1 is the multiplicative identity (See (Mohri,

2Our system implements proper failure transitions available
in the OpenFST Library (Allauzen et al., 2007).

201

2009)). By defining new semirings we can use stan-
dard FST operations to accomplish a wide range of
goals.

3.2 Timing Semiring

In order to formulate time preservation within the
FST formalism, we define thetiming semiring Kt

where each element is a pair(s, e) that can be inter-
preted as the start and end time of a word:

Wt =
{

(s, e) : s, e ∈ R
+ ∪ {0,∞}

}

(s1, e1)⊕ (s2, e2) = (max(s1, s2), min(e1, e2))

(s1, e1)⊗ (s2, e2) = (min(s1, s2), max(e1, e2))

0 = (0,∞) 1 = (∞, 0)

Intuitively, the addition operation takes the largest
interval contained by both operand intervals, while
multiplication returns the smallest interval fully con-
taining both operand intervals.3 This definition ful-
fills all the semiring properties as defined in (Mohri,
2009). Note that encoding only the duration of each
word is not sufficient, as there may be time gaps
between the words due to the segmentation of the
source audio. Let̃S denote the Weighted Finite
State Acceptor (WFSA) encoding the raw ASR out-
put with the start and end time stored in the weight
of each arc.

In order to preserve word-level confidence in ad-
dition to timing information, a Cartesian product of
Kt and the Log semiring can be used to store both
time and confidence in an arc weight.

3.3 Weight Synchronization

The goal is to associate the timing/confidence
weights ofS̃ with the word labels ofWbest, the best
formatted string (See Sec. 2.4). Because the weight
of each transition inS̃ already expresses the tim-
ing/confidence corresponding to its word label, it is
sufficient to associate the labels ofS̃ with the labels
of Wbest. This is equivalent to identifying the output
labels to which each input label is transduced during
Step 1 in section 2.4. However, in general WFST op-
erations may desynchronize input and output labels

3Note that this is just a Cartesian product of min-max and
max-min semirings. The elements ofKt are not proper inter-
vals, as it is possible fors to exceede.

and weights, as the FST structure itself does not in-
dicate a semantic correspondence between them. To
alleviate this, we guarantee such a correspondence
in our grammars by enforcing that for all paths in
any grammar FSTTi:
• an input label appears before any of the corre-

sponding output labels, and
• output labels corresponding to a given input la-

bel appear before the next input label.
In practice, these assumptions are usually met by
handwritten grammars. Even if these assumptions
are violated for a small number of paths, only small
word-level timing discrepancies will be incurred.
Each path inW can be thought of as a sequence of
subpaths with only the first transition containing a
non-ǫ input label. We say that the input label of each
such subpath corresponds to that subpath’s output la-
bels.

0 1
ten/(1,2)

2
<sp>

3
six/(3,4)

(a) S̃ FSA

0 1
1

2
0

3
<sp>

4
6

(b) Wbest FSA

0 1
ten:1

2
ε:0

3
<sp>:<sp>

4
six:6

(c) Wraw:best FST

0 1
ten:1/(1,2)

2
ε:0

3
<sp>:<sp>

4
six:6/(3,4)

(d) W̃best FST

Figure 4: A small example of time preservation section of
the algorithm. Arcs with non-unity timing weights show
parenthesized pair of start and end time.

The best path that has input labels corresponding
to the raw ASR output can be obtained by compos-
ing the variants FSTW with the best formatted FSA
Wbest and picking any path. The timing weights are
restored to by composing the weightedS̃ with this
result. To preserve timing we add two more steps to
Steps 1–5 in section 2.4:

6. Wraw:best = RmEps(AnyPath(W ◦Wbest))

7. W̃best = S̃ ◦Mapt(Wraw:best)

whereRmEps(X) applies the epsilon-removal al-
gorithm to X (Mohri, 2009), andMapt(X) maps

202

all non-zero weights ofX to the unity weight in the
timing semiring. BecausẽS is an epsilon-free accep-
tor, the resultW̃best will contain the original weights
of S̃ on the arcs with the corresponding input labels
(See Fig. 4 for an example). The space-delimited
words and the corresponding weights can then be
read off by walkingW̃best.

4 Evaluation

Section 4.1 presents our datasets and an evaluation
metric specific to number formatting, and section
4.2 describes our experimental system. We present
quantitative evaluation of capitalization/punctuation
performance and number formatting performance
separately in sections 4.3 and 4.4. Because the ul-
timate goal of our work is to improve the readability
of ASR transcripts, we also present the result of a
user study of transcript readability in section 4.5.

4.1 Data and Metrics

The training corpus contains 185M tokens of written
text normalized to contain only comma and period
punctuation marks. A set of 176M tokens (TRS) is
used for training and a set of 7M tokens (PTS) is
held back for testing punctuation and capitalization
(See Table 3). To obtain a test input (NPTS) for our
system, PTS is lowercased and all punctuation is re-
moved.

words commas periods capitals
TRS 176M 10.6M 11.8M 24.3M
PTS 7M 420K 440K 880K

Table 3: Training set TRS and test set PTS.

Number formatting is evaluated on a manually
formatted test set. We manually processed the set
of raw manual transcripts (NNTS) from the LDC
Voicemail Part I training set (Padmanabhan et al.,
1998) to obtain a reference number formatting set
(NTS). All numeric entities in NTS were formatted
according to the following conventions:
• all quantities under 10 are spelled out
• time is written in a 12-hour system as “xx:xx”

or “xx”
• dollar amounts are written as “$x,xxx.xx” with

cents included if spoken
• US phone numbers are written as “(xxx) xxx-

xxxx” or “xxx-xxxx”
• other phone numbers are written as digit strings
• decimals are written as “x.x”

• large amounts include commas: “x,xxx,xxx”
All contiguous sequences of words in NTS that
could be a target for number formatting were marked
asnumeric entities, whether or not these words were
formatted by the labeler (for example “six” is anu-
meric entity). To evaluate number formatting per-
formance, we process NNTS with our full experi-
mental system, then remove all capitalization and
inter-word punctuation. This result is aligned with
NTS, and each entity is scored separately as totally
correct or totally incorrect (See Table 2), yielding:

Numeric Entity Error Rate = 100 · I

N

whereI is the count of entities that did not match
the reference entity string exactly andN is the total
entity count. This error rate is independent of the
numeric entity density in the test set. The errors are
broken down into three types:
• incorrect formatting - when the system incor-

rectly formats an entity that is formatted in the
reference

• overformatting - when the system formats an
entity that stays unformatted in the reference

• underformatting - when the system does not
format an entity formatted in the reference

Out of 1801 voicemail transcripts in NTS, 1347 con-
tain at least one entity for a total of 3563 entities,
signifying a frequent occurrence of numeric entities
in voicemail. There is an average of 7 raw transcript
words per entity, suggesting that in many cases en-
tity formatting is non-trivial.

4.2 Experimental System

The experimental system includes a 5-gram LM
trained on TRS with spaces treated as tokens. Num-
ber evaluation is performed with two sets of number
classes, listed in Table 1. System A contains LM
with classes from set A, and System B contains LM
with classes from set B. The experimental setup also
includes the following grammars:

• Gphone - deterministically formats as a phone
number any string spoken like a US 7 or 10
digit phone number

• Gnumber - expands all spoken numbers to a full
range of variants, with support for time expres-
sions, ordinals, decimals, dollar amounts

• Gcap punct - generates all possible combina-
tions of commas, periods and capitals; always
capitalizes the first word of a sentence

203

Raw: for six people at five five thirty cost is eleven hundred dollars
Ref: for six people at 5 5:30 cost is $1,100
Hyp: for 6 people at 5 5:30 cost is 11 $100
Score: - incorrect - correct - incorrect

Table 2: A example of a raw transcript, reference transcriptwith number formatting and the hypothesis produced by
the system. The entities (bold) in reference and hypothesisare aligned and scored.

4.3 Evaluation of Punctuation

To evaluate the performance of capitalization and
punctuation we run System A on NPTS with only
theGcap punct (in order not to introduce errors due
to numeric formatting). The precision, recall and F-
measure rates for periods, commas and capitals are
computed using PTS as reference (See Fig. 5).

Precision Recall F-Measure
Capitals 0.7902 0.5356 0.6385
Comma 0.5527 0.3129 0.3996
Period 0.6672 0.6783 0.6727

Figure 5: Punctuation and capitalization results.

It should be noted that a 5-gram language model
that treats spaces as words models the same history
as a 3-gram model that omits the spaces from train-
ing data. When this is taken into account, our re-
sults with a much smaller training set are compara-
ble to Gravano et al. (2009). The F-measure scores
for commas and periods are also comparable to the
prosody-based work of (Christensen et al., 2001),
with the precision of the period slightly lower, but
compensated by recall. Thus, our system can per-
form additional formatting, while retaining a reason-
able capitalization and punctuation performance.

4.4 Evaluation of Number Formatting

We evaluate number formatting performance of Sys-
tems A and B, which use different sets of classes for
the language modeling (See Table 1). We process
NNTS with both systems and score against the ref-
erence formatted set NTS to obtain Numeric Entity
Error Rate (NEER). Class Set B naively breaks num-
bers into classes by digit count. System B using this
class set performs worse than System A by 1.7% ab-
solute (See Table 4). In particular, the overformat-
ting rate (OFR) is higher by 1.2% absolute in System
B than in System A. An example of overformatting
is the mis-formatting of the English impersonal pro-
noun “one” as the digit “1”. Such overformatting
errors are much more noticeable than the underfor-

NEER IFR OFR UFR
System A

exact 16.1% 9.7% 5.4% 1.0%
ignore space 11.2% 4.9% 5.4% 1.0%

System B
exact 17.8% 10.6% 6.6% 0.6%

ignore space 13.2% 6.0% 6.6% 0.6%

Table 4: The total NEER score, NEER due to incorrect
formatting (IFR), NEER due to overformatting (OFR)
and NEER due to underformatting (UFR); NEER rates
with whitespace errors ignored are also listed.

matting errors, which are higher by 0.4% absolute
in System A. This result shows that the choice of
classes for the class-based LM significantly impacts
number formatting performance. Superior overall
performance of System A suggests that prior knowl-
edge in the choice of classes favorably impacts per-
formance.

In order to estimate the error rate not caused by
whitespace errors, we also compute the NEER with
whitespace errors ignored. It turns out that between
4 and 5% absolute of the errors are whitespace er-
rors. Even if all whitespace errors are significant,
the 83.9% of perfectly formatted entities suggests
that the proposed formatting approach can achieve
good performance on the number formatting task.

entities : . $,
Reference totals 3563 310 50 39 17
System A correct 3161 232 36 33 10
System B correct 2923 204 35 31 5

Table 5: The count of formatted entities in NTS contain-
ing various formatting characters; the counts of these en-
tities correctly formatted by the systems A and B.

To estimate how well the systems perform on spe-
cific number formatting tasks we count the number
of reference entities containing certain formatting
characters and compute the number of these enti-
ties correctly formatted by Systems A and B (See
Table 5). The count of different formatting charac-
ters in NTS is small, but still provides an estimate of
the number formatting performance for a real appli-

204

cation like voicemail transcription. System A per-
forms significantly better on the formatting of time
expressions containing a colon, getting 74.8% cor-
rect. The NEER of System A for entities containing
special formatting characters is under 28% for all
formatting characters except comma, which is used
inconsistently in training text.

4.5 Qualitative Evaluation

In addition to quantitative evaluation we have con-
ducted a small-scale study of transcript readability.
The study aims to compare raw ASR transcripts,
ASR transcripts formatted by our system and raw
manual transcripts. We have processed LDC Voice-
mail Part 1 with our ASR engine achieving an er-
ror rate of 30%, and have selected 50 voicemails
with error rate under 30% and high informational
content. Messages containing names, addresses and
numbers were preferred. The word error rate on
the selected voicemails is 20%. For each voicemail
we have constructed three semantic multiple-choice
questions, aimed at information extraction. We have
asked each of 15 volunteers to answer all 3 questions
about half of the voicemails. The questions were
shown in sequence, while the transcript remained on
the screen. The transcript for each voicemail was
randomly selected to be ASR raw, ASR formatted
or manual raw. The response time was measured in-
dividually for each question.

The analysis of the responses reveals a statis-
tically significant difference in response time be-
tween formatted and raw ASR transcripts (p = 0.02,
even allowing for per-item and per-subject effects;
see also Fig. 6) and comparable accuracy. The re-
sponse times for formatted ASR were comparable
to the response times for manual unformatted tran-
scripts. This suggests that for transcripts with low
error rates the formatting of the ASR output signif-
icantly impacts readability. This disagrees with a
similar study (Jones et al., 2003), which found no
significant difference in the comprehension rates be-
tween raw ASR transcripts and capitalized, punctu-
ated ASR output with disfluencies removed. This
could be due to a number of factors, including a dif-
ferent type of transformation performed on the ASR
transcript, a different corpus, and a lower word error
rate of transcripts in our user study.

ASR Formatted ASR Raw Manual Raw

0
20

40
60

80
10

0

T
im

e
to

 a
ns

w
er

 (
se

co
nd

s)

90.0% 90.7% 94.4%

Figure 6: The standard R box plot of the response time for
different transcript types and the corresponding accuracy.

5 Conclusion

We present a statistical approach suitable for a wide
range of formatting tasks, including but not lim-
ited to punctuation, capitalization and numeric en-
tity formatting. The average of 2 numeric enti-
ties per voicemail in the manually processed LDC
Voicemail corpus shows that number formatting is
important for applications such as voicemail tran-
scription. Our best system achieves a Numeric En-
tity Error Rate of 16.1% on the ambiguous task of
numeric entity formatting, while retaining capital-
ization and punctuation performance comparable to
other published work. Our algorithm is concisely
formulated in terms of WFSTs and is easily ex-
tended to new formatting tasks without the need for
additional training data. In addition, the WFST for-
mulation allows word-level timing and confidence
to be retained during formatting. In order to over-
come data sparsity associated with written numbers,
we use a class-based language model and show that
the choice of number classes significantly impacts
number formatting performance. Finally, a statis-
tically significant difference in question answering
time for raw and formatted ASR transcripts in our
user study demonstrates the positive impact of the
transcript formatting on the readability of errorful
ASR transcripts.

205

References

C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and
M. Mohri. 2007. Openfst: A general and efficient
weighted finite-state transducer library. InProceed-
ings of CIAA, pages 11–23.

F. Béchet, A. Gorin, J. Wright, and D. Hakkani-Tür.
2004. Detecting and extracting named entities from
spontaneous speech in a mixed-initiative spoken dia-
logue context: How may i help you?Speech Commu-
nication, 42(2):207–225.

D. Beeferman, A. Berger, and J. Lafferty. 1998. Cyber-
punc: A lightweight punctuation annotation system for
speech. InProceedings of ICASSP, pages 689–692.

E. Brown and A. Coden. 2002. Capitalization re-
covery for text. InInformation Retrieval Techniques
for Speech Applications, pages 11–22, London, UK.
Springer-Verlag.

C. Chelba and A. Acero. 2006. Adaptation of maximum
entropy capitalizer: Little data can help a lot.Com-
puter Speech and Language, 20(4):382–399.

N. Chinchor. 1997. Muc-7 named entity task definition.
In Proceedings of MUC-7.

H. Christensen, Y. Gotoh, and S. Renals. 2001. Punc-
tuation annotation using statistical prosody models. In
ISCA Workshop on Prosody in Speech Recognition and
Understanding.

A. Gravano, M. Jansche, and M. Bacchiani. 2009.
Restoring punctuation and capitalization in transcribed
speech. InProceedings of ICASSP, pages 4741–4744.
IEEE Computer Society.

J. Hopcroft and J. Ullman, 1979.Introduction to au-
tomata theory, languages, and computation, pages
218–219. Addison-Wesley.

J. Huang, G. Zweig, and M. Padmanabhan. 2001. Infor-
mation extraction from voicemail. InProceedings of
the Conference of the ACL, pages 290–297.

M. Jansche and S. P. Abney. 2002. Information extrac-
tion from voicemail transcripts. InIn EMNLP.

D. Jones, F. Wolf, E. Gibson, E. Williams, E. Fedorenko,
D. Reynolds, and M. Zissman. 2003. Measuring the
readability of automatic speech-to-text transcripts. In
Proceedings of EUROSPEECH, pages 1585–1588.

M. Levit, P. Haffner, A. Gorin, H. Alshawi, and E. N̈oth.
2004. Aspects of named entity processing. InPro-
ceedings of INTERSPEECH.

Y. Liu, E. Shriberg, A. Stolcke, D. Hillard, M. Ostendorf,
and M. Harper. 2006. Enriching speech recognition
with automatic detection of sentence boundaries and
disfluencies. IEEE Transactions on Audio, Speech,
and Language Processing, 14(5):1526–1540.

M. Mohri, F. Pereira, and M. Riley. 2008. Speech recog-
nition with weighted finite-state transducers. InHand-
book on Speech Processing and Speech Communica-
tion. Springer.

M. Mohri. 2009. Weighted automata algorithms. In
Handbook of Weighted Automata. Monographs in The-
oretical Computer Science., pages 213–254. Springer.

M. Padmanabhan, G. Ramaswamy, B. Ramabhadran,
P. Gopalakrishnan, and C. Dunn. 1998. Voicemail
corpus part i. Linguistic Data Consortium, Philadel-
phia.

E. Shriberg, A. Stolcke, D. Hakkani-Tür, and G. T̈ur.
2000. Prosody-based automatic segmentation of
speech into sentences and topics.Speech Communi-
cations, 32(1-2):127–154.

W. Wang, K. Knight, and D. Marcu. 2006. Capitaliz-
ing machine translation. InProceedings of HLT/ACL,
pages 1–8. Association for Computational Linguistics.

206

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 207–215,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Cheap, Fast and Good Enough:

Automatic Speech Recognition with Non-Expert Transcription

Scott Novotney and Chris Callison-Burch

Center for Language and Speech Processing

Johns Hopkins University

snovotne@bbn.com ccb@jhu.edu

Abstract

Deploying an automatic speech recogni-
tion system with reasonable performance
requires expensive and time-consuming
in-domain transcription. Previous work
demonstrated that non-professional anno-
tation through Amazon’s Mechanical Turk
can match professional quality. We use
Mechanical Turk to transcribe conversa-
tional speech for as little as one thir-
tieth the cost of professional transcrip-
tion. The higher disagreement of non-
professional transcribers does not have a
significant effect on system performance.
While previous work demonstrated that
redundant transcription can improve data
quality, we found that resources are bet-
ter spent collecting more data. Finally, we
describe a quality control method without
needing professional transcription.

1 Introduction

Successful speech recognition depends on huge
investments in data collection. Even after train-
ing on 2000+ hours of transcribed conversa-
tional speech, over a billion words of language
modeling text, and hand-crafted pronunciation
dictionaries, state of the art systems still have
an error rate of around 15% for English (Prasad
et al., 2005) Transcribing the large volumes of
data required for Large Vocabulary Continuous
Speech Recognition (LVCSR) of new languages
appears prohibitively expensive. Recent work
has shown that Amazon’s Mechanical Turk1 can

1http://www.mturk.com

be used to cheaply create data for other nat-
ural language processing applications (Snow et
al., 2008; Zaidan and Callison-Burch, 2009; Mc-
Graw et al., 2009). In this paper we focus
on reducing the cost of transcribing conversa-
tional telephone speech (CTS) data. Previous
measurements of Mechanical Turk stopped at
agreement/disagreement with professional an-
notation. We take the next logical step and
measure performance on systems trained with
non-professional transcription.

Mechanical Turk is an online labor mar-
ket where workers (or Turkers) perform simple
tasks called Human Intelligence Tasks (HITs)
for small amounts of money – frequently as lit-
tle as $0.01 per HIT. Since HITs can be tasks
that are difficult for computers, but easy for hu-
mans, they are ideal for natural language pro-
cessing tasks (Snow et al., 2008). Mechanical
Turk has even spawned a business that special-
izes in manual speech transcription.2

Automatic speech recognition (ASR) of con-
versational speech is an extremely difficult prob-
lem. Characteristics like rapid speech, pho-
netic reductions and speaking style limit the
value of non-CTS data, necessitating in-domain
transcription. Even a few hours of transcrip-
tion is sufficient to bootstrap with unsupervised
methods like self-training (Lamel et al., 2002).
The speech community has built effective down-
stream solutions for the past twenty years de-
spite imperfect recognition. In topic classifi-
cation, 90% accuracy is possible on conversa-
tional data even with 80%+ word error rate

2http://castingwords.com/

207

(WER) (Gillick et al., 1993). Other successful
tasks include information retrieval from speech
(Miller et al., 2007) and spoken dialogue pro-
cessing (Young et al., 2007). Inexpensive tran-
scription would quickly open new languages or
domains (like meeting or lecture data) for auto-
matic speech recognition.

In this paper, we make the following points:

• Quality control isn’t necessary as a system
built with non-professional transcription is
only 6% worse for 1

30
the cost of professional

transcription.

• Resources are better spent collecting more
data than improving data quality.

• Transcriber skill can be accurately esti-
mated without gold standard data.

2 Related Work

Research into Mechanical Turk by the NLP com-
munity has largely focused on comparing the
quality of annotations produced by non-expert
Turkers against annotations created by experts.
Snow et al. (2008) conducted a comprehensive
study across a variety of NLP tasks. They
showed that high agreement could be reached
with gold-standard expert annotation for these
tasks through a weighted combination of ten re-
dundant annotations produced by Turkers.

Callison-Burch (2009) showed similar results
for machine translation evaluation, and further
showed that Turkers could accomplish complex
tasks like translating Urdu or creating reading
comprehension tests.

McGraw et al. (2009) used Mechanical Turk
to improve an English isolated word speech rec-
ognizer by having Turkers listen to a word and
select from a list of probable words at a cost of
$20 per hour of transcription.

Marge et al. (2010) collected transcriptions of
verbal instructions to robots with clean speech.
By using five duplicate transcriptions, the aver-
age transcription disagreement with experts was
reduced from 4% to 2%.

Previous efforts at reducing the cost of tran-
scription include the EARS Fisher project (Cieri
et al., 2004), which collected 2000+ hours of En-
glish CTS data – an order of magnitude more

than had previously been transcribed. To speed
transcription and lower costs, Kimball et al.
(2004) created new transcription guidelines and
used automatic segmentation. These improved
the speed of transcription from fifty times real
time to six times real time, and made it cost
effective to transcribe 2000 hours at an aver-
age of $150 per hour. Models trained on the
faster transcripts exhibited almost no degra-
dation in performance, although discrimanitve
training was sensitive to transcription errrors.

3 Experiment Description

3.1 Corpora

We conducted most experiments on a twenty
hour subset of the English Switchboard corpus
(Godfrey et al., 1992) where two strangers con-
verse about an assigned topic. We used two sets
of transcription as our gold standard: high qual-
ity transcription from the LDC and those fol-
lowing the Fisher quick transcription guidelines
(Kimball et al., 2004) provided by a professional
transcription company. All English ASR models
were tested with the carefully transcribed three
hour Dev04 test set from the NIST HUB5 eval-
uation.3 A 75k word lexicon taken from the
EARS Fisher training corpus covers the LDC
training data and has a test OOV rate of 0.18%.

We also conducted experiments in Korean and
collected Hindi and Tamil data from the Call-
friend corpora 4. Participants were given a free
long distance phone call to talk with friends or
family in their native language, although En-
glish frequently appears. Since Callfriend was
originally intended for language identification,
only the 27 hour Korean portion has been tran-
scribed by the LDC.

3.2 LVCSR System

We used Byblos, a state-of-the-art multi-pass
LVCSR system with state-clustered Gaussian
tied-mixture acoustic models and modified
Kneser-Ney smoothed language models (Prasad
et al., 2005). While understanding the system

3http://www.itl.nist.gov/iad/mig/tests/ctr/

1998/current-plan.html
4http://www.ldc.upenn.edu/CallFriend2/

208

details is not essential for this work, we provide
a brief description for completeness.

Recognition begins with cepstral feature ex-
traction using concatenated frames with cepstral
mean subtraction and HLDA to reduce the fea-
ture dimension space. Vocal track length nor-
malization follows. Decoding then requires three
passes: a fast forward pass with coarse one-
gaussian-per-phone models and bigram LM fol-
lowed by a backward pass with triphone models
and a trigram LM to generate word confusion
lattices. The lattices are rescored with a more
powerful quinphone cross-word acoustic model
and trigram LM to extract the one best out-
put. These three steps are repeated after un-
supervised speaker adaptation with constrained
MLLR. Decoding is around ten times real time.

3.3 Transcription Task

Using language-independent speaker activity de-
tection models, we segmented each ten minute
conversation into five second utterances, greatly
simplifying the transcription task (Roy and Roy,
2009). Utterances were assigned in batches of
ten per HIT and played with a simple flash
player with a text box for entry. All non-empty
HITs were approved and we did not award
bonuses except as described in Section 5.1.

3.4 Measuring Annotation Quality

The usefullness of the transcribed data is ul-
timately measured by how much it benefits a
speech recognition system. Factors that inflate
disagreement (word error rate) between Turkers
and professionals do not necessarily impact sys-
tem performance. These include typographical
mistakes, transcription inconsistencies (like im-
properly marking hesitations or the many vari-
ations of um) and spelling variations (geez or
jeez are both valid spellings). Additionally, the
gold standard is itself imperfect, with typical
estimates of professional disagreement around
five percent. Therefore, we judge the quality of
Mechanical Turk data by comparing the perfor-
mance of one LVCSR system trained on Turker
annotation and another trained on professional
transcriptions of the same dataset.

Average Turker Transcription Productivity for English

Transcription time / Utterance length (xRT)

N
u
m

b
e
r

o
f

T
u
rk

e
rs

0 10 20 30 40 50 60

0
2
0

4
0

6
0

8
0

1
0
0

F
is

h
e
r

Q
u
ic

k
T

ra
n
s
 S

p
e
e
d

T
y
p
ic

a
l
H

ig
h
 Q

u
a
lit

y
 S

p
e
e
d

Mean Turker Productivity 12xRT

Figure 1: Histogram of per-turker transcription rate
for twenty hours of English CTS data. Historical
estimates for high quality transcription are 50xRT.
The 2004 Fisher transcription effort achieved 6xRT
and the average here is 11xRT.

4 Establishing Best Practices with

English Switchboard

As an initial test to see how cheaply conversa-
tional data could be transcribed, we uploaded
one hour of test data from Hub5 Dev04. We
first paid $0.20 per HIT ($0.02 per utterance).
This test finished quickly, and we measured the
average disagreement with professionals at 17%.
Next, we reduced payment to $0.10 per HIT
and disagreement was again 17%. Finally, we
pushed the price down to $0.05 per HIT or $5
per hour of transcription and again disagree-
ment was nearly identical at 18%, although a
few Turkers complained about the low pay.

Using this price, we then paid for the full
twenty hours to be redundantly transcribed
three times. 1089 Turkers participated in the
task at an incoming rate of 10 hours of tran-
scription per day. On average, each Turker tran-
scribed 30 utterance (earning 15 cents) at an
average professional disagreement of 23%. Tran-
scribing one minute of audio required an aver-
age eleven minutes of effort (denoted 11xRT).
63 workers transcribed more than one hundred
utterances and one prolific worker transcribed
1223 utterances.

209

4.1 Comparing Non-Professional to

Professional Transcription

Table 1 details the results of different selection
methods for redundant transcription. For each
method of selection, we build an acoustic and
language model and report WER on the heldout
test set (transcribed at very high accuracy).

We first randomly selected one of the three
transcriptions per utterance (as if the data were
only tanscribed once) and repeated this three
times with little variance. Selecting utterances
randomly by Turker performed similarly. Per-
formance of an LVCSR system trained on the
non-professional transcription degrades by only
2.5% absolute (6% relative) despite a disagree-
ment of 23%. This is without any quality
control besides throwing out empty utterances.
The degradation held constant as we swept the
amount of training data frome one to twenty
hours. Bot the acoustic and language models ex-
hibited the log-linear relationship between WER
and the amount of training data. Independent of
the amount of training data, the acoustic model
degraded by a nearly constant 1.7% and the lan-
guage model by 0.8%.

To evaluate the benefit of multiple transcrip-
tions, we built two oracle systems. The Turker

oracle ranks Turkers by the average error rate of
their transcribed utterances against the profes-
sionals and selects utterances by Turker until the
twenty hours is covered (Section 4.3 discusses a
fair way to rank Turkers). The utterance oracle

selects the best of the three different transcrip-
tions per utterance. The best of the three Turk-
ers per utterance wrote the best transcription
two thirds of the time.

The utterance oracle only recovered half of
the degradation for using non-professional tran-
scription. Cutting the disagreement in half
(from 23% to 13%) reduced the WER gap by
about half (from 2.5% to 1%). Using the stan-
dard system combination algorithm ROVER
(Fiscus, 1997) to combine the three transcrip-
tions per utterance only reduced disagreement
from 23% to 21%. While previous work bene-
fited from combining multiple annotations, this
task shows little benefit.

Transcription
Disagreement

ASR WER
with LDC

Random Utterance 23% 42.0%

Random Turker 20% 41.4%

Oracle Utterance 13% 40.9%

Oracle Turker 18% 41.1%

Contractor < 5% 39.6%

LDC - 39.5%

Table 1: Quality of Non-Professional Transcription
on 20 hours of English Switchboard. Even though
disagreement for random selection without quality
control has 23% disagreement with professional tran-
scription, an ASR system trained on the data is only
2.5% worse than using LDC transcriptions. The up-
per bound for quality control (row 3) recovers only
50% of the total loss.

4.2 Combining with External Sources

While in-domain speech transcription is typi-
cally the only effective way to improve the acous-
tic model, out-of-domain transcripts tend to
be useful for language models of conversational
speech. Broadcast News (BN) transcription is
particularly well suited for English Switchboard
data as the topics tend to cover news items
like terrorism or politics. We built a small
one million word language model (to simulate a
resource-poor language) and interpolated it with
varying amounts of LDC or Mechanical Turk
transcriptions. Figure 2 details the results.

4.3 The Value of Quality Control

With a fixed transcription budget, should one
even bother with redundant transcription to im-
prove an ASR system? To find out, we tran-
scribed 40 additional hours of Switchboard us-
ing Mechanical Turk. Disagreement to the LDC
transcriptions was 24%, similar to the initial
20 hours. The two percent degradation of test
WER when using Mechanical Turk compared to
LDC held up with 40 and 60 hours of training.

Given a fixed budget of 60 hours of transcrip-
tion, we compared the quality of 20 hours tran-
scribed three times to 60 hours transcribed once.
The best we could hope to recover from the three
redundant transcriptions is the utterance oracle.
Oracle and singly transcribed data had 13% and
24% disagreement with LDC respectively. Sys-
tem performance was 40.9% with 20 hours of

210

l

l

l

l

l

Improving the Language Model

Words of Transcription for Training (log scale)

T
e
s
t

W
E

R

l l

l

l
l

l

l

l

l

l
l

l

l

l

l

10K 20K 40K 80K 160K

3
8
%

4
0
%

4
2
%

4
4
%

4
6
%

4
8
%

MTurk only
LDC Only
MTurk + 1M BN
LDC + 1M BN

1M word BN LM Initial WER

0.8% Average Degradation

0.6% Average Degradation

(All decodes with a fixed 16 hour LDC acoustic model)

Figure 2: WER with a varied amount of LM training
data and a fixed 16hr acoustic model. MTurk tran-
scription degrades WER by 0.8% absolute across LM
size. When interpolated with 1M words of broadcast
news, this degradation shrinks to 0.6%.

the former and 37.6% with 60 hours of the latter.
Even though perfect selection cuts disagreement
in half, three times as much data helps more.

The 2004 Fisher effort averaged a price of $150
per hour of English CTS transcription. The
company CastingWords produces high quality
(Passy, 2008) English transcription for $90 an
hour using Mechanical Turk by a multi-pass pro-
cess to collect and clean Turker-provided tran-
scripts. While we did not use their service, we
assume it is of comparable quality to the pri-
vate contractor used earlier. The price for LDC
transcription is not comparable here since it was
intended for more precise linguistic tasks. Ex-
trapolating from Figure 3, the entire 2000 Fisher
corpus could be transcribed using Mechanical
Turk at the same cost of collecting 60 hours of
professional transcription.

5 Collection in Other Languages

To test the feasability of improving low-resource
languages, we attempted to collect transcrip-
tions for Korean, Hindi, Tamil CTS data. We
built an LVCSR system in Korean since it is the
only one with reference LDC transcriptions to
use as a test set.

l

100 200 500 1000 2000 5000 10000

3
0

3
5

4
0

4
5

Comparing Cost of Reducing WER

Total Cost (Dollars) to Collect Data (log scale)

T
e
s
t

W
E

R

l

l

l

MTurk − $5/hr
Mturk w/Oracle QC − $15/hr
Casting Words − $90/hr
Private Contractor − $150/hr

Test WER with 20−60 hours of Switchboard Transcription

Figure 3: Historical cost estimates are $150 per hour
of transcription (blue cirlces). The company Casting
Words uses Turkers to transcribe English at $90 per
hour which we estimated to be high quality (green
triangles). Transcription without quality control on
Mechanical Turk (red squares) is drastically cheaper
at $5 per hour. With a fixed budget, it is better
to transcribe more data at lower quality than to im-
prove quality. Contrast the oracle WER for 20 hours
transcribed three times (red diamond) with 60 hours
transcribed once (bottom red square).

5.1 Korean

Korean is spoken by roughly 78 million speak-
ers world wide and is written in Hangul, a pho-
netic orthography, although Chinese characters
frequently appear in written text. Since Korean
has essentially arbitrary spacing (Chong-Woo et
al., 2001), we report Phoneme Error Rate (PER)
instead of WER, which would be unfairly pe-
nalized. Both behave similarly as system per-
formance improves. For comparison, an English
WER of 39.5% has a PER of 34.8%.

We uploaded ten hours of audio to be tran-
scribed once, again segmented into short snip-
pets. Transcription was very slow at first and
we had to pay $0.20 per HIT to attract work-
ers. We posted a separate HIT to refer Korean
transcribers, paying a 25% bonus of the income
earned by referrals. This was quite successful
as two referred Turkers contributed over 80%
of the total transcription (at a cost of $25 per

211

hour instead of $20). We collected three hours
of transcriptions after five weeks, paying eight
Turkers $113 at a transcription rate of 10xRT.

Average Turker disagreement to the LDC
reference was 17% (computed at the charac-
ter level). Using these transcripts to train an
LVCSR system instead of those provided by
LDC degraded PER by 0.8% from 51.3% to
52.1%. For comparison, a system trained on the
entire 27 hours of LDC data had 41.2% PER.

Although performance seems poor, it is suf-
ficiently good to bootstrap with acoustic model
self-training (Lamel et al., 2002). The language
model can be improved by finding ‘conversa-
tional’ web text found with n-gram queries ex-
tracted from the three hours of transcripts (Bu-
lyko et al., 2003).

5.2 Hindi and Tamil

As a feasability experiment, we collected one
hour of transcription in Hindi and Tamil, pay-
ing $20 per hour of transcription. Hindi and
Tamil transcription finished in eight days, per-
haps due to the high prevalence of Turkers in
India (Ipeirotis, 2008). While we did not have
any professional reference, Hindi speaking col-
leagues viewed some of the data and pointed
out errors in English transliteration, but over-
all quality appeared fine. The true test will be
to build an LVCSR system and report WER.

6 Quality Control sans Quality Data

Although we have shown that redundantly tran-
scribing an entire corpus gives little gain, there
is value in some amount of quality control. We
could improve system performance by only re-
jecting Turkers with high disagreement, similar
to confidence selection for active learning or un-
supervised training (Ma and Schwartz,). But if
we are transcribing a truly new domain, there is
no gold-standard data to use as reference, so we
must estimate disagreement against errorful ref-
erence. In this section we provide a practical use
for quality control without gold standard refer-
ence data.

Distribution of Turker Skill

Average Disagreement of Transcribed Utterances by Each Turker

0% 10% 30% 50% 70% 90%

N
o
rm

a
liz

e
d
 D

e
n
s
it
y

Estimated Against Professionals
Estimated Against Other Turkers

23%

25%

Figure 4: Each Turker was judged against profes-
sional and non-professional reference and assigned
an overall disagreement. The distribution of Turker
disagreement follows a gamma distribution, with a
tight cluster of average Turkers and a long-tail of bad
Turkers. Estimating with non-professionals (even
though the reference is 23% wrong on average) is
surprisingly well matched to professional estimate.
Turker estimation over-estimated disagreement by
only 2%.

6.1 Estimating Turker Skill

Using the twenty hour English transcriptions
from Section 4, we computed disagreement for
each Turker against the professional transcrip-
tion for all utterances longer than four words.
Note that each utterance was transcribed by
three random turkers, so there is not one set of
utterances which were transcribed by all turk-
ers. Each Turker transcribed a different, par-
tially overlapping, subset of the data.

For a particular Turker, we estimated the dis-
agreement with other Turkers by using the two
other transcripts as reference and taking the
average. Figure 4 shows the density estimate
of Turker disagreement when calculated against
professional and non-professional transcription.
On average, the non-professional estimate was
3% off from the professional disagreement.

Given that non-professional disagreement is
a good estimate of professional disagreement

212

Quickly Estimating Disagreement

Number of Utterances to Estimate Non−Professional Disagreement

D
if
fe

re
n
c
e
 f

ro
m

 P
ro

fe
s
s
io

n
a
l
E

s
ti
m

a
ti
o
n
 o

n
 A

ll
U

tt
e
ra

n
c
e
s

0
%

5
%

1
0
%

1
5
%

2
0
%

2
5
%

3
0
%

0 5 10 15 20 25 30

Minimum

First Quartile

Median

Third Quartile

Maximum

Figure 5: Boxplot of the difference of non-
professional disagreement with a fixed number of ut-
terances to professional disagreement over all utter-
ances. While error is expectedly high with one ut-
terance, 50% of the estimates are within 3% of the
truth after ten utterances and 75% of the estimates
are within 6% after fifteen utterances.

over all of a Turker’s utterances, we wondered
how few needed to be redundantly transcribed
by other non-professionals. For each Turker,
we started by randomly selecting one utter-
ance and computed the non-professional dis-
agreement. We compared the estimate to the
true professional disagreement over all of the ut-
terances and repeatedly sample 20 times. Then
we increased the number of utterances used to
estimate non-professional disagreement until all
utterances by that Turker are selected.

Figure 5 shows a boxplot of the differences of
non-professional to professional disagreement on
all utterances. As few as fifteen utterances need
to be redundantly transcribed to accurately es-
timate three out of four Turkers within 5% of
the professional disagreement.

6.2 Finding the Right Turkers

Since we can accurately predict a Turker’s skill
with as few as fifteen utterances on average, we
can rank Turkers by their professional and non-
professional disagremeents. By thresholding on
disagreement, we can either select good turk-

++ +

+

+
++ +

+
+

+

+

++++

+
+

+
+

+
++ +

+
+++ ++
+ +

+ ++
+ ++

+

+

++

+

+
+

+ +

+ +
+

+

+++ +

+
++
+

+

+

+
+

+
++

+
+

+

++
++ +
+

+

+
++

+

+

++ +
+

++++
++

++
+

+++
+

+
+

+
+
+ +

+
++

+

+

+

++
+
+
+

+
+

++
+
+

+
+

++++ +

+

++
+

+

+

+

+

++

+

+

+
++

+

+ +

++
+

+

+

++

+

+
++

+
+++
+++ +

+

+

++

+

+

+
+ +

+

++
+++

+

+ +

+
+ ++

+
+

+

+
+

+

+
+ ++

+
+

+

+
+

++ +
+

++
+ +
+

+
+

++++
+
+
+
+

+
+

+

+
+

++

+

+

+

++ +
+
+

+

+
+++

+ +

+

++

+
+

+

+
++

+

+
+

+
++ +++
++ +

+

+

+
+

+ +

+
+++
+
+

+
++

+

+

+ +

+

+
+
+++

+

+
++ ++ +
++ +

+++
+ +

+

+
+

+ +

++
+ +
+

+
+

+

+

+
+
+

+
+
+

+
++

+ +
+ +

+

+
+

+

++

++
+ +++

+

+
+ +
++ +
+
+

+
+

+
+ ++++

++ ++
+

+

+
+

+
++

++ +

+
++

++
++

+
+
+

+
+

+

+
++

+

+

+
++

++
+

+
+
+

+

++++
+
+

+

+ +
+ ++

+

+
+
+

+

+

+
+

+

+ ++
++ +

+

+

+
++
+

++
++

+
+

+ ++
+

+
+

+
+

+

+ +
+ ++

+

+

+

+

+

++++

+

++ ++

+

+
+
++

+

+ +
+

+++ +

+

+ +
+ +

+

+

+
++

+
+++

++
+

+
+

+ +

+
+

++

+

++
+++
++++

++

+

++ +
+

+
+

++
+
+
+

++
+
+ +

+

+
+

+

+
++

+++
+

+

++
+++

+

+
+

+
+ ++
+

++

+ +

+
++++
++

+
+ +

+++

++
+

+
+

++ + +
+

+
++++

++
+ +

++

+
+

+

+ ++ +
++ +
+ +
+
+

++

+
+ +

+

+
+
+

+

+++

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Rating Turkers: Professional v. Non−Professional

Turker Disagreement against Professional

T
u
rk

e
r

D
is

a
g
re

e
m

e
n
t

a
g
a
in

s
t

o
th

e
r

T
u
rk

e
rs

++ ++
+

+++
++
++++
+

+

++++ +
+
++

+

++

+

+

+
+++ +
+
+

+ +++++

+
+ +
++
+ +

+++

+

+

+

+

+

+

+

+
++ ++

++

+
+++

+

+

+
+

+
+

+++
+++ ++

++

+

+

+
+

+

+++

+

++
++

+

+
+

+

++
+

+

+
+

+
+

+

++++

+
+

+
+ +

+
+

+

+
+

+
+

+

+

+

+

+

+

+

+
++

+

+

+

++

+
+

+

++
+

++

+

+

+
+
+

+

+

+

+

+

+

+

+

+
++

+

+

+
+

+

+

+++ +

+

+

+

++

+

+

+

+

+

+

+
+
+ +

+

+

+

++ +

+

+

+

+

+

+

+
++

+
+

+++ +
+

+
+ ++++

+

+
+
+

+

+

+

++ +

+

+ +

+

++ +

+

+

+

+++

+

+

+

+

+

++

+

++

+
+

+++ ++
+ +

+
+

+++ ++
+

+
++

+

+

+

+

+ +

+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+ ++

+

+
+

+

+

+

+

+++
+

+

+

+
+

+

+

+
+

+
+

+
++

++
++

+

+

+
+

+++ ++

+

+
+
+

+ ++++++

+

++ ++ +
+

+

+

+++
+ +

+++

+

+
+

+

+++ ++
++ ++

+
+

+

+

+

+
++++++

+

+ +

+

+

+
+
++

++
+ +++ +

+

+++

+

++ ++ ++ + ++ ++++ ++++

+

+

++++ +++

+
+

+

++

+ +

++
+
+
++ +++ +++

+

++ +

Incorrect Reject
12.5%

Correct Accept
57.54%

Incorrect Accept
4.5%

Correct Reject
25.46%

Threshold at Mean Disagreement of 23.17%

Figure 6: Each Turker is a point with professional (X
axis) plotted against non-professional (Y axis) dis-
agreement. The non-professional disagreement cor-
relates surprisingly well with professional disagree-
ment even though the transcripts used as reference
are 23% wrong on average. By setting a selection
threshold, the space is divided into four quadrants.
The bottom left are correctly accepted: both non-
professional and professional disagreement are below
the threshold. The top left are incorrectly rejected:
using their transcripts would have helped, but they
don’t hurt system performance, just waste money.
The top right are correctly rejected for having high
disagreement. The bottom right are the troublesome
false positives that are included in training but actu-
ally may hurt performance. Luckily, the ratio of false
negatives to false positives is usually much larger.

ers or equivalently reject bad turkers. We can
view the ranking as a precision/recall problem to
select only the ‘good’ Turkers below the thresh-
old. Figure 6 plots each Turker where the X axis
is the professional disagreement and the Y axis
is the non-professional disagreement. Sweeping
the disagreement threshold from zero to one gen-
erates Figure 7, which reports F-score (the har-
monic mean of precision and recall). This sec-
tion suggests a concrete qualification test by first
transcribing 15-30 utterance multiple times to
create a gold standard. Using the transcription
from the best Turker as reference, approve new
Turkers with a WER less than the average WER
from the initial set.

213

0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Selecting Turkers by Estimated Skill

WER Selection Threshold

F
−

s
c
o
re

Figure 7: It is difficult to find only good Turkers since
the false positives outnumber the few good workers.
However, rejecting bad Turkers becomes very easy
once past the mean error rate of 23%. It is better to
use disagreement estimation to reject poor workers
instead of finding good workers.

7 Experience with Mechanical Turk

We initially expected to invest most of our ef-
fort in managing Turker transcription. But the
vast majority of Turkers completed the effort in
good faith with few complaints about pay. Many
left positive comments5 despite the very difficult
task. Indeed, the author’s own disagreement on
a few dozen English utterances were 17.7% and
26.8% despite an honest effort.

Instead, we spent most of our time normaliz-
ing the transcriptions for English acoustic model
training. Every single misspelling or new word
had to be mapped to a pronunciation in order
to be used in training. We initially discarded
any utterance with an out of vocabulary word,
but after losing half of the data, we used a set
of simple heuristics to produce pronunciations.
Even though there were a few thousand of these
errors, they were all singletons and had little
effect on performance. Turkers sometimes left
comments in the transcription box such as “no

5One Turker left a comment “You don’t grow pick-

les!!” in regards to the misinformed speakers she was

transcribing.

audio” or “man1: man2:”. These errant tran-
scriptions could be detected by force aligning
the transcript with the audio and rejecting any
with low scores (Lamel et al., 2000). Extending
transcription to thousands of hours will require
robust methods to automatically deal with er-
rant transcripts and additionally run the risk of
exhausting the available pool of workers.

Finding Korean transcribers required the
most creativity. We found success in interact-
ing with the transcribers, providing feedback,
encouragement and paying bonuses for referring
other workers. Cultivating workers for a new
language is definitely a ‘hands on’ process.

For Hindi and Tamil, Turkers sometimes mis-
interpreted or ignored instructions and trans-
lated into English or transliterated into Roman
characters. Additionally, some linguistic knowl-
edge is required to classify phonemic categories
(like fricative or sonorant) required for acoustic
model training.

8 Conclusion

Unlike previous work which studied the quality
of Mechanical Turk annotations alone, we judge
its value in terms of the real task: improving
system performance. Despite relatively high dis-
agreement with professional transcription, data
collected with Mechanical Turk was nearly as
effective for training speech models. Since this
degradation is so small, redundant annotation to
improve quality is not worth the cost. Resources
are better spent collecting more transcription.
In addition to English, we demonstrated similar
trends in Korean and also collected transcripts
for Hindi and Tamil. Finally, we proposed an
effective procedure to reduce costs by maintain-
ing the quality of the annotator pool without
needing high quality annotation.

Acknowledgments

This research was supported by the EuroMa-
trixPlus project funded by the European Com-
mission by the DARPA GALE program under
Contract No. HR0011-06-2-0001, and NSF un-
der grant IIS-0713448 and by BBN Technologies.
The views and findings are the authors’ alone.

214

References

Ivan Bulyko, Mari Ostendorf, and A. Stolcke. 2003.
Getting more mileage from web text sources for
conversational speech language modeling using
class-dependent mixtures. In HLT-NAACL.

Chris Callison-Burch. 2009. Fast, Cheap, and Cre-
ative: Evaluating Translation Quality Using Ama-
zons Mechanical Turk. EMNLP.

Seung-Shik Kang Chong-Woo, Chong woo Woo, and
Kookmin Univerity. 2001. Automatic segmen-
tation of words using syllable bigram statistics.
In 6th Natural Language Processing Pacific Rim

Symposium.

Christopher Cieri, David Miller, and Kevin Walker.
2004. The fisher corpus: a resource for the next
generations of speech-to-text. In LREC.

Jonathan G. Fiscus. 1997. A post-processing sys-
tem to yield reduced word error rates: Recognizer
output voting error reduction (rover).

L. Gillick, J. Baker, J. Bridle, M. Hunt, Y. Ito,
S. Lowe, J. Orloff, B. Peskin, R. Roth, and F. Scat-
tone. 1993. Application of large vocabulary con-
tinuous speech recognition to topic and speaker
identification using telephone speech. In ICASSP.

Jack Godfrey, Edward Holliman, and Jane Mc-
Daniel. 1992. Switchboard: Telephone speech
corpus for research and development. In ICASSP.

Panos Ipeirotis. 2008. Mechanical turk: The de-
mographics. http://behind-the-enemy-lines.

blogspot.com/2010/03/

new-demographics-of-mechanical-turk.html.

Owen Kimball, Chai-Lin Kao, Teodoro Arvizo, John
Makhoul, and Rukmini Iyer. 2004. Quick tran-
scription and automatic segmentation of the fisher
conversational telephone speech corpus. In RT04

Workshop.

Lori Lamel, Jean luc Gauvain, and Gilles Adda.
2000. Lightly supervised acoustic model training.
In ISCA ITRW ASR2000.

Lori Lamel, Jean luc Gauvain, and Gilles Adda.
2002. Lightly supervised and unsupervised acous-
tic model training. Computer Speech and Lan-

guage, 16(1).

Jeff Ma and Rich Schwartz. Unsupervised versus su-
pervised training of acoustic models. In INTER-

SPEECH.

Matthew Marge, Satanjeev Banerjee, and Alexan-
der Rudnicky. 2010. Using the amazon me-
chanical turk for transcription of spoken language.
ICASSP, March.

Ian McGraw, Alexander Gruenstein, and Andrew
Sutherland. 2009. A self-labeling speech corpus:

Collecting spoken words with an online educa-
tional game. In INTERSPEECH.

D. Miller, M. Kleber, C. Kao, O. Kimball,
T. Colthurst, S.A. Lowe, R.M. Schwartz, and
H. Gish. 2007. Rapid and Accurate Spoken Term
Detection. In INTERSPEECH.

Charles Passy. 2008. Turning audio into words on
the screen. http://online.wsj.com/article/

SB122351860225518093.html.

R. Prasad, S. Matsoukas, CL Kao, J.Z. Ma, DX Xu,
T. Colthurst, O. Kimball, R. Schwartz, J.L. Gau-
vain, L. Lamel, et al. 2005. The 2004 BBN/LIMSI
20xRT English conversational telephone speech
recognition system. In INTERSPEECH.

Brandon Roy and Deb Roy. 2009. Fast transcrip-
tion of unstructured audio recordings. In INTER-

SPEECH.

Rion Snow, Brendan O’Connor, Daniel Jurafsky, and
Andrew Y. Ng. 2008. Cheap and fast—but is
it good?: evaluating non-expert annotations for
natural language tasks. In EMNLP.

Steve. Young, Jost. Schatzmann, Karl. Weilhammer,
and Hui. Ye. 2007. The hidden information state
approach to dialog management. In ICASSP.

Omar F. Zaidan and Chris Callison-Burch. 2009.
Feasibility of human-in-the-loop minimum error
rate training. In EMNLP.

215

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 216–224,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Contextual Information Improves OOV Detection in Speech

Carolina Parada, Mark Dredze
HLTCOE

Johns Hopkins University
3400 North Charles Street,
Baltimore MD 21210, USA
carolinap@jhu.edu
mdredze@cs.jhu.edu

Denis Filimonov
HLTCOE

University of Maryland,
College Park, MD 20742 USA

den@cs.umd.edu

Frederick Jelinek
HLTCOE

Johns Hopkins University
3400 North Charles Street,
Baltimore MD 21210, USA
jelinek@jhu.edu

Abstract

Out-of-vocabulary (OOV) words represent an
important source of error in large vocabulary
continuous speech recognition (LVCSR) sys-
tems. These words cause recognition failures,
which propagate through pipeline systems im-
pacting the performance of downstream ap-
plications. The detection of OOV regions in
the output of a LVCSR system is typically ad-
dressed as a binary classification task, where
each region is independently classified using
local information. In this paper, we show that
jointly predicting OOV regions, and includ-
ing contextual information from each region,
leads to substantial improvement in OOV de-
tection. Compared to the state-of-the-art, we
reduce the missed OOV rate from 42.6% to
28.4% at 10% false alarm rate.

1 Introduction

Even with a vocabulary of one hundred thou-
sand words, a large vocabulary continuous speech
recognition (LVCSR) system encounters out-of-
vocabulary (OOV) words, especially in new do-
mains or genres. New words often include named
entities, foreign words, rare and invented words.
Since these words were not seen during training, the
LVCSR system has no way to recognize them.

OOV words are an important source of error in
LVCSR systems for three reasons. First, OOVs can
never be recognized by the LVCSR system, even if
repeated. Second, OOV words contribute to recog-
nition errors in surrounding words, which propagate
into to later processing stages (translation, under-
standing, document retrieval, etc.). Third, OOVs

are often information-rich nouns – mis-recognized
OOVs can have a greater impact on the understand-
ing of the transcript than other words.

One solution is to simply increase the LVCSR
system’s vocabulary, but there are always new
words. Additionally, increasing the vocabulary size
without limit can sometimes produce higher word
error rates (WER), leading to a tradeoff between
recognition accuracy of frequent and rare words.

A more effective solution is to detect the presence
of OOVs directly. Once identified, OOVs can be
flagged for annotation and addition to the system’s
vocabulary, or OOV segments can be transcribed
with a phone recognizer, creating an open vocabu-
lary LVCSR system. Identified OOVs prevent error
propagation in the application pipeline.

In the literature, there are two basic approaches
to OOV detection: 1) filler models, which explicitly
represent OOVs using a filler, sub-word, or generic
word model (Bazzi, 2002; Schaaf, 2001; Bisani and
Ney, 2005; Klakow et al., 1999; Wang, 2009); and
2) confidence estimation models, which use differ-
ent confidence scores to find unreliable regions and
label them as OOV (Lin et al., 2007; Burget et al.,
2008; Sun et al., 2001; Wessel et al., 2001).

Recently, Rastrow et al. (2009a) presented an ap-
proach that combined confidence estimation models
and filler models to improve state-of-the-art results
for OOV detection. This approach and other confi-
dence based systems (Hazen and Bazzi, 2001; Lin
et al., 2007), treat OOV detection as a binary clas-
sification task; each region is independently classi-
fied using local information as IV or OOV. This
work moves beyond this independence assumption

216

that considers regions independently for OOV de-
tection. We treat OOV detection as a sequence la-
beling problem and add features based on the local
lexical context of each region as well as global fea-
tures from a language model using the entire utter-
ance. Our results show that such information im-
proves OOV detection and we obtain large reduc-
tions in error compared to the best previously re-
ported results. Furthermore, our approach can be
combined with any confidence based system.

We begin by reviewing the current state-of-the-art
results for OOV detection. After describing our ex-
perimental setup, we generalize the framework to a
sequence labeling problem, which includes features
from the local context, lexical context, and entire ut-
terance. Each stage yields additional improvements
over the baseline system. We conclude with a review
of related work.

2 Maximum Entropy OOV Detection

Our baseline system is the Maximum Entropy model
with features from filler and confidence estimation
models proposed by Rastrow et al. (2009a). Based
on filler models, this approach models OOVs by
constructing a hybrid system which combines words
and sub-word units. Sub-word units, or fragments,
are variable length phone sequences selected using
statistical methods (Siohan and Bacchiani, 2005).
The vocabulary contains a word and a fragment lex-
icon; fragments are used to represent OOVs in the
language model text. Language model training text
is obtained by replacing low frequency words (as-
sumed OOVs) by their fragment representation. Pro-
nunciations for OOVs are obtained using grapheme
to phoneme models (Chen, 2003).

This approach also includes properties from con-
fidence estimation systems. Using a hybrid LVCSR
system, they obtain confusion networks (Mangu et
al., 1999), compact representations of the recog-
nizer’s most likely hypotheses. For an utterance,
the confusion network is composed of a sequence
of confused regions, indicating the set of most likely
word/sub-word hypotheses uttered and their poste-
rior probabilities1 in a specific time interval.

1P (wi|A): posterior probability of word i given the acous-
tics, which includes the language model and acoustic model
scores, as described in (Mangu et al., 1999).

Figure 1 depicts a confusion network decoded by
the hybrid system for a section of an utterance in our
test-set. Below the network we present the reference
transcription. In this example, two OOVs were ut-
tered: “slobodan” and “milosevic” and decoded as
four and three in-vocabulary words, respectively. A
confused region (also called “bin”) corresponds to
a set of competing hypothesis between two nodes.
The goal is to correctly label each of the “bins” as
OOV or IV. Note the presence of both fragments
(e.g. s l ow, l aa s) and words in some of the
hypothesis bins.

For any bin of the confusion network, Rastrow et
al. combine features from that region using a binary
Maximum Entropy classifier (White et al., 2007).
Their most effective features were:

Fragment-Posterior =
∑
f∈tj

p(f |tj)

Word-Entropy = −
∑
w∈tj

p(w|tj) log p(w|tj)

tj is the current bin in the confusion network and f
is a fragment in the hybrid dictionary.

We obtained confusion networks for a standard
word based system and the hybrid system described
above. We re-implemented the above features, ob-
taining nearly identical results to Rastrow et al. us-
ing Mallet’s MaxEnt classifier (McCallum, 2002). 2

All real-valued features were normalized and quan-
tized using the uniform-occupancy partitioning de-
scribed in White et al. (2007).3 The MaxEnt model
is regularized using a Gaussian prior (σ2 = 100),
but we found results generally insensitive to σ.

3 Experimental Setup

Before we introduce and evaluate our context ap-
proach, we establish an experimental setup. We used
the dataset constructed by Can et al. (2009) to eval-
uate Spoken Term Detection (STD) of OOVs; we
refer to this corpus as OOVCORP. The corpus con-
tains 100 hours of transcribed Broadcast News En-
glish speech emphasizing OOVs. There are 1290
unique OOVs in the corpus, which were selected
with a minimum of 5 acoustic instances per word.

2Small differences are due to a change in MaxEnt library.
3All experiments use 50 partitions with a minimum of 100

training values per partition.

217

Figure 1: Example confusion network from the hybrid system with OOV regions and BIO encoding. Hypothesis are
ordered by decreasing value of posterior probability. Best hypothesis is the concatenation of the top word/fragments
in each bin. We omit posterior probabilities due to spacing.

Common English words were filtered out to ob-
tain meaningful OOVs: e.g. NATALIE, PUTIN,
QAEDA, HOLLOWAY. Since the corpus was de-
signed for STD, short OOVs (less than 4 phones)
were explicitly excluded. This resulted in roughly
24K (2%) OOV tokens.

For a LVCSR system we used the IBM Speech
Recognition Toolkit (Soltau et al., 2005)4 with
acoustic models trained on 300 hours of HUB4 data
(Fiscus et al., 1998) and excluded utterances con-
taining OOV words as marked in OOVCORP. The lan-
guage model was trained on 400M words from var-
ious text sources with a 83K word vocabulary. The
LVCSR system’s WER on the standard RT04 BN
test set was 19.4%. Excluded utterances were di-
vided into 5 hours of training and 95 hours of test
data for the OOV detector. Both train and test sets
have a 2% OOV rate. We used this split for all exper-
iments. Note that the OOV training set is different
from the LVCSR training set.

In addition to a word-based LVCSR system, we
use a hybrid LVCSR system, combining word and
sub-word (fragments) units. Combined word/sub-
word systems have improved OOV Spoken Term
Detection performance (Mamou et al., 2007; Parada
et al., 2009), better phone error rates, especially in
OOV regions (Rastrow et al., 2009b), and state-of-
the-art performance for OOV detection. Our hybrid
system’s lexicon has 83K words and 20K fragments
derived using Rastrow et al. (2009a). The 1290 ex-
cluded words are OOVs to both the word and hybrid

4We use the IBM system with speaker adaptive training
based on maximum likelihood with no discriminative training.

systems.
Note that our experiments use a different dataset

than Rastrow et. al., but we have a larger vocabu-
lary (83K vs 20K), which is closer to most modern
LVCSR system vocabularies; the resulting OOVs
are more challenging but more realistic.

3.1 Evaluation

Confusion networks are obtained from both the
word and hybrid LVCSR systems. In order to eval-
uate the performance of the OOV detector, we align
the reference transcript to the audio. The LVCSR
transcript is compared to the reference transcript at
the confused region level, so each confused region
is tagged as either OOV or IV. The OOV detector
assigns a score/probability for IV/OOV to each of
these regions.

Previous research reported OOV detection accu-
racy on all test data. However, once an OOV word
has been observed in the training data for the OOV
detector, even if it never appeared in the LVCSR
training data, it is no longer truly OOV. The fea-
tures used in previous approaches did not necessar-
ily provide an advantage on observed versus unob-
served OOVs, but our features do yield an advan-
tage. Therefore, in the sections that follow we re-
port unobserved OOV accuracy: OOV words that
do not appear in either the OOV detector’s or the
LVCSR’s training data. While this penalizes our re-
sults, it is a more informative metric of true system
performance.

We present results using standard detection error
tradeoff (DET) curves (Martin et al., 1997). DET

218

curves measure tradeoffs between misses and false
alarms and can be used to determine the optimal op-
erating point of a system. The x-axis varies the false
alarm rate (false positive) and the y-axis varies the
miss (false negative) rate; lower curves are better.

4 From MaxEnt to CRFs

As a classification algorithm, Maximum Entropy as-
signs a label to each region independently. However,
OOV words tend to be recognized as two or more IV
words, hence OOV regions tend to co-occur. In the
example of Figure 1, the OOV word “slobodan” was
recognized as four IV words: “slow vote i mean”.
This suggests that sequence models, which jointly
assign all labels in a sequence, may be more appro-
priate. Therefore, we begin incorporating context by
moving from classification to sequence models.

MaxEnt classification models the target label as
p(yi|xi), where yi is a discrete variable representing
the ith label (“IV” or “OOV”) and xi is a feature
vector representing information for position i. The
conditional distribution for yi takes the form

p(yi|xi) =
1

Z(xi)
exp(

K∑
k=1

λkfk(yi,xi)) ,

Z(xi) is a normalization term and f(yi,xi) is a vec-
tor ofK features, such as those defined in Section 2.
The model is trained discriminatively: parameters λ
are chosen to maximize conditional data likelihood.

Conditional Random Fields (CRF) (Lafferty et
al., 2001) generalize MaxEnt models to sequence
tasks. While having the same model structure as
Hidden Markov Models (HMMs), CRFs are trained
discriminatively and can use large numbers of corre-
lated features. Their primary advantage over Max-
Ent models is their ability to find an optimal labeling
for the entire sequence rather than greedy local deci-
sions. CRFs have been used successfully used in nu-
merous text processing tasks and while less popular
in speech, still applied successfully, such as sentence
boundary detection (Liu et al., 2005).

A CRF models the entire label sequence y as:

p(y|x) =
1

Z(x)
exp(λF (y,x)) ,

where F (y,x) is a global feature vector for input

sequence x and label sequence y and Z(x) is a nor-
malization term.5

5 Context for OOV Detection

We begin by including a minimal amount of local
context in making OOV decisions: the predicted la-
bels for adjacent confused regions (bins). This infor-
mation helps when OOV bins occur in close proxim-
ity, such as successive OOV bins. This is indeed the
case: in the OOV detector training data only 48% of
OOV sequences contained a single bin; sequences
were of length 2 (40%), 3 (9%) and 4 (2%). We
found similar results in the test data. Therefore, we
expect that even a minimal amount of context based
on the labels of adjacent bins will help.

A natural way of incorporating contextual infor-
mation is through a CRF, which introduces depen-
dencies between each label and its neighbors. If a
neighboring bin is likely an OOV, it increases the
chance that the current bin is OOV.

In sequence models, another technique for cap-
turing contextual dependence is the label encoding
scheme. In information extraction, where sequences
of adjacent tokens are likely to receive the same
tag, the beginning of each sequence receives a dif-
ferent tag from words that continue the sequence.
For example, the first token in a person name is
labeled B-PER and all subsequent tokens are la-
beled I-PER. This is commonly referred to as BIO
encoding (beginning, inside, outside). We applied
this encoding technique to our task, labeling bins
as either IV (in vocabulary), B-OOV (begin OOV)
and I-OOV (inside OOV), as illustrated in Figure 1.
This encoding allows the algorithm to identify fea-
tures which might be more indicative of the begin-
ning of an OOV sequence. We found that this en-
coding achieved a superior performance to a simple
IV/OOV encoding. We therefore utilize the BIO en-
coding in all CRF experiments.

Another means of introducing context is through
the order of the CRF model. A first order model
(n = 1) adds dependencies only between neighbor-
ing labels, whereas an n order model creates depen-
dencies between labels up to a distance of n posi-
tions. Higher order models capture length of label

5CRF experiments used the CRF++ package
http://crfpp.sourceforge.net/

219

regions (up to length n). We experiment with both
a first order and a second order CRF. Higher order
models did not provide any improvements.

In order to establish a comparative baseline, we
first present results using the same features from
the system described in Section 2 (Word-Entropy
and Fragment-Posterior). All real-valued features
were normalized and quantized using the uniform-
occupancy partitioning described in White et al.
(2007).6 Quantization of real valued features is stan-
dard for log-linear models as it allows the model to
take advantage of non-linear characteristics of fea-
ture values and is better handled by the regulariza-
tion term. As in White et. al. we found it improved
performance.

Figure 2 depicts DET curves for OOV detection
for the MaxEnt baseline and first and second order
CRFs with BIO encoding on unobserved OOVs in
the test data. We generated predictions at different
false alarm rates by varying a probability threshold.
For MaxEnt we used the predicted label probability
and for CRFs the marginal probability of each bin’s
label. While the first order CRF achieves nearly
identical performance to the MaxEnt baseline, the
second order CRF shows a clear improvement. The
second order model has a 5% absolute improvement
at 10% false alarm rate, despite using the identi-
cal features as the MaxEnt baseline. Even a small
amount of context as expressed through local label-
ing decisions improves OOV detection.

The quantization of the features yields quan-
tized prediction scores, resulting in the non-smooth
curves for the MaxEnt and 1st order CRF results.
However, when using a second order CRF the OOV
score varies more smoothly since more features
(context labels) are considered in the prediction of
the current label.

6 Local Lexical Context

A popular approach in sequence tagging, such as in-
formation extraction or part of speech tagging, is to
include features based on local lexical content and
context. In detecting a name, both the lexical form
“John” and the preceding lexical context “Mr.” pro-
vide clues that “John” is a name. While we do not

6All experiments use 50 partitions with a minimum of 100
training values per partition.

0 2 4 6 8 10 12 14

P(FA)

10

20

30

40

50

60

P
(M

is
s)

MaxEnt (Baseline)

CRF (First Order)

CRF (Second Order)

Figure 2: DET curves for OOV detection using a Max-
imum Entropy (MaxEnt) classifier and contextual infor-
mation using a 1st order and 2nd order CRF. All models
use the same baseline features (Section 2).

know the actual lexical items in the speech sequence,
the speech recognizer output can be used as a best
guess. In the example of Figure 1, the words “for-
mer president” are good indicators that the following
word is either the word “of” or a name, and hence a
potential OOV. Combining this lexical context with
hypothesized words can help label the subsequent
regions as OOVs (note that none of the hypothesized
words in the third bin are “of”, names, or nouns).

Words from the LVCSR decoding of the sentence
are used in the CRF OOV detector. For each bin in
the confusion network, we select the word with the
highest probability (best hypothesis). We then add
the best hypothesis word as a feature of the form:
current word=X. These features capture how the
LVCSR system incorrectly recognizes OOV words.
However, since detection is measured on unobserved
OOVs, these features alone may not help.

Instead, we turn to lexical context, which includes
correctly recognized IV words. We evaluate the fol-
lowing sets of features derived from lexical context:

• Current bin’s best hypothesis. (Current-Word)

• Unigrams and bigrams from the best hypoth-
esis in a window of 5 words around current
bin. This feature ignores the best hypothesis in
the current bin, i.e., word[-2],word[-1]
is included, but word[-1],word[0] is not.
(Context-Bigrams)

220

0 2 4 6 8 10 12 14

P(FA)

10

20

30

40

50

60

P
(M

is
s)

CRF (Second Order)

+Current-Word

+Context-Bigrams

+Current-Trigrams

+All-Words

+All-Words-Stemmed

Figure 3: A second order CRF (Section 5) and additional
features including including word identities from current
and neighboring bins (Section 6).

• Unigrams, bigrams, and trigrams in a window
of 5 words around and including current bin.
(Current-Trigrams)

• All of the above features. (All-Words)

• All above features and their stems.7 (All-
Words-Stemmed)

We added these features to the second order CRF
with BIO encoding and baseline features (Figure 3).
As expected, the current words did not improve per-
formance on unobserved OOVs. When the current
words are combined with the lexical context and
their lemmas, they give a significant boost in perfor-
mance: a 4.2% absolute improvement at 10% false
alarm rate over the previous CRF system, and 9.3%
over the MaxEnt baseline. Interestingly, only com-
bining context and current word gives a substantial
gain. This indicates that OOVs tend to occur with
certain distributional characteristics that are inde-
pendent of the OOV word uttered (since we consider
only unobserved OOVs), perhaps because OOVs
tend to be named entities, foreign words, or rare
nouns. The importance of distributional features is
well known for named entity recognition and part
of speech tagging (Pereira et al., 1993). Other fea-
tures such as sub-strings or baseline features (Word-

7To obtain stemmed words, we use the CPAN package:
http://search.cpan.org/~snowhare/Lingua-Stem-0.83.

Entropy, Fragment-Posterior) from neighboring bins
did not provide further improvement.

7 Global Utterance Context

We now include features that incorporate informa-
tion from the entire utterance. The probability of an
utterance as computed by a language model is of-
ten used as a measure of fluency of the utterance.
We also observe that OOV words tend to take very
specific syntactic roles (more than half of them are
proper nouns), which means the surrounding context
will have predictive lexical and syntactic properties.
Therefore, we use a syntactic language model.

7.1 Language Models

We evaluated both a standard trigram language
model and a syntactic language model (Filimonov
and Harper, 2009a). The syntactic model estimates
the joint probability of the word and its syntactic tag
based on the preceding words and tags. The proba-
bility of an utterance wn

1 of length n is computed by
summing over all latent syntactic tag assignments:

p(utt) = p(wn
1) =

∑
t1...tn

n∏
i−1

p(wi, ti|wi−1
1 , ti−1

1)

(1)
where wi and ti are the word and tag at posi-
tion i, and wi−1

1 and ti−1
1 are sequences of words

and tags of length i − 1 starting a position 1.
The model is restricted to a trigram context, i.e.,
p(wi, ti|wi−1

i−2, t
i−1
i−2); experiments that increased the

order yielded no improvement.
We trained the language model on 130 million

words from Hub4 CSR 1996 (Garofolo et al., 1996).
The corpus was parsed using a modified Berkeley
parser (Huang and Harper, 2009) and tags extracted
from parse trees incorporated the word’s POS, the
label of its immediate parent, and the relative posi-
tion of the word among its siblings. 8 The parser
required separated contractions and possessives, but
we recombined those words after parsing to match
the LVCSR tokenization, merging their tags. Since
we are considering OOV detection, the language
model was restricted to LVCSR system’s vocabu-
lary.

8The parent tagset of Filimonov and Harper (2009a).

221

0 2 4 6 8 10 12 14

P(FA)

10

20

30

40

50

60

P
(M

is
s)

All-Words-Lemmas

+3gram-LM

+Syntactic-LM

+Syntactic-LM+Tags

Figure 4: Features from a language model added to the
best CRF from Section 6 (All-Words-Stemmed).

We also used the standard trigram LM for refer-
ence. It was trained on the same data and with the
same vocabulary using the SRILM toolkit. We used
interpolated modified KN discounting.

7.2 Language Model Features
We designed features based on the entire utterance
using the language model to measure how the utter-
ance is effected by the current token: whether the
utterance is more likely given the recognized word
or some OOV word.

Likelihood-ratio = log
p(utt)

p(utt|wi = unknown)

Norm-LM-score =
log p(utt)
length(utt)

where p(utt) represents the probability of the ut-
terance using the best path hypothesis word of the
LVCSR system, and p(utt|wi = unknown) is the
probability of the entire utterance with the current
word in the LVCSR output replaced by the token
<unk>, used to represent OOVs. Intuitively, when
an OOV word is recognized as an IV word, the flu-
ency of the utterance is disrupted, especially if the
IV is a function word. The Likelihood-ratio is de-
signed to show whether the utterance is more fluent
(more likely) if the current word is a misrecognized
OOV. 9 The second feature (Norm-LM-score) is the

9Note that in the standard n-gram LM the feature reduces to

log
Qi+n−1

k=i
p(wk|wk−1

k−n+1)Qi+n−1
k=i

p(wk|wk−1
k−n+1,wi=unknown)

, i.e., only n n-grams actu-

0 5 10 15 20 25 30 35 40

P(FA)

0

10

20

30

40

50

60

70

80

P
(M

is
s)

MaxEnt (Baseline)

CRF All Features

CRF All Features (Unobserved)

CRF All Features (Observed)

Figure 5: A CRF with all context features compared to
the state-of-the-art MaxEnt baseline. Results for the CRF
are shown for unobserved, observed and both OOVs.

normalized likelihood of the utterance. An unlikely
utterance biases the system to predicting OOVs.

We evaluated a CRF with these features and
all lexical context features (Section 6) using both
the trigram model and the joint syntactic language
model (Figure 4). Each model improved perfor-
mance, but the syntactic model provided the largest
improvement. At 10% false alarm rate it yields a
4% absolute improvement with respect to the pre-
vious best result (All-Words-Stemmed) and 13.3%
over the MaxEnt baseline. Higher order language
models did not improve.

7.3 Additional Syntactic Features

We explored other syntactic features; the most ef-
fective was the 5-tag window of POS tags of the
best hypothesis.10 The additive improvement of this
feature is depicted in Figure 4 labeled “+Syntactic-
LM+Tags.” With this feature, we achieve a small ad-
ditional gain. We tried other syntactic features with-
out added benefit, such as the most likely POS tag
for <unk>in the utterance.

ally contribute. However, in the syntactic LM, the entire utter-
ance is affected by the change of one word through the latent
states (tags) (Eq. 1), thus making it a truly global feature.

10The POS tags were generated by the same syntactic LM
(see Section 7.1) as described in (Filimonov and Harper,
2009b). In this case, POS tags include merged tags, i.e., the vo-
cabulary word fred’s may be tagged as NNP-POS or NNP-VBZ.

222

8 Final System

Figure 5 summarizes all of the context features in a
single second order BIO encoded CRF. Results are
shown for state-of-the-art MaxEnt (Rastrow et al.,
2009a) as well as for the CRF on unobserved, ob-
served and combined OOVs. For unobserved OOVs
our final system achieves a 14.2% absolute improve-
ment at 10% FA rate. The absolute improvement
on all OOVs was 23.7%. This result includes ob-
served OOVs: words that are OOV for the LVCSR
but are encountered in the OOV detector’s training
data. MaxEnt achieved similar performance for ob-
served and unobserved OOVs so we only include a
single combined result.

Note that the MaxEnt curve flattens at 26% false
alarms, while the CRF continues to decrease. The
elbow in the MaxEnt curve corresponds to the prob-
ability threshold at which no other labeled OOV re-
gion has a non-zero OOV score (regions with zero
entropy and no fragments). In this case, the CRF
model can still rely on the context to predict a non-
zero OOV score. This helps applications where
misses are more heavily penalized than false alarms.

9 Related Work

Most approaches to OOV detection in speech can
be categorized as filler models or confidence esti-
mation models. Filler models vary in three dimen-
sions: 1) The type of filler units used: variable-
length phoneme units (as the baseline system) vs
joint letter sound sub-words; 2) Method used to de-
rive units: data-driven (Bazzi and Glass, 2001) or
linguistically motivated (Choueiter, 2009); 3) The
method for incorporating the LVCSR system: hi-
erarchical (Bazzi, 2002) or flat models (Bisani and
Ney, 2005). Our approach can be integrated with
any of these systems.

We have shown that combining the presence of
sub-word units with other measures of confidence
can provided significant improvements, and other
proposed local confidence measures could be in-
cluded in our system as well. Lin et al. (2007)
uses joint word/phone lattice alignments and clas-
sifies high local miss-alignment regions as OOVs.
Hazen and Bazzi (2001) combines filler models with
word confidence scores, such as the minimum nor-
malized log-likelihood acoustic model score for a

word and, the fraction of the N-best utterance hy-
potheses in which a hypothesized word appears.

Limited contextual information has been pre-
viously exploited (although maintaining indepen-
dence assumptions on the labels). Burget et al.
(2008) used a neural-network (NN) phone-posterior
estimator as a feature for OOV detection. The
network is fed with posterior probabilities from
weakly-constrained (phonetic-based) and strongly-
constrained (word-based) recognizers. Their sys-
tem estimates frame-based scores, and interestingly,
they report large improvements when using tempo-
ral context in the NN input. This context is quite lim-
ited; it refers to posterior scores from one frame on
each side. Other features are considered and com-
bined using a MaxEnt model. They attribute this
gain to sampling from neighboring phonemes. Sun
et al. (2001) combines a filler-based model with a
confidence approach by using several acoustic fea-
tures along with context based features, such as
whether the next word is a filler, acoustic confidence
features for next word, number of fillers, etc.

None of these approaches consider OOV detec-
tion as a sequence labeling problem. The work of
Liu et al. (2005) is most similar to the approach pre-
sented here, but applies a CRF to sentence boundary
detection.

10 Conclusion and Future Work

We have presented a novel and effective approach to
improve OOV detection in the output confusion net-
works of a LVCSR system. Local and global con-
textual information is integrated with sub-word pos-
terior probabilities obtained from a hybrid LVCSR
system in a CRF to detect OOV regions effectively.
At a 10% FA rate, we reduce the missed OOV rate
from 42.6% to 28.4%, a 33.3% relative error reduc-
tion. Our future work will focus on additional fea-
tures from the recognizer aside from the single best-
hypothesis, as well as other applications of contex-
tual sequence prediction to speech tasks.

Acknowledgments

The authors thank Ariya Rastrow for providing the
baseline system code, Abhinav Sethy and Bhuvana
Ramabhadran for providing the data used in the ex-
periments and for many insightful discussions.

223

References
Issam Bazzi and James Glass. 2001. Learning units

for domain-independent out-of-vocabulary word mod-
elling. In Eurospeech.

Issam Bazzi. 2002. Modelling out-of-vocabulary words
for robust speech recognition. Ph.D. thesis, Mas-
sachusetts Institute of Technology.

M. Bisani and H. Ney. 2005. Open vocabulary speech
recognition with flag hybrid models. In INTER-
SPEECH.

L. Burget, P. Schwarz, P. Matejka, M. Hannemann,
A. Rastrow, C. White, S. Khudanpur, H. Hermansky,
and J. Cernocky. 2008. Combination of strongly and
weakly constrained recognizers for reliable detection
of OOVS. In ICASSP.

Dogan Can, Erica Cooper, Abhinav Sethy, Chris White,
Bhuvana Ramabhadran, and Murat Saraclar. 2009.
Effect of pronounciations on OOV queries in spoken
term detection. ICASSP.

Stanley F. Chen. 2003. Conditional and joint models for
grapheme-to-phoneme conversion. In Eurospeech.

G. Choueiter. 2009. Linguistically-motivated sub-
word modeling with applications to speech recogni-
tion. Ph.D. thesis, Massachusetts Institute of Technol-
ogy.

Denis Filimonov and Mary Harper. 2009a. A joint
language model with fine-grain syntactic tags. In
EMNLP.

Denis Filimonov and Mary Harper. 2009b. Measuring
tagging performance of a joint language model. In
Proceedings of the Interspeech 2009.

Jonathan Fiscus, John Garofolo, Mark Przybocki,
William Fisher, and David Pallett, 1998. 1997 En-
glish Broadcast News Speech (HUB4). Linguistic
Data Consortium, Philadelphia.

John Garofolo, Jonathan Fiscus, William Fisher, and
David Pallett, 1996. CSR-IV HUB4. Linguistic Data
Consortium, Philadelphia.

Timothy J. Hazen and Issam Bazzi. 2001. A comparison
and combination of methods for OOV word detection
and word confidence scoring. In Proceedings of the
International Conference on Acoustics.

Zhongqiang Huang and Mary Harper. 2009. Self-
Training PCFG grammars with latent annotations
across languages. In EMNLP.

Dietrich Klakow, Georg Rose, and Xavier Aubert. 1999.
OOV-detection in large vocabulary system using au-
tomatically defined word-fragments as fillers. In Eu-
rospeech.

John Lafferty, Andrew McCallum, and Fernando Pereira.
2001. Conditional random fields: Probabilistic models
for segmenting and labeling sequence data. In Interna-
tional Conference on Machine Learning (ICML).

Hui Lin, J. Bilmes, D. Vergyri, and K. Kirchhoff. 2007.
OOV detection by joint word/phone lattice alignment.
In ASRU, pages 478–483, Dec.

Yang Liu, Andreas Stolcke, Elizabeth Shriberg, and Mary
Harper. 2005. Using conditional random fields for
sentence boundary detection in speech. In ACL.

Jonathan Mamou, Bhuvana Ramabhadran, and Olivier
Siohan. 2007. Vocabulary independent spoken term
detection. In SIGIR.

L. Mangu, E. Brill, and A. Stolcke. 1999. Finding con-
sensus among words. In Eurospeech.

A. Martin, G. Doddington, T. Kamm, M. Ordowski, and
M. Przybocky. 1997. The DET curve in assessment of
detection task performance. In Eurospeech.

Andrew McCallum. 2002. MALLET: A machine learn-
ing for language toolkit. http://mallet.cs.
umass.edu.

Carolina Parada, Abhinav Sethy, and Bhuvana Ramab-
hadran. 2009. Query-by-example spoken term detec-
tion for OOV terms. In ASRU.

Fernando Pereira, Naftali Tishby, and Lillian Lee. 1993.
Distributional clustering of english words. In ACL.

Ariya Rastrow, Abhinav Sethy, and Bhuvana Ramabhad-
ran. 2009a. A new method for OOV detection using
hybrid word/fragment system. ICASSP.

Ariya Rastrow, Abhinav Sethy, Bhuvana Ramabhadran,
and Fred Jelinek. 2009b. Towards using hybrid,
word, and fragment units for vocabulary independent
LVCSR systems. INTERSPEECH.

T. Schaaf. 2001. Detection of OOV words using gen-
eralized word models and a semantic class language
model. In Eurospeech.

O. Siohan and M. Bacchiani. 2005. Fast vocabulary-
independent audio search using path-based graph in-
dexing. In INTERSPEECH.

H. Soltau, B. Kingsbury, L. Mangu, D. Povey, G. Saon,
and G. Zweig. 2005. The IBM 2004 conversational
telephony system for rich transcription. In ICASSP.

H. Sun, G. Zhang, f. Zheng, and M. Xu. 2001. Using
word confidence measure for OOV words detection in
a spontaneous spoken dialog system. In Eurospeech.

Stanley Wang. 2009. Using graphone models in au-
tomatic speech recognition. Master’s thesis, Mas-
sachusetts Institute of Technology.

F. Wessel, R. Schluter, K. Macherey, and H. Ney. 2001.
Confidence measures for large vocabulary continuous
speech recognition. IEEE Transactions on Speech and
Audio Processing, 9(3).

Christopher White, Jasha Droppo, Alex Acero, and Ju-
lian Odell. 2007. Maximum entropy confidence esti-
mation for speech recognition. In ICASSP.

224

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 225–228,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Improved Extraction Assessment through Better Language Models

Arun Ahuja, Doug Downey
EECS Dept., Northwestern University

Evanston, IL 60208
{arun.ahuja, ddowney}@eecs.northwestern.edu

Abstract

A variety of information extraction techniques
rely on the fact that instances of the same
relation are “distributionally similar,” in that
they tend to appear in similar textual con-
texts. We demonstrate that extraction accu-
racy depends heavily on the accuracy of the
language model utilized to estimate distribu-
tional similarity. An unsupervised model se-
lection technique based on this observation is
shown to reduce extraction and type-checking
error by 26% over previous results, in experi-
ments with Hidden Markov Models. The re-
sults suggest that optimizing statistical lan-
guage models over unlabeled data is a promis-
ing direction for improving weakly supervised
and unsupervised information extraction.

1 Introduction

Many weakly supervised and unsupervised informa-
tion extraction techniques assess the correctness of
extractions using the distributional hypothesis—the
notion that words with similar meanings tend to oc-
cur in similar contexts (Harris, 1985). A candidate
extraction of a relation is deemed more likely to be
correct when it appears in contexts similar to those
of “seed” instances of the relation, where the seeds
may be specified by hand (Paşca et al., 2006), taken
from an existing, incomplete knowledge base (Snow
et al., 2006; Pantel et al., 2009), or obtained in an un-
supervised manner using a generic extractor (Banko
et al., 2007). We refer to this technique as Assess-
ment by Distributional Similarity (ADS).

Typically, distributional similarity is computed by
comparing co-occurrence counts of extractions and

seeds with various contexts found in the corpus. Sta-
tistical Language Models (SLMs) include methods
for more accurately estimating co-occurrence proba-
bilities via back-off, smoothing, and clustering tech-
niques (e.g. (Chen and Goodman, 1996; Rabiner,
1989; Bell et al., 1990)). Because SLMs can be
trained from only unlabeled text, they can be applied
for ADS even when the relations of interest are not
specified in advance (Downey et al., 2007). Unla-
beled text is abundant in large corpora like the Web,
making nearly-ceaseless automated optimization of
SLMs possible. But how fruitful is such an effort
likely to be—to what extent does optimizing a lan-
guage model over a fixed corpus lead to improve-
ments in assessment accuracy?

In this paper, we show that an ADS technique
based on SLMs is improved substantially when
the language model it employs becomes more ac-
curate. In a large-scale set of experiments, we
quantify how language model perplexity correlates
with ADS performance over multiple data sets and
SLM techniques. The experiments show that accu-
racy over unlabeled data can be used for selecting
among SLMs—for an ADS approach utilizing Hid-
den Markov Models, this results in an average error
reduction of 26% over previous results in extraction
and type-checking tasks.

2 Extraction Assessment with Language
Models

We begin by formally defining the extraction and
typechecking tasks we consider, then discuss statis-
tical language models and their utilization for ex-
traction assessment.

225

The extraction task we consider is formalized as
follows: given a corpus, a target relation R, a list
of seed instances SR, and a list of candidate extrac-
tions UR, the task is to order elements of UR such
that correct instances for R are ranked above extrac-
tion errors. Let URi denote the set of the ith argu-
ments of the extractions in UR, and let SRi be de-
fined similarly for the seed set SR. For relations of
arity greater than one, we consider the typechecking
task, an important sub-task of extraction (Downey et
al., 2007). The typechecking task is to rank extrac-
tions with arguments that are of the proper type for a
relation above type errors. As an example, the ex-
traction Founded(Bill Gates, Oracle) is
type correct, but is not correct for the extraction task.

2.1 Statistical Language Models
A Statistical Language Model (SLM) is a probabil-
ity distribution P (w) over word sequences w =
(w1, ..., wr). The most common SLM techniques
are n-gram models, which are Markov models in
which the probability of a given word is dependent
on only the previous n−1 words. The accuracy of an
n-gram model of a corpus depends on two key fac-
tors: the choice of n, and the smoothing technique
employed to assign probabilities to word sequences
seen infrequently in training. We experiment with
choices of n from 2 to 4, and two popular smoothing
approaches, Modified Kneser-Ney (Chen and Good-
man, 1996) and Witten-Bell (Bell et al., 1990).

Unsupervised Hidden Markov Models (HMMs)
are an alternative SLM approach previously shown
to offer accuracy and scalability advantages over n-
gram models in ADS (Downey et al., 2007). An
HMM models a sentence w as a sequence of obser-
vations wi each generated by a hidden state variable
ti. Here, hidden states take values from {1, . . . , T},
and each hidden state variable is itself generated by
some number k of previous hidden states. Formally,
the joint distribution of a word sequence w given a
corresponding state sequence t is:

P (w|t) =
∏

i

P (wi|ti)P (ti|ti−1, . . . , ti−k) (1)

The distributions on the right side of Equation 1 are
learned from the corpus in an unsupervised manner
using Expectation-Maximization, such that words
distributed similarly in the corpus tend to be gen-
erated by similar hidden states (Rabiner, 1989).

2.2 Performing ADS with SLMs
The Assessment by Distributional Similarity (ADS)
technique is to rank extractions in UR in decreas-
ing order of distributional similarity to the seeds,
as estimated from the corpus. In our experiments,
we utilize an ADS approach previously proposed for
HMMs (Downey et al., 2007) and adapt it to also ap-
ply to n-gram models, as detailed below.

Define a context of an extraction argument ei to
be a string containing the m words preceding and m
words following an occurrence of ei in the corpus.
Let Ci = {c1, c2, ..., c|Ci|} be the union of all con-
texts of extraction arguments ei and seed arguments
si for a given relation R. We create a probabilis-
tic context vector for each extraction ei where the
j-th dimension of the vector is the probability of the
context surrounding given the extraction, P (cj |ei),
computed from the language model. 1

We rank the extractions in UR according to how
similar their arguments’ contextual distributions,
P (c|ei), are to those of the seed arguments. Specifi-
cally, extractions are ranked according to:

f(e) =
∑
ei∈e

KL(

∑
w′∈SRi

P (c|w′)
|SRi|

, P (c|ei)) (2)

where KL represents KL Divergence, and the outer
sum is taken over arguments ei of the extraction e.

For HMMs, we alternatively rank extractions us-
ing the HMM state distributions P (t|ei) in place of
the probabilistic context vectors P (c|ei). Our exper-
iments show that state distributions are much more
accurate for ADS than are HMM context vectors.

3 Experiments

In this section, we present experiments showing that
SLM accuracy correlates strongly with ADS perfor-
mance. We also show that SLM performance can be
used for model selection, leading to an ADS tech-
nique that outperforms previous results.

3.1 Experimental Methodology
We experiment with a wide range of n-gram and
HMM models. The n-gram models are trained us-
ing the SRILM toolkit (Stolcke, 2002). Evaluating a

1For example, for context cj = “I visited in July” and ex-
traction ei = “Boston,” P (cj |ei) is P(“I visited Boston in July”)
/ P(“Boston”), where each string probability is computed using
the language model.

226

LM Unary Binary Wikipedia
HMM 1-5 -.911 -.361 -.994
HMM 2-5 -.856 .120 -.930
HMM 3-5 -.823 -.683 .922
HMM 1-10 -.916 -.967 -.905
HMM 2-10 -.877 -.797 -.963
HMM 3-10 -.957 -.669 -.924
HMM 1-25 -.933 -.850 -.959
HMM 1-50 -.942 -.942 -.947
HMM 1-100 -.896 -.877 -.942
N-Gram -.512 -.999 .024

Table 1: Pearson Correlation value for extraction perfor-
mance (in AUC) and SLM performance (in perplexity).
Extraction accuracy increases as perplexity decreases,
with an average correlation coefficient of -0.742. “HMM
k-T ” denotes an HMM model of order k, with T states.

variety of HMM configurations over a large corpus
requires a scalable training architecture. We con-
structed a parallel HMM codebase using the Mes-
sage Passing Interface (MPI), and trained the models
on a supercomputing cluster. All language models
were trained on a corpus of 2.8M sentences of Web
text (about 60 million tokens). SLM performance is
measured using the standard perplexity metric, and
assessment accuracy is measured using area under
the precision-recall curve (AUC), a standard metric
for ranked lists of extractions. We evaluated perfor-
mance on three distinct data sets. The first two data
sets evaluate ADS for unsupervised information ex-
traction, and were taken from (Downey et al., 2007).
The first, Unary, was an extraction task for unary
relations (Company, Country, Language, Film) and
the second, Binary, was a type-checking task for
binary relations (Conquered, Founded, Headquar-
tered, Merged). The 10 most frequent extractions
served as bootstrapped seeds. The two test sets con-
tained 361 and 265 extractions, respectively. The
third data set, Wikipedia, evaluates ADS on weakly-
supervised extraction, using seeds and extractions
taken from Wikipedia ’List of’ pages (Pantel et al.,
2009). Seed sets of various sizes (5, 10, 15 and
20) were randomly selected from each list, and we
present results averaged over 10 random samplings.
Other members of the seed list were added to a test
set as correct extractions, and elements from other
lists were added as errors. The data set included

Figure 1: HMM 1-100 Performance. Information Extrac-
tion performance (in AUC) increases as SLM accuracy
improves (perplexity decreases).

2264 extractions across 36 unary relations, includ-
ing Composers and US Internet Companies.

3.2 Optimizing Language Models for IE

The first question we investigate is whether opti-
mizing individual language models leads to bet-
ter performance in ADS. We measured the correla-
tion between SLM perplexity and ADS performance
as training proceeds in HMMs, and as n and the
smoothing technique vary in the n-gram models. Ta-
ble 1 shows that as the SLM becomes more accurate
(i.e. as perplexity decreases), ADS performance in-
creases. The correlation is strong (averaging -0.742)
and is consistent across model configurations and
data sets. The low positive correlation for the n-
gram models on Wikipedia is likely due to a ”floor
effect”; the models have low performance overall
on the difficult Wikipedia data set. The lowest-
perplexity n-gram model (Mod Kneser-Ney smooth-
ing with n=3, KN3) does exhibit the best IE per-
formance, at 0.039 (the average performance of the
HMM models is more than twice this, at 0.084). Fig-
ure 1 shows the relationship between SLM and ADS
performance in detail for the best-performing HMM
configuration.

3.3 Model Selection

Different language models can be configured in dif-
ferent ways: for example, HMMs require choices for
the hyperparameters k and T . Here, we show that

227

Figure 2: Model Selection for HMMs. SLM perfor-
mance is a good predictor of extraction performance
across model configurations.

SLM perplexity can be used to select a high-quality
model configuration for ADS using only unlabeled
data. We evaluate on the Unary and Binary data sets,
since they have been employed in previous work
on our corpora. Figure 2 shows that for HMMs,
ADS performance increases as perplexity decreases
across various model configurations (a similar rela-
tionship holds for n-gram models). A model selec-
tion technique that picks the HMM model with low-
est perplexity (HMM 1-100) results in better ADS
performance than previous results. As shown in Ta-
ble 2, HMM 1-100 reduces error over the HMM-T
model in (Downey et al., 2007) by 26%, on average.
The experiments also reveal an important difference
between the HMM and n-gram approaches. While
KN3 is more accurate in SLM than our HMM mod-
els, it performs worse in ADS on average. For exam-
ple, HMM 1-25 underperforms KN3 in perpexity, at
537.2 versus 227.1, but wins in ADS, 0.880 to 0.853.
We hypothesize that this is because the latent state
distributions in the HMMs provide a more informa-
tive distributional similarity measure. Indeed, when
we compute distributional similarity for HMMs us-
ing probabilistic context vectors as opposed to state
distributions, ADS performance for HMM 1-25 de-
creases to 5.8% below that of KN3.

4 Conclusions

We presented experiments showing that estimating
distributional similarity with more accurate statisti-
cal language models results in more accurate extrac-

Relation HMM-T Best HMM
Company .966 .985

Country .886 .942
Languages .936 .914

Film .803 .801
Unary Avg .898 .911
Conquered .917 .923

Founded .827 .799
Merged .920 .925

Headquartered .734 .964
Binary Average .849 .903

Table 2: Extraction Performance Results in AUC for In-
dividual Relations. The lowest-perplexity HMM, 1-100,
outperforms the HMM-T model from previous work.

tion assessment. We note that significantly larger,
more powerful language models are possible beyond
those evaluated here, which (based on the trajectory
observed in Figure 2) may offer significant improve-
ments in assessment accuracy.

References
M. Banko, M. Cafarella, S. Soderland, M. Broadhead,

and O. Etzioni. 2007. Open information extraction
from the Web. In Procs. of IJCAI.

T. C. Bell, J. G. Cleary, and I. H. Witten. 1990. Text
Compression. Prentice Hall, January.

Stanley F. Chen and Joshua Goodman. 1996. An empir-
ical study of smoothing techniques for language mod-
eling. In Proc. of ACL.

D. Downey, S. Schoenmackers, and O. Etzioni. 2007.
Sparse information extraction: Unsupervised language
models to the rescue. In Proc. of ACL.

Z. Harris. 1985. Distributional structure. In J. J. Katz,
editor, The Philosophy of Linguistics.

M. Paşca, D. Lin, J. Bigham, A. Lifchits, and A. Jain.
2006. Names and similarities on the web: Fact extrac-
tion in the fast lane. In Procs. of ACL/COLING 2006.

P. Pantel, E. Crestan, A. Borkovsky, A. M. Popescu, and
V. Vyas. 2009. Web-scale distributional similarity and
entity set expansion. In Proc. of EMNLP.

L. R. Rabiner. 1989. A tutorial on Hidden Markov
Models and selected applications in speech recogni-
tion. Proceedings of the IEEE, 77(2):257–286.

R. Snow, D. Jurafsky, and A. Y. Ng. 2006. Semantic
taxonomy induction from heterogenous evidence. In
COLING/ACL 2006.

Andreas Stolcke. 2002. SRILM – an extensible language
modeling toolkit. In Proceedings of ICSLP, volume 2.

228

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 229–237,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Language Identification: The Long and the Short of the Matter

Timothy Baldwin and Marco Lui

Dept of Computer Science and Software Engineering

University of Melbourne, VIC 3010 Australia

tb@ldwin.net, saffsd@gmail.com

Abstract

Language identification is the task of identify-

ing the language a given document is written

in. This paper describes a detailed examina-

tion of what models perform best under dif-

ferent conditions, based on experiments across

three separate datasets and a range of tokeni-

sation strategies. We demonstrate that the task

becomes increasingly difficult as we increase

the number of languages, reduce the amount

of training data and reduce the length of docu-

ments. We also show that it is possible to per-

form language identification without having to

perform explicit character encoding detection.

1 Introduction

With the growth of the worldwide web, ever-

increasing numbers of documents have become

available, in more and more languages. This growth

has been a double-edged sword, however, in that

content in a given language has become more preva-

lent but increasingly hard to find, due to the web’s

sheer size and diversity of content. While the ma-

jority of (X)HTML documents declare their charac-

ter encoding, only a tiny minority specify what lan-

guage they are written in, despite support for lan-

guage declaration existing in the various (X)HTML

standards.1 Additionally, a single encoding can gen-

erally be used to render a large number of languages

such that the document encoding at best filters out

a subset of languages which are incompatible with

the given encoding, rather than disambiguates the

source language. Given this, the need for automatic

means to determine the source language of web doc-

1http://dev.opera.com/articles/view/

mama-head-structure/

uments is crucial for web aggregators of various

types.

There is widespread misconception of language

identification being a “solved task”, generally as

a result of isolated experiments over homogeneous

datasets with small numbers of languages (Hughes

et al., 2006; Xia et al., 2009). Part of the motivation

for this paper is to draw attention to the fact that, as

a field, we are still a long way off perfect language

identification of web documents, as evaluated under

realistic conditions.

In this paper we describe experiments on lan-

guage identification of web documents, focusing on

the broad question of what combination of tokenisa-

tion strategy and classification model achieves the

best overall performance. We additionally evalu-

ate the impact of the volume of training data and

the test document length on the accuracy of lan-

guage identification, and investigate the interaction

between character encoding detection and language

identification.

One assumption we make in this research, follow-

ing standard assumptions made in the field, is that all

documents are monolingual. This is clearly an un-

realistic assumption when dealing with general web

documents (Hughes et al., 2006), and we plan to re-

turn to investigate language identification over mul-

tilingual documents in future work.

Our contributions in this paper are: the demon-

stration that language identification is: (a) trivial

over datasets with smaller numbers of languages

and approximately even amounts of training data per

language, but (b) considerably harder over datasets

with larger numbers of languages with more skew

in the amount of training data per language; byte-

based tokenisation without character encoding de-

tection is superior to codepoint-based tokenisation

229

with character encoding detection; and simple co-

sine similarity-based nearest neighbour classifica-

tion is equal to or better than models including sup-

port vector machines and naive Bayes over the lan-

guage identification task. We also develop datasets

to facilitate standardised evaluation of language

identification.

2 Background Research

Language identification was arguably established as

a task by Gold (1967), who construed it as a closed

class problem: given data in each of a predefined set

of possible languages, human subjects were asked

to classify the language of a given test document. It

wasn’t until the 1990s, however, that the task was

popularised as a text categorisation task.

The text categorisation approach to language

identification applies a standard supervised classi-

fication framework to the task. Perhaps the best-

known such model is that of Cavnar and Tren-

kle (1994), as popularised in the textcat tool.2

The method uses a per-language character frequency

model, and classifies documents via their relative

“out of place” distance from each language (see

Section 5.1). Variants on this basic method in-

clude Bayesian models for character sequence pre-

diction (Dunning, 1994), dot products of word fre-

quency vectors (Darnashek, 1995) and information-

theoretic measures of document similarity (Aslam

and Frost, 2003; Martins and Silva, 2005). More

recently, support vector machines (SVMs) and ker-

nel methods have been applied to the task of lan-

guage identification task with success (Teytaud and

Jalam, 2001; Lodhi et al., 2002; Kruengkrai et al.,

2005), and Markov logic has been used for joint in-

ferencing in contexts where there are multiple evi-

dence sources (Xia et al., 2009).

Language identification has also been carried out

via linguistically motivated models. Johnson (1993)

used a list of stop words from different languages to

identify the language of a given document, choos-

ing the language with the highest stop word over-

lap with the document. Grefenstette (1995) used

word and part of speech (POS) correlation to de-

termine if two text samples were from the same

or different languages. Giguet (1995) developed a

2http://www.let.rug.nl/vannoord/TextCat/

cross-language tokenisation model and used it to

identify the language of a given document based

on its tokenisation similarity with training data.

Dueire Lins and Gonçalves (2004) considered the

use of syntactically-derived closed grammatical-

class models, matching syntactic structure rather

than words or character sequences.

The observant reader will have noticed that some

of the above approaches make use of notions such

as “word”, typically based on the naive assumption

that the language uses white space to delimit words.

These approaches are appropriate in contexts where

there is a guarantee of a document being in one of

a select set of languages where words are space-

delimited, or where manual segmentation has been

performed (e.g. interlinear glossed text). However,

we are interested in language identification of web

documents, which can be in any language, includ-

ing languages that do not overtly mark word bound-

aries, such as Japanese, Chinese and Thai; while

relatively few languages fall into this categories,

they are among the most populous web languages

and therefore an important consideration. There-

fore, approaches that assume a language is space-

delimited are clearly not suitable for our purposes.

Equally, approaches which make assumptions about

the availability of particular resources for each lan-

guage to be identified (e.g. POS taggers, or the ex-

istence of precompiled stop word lists) cannot be

used.

Language identification has been applied in a

number of contexts, the most immediate applica-

tion being in multilingual text retrieval, where re-

trieval results are generally superior if the language

of the query is known, and the search is restricted

to only those documents predicted to be in that lan-

guage (McNamee and Mayfield, 2004). It can also

be used to “word spot” foreign language terms in

multilingual documents, e.g. to improve parsing per-

formance (Alex et al., 2007), or for linguistic corpus

creation purposes (Baldwin et al., 2006; Xia et al.,

2009; Xia and Lewis, 2009).

3 Datasets

In the experiments reported in this paper, we em-

ploy three novel datasets, with differing properties

relevant to language identification research:

230

Corpus Documents Languages Encodings Document Length (bytes)

EUROGOV 1500 10 1 17460.5±39353.4

TCL 3174 60 12 2623.2±3751.9

WIKIPEDIA 4963 67 1 1480.8±4063.9

Table 1: Summary of the three language identification datasets

Figure 1: Distribution of languages in the three datasets

(vector of languages vs. the proportion of documents in

that language)

EUROGOV: longer documents, all in a single en-

coding, spread evenly across a relatively small num-

ber (10) of Western European languages; this dataset

is comparable to the datasets conventionally used in

language identification research. As the name would

suggest, the documents were sourced from the Euro-

GOV document collection, as used in the 2005 Web-

CLEF task.

TCL: a larger number of languages (60) across a

wider range of language families, with shorter docu-

ments and a range of character encodings (12). The

collection was manually sourced by the Thai Com-

putational Linguistics Laboratory (TCL) in 2005

from online news sources.

WIKIPEDIA: a slightly larger number of lan-

guages again (67), a single encoding, and shorter

documents; the distribution of languages is intended

to approximate that of the actual web. This col-

lection was automatically constructed by taking the

dumps of all versions of Wikipedia with 1000 or

more documents in non-constructed languages, and

randomly selecting documents from them in a bias-

preserving manner (i.e. preserving the document

distribution in the full collection); this is intended to

represent the document language bias observed on

the web. All three corpora are available on request.

We outline the characteristics of the three datasets

in Table 1. We further detail the language distri-

bution in Figure 1, using a constant vector of lan-

guages for all three datasets, based on the order of

languages in the WIKIPEDIA dataset (in descending

order of documents per language). Of note are the

contrasting language distributions between the three

datasets, in terms of both the languages represented

and the relative skew of documents per language. In

the following sections, we provide details of the cor-

pus compilation and document sampling method for

each dataset.

4 Document Representation

As we are interested in performing language iden-

tification over arbitrary web documents, we re-

quire a language-neutral document representation

which does not make artificial assumptions about the

source language of the document. Separately, there

is the question of whether it is necessary to deter-

mine the character encoding of the document in or-

der to extract out character sequences, or whether

the raw byte stream is sufficient. To explore this

question, we experiment with two document repre-

sentations: (1) byte n-grams, and (2) codepoint n-

grams. In both cases, a document is represented as a

feature vector of token counts.

Byte n-grams can be extracted directly without

explicit encoding detection. Codepoint n-grams, on

the other hand, require that we know the character

encoding of the document in order to perform to-

kenisation. Additionally, they should be based on a

common encoding to prevent: (a) over-fragmenting

the feature space (e.g. ending up with discrete fea-

ture spaces for euc-jp, s-jis and utf-8 in

the case of Japanese); and (b) spurious matches be-

tween encodings (e.g. Japanese hiragana and Ko-

rean hangul mapping onto the same codepoint in

euc-jp and euc-kr, respectively). We use uni-

231

code as the common encoding for all documents.

In practice, character encoding detection is an is-

sue only for TCL, as the other two datasets are in

a single encoding. Where a character encoding was

provided for a document in TCL and it was possi-

ble to transcode the document to unicode based on

that encoding, we used the encoding information. In

cases where a unique encoding was not provided,

we used an encoding detection library based on the

Mozilla browser.3 Having disambiguated the encod-

ing for each document, we transcoded it into uni-

code.

5 Models

In our experiments we use a number of different

language identification models, as outlined below.

We first describe the nearest-neighbour and nearest-

prototype models, and a selection of distance and

similarity metrics combined with each. We then

present three standalone text categorisation models.

5.1 Nearest-Neighbour and Nearest-Prototype

Models

The 1-nearest-neighbour (1NN) model is a common

classification technique, whereby a test document

D is classified based on the language of the clos-

est training document Di (with language l(Di)), as

determined by a given distance or similarity metric.

In nearest-neighbour models, each training doc-

ument is represented as a single instance, mean-

ing that the computational cost of classifying a test

document is proportional to the number of training

documents. A related model which aims to reduce

this cost is nearest-prototype (AM), where each lan-

guage is represented as a single instance, by merging

all of the training instances for that language into a

single centroid via the arithmetic mean.

For both nearest-neighbour and nearest-prototype

methods, we experimented with three similarity and

distance measures in this research:

Cosine similarity (COS): the cosine of the angle

between two feature vectors, as measured by the dot

product of the two vectors, normalised to unit length.

Skew divergence (SKEW): a variant of Kullback-

Leibler divergence, whereby the second distribution

3http://chardet.feedparser.org/

(y) is smoothed by linear interpolation with the first

(x) using a smoothing factor α (Lee, 2001):

sα(x, y) = D(x || αy + (1− α)x)

where:

D(x || y) =
∑

i

xi(log2 xi − log2 yi)

In all our experiments, we set α to 0.99.

Out-of-place (OOP): a ranklist-based distance

metric, where the distance between two documents

is calculated as (Cavnar and Trenkle, 1994):

oop(Dx, Dy) =
∑

t∈Dx∨Dy

abs(RDx
(t)−RDy

(t))

RD(t) is the rank of term t in document D, based

on the descending order of frequency in document

D; terms not occurring in document D are conven-

tionally given the rank 1 + maxi RD(ti).

5.2 Naive Bayes (NB)

Naive Bayes is a popular text classification model,

due to it being lightweight, robust and easy to up-

date. The language of test document D is predicted

by:

l̂(D) = arg max
li∈L

P (li)

|V |∏

j=1

P (tj |li)
ND,tj

ND,tj !

where L is the set of languages in the training data,

ND,tj is the frequency of the jth term in D, V is the

set of all terms, and:

P (t|li) =
1 +

∑|D |
k=1

Nk,tP (li|Dk)

|V |+
∑|V |

j=1

∑|D |
k=1

Nk,tjP (li|Dk)

In this research, we use the rainbow imple-

mentation of multinominal naive Bayes (McCallum,

1996).

5.3 Support Vector Machines (SVM)

Support vector machines (SVMs) are one of the

most popular methods for text classification, largely

because they can automatically weight large num-

bers of features, capturing feature interactions in the

process (Joachims, 1998; Manning et al., 2008). The

basic principle underlying SVMs is to maximize the

232

margin between training instances and the calculated

decision boundary based on structural risk minimi-

sation (Vapnik, 1995).

In this work, we have made use of bsvm,4 an

implementation of SVMs with multiclass classifica-

tion support (Hsu et al., 2008). We only report re-

sults for multi-class bound-constrained support vec-

tor machines with linear kernels, as they were found

to perform best over our data.

6 Experimental Methodology

We carry out experiments over the cross-product of

the following options, as described above:

model (×7): nearest-neighbour (COS1NN,

SKEW1NN, OOP1NN), nearest-prototype

(COSAM, SKEWAM),5 NB, SVM

tokenisation (×2): byte, codepoint

n-gram (×3): 1-gram, 2-gram, 3-gram

for a total of 42 distinct classifiers. Each classi-

fier is run across the 3 datasets (EUROGOV, TCL

and WIKIPEDIA) based on 10-fold stratified cross-

validation.

We evaluate the models using micro-averaged

precision (Pµ), recall (Rµ) and F-score (Fµ), as well

as macro-averaged precision (PM), recall (RM) and

F-score (FM). The micro-averaged scores indicate

the average performance per document; as we al-

ways make a unique prediction per document, the

micro-averaged precision, recall and F-score are al-

ways identical (as is the classification accuracy).

The macro-averaged scores, on the other hand, indi-

cate the average performance per language. In each

case, we average the precision, recall and F-score

across the 10 folds of cross validation.6

As a baseline, we use a majority class, or ZeroR,

classifier (ZEROR), which assigns the language with

highest prior in the training data to each of the test

documents.

4http://www.csie.ntu.edu.tw/˜cjlin/bsvm/
5We do not include the results for nearest-prototype classi-

fiers with the OOP distance metric as the results were consid-

erably lower than the other methods.
6Note that this means that the averaged FM is not necessar-

ily the harmonic mean of the averaged PM andRM .

Model Token PM RM FM Pµ/Rµ/Fµ

ZEROR — .020 .084 .032 .100

COS1NN byte .975 .978 .976 .975

COS1NN codepoint .968 .973 .970 .971

COSAM byte .922 .938 .926 .937

COSAM codepoint .908 .930 .913 .931

SKEW1NN byte .979 .979 .979 .977

SKEW1NN codepoint .978 .978 .978 .976

SKEWAM byte .974 .972 .972 .969

SKEWAM codepoint .974 .972 .973 .970

OOP1NN byte .953 .952 .953 .949

OOP1NN codepoint .961 .960 .960 .957

NB byte .975 .973 .974 .971

NB codepoint .975 .973 .974 .971

SVM byte .989 .985 .987 .987

SVM codepoint .988 .985 .986 .987

Table 2: Results for byte vs. codepoint (bigram) tokeni-

sation over EUROGOV

7 Results

In our experiments, we first compare the different

models for fixed n-gram order, then come back to

vary the n-gram order. Subsequently, we examine

the relative performance of the different models on

test documents of differing lengths, and finally look

into the impact of the amount of training data for

a given language on the performance for that lan-

guage.

7.1 Results for the Different Models and

Tokenisation Strategies

First, we present the results for each of the classifiers

in Tables 2–4, based on byte or codepoint tokenisa-

tion and bigrams. In each case, we present the best

result in each column in bold.

The relative performance over EUROGOV and

TCL is roughly comparable for all methods barring

SKEW1NN, with near-perfect scores over all 6 eval-

uation metrics. SKEW1NN is near-perfect over EU-

ROGOV and TCL, but drops to baseline levels over

WIKIPEDIA; we return to discuss this effect in Sec-

tion 7.2.

In the case of EUROGOV, the near-perfect re-

sults are in line with our expectations for the dataset,

based on its characteristics and results reported for

comparable datasets. The results for WIKIPEDIA,

however, fall off considerably, with the best model

achieving an FM of .671 and Fµ of .869, due to

233

Model Token PM RM FM Pµ/Rµ/Fµ

ZEROR — .003 .017 .005 .173

COS1NN byte .981 .975 .975 .982

COS1NN codepoint .931 .930 .925 .961

COSAM byte .967 .975 .965 .965

COSAM codepoint .979 .977 .974 .964

SKEW1NN byte .984 .974 .976 .987

SKEW1NN codepoint .910 .210 .320 .337

SKEWAM byte .962 .959 .950 .972

SKEWAM codepoint .968 .961 .957 .967

OOP1NN byte .964 .945 .951 .974

OOP1NN codepoint .901 .892 .893 .933

NB byte .905 .905 .896 .969

NB codepoint .722 .711 .696 .845

SVM byte .981 .973 .977 .984

SVM codepoint .979 .970 .974 .980

Table 3: Results for byte vs. codepoint (bigram) tokeni-

sation over TCL

the larger number of languages, smaller documents,

and skew in the amounts of training data per lan-

guage. All models are roughly balanced in the rel-

ative scores they attain for PM , RM and FM (i.e.

there are no models that have notably higherPM rel-

ative to RM , for example).

The nearest-neighbour models outperform the

corresponding nearest-prototype models to varying

degrees, with the one exception of SKEW1NN over

WIKIPEDIA. The nearest-prototype classifiers were

certainly faster than the nearest-neighbour classi-

fiers, by roughly an order of 10, but this is more

than outweighed by the drop in classification per-

formance. With the exception of SKEW1NN over

WIKIPEDIA, all methods were well above the base-

lines for all three datasets.

The two methods which perform consistently well

at this point are COS1NN and SVM, with COS1NN

holding up particularly well under micro-averaged

F-score while NB drops away over WIKIPEDIA, the

most skewed dataset; this is due to the biasing effect

of the prior in NB.

Looking to the impact of byte- vs. codepoint-

tokenisation on classifier performance over the three

datasets, we find that overall, bytes outperform

codepoints. This is most notable for TCL and

WIKIPEDIA, and the SKEW1NN and NB models.

Given this result, we present only results for byte-

based tokenisation in the remainder of this paper.

Model Token PM RM FM Pµ/Rµ/Fµ

ZEROR — .004 .013 .007 .328

COS1NN byte .740 .646 .671 .869

COS1NN codepoint .685 .604 .625 .835

COSAM byte .587 .634 .573 .776

COSAM codepoint .486 .556 .483 .725

SKEW1NN byte .005 .013 .008 .304

SKEW1NN codepoint .006 .013 .007 .241

SKEWAM byte .605 .617 .588 .844

SKEWAM codepoint .552 .575 .532 .807

OOP1NN byte .619 .518 .548 .831

OOP1NN codepoint .598 .486 .520 .807

NB byte .496 .454 .442 .851

NB codepoint .426 .349 .360 .798

SVM byte .667 .545 .577 .845

SVM codepoint .634 .494 .536 .818

Table 4: Results for byte vs. codepoint (bigram) tokeni-

sation over WIKIPEDIA

The results for byte tokenisation of TCL are par-

ticularly noteworthy. The transcoding into unicode

and use of codepoints, if anything, hurts perfor-

mance, suggesting that implicit character encoding

detection based on byte tokenisation is the best ap-

proach: it is both more accurate and simplifies the

system, in removing the need to perform encoding

detection prior to language identification.

7.2 Results for Differing n-gram Sizes

We present results with byte unigrams, bigrams and

trigrams in Table 5 for WIKIPEDIA.7 We omit re-

sults for the other two datasets, as the overall trend is

the same as for WIKIPEDIA, with lessened relative

differences between n-gram orders due to the rela-

tive simplicity of the respective classification tasks.

SKEW1NN is markedly different to the other meth-

ods in achieving the best performance with uni-

grams, moving from the worst-performing method

by far to one of the best-performing methods. This

is the result of the interaction between data sparse-

ness and heavy-handed smoothing with the α con-

stant. Rather than using a constant α value for all

n-gram orders, it may be better to parameterise it

using an exponential scale such as α = 1−βn (with

7The results for OOP1NN over byte trigrams are missing

due to the computational cost associated with the method, and

our experiment hence not having run to completion at the time

of writing. Extrapolating from the results for the other two

datasets, we predict similar results to bigrams.

234

Model n-gram PM RM FM Pµ/Rµ/Fµ

ZEROR — .004 .013 .007 .328

COS1NN 1 .644 .579 .599 .816

COS1NN 2 .740 .646 .671 .869

COS1NN 3 .744 .656 .680 .862

COSAM 1 .526 .543 .487 .654

COSAM 2 .587 .634 .573 .776

COSAM 3 .553 .632 .545 .761

SKEW1NN 1 .691 .598 .625 .848

SKEW1NN 2 .005 .013 .008 .304

SKEW1NN 3 .005 .013 .004 .100

SKEWAM 1 .552 .569 .532 .740

SKEWAM 2 .605 .617 .588 .844

SKEWAM 3 .551 .631 .554 .825

OOP1NN 1 .519 .446 .468 .747

OOP1NN 2 .619 .518 .548 .831

NB 1 .576 .578 .555 .778

NB 2 .496 .454 .442 .851

NB 3 .493 .435 .432 .863

SVM 1 .585 .505 .523 .812

SVM 2 .667 .545 .577 .845

SVM 3 .717 .547 .594 .840

Table 5: Results for different n-gram orders over

WIKIPEDIA

β = 0.01, e.g.), based on the n-gram order. We

leave this for future research.

For most methods, bigrams and trigrams are bet-

ter than unigrams, with the one notable exception

of SKEW1NN. In general, there is little separating

bigrams and trigrams, although the best result for is

achieved slightly more often for bigrams than for tri-

grams.

For direct comparability with Cavnar and Tren-

kle (1994), we additionally carried out a preliminary

experiment with hybrid byte n-grams (all of 1- to 5-

grams), combined with simple frequency-based fea-

ture selection of the top-1000 features for each n-

gram order. The significance of this setting is that it

is the strategy adopted by textcat, based on the

original paper of Cavnar and Trenkle (1994) (with

the one exception that we use 1000 features rather

than 300, as all methods other than OOP1NN bene-

fitted from more features). The results are shown in

Table 6.

Compared to the results in Table 5, SKEW1NN and

SKEWAM both increase markedly to achieve the best

overall results. OOP1NN, on the other hand, rises

slightly, while the remaining three methods actually

Model PM RM FM Pµ/Rµ/Fµ

ZEROR .004 .013 .007 .328

COS1NN .735 .664 .682 .865

COSAM .592 .626 .580 .766

SKEW1NN .789 .708 .729 .902

SKEWAM .681 .718 .680 .870

OOP1NN .697 .595 .626 .864

SVM .669 .500 .544 .832

Table 6: Results for mixed n-grams (1–5) and feature se-

lection over WIKIPEDIA (a lá Cavnar and Trenkle (1994))

drop back slightly. Clearly, there is considerably

more experimentation to be done here with mixed

n-gram models and different feature selection meth-

ods, but the results indicate that some methods cer-

tainly benefit from n-gram hybridisation and feature

selection, and also that we have been able to sur-

pass the results of Cavnar and Trenkle (1994) with

SKEW1NN in an otherwise identical framework.

7.3 Breakdown Across Test Document Length

To better understand the impact of test document

size on classification accuracy, we divided the test

documents into 5 equal-size bins according to their

length, measured by the number of tokens. We then

computed Fµ individually for each bin across the 10

folds of cross validation. We present the breakdown

of results for WIKIPEDIA in Figure 2.

WIKIPEDIA shows a pseudo-logarithmic growth

in Fµ (= Pµ = Rµ) as the test document size in-

creases. This fits with our intuition, as the model

has progressively more evidence to base the classi-

fication on. It also suggests that performance over

shorter documents appears to be the dominating fac-

tor in the overall ranking of the different methods.

In particular, COS1NN and SVM appear to be able to

classify shorter documents most reliably, leading to

the overall result of them being the best-performing

methods.

While we do not show the graph for reasons of

space, the equivalent graph for EUROGOV displays

a curious effect: Fµ drops off as the test documents

get longer. Error analysis of the data indicates that

this is due to longer documents being more likely

to be “contaminated” with either data from a sec-

ond language or extra-linguistic data, such as large

tables of numbers or chemical names. This sug-

gests that all the models are brittle when the assump-

235

Figure 2: Breakdown of Fµ over WIKIPEDIA for test

documents of increasing length

Figure 3: Per-language FM for COS1NN, relative to the

training data size (in MB) for that language

tion of strict monolingualism is broken, or when

the document is dominated by extra-linguistic data.

Clearly, this underlines our assumption of monolin-

gual documents, and suggests multilingual language

identification is a fertile research area even in terms

of optimising performance over our “monolingual”

datasets.

7.4 Performance Relative to Training Data Size

As a final data point in our analysis, we calculated

the FM for each language relative to the amount of

training data available for that language, and present

the results in the form of a combined scatter plot for

the three datasets in Figure 3. The differing distri-

butions of the three datasets are self-evident, with

most languages in EUROGOV (the squares) both

having reasonably large amounts of training data and

achieving high FM values, but the majority of lan-

guages in WIKIPEDIA (the crosses) having very lit-

tle data (including a number of languages with no

training data, as there is a singleton document in that

language in the dataset). As an overall trend, we can

observe that the greater the volume of training data,

the higher the FM across all three datasets, but there

is considerable variation between the languages in

terms of their FM for a given training data size (the

column of crosses for WIKIPEDIA to the left of the

graph is particularly striking).

8 Conclusions

We have carried out a thorough (re)examination of

the task of language identification, that is predict-

ing the language that a given document is written

in, focusing on monolingual documents at present.

We experimented with a total of 7 models, and

tested each over two tokenisation strategies (bigrams

vs. codepoints) and three token n-gram orders (un-

igrams, bigrams and trigrams). At the same time

as reproducing results from earlier research on how

easy the task can be over small numbers of lan-

guages with longer documents, we demonstrated

that the task becomes much harder for larger num-

bers of languages, shorter documents and greater

class skew. We also found that explicit character

encoding detection is not necessary in language de-

tection, and that the most consistent model overall

is either a simple 1-NN model with cosine similar-

ity, or an SVM with a linear kernel, using a byte

bigram or trigram document representation. We also

confirmed that longer documents tend to be easier to

classify, but also that multilingual documents cause

problems for the standard model of language identi-

fication.

Acknowledgements

This research was supported by a Google Research
Award.

References

Beatrice Alex, Amit Dubey, and Frank Keller. 2007.

Using foreign inclusion detection to improve parsing

performance. In Proceedings of the Joint Conference

236

on Empirical Methods in Natural Language Process-

ing and Computational Natural Language Learning

2007 (EMNLP-CoNLL 2007), pages 151–160, Prague,

Czech Republic.

Javed A. Aslam and Meredith Frost. 2003. An

information-theoretic measure for document similar-

ity. In Proceedings of 26th International ACM-SIGIR

Conference on Research and Development in Informa-

tion Retrieval (SIGIR 2003), pages 449–450, Toronto,

Canada.

Timothy Baldwin, Steven Bird, and Baden Hughes.

2006. Collecting low-density language materials on

the web. In Proceedings of the 12th Australasian Web

Conference (AusWeb06). http://www.ausweb.

scu.edu.au/ausweb06/edited/hughes/.

William B. Cavnar and John M. Trenkle. 1994. N-

gram-based text categorization. In Proceedings of the

Third Symposium on Document Analysis and Informa-

tion Retrieval, Las Vegas, USA.

Marc Darnashek. 1995. Gauging similarity with n-

grams: Language-independent categorization of text.

Science, 267:843–848.

Rafael Dueire Lins and Paulo Gonçalves. 2004. Au-

tomatic language identification of written texts. In

Proceedings of the 2004 ACM Symposium on Applied

Computing (SAC 2004), pages 1128–1133, Nicosia,

Cyprus.

Ted Dunning. 1994. Statistical identification of lan-

guage. Technical Report MCCS 940-273, Computing

Research Laboratory, New Mexico State University.

Emmanuel Giguet. 1995. Categorization according to

language: A step toward combining linguistic knowl-

edge and statistic learning. In Proceedings of the

4th International Workshop on Parsing Technologies

(IWPT-1995), Prague, Czech Republic.

E. Mark Gold. 1967. Language identification in the

limit. Information and Control, 5:447–474.

Gregory Grefenstette. 1995. Comparing two language

identification schemes. In Proceedings of Analisi Sta-

tistica dei Dati Testuali (JADT), pages 263–268.

Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin.

2008. A practical guide to support vector classifica-

tion. Technical report, Department of Computer Sci-

ence National Taiwan University.

Baden Hughes, Timothy Baldwin, Steven Bird, Jeremy

Nicholson, and Andrew MacKinlay. 2006. Recon-

sidering language identification for written language

resources. In Proceedings of the 5th International

Conference on Language Resources and Evaluation

(LREC 2006), pages 485–488, Genoa, Italy.

Thorsten Joachims. 1998. Text categorization with sup-

port vector machines: learning with many relevant fea-

tures. In Proceedings of the 10th European Confer-

ence on Machine Learning, pages 137–142, Chemnitz,

Germany.

Stephen Johnson. 1993. Solving the problem of lan-

guage recognition. Technical report, School of Com-

puter Studies, University of Leeds.

Canasai Kruengkrai, Prapass Srichaivattana, Virach

Sornlertlamvanich, and Hitoshi Isahara. 2005. Lan-

guage identification based on string kernels. In Pro-

ceedings of the 5th International Symposium on Com-

munications and Information Technologies (ISCIT-

2005), pages 896–899, Beijing, China.

Lillian Lee. 2001. On the effectiveness of the skew diver-

gence for statistical language analysis. In Proceedings

of Artificial Intelligence and Statistics 2001 (AISTATS

2001), pages 65–72, Key West, USA.

Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello

Cristianini, and Chris Watkins. 2002. Text classifica-

tion using string kernels. Journal of Machine Learning

Research, 2:419–444.

Christopher D. Manning, Prabhakar Raghavan, and Hin-

rich Schütze. 2008. Introduction to Information Re-

trieval. Cambridge University Press, Cambridge, UK.

Bruno Martins and Mário J. Silva. 2005. Language iden-

tification in web pages. In Proceedings of the 2005

ACM symposium on Applied computing, pages 764–

768, Santa Fe, USA.

Andrew Kachites McCallum. 1996. Bow: A toolkit for

statistical language modeling, text retrieval, classifica-

tion and clustering. http://www.cs.cmu.edu/

˜mccallum/bow.

Paul McNamee and James Mayfield. 2004. Character N -

gram Tokenization for European Language Text Re-

trieval. Information Retrieval, 7(1–2):73–97.

Olivier Teytaud and Radwan Jalam. 2001. Kernel-

based text categorization. In Proceedings of the

International Joint Conference on Neural Networks

(IJCNN’2001), Washington DC, USA.

Vladimir N. Vapnik. 1995. The Nature of Statistical

Learning Theory. Springer-Verlag, Berlin, Germany.

Fei Xia and William Lewis. 2009. Applying NLP tech-

nologies to the collection and enrichment of language

data on the web to aid linguistic research. In Pro-

ceedings of the EACL 2009 Workshop on Language

Technology and Resources for Cultural Heritage, So-

cial Sciences, Humanities, and Education (LaTeCH –

SHELT&R 2009), pages 51–59, Athens, Greece.

Fei Xia, William Lewis, and Hoifung Poon. 2009. Lan-

guage ID in the context of harvesting language data off

the web. In Proceedings of the 12th Conference of the

EACL (EACL 2009), pages 870–878, Athens, Greece.

237

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 238–241,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Inducing Synchronous Grammars with Slice Sampling

Phil Blunsom
Computing Laboratory

Oxford University
Phil.Blunsom@comlab.ox.ac.uk

Trevor Cohn
Department of Computer Science

University of Sheffield
T.Cohn@dcs.shef.ac.uk

Abstract

This paper describes an efficient sampler for
synchronous grammar induction under a non-
parametric Bayesian prior. Inspired by ideas
from slice sampling, our sampler is able to
draw samples from the posterior distributions
of models for which the standard dynamic pro-
graming based sampler proves intractable on
non-trivial corpora. We compare our sampler
to a previously proposed Gibbs sampler and
demonstrate strong improvements in terms of
both training log-likelihood and performance
on an end-to-end translation evaluation.

1 Introduction

Intractable optimisation algorithms abound in much
of the recent work in Natural Language Process-
ing. In fact, there is an increasing acceptance that
solutions to many of the great challenges of NLP
(e.g. machine translation, summarisation, question
answering) will rest on the quality of approximate
inference. In this work we tackle this problem in
the context of inducing synchronous grammars for
a machine translation system. We concern ourselves
with the lack of a principled, and scalable, algo-
rithm for learning a synchronous context free gram-
mar (SCFG) from sentence-aligned parallel corpora.

The predominant approach for learning phrase-
based translation models (both finite state or syn-
chronous grammar based) uses a cascade of heuris-
tics beginning with predicted word alignments
and producing a weighted set of translation rules
(Koehn et al., 2003). Alternative approaches avoid
such heuristics, instead learning structured align-
ment models directly from sentence aligned data
(e.g., (Marcu and Wong, 2002; Cherry and Lin,
2007; DeNero et al., 2008; Blunsom et al., 2009)).
Although these models are theoretically attractive,
inference is intractable (at least O(|f |3|e|3)). The
efficacy of direct estimation of structured alignment
models therefore rests on the approximations used
to make inference practicable – typically heuristic

constraints or Gibbs sampling. In this work we show
that naive Gibbs sampling (specifically, Blunsom et
al. (2009)) is ineffectual for inference and reliant on
a high quality initialisation, mixing very slowly and
being easily caught in modes. Instead, blocked sam-
pling over sentence pairs allows much faster mixing,
but done in the obvious way (following Johnson et al.
(2007)) would incur a O(|f |3|e|3) time complexity.

Here we draw inspiration from the work of
Van Gael et al. (2008) on inference in infinite hid-
den Markov models to develop a novel algorithm
for efficient sampling from a SCFG. We develop an
auxiliary variable ‘slice’ sampler which can dramati-
cally reduce inference complexity, and thereby make
blocked sampling practicable on real translation cor-
pora. Our evaluation demonstrates that our algorithm
mixes more quickly than the local Gibbs sampler, and
produces translation models which achieve state-of-
the-art BLEU scores without using GIZA++ or sym-
metrisation heuristics for initialisation.

We adopt the generative model of Blunsom et
al. (2009) which creates a parallel sentence pair
by a sequence (derivation) of SCFG productions
d = (r1, r2, ..., rn). The tokens in each language can
be read off the leaves of the derivation tree while
their order is defined hierarchically by the produc-
tions in use. The probability of a derivation is defined
as p(d|θ) =

∏
r∈d θr where θ are the model param-

eters which are drawn from a Bayesian prior. We
deviate from that models definition of the prior over
phrasal translations, instead adopting the hierarchical
Dirichlet process prior from DeNero et al. (2008),
which incorporates IBM Model 1. Blunsom et al.
(2009) describe a blocked sampler following John-
son et al. (2007) which uses the Metropolis-Hastings
algorithm to correct proposal samples drawn from
an approximating SCFG, however this is discounted
as impractical due to the O(|f |3|e|3) complexity.
Instead a Gibbs sampler is used which samples local
updates to the derivation structure of each training
instance. This avoids the dynamic program of the

238

blocked sampler but at the expense of considerably
slower mixing.

Recently Bouchard-Côté et al. (2009) proposed
an auxialliary variable sampler, possibly comple-
mentary to ours, which was also evaluated on syn-
chronous parsing. Rather than slice sampling deriva-
tions in a collapsed Bayesian model, this model
employed a secondary proposal model (IBM Mod-
els) and sampled expectations over rule parameters.

2 Slice Sampling a SCFG

It would be advantageous to explore a middle ground
where the scope of the dynamic program is limited to
high probability regions, reducing the running time
to an acceptable level. By employing the technique
of slice sampling (Neal, 2003) we describe an algo-
rithm which stochastically samples from a reduced
space of possible derivations, while ensuring that
these samples are drawn from the correct distribu-
tion. We apply the slice sampler to the approximating
SCFG parameterised by θ, which requires samples
from an inside chart p(d|θ) (for brevity, we omit the
dependency on θ in the following).

Slice sampling is an example of auxiliary variable
sampling in which we make use of the fact that if
we can draw samples from a joint distribution, then
we can trivially obtain samples from the marginal
distributions: p(d) =

∑
u p(d,u), where d is the

variable of interest and u is an auxiliary variable.
Using a Gibbs sampler we can draw samples from
this joint distribution by alternately sampling from
p(d|u) and p(u|d). The trick is to ensure that u is
defined such that drawing samples from p(d|u) is
more efficient than from p(d).

We define the variable u to contain a slice variable
us for every cell of a synchronous parse chart for
every training instance:1

S = {(i, j, x, y) | 0 ≤ i < j ≤ |f |, 0 ≤ x < y ≤ |e|}
u = {us ∈ R | 0 < us < 1, s ∈ S}

These slice variables act as cutoffs on the probabili-
ties of the rules considered in each cell s: rule appli-
cations rs with θrs ≤ us will be pruned from the
dynamic program.2

1The dependence on training instances is omitted here and
subsequently for simplicity. Each instance is independent, and
therefore this formulation can be trivially applied to a set.

2Alternatively, we could naively sample from a pruned chart
using a fixed beam threshold. However, this would not produce
samples from p(d), but some other unknown distribution.

Sampling p(u|d) Unlike Van Gael et al. (2008),
there is not a one-to-one correspondence between the
spans of the rules in d and the set S, rather the deriva-
tion’s rule spans form a subset of S . This compli-
cates our definition of p(u|d); we must provide sepa-
rate accounts of how each us is generated depending
on whether there is a corresponding rule for s, i.e.,
rs ∈ d. We define p(u|d) =

∏
s p(us|d), where:

p(us|d) =

{
I(us<θrs)

θrs
, if rs ∈ d

β(us; a, b) , else
(1)

which mixes a uniform distribution and a Beta dis-
tribution3 depending on the existence of a rule rs
in the derivation d.4 Eq. 1 is constructed such that
only rules with probability greater than the rele-
vant threshold, {rs | θrs > us}, could have feasibly
been part of a derivation resulting in auxiliary vari-
able u. This is critical in reasoning over the reverse
conditional p(d|u) which only has to consider the
reduced space of rules (formulation below in (4)).
Trivially, the conditioning derivation is recoverable,
∀rs ∈ d, θrs ≥ us. We parameterise the β distribu-
tion in (1) with a heavy skew towards zero in order
to limit the amount of pruning and thereby include
many competing derivations.5

Sampling p(d|u) Recall the probability of a
derivation, p(d) =

∏
rs∈d θrs . We draw samples

from the joint distribution, p(d,u), holding u fixed:

p(d|u) ∝ p(d,u) = p(d)× p(u|d)

=

∏
rs∈d

θrs

×(∏us:rs∈d
I(us<θrs)

θrs

×
∏
us:rs 6∈d β(us; a, b)

)

=
∏

us:rs∈d
I (us < θrs)

∏
us:rs 6∈d

β(us; a, b) (2)

=
∏

us:rs∈d

I (us < θrs)
β(us; a, b)

∏
us

β(us; a, b) (3)

∝
∏

us:rs∈d

I (us < θrs)
β(us; a, b)

(4)

In step (2) we cancel the θrs terms while in step (3)
we introduce β(us; a, b) terms to the numerator and
denominator for us : rs ∈ d to simplify the range

3Any distribution defined over {x ∈ R | 0 ≤ x ≤ 1} may be
used in place of β, however this may affect the efficiency of the
sampler.

4I(·) returns 1 if the condition is true and 0 otherwise.
5We experiment with a range of a < 1 while fixing b = 1.

239

System BLEU time(s) LLH
Moses (default settings) 47.3 – –
LB init. 36.5 – -257.1
M1 init. 48.8 – -153.4
M4 init. 49.1 – -151.4
Gibbs LB init. 45.3 44 -135.4
Gibbs M1 init. 48.2 40 -120.5
Gibbs M4 init. (Blunsom et al., 2009) 49.6 44 -110.3
Slice (a=0.15, b=1) LB init. 47.3 180 -98.9
Slice (a=0.10, b=1) M1 init. 50.4 908 -89.4
Slice (a=0.15, b=1) M1 init. 49.9 144 -90.2
Slice (a=0.25, b=1) M1 init. 49.2 80 -95.6

Table 1: IWSLT Chinese to English translation.

of the second product. The last step (4) discards the
term

∏
us
β(us; a, b) which is constant wrt d. The

net result is a formulation which factors with the
derivation structure, thereby eliminating the need to
consider allO(|e|2|f |2) spans in S. Critically p(d|u)
is zero for all spans failing the I (us < θrs) condition.

To exploit the decomposition of Equation 4 we
require a parsing algorithm that only explores chart
cells whose child cells have not already been pruned
by the slice variables. The standard approach of using
synchronous CYK (Wu, 1997) doesn’t posses this
property: all chart cells would be visited even if they
are to be pruned. Instead we use an agenda based
parsing algorithm, in particular we extend the algo-
rithm of Klein and Manning (2004) to synchronous
parsing.6 Finally, we need a Metropolis-Hastings
acceptance step to account for intra-instance depen-
dencies (the ‘rich-get-richer’ effect). We omit the
details, save to state that the calculation cancels to
the same test as presented in Johnson et al. (2007).7

3 Evaluation

In the following experiments we compare the slice
sampler and the Gibbs sampler (Blunsom et al.,
2009), in terms of mixing and translation quality. We
measure mixing in terms of training log-likelihood
(LLH) after a fixed number of sampling iterations.
Translations are produced using Moses (Koehn et al.,
2007), initialised with the word alignments from the
final sample, and are evaluated using BLEU(Papineni
et al., 2001). The slice sampled models are restricted
to learning binary branching one-to-one (or null)
alignments,8 while no restriction is placed on the
Gibbs sampler (both use the same model, so have

6Moreover, we only sample values for us as they are visited
by the parser, thus avoiding the quartic complexity.

7Acceptance rates averaged above 99%.
8This restriction is not strictly necessary, however it greatly

simplifies the implementation and increases efficiency.

comparable LLH). Of particular interest is how the
different samplers perform given initialisations of
varying quality. We evaluate three initialisers: M4:
the symmetrised output of GIZA++ factorised into
ITG form (as used in Blunsom et al. (2009)); M1:
the output of a heavily pruned ITG parser using the
IBM Model 1 prior for the rule probabilities;9 and
LB: left-branching monotone derivations.10

We experiment with the Chinese→English trans-
lation task from IWSLT, as used in Blunsom et al.
(2009).11 Figure 1 shows LLH curves for the sam-
plers initialised with the M1 and LB derivations, plus
the curve for Gibbs sampler with the M4 initialiser.12

Table 1 gives BLEU scores on Test-05 for phrase-
based translation models built from the 1500th sam-
ple for the various models along with the average
time per sample and their final log-likelihood.

4 Discussion

The results are particularly encouraging. The slice
sampler uniformly finds much better solutions than
the Gibbs sampler regardless of initialisation. In
particular, the slice sampled model initialised with
the naive LB structure achieves a higher likelihood
than the M4 initialised model, although this is not
reflected in their relative BLEU scores. In contrast the
Gibbs sampler is more significantly affected by its
initialisation, only deviating slightly before becom-
ing trapped in a mode, as seen in Fig. 1. With suf-
ficient (infinite) time both sampling strategies will
converge on the true posterior regardless of initiali-
sation, however the slice sampler appears to be con-
verging much faster than the Gibbs sampler.

Interestingly, the initialisation heuristics (M1 and
M4) outperform the default heuristics (Koehn et al.,
2007) by a considerable margin. This is most likely
because the initialisation heuristics force the align-
ments to factorise with an ITG, resulting in more
aggressive pruning of spurious alignments which in
turn allows for more and larger phrase pairs.

9The following beam heuristics are employed: alignments to
null are only permitted on the longer sentence side; words are
only allowed to align to those whose relative sentence position
is within ±3 words.

10Words of the longer sentence are randomly assigned to null.
11We limit the maximum training sentence length to 40, result-

ing in ∼ 40k training sentences.
12The GIZA++ M4 alignments don’t readily factorise to

word-based ITG derivations, as such we haven’t produced results
for this initialiser using the slice sampler.

240

0 50 100 150 200 250

−
14

0
−

13
0

−
12

0
−

11
0

−
10

0
−

90

Samples

Lo
g−

lik
el

ih
oo

d

Slice (a=0.10 b=1) M1
Slice (a=0.15 b=1) M1
Slice (a=0.20 b=1) M1
Slice (a=0.25 b=1) M1
Gibbs M1
Gibbs M4

0 200 400 600 800 1000

−
20

0
−

18
0

−
16

0
−

14
0

−
12

0
−

10
0

Samples

Lo
g−

lik
el

ih
oo

d

Slice (a=0.15 b=1) M1
Slice (a=0.15 b=1) LB
Gibbs M1
Gibbs LB
Gibbs M4

Figure 1: Training log-likelihood as a function of sampling iteration for Gibbs and slice sampling.

While the LLHs for the slice sampled models and
their BLEU scores appear correlated, this doesn’t
extend to comparisons with the Gibbs sampled mod-
els. We believe that this is because the GIZA++
initialisation alignments also explain the data well,
while not necessarily obtaining a high LLH under
the ITG model. Solutions which score highly in one
model score poorly in the other, despite both produc-
ing good translations.

The slice sampler is slower than the local Gibbs
sampler, its speed depending on the parameterisation
of the Beta distribution (affecting the width of the
beam). In the extreme, exhaustive search using the
full dynamic program is intractable on current hard-
ware,13 and therefore we have achieved our aim of
mediating between local and blocked inference.

This investigation has established the promise
of the SCFG slice sampling technique to provide
a scalable inference algorithm for non-parametric
Bayesian models. With further development, this
work could provide the basis for a family of prin-
cipled inference algorithms for parsing models, both
monolingual and synchronous, and other models that
prove intractable for exact dynamic programming.

References
P. Blunsom, T. Cohn, C. Dyer, M. Osborne. 2009.

A Gibbs sampler for phrasal synchronous grammar
induction. In Proc. ACL/IJCNLP, 782–790, Suntec,
Singapore. Association for Computational Linguistics.

A. Bouchard-Côté, S. Petrov, D. Klein. 2009. Ran-
domized pruning: Efficiently calculating expectations

13Our implementation had not completed a single sample after
a week.

in large dynamic programs. In Advances in Neural
Information Processing Systems 22, 144–152.

C. Cherry, D. Lin. 2007. Inversion transduction grammar
for joint phrasal translation modeling. In Proc. SSST,
Rochester, USA.

J. DeNero, A. Bouchard-Côté, D. Klein. 2008. Sam-
pling alignment structure under a Bayesian translation
model. In Proc. EMNLP, 314–323, Honolulu, Hawaii.

M. Johnson, T. Griffiths, S. Goldwater. 2007. Bayesian
inference for PCFGs via Markov chain Monte Carlo.
In Proc. HLT-NAACL, 139–146, Rochester, New York.

D. Klein, C. D. Manning, 2004. Parsing and hypergraphs,
351–372. Kluwer Academic Publishers, Norwell, MA,
USA, 2004.

P. Koehn, F. J. Och, D. Marcu. 2003. Statistical
phrase-based translation. In Proc. HLT-NAACL, 81–88,
Edmonton, Canada.

P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Fed-
erico, N. Bertoldi, B. Cowan, W. Shen, C. Moran,
R. Zens, C. Dyer, O. Bojar, A. Constantin, E. Herbst.
2007. Moses: Open source toolkit for statistical
machine translation. In Proc. ACL, Prague.

D. Marcu, W. Wong. 2002. A phrase-based, joint proba-
bility model for statistical machine translation. In Proc.
EMNLP, 133–139, Philadelphia.

R. Neal. 2003. Slice sampling. Annals of Statistics,
31:705–767.

K. Papineni, S. Roukos, T. Ward, W. Zhu. 2001. Bleu:
a method for automatic evaluation of machine trans-
lation. Technical Report RC22176 (W0109-022), IBM
Research Division, Thomas J. Watson Research Center,
2001.

J. Van Gael, Y. Saatci, Y. W. Teh, Z. Ghahramani. 2008.
Beam sampling for the infinite hidden markov model.
In ICML, 1088–1095, New York, NY, USA.

D. Wu. 1997. Stochastic inversion transduction gram-
mars and bilingual parsing of parallel corpora. Compu-
tational Linguistics, 23(3):377–403.

241

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 242–245,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Task-based Evaluation of Multiword Expressions:
a Pilot Study in Statistical Machine Translation

Marine Carpuat Mona Diab
Columbia University

Center for Computational Learning Systems
475 Riverside Drive, New York, NY 10115

{marine,mdiab}@ccls.columbia.edu

Abstract

We conduct a pilot study for task-oriented
evaluation of Multiword Expression (MWE)
in Statistical Machine Translation (SMT). We
propose two different integration strategies for
MWE in SMT, which take advantage of differ-
ent degrees of MWE semantic compositional-
ity and yield complementary improvements in
SMT quality on a large-scale translation task.1

1 Introduction

A multiword expression (MWE) generally refers to
a multiword unit or a collocation of words that co-
occur together statistically more than chance. A
MWE is a cover term for different types of colloca-
tions which vary in their transparency and fixedness.
Identifying MWEs and understanding their meaning
is considered essential to language understanding,
and of crucial importance for any Natural Language
Processing (NLP) applications that aim at handling
robust language meaning and use. In fact, the sem-
inal paper (Sag et al., 2002) refers to this problem
as a key issue for the development of high-quality
NLP applications. (Villavicencio et al., 2005) iden-
tify Machine Translation as an application of partic-
ular interest since “ recognition of MWEs is neces-
sary for systems to preserve the meaning and pro-
duce appropriate translations and avoid the genera-
tion of unnatural or nonsensical sentences in the tar-
get language.”

However, statistical machine translation (SMT)
typically does not model MWEs explicitly. SMT

1The research was partially funded by IBM under the
DARPA GALE project.

units are typically phrasal translations, defined with-
out any direct syntactic or lexical semantic motiva-
tion: they are simply n-grams that are consistently
translated in parallel corpora. Phrasal translations
might indirectly capture MWEs, but they are not dis-
tinguished from any other n-gram.

As a result, the usefulness of explicitly modeling
MWEs in the SMT framework has not yet been stud-
ied systematically. Previous work has focused on
automatically learning and integrating translations
of very specific MWE categories, such as, for in-
stance, idiomatic Chinese four character expressions
(Bai et al., 2009) or domain specific MWEs (Ren et
al., 2009). MWEs have also been defined not from
a lexical semantics perspective but from a SMT er-
ror reduction perspective, as phrases that are hard
to align during SMT training (Lambert and Banchs,
2005). For each of these particular cases, translation
quality improved by augmenting the SMT transla-
tion lexicon with the learned bilingual MWEs either
directly or through improved word alignments.

In this paper, we consider a more general prob-
lem: we view SMT as an extrinsic evaluation of
the usefulness of monolingual MWEs as used per-
vasively in natural language regardless of domain,
idiomaticity and compositionality. A MWE is com-
positional if its meaning as a unit can be predicted
from the meaning of its component words such as in
make a decision meaning to decide. Some MWEs
are more predictable than others, for instance, kick
the bucket, when used idiomatically to mean to die,
has nothing in common with the literal meaning of
either kick or bucket, while make a decision is very
clearly related to to decide. These expressions are

242

both considered MWEs but have varying degrees of
compositionality and predictability.

We explore strategies for integrating all MWEs
along this continuum in SMT. Given a monolingual
MWE lexicon, we propose (1) a static integration
strategy that segments training and test sentences ac-
cording to the MWE vocabulary, and (2) a dynamic
integration strategy that adds a new MWE-based
feature in SMT translation lexicons.

In a pilot study of the impact of WordNet MWEs
on a large-scale English to Arabic SMT system, we
show that static and dynamic strategies both improve
translation quality and that their impact is not the
same for different types of MWEs. This suggests
that the proposed framework would be an interest-
ing testbed for a task-driven evaluation of automatic
MWE extraction.

2 Static integration of MWE in SMT

The first strategy for integration can be seen as
a generalization of word segmentation for MWEs.
Given a MWE lexicon, we identify MWEs in run-
ning text and turn them into a single unit by un-
derscoring. We call this integration method static,
since, once segmented, all MWEs are considered
frozen from the perspective of the SMT system.
During training and decoding, MWEs are handled
as distinct words regardless of their compositional-
ity, and all knowledge of the MWE components is
lost.

3 Dynamic integration of MWE in SMT

The second strategy attempts to encourage cohesive
translations of MWEs without ignoring their com-
ponents. Word alignment and phrasal translation
extraction are conducted without any MWE knowl-
edge, so that the SMT system can learn word-for-
word translations from consistently translated com-
positional MWEs. MWE knowledge is integrated as
a feature in the translation lexicon. For each entry,
in addition to the standard phrasal translation proba-
bilities, we define a count feature that represents the
number of MWEs in the input language phrase.

We refer to this integration strategy as dynamic,
because the SMT system decides at decoding time
how to segment the input sentence. The MWE fea-
ture biases the system towards using phrases that do

not break MWEs. This can be seen as a generaliza-
tion of the binary MWE feature in (Ren et al., 2009),
repurposed for monolingual MWEs.

4 Empirical Evaluation

We evaluate the impact of MWEs in SMT on a large-
scale English-Arabic translation task.

Using two languages from different families is a
challenging testbed for MWEs in SMT. In contrast,
very closely related languages such as English and
French might present less divergence in lexicaliza-
tion.

In addition, Arabic-English is a well-studied lan-
guage pair in SMT, with large amounts of data avail-
able. However, we tackle the less common English
to Arabic direction in order to take advantage of the
rich lexical resources available for English on the in-
put side.

Our test set consists of the 813 newswire sen-
tences of the 2008 NIST Open Machine Transla-
tion Evaluation, which is standard evaluation data
for Arabic-English translation. The first English ref-
erence translation is used as the input to our SMT
system, and the single Arabic translation is used as
the unique reference2. Translation quality is eval-
uated using two automatic evaluation metrics: (1)
BLEUr1n4 (Papineni et al., 2002), which is based
on n-gram precisions for n = 1..4, and (2) Trans-
lation Edit Rate (TER) (Snover et al., 2006), which
generalizes edit distance beyond single-word edits.

4.1 SMT system

We use the open-source Moses toolkit (Koehn et al.,
2007) to build a standard phrase-based SMT system.

Our training data consists of 2.5M sentence pairs
from mostly newswire parallel corpora distributed
by the Linguistic Data Consortium. The English
side is tokenized using simple punctuation-based
rules. The Arabic side is segmented according to the
Arabic Treebank v3 tokenization scheme using the
MADA+TOKAN morphological analyzer and tok-
enizer (Habash et al., 2009).

The parallel corpus is word-aligned using
GIZA++ in both translation directions, which are

2We exclude weblog text since it consists of an informal mix
of Modern Standard Arabic and Dialectal Arabic which is sub-
optimal as a reference translation.

243

combined by intersection and the grow-diag-final-
and heuristic (Koehn et al., 2007). Phrase transla-
tions of up to 10 words are extracted in the Moses
phrase-table. We use a 5-gram language model with
modified Kneser-Ney smoothing. Feature weights
are tuned on NIST-MT06.

4.2 English MWE

Our main source of English MWE is the WordNet
3.0 lexical database (Fellbaum, 1998). We use sim-
ple rules to augment WordNet entries with morpho-
logical variations (e.g., keep one’s eyes peeled is ex-
panded into keep her eyes peeled, etc.). In addi-
tion when marking MWEs in text, we allow matches
not only with surface forms, but also with lemma-
tized forms (Schmid, 1994) to account for inflec-
tions. This results in a total of about 900 MWE to-
kens and 500 types in our evaluation test set. MWE
identification in running text is performed using a
straightforward maximum forward match algorithm.

Second, in order to contrast the impact of MWEs
with that of frequent collocations in our dynamic in-
tegration strategy, we consider the top 500 most fre-
quent n-grams from the SMT test set, so that the
same number of n-gram types and WordNet MWEs
are marked in the test set. Unlike WordNet MWEs,
these n-gram represent cohesive units, but are not
necessarily frozen or even a single concept. We con-
sider n-grams up to length 10 from the phrase-table,
and compute their frequency in the English side of
the parallel corpus. The top 500 most frequent n-
grams and the WordNet MWEs yield two very dif-
ferent lexicons. Only the following 10 entries ap-
pear in both: at the same time, deputy prime minis-
ter, for the first time, in the south, in the wake of, in-
ternational atomic energy agency, islamic resistance
movement, on the other hand, osama bin laden, sec-
retary of state.

5 Static MWE Integration Improves SMT

As seen in Table 1, the static integration of the Word-
Net MWE lexicon by segmentation of English train-
ing and test sentences improves BLEU and TER
compared to the SMT baseline. This suggests that
WordNet MWEs represent useful units of meaning
for alignment and translation into Arabic despite the
fact that they are monolingually defined.

MWE integration TER BLEU
Baseline — 59.43 30.49

Top 500 n-grams dynamic 59.07 30.98
WordNet MWE dynamic 58.89 31.07
WordNet MWE static 58.98 31.27

Table 1: Impact of MWE integration measured on NIST
MT08

Consider, for instance, the following input sen-
tence: the special envoy of the secretary-general will
submit an oral report to the international security
council rather than a written report. With static in-
tegration, the MWE written report is correctly trans-
lated as tqryrA mktwbA, while the baseline produces
the incorrect translation ktb Altqryr (writing the re-
port or book of report).

6 Dynamic MWE Integration Improves
SMT

Dynamic integration of the WordNet MWE lexicon
and the top 500 n-grams both improve BLEU and
TER (Table 1), but WordNet MWEs yield slightly
better scores. This confirms the ability of the dy-
namic integration method to handle compositional
MWEs, since the most frequent n-grams are highly
compositional by definition.

7 Discussion

At the corpus-level, static integration yields a
slightly better BLEU score than dynamic with
WordNet MWEs, while the opposite effect is ob-
served on TER. This suggests that the two integra-
tion strategies impact translation in different ways.
Sentence-level scores indeed reveal that dynamic
and static integration strategies have an opposite im-
pact on 27% of the test set (Table 2).

For instance, the dynamic approach fails for
phrasal verbs such as take out. In who were then
allowed to take out as many unsecured loans as they
wanted, take out is realized as b+ AlHSwl (acquire)
with the static approach, while it is entirely dropped
from the dynamic translation.

In the static approach, translation quality is often
degraded when our simple dictionary matching ap-
proach incorrectly detects MWE. For instance, in the
sentence the perpetration of this heinous act on our

244

Dynamic integration helps hurts
Static integration

helps 45% 16%
hurts 11% 28%

Table 2: Percentage of sentences where each integration
strategy helps or hurts both BLEU and TER compared to
the baseline SMT system.

soil, act on is incorrectly identified as a MWE which
degrades translation fluency. This suggests that fur-
ther gains in translation quality could be obtained
with a more sophisticated MWE detection method.

8 Conclusion

We have proposed a framework of two comple-
mentary integration strategies for MWEs in SMT,
which allows extrinsic evaluation of the usefulness
of MWEs of varying degree of compositionality.
We conducted a pilot study using manually defined
WordNet MWE and a dictionary matching approach
to MWE detection. This simple model improves
English-Arabic translation quality, even on a large
SMT system trained on more than 2 Million sen-
tence pairs.

This result suggests that standard SMT phrases
do not implicitly capture all useful MWE informa-
tion. It would therefore be interesting to conduct
this study on a larger scale, using more general
MWE definitions such as automatically learned col-
locations (Smadja, 1993) or verb-noun constructions
(Diab and Bhutada, 2009).

References

Ming-Hong Bai, Jia-Ming You, Keh-Jiann Chen, and Ja-
son S. Chang. 2009. Acquiring translation equiva-
lences of multiword expressions by normalized corre-
lation frequencies. In Proceedings of the 2009 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 478–486, Singapore, August.

Mona Diab and Pravin Bhutada. 2009. Verb noun con-
struction MWE token classification. In Proceedings of
the Workshop on Multiword Expressions: Identifica-
tion, Interpretation, Disambiguation and Applications,
pages 17–22, Singapore, August.

Christiane Fellbaum, editor. 1998. WordNet: An Elec-
tronic Lexical Database. MIT Press.

Nizar Habash, Owen Rambow, and Ryan Roth. 2009.
MADA+TOKAN: A toolkit for Arabic tokenization,
diacritization, morphological disambiguation, POS
tagging, stemming and lemmatization. In Proceedings
of the 2nd International Conference on Arabic Lan-
guage Resources and Tools (MEDAR), Cairo, Egypt.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondrej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: Open source
toolkit for statistical machine translation. In Annual
Meeting of the Association for Computational Linguis-
tics (ACL), demonstration session, Prague, Czech Re-
public, June.

Patrik Lambert and Rafael Banchs. 2005. Data inferred
multi-word expressions for statistical machine transla-
tion. In Machine Translation Summit X, pages 396–
403, Phuket, Thailand.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Computa-
tional Linguistics.

Zhixiang Ren, Yajuan Lü, Jie Cao, Qun Liu, and Yun
Huang. 2009. Improving statistical machine trans-
lation using domain bilingual multiword expressions.
In Proceedings of the Workshop on Multiword Expres-
sions: Identification, Interpretation, Disambiguation
and Applications, pages 47–54, Singapore, August.

Ivan A. Sag, Timothy Baldwin, Francis Bond, Ann A.
Copestake, and Dan Flickinger. 2002. Multiword ex-
pressions: A pain in the neck for NLP. In Proceed-
ings of the Third International Conference on Com-
putational Linguistics and Intelligent Text Processing,
pages 1–15, London, UK. Springer-Verlag.

Helmut Schmid. 1994. Probabilistic part–of–speech
tagging using decision trees. In Proceedings of the
Conference on New Methods in Language Processing,
pages 44–49, Manchester, UK.

Frank A. Smadja. 1993. Retrieving collocations from
text: Xtract. Computational Linguistics, 19(1):143–
177.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Linnea
Micciulla, and John Makhoul. 2006. A study of trans-
lation edit rate with targeted human annotation. In
Proceedings of AMTA, pages 223–231, Boston, MA.
Association for Machine Translation in the Americas.

Aline Villavicencio, Francis Bond, Anna Korhonen, and
Diana McCarthy. 2005. Introduction to the special
issue on multiword expressions: Having a crack at a
hard nut. Computer Speech & Language, 19(4):365 –
377. Special issue on Multiword Expression.

245

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 246–249,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Improving Semantic Role Labeling with Word Sense
Wanxiang Che, Ting Liu and Yongqiang Li

Research Center for Information Retrieval
MOE-Microsoft Key Laboratory of Natural Language Processing and Speech

School of Computer Science and Technology
Harbin Institute of Technology, China, 150001
{car, tliu, yqli}@ir.hit.edu.cn

Abstract

Semantic role labeling (SRL) not only needs
lexical and syntactic information, but also
needs word sense information. However, be-
cause of the lack of corpus annotated with
both word senses and semantic roles, there is
few research on using word sense for SRL.
The release of OntoNotes provides an oppor-
tunity for us to study how to use word sense
for SRL. In this paper, we present some novel
word sense features for SRL and find that they
can improve the performance significantly.

1 Introduction

Semantic role labeling (SRL) is a kind of shallow
sentence-level semantic analysis and is becoming a
hot task in natural language processing. SRL aims at
identifying the relations between the predicates in a
sentence and their associated arguments. At present,
the main stream researches are focusing on feature
engineering or combination of multiple results.

Word senses are important information for rec-
ognizing semantic roles. For example, if we know
“cat” is an “agent” of the predicate “eat” in a
sentence, we can guess that “dog” can also be
an “agent” of “eat”. Word sense has been suc-
cessfully used in many natural language process-
ing tasks, such as machine translation (Chan et al.,
2007; Carpuat and Wu, 2007). CoNLL 2008 shared
task (Surdeanu et al., 2008) first introduced the pred-
icate classification task, which can be regarded as
the predicate sense disambiguation. Meza-Ruiz and
Riedel (2009) has shown that the predicate sense can
improve the final SRL performance. However, there
is few discussion about the concrete influence of all
word senses, i.e. the words besides predicates. The
major reason is lacking the corpus, which is both an-
notated with all word senses and semantic roles.

The release of OntoNotes corpus provides an op-
portunity for us to verify whether all word senses
can help SRL. OntoNotes is a large corpus annotated
with constituency trees (based on Penn Treebank),
predicate argument structures (based on Penn Prop-
Bank) and word senses. It has been used in some
natural language processing tasks, such as joint pars-
ing and named entity recognition (Finkel and Man-
ning, 2009) and word sense disambiguation (Zhong
et al., 2008).

In this paper, we regard the word sense informa-
tion as additional SRL features. We compare three
categories of word sense features (subtree-word re-
lated sense, predicate sense, and sense path) and find
that the subtree-word related sense feature is ineffec-
tive, however, the predicate sense and the sense path
features can improve the SRL performance signifi-
cantly.

2 Data Preparation

In our experiments, we use the OntoNotes Release
2.01 corpus (Hovy et al., 2006). The OntoNotes
project leaders describe it as “a large, multilingual
richly-annotated corpus constructed at 90% inter-
nanotator agreement.” The corpus has been an-
notated with multiple levels of annotation, includ-
ing constituency trees, predicate argument struc-
ture, word senses, co-reference, and named entities.
For this work, we focus on the constituency trees,
word senses, and predicate argument structures. The
corpus has English and Chinese portions, and we
just use the English portion, which has been split
into seven sections: ABC, CNN, MNB, NBC, PRI,
VOA, and WSJ. These sections represent a mix of
speech and newswire data.

Because we used SRL system based on depen-
dence syntactic trees, we convert the constituency

1http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?
catalogId=LDC2008T04

246

trees into dependence trees with an Constituent-to-
Dependency Conversion Tool2. In addition, we also
convert the OntoNotes sense of each polysemant
into WordNet sense using sense inventory file pro-
vided by OntoNotes 2.0. For an OntoNotes sense
with more than one WordNet sense, we simply use
the foremost (more popular) one.

3 Semantic Role Labeling System

Our baseline is a state-of-the-art SRL system based
on dependency syntactic tree (Che et al., 2009). A
maximum entropy (Berger et al., 1996) classifier is
used to predict the probabilities of a word in the
sentence to be each semantic role. A virtual role
“NULL” (presenting none of roles is assigned) is
added to the roles set, so it does not need seman-
tic role identification stage anymore. For a predi-
cate, two classifiers (one for noun predicates, and
the other for verb predicates) predict probabilities of
each word in a sentence to be each semantic role (in-
cluding virtual role “NULL”). The features used in
this stage are listed in Table 1.

Feature Description
FirstwordLemma The lemma of the first word in a

subtree
HeadwordLemma The lemma of the head word in

a subtree
HeadwordPOS The POS of the head word in a

subtree
LastwordLemma The lemma of the last word in a

subtree
POSPath The POS path from a word to a

predicate
PathLength The length of a path
Position The relative position of a word

with a predicate
PredicateLemma The lemma of a predicate
RelationPath The dependency relation path

from a word to a predicate

Table 1: Features that are used in SRL.

4 Word Sense for Semantic Role Labeling

From Table 1, we can see that there are lots of lemma
or POS related features. However, the lemma fea-
ture is very sparse and may result in data sparseness

2http://nlp.cs.lth.se/software/treebank converter/

problem. As for the POS, it represents the syntactic
information, but is not enough to distinguish differ-
ent semantic roles. Therefore, we need a kind of new
feature, which is general than the lemma and special
than the POS.

The word sense just satisfies the requirement.
Thus, we will add some new features related with
word sense for SRL. Generally, the original features
can be classified into three categories:

1. Subtree-word related: FirstwordLemma, Last-
wordLemma, HeadwordLemma, and Head-
wordPOS

2. Predicate related: PredicateLemma

3. Word and predicate related: POSPath, Rela-
tionPath, PathLenght, and Position

Correspondingly, we add three categories of word
sense features by replacing Lemma or POS into
Sense, i.e.

1. Subtree-word related sense: FirstwordSense,
LastwordSense, and HeadwordSense

2. Predicate related sense: PredicateSense

3. Word and predicate related sense: SensePath

Three strategies are designed to adopt these
senses:

1. Lemma+Sense: It is the original word
sense representation in OntoNotes, such as
“dog.n.1”. In fact, This is a specialization of
the lemma.

2. Hypernym(n): It is the hypernym of a word
sense, e.g. the hypernym of “dog.n.1” is “ca-
nine.n.1”. The n means the level of the hy-
pernym. With the increasing of n, the sense
becomes more and more general. In theory,
however, this strategy may result in inconsis-
tent sense, e.g. word “dog” and “canine” have
different hypernyms. The same problem occurs
with Basic Concepts method (Izquierdo et al.,
2007).

3. Root Hyper(n): In order to extract more con-
sistent sense, we use the hypernym of a word
sense counting from the root of a sense tree,
e.g. the root hypernym of “dog.n.1” is “en-
tity.n.1”. The n means the level of the root hy-
pernym. With the increasing of n, the sense

247

becomes more and more special. Thus, word
“dog” and “canine” have the same Root Hyper:
“entity”, “physical entity”, and “object” with n
= 1, 2, and 3 respectively.

5 Experiments

We will do our experiments on seven of the
OntoNotes English datasets described in Section 2.
For each dataset, we aimed for roughly a 60% train
/ 20% development / 20% test split. See Table 2
for the detailed statistics. In order to examine the
influence of word senses in isolation, we use the hu-
man annotated POS, parse trees, and word senses
provided by OntoNotes. The lemma of each word is
extracted using WordNet tool.

Training Developing Testing

ABC 669 163 138
(0001-0040) (0041-0054) (0057-0069)

CNN 1,691 964 1,146
(0001-0234) (0235-0331) (0333-0437)

MNB 381 130 125
(0001-0015) (0016-0020) (0021-0025)

NBC 351 129 86
(0001-0025) (0026-0032) (0033-0039)

PRI 1,205 384 387
(0001-0067) (0068-0090) (0091-0112)

VOA 1,238 325 331
(0001-0159) (0160-0212) (0213-0264)

WSJ 8,592 2,552 3,432
(0020-1446) (1447-1705) (1730-2454)

All 14,127 4,647 5,645

Table 2: Training, developing and testing set sizes for the
seven datasets in sentences. The file ranges (in parenthe-
sis) refer to the numbers within the names of the original
OntoNotes files.

The baseline SRL system without sense informa-
tion is trained with all the training corpus as de-
scribed in Section 3. Its performance on the devel-
opment data is F1 = 85.48%.

Table 3 shows the performance (F1) comparison
on the development data among different sense ex-
tracting strategies with different feature categories.
The numbers are the parameter n used in Hypernym
and Root Hyper strategies.

From Table 3, we can find that:
1. Both of the predicate sense feature and the

sense path feature can improve the performance. For

Subtree-word Predicate Sense
related sense sense path

Lemma+Sense 85.34% 86.16% 85.69%
1 85.41% 86.12% 85.74%

Hypernym(n) 2 85.48% 86.10% 85.74%
3 85.38% 86.10% 85.69%
1 85.35% 86.07% 85.96%

Root Hyper(n) 2 85.45% 86.13% 85.86%
3 85.46% 86.05% 85.91%

Table 3: The performance comparison on the devel-
opment data among different sense extracting strategies
with different feature categories.

the predicate sense feature, we arrive at the same
conclusion with Meza-Ruiz and Riedel (2009). As
for the sense path feature, it is more special than the
POS, therefore, it can enhance the precision.

2. The subtree-word related sense is almost use-
less. The reason is that the original lemma and POS
features have been able to describe the subtree-word
related information. This kind of sense features is
just reduplicate.

3. For different sense feature categories
(columns), the performance is not very seriously af-
fected by different sense extracting strategies (rows).
That is to say, once the sense of a word is disam-
biguated, the sense expressing form is not important
for SRL.

In order to further improve the performance,
we add the predicate sense and the sense path
features simultaneously. Here, we select the
Lemma+Sense strategy for the predicate sense and
the Root Hyper(1) strategy for the sense path. The
final performance achieves F1 = 86.44%, which is
about 1% higher than the baseline (F1 = 85.48%).

Finally, we compare the baseline (without sense)
result with the word sense result on the test data. In
order to see the contribution of correct word senses,
we introduce a simple sense determining strategy,
which use the first (the most popular) WordNet sense
for each word. The final detailed comparison results
are listed in Table 4.

Averagely, both of the methods with the first sense
and the correct sense can perform better than the
baseline. However, the improvement of the method
with the first sense is not significant (χ2-test3 with

3http://graphpad.com/quickcalcs/chisquared1.cfm

248

Precision Recall F1
w/o sense 86.25 83.01 84.60

ABC first sense 84.91 81.71 83.28
word sense 87.13 83.40 85.22
w/o sense 86.67 79.97 83.19

CNN first sense 86.94 80.73 83.72
word sense 87.75 80.64 84.05
w/o sense 85.29 81.69 83.45

MNB first sense 85.04 81.85 83.41
word sense 86.96 82.47 84.66
w/o sense 84.49 76.42 80.26

NBC first sense 84.53 76.63 80.38
word sense 86.20 77.44 81.58
w/o sense 86.48 82.29 84.34

PRI first sense 86.82 83.10 84.92
word sense 87.45 83.14 85.24
w/o sense 89.87 86.65 88.23

VOA first sense 90.01 86.60 88.27
word sense 91.35 87.10 89.18
w/o sense 88.38 82.93 85.57

WSJ first sense 88.72 83.29 85.92
word sense 89.25 84.00 86.54
w/o sense 87.85 82.46 85.07

Avg first sense 88.11 82.85 85.40
word sense 88.84 83.37 86.02

Table 4: The testing performance comparison among
the baseline without (w/o) sense information, the method
with the first sense, and the method with the correct word
sense.

ρ < 0.01). Especially, for some sections, such as
ABC and MNB, it is harmful to the performance. In
contrast, the correct word sense can improve the per-
formance significantly (χ2-test with ρ < 0.01)and
consistently. These can further prove that the word
sense can enhance the semantic role labeling.

6 Conclusion

This is the first effort to adopt the word sense
features into semantic role labeling. Experiments
show that the subtree-word related sense features
are ineffective, but the predicate sense and the sense
path features can improve the performance signifi-
cantly. In the future, we will use an automatic word
sense disambiguation (WSD) system to obtain word
senses and study the function of WSD for SRL.

Acknowledgments

This work was supported by National Natural
Science Foundation of China (NSFC) via grant
60803093, 60975055, the “863” National High-
Tech Research and Development of China via grant
2008AA01Z144, and Natural Scientific Research
Innovation Foundation in Harbin Institute of Tech-
nology (HIT.NSRIF.2009069).

References
Adam L. Berger, Stephen A. Della Pietra, and Vincent

J. Della Pietra. 1996. A maximum entropy approach
to natural language processing. Computational Lin-
guistics, 22.

Marine Carpuat and Dekai Wu. 2007. Improving statisti-
cal machine translation using word sense disambigua-
tion. In Proceedings of EMNLP/CoNLL-2007, pages
61–72, Prague, Czech Republic, June.

Yee Seng Chan, Hwee Tou Ng, and David Chiang. 2007.
Word sense disambiguation improves statistical ma-
chine translation. In Proceedings of ACL-2007, pages
33–40, Prague, Czech Republic, June.

Wanxiang Che, Zhenghua Li, Yongqiang Li, Yuhang
Guo, Bing Qin, and Ting Liu. 2009. Multilingual
dependency-based syntactic and semantic parsing. In
Proceedings of CoNLL-2009, pages 49–54, Boulder,
Colorado, June.

Jenny Rose Finkel and Christopher D. Manning. 2009.
Joint parsing and named entity recognition. In Pro-
ceedings of NAACL/HLT-2009, pages 326–334, Boul-
der, Colorado, June.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. Ontonotes:
The 90% solution. In Proceedings of NAACL/HLT-
2006, pages 57–60, New York City, USA, June.

Rubén Izquierdo, Armando Suárez, and German Rigau.
2007. Exploring the automatic selection of basic level
concepts. In Proceedings of RANLP-2007.

Ivan Meza-Ruiz and Sebastian Riedel. 2009. Jointly
identifying predicates, arguments and senses using
markov logic. In Proceedings of NAACL/HLT-2009,
pages 155–163, Boulder, Colorado, June.

Mihai Surdeanu, Richard Johansson, Adam Meyers,
Lluı́s Màrquez, and Joakim Nivre. 2008. The conll
2008 shared task on joint parsing of syntactic and se-
mantic dependencies. In Proceedings of CoNLL-2008,
pages 159–177, Manchester, England, August.

Zhi Zhong, Hwee Tou Ng, and Yee Seng Chan. 2008.
Word sense disambiguation using OntoNotes: An em-
pirical study. In Proceedings of EMNLP-2008, pages
1002–1010, Honolulu, Hawaii, October.

249

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 250–253,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Extending the METEOR Machine Translation Evaluation Metric to the
Phrase Level

Michael Denkowski and Alon Lavie
Language Technologies Institute

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15232, USA

{mdenkows,alavie}@cs.cmu.edu

Abstract

This paper presents METEOR-NEXT, an ex-
tended version of the METEOR metric de-
signed to have high correlation with post-
editing measures of machine translation qual-
ity. We describe changes made to the met-
ric’s sentence aligner and scoring scheme as
well as a method for tuning the metric’s pa-
rameters to optimize correlation with human-
targeted Translation Edit Rate (HTER). We
then show that METEOR-NEXT improves cor-
relation with HTER over baseline metrics, in-
cluding earlier versions of METEOR, and ap-
proaches the correlation level of a state-of-the-
art metric, TER-plus (TERp).

1 Introduction

Recent focus on the need for accurate automatic
metrics for evaluating the quality of machine trans-
lation output has spurred much development in the
field of MT. Workshops such as WMT09 (Callison-
Burch et al., 2009) and the MetricsMATR08 chal-
lenge (Przybocki et al., 2008) encourage the devel-
opment of new MT metrics and reliable human judg-
ment tasks.

This paper describes our work extending the ME-
TEOR metric to improve correlation with human-
targeted Translation Edit Rate (HTER) (Snover et
al., 2006), a semi-automatic post-editing based met-
ric which measures the distance between MT out-
put and a targeted reference. We identify several
limitations of the original METEOR metric and de-
scribe our modifications to improve performance on
this task. Our extended metric, METEOR-NEXT, is

then tuned to maximize segment-level correlation
with HTER scores and tested against several base-
line metrics. We show that METEOR-NEXT outper-
forms earlier versions of METEOR when tuned to the
same HTER data and approaches the performance of
a state-of-the-art TER-based metric, TER-plus.

2 The METEOR-NEXT Metric

2.1 Traditional METEOR Scoring

Given a machine translation hypothesis and a refer-
ence translation, the traditional METEOR metric cal-
culates a lexical similarity score based on a word-
to-word alignment between the two strings (Baner-
jee and Lavie, 2005). When multiple references are
available, the hypothesis is scored against each and
the reference producing the highest score is used.
Alignments are built incrementally in a series of
stages using the following METEOR matchers:
Exact: Words are matched if and only if their sur-
face forms are identical.
Stem: Words are stemmed using a language-
appropriate Snowball Stemmer (Porter, 2001) and
matched if the stems are identical.
Synonym: Words are matched if they are both
members of a synonym set according to the Word-
Net (Miller and Fellbaum, 2007) database. This
matcher is limited to translations into English.

At each stage, one of the above matchers iden-
tifies all possible word matches between the two
translations using words not aligned in previous
stages. An alignment is then identified as the largest
subset of these matches in which every word in each
sentence aligns to zero or one words in the other sen-

250

tence. If multiple such alignments exist, the align-
ment is chosen that best preserves word order by
having the fewest crossing alignment links. At the
end of each stage, matched words are fixed so that
they are not considered in future stages. The final
alignment is defined as the union of all stage align-
ments.

Once an alignment has been constructed, the to-
tal number of unigram matches (m), the number of
words in the hypothesis (t), and the number of words
in the reference (r) are used to calculate precision
(P = m/t) and recall (R = m/r). The parame-
terized harmonic mean of P and R (van Rijsbergen,
1979) is then calculated:

Fmean =
P ·R

α · P + (1 − α) ·R
To account for differences in word order, the min-

imum number of “chunks” (ch) is calculated where a
chunk is defined as a series of matched unigrams that
is contiguous and identically ordered in both sen-
tences. The fragmentation (frag = ch/m) is then
used to calculate a fragmentation penalty:

Pen = γ · fragβ

The final METEOR score is then calculated:

Score = (1 − Pen) · Fmean
The free parameters α, β, and γ can be tuned to

maximize correlation with various types of human
judgments (Lavie and Agarwal, 2007).

2.2 Extending the METEOR Aligner
Traditional METEOR is limited to unigram matches,
making it strictly a word-level metric. By focus-
ing on only one match type per stage, the aligner
misses a significant part of the possible alignment
space. Further, selecting partial alignments based
only on the fewest number of per-stage crossing
alignment links can in practice lead to missing full
alignments with the same number of matches in
fewer chunks. Our extended aligner addresses these
limitations by introducing support for multiple-word
phrase matches and considering all possible matches
in a single alignment stage.

We introduce an additional paraphrase matcher
which matches phrases (one or more successive

words) if one phrase is considered a paraphrase of
the other by a paraphrase database. For English, we
use the paraphrase database developed by Snover et
al. (2009), using techniques presented by Bannard
and Callison-Burch (2005).

The extended aligner first constructs a search
space by applying all matchers in sequence to iden-
tify all possible matches between the hypothesis and
reference. To reduce redundant matches, stem and
synonym matches between pairs of words which
have already been identified as exact matches are not
considered. Matches have start positions and lengths
in both sentences; a word occurring less than length
positions after a match start is said to be covered by
the match. As exact, stem, and synonym matches
will always have length one in both sentences, they
can be considered phrase matches of length one.
Since other matches can cover phrases of different
lengths in the two sentences, matches are now said
to be one-to-one at the phrase level rather than the
word level.

Once all possible matches have been identified,
the aligner identifies the final alignment as the
largest subset of these matches meeting the follow-
ing criteria in order of importance:

1. Each word in each sentence is covered by zero
or one matches

2. Largest number of covered words across both
sentences

3. Smallest number of chunks, where a chunk is
now defined as a series of matched phrases that
is contiguous and identically ordered in both
sentences

4. Smallest sum of absolute distances between
match start positions in the two sentences (pre-
fer to align words and phrases that occur at sim-
ilar positions in both sentences)

The resulting alignment is selected from the full
space of possible alignments and directly optimizes
the statistics on which the the final score will be cal-
culated.

2.3 Extended METEOR Scoring
Once an alignment has been chosen, the METEOR-
NEXT score is calculated using extended versions of

251

the traditional METEOR statistics. We also introduce
a tunable weight vector used to dictate the relative
contribution of each match type. The extended ME-
TEOR score is calculated as follows.

The number of words in the hypothesis (t) and
reference (r) are counted. For each of the match-
ers (mi), count the number of words covered by
matches of this type in the hypothesis (mi(t)) and
reference (mi(r)) and apply the appropriate module
weight (wi). The weighted Precision and Recall are
then calculated:

P =
∑
iwi ·mi(t)

t
R =

∑
iwi ·mi(r)

r

The minimum number of chunks (ch) is then cal-
culated using the new chunk definition. Once P , R,
and ch are calculated, the remaining statistics and
final score can be calculated as in Section 2.1.

3 Tuning for Post-Editing Measures of
Quality

Human-targeted Translation Edit Rate (HTER)
(Snover et al., 2006), is a semi-automatic assessment
of machine translation quality based on the number
of edits required to correct translation hypotheses. A
human annotator edits each MT hypothesis so that it
is meaning-equivalent with a reference translation,
with an emphasis on making the minimum possible
number of edits. The Translation Edit Rate (TER)
is then calculated using the human-edited transla-
tion as a targeted reference for the MT hypothe-
sis. The resulting scores are shown to correlate well
with other types of human judgments (Snover et al.,
2006).

3.1 Tuning Toward HTER
The GALE (Olive, 2005) Phase 2 unsequestered
data includes HTER scores for multiple Arabic-to-
English and Chinese-to-English MT systems. We
used HTER scores for 10838 segments from 1045
documents from this data set to tune both the orig-
inal METEOR and METEOR-NEXT. Both were ex-
haustively tuned to maximize the length-weighted
segment-level Pearson’s correlation with the HTER
scores. This produced globally optimal α, β, and γ
values for METEOR and optimal α, β, γ values plus
stem, synonym, and paraphrase match weights for

Task α β γ

Adequacy & Fluency 0.81 0.83 0.28
Ranking 0.95 0.50 0.50
HTER 0.70 1.95 0.50
HTER (extended) 0.65 1.95 0.45

Stem Syn Par
0 0.4 0.9

Table 1: Parameter values for various METEOR tasks for
translations into English.

METEOR-NEXT (with the weight of exact matches
fixed at 1). Table 1 compares the new HTER pa-
rameters to those tuned for other tasks including ad-
equacy and fluency (Lavie and Agarwal, 2007) and
ranking (Agarwal and Lavie, 2008).

As observed by Snover et al. (2009), HTER
prefers metrics which are more balanced between
precision and recall: this results in the lowest values
of α for any task. Additionally, non-exact matches
receive lower weights, with stem matches receiving
zero weight. This reflects a weakness in HTER scor-
ing where words with matching stems are treated as
completely dissimilar, requiring full word substitu-
tions (Snover et al., 2006).

4 Experiments

The GALE (Olive, 2005) Phase 3 unsequestered
data includes HTER scores for Arabic-to-English
MT output. We created a test set from HTER scores
of 2245 segments from 195 documents in this data
set. Our evaluation metric (METEOR-NEXT-hter)
was tested against the following established metrics:
BLEU (Papineni et al., 2002) with a maximum N -
gram length of 4, TER (Snover et al., 2006), versions
of METEOR based on release 0.7 tuned for adequacy
and fluency (METEOR-0.7-af) (Lavie and Agarwal,
2007), ranking (METEOR-0.7-rank) (Agarwal and
Lavie, 2008), and HTER (METEOR-0.7-hter). Also
included is the HTER-tuned version of TER-plus
(TERp-hter), a metric with state-of-the-art perfor-
mance in recent evaluations (Snover et al., 2009).
Length-weighted Pearson’s and Spearman’s correla-
tion are shown for all metrics at both the segment
(Table 2) and document level (Table 3). System level
correlations are not shown as the Phase 3 data only
contained the output of 2 systems.

252

Metric Pearson’s r Spearman’s ρ
BLEU-4 -0.496 -0.510
TER 0.539 0.510
METEOR-0.7-af -0.573 -0.561
METEOR-0.7-rank -0.561 -0.556
METEOR-0.7-hter -0.574 -0.562
METEOR-NEXT-hter -0.600 -0.581
TERp-hter 0.627 0.610

Table 2: Segment level correlation with HTER.

Metric Pearson’s r Spearman’s ρ
BLEU-4 -0.689 -0.686
TER 0.675 0.679
METEOR-0.7-af -0.696 -0.699
METEOR-0.7-rank -0.691 -0.693
METEOR-0.7-hter -0.704 -0.705
METEOR-NEXT-hter -0.719 -0.713
TERp-hter 0.738 0.747

Table 3: Document level correlation with HTER.

METEOR-NEXT-hter outperforms all baseline
metrics at both the segment and document level.
Bootstrap sampling indicates that the segment-level
correlation improvements of 0.026 in Pearson’s r
and 0.019 in Spearman’s ρ over METEOR-0.7-hter
are statistically significant at the 95% level. TERp’s
correlation with HTER is still significantly higher
across all categories. Our metric does run signifi-
cantly faster than TERp, scoring approximately 120
segments per second to TERp’s 3.8.

5 Conclusions

We have presented an extended METEOR metric
which shows higher correlation with HTER than
baseline metrics, including traditional METEOR

tuned on the same data. Our extensions are not
specific to HTER tasks; improved alignments and
additional features should improve performance on
any task having sufficient tuning data. Although our
metric does not outperform TERp, it should be noted
that HTER incorporates TER alignments, providing
TER-based metrics a natural advantage. Our metric
also scores segments relatively quickly, making it a
viable choice for tuning MT systems.

Acknowledgements

This work was funded in part by NSF grants IIS-
0534932 and IIS-0915327.

References
Abhaya Agarwal and Alon Lavie. 2008. Meteor, m-bleu

and m-ter: Evaluation Metrics for High-Correlation
with Human Rankings of Machine Translation Output.
In Proc. of WMT08, pages 115–118.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An Automatic Metric for MT Evaluation with Im-
proved Correlation with Human Judgments. In Proc.
of the ACL Workshop on Intrinsic and Extrinsic Evalu-
ation Measures for Machine Translation and/or Sum-
marization, pages 65–72.

Colin Bannard and Chris Callison-Burch. 2005. Para-
phrasing with bilingual parallel corpora. In Proc. of
ACL05, pages 597–604.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
and Josh Schroeder. 2009. Findings of the 2009
Workshop on Statistical Machine Translation. In Proc.
of WMT09, pages 1–28.

Alon Lavie and Abhaya Agarwal. 2007. METEOR: An
Automatic Metric for MT Evaluation with High Lev-
els of Correlation with Human Judgments. In Proc. of
WMT07, pages 228–231.

George Miller and Christiane Fellbaum. 2007. WordNet.
http://wordnet.princeton.edu/.

Joseph Olive. 2005. Global Autonomous Language Ex-
ploitation (GALE). DARPA/IPTO Proposer Informa-
tion Pamphlet.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a Method for Automatic Eval-
uation of Machine Translation. In Proc. of ACL02,
pages 311–318.

Martin Porter. 2001. Snowball: A language for stem-
ming algorithms. http://snowball.tartarus.org/texts/.

M. Przybocki, K. Peterson, and S Bronsart. 2008.
Official results of the NIST 2008 "Metrics for
MAchine TRanslation" Challenge (MetricsMATR08).
http://nist.gov/speech/tests/metricsmatr/2008/results/.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A Study of
Translation Edit Rate with Targeted Human Annota-
tion. In Proc. of AMTA-2006, pages 223–231.

Matthew Snover, Nitin Madnani, Bonnie Dorr, and
Richard Schwartz. 2009. Fluency, Adequacy, or
HTER? Exploring Different Human Judgments with a
Tunable MT Metric. In Proc. of WMT09, pages 259–
268.

C. van Rijsbergen, 1979. Information Retrieval, chap-
ter 7. 2nd edition.

253

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 254–262,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Testing a Grammar Customization System with Sahaptin

Scott Drellishak
University of Washington

Seattle, WA, USA
sfd@u.washington.edu

Abstract

I briefly describe a system for automatically
creating an implemented grammar of a natu-
ral language based on answers to a web-based
questionnaire, then present a grammar of Sa-
haptin, a language of the Pacific Northwest
with complex argument-marking and agree-
ment patterns, that was developed to test the
system. The development of this grammar
has proved useful in three ways: (1) verifying
the correct functioning of the grammar cus-
tomization system, (2) motivating the addition
of a new pattern of agreement to the system,
and (3) making detailed predictions that un-
covered gaps in the linguistic descriptions of
Sahaptin.

1 Introduction

The LinGO Grammar Matrix
(Bender et al., 2002) is a resource for building im-
plemented precisionHPSG (Pollard and Sag, 1994)
grammars of natural languages. Grammars based
on the Matrix are expressed in the Type Description
Language (TDL) (Krieger and Schäfer, 1994), are
interpretable by the Linguistic Knowledge Building
system (LKB) (Copestake, 2002) (a software tool
for developing constraint-based grammars), and
have semantic representations that are compat-
ible with Minimal Recursion Semantics (MRS)
(Copestake et al., 2005). The Grammar Matrix
project, in particular the customization system
described below, has drawn on the linguistics and
linguistic typology literature during its develop-
ment; the system is now complex enough that it is
capable making contributions back to linguistics.

1.1 Matrix Customization System

In its earliest form, the Matrix provided a set of pre-
defined types intended to give grammar engineers
a head start, allowing them to avoid duplicating
the effort required to develop analyses of linguistic
structures thought to occur in all languages. How-
ever, there exist many linguistic phenomena that are
widespread, but not universal. If the Matrix were
restricted to supporting only what is truly univer-
sal, it would be a much less useful resource for
grammar-writers working on languages containing
such non-universal phenomena. Our solution has
been to provide theMatrix customization system,
which presents a linguist with a web-based typologi-
cal questionnaire designed to elicit a description of a
target language and, based on it, automatically pro-
duce a grammar that parses and generates the target
language.1 The grammars produced are not encum-
bered by phenomena that do not occur in the target
language; rather, they contain just enough complex-
ity to model it as described. Although the grammars
produced by the customization system are intended
as a starting point for further grammar engineering,
that starting point is now far enough along that even
without enhancement the grammars can be used for
interesting linguistic work.

The customization system is conceived of as con-
sisting of a set oflibraries , each of which sup-
ports a particular linguistic phenomenon, and in-
cludes a section of the questionnaire and a syntac-
tic analysis of the target phenomenon that can be

1A frozen version of the customization sys-
tem as described here can be found on the Web at
depts.washington.edu/uwcl/matrix/sfddiss/.

254

customized and included in output grammars. Re-
cently, I have added three new libraries to the sys-
tem (Drellishak, 2009). A library for case-marking
supports a variety of patterns for the marking of up
to two mandatory verbal arguments, including the
nominative-accusative, ergative-absolutive, and tri-
partite patterns, as well as various split-ergative sys-
tems and Austronesian alignment (see Blake (2001)
for definitions of these terms). A library for agree-
ment supports agreement in syntactic and seman-
tic features between verbs and their arguments. Fi-
nally, a library for so-called direct-inverse argument
marking supports languages in which the mark-
ing of verbs and verbal arguments is conditioned
on a grammatical scale—for example, languages
in which clauses with a first person subject and a
second person object are marked differently than
clauses with a second person subject and a first per-
son object. Languages can contain none, some, or all
of these phenomena, and the customization system
must produce consistent grammars for every combi-
nation.

1.2 Testing the Customization System

Work to add new libraries to the customization sys-
tem is ongoing. Since the grammatical analyses
of different phenomena can interact in unexpected
ways, we utilize a system of regression testing to
verify that the implementation new libraries does not
break older libraries.

A customization system regression test consists
of three parts. First, each test includes a stored
set of answers to the questionnaire describing a lan-
guage that illustrates one or more linguistic phenom-
ena; this can be fed into the customization system
to create a grammar. Second, each test has a list
of strings, some grammatical and some ungrammat-
ical in the test’s language, that probe the behavior
of the grammar with respect to the phenomena in
question. Third, each test has the expected results,
including semantic representations in the format of
Oepen (2001), that are produced by the grammar
when it parses the test sentences.

At the time of this writing, the regression test suite
includes 112 tests that fall roughly into two cate-
gories. The first category contains small artificial
languages that illustrate a single phenomenon (e.g.
nominative-accusative case marking or a particular

word order). The second category contains larger
grammars based on natural languages that illustrate
a wider range of phenomena, and therefore test the
interaction of the associated libraries. The largest
and most complex test in the latter category is the
regression test for Sahaptin.

2 Sahaptin

Sahaptin [uma] (Penutian) is a family of closely re-
lated dialects spoken in Washington, Idaho, and Ore-
gon. The details of Sahaptin grammar are drawn
primarily from a description of the language by
Rigsby and Rude (1996) (henceforth R&R). It hap-
pens that Sahaptin contains extremely complex ar-
gument marking and agreement patterns that illus-
trate, in a single grammar, a number of phenom-
ena covered by my recently-implemented Matrix li-
braries, including:

• Case marking on verbal arguments.
• Argument marking sensitive to a grammatical

scale, including patterns analyzed here as prox-
imate and obviative marking on third-person
nominals.

• Two loci of agreement (a verbal prefix and a
second-position enclitic) with both the subject
and the object.

• A distinction in number between singular, dual,
and plural on nominals, but only between sin-
gular and plural on agreement morphology.

• An inclusive/exclusive distinction in person re-
flected only in the second-position enclitic.

2.1 Sahaptin Grammar

This section contains a brief sketch of the structure
of Sahaptin sentences. Consider the following sim-
ple sentence:

(1) ín=aš á-tux
˙
nana yáamaš-na

I=1SG 3ABS-shot mule.deer-OBJ
‘I shot the mule deer.’ [uma]
(Rigsby and Rude, 1996, 676)

In (1) the first word consists of the first person sin-
gular pronoun in its unmarked form, the nominative,
followed by a second-position enclitic that agrees
with the pronoun. The second word is the verb, con-
sisting of a verbal prefix appropriate to the person
and number of the subject and object (glossed by

255

R&R as 3ABS, but see §3.6 below for a different
analysis) and the verb stem. The third word consists
of the noun stem meaning ‘mule deer’ and a suffix
marking the objective case.

R&R describe several cases in Sahaptin, includ-
ing an unmarked “nominative” case, a marked “ob-
jective” case, an “inverse ergative” case, and an “ob-
viative ergative” case. In spite of their use of the
term “ergative”, R&R make it clear that the sub-
ject generally appears in the nominative case in both
transitive and intransitive clauses, and that the object
consistently appears in the objective case in transi-
tive clauses. The “inverse ergative” and “obviative
ergative” forms only occur with third person singu-
lar nominals, both nouns and pronouns, in addition
to the subject and object forms, and they are used to
distinguish the subject from the object in transitive
clauses.

In addition to case marking on nominals, Sahap-
tin has two ways to cross-reference the arguments of
verbs: a verbal prefix and a second-position enclitic
that attaches to whichever word comes first in the
sentence. R&R characterize the prefixes and encl-
itics in two ways: first, they provide a general de-
scription of the distribution of each; second, they
provide detailed paradigms of intransitive and tran-
sitive sentence patterns that cover most, but not all,
of the logical combinations.

Enclitic Description
=naš∼ =aš∼ =š “first-person singular”
=na “first-person plural

inclusive”
=nataš∼ =ataš∼ =taš “first-person plural

exclusive”
=nam∼ =am∼ =m “second-person singular”
=pam “second-person plural”
=maš “second-person object

with first-person subject
(both singular)”

=mataš “second-person object
with first-person subject
(one or both plural)”

Table 1: Sahaptin enclitics (Rigsby and Rude, 1996, 675)

R&R describe Sahaptin’s second-position encli-
tics as shown in Table 1. Notice in particular that
several of the enclitics are associated with a per-

son and number, but R&R do not mention whether
those values are associated with the subject or the
object. The reason for this becomes clear when we
examine the full paradigm of clauses. The enclitic
=nataš, for example, occurs with first person plural
exclusive subjects in intransitive clauses; in transi-
tive clauses, however, it occurs when one argument
is first person plural exclusive and the other is third
person, regardless of which is the subject and which
is the object. A similar pattern can be observed for
=na and =naš. This variant of scale-sensitive ar-
gument marking motivated an enhancement to the
customization system described in §5 below.

Prefix Description
i- “third-person nominative”
pa- “third-person plural nominative”
á-∼ áw- “third-person absolutive”
pá- “inverse”
patá-∼ patáw- “third-person plural subject with

third-person object”

Table 2: Sahaptin prefixes (Rigsby and Rude, 1996, 675)

As for Sahaptin’s verbal prefixes, R&R describe
them as shown in Table 2.2 These descriptions are
less straightforward than those for the enclitics. In
particular, the description ofá- ∼ áw- as “absolu-
tive” is misleading. Regarding that prefix, R&R
write, “...this pronominal marks subjects in intran-
sitive clauses when they are possessors, and objects
in transitive clauses when the subject is first or sec-
ond person.” (675) In other words, it does not occur
in all transitive clauses, and only in those intransi-
tive clauses where the subject is possessive. Fur-
thermore, all the prefixes above appear on the verb,
not the nominal arguments, as one might expect for
an “absolutive” affix. In spite of the use of the term
“absolutive”, the distribution of the prefixá- ∼ áw-
does not give evidence of ergative alignment in Sa-
haptin. Similarly, although there is evidence of argu-
ment marking sensitive to a grammatical scale, the
description ofpá- as “inverse” is misleading, since
that prefix does not appear if and only if the object
outranks the subject.

2There are three further verbal prefixes in Sahaptin that mark
reflexives and reciprocals, but there is currently no support for
these phenomena in the customization system.

256

3 Sahaptin Test Case

The phenomena described above make Sahaptin an
excellent test case for demonstrating the flexibility
and expressive power of the customization system.
In this section, I will show how a significant frag-
ment of Sahaptin can be described in the customiza-
tion system questionnaire, producing a grammar that
correctly models some of the complexity of Sahap-
tin morphosyntax.

It should be noted that some aspects of Sahap-
tin are beyond the current capabilities of the cus-
tomization system, so some simplifying assump-
tions were necessary. For instance, the customiza-
tion system models complex morphosyntax but not
complex morphophonology. In effect, the grammars
it outputs expect a morpheme-by-morpheme gloss as
input rather than orthography, leaving the problem
of morphological analysis to other systems.3 The
Sahaptin test grammar therefore uses only a single
spelling for each stem and morpheme, and the mor-
phemes are separated by ‘-’ or ‘=’ characters. The
facts of Sahaptin word order are also too complex
for the customization system; in particular, it can-
not model truly free word order (i.e., discontinuous
noun phrases), and the attachment behavior of the
second-position enclitic is similarly beyond its ca-
pability. However, given these simplifying assump-
tions, the customization system is capable of model-
ing all the agreement and marking patterns of Sa-
haptin intransitive and transitive clauses shown in
Tables 7 and 8 in R&R (1996, 676).

After the design and implementation of the li-
braries for case, direct-inverse languages, and agree-
ment were completed, the construction of the Sa-
haptin test case took only about 80 hours of work,
including the creation of test sentences (described
in more detail in §4 below), a linguistic analysis of
Sahaptin, filling out the questionnaire to reflect that
analysis, and debugging the answers to the question-
naire.

3.1 Word Order

In the test grammar, I treat Sahaptin as a VSO lan-
guage, and the enclitic as a suffix on verbs. This

3The construction of such systems is well-understood
(Beesley and Karttunen, 2003), as is the method for hooking up
such a system to theLKB .

means that the sentences recognized and generated
by the grammar are in a legal word order—VSO sen-
tences with the verb followed by the second-position
enclitic are grammatical in Sahaptin—but there are
other legal word orders that the test grammar will not
accept. The analysis of the enclitic is therefore lim-
ited by the current capabilities of the customization
system’s word order library; however, if that library
is enhanced in the future to support second-position
clitics, the analysis presented below should transfer
straightforwardly.

3.2 Number

I analyze Sahaptin as having three values of number:
singular (sg), dual (du), and plural (pl). All three
values are distinguished on pronouns, as shown in
Table 3; however, agreement with enclitics and ver-
bal prefixes only shows a singular/plural distinction
(with dual pronouns agreeing with the plural mor-
pheme). It will be necessary in several places for the
grammar to refer to a non-singular category cover-
ing du andpl. The questionnaire allows the explicit
description of such a category; however, it also al-
lows the user to select multiple values for a feature,
and from those values infers the existence of cate-
gories likenon-singular. I have made use of the lat-
ter mechanism in this grammar.

Table 3 shows the Sahaptin pronoun forms that
distinguish singular, dual, and plural; in the ques-
tionnaire, therefore, I specified a number value on
each. So-called plural agreement morphemes, on the
other hand, do not distinguish between the dual and
plural so are simply specified as covering both val-
ues.

3.3 Person

Sahaptin distinguishes three values of person: first,
second, and third. The enclitics (but, interestingly,
not the pronouns) further distinguish a first person
inclusive and first person exclusive. I filled out the
person section of the questionnaire with answers re-
flecting the presence of an inclusive/exclusive dis-
tinction.

3.4 Case

As described above, Sahaptin has a nominative case
that marks intransitive and transitive subjects and an
objective case that marks transitive objects. This

257

Singular Dual Plural
Subject Object Subject Object Subject Object

1 ín ináy napiiní napiinamanáy náma naamanáy
2 ím imanáy imiiní imiinamanáy imáy imaamanáy
3 p(́n paanáy piiní piinamanáy pmáy paamanáy
3 obv erg piiní
3 inv erg pn(́m

Table 3: Umatilla Sahaptin Pronouns (Rigsby and Rude, 1996,682–683)

is the common nominative-accusative pattern, so in
the case section of the questionnaire I describe it as
such. Note that I donot analyze the inverse ergative
and obviative ergative as case; see §3.6 for details.

3.5 Direct-Inverse

I analyze Sahaptin as a direct-inverse language—
that is, a language whose argument marking is sen-
sitive to a grammatical scale—though one that lacks
clear direct or inverse forms of the verb, with the ex-
ception of thepá- prefix. The scale I propose for
Sahaptin is:

(2) 1P> 2P> 3P topic> 3P non-topic

The customization system interprets this scale,
creating a series of rules that constrain the value of
a featureDIRECTION on verbs. This feature takes
the valuesdirectandinverseand can be used to con-
strain the form either of verbs themselves or of their
arguments.

3.6 Other Features

I use two additional features in my analysis of Sa-
haptin: a semanticTOPICALITY feature and a syn-
tacticPROXIMITY feature, both on nominals.

Marking of Sahaptin transitive clauses distin-
guishes between topical and non-topical third person
arguments. There is no overt marking of topicality
on nominals, but clausal marking is conditioned on
pragmatic distinctions that influence the felicity of
the sentence in different discourse contexts. In order
to systematically test this aspect of Sahaptin gram-
mar in terms of string grammaticality, I introduced
an artificial mark on topical noun phrases, the suffix
-TOP. This suffix constrains the value of theTOPI-
CALITY feature on nominal indices.

I use the syntacticPROXIMITY feature to model
the “inverse ergative” and “obviative ergative” forms

of nominals. In Sahaptin transitive clauses, the in-
verse ergative occurs precisely when the subject is
third person singular and the clause is inverse (that
is, the object is higher on the scale). The obviative
ergative occurs in exactly one case: when the sub-
ject is third person singular and the object is a top-
ical third person singular. These “ergative” forms
function very much like the so-called proximate and
obviative forms in Algonquian languages. However,
in contrast to those languages, I analyze Sahaptin as
having three values of thePROXIMITY feature rather
than two: proximate, corresponding to the inverse
ergative-n(́m, which promotes the marked nominal
up the scale;obviative, corresponding to the obvia-
tive ergative-in, which demotes the marked nomi-
nal down the scale; andneutral, the unmarked form,
which does not affect the nominal’s position on the
scale.4

3.7 Lexicon

Having defined the necessary features and values,
we can now describe the lexicon of the Sahaptin
grammar, which includes lexical types and inflec-
tional morphemes. In the questionnaire, inflectional
morphology is described as a series of slots, each at-
taching to one or more lexical types or other slots,
and each containing one or more morphemes, each
of which in turn specifies features. In order to pre-
vent spurious ambiguity, the features on each set of
morphemes are specified in such a way that no mor-
pheme overlaps another, but also so that no legal
combination of features goes unexpressed.

The simplest grammars are those that do not re-
sort to homophony—that is, they do not have mul-
tiple lexical items or morphemes with the same

4Note that, for consistency with R&R’s description, I
nonetheless continue to refer to the marked forms as the “in-
verse ergative” and “obviative ergative”.

258

spelling but different semantics or features. It is of-
ten possible to avoid homophony by adding com-
plexity to feature hierarchies, but overly complex
hierarchies can be as difficult to manage as exten-
sive homophony. In the Sahaptin grammar, I have
attempted to strike a balance between homophony
and hierarchy complexity. For example, to make the
grammar easier for users to understand, I segregated
verbal prefixes and enclitics each into two classes:
those attaching to intransitive stems and those at-
taching to transitive stems. This produced two ho-
mophonous variants of the prefixesi- andpa-, and of
the enclitics=naš, =na, =nataš, =nam, and=pam.
Furthermore, the distributions of two transitive pre-
fixes (pá- and the null variant) and of three transi-
tive enclitics (=nam, =pam, and=mataš) were eas-
ier to model using homophonous variants. Finally,
the third person singular obviative pronoun and the
third person dual subject pronoun are bothpiiní (as
shown in Table 3) and it seemed simplest to repre-
sent these using two separate lexical entries. The
grammar, then, contains 22 lexical items, of which
only two are homophonous, and 24 non-null inflec-
tional morphemes representing 12 distinctly spelled
prefixes and enclitics.

A full description of the morphosyntactic details
of the Sahaptin test grammar would be too long for
this paper; instead, I will provide a summary.5 The
lexicon of the test grammar contains six inflectional
slots: a slot for the topic morpheme described above
that attaches to nominals; a slot for verbal prefixes
that attach to intransitive verbs; a slot for verbal pre-
fixes that attach to transitive verbs; a slot for encl-
itics that attach to intransitive verbs; a slot for en-
clitics that attach to transitive verbs; and a slot that
contains no overt morphemes, but is used to produce
lexical rules that constrain the appearance of topic,
proximate, and obviative on a verb’s nominal argu-
ments. Each of these slots contains morphemes, on
which are specified values for one or more features.
To give an idea of what this looks like, Table 4 shows

5The full details of the Sahaptin grammar can be found
in my dissertation (Drellishak, 2009). How the ques-
tionnaire can be filled out to model Sahaptin can be
seen by visiting the customization system web site at
depts.washington.edu/uwcl/matrix/sfddiss/
and clicking the Umatilla Sahaptin link at the bottom of the
main page, which fills out the questionnaire automatically.

the features that are defined for the most complex of
these slots, the one that contains transitive prefixes.

4 Testing the Sahaptin Grammar

In order to test the correctness of the Sahaptin gram-
mar, it was necessary to create a suite of test sen-
tences, some grammatical and some not, that probe
its expected lexical and grammatical coverage. I
started with the sentence patterns in R&R’s Tables
7 and 8 (Rigsby and Rude, 1996, 676); from each, I
created a sentence with the appropriate prefix, verb,
enclitic, subject, and object. In every case where
a plural argument was called for, I actually cre-
ated two sentences, one with a dual argument—and
in cases with two plural arguments, I created four:
du/du, du/pl, pl/du, andpl/pl.

All these sentences were expected to be gram-
matical based on the descriptions in R&R. To gen-
erate ungrammatical sentences, I initially permuted
the grammatical sentences in the following ways:

1. For each grammatical sentence with a prefix, I
created an ungrammatical variant with the pre-
fix missing.

2. For each grammatical sentence with an enclitic,
I created an ungrammatical variant with the en-
clitic missing.

3. For each grammatical sentence, I created vari-
ants that contained every incorrect prefix and
variants that contained every incorrect enclitic.

After duplicates were removed, this produced a
list of 89 grammatical and 220 ungrammatical sen-
tences, for a total of 309.

The permutation of the grammatical sentences as
described above was sufficient to test the phenom-
ena of interest for intransitive sentences, producing
ungrammatical sentences consisting of correctly-
formed words in the correct basic word order but
with an ungrammatical agreement pattern, and this
permutation was a small enough job to perform by
hand. For transitive sentences, though, there is a
much larger space of sentences with the right word
order but wrong agreement, so in order to test the
grammar thoroughly, I decided to supplement the
ungrammatical sentences I created by hand by writ-
ing a small program to generate every sentence con-
taining the verbq’ínun ‘see’ that followed the pattern:

259

Transitive Subject Subject Object Object
prefix PERNUM TOPICALITY PERNUM TOPICALITY

i- 3sg non-topic
pa- 3du, 3pl non-topic
á- 1st, 2nd 3rd
pá- 2sg 1sg
pá- 3sg non-topic 3sg topic
patá- 3du, 3pl non-topic 3sg topic
∅ 1st 2nd
∅ 2du, 2pl 1st
∅ 2sg 1du, 1pl

Table 4: Morphemes appearing in the transitive prefix slot

(3) prefix-q’ínun=enclitic subject object

The possible fillers for each position in (3) are
shown in Table 5:

prefix i-, pa-, á-, pá-, patá-,and∅
enclitic =naš, =na, =nataš, =nam, =pam,

=maš, =mataš,and∅
subject subject forms in Table 3
object object forms in Table 3

Table 5: Fillers for positions in (3)

As mentioned above, the lexicon of the Sahaptin
grammar, and consequently the test sentences, uses
the various forms of the personal pronoun to rep-
resent the possible person, number, case, and prox-
imity values of subject and object noun phrases. In
addition to plain case-marked pronouns, the subject
and object positions may also contain third person
pronouns marked as the topic with-TOP.

Generating every sentence that followed the pat-
tern in (3) produced 6048 sentences, but some ad-
ditional filtering was required. First, since it ap-
pears that topic marking is only relevant when dis-
ambiguating third person arguments, I removed all
sentences where the-TOP suffix appeared with a
first or second person pronoun. Second, 192 of the
permutations of (3) are actually duplicates of the
ungrammatical transitive test sentences created by
hand above, so I removed those as well. After fil-
tering, a total of 5856 programmatically-generated
sentences remained. Added to the aforementioned
309 examples, this made 6165 unique test sentences.

After using the customization system to generate

a grammar of Sahaptin, I used that grammar to at-
tempt to parse every test sentence. All 89 sentences
corresponding to R&R’s grammatical transitive and
intransitive patterns parsed and were assigned ex-
actly one analysis.6 Among the ungrammatical sen-
tences, 5848 out of 5856 failed to parse, as expected.
To my surprise, however, eight of the sentences did
parse. These sentences were:

(4) a. i-q’ínun p(́n-TOP piinamanáy
3SG-see 3SG.NOM-TOP 3DU.OBJ

‘He saw them (DU).’
b. i-q’ínun p(́n-TOP paamanáy

3SG-see 3SG.NOM-TOP 3PL.OBJ

‘He saw them.’
c. pa-q’ínun piiní paanáy

3NONSG-see 3DU.NOM 3SG.OBJ

‘They (DU) saw him.’
d. pa-q’ínun pmáy paanáy

3NONSG-see 3PL.NOM 3SG.OBJ

‘They saw him.’
e. pa-q’ínun piiní-TOP piinamanáy

3NONSG-see 3DU.NOM-TOP 3DU.OBJ

‘They (DU) saw them (DU).’
f. pa-q’ínun piiní-TOP paamanáy

3NONSG-see 3DU.NOM-TOP 3PL.OBJ

‘They (DU) saw them.’
g. pa-q’ínun pmáy-TOP piinamanáy

3NONSG-see 3PL.NOM-TOP 3DU.OBJ

‘They saw them (DU).’
h. pa-q’ínun pmáy-TOP paamanáy

3NONSG-see 3PL-TOP.NOM 3PL.OBJ

‘They saw them.’

6Multiple analyses would not necessarily have been
wrong—some sentences in some languages are structurally
ambiguous—but the grammatical Sahaptin sentences in the test
suite are marked explicitly enough for agreement that none was
ambiguous.

260

Notice that the eight sentences fall into three pat-
terns. The first two sentences have a third person sin-
gular topical subject and a third person non-singular
non-topical object, the next two have a third person
non-singular non-topical subject and a third person
singular non-topical object, and the last four have a
third person non-singular topical subject and a third
person non-topical object. These are precisely the
patterns that are absent from R&R’s Table 8; corre-
sponding sentences were therefore not included in
the list of 89 grammatical sentences. In develop-
ing the Sahaptin grammar, I had, without consider-
ing these eight patterns, defined the prefixes in such
a way that the grammar expectedi- to appear in the
first two sentences andpa- in the last six.

In order to determine whether this analysis was
correct, Sharon Hargus presented the Yakima Sahap-
tin equivalents of the sentences in (4) by telephone
to Virginia Beavert, a native speaker of that dialect,
who accepted all eight of them with the readings
shown in (4). Note that, in order for these sentences
to be acceptable, they had to be cast in the past tense,
a feature not modeled in my Sahaptin grammar frag-
ment. Note also that Dr. Beavert considered sen-
tence (4c) somewhat less acceptable, saying that it
is “[a] little awkward, but has meaning.”

The Sahaptin grammar, then, which was created
using the customization system and based on its sup-
port for case, direct-inverse languages, and agree-
ment, correctly analysed all 6165 of the test sen-
tences, including eight that fell outside of the pat-
terns described in the linguistic literature.

5 Summary and Discussion

Based on these results, I conclude that even Sahap-
tin, a language with extremely complex argument
marking morphology, can be modeled using the cus-
tomization system. Note that the system was not de-
signed with the facts of Sahaptin in mind, and with
two exceptions, the system did not need to be modi-
fied to enable it to handle Sahaptin.

One of the exceptions was trivial: formerly, gram-
mars produced by the system treated ‘=’ as punctua-
tion, stripping it out and breaking words containing
it. The other exception concerns an unusual agree-
ment pattern I first encountered in Sahaptin: mor-
phemes that agree, not with the subject or the object

of a verb, but with the nominal argument that is more
highly ranked on the direct-inverse scale. Support-
ing this agreement pattern proved worthwhile later,
when it was used again in a test grammar for Plains
Cree [crk] (Algonquian), another direct-inverse lan-
guage. Although this latter change was a substan-
tive one that allows grammars to be described more
compactly, it did not increase the descriptive power
of the system—languages showing that pattern of
agreement could still be modeled using duplicated,
homophonous morphemes. Such an enhancement to
the system is an example of the feedback loop be-
tween grammar engineering and customization sys-
tem development, where new languages with new
phenomena (or new variations of old phenomena)
inform the design and, in some cases, the descrip-
tive power of the system.

After constructing the Sahaptin grammar and test
suite described here, it was natural to include it in
two places in the customization system. First, it
is now one of the regression tests that is regularly
run to ensure that future enhancement of the system
does not break earlier features. Second, Sahaptin
has been added to the list of sample grammars ac-
cessible from the main page of the questionnaire—
by clicking on links in this list, users can see detailed
examples of how the questionnaire can be filled out
to model a target language.

The Sahaptin grammar, developed using the cus-
tomization system, has proved itself useful—not
only to the Grammar Matrix project, where it in-
spired the addition of support for scale-sensitive
agreement and serves as a regression test of the cor-
rect functioning of the system, but also to the field
of linguistics. By analyzing Sahaptin in the precise
detail required by the customization system, I found
unnoticed gaps in linguistic descriptions of the lan-
guage, and in collaboration with linguists studying
the language was able to help resolve those gaps.

Acknowledgments

My thanks go to Emily Bender and the Matrix team,
Sharon Hargus, and Virginia Beavert. This work
was supported by a gift to the Turing Center from
the Utilika Foundation, by the Max Planck Institute
for Evolutionary Anthropology, and by the National
Science Foundation under Grant No. 0644097.

261

References

[Beesley and Karttunen2003] Kenneth R. Beesley and
Lauri Karttunen. 2003. Finite State Morphology.
CSLI, Stanford.

[Bender et al.2002] Emily M. Bender, Dan Flickinger,
and Stephan Oepen. 2002. The grammar matrix. In
Proceedings of COLING 2002 Workshop on Grammar
Engineering and Evaluation, Taipei, Taiwan.

[Blake2001] Barry J. Blake. 2001.Case, Second Edition.
Cambridge University Press, Cambridge.

[Copestake et al.2005] Ann Copestake, Dan Flickinger,
Carl Pollard, and Ivan A. Sag. 2005. Minimal re-
cursion semantics: An introduction.Research on Lan-
guage & Computation, 3(2–3):281–332.

[Copestake2002] Ann Copestake. 2002.Implementing
Typed Feature Structure Grammars. CSLI, Stanford.

[Drellishak2009] Scott Drellishak. 2009.Widespread,
but Not Universal: Improving the Typological Cover-
age of the Grammar Matrix. Ph.D. thesis, University
of Washington.

[Krieger and Schäfer1994] Hans-Ulrich Krieger and Ul-
rich Schäfer. 1994. Tdl – a type description language
for constraint-based grammars. InProceedings of the
15th International Conference on Computational Lin-
guistics, pages 893–899, Kyoto, Japan.

[Oepen2001] Stephan Oepen. 2001.[incr tsdb()] —
Competence and performance laboratory. User man-
ual. Technical report, Saarbrücken, Germany.

[Pollard and Sag1994] Carl Pollard and Ivan A. Sag.
1994. Head-Driven Phrase Structure Grammar.
CSLI, Stanford.

[Rigsby and Rude1996] Bruce Rigsby and Noel Rude.
1996. Sketch of sahaptin, a sahaptian language.
In Ives Goddard, editor,Languages, pages 666–92.
Smithsonian Institution, Washington DC.

262

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 263–266,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Two monolingual parses are better than one (synchronous parse)∗

Chris Dyer
UMIACS Laboratory for Computational Linguistics and Information Processing

Department of Linguistics
University of Maryland, College Park, MD 20742, USA

redpony AT umd.edu

Abstract

We describe a synchronous parsing algorithm
that is based on two successive monolingual
parses of an input sentence pair. Although
the worst-case complexity of this algorithm
is and must be O(n6) for binary SCFGs,
its average-case run-time is far better. We
demonstrate that for a number of common
synchronous parsing problems, the two-parse
algorithm substantially outperforms alterna-
tive synchronous parsing strategies, making it
efficient enough to be utilized without resort-
ing to a pruned search.

1 Introduction

Synchronous context free grammars (SCFGs) gener-
alize monolingual context-free grammars to gener-
ate strings concurrently in pairs of languages (Lewis
and Stearns, 1968) in much the same way that fi-
nite state transducers (FSTs) generalize finite state
automata (FSAs).1 Synchronous parsing is the prob-
lem of finding the best derivation, or forest of deriva-
tions, of a source and target sentence pair 〈f, e〉 under
an SCFG, G.2 Solving this problem is necessary for
several applications, for example, optimizing how
well an SCFG translation model fits parallel train-
ing data. Wu (1997) describes a bottom-up O(n6)
synchronous parsing algorithm for ITGs, a binary
SCFG with a restricted form. For general grammars,
the situation is even worse: the problem has been
shown to be NP-hard (Satta and Peserico, 2005).
Even if we restrict ourselves to binary ITGs, the

∗This work was supported in part by the GALE program of
DARPA, Contract No. HR0011-06-2-001. The author wishes
to thank Philip Rensik, Adam Lopez, Phil Blunsom, and Jason
Eisner for helpful discussions.

1SCFGs have enjoyed a resurgence in popularity as the for-
mal basis for a number of statistical translation systems, e.g.
Chiang (2007). However, translation requires only the manipu-
lation of SCFGs using monolingual parsing algorithms.

2It is assumed that n = |f| ≈ |e|.

O(n6) run-time makes large-scale learning applica-
tions infeasible. The usual solution is to use a heuris-
tic search that avoids exploring edges that are likely
(but not guaranteed) to be low probability (Zhang et
al., 2008; Haghighi et al., 2009). In this paper, we
derive an alternative synchronous parsing algorithm
starting from a conception of parsing with SCFGs as
a composition of binary relations. This enables us
to factor the synchronous parsing problem into two
successive monolingual parses. Our algorithm runs
more efficiently than O(n6) with many grammars
(including those that required using heuristic search
with other parsers), making it possible to take ad-
vantage of synchronous parsing without developing
search heuristics; and the SCFGs are not required
to be in a normal form, making it possible to easily
parse with more complex SCFG types.

2 Synchronous parsing

Before presenting our algorithm, we review the
O(n6) synchronous parser for binary ITGs.3

2.1 ITG synchronous parsing algorithm
Wu (1997) describes a bottom-up synchronous pars-
ing algorithm that can be understood as a generaliza-
tion of the CKY algorithm. CKY defines a table con-
sisting of n2 cells, with each cell corresponding to a
span [i, j] in the input sentence; and the synchronous
variant defines a table in 4 dimensions, with cells
corresponding to a source span [s, t] and a target
span [u, v]. The bottom of the chart is initialized
first, and pairs of items are combined from bottom
to top. Since combining items from the n4 cells in-
volves considering two split points (one source, one
target), it is not hard to see that this algorithm runs
in time O(n6).

3Generalizing the algorithm to higher rank grammars is pos-
sible (Wu, 1997), as is converting a grammar to a weakly equiv-
alent binary form in some cases (Huang et al., 2009).

263

2.2 Parsing, intersection, and composition

We motivate an alternative conception of the syn-
chronous parsing problem as follows. It has long
been appreciated that monolingual parsing computes
the intersection of an FSA and a CFG (Bar-Hillel et
al., 1961; van Noord, 1995). That is, if S is an FSA
encoding some sentence s, intersection of S with a
CFG, G, results in a parse forest which contains all
and only derivations of s, that is L(S) ∩ L(G) ∈
{{s}, ∅}.4 Crucially for our purposes, the resulting
parse forest is also itself a CFG.5 Figure 1 illus-
trates, giving two equivalent representations of the
forest S∩G, once as a directed hypergraph and once
as a CFG. While S ∩ G appears similar to G, the
non-terminals (NTs) of the resulting CFG are a cross
product of pairs of states from S and NTs from G.6

Two parses are better than one (for synchronous parsing)

Chris Dyer
UMIACS Laboratory for Computational Linguistics and Information Processing

Department of Linguistics
University of Maryland, College Park, MD 20742, USA

redpony AT umd.edu

Abstract

We describe an alternative to the well-known
O(n6) synchronous parsing algorithm given
in Wu (1997). Although this algorithm, which
is based on two successive monolingual parses
of the input sentence pair, does not (and prov-
ably can not) improve the worst-case run-
time, its best-case performance is O(n3). We
show that for a number of common syn-
chronous parsing problems, the two-parse al-
gorithm performs efficiently enough to be uti-
lized, without pruning, in iterative learning al-
gorithms that rely on inside-outside inference.
The algorithm has further advantages: prun-
ing strategies that would be difficult to realize
in the original algorithm become feasible, and
certain kinds of discriminative training require
the results of both parses, making this algo-
rithm a natural fit when those training regimes
are required.

1 Introduction

Synchronous context free grammars (SCFGs) gener-
alize traditional context-free grammars to generate
strings concurrently in a pair of languages (Lewis
and Stearns, 1968), in much the same way that fi-
nite state transducers (FSTs) generalize finite state
automata. In recent years, SCFGs have enjoyed
a resurgence in popularity as the formal basis for
several of the best-performing statistical machine
translation systems (Chiang, 2007; Zollmann et al.,
2008). The translation task is a straightforward ma-
nipulation of SCFGs using standard monolingual al-
gorithms. To translate some f (a string of words in
the source language) into the target language, f is

parsed (with a monolingual parser), which, because
of the parallel structure of the rules, induces a forest
of translations in the target language.

Synchronous parsing, which is our focus for the
remainder of this paper, is the problem of finding
the best derivation, or the forest of derivations, of
a source and target sentence pair 〈f, e〉. This forest
is particularly useful in learning problems since it
can be used to compute and optimize statistics about
derivations of parallel training data. In the MT lit-
erature, this task is also known as “constrained de-
coding”. Wu (1997) describes a bottom-up algo-
rithm for constructing this forest given a sentence
pair 〈f, e〉 and grammar G that runs in O(|f|3|e|3)
since we will assume that n = |f| ≈ |e|, the run-
time is O(n6).

1.1 Parsing as composition

We motivate an alternative conception of the syn-
chronous parsing problem as follows. It has long
been appreciated that parsing computes the intersec-
tion of an FSA and a CFG (Bar-Hillel et al., 1961;
van Noord, 1995; Grune and Jacobs, 2008). That
is, parsing an FSA, S, with a CFG, G, results in a
parse forest which contains derivations of strings in
I = L(S) ∩ L(G),1 and which may be ∅. But, it is
helpful to keep in mind that the resulting parse for-
est is also itself a CFG (that exactly derives strings
in I). See Figure ?? for an example.

In the parallel parsing case, it’s helpful to think
in terms of an SCFG representing a context-free re-
lations and parallel parsing as being a composition

1In the familiar case, S is a deterministic linear chain FSA
representing a sentence.

0 1 2 43
i saw the forest

Two parses are better than one (for synchronous parsing)

Chris Dyer
UMIACS Laboratory for Computational Linguistics and Information Processing

Department of Linguistics
University of Maryland, College Park, MD 20742, USA

redpony AT umd.edu

Abstract

We describe an alternative to the well-known
O(n6) synchronous parsing algorithm given
in Wu (1997). Although this algorithm, which
is based on two successive monolingual parses
of the input sentence pair, does not (and prov-
ably can not) improve the worst-case run-
time, its best-case performance is O(n3). We
show that for a number of common syn-
chronous parsing problems, the two-parse al-
gorithm performs efficiently enough to be uti-
lized, without pruning, in iterative learning al-
gorithms that rely on inside-outside inference.
The algorithm has further advantages: prun-
ing strategies that would be difficult to realize
in the original algorithm become feasible, and
certain kinds of discriminative training require
the results of both parses, making this algo-
rithm a natural fit when those training regimes
are required.

1 Introduction

Synchronous context free grammars (SCFGs) gener-
alize traditional context-free grammars to generate
strings concurrently in a pair of languages (Lewis
and Stearns, 1968), in much the same way that fi-
nite state transducers (FSTs) generalize finite state
automata. In recent years, SCFGs have enjoyed
a resurgence in popularity as the formal basis for
several of the best-performing statistical machine
translation systems (Chiang, 2007; Zollmann et al.,
2008). The translation task is a straightforward ma-
nipulation of SCFGs using standard monolingual al-
gorithms. To translate some f (a string of words in
the source language) into the target language, f is

parsed (with a monolingual parser), which, because
of the parallel structure of the rules, induces a forest
of translations in the target language.

Synchronous parsing, which is our focus for the
remainder of this paper, is the problem of finding
the best derivation, or the forest of derivations, of
a source and target sentence pair 〈f, e〉. This forest
is particularly useful in learning problems since it
can be used to compute and optimize statistics about
derivations of parallel training data. In the MT lit-
erature, this task is also known as “constrained de-
coding”. Wu (1997) describes a bottom-up algo-
rithm for constructing this forest given a sentence
pair 〈f, e〉 and grammar G that runs in O(|f|3|e|3)
since we will assume that n = |f| ≈ |e|, the run-
time is O(n6).

1.1 Parsing as composition

We motivate an alternative conception of the syn-
chronous parsing problem as follows. It has long
been appreciated that parsing computes the intersec-
tion of an FSA and a CFG (Bar-Hillel et al., 1961;
van Noord, 1995; Grune and Jacobs, 2008). That
is, parsing an FSA, S, with a CFG, G, results in a
parse forest which contains derivations of strings in
I = L(S) ∩ L(G),1 and which may be ∅. But, it is
helpful to keep in mind that the resulting parse for-
est is also itself a CFG (that exactly derives strings
in I). See Figure ?? for an example.

In the parallel parsing case, it’s helpful to think
in terms of an SCFG representing a context-free re-
lations and parallel parsing as being a composition

1In the familiar case, S is a deterministic linear chain FSA
representing a sentence.

NP VPS

PRNNP

DT NNNP

V NPVP

theDT

aDT

forestNN

treeNN

iPRN

sawV

operation.2

S ∩ G (1)

2 Experiments

Figure 1 plots the average runtime of the algorithm
as a function of the Arabic sentence length on an
Arabic-English phrasal ITG alignment task.

3 Related work

Synchronous parsing has been widely used to com-
pute sufficient statistics for a variety of machine
learning models of synchronous trees; however,
since the naive algorithm is too slow to deal with
sentence sizes, most authors have proposed pruning
techniques. Zhang et al. (2008) suggest tic-tac-toe
pruning, which uses Model 1 posteriors to exclude
ranges of cells from being computed. Blunsom et al.
(2008) do a monolingual parse with of one language
but split the parser states by the string yielded by
the target derivations, pruning any nodes that yield
strings that do not exist in the target. Haghighi et al.
(2009) also describe a pruning heuristic that results
in average case runtime of O(n3).

References
Y. Bar-Hillel, M. Perles, and E. Shamir. 1961. On for-

mal properties of simple phrase structure grammars.
Zeitschrift für Phonetik, Sprachwissenschaft und Kom-
munikationsforschung, 14:143–172.

Phil Blunsom, Trevor Cohn, and Miles Osborne. 2008.
A discriminative latent variable model for statistical
machine translation. In Proceedings of ACL-HTL.

David Chiang. 2007. Hierarchical phrase-based transla-
tion. Computational Linguistics, 33(2):201–228.

D. Grune and C.J. H. Jacobs. 2008. Parsing as intersec-
tion. Parsing Techniques, pages 425–442.

Aria Haghighi, John Blitzer, John DeNero, and Dan
Klein. 2009. Better word alignments with supervised
ITG models. In Proceedings of the Joint Conference
of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language
Processing of the AFNLP, pages 923–931, August.

P. M. Lewis, II and R. E. Stearns. 1968. Syntax-directed
transduction. J. ACM, 15(3):465–488.

2For a discussion of the equivalence of composition and
intersection in finite-state objects, refer to Mohri (2009). Al-
though necessity forces us to use different algorithms to realize
composition, the relationship still holds at the context-free level.

Figure 1: Synchronous parser runtime as a function of
(Arabic) sentence length on an Arabic-English corpus us-
ing a phrasal ITG.

Mehryar Mohri. 2009. Weighted automata algorithms.
In Manfred Droste, Werner Kuich, and Heiko Vogler,
editors, Handbook of Weighted Automata, Mono-
graphs in Theoretical Computer Science, pages 213–
254. Springer.

Gertjan van Noord. 1995. The intersection of finite state
automata and definite clause grammars. In Proceed-
ings of the 33rd Annual Meeting of the Assocation
for Computational Linguistics, pages 159–165, Cam-
bridge, MA.

Dekai Wu. 1997. Stochastic inversion transduction
grammars and bilingual parsing of parallel corpora.
Computational Linguistics, 23(3):377–404, Sep.

Hao Zhang, Chris Quirk, Robert C. Moore, and
Daniel Gildea. 2008. Bayesian learning of non-
compositional phrases with synchronous parsing. In
Proceedings of ACL.

Andreas Zollmann, Ashish Venugopal, Franz Och, and
Jay Ponte. 2008. A systematic comparison of phrase-
based, hierarchical and syntax-augmented statistical
mt. In Proc. of 22nd International Conference on
Computational Linguistics (Coling), Manchester, U.K.

2DT3 3NN4

2NP4

1V2

1VP4

0S4

0NP1

0PRN1

i saw the forest

0NP1 1VP40S4

0PRN10NP1

2DT3 3NN42NP4

1V2 2NP41VP4

the2DT3
forest3NN4
i0PRN1
saw1V2

(a) (b)

Figure 1: A CFG, G, an FSA, S, encoding a sentence, and
two equivalent representations of the parse forest S ∩ G,
(a) as a directed hypergraph and (b) as a CFG.

When dealing with SCFGs, rather than intersec-

4L(x) denotes the set of strings generated by the gram-
mar/automaton x. In future mentions of intersection and com-
position operations, this will be implicit.

5The forest grammar derives only s, but using possibly many
derivations.

6Each pair of states from the FSA corresponds to a span [i, j]
in a CKY table.

tion, parsing computes a related operation, composi-
tion.7 The standard MT decoding-by-parsing task
can be understood as computing the composition
of an FST,8 F , which encodes the source sentence
f with the SCFG, G, representing the translation
model. The result is the translation forest, F ◦ G,
which encodes all translations of f licensed by the
translation model. While G can generate a poten-
tially infinite set of strings in the source and target
languages, F ◦ G generates only f in the source lan-
guage (albeit with possibly infinitely many deriva-
tions), but any number of different strings in the tar-
get language. It is not hard to see that a second com-
position operation of an FST, E, encoding the target
string e with the e-side of F ◦G (again using a mono-
lingual parsing algorithm), will result in a parse for-
est that exactly derives 〈f, e〉, which is the goal of
synchronous composition. Figure 2 shows an exam-
ple. In F ◦ G ◦ E the NTs (nodes) are the cross
product of pairs of states from E, the NTs from G,
and pairs of states in F .

Thus, synchronous parsing is the task of comput-
ing F ◦ G ◦E. Since composition is associative, we
can compute this quantity either as (F ◦ G) ◦ E or
F ◦ (G ◦E). Alternatively, we can use an algorithm
that performs 3-way composition directly.

2.3 The two-parse algorithm9

The two-parse algorithm refers to performing a syn-
chronous parse by computing either (F ◦ G) ◦ E or
F ◦ (G ◦ E). Each composition operation is carried
out using a standard monolingual parsing algorithm,
such as Earley’s or CKY. In the experiments below,
since we use ε-free grammars, we use a variant of
CKY for unrestricted CFGs (Chiang, 2007).

Once the first composition is done, the resulting
parse forest must be converted into a CFG repre-
sentation that the second parser can utilize. This is
straightforward to do: each node becomes a unique
non-terminal symbol, with its incoming edges cor-
responding to different ways of rewriting it. Tails
of edges are non-terminal variables in the RHS of
these rewrites. A single bottom-up traversal of the
forest is sufficient to perform the conversion. Since

7Intersection is a special case of composition where the in-
put and output labels on the transducers are identical (Mohri,
2009).

8FSTs used to represent the source and target sentences have
identical input and output labels on every transition.

9Satta (submitted) has independently derived this algorithm.

264

Two parses are better than one (for synchronous parsing)

Chris Dyer
UMIACS Laboratory for Computational Linguistics and Information Processing

Department of Linguistics
University of Maryland, College Park, MD 20742, USA

redpony AT umd.edu

Abstract

We describe an alternative to the well-known
O(n6) synchronous parsing algorithm given
in Wu (1997). Although this algorithm, which
is based on two successive monolingual parses
of the input sentence pair, does not (and prov-
ably can not) improve the worst-case run-
time, its best-case performance is O(n3). We
show that for a number of common syn-
chronous parsing problems, the two-parse al-
gorithm performs efficiently enough to be uti-
lized, without pruning, in iterative learning al-
gorithms that rely on inside-outside inference.
The algorithm has further advantages: prun-
ing strategies that would be difficult to realize
in the original algorithm become feasible, and
certain kinds of discriminative training require
the results of both parses, making this algo-
rithm a natural fit when those training regimes
are required.

1 Introduction

Synchronous context free grammars (SCFGs) gener-
alize traditional context-free grammars to generate
strings concurrently in a pair of languages (Lewis
and Stearns, 1968), in much the same way that fi-
nite state transducers (FSTs) generalize finite state
automata. In recent years, SCFGs have enjoyed
a resurgence in popularity as the formal basis for
several of the best-performing statistical machine
translation systems (Chiang, 2007; Zollmann et al.,
2008). The translation task is a straightforward ma-
nipulation of SCFGs using standard monolingual al-
gorithms. To translate some f (a string of words in
the source language) into the target language, f is

parsed (with a monolingual parser), which, because
of the parallel structure of the rules, induces a forest
of translations in the target language.

Synchronous parsing, which is our focus for the
remainder of this paper, is the problem of finding
the best derivation, or the forest of derivations, of
a source and target sentence pair 〈f, e〉. This forest
is particularly useful in learning problems since it
can be used to compute and optimize statistics about
derivations of parallel training data. In the MT lit-
erature, this task is also known as “constrained de-
coding”. Wu (1997) describes a bottom-up algo-
rithm for constructing this forest given a sentence
pair 〈f, e〉 and grammar G that runs in O(|f|3|e|3)
since we will assume that n = |f| ≈ |e|, the run-
time is O(n6).

1.1 Parsing as composition

We motivate an alternative conception of the syn-
chronous parsing problem as follows. It has long
been appreciated that parsing computes the intersec-
tion of an FSA and a CFG (Bar-Hillel et al., 1961;
van Noord, 1995; Grune and Jacobs, 2008). That
is, parsing an FSA, S, with a CFG, G, results in a
parse forest which contains derivations of strings in
I = L(S) ∩ L(G),1 and which may be ∅. But, it is
helpful to keep in mind that the resulting parse for-
est is also itself a CFG (that exactly derives strings
in I). See Figure ?? for an example.

In the parallel parsing case, it’s helpful to think
in terms of an SCFG representing a context-free re-
lations and parallel parsing as being a composition

1In the familiar case, S is a deterministic linear chain FSA
representing a sentence.

< X , X >S

< X b , c X >X

< X b , X d >X

< a , c >X

< a , d >X
E

0 1 2
a b

F

0 1 2
c d

Figure 1: A CFG, G, an FSA, S, encoding a sentence,
and two reprsentations of the parse forest S ∩ G, (a) as
a directed hypergraph and (b) as a context-free rewrite
system.

(NTs) of the resulting CFG are a cross product of
pairs of states in the FSA and the NTs in the original
grammar.

When dealing with SCFGs, rather than intersec-
tion, parsing computes a related operation, compo-
sition.2 The standard MT decoding-by-parsing task
can be understood as computing the composition of
an FST, F , encoding a source sentence f with the
SCFG, G, representing the translation model. The
result is the so-called translation forest, F ◦G, which
encodes all translations of f licensed by the transla-
tion model. Now observe that while G can generate
a potentially infinite set of strings in both source lan-
guage and target language, F ◦G (as an SCFG) gen-
erates only f, albeit possibly via several derivations,
but different translations e. It is not hard to see that
a second composition operation with an E encoding

2Intersection is a special case of composition where the in-
put and output labels on the transducers are identical (Mohri,
2009).

a string e in the target will result in the will result in
a parse forest that exactly derives 〈f, e〉, which is the
goal of synchronous composition.

Thus, in synchronous parsing, we seek to com-
pute F ◦G ◦E. Since composition is associative, we
can compute this quantity either as (F ◦ G) ◦ E or
F ◦ (G ◦ E). Alternatively, we can use an algorithm
that performs 3-way composition directly, such as
Wu’s algorithm.3

F ◦ G (1)

1.2 Analysis

Monolingual parsing is commonly thought of as a
worst-case O(n3) algorithm, even the known algo-
rithms do have a grammar term that can contribute
significantly. However, since the grammar that a
parser will employ is generally assumed to be fixed,

2 Experiments

Figure 2 plots the average runtime of the algorithm
as a function of the Arabic sentence length on an
Arabic-English phrasal ITG alignment task.

3 Related work

Synchronous parsing has been widely used to com-
pute sufficient statistics for a variety of machine
learning models of synchronous trees; however,
since the naive algorithm is too slow to deal with
sentence sizes, most authors have proposed pruning
techniques. Zhang et al. (2008) suggest tic-tac-toe
pruning, which uses Model 1 posteriors to exclude
ranges of cells from being computed. Blunsom et al.
(2008) do a monolingual parse with of one language
but split the parser states by the string yielded by
the target derivations, pruning any nodes that yield
strings that do not exist in the target. Haghighi et al.
(2009) also describe a pruning heuristic that results
in average case runtime of O(n3).

References

Cyril Allauzen and Mehryar Mohri. 2008. 3-way
composition of weighted finite-state transducers. In

3Three-way composition algorithms that operate only on
FSTs have also been developed (Allauzen and Mohri, 2008).

a : c a : d

0X1

0S2

0X1 b : 0X1 d0X1 b : c 0X1

< 0X1 b , c 0X1 >0S2
< 0X1 b , 0X1 d >0S2
< a , c >0X1
< a , d >0X1

Figure 1: A CFG, G, an FSA, S, encoding a sentence,
and two reprsentations of the parse forest S ∩ G, (a) as
a directed hypergraph and (b) as a context-free rewrite
system.

(NTs) of the resulting CFG are a cross product of
pairs of states in the FSA and the NTs in the original
grammar.

When dealing with SCFGs, rather than intersec-
tion, parsing computes a related operation, compo-
sition.2 The standard MT decoding-by-parsing task
can be understood as computing the composition of
an FST, F , encoding a source sentence f with the
SCFG, G, representing the translation model. The
result is the so-called translation forest, F ◦G, which
encodes all translations of f licensed by the transla-
tion model. Now observe that while G can generate
a potentially infinite set of strings in both source lan-
guage and target language, F ◦G (as an SCFG) gen-
erates only f, albeit possibly via several derivations,
but different translations e. It is not hard to see that
a second composition operation with an E encoding

2Intersection is a special case of composition where the in-
put and output labels on the transducers are identical (Mohri,
2009).

a string e in the target will result in the will result in
a parse forest that exactly derives 〈f, e〉, which is the
goal of synchronous composition.

Thus, in synchronous parsing, we seek to com-
pute F ◦G ◦E. Since composition is associative, we
can compute this quantity either as (F ◦ G) ◦ E or
F ◦ (G ◦ E). Alternatively, we can use an algorithm
that performs 3-way composition directly, such as
Wu’s algorithm.3

F ◦ G ◦ E (1)

1.2 Analysis

Monolingual parsing is commonly thought of as a
worst-case O(n3) algorithm, even the known algo-
rithms do have a grammar term that can contribute
significantly. However, since the grammar that a
parser will employ is generally assumed to be fixed,

2 Experiments

Figure 2 plots the average runtime of the algorithm
as a function of the Arabic sentence length on an
Arabic-English phrasal ITG alignment task.

3 Related work

Synchronous parsing has been widely used to com-
pute sufficient statistics for a variety of machine
learning models of synchronous trees; however,
since the naive algorithm is too slow to deal with
sentence sizes, most authors have proposed pruning
techniques. Zhang et al. (2008) suggest tic-tac-toe
pruning, which uses Model 1 posteriors to exclude
ranges of cells from being computed. Blunsom et al.
(2008) do a monolingual parse with of one language
but split the parser states by the string yielded by
the target derivations, pruning any nodes that yield
strings that do not exist in the target. Haghighi et al.
(2009) also describe a pruning heuristic that results
in average case runtime of O(n3).

References

Cyril Allauzen and Mehryar Mohri. 2008. 3-way
composition of weighted finite-state transducers. In

3Three-way composition algorithms that operate only on
FSTs have also been developed (Allauzen and Mohri, 2008).

0S2
0 2

0X1 0X1
1 2 0 1

0X1 b : c 0X1 0X1 b : 0X1 d

a : d a : c

0 1 0 11 2 1 2

Figure 2: An SCFG, G, two FSAs, E and F , and two
equivalent representations of F ◦ G. The synchronous
parse forest of the pair 〈ab, cd〉 with G is given under F ◦
G ◦ E.

our parser operates more efficiently with a deter-
minized grammar, we left-factor the grammar dur-
ing this traversal as well.

Analysis. Monolingual parsing runs in worst case
O(|G| · n3) time, where n is the length of the in-
put being parsed and |G| is a measure of the size
of the grammar (Graham et al., 1980). Since the
grammar term is constant for most typical parsing
applications, it is generally not considered carefully;
however, in the two-parse algorithm, the size of the
grammar term for the second parse is not |G| but
|F ◦ G|, which clearly depends on the size of the in-
put F ; and so understanding the impact of this term
is key to understanding the algorithm’s run-time.

If G is an ε-free SCFG with non-terminals N and
maximally two NTs in a rule’s right hand side, and
n is the number of states in F (corresponding to the
number of words in the f in a sentence pair 〈f, e〉),
then the number of nodes in the parse forest F ◦ G
will be O(|N | · n2). This can be shown easily since
by stipulation, we are able to use CKY+ to per-
form the parse, and there will be maximally as many

nodes in the forest as there are cells in the CKY chart
times the number of NTs. The number of edges will
be O(|N | · n3), which occurs when every node can
be derived from all possible splits. This bound on
the number of edges implies that |F ◦G| ∈ O(n3).10

Therefore, the worst case run-time of the two-parse
algorithm isO(|N | ·n3 ·n3+ |G|·n3) = O(|N | ·n6),
the same as the bound on the ITG algorithm. We
note that while the ITG algorithm requires that the
SCFGs be rank-2 and in a normal form, the two-
parse algorithm analysis holds as long as the gram-
mars are rank-2 and ε-free.11

3 Experiments

We now describe two different synchronous parsing
applications, with different classes of SCFGs, and
compare the performance of the two-parse algorithm
with that of previously used algorithms.

Phrasal ITGs. Here we compare performance of
the two-parse algorithm and the O(n6) ITG parsing
algorithm on an Arabic-English phrasal ITG align-
ment task. We used a variant of the phrasal ITG de-
scribed by Zhang et al. (2008).12 Figure 3 plots the
average run-time of the two algorithms as a function
of the Arabic sentence length. The two-parse ap-
proach is far more efficient. In total, aligning the 80k
sentence pairs in the corpus completed in less than
4 hours with the two-parse algorithm but required
more than 1 week with the baseline algorithm.13

“Hiero” grammars. An alternative approach to
computing a synchronous parse forest is based on
cube pruning (Huang and Chiang, 2007). While
more commonly used to integrate a target m-gram
LM during decoding, Blunsom et al. (2008), who re-
quired synchronous parses to discriminatively train

10How tight these bounds are depends on the ambiguity in
the grammar w.r.t. the input: to generate n3 edges, every item
in every cell must be derivable by every combination of its sub-
spans. Most grammars are substantially less ambiguous.

11Since many widely used SCFGs meet these criteria, in-
cluding hierarchical phrase-based translation grammars (Chi-
ang, 2007), SAMT grammars (Zollmann and Venugopal, 2006),
and phrasal ITGs (Zhang et al., 2008), a detailed analysis of ε-
containing and higher rank grammars is left to future work.

12The restriction that phrases contain exactly a single align-
ment point was relaxed, resulting in much larger and more am-
biguous grammars than those used in the original work.

13A note on implementation: our ITG aligner was minimal; it
only computed the probability of the sentence pair using the in-
side algorithm. With the two-parse aligner, we stored the com-
plete forest during both the first and second parses.

265

10 20 30 40 50 60
0

20

40

60

Wu (1997)
this work

Figure 3: Average synchronous parser run-time (in sec-
onds) as a function of Arabic sentence length (in words).

an SCFG translation model, repurposed this algo-
rithm to discard partial derivations during transla-
tion of f if the derivation yielded a target m-gram
not found in e (p.c.). We replicated their BTEC
Chinese-English baseline system and compared the
speed of their ‘cube-parsing’ technique and our two-
parse algorithm.14 The SCFG used here was ex-
tracted from a word-aligned corpus, as described in
Chiang (2007).15 The following table compares the
average per sentence synchronous parse time.

Algorithm avg. run-time (sec)
Blunsom et al. (2008) 7.31

this work 0.20

4 Discussion

Thinking of synchronous parsing as two composi-
tion operations has both conceptual and practical
benefits. The two-parse strategy can outperform
both the ITG parsing algorithm (Wu, 1997), as well
as the ‘cube-parsing’ technique (Blunsom et al.,
2008). The latter result points to a connection with
recent work showing that determinization of edges
before LM integration leads to fewer search errors
during decoding (Iglesias et al., 2009).

Our results are somewhat surprising in light of
work showing that 3-way composition algorithms
for FSTs operate far more efficiently than perform-
ing successive pairwise compositions (Allauzen and
Mohri, 2009). This is certainly because the 3-way
algorithm used here (the ITG algorithm) does an ex-

14To the extent possible, the two experiments were carried
out using the exact same code base, which was a C++ imple-
mentation of an SCFG-based decoder.

15Because of the mix of terminal and non-terminal symbols,
such grammars cannot be used by the ITG synchronous parsing
algorithm.

haustive search over all n4 span pairs without aware-
ness of any top-down constraints. This suggests that
faster composition algorithms that incorporate top-
down filtering may still be discovered.

References
C. Allauzen and M. Mohri. 2009. N-way composition of

weighted finite-state transducers. International Jour-
nal of Foundations of Comp. Sci., 20(4):613–627.

Y. Bar-Hillel, M. Perles, and E. Shamir. 1961. On for-
mal properties of simple phrase structure grammars.
Zeitschrift für Phonetik, Sprachwissenschaft und Kom-
munikationsforschung, 14:143–172.

P. Blunsom, T. Cohn, and M. Osborne. 2008. Probalistic
inference for machine translation. In EMNLP.

D. Chiang. 2007. Hierarchical phrase-based translation.
Computational Linguistics, 33(2):201–228.

S. L. Graham, W. L. Ruzzo, and M. Harrison. 1980. An
improved context-free recognizer. ACM Trans. Pro-
gram. Lang. Syst., 2(3):415–462.

A. Haghighi, J. Blitzer, J. DeNero, and D. Klein. 2009.
Better word alignments with supervised ITG models.
In Proc. of ACL/IJCNLP, pages 923–931.

L. Huang and D. Chiang. 2007. Forest rescoring: Faster
decoding with integrated language models. In ACL.

L. Huang, H. Zhang, D. Gildea, and K. Knight. 2009.
Binarization of synchronous context-free grammars.
Computational Linguistics, 35(4).

G. Iglesias, A. de Gispert, E. R. Banga, and W. Byrne.
2009. Hierarchical phrase-based translation with
weighted finite state transducers. In Proc. NAACL.

P. M. Lewis, II and R. E. Stearns. 1968. Syntax-directed
transduction. J. ACM, 15(3):465–488.

M. Mohri. 2009. Weighted automata algorithms. In
M. Droste, W. Kuich, and H. Vogler, editors, Hand-
book of Weighted Automata, Monographs in Theoreti-
cal Computer Science, pages 213–254. Springer.

G. Satta and E. Peserico. 2005. Some computational
complexity results for synchronous context-free gram-
mars. In Proceedings of NAACL.

G. Satta. submitted. Translation algorithms by means of
language intersection.

G. van Noord. 1995. The intersection of finite state au-
tomata and definite clause grammars. In Proc. of ACL.

D. Wu. 1997. Stochastic inversion transduction gram-
mars and bilingual parsing of parallel corpora. Com-
putational Linguistics, 23(3):377–404.

H. Zhang, C. Quirk, R. C. Moore, and D. Gildea. 2008.
Bayesian learning of non-compositional phrases with
synchronous parsing. In Proceedings of ACL.

A. Zollmann and A. Venugopal. 2006. Syntax aug-
mented machine translation via chart parsing. In Proc.
of the Workshop on SMT.

266

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 267–275,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Fast Query for Large Treebanks

Sumukh Ghodke∗
∗Department of Computer Science

and Software Engineering,
University of Melbourne
Victoria 3010, Australia

Steven Bird∗†

†Linguistic Data Consortium,
University of Pennsylvania

3600 Market Street, Suite 810
Philadelphia PA 19104, USA

Abstract

A variety of query systems have been devel-
oped for interrogating parsed corpora, or tree-
banks. With the arrival of efficient, wide-
coverage parsers, it is feasible to create very
large databases of trees. However, existing ap-
proaches that use in-memory search, or rela-
tional or XML database technologies, do not
scale up. We describe a method for storage,
indexing, and query of treebanks that uses an
information retrieval engine. Several experi-
ments with a large treebank demonstrate ex-
cellent scaling characteristics for a wide range
of query types. This work facilitates the cu-
ration of much larger treebanks, and enables
them to be used effectively in a variety of sci-
entific and engineering tasks.

1 Introduction

The problem of representing and querying linguistic
annotations has been an active area of research for
several years. Much of the work has grown from
efforts to curate large databases of annotated text
such astreebanks, for use in developing and testing
language technologies (Marcus et al., 1993; Abeillé,
2003; Hockenmaier and Steedman, 2007). At least
a dozen linguistic tree query languages have been
developed for interrogating treebanks (see§2).

While high quality syntactic parsers are able to
efficiently annotate large quantities of English text
(Clark and Curran, 2007), existing approaches to
query do not work on the same scale. Many exist-
ing systems load the entire corpus into memory and
check a user-supplied query against every tree. Oth-
ers avoid the memory limitation, and use relational

or XML database systems. Although these have
built-in support for indexes, they do not scale up ei-
ther (Ghodke and Bird, 2008; Zhang et al., 2001)).

The ability to interrogate large collections of
parsed text has important practical applications.
First, it opens the way to a new kind of information
retrieval (IR) that is sensitive to syntactic informa-
tion, permitting users to do more focussed search.
At the simplest level, an ambiguous query term like
wind or park could be disambiguated with the help
of a POS tag (e.g.wind/N, park/V). (Existing IR
engines already support query with part-of-speech
tags (Chowdhury and McCabe, 1998)). More com-
plex queries could stipulate the syntactic category of
apple is in subject position.

A second benefit of large scale tree query is for
natural language processing. For example, we might
compute the likelihood that a given noun appears as
the agent or patient of a verb, as a measure of an-
imacy. We can use features derived from syntactic
trees in order to support semantic role labeling, lan-
guage modeling, and information extraction (Chen
and Rambow, 2003; Collins et al., 2005; Hakenberg
et al., 2009). A further benefit for natural language
processing, though not yet realized, is for a treebank
and query engine to provide the underlying storage
and retrieval for a variety of linguistic applications.
Just as a relational database is present in most busi-
ness applications, providing reliable and efficient ac-
cess to relational data, such a system would act as a
repository of annotated texts, and expose an expres-
sive API to client applications.

A third benefit of large scale tree query is to
support syntactic investigations, e.g. for develop-

267

ing syntactic theories or preparing materials for lan-
guage learners. Published treebanks will usually not
attest particular words in the context of some in-
frequent construction, to the detriment of syntactic
studies that make predictions about such combina-
tions, and language learners wanting to see instances
of some construction involving words from some
specialized topic. A much larger treebank allevi-
ates these problems. To improve recall performance,
multiple parses for a given sentence could be stored
(possibly derived from different parsers).

A fourth benefit for large scale tree query is to
support the curation of treebanks, a major enter-
prise in its own right (Abeillé, 2003). Manual selec-
tion and correction of automatically generated parse
trees is a substantial part of the task of preparing a
treebank. At the point of making such decisions, it
is often helpful for an annotator to view existing an-
notations of a given construction which have already
been manually validated (Hiroshi et al., 2005). Oc-
casionally, an earlier annotation decision may need
to be reconsidered in the light of new examples,
leading to further queries and to corrections that are
spread across the whole corpus (Wallis, 2003; Xue
et al., 2005).

This paper explores a new methods for scaling up
tree query using an IR engine. In§2 we describe ex-
isting tree query systems, elaborating on the design
decisions, and on key aspects of their implementa-
tion and performance. In§3 we describe a method
for indexing trees using an IR engine, and discuss
the details of our open source implementation. In
§4 we report results from a variety of experiments
involving two data collections. The first collection
contains of 5.5 million parsed trees, two orders of
magnitude larger than those used by existing tree
query systems, while the second collection contains
26.5 million trees.

2 Treebank Query

A tree query system needs to be able to identify trees
having particular properties. On the face of it, this
should be possible to achieve by writing simple pro-
grams over treebank files on disk. The programs
would match tree structures using regular expression
patterns, possibly augmented with syntax for match-
ing tree structure. However, tree query is a more

complex and interesting task, due to several factors
which we list below.

Structure of the data: There are many varieties
of treebank. Some extend the nested bracketing
syntax to store morphological information. Oth-
ers store complex attribute-value matrices in tree
nodes or have tree-valued attributes (Oepen et al.,
2002), or store dependency structures (Čmejrek et
al., 2004), or categorial grammar derivations (Hock-
enmaier and Steedman, 2007). Others store multiple
overlapping trees (Cassidy and Harrington, 2001;
Heid et al., 2004; Volk et al., 2007).

Form of results: Do we want entire trees, or
matching subtrees, or just a count of the number of
results? Do we need some indication of why the
query matched a particular tree, perhaps by show-
ing how query terms relate to a hit, cf. document
snippets and highlighted words in web search re-
sults? Do we want to see multiple hits when a query
matches a particular tree in more than one place?
Do we want to see tree diagrams, or some machine-
readable tree representation that can be used in ex-
ternal analysis? Can a query serve to update the tree-
bank, cf. SQL update queries?

Number of results: Do we want all results, or the
first n results in document order, or the “best”n re-
sults, where our notion of best might be based on
representativeness or distinctiveness.

Description language: Do we prefer to describe
trees by giving examples of tree fragments, replac-
ing some nodes replaced with wildcards (Hiroshi et
al., 2005; Ichikawa et al., 2006; Mı́rovský, 2006)?
Or do we prefer a path language (Rohde, 2005; Lai
and Bird, 2010)? Or perhaps we prefer a language
involving variables, quantifiers, boolean operators,
and negation (König and Lezius, 2001; Kepser,
2003; Pajas anďStěpánek, 2009)? What built-in
tree relations are required, beyond the typical par-
ent/child, ancestor/descendent, sibling and temporal
relations? (E.g. last child, leftmost descendent, par-
ent’s following sibling, pronoun’s antecedent.) Do
we need to describe tree nodes using regular expres-
sions, or attributes and values? Do we need a type
system, a pattern language, or boolean logic for talk-
ing about attribute values? The expressive require-
ments of the query language have been discussed

268

at length elsewhere (Lai and Bird, 2004; Mı́rovský,
2008), and we will not consider them further here.

Performance: What performance is acceptable,
especially as the data size grows? Do we want
to optimize multiple reformulations of a query, for
users who iteratively refine a query based on query
results? Do we want to optimize certain query
types? Are queries performed interactively or in
batch mode? Is the treebank stable, or being actively
revised, in which case indexes need to be easily up-
datable? Do we expect logically identical queries
to have the same performance, so that users do not
have to rewrite their queries for efficiency? Key per-
formance measures are index size and search times.

Architecture: Is the query system standalone, or
does it exist in a client-server architecture? Is there
a separate user-interface layer that interacts with a
data server using a well-defined API, or is it a mono-
lithic system? Should it translate queries into an-
other language, such as SQL (Bird et al., 2006;
Nakov et al., 2005), or XQuery (Cassidy, 2002;
Mayo et al., 2006), or to automata (Maryns and
Kepser, 2009), in order to benefit from the perfor-
mance optimizations they provide

Indexing. The indexing methods used in individ-
ual systems are usually not reported. Many systems
display nearly constant time for querying a database,
regardless of the selectivity of a query, a strong in-
dicator that no indexes are being used. For exam-
ple, Emu performs all queries in memory with no
indexes, and several others are likely to be the same
(Cassidy and Harrington, 2001; König and Lezius,
2001; Heid et al., 2004). TGrep2 (Rohde, 2005) uses
a custom corpus file and processes it sentence by
sentence at query execution time. Other tree query
systems use hashed indexes or other types of in-
memory indexes. However, a common drawback of
these systems is that they are designed for treebanks
that are at most a few million words in size, and do
not scale well to much larger treebanks.

There are many positions to be taken on the above
questions. Our goal is not to argue for a particu-
lar data format or query style, but rather to demon-
strate a powerful technique for indexing and query-
ing treebanks which should be applicable to most of
the above scenarios.

3 Indexing Trees

In this section we discuss two methods of stor-
ing and indexing trees. The first uses a relational
database and linguistic queries are translated into
SQL, while the second uses an inverted index ap-
proach based on an open source IR engine, Lucene.1

Relational databases are a mature technology and
are known to be efficient at performing joins and
accessing data using indexes. Information retrieval
engines using term vectors, on the other hand, ef-
ficiently retrieve documents relevant to a query. IR
engines are known to scale well, but they do not sup-
port complex queries. A common feature of both
the IR and database approaches is the adoption of
so-called “tree labeling” schemes.

3.1 Tree labeling schemes

Tree queries specify node labels (“value con-
straints”) and structural relationships between nodes
of interest (“structural constraints”). A simple value
constraint could look for awh noun phrase by spec-
ifying the WHNP; such queries are efficiently im-
plemented using indexes. Structural relationships
cannot be indexed like node labels. A term in a
sentence will have multiple relationships with other
terms in the same sentence. Indexing all pairs of
terms that exist in a given structural relationship re-
sults in an explosion in the index size. Instead, the
standard approach is to store position information
with each occurrence of a term, using a table or a
term vector, and then use the position information
to find structural matches. Many systems use this
approach, from early object databases such as Lore
(McHugh et al., 1997), to relational representation
of tree data (Bird et al., 2006) and XISS/R (Hard-
ing et al., 2003), and native XML databases such as
eXist (Meier, 2003). Here, the position is encoded
via node labeling schemes, and is designed so it can
support efficient testing of a variety of structural re-
lations.

A labeling scheme based on pre-order and post-
order labeling of nodes is the foundation for several
extended schemes. It can be used for efficiently de-
tecting that two nodes are in a hierarchical (or inclu-
sion) relationship. Other labeling schemes are based
on the Dewey scheme, in which each node contains

1http://lucene.apache.org/

269

Figure 1: Generating node labels

a hierarchical label in which numbers are separated
by periods (Tatarinov et al., 2002). A child node gets
its label by appending its position relative to its sib-
lings to its parent’s label. This scheme can be used
for efficiently detecting that two nodes are in a hier-
archical or sequential (temporal) relationship.

The LPath numbering scheme assigns four integer
labels to each node (Bird et al., 2006). The genera-
tion of these labels is explained with the help of an
example. Figure 1 is the graphical representation of
a parse tree for a sentence with 7 words,w1 · · ·w7.
Let A, B, C, D, E, and S represent the annotation
tags. Some nodes at different positions in the tree
share a common name.

The first step in labeling is to identify the sequen-
tial positions between words, as shown beneath the
parse tree in Figure 1. The left id of a terminal node
is the sequence position immediately to the left of a
node, while its right id is the one to its immediate
right. The left id of a non-terminal node is the left
id of its leftmost descendant, and the right id is the
right id of its rightmost descendant. In most cases
the ancestor-descendant and preceding-following re-
lationships between two elements can be evaluated
using the left and right ids alone. The sequential ids
do not differentiate between two nodes where one is
the lone child of the other. The depth id is therefore
required in such cases and to identify the child node
(depth values are shown on the left side of Figure 1).
In order to check if two given nodes are siblings,
the above three ids will not suffice. We therefore
assign a common parent id label to siblings. These
four identifiers together enable us to identify rela-
tionships between elements without traversing trees.

Node Left Right Depth Parent
A 2 4 3 2
A 1 4 2 6
A 5 8 3 8
B 3 4 4 4
B 4 5 3 8
B 7 8 4 10

Table 1: Node labels

Table 1 illustrates the node labels assigned toA
andB nodes in Figure 1. We can see that the parent
id of the thirdA and secondB are equal because they
are siblings.

Once these numbers are assigned to each node,
the nodes can be stored independently without loss
of any structural information (in either a relational
database or an inverted index). At query execution
time, the set of elements on either side of an opera-
tor are extracted and only those node numbers that
satisfy the operator’s specification are selected as the
result. For example, if the operator is the child rela-
tion, and the operands areA andB, then there are two
matches: B{3, 4, 4, 4}, child of A{2, 4, 3, 2} and,
B{7, 8, 4, 10}, child of A{5, 8, 3, 8}.2 This process
of finding the elements of a document that match op-
erators is nothing other than the standard join oper-
ation (and it is implemented differently in relational
databases and IR engines).

3.2 Relational database approach

Tree nodes can be stored in a relational database us-
ing a table structure (Bird et al., 2006). Each tree-
bank would have a single table for all nodes where
each node’s information is stored in a tuple. The
node name is stored along with other position infor-
mation and the sentence id. Every node tuple also
has a unique primary key. The parent id column
is a foreign key, referencing the parent node’s id,
speeding up parent/child join operations. In prac-
tice, queries are translated from higher level linguis-
tic query languages such as LPath into SQL auto-
matically, allowing users to use a convenient syntax,
rather than query using SQL.

Previous research on a similar database structure
for containment queries in XML databases showed

2The node labels are represented as an ordered set here for
brevity. Their positions match the headings in Table 1.

270

that databases are generally slower than specialised
IR indexes (Zhang et al., 2001). In that work, the
authors provide results comparing their IR join algo-
rithm, the multi-predicate merge join (MPMGJN),
with two standard relational join algorithms. They
consider the number of comparisons performed in
the standard merge join and the index nested loop
join, and contrast these with their IR join algorithm.
They show that the IR algorithm performs fewer
comparisons than a standard merge join but greater
than the index nested loop join.

The multi-predicate merge join exploits the fact
that nodes are encountered in document order (i.e. a
node appears before its descendents). Search within
a document can be aborted as soon as it is clear that
further searching will not yield further results. Im-
portantly, this IR join algorithm is faster than both
relational join algorithms in practice, since it makes
much better use of the hardware disk cache. Our
own experiments with a large treebank stored in an
Oracle database have demonstrated that this short-
coming of relational query relative to IR query exists
in the linguistic domain (Ghodke and Bird, 2008).

3.3 IR engine approach

We transform the task of searching treebanks into a
conventional document retrieval task in which each
sentence is treated as a document. Tree node labels
are stored in inverted indexes just like words in a
text index. We require two types of indexes, for fre-
quency and position. The frequency index for a node
label contains a list of sentence ids and, for each one,
a count indicating the frequency of the node label
in the sentence. (Labels with a frequency of zero
do not appear in this index.) The position index is
used to store node numbers for each occurrence of
the node label. The numbers at each position are
read into memory as objects only when required (at
other times, the byte numbers are skipped over for
efficiency). During query processing, the frequency
indexes are first traversed sequentially to find a doc-
ument that contains all the required elements in the
query. Once a document is found, the structural con-
straints are checked using the data stored in the po-
sition index for that document. The document itself
does not need to be loaded.

Using an inverted index for searching structured
data is not new, and several XML databases already

use this method to index XML elements (Meier,
2003). However, linguistic query systems are spe-
cial purpose applications where the unit of retrieval
is usually a sentence. A given tree may satisfy a
query in multiple places, but we only identify which
sentences are relevant. Finding all matches within a
sentence requires further processing.3

Our approach has been to process each sentence
as a document. By fixing the unit of retrieval to be
the sentence, we are able to greatly reduce the size
of intermediate results when performing a series of
joins. The task is then to simply check whether a
sentence satisfies a query or not. This can be done
using substantially less resources than is needed for
finding sets of nodes, the unit of retrieval for rela-
tional and XML databases. When processing a se-
ries of joins, we use a single buffer to store the node
positions required to perform the next join in the se-
ries. After computing that join and processing an-
other operator in the query, the buffer contents is re-
placed with a new set of nodes, discarding the inter-
mediate information.

4 Experiments with IR Engine

4.1 Data

We used two data collections in our experiments.
The first collection is a portion of the English Giga-
word Corpus, parsed in the Penn Treebank format.
We used the TnT tagger and the DBParser trained
on the Wall Street Journal section of the Penn Tree-
bank to parse sentences in the corpus. The total size
of the corpus is about 5.5 million sentences. The
TGrep2 corpus file for this corpus is about 1.8 GB
and the Lucene index is 4 GB on disk. The second
data collection is a portion of English Wikipedia,
again tagged and parsed using TnT tagger and DB-
Parser, respectively. This collection contains 26.5
million parsed sentences. The TGrep2 corpus file
corresponding to this collection is about 6.6 GB and
the Lucene index is 14 GB on disk.

3Several alternate path joins and improvements to the
MPMGJN algorithm have been proposed over the years to over-
come the problem of large number of intermediate nodes and to
reduce unnecessary joins (Al-Khalifa et al., 2002; Li and Moon,
2001). Brunoet al.’s work on twig joins further improved on
those efforts by processing an entire query twig in a holistic
fashion (Bruno et al., 2002), and has since been further opti-
mized.

271

Query Selectivity
Data Collection 1 (5.5M sentences) Data Collection 2 (26.5M sentences)

Full search First 10 Full search First 10
(//N1 op N2) N1-op-N2 cold warm hits cold warm cold warm hits cold warm

NP/NN L-L-L 7.326 5.533 4,814,540 0.059 0.000324.680 20.256 21,906,349 0.260 0.0003
VP/DT L-H-L 4.576 3.593 17,328 0.140 0.00413.865 11.363 91,070 0.301 0.003
NP/LST L-L-H 4.454 0.043 6,808 0.083 0.00116.864 0.077 2.974 0.270 0.003

VP/WHPP L-H-H 2.445 0.034 32 1.012 0.014 8.834 0.066 29 3.653 0.015
LST\NP H-L-L 4.444 0.043 6,808 0.080 0.00116.814 0.077 2,974 0.271 0.003

WHPP\VP H-H-L 2.461 0.034 32 0.990 0.013 8.726 0.065 29 3.611 0.015
LST/LS H-L-H 0.181 0.005 10,432 0.071 0.00010.294 0.008 8,977 0.238 0.0002
LST/FW H-H-H 0.123 0.009 4 0.103 0.011 0.348 0.012 9 0.408 0.012

Table 2: Execution times (in seconds) for queries of varyingselectivity

4.2 Types of queries

Query performance depends largely on the nature of
the individual queries, therefore we present a de-
tailed analysis of the query types and their corre-
sponding results in this section.

Selectivity: A query term that has few correspond-
ing hits in the corpus will be considered to have high
selectivity. The selectivity of whole queries depends
not only on the selectivity of their individual ele-
ments, but also on how frequently these terms satisfy
the structural constraints specified by the query.

Table 2 gives execution times for queries with
varying selectivity, using our system. We assign a
selectivity measure for the operator based on how
often the two operands satisfy the structural condi-
tion. It is clear that when elements are very common
and they frequently satisfy the structural constraints
of the operator, there are bound to be more run-time
structural checks and the performance deteriorates.
This is demonstrated by the time taken by the first
query. Note the relatively small difference in the ex-
ecution time between the second and third queries.
The third query contains a high selectivity element
and even returns fewer matches compared to the sec-
ond, but takes almost as long. This may be due to the
relative frequency of the tags within each sentence,
which we have not controled in this experiment. If
there are several LST tags in the sentences where
it appears, there are likely to be greater number of
searches within each sentence. A better join algo-
rithm would improve the performance in such cases.

A multiple regression analysis of the full search

(cold start) times for collection 2 shows that low-
selectivity labels contribute 9.5 seconds, and a low-
selectivity operator contributes 6.7 seconds, and that
this accounts for most of the variability in the timing
data (t = −1.53 + 9.51 ∗ N1 + 6.72 ∗ op + 9.44 ∗
N2, R

2 = 0.8976). This demonstrates that the dis-
tribution of full search (cold start) times is mostly
accounted for by the index load time, with the time
for computing a large join being a secondary cost.
The full search (warm start) times in Table 2 pay a
lesser index loading cost.

Query length: It is evident that the system must
retrieve and process more term vectors as we in-
crease the number of elements in a query. To find
out exactly how the query length affects processing,
we ran tests with three sets of queries. In each set we
varied the number of elements in a dominance rela-
tionship with another node of the same name. The
number of terms in the dominance relationship was
varied from 1 to 6, where the first case is equiva-
lent to just finding all terms with that name. In the
first set, queries search for nested noun phrases (NP),
while the second and third look for adjective phrases
(ADJP) and list elements (LST) respectively.

These terms have been chosen to simultaneously
study the effects of selectivity and query length, with
NP being the least selective (or most common), fol-
lowed byADJP, then withLST being the most selec-
tive (or least common).NP is also more frequently
self-nested than the others. Figure 2 plots query
length (x-axis) against query execution time (y-axis,
log scale) for the three sets, using our system. With

272

//NP
//ADJP
//LST

Number of elements

T
im

e
(s

ec
on

ds
)

1 2 3 4 5 6

0.
00

1
0.

01
0.

1
1

10
10

0

Figure 2: Variation of query execution time with query length in data collection 1

//NP
//ADJP
//LST

Number of elements

T
im

e
(s

ec
on

ds
)

1 2 3 4 5 6

0.
00

1
0.

01
0.

1
1

10
10

0

Figure 3: Variation of query execution time with query length in data collection 2

each step on thex-axis, a query will have an extra
descendant node. For example, at position 3 for ele-
mentA, the query would be//A//A//A.

The circles on the plot are proportional to the log
of the result set size. The biggest circle is for//NP

which is of the order of 5.4 million, while there are
only 4 trees in whichLST is nested 4 times.LST is
not nested 5 or more times. Similarly,ADJP returns
0 results for the 6th test query and hence there are no
circles at these locations. The thick lines on the plot
indicate the average cold start run time over three
runs, while the dashed line shows the minimum av-
erage run time of 4 sets, with the query executed 5
times in each set. Together, the pairs of unbroken
and dashed lines indicate the variation in run time
depending on the state of the system.4

4We can observe from the results that the variation be-

4.3 Measurement techniques

The measurement techniques vary for TGrep and
the IR based approach. In TGrep the corpus file is
loaded each time during query processing, but in the
IR approach an index once loaded can operate faster
than a cold start.

In order to understand the variations in the operat-
ing speed we plot the variation in times from a cold
start to a repeat query, as shown in Table 3.

tween cold start and warm start correlates with query length.
The length experiment here use a single term repeated multi-
ple times. However, there is a possibility that the results may
vary when the terms are different, because it would involve ad-
ditional time to load the term vectors of distinct elements into
memory.

273

Query
Data collection 1 Data collection 2
TGrep2 IR TGrep2 IR

//NP 25.28 8.15 89.35 15.53
//NP//NP 25.44 10.42 88.36 35.95
//NP//NP//NP 25.45 14.96 87.48 52.81
//NP. . . //NP (4 times) 25.34 18.38 88.28 66.80
//NP. . . //NP (5 times) 25.46 20.94 87.38 70.80
//NP. . . //NP (6 times) 25.41 23.23 86.92 75.05
//ADJP 25.48 0.69 86.83 1.03
//ADJP//ADJP 25.36 0.73 86.42 1.61
//ADJP//ADJP//ADJP 25.29 0.84 86.89 1.89
//ADJP. . . //ADJP (4 times) 25.45 0.90 87.39 2.11
//ADJP. . . //ADJP (5 times) 25.23 1.03 86.50 2.49
//ADJP. . . //ADJP (6 times) 25.74 1.11 89.24 2.79
//LST 25.29 0.17 87.73 0.26
//LST//LST 25.49 0.20 87.09 0.27
//LST//LST//LST 25.38 0.20 87.66 0.28
//LST. . . //LST (4 times) 25.43 0.19 87.17 0.29
//LST. . . //LST (5 times) 25.40 0.19 88.02 0.31
//LST. . . //LST (6 times) 25.32 0.19 89.01 0.32
//NP/NN 25.66 7.33 87.63 24.68
//VP/DT 25.53 4.58 89.85 13.86
//NP/LST 25.62 4.45 86.39 16.86
//VP/WHPP 25.09 2.97 87.43 8.83
//WHPP/IN 25.75 4.44 88.48 16.81
//LST/JJ 25.46 2.46 86.57 8.73
//LST/LS 25.38 0.18 87.40 0.29
//LST/FW 25.51 0.12 87.27 0.35

Table 3: Comparison of TGrep2 and IR Engine cold start
query times (seconds)

5 Conclusions

We have shown how an IR engine can be used to
build a high performance tree query system. It
outperforms existing approaches using indexless in-
memory search, or custom indexes, or relational
database systems, or XML database systems. We
reported the results of a variety of experiments to
demonstrate the efficiency of query for a variety of
query types on two treebanks consisting of around
5 and 26 million sentences, more than two orders
of magnitude larger than what existing systems sup-
port. The approach is quite general, and not limited
to particular treebank formats or query languages.
This work suggests that web-scale tree query may
soon be feasible. This opens the door to some in-
teresting possibilities: augmenting web search with
syntactic constraints, the ability discover rare exam-
ples of particular syntactic constructions, and as a
technique for garnering better statistics and more
sensitive features for the purpose of constructing
language models.

Acknowledgments

We gratefully acknowledge support from Microsoft
Research India and the University of Melbourne.

References

Anne Abeillé, editor. 2003.Treebanks: Building and
Using Parsed Corpora. Text, Speech and Language
Technology. Kluwer.

Shurug Al-Khalifa, H.V. Jagadish, Nick Koudas, Jig-
nesh M. Patel, Divesh Srivastava, and Yuqing Wu.
2002. Structural joins: A primitive for efficient XML
query pattern matching. InICDE ’02: Proc. 18th Intl
Conf on Data Engineering, page 141. IEEE Computer
Society.

Steven Bird, Yi Chen, Susan B. Davidson, Haejoong Lee,
and Yifeng Zheng. 2006. Designing and evaluating
an XPath dialect for linguistic queries. InICDE ’06:
Proc. 22nd Intl Conf on Data Engineering, page 52.
IEEE Computer Society.

Nicolas Bruno, Nick Koudas, and Divesh Srivastava.
2002. Holistic twig joins: optimal XML pattern
matching. InSIGMOD ’02: Proc. 2002 ACM SIG-
MOD Intl Conf on Management of Data, pages 310–
321. ACM.

Steve Cassidy and Jonathan Harrington. 2001. Multi-
level annotation of speech: an overview of the Emu
Speech Database Management System.Speech Com-
munication, 33:61–77.

Steve Cassidy. 2002. Xquery as an annotation query lan-
guage: a use case analysis. InProc. 3rd LREC.

John Chen and Owen Rambow. 2003. Use of deep lin-
guistic features for the recognition and labeling of se-
mantic arguments. InEmpirical Methods in Natural
Language Processing, pages 41–48.

Abdur Chowdhury and M. Catherine McCabe. 1998.
Performance improvements to vector space informa-
tion retrieval systems with POS. U Maryland.

Stephen Clark and James R. Curran. 2007. Wide-
coverage efficient statistical parsing with CCG and
log-linear models. Computational Linguistics,
33(4):493–552.

Michael Collins, Brian Roark, and Murat Saraclar.
2005. Discriminative syntactic language modeling for
speech recognition. InProc. 43rd ACL, pages 507–
514. ACL.

Sumukh Ghodke and Steven Bird. 2008. Querying lin-
guistic annotations. InProc. 13th Australasian Docu-
ment Computing Symposium, pages 69–72.

Jörg Hakenberg, Illes Solt, Domonkos Tikk, Luis Tari,
Astrid Rheinländer, Nguyen Quang Long, Graciela
Gonzalez, and Ulf Leser. 2009. Molecular event
extraction from Link Grammar parse trees. InProc.
BioNLP 2009 Workshop, pages 86–94. ACL.

274

Philip J Harding, Quanzhong Li, and Bongki Moon.
2003. XISS/R: XML indexing and storage system us-
ing RDBMS. In Proc. 29th Intl Conf on Very Large
Data Bases, pages 1073–1076. Morgan Kaufmann.

Ulrich Heid, Holger Voormann, Jan-Torsten Milde, Ul-
rike Gut, Katrin Erk, and Sebastian Pado. 2004.
Querying both time-aligned and hierarchical corpora
with NXT search. InProc. 4th LREC.

Ichikawa Hiroshi, Noguchi Masaki, Hashimoto Taiichi,
Tokunaga Takenobu, and Tanaka Hozumi. 2005.
eBonsai: An integrated environment for annotating
treebanks. InProc. 2nd IJCNLP, pages 108–113.

Julia Hockenmaier and Mark Steedman. 2007. CCG-
bank: A corpus of CCG derivations and dependency
structures extracted from the Penn Treebank.Compu-
tational Linguistics, 33:355–396.

Hiroshi Ichikawa, Keita Hakoda, Taiichi Hashimoto, and
Takenobu Tokunaga. 2006. Efficient sentence re-
trieval based on syntactic structure. InCOLING/ACL,
pages 399–406.

Stephan Kepser. 2003. Finite Structure Query: A tool
for querying syntactically annotated corpora. InProc.
10th EACL, pages 179–186.

Esther König and Wolfgang Lezius. 2001. The TIGER
language: a description language for syntax graphs.
part 1: User’s guidelines. Technical report, University
of Stuttgart.

Catherine Lai and Steven Bird. 2004. Querying and up-
dating treebanks: A critical survey and requirements
analysis. InProc. Australasian Language Technology
Workshop, pages 139–146.

Catherine Lai and Steven Bird. 2010. Querying linguis-
tic trees.Journal of Logic, Language and Information,
19:53–73.

Quanzhong Li and Bongki Moon. 2001. Indexing and
querying XML data for regular path expressions. In
VLDB ’01: Proc. 27th Intl Conf on Very Large Data
Bases, pages 361–370. Morgan Kaufmann.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank.Computational
Linguistics, 19(2):313–30.

Hendrik Maryns and Stephan Kepser. 2009.
Monasearch: Querying linguistic treebanks with
monadic second-order logic. InThe 7th International
Workshop on Treebanks and Linguistic Theories.

Neil Mayo, Jonathan Kilgour, and Jean Carletta. 2006.
Towards an alternative implementation of nxts query
language via xquery. InProc. 5th Workshop on NLP
and XML: Multi-Dimensional Markup in Natural Lan-
guage Processing, pages 27–34. ACL.

J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and
J. Widom. 1997. Lore: A database management sys-
tem for semistructured data.SIGMOD Rec., 26:54–66.

Wolfgang Meier. 2003. eXist: An open source native
XML database. InRevised Papers from the NODe
2002 Web and Database-Related Workshops on Web,
Web-Services, and Database Systems, pages 169–183.
Springer-Verlag.

Jiřı́ Mı́rovský. 2006. Netgraph: a tool for searching
in Prague Dependency Treebank 2.0. InProc. 5th
Intl Conf on Treebanks and Linguistic Theories, pages
211–222.

Jiřı́ Mı́rovský. 2008. PDT 2.0 requirements on a query
language. InProc. 46th ACL, pages 37–45. ACL.

Preslav Nakov, Ariel Schwartz, Brian Wolf, and Marti
Hearst. 2005. Supporting annotation layers for natural
language processing. InProc. 43rd ACL, pages 65–68.

Stephan Oepen, Kristina Toutanova, Stuart Shieber,
Christopher Manning, Dan Flickinger, and Thorsten
Brants. 2002. The LinGO Redwoods Treebank: Mo-
tivation and preliminary applications. InProc. 19th
COLING, pages 1253–57.

Petr Pajas and JaňStěpánek. 2009. System for querying
syntactically annotated corpora. InProc. 47th ACL,
pages 33–36. ACL.

Douglas L. T. Rohde, 2005.TGrep2 User Manual Ver-
sion 1.15. http://tedlab.mit.edu/ dr/TGrep2/tgrep2.pdf.

Igor Tatarinov, Stratis D. Viglas, Kevin Beyer, Jayavel
Shanmugasundaram, Eugene Shekita, and Chun
Zhang. 2002. Storing and querying ordered XML
using a relational database system. InSIGMOD ’02:
Proc. 2002 ACM SIGMOD Intl Conf on Management
of Data, pages 204–215. ACM.

M. Čmejrek, J. Cuřı́n, and J. Havelka. 2004. Prague
czech-english dependency treebank: Any hopes for a
common annotation scheme? In A. Meyers, editor,
HLT-NAACL 2004 Workshop: Frontiers in Corpus An-
notation, pages 47–54. ACL.

Martin Volk, Joakim Lundborg, and Maël Mettler. 2007.
A search tool for parallel treebanks. InProc. Linguis-
tic Annotation Workshop, pages 85–92. ACL.

Sean Wallis. 2003. Completing parsed corpora. In
Anne Abeillé, editor,Treebanks: Building and Using
Parsed Corpora, Text, Speech and Language Technol-
ogy, pages 61–71. Kluwer.

Naiwen Xue, Fei Xia, Fu-Dong Chiou, and Martha
Palmer. 2005. The Penn Chinese TreeBank: Phrase
structure annotation of a large corpus.Natural Lan-
guage Engineering, 11:207–238.

Chun Zhang, Jeffrey Naughton, David DeWitt, Qiong
Luo, and Guy Lohman. 2001. On supporting contain-
ment queries in relational database management sys-
tems. InSIGMOD ’01: Proc. ACM SIGMOD inter-
national Conference on Management of Data, pages
425–436, New York. ACM.

275

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 276–284,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Efficient Parsing of Well-Nested Linear Context-Free Rewriting Systems

Carlos Gómez-Rodríguez1, Marco Kuhlmann2, and Giorgio Satta3

1Departamento de Computación, Universidade da Coruña, Spain, cgomezr@udc.es
2Department of Linguistics and Philology, Uppsala University, Sweden, marco.kuhlmann@lingfil.uu.se

3Department of Information Engineering, University of Padua, Italy, satta@dei.unipd.it

Abstract

The use of well-nested linear context-free
rewriting systems has been empirically moti-
vated for modeling of the syntax of languages
with discontinuous constituents or relatively
free word order. We present a chart-based pars-
ing algorithm that asymptotically improves the
known running time upper bound for this class
of rewriting systems. Our result is obtained
through a linear space construction of a binary
normal form for the grammar at hand.

1 Introduction

Since its earliest years, one of the main goals of
computational linguistics has been the modeling of
natural language syntax by means of formal gram-
mars. Following results by Huybregts (1984) and
Shieber (1985), special attention has been given to
formalisms that enlarge the generative power of con-
text-free grammars, but still remain below the full
generative power of context-sensitive grammars. On
this line of investigation, mildly context-sensitive
grammar formalisms have been introduced (Joshi,
1985), including, among several others, the tree ad-
joining grammars (TAGs) of Joshi et al. (1975).

Linear context-free rewriting system (LCFRS), in-
troduced by Vijay-Shanker et al. (1987), is a mildly
context-sensitive formalism that allows the deriva-
tion of tuples of strings, i.e., discontinuous phrases.
This feature has been used to model phrase structure
treebanks with discontinuous constituents (Maier and
Søgaard, 2008), as well as to map non-projective de-
pendency trees into discontinuous phrase structures
(Kuhlmann and Satta, 2009).

Informally, in an LCFRS G, each nonterminal can
generate string tuples with a fixed number of compo-
nents. The fan-out of G is defined as the maximum
number of tuple components generated by G. During
a derivation of an LCFRS, tuple components gener-
ated by the nonterminals in the right-hand side of
a production are concatenated to form new tuples,
possibly adding some terminal symbols. The only re-
striction applying to these generalized concatenation
operations is linearity, that is, components cannot be
duplicated or deleted.

The freedom in the rearrangement of components
has specific consequences in terms of the computa-
tional and descriptional complexity of LCFRS. Even
for grammars with bounded fan-out, the universal
recognition problem is NP-hard (Satta, 1992), and
these systems lack Chomsky-like normal forms for
fixed fan-out (Rambow and Satta, 1999) that are es-
pecially convenient in tabular parsing. This is in con-
trast with other mildly context-sensitive formalisms,
and TAG in particular: TAGs can be parsed in poly-
nomial time both with respect to grammar size and
string size, and they can be cast in normal forms
having binary derivation trees only.

It has recently been argued that LCFRS might be
too powerful for modeling languages with discontin-
uous constituents or with relatively free word order,
and that additional restrictions on the rearrangement
of components might be needed. More specifically,
analyses of both dependency and constituency tree-
banks (Kuhlmann and Nivre, 2006; Havelka, 2007;
Maier and Lichte, 2009) have shown that rearrange-
ments of argument tuples almost always satisfy the
so-called well-nestedness condition, a generalization

276

of the standard condition on balanced brackets. This
condition states that any two components x1, x2 of
some tuple will never be composed with any two
components y1, y2 of some other tuple in such a way
that a ‘crossing’ configuration is realized.

In this paper, we contribute to a better understand-
ing of the formal properties of well-nested LCFRS.
We show that, when fan-out is bounded by any inte-
ger ϕ ≥ 1, these systems can always be transformed,
in an efficient way, into a specific normal form with
no more than two nonterminals in their productions’
right-hand sides. On the basis of this result, we
then develop an efficient parsing algorithm for well-
nested LCFRS, running in timeO(ϕ · |G| · |w|2ϕ+2),
where G and w are the input grammar and string,
respectively. Well-nested LCFRS with fan-out ϕ = 2
are weakly equivalent to TAG, and our complex-
ity result reduces to the well-known upper bound
O(|G| · |w|6) for this class. For ϕ > 2, our upper
bound is asymptotically better than the one obtained
from existing parsing algorithms for general LCFRS
or equivalent formalisms (Seki et al., 1991).

Well-nested LCFRS are generatively equivalent
to (among others) coupled context-free grammars
(CCFG), introduced by Hotz and Pitsch (1996).
These authors also provide a normal form and de-
velop a parsing algorithm for CCFGs. One difference
with respect to our result is that the normal form for
CCFGs allows more than two nonterminals to appear
in the right-hand side of a production, even though no
nonterminal may contribute more than two tuple com-
ponents. Also, the construction in (Hotz and Pitsch,
1996) results in a blow-up of the grammar that is ex-
ponential in its fan-out, and the parsing algorithm that
is derived runs in time O(4ϕ · |G| · |w|2ϕ+2). Our
result is therefore a considerable asymptotic improve-
ment over the CCFG result, both with respect to the
normal form construction and the parsing efficiency.
Finally, under a practical perspective, our parser is a
simple chart-based algorithm, while the algorithm in
(Hotz and Pitsch, 1996) involves two passes and is
considerably more complex to analyze and to imple-
ment than ours.

Kanazawa and Salvati (2010) mention a normal
form for well-nested multiple context-free grammars.

Structure In Section 2, we introduce LCFRS and
the class of well-nested LCFRS that is the focus of

this paper. In Section 3, we discuss the parsing com-
plexity of LCFRS, and show why grammars using
our normal form can be parsed efficiently. Section 4
presents the transformation of a well-nested LCFRS
into the normal form. Section 5 concludes the paper.

2 Linear Context-Free Rewriting Systems

We write [n] to denote the set of positive integers up
to and including n: [n] = {1, . . . , n}.

2.1 Linear, non-erasing functions

Let Σ be an alphabet. For integers m ≥ 0 and
k1, . . . , km, k ≥ 1, a total function

f : (Σ∗)k1 × · · · × (Σ∗)km → (Σ∗)k

is called a linear, non-erasing function over Σ with
type k1 × · · · × km → k, if it can be defined by an
equation of the form

f(〈x1,1, . . . , x1,k1〉, . . . , 〈xm,1, . . . , xm,km〉) = ~α ,

where ~α is a k-tuple of strings over the variables on
the left-hand side of the equation and Σ with the
property that each variable occurs in ~α exactly once.
The values m and k are called the rank and the fan-
out of f , and denoted by ρ(f) and ϕ(f).

2.2 Linear Context-Free Rewriting Systems

For the purposes of this paper, a linear context-free
rewriting system, henceforth LCFRS, is a construct
G = (N,T, P, S), where N is an alphabet of nonter-
minal symbols in which each symbol A is associated
with a positive integer ϕ(A) called its fan-out, T is
an alphabet of terminal symbols, S ∈ N is a distin-
guished start symbol with ϕ(S) = 1; and P is a finite
set of productions of the form

p = A→ f(A1, . . . , Am) ,

where m ≥ 0, A,A1, . . . , Am ∈ N , and f is a linear,
non-erasing function over the terminal alphabet T
with type ϕ(A1)× · · · ×ϕ(Am)→ ϕ(A), called the
composition operation associated with p. The rank
of G and the fan-out of G are defined as the maximal
rank and fan-out of the composition operations of G,
and are denoted by ρ(G) and ϕ(G).

The sets of derivation trees of G are the smallest
indexed family of sets DA, A ∈ N , such that, if

p = A→ f(A1, . . . , Am)

277

N = {S,R} , T = {a, b, c, d} , P = { p1 = S → f1(R), p2 = R→ f2(R), p3 = R→ f3 } ,

where: f1(〈x1,1, x1,2〉) = 〈x1,1 x1,2〉 , f2(〈x1,1, x1,2〉) = 〈a x1,1 b, c x1,2 d〉 , f3 = 〈ε, ε〉 .

Figure 1: An LCFRS that generates the string language { anbncndn | n ≥ 0 }.

is a production of G and ti ∈ DAi for all i ∈ [m],
then t = p(t1, . . . , tm) ∈ DA. By interpreting pro-
ductions as their associated composition operations
in the obvious way, a derivation tree t ∈ DA evalu-
ates to a ϕ(A)-tuple of strings over T ; we denote this
tuple by val(t). The string language generated by G,
denoted by L(G), is then defined as

L(G) = {w ∈ T ∗ | t ∈ DS , 〈w〉 = val(t) } .

Two LCFRS are called weakly equivalent, if they
generate the same string language.

Example Figure 1 shows a sample LCFRS G with
ρ(G) = 1 and ϕ(G) = 2. The sets of its deriva-
tion trees are DR = { pn2 (p3) | n ≥ 0 } and
DS = { p1(t) | t ∈ DR }. The string language
generated by G is { anbncndn | n ≥ 0 }.

2.3 Characteristic strings
In the remainder of this paper, we use the following
convenient syntax for tuples of strings. Instead of

〈v1, . . . , vk〉 , we write v1 $ · · · $ vk ,

using the $-symbol to mark the component bound-
aries. We call this the characteristic string of the tu-
ple, and an occurrence of the symbol $ a gap marker.
We also use this notation for composition operations.
For example, the characteristic string of the operation

f(〈x1,1, x1,2〉, 〈x2,1〉) = 〈a x1,1 x2,1, x1,2 b〉
is a x1,1 x2,1 $ x1,2 b. If we assume the variables on
the left-hand side of an equation to be named ac-
cording to the schema used in Section 2.1, then the
characteristic string of a composition operation deter-
mines that operation completely. We will therefore
freely identify the two, and write productions as

p = A→ [v1 $ · · · $ vk](A1, . . . , Am) ,

where the string inside the brackets is the charac-
teristic string of some composition operation. The
substrings v1, . . . , vk are called the components of
the characteristic string. Note that the character-
istic string of a composition operation with type
k1 × · · · × km → k is a sequence of terminal
symbols, gap markers, and variables from the set

{xi,j | i ∈ [m], j ∈ [ki] } in which the number of
gap markers is k−1, and each variable occurs exactly
once. When in the context of such a composition op-
eration we refer to ‘a variable of the form xi,j’, then
it will always be the case that i ∈ [m] and j ∈ [ki].

The identification of composition operations and
their characteristic strings allows us to construct new
operations by string manipulations: if, for example,
we delete some variables from a characteristic string,
then the resulting string still defines a composition
operation (after a suitable renaming of the remaining
variables, which we leave implicit).

2.4 Canonical LCFRS
To simplify our presentation, we will assume that
LCFRS are given in a certain canonical form. Intu-
itively, this canonical form requires the variables in
the characteristic string of a composition operation
to be ordered in a certain way.

Formally, the defining equation of a composition
operation f with type k1 × · · · × km → k is called
canonical, if (i) the sequence obtained from f by
reading variables of the form xi,1 from left to right
has the form x1,1 · · ·xm,1; and (ii) for each i ∈ [m],
the sequence obtained from f by reading variables
of the form xi,j from left to right has the form
xi,1 · · ·xi,ki

. An LCFRS is called canonical, if each
of its composition operations is canonical.

We omit the proof that every LCFRS can be trans-
formed into a weakly equivalent canonical LCFRS.
However, we point out that both the normal form and
the parsing algorithm that we present in this paper
can be applied also to general LCFRS. This is in con-
trast to some left-to-right parsers in the literature on
LCFRS and equivalent formalisms (de la Clergerie,
2002; Kallmeyer and Maier, 2009), which actually
depend on productions in canonical form.

2.5 Well-nested LCFRS
We now characterize the class of well-nested LCFRS
that are the focus of this paper. Well-nestedness
was first studied in the context of dependency gram-
mars (Kuhlmann and Möhl, 2007). Kanazawa (2009)

278

defines well-nested multiple context-free grammars,
which are weakly equivalent to well-nested LCFRS.

A composition operation is called well-nested, if it
does not contain a substring of the form
xi,i1 · · ·xj,j1 · · ·xi,i2 · · ·xj,j2 , where i 6= j .

For example, the operation x1,1 x2,1$x2,2 x1,2 is well-
nested, while x1,1 x2,1 $ x1,2 x2,2 is not. An LCFRS
is called well-nested, if it contains only well-nested
composition operations.

The class of languages generated by well-nested
LCFRS is properly included in the class of languages
generated by general LCFRS; see Kanazawa and Sal-
vati (2010) for further discussion.

3 Parsing LCFRS

We now discuss the parsing complexity of LCFRS,
and motivate our interest in a normal form for well-
nested LCFRS.

3.1 General parsing schema
A bottom-up, chart-based parsing algorithm for the
class of (not necessarily well-nested) LCFRS can be
defined by using the formalism of parsing schemata
(Sikkel, 1997). The parsing schemata approach con-
siders parsing as a deduction process (as in Shieber
et al. (1995)), generating intermediate results called
items. Starting with an initial set of items obtained
from each input sentence, a parsing schema defines
a set of deduction steps that can be used to infer
new items from existing ones. Each item contains
information about the sentence’s structure, and a suc-
cessful parsing process will produce at least one final
item containing a full parse for the input.

The item set used by our bottom-up algorithm to
parse an input string w = a1 · · · an with an LCFRS
G = (N,T, P, S) will be
I = {[A, (l1, r1), . . . , (lk, rk)] | A ∈ N ∧

0 ≤ li ≤ ri ≤ n ∀i ∈ [k]},
where an item [A, (l1, r1), . . . , (lk, rk)] can be inter-
preted as the set of those derivation trees t ∈ DA

of G for which
val(t) = al1+1 · · · ar1 $ · · · $ alk+1 · · · ark .

The set of final items is thus F = {[S, (0, n)]}, con-
taining full derivation trees that evaluate to w.

For simplicity of definition of the sets of initial
items and deduction steps, let us assume that pro-
ductions of rank > 0 in our grammar do not contain

terminal symbols in their right-hand sides. This can
be easily achieved from a starting grammar by cre-
ating a nonterminal Aa for each terminal a ∈ T , a
corresponding rank-0 production pa = Aa → [a](),
and then changing each occurrence of a in the char-
acteristic string of a production to the single variable
associated with the fan-out 1 nonterminal Aa. With
this, our initial item set for a string a1 · · · an will be

H = {[Aai , (i− 1, i)] | i ∈ [n]} ,

and each production p = A0 → f(A1, . . . , Am) of
G (excluding the ones we created for the terminals)
will produce a deduction step of the form given in
Figure 2a, where the indexes are subject to the fol-
lowing constraints, imposed by the semantics of f .

1. If the kth component of the characteristic string
of f starts with xi,j , then l0,k = li,j .

2. If the kth component of the characteristic string
of f ends with xi,j , then r0,k = ri,j .

3. If xi,jxi′,j′ is an infix of the characteristic string
of f , then ri,j = li′,j′ .

4. If the kth component of the characteristic string
of f is the empty string, then l0,k = r0,k.

3.2 General complexity

The time complexity of parsing LCFRS with respect
to the length of the input can be analyzed by counting
the maximum number of indexes that can appear in
an instance of the inference rule above. Although the
total number of indexes is

∑m
i=0 2 · ϕ(Ai), some of

these indexes are equated by the constraints.
To count the number of independent indexes, con-

sider all the indexes of the form l0,i (corresponding to
the left endpoints of each component of the character-
istic string of f) and those of the form rj,k for j > 0
(corresponding to the right endpoints of each vari-
able in the characteristic string). By the constraints
above, these indexes are mutually independent, and it
is easy to check that any other index is equated to one
of these: indexes r0,i are equated to the index rj,k
corresponding to the last variable xj,k of the ith com-
ponent of the characteristic string, or to l0,i if there
is no such variable; while indexes lj,k with j > 0
are equated to an index l0,i if the variable xj,k is at
the beginning of a component of the characteristic
string, or to an index rj′,k′(j′ > 1) if the variable xj,k
follows another variable xj′,k′ .

279

[A1, (l1,1, r1,1), . . . , (l1,ϕ(A1), r1,ϕ(A1))] · · · [Am, (lm,1, rm,1), . . . , (lm,ϕ(Am), rm,ϕ(Am))]

[A0, (l0,1, r0,1), . . . , (l0,ϕ(A0), r0,ϕ(A0))]
(a) The general rule for a parsing schema for LCFRS

[B, (l1, r1), . . . , (lm, rm)] [C, (l′1, r
′
1), . . . (l

′
n, r
′
n)]

[A, (l1, r1), . . . , (lm, r′1), . . . (l
′
n, r
′
n)]

rm = l′1

(b) Deduction step for concatenation

[B, (l1, r1), . . . , (lm, rm)] [C, (l′1, r
′
1), . . . (l

′
n, r
′
n)]

[A, (l1, r1), . . . , (li, r′1), . . . (l
′
n, ri+1), . . . , (lm, rm)]

ri = l′1, r
′
n = li+1

(c) Deduction step for wrapping

Figure 2: Deduction steps for parsing LCFRS.

Thus, the parsing complexity (Gildea, 2010) of a
production p = A0 → f(A1, . . . , Am) is determined
by ϕ(A0) l-indexes and

∑
i∈[m] ϕ(Ai) r-indexes, for

a total complexity of

O(|w|ϕ(A0)+
∑

i∈[m] ϕ(Ai))

where |w| is the length of the input string. The pars-
ing complexity of an LCFRS will correspond to the
maximum parsing complexity among its productions.
Note that this general complexity matches the result
given by Seki et al. (1991).

In an LCFRS of rank ρ and fan-out ϕ, the maxi-
mum possible parsing complexity is O(|w|ϕ(ρ+1)),
obtained by applying the above expression to a pro-
duction of rank ρ and where each nonterminal has fan-
out ϕ. The asymptotic time complexity of LCFRS
parsing is therefore exponential both in its rank and
its fan-out. This means that it is interesting to trans-
form LCFRS into equivalent forms that reduce their
rank while preserving the fan-out. For sets of LCFRS
that can be transformed into a binary form (i.e., such
that all its rules have rank at most 2), the ρ factor in
the complexity is reduced to a constant, and complex-
ity is improved to O(|w|3ϕ) (see Gómez-Rodríguez
et al. (2009) for further discussion). Unfortunately,
it is known by previous results (Rambow and Satta,
1999) that it is not always possible to convert an
LCFRS into such a binary form without increasing
the fan-out. However, we will show that it is always
possible to build such a binarization for well-nested
LCFRS. Combining this result with the inference
rule and complexity analysis given above, we would
obtain a parser for well-nested LCFRS running in

O(|w|3ϕ) time. But the construction of our binary
normal form additionally restricts binary composition
operations in the binarized LCFRS to be of two spe-
cific forms, concatenation and wrapping, which fur-
ther improves the parsing complexity to O(|w|2ϕ+2),
as we will see below.

3.3 Concatenation and wrapping
A composition operation is called a concatenation
operation, if its characteristic string has the form

x1,1 $ · · · $ x1,m x2,1 $ · · · $ x2,n ,
where m,n ≥ 1. Intuitively, such an operation corre-
sponds to the bottom-up combination of two adjacent
discontinuous constituents into one. An example of
a concatenation operation is the binary parsing rule
used by the standard CKY parser for context-free
grammars, which combines continuous constituents
(represented as 1-tuples of strings in the LCFRS nota-
tion). In the general case, a concatenation operation
will take an m-tuple and an n-tuple and return an
(m + n − 1)-tuple, as the joined constituents may
have gaps that will also appear in the resulting tuple.

If we apply the general parsing rule given in Fig-
ure 2a to a production A→ conc(B,C), where conc
is a concatenation operation, then we obtain the de-
duction step given in Figure 2b. This step uses 2m
different l- and r-indexes, and 2n− 1 different l′-
and r′-indexes (excluding l′1 which must equal rm),
for a total of 2m+2n−1 = 2(m+n−1)+1 indexes.
Since m+ n− 1 is the fan-out of the nonterminal A,
we conclude that the maximum number of indexes in
the step associated with a concatenation operation in
an LCFRS of fan-out ϕ is 2ϕ+ 1.

280

before: p

· · ·

t1 tm

after: p′

q

· · ·

tq,1 tq,mq

r

· · ·

tr,1 tr,mr

Figure 3: Transformation of derivation trees

A linear, non-erasing function is called a wrapping
operation, if its characteristic string has the form

x1,1 $ · · · $ x1,i x2,1 $ · · · $ x2,n x1,i+1 $ · · · $ x1,m ,

where m,n ≥ 1 and i ∈ [m− 1]. Intuitively, such an
operation wraps the tuple derived from a nontermi-
nal B around the tuple derived from a nonterminal C,
filling the ith gap in the former. An example of a
wrapping operation is the adjunction of an auxiliary
tree in tree-adjoining grammar. In the general case, a
wrapping operation will take an m-tuple and an n-tu-
ple and return an (m + n − 2)-tuple of strings: the
gaps of the argument tuples appear in the obtained
tuple, except for one gap in the tuple derived from B
which is filled by the tuple derived from C.

By applying the general parsing rule in Figure 2a
to a production A → wrapi(B,C), where wrapi is
a wrapping operation, then we obtain the deduction
step given in Figure 2c. This step uses 2m different l-
and r-indexes, and 2n− 2 different l′- and r′-indexes
(discounting l′1 and r′n which are equal to other in-
dexes), for a total of 2m+2n−2 = 2(m+n−2)+2
indexes. Since the fan-out of A is m + n − 2, this
means that a wrapping operation needs at most 2ϕ+2
indexes for an LCFRS of fan-out ϕ.

From this, we conclude that an LCFRS of fan-
out ϕ in which all composition operations are ei-
ther concatenation operations, wrapping operations,
or operations of rank 0 or 1, can be parsed in time
O(|w|2ϕ+2). In particular, nullary and unary compo-
sition operations do not affect this worst-case com-
plexity, since their associated deduction steps can
never have more than 2ϕ indexes.

4 Transformation

We now show how to transform a well-nested LCFRS
into the normal form that we have just described.

4.1 Informal overview

Consider a production p = A → f(A1, . . . , Am),
where m ≥ 2 and f is neither a concatenation nor a
wrapping operation. We will construct new produc-
tions p′, q, r such that every derivation that uses p can
be rewritten into a derivation that uses the new pro-
ductions, and the new productions do not license any
other derivations. Formally, this can be understood as
implementing a tree transformation, where the input
trees are derivations of the original grammar, and the
output trees are derivations of the new grammar. The
situation is illustrated in Figure 3. The tree on top
represents a derivation in the original grammar; this
derivation starts with the rewriting of the nontermi-
nal A using the production p, and continues with the
subderivations t1, . . . , tm. The tree at the bottom rep-
resents a derivation in the transformed grammar. This
derivation starts with the rewriting ofA using the new
production p′, and continues with two independent
subderivations that start with the new productions q
and r, respectively. The sub-derivations t1, . . . , tm
have been partitioned into two sequences

t1,1, . . . , t1,m1 and t2,1, . . . , t2,m2 .

The new production p′ will be either a concatenation
or a wrapping operation, and the rank of both q and r
will be strictly smaller than the rank of p. The trans-
formation will continue with q and r, unless these
have rank one. By applying this strategy exhaustively,
we will thus eventually end up with a grammar that
only has productions with rank at most 2, and in
which all productions with rank 2 are either concate-
nation or wrapping operations.

4.2 Constructing the composition operations

To transform the production p, we first factorize the
composition operation f associated with p into three
new composition operations f ′, g, h as follows. Re-
call that we represent composition operations by their
characteristic strings.

In the following, we will assume that no charac-
teristic string starts or ends with a gap marker, or
contains immediate repetitions of gap markers. This

281

property can be ensured, without affecting the asymp-
totic complexity, by adding intermediate steps to the
transformation that we report here; we omit the de-
tails due to space reasons. When this property holds,
we are left with the following two cases. Let us call a
sequence of variables joint, if it contains all and only
variables associated with a given nonterminal.

Case 1 f = x1 f1 x2 · · ·xk−1 fk−1 xk f
∗ ,

where k ≥ 1, x1, . . . , xk are joint variables, and the
suffix f∗ contains at least one variable. Let

g = x1 f1 x2 · · ·xk−1 fk−1 xk ,

let h = f∗, and let f ′ = conc. As f is well-nested,
both g and h define well-nested composition opera-
tions. By the specific segmentation of f , the ranks of
these operations are strictly smaller than the rank of f .
Furthermore, we have ϕ(f) = ϕ(g) + ϕ(h)− 1 .

Case 2 f = x1 f1 x2 · · ·xk−1 fk−1 xk ,
where k ≥ 2, x1, . . . , xk are joint variables, and there
exist at least one i such that the sequence fi contains
at least one variable. Choose an index j as follows:
if there is at least one i such that fi contains at least
one variable and one gap marker, let j be the minimal
such i; otherwise, let j be the minimal i such that fi
contains at least one variable. Now, let

g = x1 f1 x2 · · ·xj $ xj+1 · · ·xk−1 fk−1 xk ,

let h = fj , and let f ′ = wrapj . As in Case 1, both g
and h define well-nested composition operations
whose ranks are strictly smaller than the rank of f .
Furthermore, we have ϕ(f) = ϕ(g) + ϕ(h)− 2 .

Note that at most one of the two cases can apply
to f . Furthermore, since f is well-nested, it is also
true that at least one of the two cases applies. This
is so because for two distinct nonterminals Ai, Ai′ ,
either all variables associated with Ai′ precede the
leftmost variable associated with Ai, succeed the
rightmost variable associated with Ai, or are placed
between two variables associated with Ai without an-
other variable associated with Ai intervening. (Here,
we have left out the symmetric cases.)

4.3 Constructing the new productions
Based on the composition operations, we now con-
struct three new productions p′, q, r as follows. LetB
and C be two fresh nonterminals with ϕ(B) = ϕ(g)
and ϕ(C) = ϕ(h), and let p′ = A → f ′(B,C).
The production p′ rewrites A into B and C and

combines the two subderivations that originate at
these nonterminals using either a concatenation or a
wrapping operation. Now, let Aq,1, . . . , Aq,mq and
Ar,1, . . . , Ar,mr be the sequences of nonterminals
that are obtained from the sequence A1, . . . , Am by
deleting those nonterminals that are not associated
with any variable in g or h, respectively. Then, let

q = B → g(Aq,1, . . . , Aq,mq) and
r = C → h(′Ar,1, . . . , Ar,mr) .

4.4 Example
We now illustrate the transformation using the con-
crete production p = A→ f(A1, A2, A3), where

f = x1,1 x2,1 $ x1,2 $ x3,1 .

Note that this operation has rank 3 and fan-out 3.
The composition operations are constructed as fol-

lows. The operation f matches the pattern of Case 1,
and hence induces the operations

g1 = x1,1 x2,1 $ x1,2 , h1 = $ x3,1 , f ′1 = conc .

The productions constructed from these are

p′1 = A→ conc(B1, C1) ,
q1 = B1 → g1(A1, A2) , r1 = C1 → h1(A3) .

where B1 and C1 are fresh nonterminals with fan-
out 2. The production r1 has rank one, so it does not
require any further transformations. The transforma-
tion thus continues with q1. The operation g1 matches
the pattern of Case 2, and induces the operations

g2 = x1,1 $ x1,2 , h2 = x2,1$, f ′2 = wrap1 .

The productions constructed from these are

p′2 = B1 → wrap1(B2, C2) ,
q2 = B2 → g2(A1) , r2 = C2 → h2(A2) ,

where B2 and C2 are fresh nonterminals with fan-
out 2. At this point, the transformation terminates.
We can now delete p from the original grammar, and
replace it with the productions {p′1, r1, p′2, q2, r2}.

4.5 Correctness
To see that the transformation is correct, we need to
verify that each production of the original grammar
is transformed into a set of equivalent normal-form
productions, and that the fan-out of the new grammar
does not exceed the fan-out of the old grammar.

For the first point, we note that the transformation
preserves well-nestedness, decreases the rank of a
production, and is always applicable as long as the

282

rank of a production is at most 2 and the production
does not use a concatenation or wrapping operation.
That the new productions are equivalent to the old
ones in the sense of Figure 3 can be proved by induc-
tion on the length of a derivation in the original and
the new grammar, respectively.

Let us now convince ourselves that the fan-out of
the new grammar does not exceed the fan-out of the
old grammar. This is clear in Case 1, where

ϕ(f) = ϕ(g) + ϕ(h)− 1

implies that both ϕ(g) ≤ ϕ(f) and ϕ(h) ≤ ϕ(f).
For Case 2, we reason as follows. The fan-out of the
operation h, being constructed from an infix of the
characteristic string of the original operation f , is
clearly bounded by the fan-out of f . For g, we have

ϕ(g) = ϕ(f)− ϕ(h) + 2 ,

Now suppose that the index j was chosen according
to the first alternative. In this case, ϕ(h) ≥ 2, and

ϕ(g) ≤ ϕ(f)− 2 + 2 = ϕ(f) .

For the case where j was chosen according to the
second alternative, ϕ(f) < k (since there are no
immediate repetitions of gap markers), ϕ(h) = 1,
and ϕ(g) ≤ k. If we assume that each nonterminal
is productive, then this means that the underlying
LCFRS has at least one production with fan-out k or
more; therefore, the fan-out of g does not increase
the fan-out of the original grammar.

4.6 Complexity

To conclude, we now briefly discuss the space com-
plexity of the normal-form transformation. We mea-
sure it in terms of the length of a production, defined
as the length of its string representation, that is, the
string A→ [v1 $ · · · $ vk](A1, . . . , Am) .

Looking at Figure 3, we note that the normal-form
transformation of a production p can be understood
as the construction of a (not necessarily complete)
binary-branching tree whose leaves correspond to the
productions obtained by splitting the characteristic
string of p and whose non-leaf nodes are labeled with
concatenation and wrapping operations. By construc-
tion, the sum of the lengths of leaf-node productions
is O(|p|). Since the number of inner nodes of a bi-
nary tree with n leaves is bounded by n − 1, we
know that the tree hasO(ρ(p)) inner nodes. As these
nodes correspond to concatenation and wrapping

operations, each inner-node production has length
O(ϕ(p)). Thus, the sum of the lengths of the produc-
tions created from |p| is O(|p|+ ρ(p)ϕ(p)). Since
the rank of a production is always smaller than its
length, this is reduced to O(|p|ϕ(p)).

Therefore, the size of the normal-form transfor-
mation of an LCFRS G of fan-out ϕ is O(ϕ|G|) in
the worst case, and linear space in practice, since
the fan-out is typically bounded by a small integer.
Taking the normal-form transformation into account,
our parser therefore runs in timeO(ϕ · |G| · |w|2ϕ+2)
where |G| is the original grammar size.

5 Conclusion
In this paper, we have presented an efficient parsing
algorithm for well-nested linear context-free rewrit-
ing systems, based on a new normal form for this
formalism. The normal form takes up linear space
with respect to grammar size, and the algorithm is
based on a bottom-up process that can be applied
to any LCFRS, achieving O(ϕ · |G| · |w|2ϕ+2) time
complexity when applied to LCFRS of fan-out ϕ
in our normal form. This complexity is an asymp-
totic improvement over existing results for this class,
both from parsers specifically geared to well-nested
LCFRS or equivalent formalisms (Hotz and Pitsch,
1996) and from applying general LCFRS parsing
techniques to the well-nested case (Seki et al., 1991).

The class of well-nested LCFRS is an interest-
ing syntactic formalism for languages with discon-
tinuous constituents, providing a good balance be-
tween coverage of linguistic phenomena in natu-
ral language treebanks (Kuhlmann and Nivre, 2006;
Maier and Lichte, 2009) and desirable formal prop-
erties (Kanazawa, 2009). Our results offer a further
argument in support of well-nested LCFRS: while
the complexity of parsing general LCFRS depends
on two dimensions (rank and fan-out), this bidimen-
sional hierarchy collapses into a single dimension
in the well-nested case, where complexity is only
conditioned by the fan-out.

Acknowledgments Gómez-Rodríguez has been
supported by MEC/FEDER (HUM2007-66607-C04)
and Xunta de Galicia (PGIDIT07SIN005206PR, Re-
des Galegas de PL e RI e de Ling. de Corpus, Bolsas
Estadías INCITE/FSE cofinanced). Kuhlmann has
been supported by the Swedish Research Council.

283

References
Éric Villemonte de la Clergerie. 2002. Parsing mildly

context-sensitive languages with thread automata. In
19th International Conference on Computational Lin-
guistics (COLING), pages 1–7, Taipei, Taiwan.

Daniel Gildea. 2010. Optimal parsing strategies for linear
context-free rewriting systems. In Human Language
Technologies: The Eleventh Annual Conference of the
North American Chapter of the Association for Compu-
tational Linguistics, Los Angeles, USA.

Carlos Gómez-Rodríguez, Marco Kuhlmann, Giorgio
Satta, and David J. Weir. 2009. Optimal reduction
of rule length in linear context-free rewriting systems.
In Human Language Technologies: The 2009 Annual
Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics, pages 539–547,
Boulder, CO, USA.

Jiří Havelka. 2007. Beyond projectivity: Multilin-
gual evaluation of constraints and measures on non-
projective structures. In 45th Annual Meeting of the As-
sociation for Computational Linguistics (ACL), pages
608–615.

Günter Hotz and Gisela Pitsch. 1996. On parsing coupled-
context-free languages. Theoretical Computer Science,
161(1–2):205–233.

Riny Huybregts. 1984. The weak inadequacy of context-
free phrase structure grammars. In Ger de Haan, Mieke
Trommelen, and Wim Zonneveld, editors, Van periferie
naar kern, pages 81–99. Foris, Dordrecht, The Nether-
lands.

Aravind K. Joshi, Leon S. Levy, and Masako Takahashi.
1975. Tree Adjunct Grammars. Journal of Computer
and System Sciences, 10(2):136–163.

Aravind K. Joshi. 1985. Tree Adjoining Grammars: How
much context-sensitivity is required to provide reason-
able structural descriptions? In Natural Language
Parsing, pages 206–250. Cambridge University Press.

Laura Kallmeyer and Wolfgang Maier. 2009. An incre-
mental Earley parser for simple range concatenation
grammar. In Proceedings of the 11th International Con-
ference on Parsing Technologies (IWPT 2009), pages
61–64. Association for Computational Linguistics.

Makoto Kanazawa and Sylvain Salvati. 2010. The copy-
ing power of well-nested multiple context-free gram-
mars. In Fourth International Conference on Language
and Automata Theory and Applications, Trier, Ger-
many.

Makoto Kanazawa. 2009. The pumping lemma for well-
nested multiple context-free languages. In Develop-
ments in Language Theory. 13th International Confer-
ence, DLT 2009, Stuttgart, Germany, June 30–July 3,
2009. Proceedings, volume 5583 of Lecture Notes in
Computer Science, pages 312–325.

Marco Kuhlmann and Mathias Möhl. 2007. Mildly
context-sensitive dependency languages. In 45th An-
nual Meeting of the Association for Computational Lin-
guistics (ACL), pages 160–167.

Marco Kuhlmann and Joakim Nivre. 2006. Mildly non-
projective dependency structures. In 21st International
Conference on Computational Linguistics and 44th An-
nual Meeting of the Association for Computational Lin-
guistics (COLING-ACL), Main Conference Poster Ses-
sions, pages 507–514, Sydney, Australia.

Marco Kuhlmann and Giorgio Satta. 2009. Treebank
grammar techniques for non-projective dependency
parsing. In Twelfth Conference of the European Chap-
ter of the Association for Computational Linguistics
(EACL), pages 478–486, Athens, Greece.

Wolfgang Maier and Timm Lichte. 2009. Characterizing
discontinuity in constituent treebanks. In 14th Confer-
ence on Formal Grammar, Bordeaux, France.

Wolfgang Maier and Anders Søgaard. 2008. Treebanks
and mild context-sensitivity. In 13th Conference on
Formal Grammar, pages 61–76, Hamburg, Germany.

Owen Rambow and Giorgio Satta. 1999. Independent
parallelism in finite copying parallel rewriting systems.
Theoretical Computer Science, 223(1–2):87–120.

Giorgio Satta. 1992. Recognition of Linear Context-
Free Rewriting Systems. In 30th Annual Meeting of
the Association for Computational Linguistics (ACL),
pages 89–95, Newark, DE, USA.

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and
Tadao Kasami. 1991. On Multiple Context-Free Gram-
mars. Theoretical Computer Science, 88(2):191–229.

Stuart M. Shieber, Yves Schabes, and Fernando Pereira.
1995. Principles and implementation of deductive pars-
ing. Journal of Logic Programming, 24(1–2):3–36.

Stuart M. Shieber. 1985. Evidence against the context-
freeness of natural language. Linguistics and Philoso-
phy, 8(3):333–343.

Klaas Sikkel. 1997. Parsing Schemata: A Framework
for Specification and Analysis of Parsing Algorithms.
Springer.

K. Vijay-Shanker, David J. Weir, and Aravind K. Joshi.
1987. Characterizing structural descriptions produced
by various grammatical formalisms. In 25th Annual
Meeting of the Association for Computational Linguis-
tics (ACL), pages 104–111, Stanford, CA, USA.

284

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 285–288,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Utility Evaluation of Cross-document Information Extraction

Heng Ji
a
, Zheng Chen

a
, Jonathan Feldman

a
, Antonio Gonzalez

a
, Ralph Grishman

b
, Vivek Upadhyay

a

a
Computer Science Department, Queens College and the Graduate Center, City University of New York

New York, NY 11367, USA
b
Computer Science Department, New York University, New York, NY 10003, USA

hengji@cs.qc.cuny.edu, zchen1@gc.cuny.edu, agonzalez117@qc.cuny.edu, grishman@cs.nyu.edu,
vivekqc@gmail.com

Abstract

We describe a utility evaluation to determine
whether cross-document information extrac-
tion (IE) techniques measurably improve user
performance in news summary writing. Two
groups of subjects were asked to perform the
same time-restricted summary writing tasks,
reading news under different conditions: with
no IE results at all, with traditional single-
document IE results, and with cross-document
IE results. Our results show that, in compari-
son to using source documents only, the qual-
ity of summary reports assembled using IE
results, especially from cross-document IE,
was significantly better and user satisfaction
was higher. We also compare the impact of
different user groups on the results.

1 Introduction
Information Extraction (IE) is a task of identifying
�‘facts�’ (entities, relations and events) within un-
structured documents, and converting them into
structured representations (e.g., databases). IE
techniques have been effectively applied to differ-
ent domains (e.g. daily news, Wikipedia, biomedi-
cal reports, financial analysis and legal
documentations) and different languages. Recently
we described a new cross-document IE task (Ji et
al., 2009) to extract events across-documents and
track them on a time line. Compared to traditional
single-document IE, this new task can extract more
salient, accurate and concise event information.

However, a significant question remains: will
the events extracted by IE, especially this new
cross-document IE task, actually help end-users to

make better use of the large volumes of news? In
order to investigate whether we have reached this
goal, we performed an extrinsic utility (i.e., use-
fulness) and usability evaluation on IE results.
Two groups of subjects were asked to perform the
same time-restricted summary writing tasks, read-
ing news under different conditions: with no IE
results at all, with traditional single-document IE
results, and with cross-document IE results. Our
results show that, in comparison to using source
documents only, the quality of summary reports
assembled using IE techniques, especially from
cross-document IE, was significantly better. Also,
as extraction quality increases from no IE at all to
single-document IE and then to cross-document IE,
user satisfaction increases. We also compare the
impact of different user groups on the results. To
the best of our knowledge, this is the first system-
atic evaluation of cross-document IE from a us-
ability perspective.

2 Overview of IE Systems
We applied the English single-document IE system
(Ji and Grishman, 2008) and cross-document IE
system presented in (Ji et al., 2009). Both systems
were developed for the ACE program1.

The single-document IE system can extract
events from individual documents. The core stages
include entity extraction, time expression extrac-
tion and normalization, relation extraction and
event extraction. Events include the 33 distinct
types defined in ACE05. The extraction results are
presented in tabular form.

The cross-document IE system can identify im-
portant person entities which are frequently in-

1 http://www.itl.nist.gov/iad/mig/tests/ace/2005/

285

volved in events as �‘centroid entities�’; and then for
each centroid entity, link and order the events cen-
tered around it on a time line and associate them to
a geographical map. The event chains are pre-
sented in a user-friendly graphical interface (Ji and
Chen, 2009). Both systems link the events back to
their context documents.

3 Evaluation Methods

3.1 Study Execution

Our measurement challenge is to assess how IE
techniques affect users�’ abilities to perform real-
world tasks. We followed the summary writing
task described in the Integrated Feasibility Ex-
periment of the DARPA TIDES program (Colbath
and Kubala, 2003) and the daily task conducted by
intelligence analysts (Bodnar, 2003). Each task in
our evaluation is based on writing a summary of
ACE-type events involving a specific centroid en-
tity, using one of three levels of support:
• Level (I): Read the news articles, with assistance

of keyword based sentence search;
• Level (II): (I) + with assistance from single-

document IE results;
• Level (III): (I) + with assistance from cross-

document IE results.

The summary writing task for each entity using
any level should be finished in 10 minutes. The
users can choose to trust the IE results to create
new sentences or select relevant sentences from
the source documents. The IE systems were ap-
plied to a corpus of 106 articles from ACE 2005
training data.

3.2 Summary Scoring

We measure user responses in three aspects:
• Observer-based Quantity -- How many sen-

tences are extracted in each summary? How
many of them are uniquely correct?

• Observer-based Quality-- How fluent and coher-
ent are the sentences in each summary?

• User-based Usability -- How does the user feel
about the system?

3.3 User Group Selection

We selected user groups based on the principles
that we should run as many tests as we can afford
(Nielsen, 1994), and at least 5 to insure that we

detect any major usability problems (Faulkner,
2003). Two different groups of users were asked to
conduct the evaluation:
(1) Hallway Evaluation
We chose the first group of users with a �“Hallway
Testing�” user-study method described in (Nielsen,
1994). We randomly asked 11 PhD students in the
field of natural language processing to conduct the
evaluation. In order to evaluate these three levels
independently, each student was asked to write at
most one summary, using one of the three levels,
for any single centroid entity. To avoid the impact
of diverse text comprehension abilities, each stu-
dent was involved in all of these three levels for
different centroid entities.
(2) Remote Evaluation
An effective utility evaluation will require users
with a diversity of prior knowledge and computer
experience. Therefore we asked the second group
of 11 users in a remote usability testing mode
(Hammontree et al., 1994). We sent out the request
to university-wide undergraduate student mailing
lists and found 11 users to work on the evaluation.
The evaluation procedure follows the Hallway
Testing method, except that the tests are carried
out in the user�’s own environment (rather than labs)
helping further simulate real-life scenario testing.
Also the users didn�’t meet with the observers and
thus they were not aware of any expectations for
results.

4 Evaluation Results
In this section we will focus on reporting the re-
sults from Hallway Evaluation, while providing
comparisons with Remote Evaluation.

4.1 Observer-based Quantity

The summaries were judged by two annotators and
the judgements reconciled. A summary sentence is
judged as uniquely correct if it: (1) includes rele-
vant events involving the centroid entity; and (2)
the same information was not included in previous
sentences in the current summary. This metric can
be considered as an approximate com bination of
the �“content responsiveness�”, �“non-
redundancy�”and �“focus�” criteria in the NIST TAC
summarization track2. Table 1 presents the

2http://www.nist.gov/tac/2009/Summarization/update.su
mm.09.guidelines.html

286

Cen-
troid

(I) (II) (III) Cen-
troid

(I) (II) (III) Cen-
troid

(I) (II) (III)

Bush 3/1/0 5/1/2 6/0/0 Al-douri 4/3/3 4/2/0 6/0/1 Ba�’asyir 3/1/0 3/0/0 5/0/0
Ibrahim 4/0/1 5/0/0 8/0/0 Giuliani 2/0/0 3/2/0 5/0/0 Erdogan 1/0/1 4/0/0 4/0/0
Toefting 0/0/0 7/1/0 4/0/0 Blair 2/0/1 3/0/0 5/0/0 Diller 3/0/0 4/1/0 3/0/0
Putin 2/1/0 4/3/2 7/1/1 Pasko 3/0/0 3/0/0 2/0/0 Overall 27/6/6 45/10/5 55/1/2

Table 1. # (uniquely correct sentences)/ #(redundant correct sentences)/
#(spurious sentences) in a summary in Hallway Evaluation

quantified Hallway Testing results for each cen-
troid separately and the overall score. It shows that
overall Level (II) contained 18 more correct sen-
tences than the baseline (I), while (III) achieved 11
further correct sentences. (I) obtained significantly
fewer sentences without assistance from IE tools.
We conducted the Wilcoxon Matched-Pairs
Signed-Ranks Test on a query entity basis for ac-
curacy - number of (uniquely correct sen-
tences)/number of (total extracted sentences in a
summary). The results show that (III) is signifi-
cantly better than (I) at a 99.2% confidence level,
and better than (II) at a 96.9% confidence level. (II)
is not significantly better than (I).

We can also see that for some centroid entities
such as �“Putin�”, �“Al-douri�” and �“Giuliani�”, (II)
generated more sentences but also introduced more
redundant information. The user feedback has in-
dicated that they did not have enough time to re-
move redundancy. In contrast, (III) yielded much
less redundant information. In fact, the average
time the users spent using (III) was only about 7.2
minutes. Therefore we can conclude that cross-
document IE can produce more informative sum-
maries in a more efficient way.

Error analysis showed that the major error types
propagated from IE to summaries are as follows.

1. Event time errors. For example, the summary
sentence �“Toefting was convicted in September
2001 of assaulting a pair of restaurant workers in
the capital�” was judged as incorrect because the
time argument should be �“October 2002�”.

2. Pronoun resolution errors. When a pronoun is
mistakenly linked to an entity, incorrect event ar-
guments will be included in the summaries.

3. Event type errors. When an event is mis-
classified, the users tend to use incorrect templates
and thus generate wrong summaries.

4. Negative events. Sometimes the event attrib-
ute classifier makes mistakes and the users include
negative events in the summaries.

4.2 Impact of User Groups

In the Remote Testing, the accuracy results from
the three levels are as follows: 21/37, 28/37 and
31/36. Thus both user groups benefited from using
IE techniques, but the enhancements vary a lot. In
the Hallway Testing, the users were better trained
and more familiar with IE tools (including the
graphical interface of cross-document IE); and thus
they can benefit more from the IE techniques. In
contrast, in the Remote Evaluation, the users had
quite diverse knowledge backgrounds. For exam-
ple, one remote user was only able to find 1-2 sen-
tences using any of the three levels; while another,
more skilled remote user found more than 5 sen-
tences with any level. However the Remote
Evaluation is important to gather the feedback of
the more subjective usability evaluation in section
4.4. Because the users in Hallway Testing may be
aware of the observations that the observer is hop-
ing to achieve, they may provide potentially biased
feedback.

4.3 Observer-based Quality

The evaluation also showed that (III) produced
summaries with better quality. We asked the ob-
servers to give a score between [1, 10] to each
summary according to the following TAC summa-
rization quality criteria: Readability/Fluency, Ref-
erential Clarity and Structure/Coherence. Table 2
shows the evaluation results for the three different
methods.

Criteria (I) (II) (III)
Readability/Fluency 9.4 8.5 8.2
Referential Clarity 6.1 8.3 8.7
Structure/Coherence 7.1 7.6 8.5

Table 2. Observer-based Average Quality

In their detailed feedback, the users indicated
that (III) has the following advantages: (1) Better

287

pronoun resolution; (2) More complete and accu-
rate temporal order because (III) Can recover un-
known time arguments using cross-document
inference. (3) Can generate abstractive summaries.
For the biographical events (e.g. employment),
some users were able to use specific templates
such as �“PER was hired by ORG at TIME�” to write
summaries. For example, a sentence �“Bush and
Blair met at Camp David and the UK three times in
March 2003�” was derived from three different
�“Contact-Meeting�” events in the event chains. (4)
Can connect related events into more concise
summaries. For example, several events were con-
nected to generate the following sentences �“Pasko
was appealed for treason crime on April 16, 2003
and then released on June 15, 2003�”. The readabil-
ity scores in Table 2 also indicate that a more ef-
fective template generation method should be
developed to produce more fluent summaries based
on IE results.

4.4 User-based Usability

The user feedback from both evaluations also
showed that (II) and (III) results were trusted al-
most equally, and (III) was claimed to provide the
most useful functions. The positive comments
about (III) include �“Temporal Linking allows logi-
cal reasoning and generalization�”, �“Centroid search
helps to focus immediately�”, �“Spatial Linking al-
lows to browse all the places which a person has
visited�”, �“Name disambiguation helps to filter ir-
relevant information�”, �“Can find key information
from event chains�”, �“Timeline helps correlate
events�”; and the negative comments include
�“Sometimes IE errors mislead locating the sen-
tences�”, �“No support of name pair search for meet-
ing events�”, �“No color emphasis of events on the
original documents�” and �“No suggestions of tem-
plates to compose summary sentences�”.

5 Conclusion and Future Work

Through a utility evaluation on summary writing
we have proved that IE techniques, especially
cross-document IE, can aid news browsing, search
and analysis. In particular, temporal event tracking
across documents helps users perform better at
fact-gathering than they do without IE. Users also
produced more informative summaries with cross-
document IE than with traditional single-document
IE. We also compared and analyzed the differences

between two user groups. Such measures of the
benefits to the eventual end users also provided
feedback on what works well and identified addi-
tional research problems, such as to expand the
centroid to a pair of entities and to provide confi-
dence metrics in the interface. In the future we aim
to set up an online news article analysis system and
perform larger and regular utility evaluations.

Acknowledgement
This work was supported by the U.S. NSF
CAREER Award under Grant IIS-0953149, the
U.S. Army Research Laboratory under Coopera-
tive Agreement Number W911NF-09-2-0053,
Google, Inc., CUNY Research Enhancement Pro-
gram, Faculty Publication Program and GRTI Pro-
gram. The views and conclusions contained in this
document are those of the authors and should not
be interpreted as representing the official policies,
either expressed or implied, of the Army Research
Laboratory or the U.S. Government. The U.S.
Government is authorized to reproduce and dis-
tribute reprints for Government purposes notwith-
standing any copyright notation here on.

References
John W. Bodnar. 2003. Warning Analysis for the In-

formation Age: Rethinking the Intelligence Process.
Center for Strategic Intelligence Research, Joint
Military Intelligence College, Washington, D.C.

Sean Colbath and Francis Kubala. 2003. TAP-XL: An
Automated Analyst�’s Assistant. Proc. HLT-NAACL
2003 (demonstrations).

Laura Faulkner. 2003. Beyond the five-user assumption:
Benefits of increased sample sizes in usability testing.
Behavior Research Methods Instruments and Com-
puters 35(3), 379-383.

Monty Hammontree, Paul Weiler and Nandini Nayak.
1994. Remote Usability Testing. Interactions. Vol-
ume 1, Issue 3. Pages: 21-25.

Heng Ji and Zheng Chen. 2009. Cross-document Tem-
poral and Spatial Person Tracking System Demon-
stration. Proc. HLT-NAACL 2009.

Heng Ji, Ralph Grishman, Zheng Chen and Prashant
Gupta. 2009. Cross-document Event Extraction,
Ranking and Tracking. Proc. Recent Advances in
Natural Language Processing 2009.

Jakob Nielsen. 1994. Usability Engineering. Morgan
Kaufmann Publishers.

288

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 289–292,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Evaluation Metrics for the Lexical Substitution Task

Sanaz Jabbari Mark Hepple Louise Guthrie
Department of Computer Science, University of Sheffield

211 Portobello Street, Sheffield, S1 4DP, UK
{S.Jabbari,M.Hepple,L.Guthrie}@dcs.shef.ac.uk

Abstract

We identify some problems of the evaluation
metrics used for the English Lexical Substitu-
tion Task of SemEval-2007, and propose al-
ternative metrics that avoid these problems,
which we hope will better guide the future de-
velopment of lexical substitution systems.

1 Introduction

The English Lexical Substitution task at SemEval-
2007 (here called ELS07) requires systems to find
substitutes for target words in a given sentence (Mc-
Carthy & Navigli, 2007: M&N). For example, we
might replace the target word match with game in
the sentence they lost the match. System outputs are
evaluated against a set of candidate substitutes pro-
posed by human subjects for test items. Targets are
typically sense ambiguous (e.g. match in the above
example), and so task performance requires a com-
bination of word sense disambiguation (by exploit-
ing the given sentential context) and (near) synonym
generation. In this paper, we discuss some problems
of the evaluation metrics used in ELS07, and then
propose some alternative measures that avoid these
problems, and which we believe will better serve to
guide the development of lexical substitution sys-
tems in future work.1 The subtasks within ELS07
divide into two groups, in terms of whether they fo-
cus on a system’s ‘best’ answer for a test item, or ad-
dress the broader set of answer candidates a system

1We consider here only the case of substituting for single
word targets. Subtasks of ELS07 involving multi-word substi-
tutions are not addressed.

can produce. In what follows, we address these two
cases in separate sections, and then present some re-
sults for applying our new metrics for the second
case. We begin by briefly introducing the test ma-
terials that were created for the ELS07 evaluation.

2 Evaluation Materials

Briefly stated, the ELS07 dataset comprises around
2000 sentences, providing 10 test sentences each
for some 201 preselected target words, which were
required to be sense ambiguous and have at least
one synonym, and which include nouns, verbs, ad-
jectives and adverbs. Five human annotators were
asked to suggest up to three substitutes for the tar-
get word of each test sentence, and their collected
suggestions serve as the gold standard against which
system outputs are compared. Around 300 sentences
were distributed as development data, and the re-
mainder retained for the final evaluation.

To assist defining our metrics, we formally de-
scribe this data as follows.2 For each sentence ti
in the test data (1 ≤ i ≤ N , N the number of test
items), let Hi denote the set of human proposed sub-
stitutes. A key aspect of the data is the count of hu-
man annotators that proposed each candidate (since
a term appears a stronger candidate if proposed by
annotators). For each ti, there is a function freqi

which returns this count for each term within Hi

(and 0 for any other term), and a value maxfreqi

corresponding to the maximal count for any term in
Hi. The pairing of Hi and freq i in effect provides a
multiset representation of the human answer set. We

2For consistency, we also restate the original ELS07 metrics
in these terms, whilst preserving their essential content.

289

use |S|i in what follows to denote the multiset car-
dinality of S according to freqi, i.e. Σa∈Sfreq i(a).
Some of the ELS07 metrics use a notion of mode
answer mi, which exists only for test items that
have a single most-frequent human response, i.e.
a unique a ∈ Hi such that freqi(a) = maxfreq i.
To adapt an example from M&N, an item with tar-
get word happy (adj) might have human answers
{glad ,merry , sunny , jovial , cheerful } with counts
(3,3,2,1,1) respectively. We will abbreviate this an-
swer set as Hi = {G:3,M:3,S:2,J:1,Ch:1} where it
is used later in the paper.

3 Best Answer Measures

Two of the ELS07 tasks address how well systems
are able to find a ‘best’ substitute for a test item, for
which individual test items are scored as follows:

best(i) =
∑

a∈Ai
freq i(a)

|Hi|i × |Ai|

mode(i) =

{
1 if bg i = mi

0 otherwise

For the first task, a system can return a set of an-
swers Ai (the answer set for item i), but since the
score achieved is divided by |Ai|, returning multiple
answers only serves to allow a system to ‘hedge its
bets’ if it is uncertain which candidate is really the
best. The optimal score on a test item is achieved by
returning a single answer whose count is maxfreqi,
with proportionately lesser credit being received for
any answer in Hi with a lesser count. For the sec-
ond task, which uses the mode metric, only a single
system answer – its ‘best guess’ bgi – is allowed,
and the score is simply 0 or 1 depending on whether
the best guess is the mode. Overall performance is
computed by averaging across a broader set of test
items (which for the second task includes only items
having a mode value). M&N distinguish two over-
all performance measures: Recall, which averages
over all relevant items, and Precision, which aver-
ages only over those items for which the system gave
a non-empty response.

We next discuss these measures and make an al-
ternative proposal. The task for the first measure
seems a reasonable one, i.e. assessing the ability of
systems to provide a ‘best’ answer for a test item,
but allowing them to offer multiple candidates (to

‘hedge their bets’). However, the metric is unsatis-
factory in that a system that performs optimally in
terms of this task (i.e. which, for every test item, re-
turns a single correct ‘most frequent’ response) will
get a score that is well below 1, because the score is
also divided by |Hi|i, the multiset cardinality of Hi,
whose size varies between test items (being a con-
sequence of the number of alternatives suggested by
the human annotators), but which is typically larger
than the numerator value maxfreqi of an optimal an-
swer (unless Hi is singleton). This problem is fixed
in the following modified metric definition, by di-
viding instead by maxfreqi, as then a response con-
taining a single optimal answer will score 1.

best(i) =
∑

a∈Ai
freq i(a)

maxfreq i × |Ai| best1(i) =
freq i(bg i)
maxfreq i

With Hi = {G:3,M:3,S:2,J:1,Ch:1}, for example,
an optimal response Ai = {M} receives score 1,
where the original metric gives score 0.3. Singleton
responses containing a correct but non-optimal an-
swer receive proportionately lower credit, e.g. for
Ai = {S} we score 0.66 (vs. 0.2 for the origi-
nal metric). For a non-singleton answer set includ-
ing, say, a correct answer and an incorrect one, the
credit for the correct answer will be halved, e.g. for
Ai = {S,X} we score 0.33.

Regarding the second task, we think it reasonable
to have a task where systems may offer only a single
‘best guess’ response, but argue that the mode met-
ric used has two key failings: it is too brittle in being
applicable only to items that have a mode answer,
and it loses information valuable to system rank-
ing, in assigning no credit to a response that might
be good but not optimal. We propose instead the
best1 metric above, which assigns score 1 to a best
guess answer with count maxfreqi, but applies to all
test items irrespective of whether or not they have
a unique mode. For answers having lesser counts,
proportionately less credit is assigned. This metric
is equivalent to the new best metric shown beside it
for the case where |Ai| = 1.

For assessing overall performance, we suggest
just taking the average of scores across all test items,
c.f. M&N’s Recall measure. Their Precision met-
ric is presumably intended to favour a system that
can tell whether it does or does not have any good
answers to return. However, the ability to draw a

290

boundary between good vs. poor candidates will be
reflected widely in a system’s performance and cap-
tured elsewhere (not least by the coverage metrics
discussed later) and so, we argue, does not need to
be separately assessed in this way. Furthermore, the
fact that a system does not return any answers may
have other causes, e.g. that its lexical resources have
failed to yield any substitution candidates for a term.

4 Measures of Coverage

A third task of ELS07 assesses the ability of systems
to field a wider set of good substitution candidates
for a target, rather than just a ‘best’ candidate. This
‘out of ten’ (oot) task allows systems to offer a set
Ai of upto 10 guesses per item i, and is scored as:

oot(i) =
∑

a∈Ai
freqi(a)

|Hi|i

Since the score is not divided by the answer set
size |Ai|, no benefit derives from offering less than
10 candidates.3 When systems are asked to field a
broader set of candidates, we suggest that evalua-
tion should assess if the response set is good in con-
taining as many correct answers as possible, whilst
containing as few incorrect answers as possible. In
general, systems will tackle this problem by com-
bining a means of ranking candidates (drawn from
lexical resources) with a means of drawing a bound-
ary between good and bad candidates, e.g. thresh-
old setting.4 Since the oot metric does not penalise
incorrect answers, it does not encourage systems to
develop such boundary methods, even though this is
important to their ultimate practical utility.

The view of a ‘good’ answer set described above
suggests a comparison of Ai to Hi using versions
of ‘recall’ and ‘precision’ metrics, that incorporate
the ‘weighting’ of human answers via freqi. Let us
begin by noting the obvious definitions for recall and

3We do not consider here a related task which assesses
whether the mode answer mi is found within an answer set of
up to 10 guesses. We do not favour the use of this metric for
reasons parallel to those discussed for the mode metric of the
previous section, i.e. brittleness and information loss.

4In Jabbari et al. (2010), we define a metric that directly
addresses the ability of systems to achieve good ranking of sub-
stitution candidates. This is not itself a measure of lexical sub-
stitution task performance, but addresses a component ability
that is key to the achievement of lexical substitution tasks.

precision metrics without count-weighting:

R(i) =
|Hi ∩Ai|
|Hi| P (i) =

|Hi ∩Ai|
|Ai|

Our definitions of these metrics, given below, do
include count-weighting, and require some explana-
tion. The numerator of our recall definition is |Ai|i
not |Hi ∩ Ai|i as |Ai|i = |Hi ∩ Ai|i (as freqi as-
signs 0 to any term not in Hi), an observation which
also affects the numerator of our P definition. Re-
garding the latter’s denominator, merely dividing by
|Ai|i would not penalise incorrect terms (as, again,
freqi(a) = 0 for any a /∈ Hi), so this is done di-
rectly by adding k|Ai −Hi|, where |Ai −Hi| is the
number of incorrect answers, and k some penalty
factor, which might be k = 1 in the simplest case.
(Note that our weighted R metric is in fact equiv-
alent to the oot definition above.) As usual, an F-
score can be computed as the harmonic mean of
these values (i.e. F = 2PR/(P + R)). For as-
sessing overall performance, we might average P ,
R and F scores across all test items.

R(i) =
|Ai|i
|Hi|i P (i) =

|Ai|i
|Ai|i + k|Ai −Hi|

With Hi = {G:3,M:3,S:2,J:1,Ch:1}, for example,
the perfect response set Ai = {G,M,S, J,Ch}
gives P and R scores of 1. The response
Ai = {G,M,S, J,Ch,X, Y, Z, V,W}, containing
all correct answers plus 5 incorrect ones, gets R =
1, but only P = 0.66 (assuming k = 1, giving
10/(10 + 5)). The response Ai = {G,S, J,X, Y },
with 3 out of 5 correct answers, plus 2 incorrect
ones, gets R = 0.6 (6/10) and P = 0.75 (6/6 + 2))

5 Applying the Coverage measure

Although the ‘best guess’ task is a valuable indicator
of the likely utility of a lexical substitution system
within various broader applications, we would argue
that the core task for lexical substitution is coverage,
i.e. the ability to field a broad set of correct substi-
tution candidates. This task requires systems both to
field and rank promising candidates, and to have a
means of drawing a boundary between the good and
bad candidates, i.e. a boundary strategy.

In this section, we apply the coverage metrics to
the outputs of some lexical substitution systems, and

291

Model 1 2 3 4 5 6 7 8 9 10
bow .067 .114 .151 .173 .191 .201 .212 .219 .222 .225
lm .119 .192 .228 .246 .256 .267 .271 .272 .271 .271
cmlc .139 .205 .251 .271 .284 .288 .291 .290 .289 .286
KU .173 .244 .287 .307 .318 .321 .320 .318 .314 .311

Table 3: Coverage F-scores (macro-avgd), for simple boundary strategies (with penalty factor k = 1).

All By part-of-speech
Model words nouns adj verb adv

bow .326 .343 .334 .205 .461
lm .393 .372 .442 .252 .562
cmlc .414 .404 .447 .311 .534
KU .462 .408 .511 .398 .567

Table 1: Out-of-ten recall scores for all the systems (with
a subdivision by pos of target item).

All By part-of-speech
Model words nouns adj verb adv

bow .298 .315 .302 .189 .422
lm .371 .35 .408 .24 .539
cmlc .395 .383 .419 .31 .506
KU .435 .379 .477 .385 .536

Table 2: Optimal F-scores (macro-avgd) for coverage,
computed over the (oot) ranked outputs of the systems
(with penalty factor k = 1).

compare the indication it provides of relative sys-
tem performance to that of the oot metric. We con-
sider three systems described in Jabbari (2010), de-
veloped as part of an investigation into the means
and benefits of combining models of lexical context:
(i) bow: a system using a bag-of-words model to
rank candidates, (ii) lm: using a (simple) n-gram lan-
guage model, and (iii) cmlc: using a model that com-
bines bow and lm models into one. We also consider
the system KU, which uses a very large language
model and an advanced treatment of smoothing, and
which performed well at ELS07 (Yuret, 2007).5 Ta-
ble 1 shows the oot scores for these systems, includ-
ing a breakdown by part-of-speech, which indicate a
performance ranking: bow < lm < cmlc < KU

Our first problem is that these systems are devel-
oped for the oot task, not coverage, so after rank-

5We thank Deniz Yuret for allowing us to use his system’s
outputs in this analysis.

ing their candidates, they do not attempt to draw
a boundary between the candidates worth returning
and those not. Instead, we here use the oot out-
puts to compute an optimal performance for each
system, i.e. we find, for the ranked candidates of
each question, the cut-off position giving the high-
est F-score, and then average these scores across
questions, which tells us the F-score the system
could achieve if it had an optimal boundary strategy.
These scores, shown in Table 2, indicate a ranking of
systems in line with that in Table 1, which is not sur-
prising as both will ultimately reflect the quality of
candidate ranking achieved by the systems.

Table 3 shows the coverage results achieved by
applying a naive boundary strategy to the system
outputs. The strategy is just to always return the
top n candidates for each question, for a fixed value
n. Again, performance correlates straightforwardly
with the underlying quality of ranking. Comparing
tables, we see, for example, that by always returning
6 candidates, the system KU could achieve a cover-
age of .32 as compared to the .435 optimal score.

References

D. McCarthy and R. Navigli. 2007. SemEval-
2007 Task 10: English Lexical Substitution Task.
Proc. of the 4th Int. Workshop on Semantic Eval-
uations (SemEval-2007), Prague.

S. Jabbari. 2010. A Statistical Model of Lexical Con-
text, PhD Thesis, University of Sheffield.

S. Jabbari, M. Hepple and L.Guthrie. 2010. Evaluat-
ing Lexical Substitution: Analysis and New Mea-
sures. Proc. of the 7th Int. Conf. on Language
Resources and Evaluation (LREC-2010). Malta.

D. Yuret. 2007. KU: Word Sense Disambiguation by
Substitution. In Proc. of the 4th Int. Workshop on
Semantic Evaluations (SemEval-2007), Prague.

292

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 293–296,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Movie Reviews and Revenues: An Experiment in Text Regression∗

Mahesh Joshi Dipanjan Das Kevin Gimpel Noah A. Smith
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA

{maheshj,dipanjan,kgimpel,nasmith}@cs.cmu.edu

Abstract

We consider the problem of predicting a
movie’s opening weekend revenue. Previous
work on this problem has used metadata about
a movie—e.g., its genre, MPAA rating, and
cast—with very limited work making use of
text about the movie. In this paper, we use
the text of film critics’ reviews from several
sources to predict opening weekend revenue.
We describe a new dataset pairing movie re-
views with metadata and revenue data, and
show that review text can substitute for meta-
data, and even improve over it, for prediction.

1 Introduction

Predicting gross revenue for movies is a problem
that has been studied in economics, marketing,
statistics, and forecasting. Apart from the economic
value of such predictions, we view the forecasting
problem as an application of NLP. In this paper, we
use the text of critics’ reviews to predict opening
weekend revenue. We also consider metadata for
each movie that has been shown to be successful for
similar prediction tasks in previous work.

There is a large body of prior work aimed at pre-
dicting gross revenue of movies (Simonoff and Spar-
row, 2000; Sharda and Delen, 2006; inter alia). Cer-
tain information is used in nearly all prior work on
these tasks, such as the movie’s genre, MPAA rating,
running time, release date, the number of screens on
which the movie debuted, and the presence of partic-
ular actors or actresses in the cast. Most prior text-
based work has used automatic text analysis tools,
deriving a small number of aggregate statistics. For
example, Mishne and Glance (2006) applied sen-
timent analysis techniques to pre-release and post-
release blog posts about movies and showed higher

∗We appreciate reviewer feedback and technical advice
from Brendan O’Connor. This work was supported by NSF IIS-
0803482, NSF IIS-0844507, and DARPA NBCH-1080004.

correlation between actual revenue and sentiment-
based metrics, as compared to mention counts of the
movie. (They did not frame the task as a revenue
prediction problem.) Zhang and Skiena (2009) used
a news aggregation system to identify entities and
obtain domain-specific sentiment for each entity in
several domains. They used the aggregate sentiment
scores and mention counts of each movie in news
articles as predictors.

While there has been substantial prior work on
using critics’ reviews, to our knowledge all of this
work has used polarity of the review or the number
of stars given to it by a critic, rather than the review
text directly (Terry et al., 2005).

Our task is related to sentiment analysis (Pang et
al., 2002) on movie reviews. The key difference is
that our goal is to predict a future real-valued quan-
tity, restricting us from using any post-release text
data such as user reviews. Further, the most im-
portant clues about revenue may have little to do
with whether the reviewer liked the movie, but rather
what the reviewer found worth mentioning. This pa-
per is more in the tradition of Ghose et al. (2007) and
Kogan et al. (2009), who used text regression to di-
rectly quantify review “value” and make predictions
about future financial variables, respectively.

Our aim in using the full text is to identify partic-
ular words and phrases that predict the movie-going
tendencies of the public. We can also perform syn-
tactic and semantic analysis on the text to identify
richer constructions that are good predictors. Fur-
thermore, since we consider multiple reviews for
each movie, we can compare these features across
reviews to observe how they differ both in frequency
and predictive performance across different media
outlets and individual critics.

In this paper, we use linear regression from text
and non-text (meta) features to directly predict gross
revenue aggregated over the opening weekend, and
the same averaged per screen.

293

Domain train dev test total
Austin Chronicle 306 94 62 462
Boston Globe 461 154 116 731
LA Times 610 2 13 625
Entertainment Weekly 644 208 187 1039
New York Times 878 273 224 1375
Variety 927 297 230 1454
Village Voice 953 245 198 1396
movies 1147 317 254 1718

Table 1: Total number of reviews from each domain for
the training, development and test sets.

2 Data

We gathered data for movies released in 2005–2009.
For these movies, we obtained metadata and a list
of hyperlinks to movie reviews by crawling Meta-
Critic (www.metacritic.com). The metadata
include the name of the movie, its production house,
the set of genres it belongs to, the scriptwriter(s),
the director(s), the country of origin, the primary
actors and actresses starring in the movie, the re-
lease date, its MPAA rating, and its running time.
From The Numbers (www.the-numbers.com),
we retrieved each movie’s production budget, open-
ing weekend gross revenue, and the number of
screens on which it played during its opening week-
end. Only movies found on both MetaCritic and The
Numbers were included.

Next we chose seven review websites that most
frequently appeared in the review lists for movies at
Metacritic, and obtained the text of the reviews by
scraping the raw HTML. The sites chosen were the
Austin Chronicle, the Boston Globe, the LA Times,
Entertainment Weekly, the New York Times, Vari-
ety, and the Village Voice. We only chose those
reviews that appeared on or before the release date
of the movie (to ensure that revenue information is
not present in the review), arriving at a set of 1718
movies with at least one review. We partitioned this
set of movies temporally into training (2005–2007),
development (2008) and test (2009) sets. Not all
movies had reviews at all sites (see Table 1).

3 Predictive Task

We consider two response variables, both in
U.S. dollars: the total revenue generated by a movie
during its release weekend, and the per screen rev-
enue during the release weekend. We evaluate these

predictions using (1) mean absolute error (MAE) in
U.S. dollars and (2) Pearson’s correlation between
the actual and predicted revenue.

We use linear regression to directly predict the
opening weekend gross earnings, denoted y, based
on features x extracted from the movie metadata
and/or the text of the reviews. That is, given an input
feature vector x ∈ Rp, we predict an output ŷ ∈ R
using a linear model: ŷ = β0 + x>β. To learn val-
ues for the parameters θ = 〈β0,β〉, the standard
approach is to minimize the sum of squared errors
for a training set containing n pairs 〈xi, yi〉 where
xi ∈ Rp and yi ∈ R for 1 ≤ i ≤ n:

θ̂ = argmin
θ=(β0,β)

1
2n

n∑
i=1

(
yi − (β0 + x>i β)

)2
+λP (β)

A penalty term P (β) is included in the objective for
regularization. Classical solutions use an `2 or `1
norm, known respectively as ridge and lasso regres-
sion. Introduced recently is a mixture of the two,
called the elastic net (Zou and Hastie, 2005):

P (β) =
∑p

j=1

(
1
2(1− α)β2

j + α|βj |
)

where α ∈ (0, 1) determines the trade-off be-
tween `1 and `2 regularization. For our experi-
ments we used the elastic net and specifically the
glmnet package which contains an implementa-
tion of an efficient coordinate ascent procedure for
training (Friedman et al., 2008).

We tune the α and λ parameters on our develop-
ment set and select the model with the 〈α, λ〉 com-
bination that yields minimum MAE on the develop-
ment set.

4 Experiments

We compare predictors based on metadata, predic-
tors based on text, and predictors that use both kinds
of information. Results for two simple baselines of
predicting the training set mean and median are re-
ported in Table 2 (Pearson’s correlation is undefined
since the standard deviation is zero).

4.1 Metadata Features
We considered seven types of metadata features, and
evaluated their performance by adding them to our
pool of features in the following order: whether the

294

film is of U.S. origin, running time (in minutes), the
logarithm of its budget, # opening screens, genre
(e.g., Action, Comedy) and MPAA rating (e.g., G,
PG, PG-13), whether the movie opened on a holiday
weekend or in summer months, total count as well as
of presence of individual Oscar-winning actors and
directors and high-grossing actors. For the first task
of predicting the total opening weekend revenue of
a movie, the best-performing feature set in terms of
MAE turned out to be all the features. However, for
the second task of predicting the per screen revenue,
addition of the last feature subset consisting of infor-
mation related to the actors and directors hurt perfor-
mance (MAE increased). Therefore, for the second
task, the best performing set contained only the first
six types of metadata features.

4.2 Text Features

We extract three types of text features (described be-
low). We only included feature instances that oc-
curred in at least five different movies’ reviews. We
stem and downcase individual word components in
all our features.

I. n-grams. We considered unigrams, bigrams, and
trigrams. A 25-word stoplist was used; bigrams
and trigrams were only filtered if all words were
stopwords.

II. Part-of-speech n-grams. As with words, we
added unigrams, bigrams, and trigrams. Tags
were obtained from the Stanford part-of-speech
tagger (Toutanova and Manning, 2000).

III. Dependency relations. We used the Stanford
parser (Klein and Manning, 2003) to parse the
critic reviews and extract syntactic dependen-
cies. The dependency relation features consist
of just the relation part of a dependency triple
〈relation, head word, modifier word〉.

We consider three ways to combine the collec-
tion of reviews for a given movie. The first (“−”)
simply concatenates all of a movie’s reviews into
a single document before extracting features. The
second (“+”) conjoins each feature with the source
site (e.g., New York Times) from whose review it was
extracted. A third version (denoted “B”) combines
both the site-agnostic and site-specific features.

Features Site
Total Per Screen

MAE MAE
($M) r ($K) r

Predict mean 11.672 – 6.862 –
Predict median 10.521 – 6.642 –

m
et

a

Best 5.983 0.722 6.540 0.272

te
xt

I
− 8.013 0.743 6.509 0.222
+ 7.722 0.781 6.071 0.466

see Tab. 3 B 7.627 0.793 6.060 0.411

I ∪ II
− 8.060 0.743 6.542 0.233
+ 7.420 0.761 6.240 0.398
B 7.447 0.778 6.299 0.363

I ∪ III
− 8.005 0.744 6.505 0.223
+ 7.721 0.785 6.013 0.473
B 7.595 0.796 †6.010 0.421

m
et

a
∪

te
xt

I
− 5.921 0.819 6.509 0.222
+ 5.757 0.810 6.063 0.470
B 5.750 0.819 6.052 0.414

I ∪ II
− 5.952 0.818 6.542 0.233
+ 5.752 0.800 6.230 0.400
B 5.740 0.819 6.276 0.358

I ∪ III
− 5.921 0.819 6.505 0.223
+ 5.738 0.812 6.003 0.477
B 5.750 0.819 †5.998 0.423

Table 2: Test-set performance for various models, mea-
sured using mean absolute error (MAE) and Pearson’s
correlation (r), for two prediction tasks. Within a column,
boldface shows the best result among “text” and “meta ∪
text” settings. †Significantly better than the meta baseline
with p < 0.01, using the Wilcoxon signed rank test.

4.3 Results
Table 2 shows our results for both prediction tasks.
For the total first-weekend revenue prediction task,
metadata features baseline result (r2 = 0.521) is
comparable to that reported by Simonoff and Spar-
row (2000) on a similar task of movie gross predic-
tion (r2 = 0.446). Features from critics’ reviews
by themselves improve correlation on both predic-
tion tasks, however improvement in MAE is only
observed for the per screen revenue prediction task.

A combination of the meta and text features
achieves the best performance both in terms of MAE
and r. While the text-only models have some high
negative weight features, the combined models do
not have any negatively weighted features and only
a very few metadata features. That is, the text is able
to substitute for the other metadata features.

Among the different types of text-based features
that we tried, lexical n-grams proved to be a strong
baseline to beat. None of the “I ∪ ∗” feature sets are
significantly better than n-grams alone, but adding

295

the dependency relation features (set III) to the n-
grams does improve the performance enough to
make it significantly better than the metadata-only
baseline for per screen revenue prediction.

Salient Text Features: Table 3 lists some of the
highly weighted features, which we have catego-
rized manually. The features are from the text-only
model annotated in Table 2 (total, not per screen).
The feature weights can be directly interpreted as
U.S. dollars contributed to the predicted value ŷ by
each occurrence of the feature. Sentiment-related
features are not as prominent as might be expected,
and their overall proportion in the set of features
with non-zero weights is quite small (estimated in
preliminary trials at less than 15%). Phrases that
refer to metadata are the more highly weighted
and frequent ones. Consistent with previous re-
search, we found some positively-oriented sentiment
features to be predictive. Some other prominent
features not listed in the table correspond to spe-
cial effects (“Boston Globe: of the art”, “and cgi”),
particular movie franchises (“shrek movies”, “Vari-
ety: chronicle of”, “voldemort”), hype/expectations
(“blockbuster”, “anticipation”), film festival (“Vari-
ety: canne” with negative weight) and time of re-
lease (“summer movie”).

5 Conclusion

We conclude that text features from pre-release re-
views can substitute for and improve over a strong
metadata-based first-weekend movie revenue pre-
diction. The dataset used in this paper has been
made available for research at http://www.
ark.cs.cmu.edu/movie$-data.

References
J. Friedman, T. Hastie, and R. Tibshirani. 2008. Regular-

ized paths for generalized linear models via coordinate
descent. Technical report, Stanford University.

A. Ghose, P. G. Ipeirotis, and A. Sundararajan. 2007.
Opinion mining using econometrics: A case study on
reputation systems. In Proc. of ACL.

D. Klein and C. D. Manning. 2003. Fast exact inference
with a factored model for natural language parsing. In
Advances in NIPS 15.

S. Kogan, D. Levin, B. R. Routledge, J. Sagi, and N. A.
Smith. 2009. Predicting risk from financial reports
with regression. In Proc. of NAACL, pages 272–280.

Feature Weight ($M)

ra
tin

g pg +0.085
New York Times: adult -0.236
New York Times: rate r -0.364

se
qu

el
s this series +13.925

LA Times: the franchise +5.112
Variety: the sequel +4.224

pe
op

le Boston Globe: will smith +2.560
Variety: brittany +1.128
ˆ producer brian +0.486

ge
nr

e

Variety: testosterone +1.945
Ent. Weekly: comedy for +1.143

Variety: a horror +0.595
documentary -0.037
independent -0.127

se
nt

im
en

t Boston Globe: best parts of +1.462
Boston Globe: smart enough +1.449

LA Times: a good thing +1.117
shame $ -0.098

bogeyman -0.689

pl
ot

Variety: torso +9.054
vehicle in +5.827

superhero $ +2.020

Table 3: Highly weighted features categorized manu-
ally. ˆ and $ denote sentence boundaries. “brittany”
frequently refers to Brittany Snow and Brittany Murphy.
“ˆ producer brian” refers to producer Brian Grazer (The
Da Vinci Code, among others).

G. Mishne and N. Glance. 2006. Predicting movie sales
from blogger sentiment. In AAAI Spring Symposium
on Computational Approaches to Analysing Weblogs.

B. Pang, L. Lee, and S. Vaithyanathan. 2002. Thumbs
up? Sentiment classification using machine learning
techniques. In Proc. of EMNLP, pages 79–86.

R. Sharda and D. Delen. 2006. Predicting box office suc-
cess of motion pictures with neural networks. Expert
Systems with Applications, 30(2):243–254.

J. S. Simonoff and I. R. Sparrow. 2000. Predicting movie
grosses: Winners and losers, blockbusters and sleep-
ers. Chance, 13(3):15–24.

N. Terry, M. Butler, and D. De’Armond. 2005. The de-
terminants of domestic box office performance in the
motion picture industry. Southwestern Economic Re-
view, 32:137–148.

K. Toutanova and C. D. Manning. 2000. Enriching the
knowledge sources used in a maximum entropy part-
of-speech tagger. In Proc. of EMNLP, pages 63–70.

W. Zhang and S. Skiena. 2009. Improving movie gross
prediction through news analysis. In Web Intelligence,
pages 301–304.

H. Zou and T. Hastie. 2005. Regularization and variable
selection via the elastic net. Journal Of The Royal Sta-
tistical Society Series B, 67(5):768–768.

296

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 297–300,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Using Gaussian Mixture Models to Detect Figurative Language in Context

Linlin Li and Caroline Sporleder
Saarland University, Postfach 15 11 50

66041 Saarbrücken, Germany
{linlin, csporled}@coli.uni-saarland.de

Abstract

We present a Gaussian Mixture model for de-
tecting different types of figurative language
in context. We show that this model performs
well when the parameters are estimated in an
unsupervised fashion using EM. Performance
can be improved further by estimating the pa-
rameters from a small annotated data set.

1 Introduction

Figurative language employs words in a way that de-
viates from their normal meaning. It includes id-
iomatic usage, metaphor, metonymy or other types
of creative language. Being able to detect figurative
language is important for a number of NLP applica-
tions, e.g., machine translation.

Simply checking the input against an idiom dic-
tionary does not solve the problem. While some
expressions (e.g., trip the light fantastic) are al-
ways used idiomatically, many expressions (e.g.,
spill the beans), can take on a literal meaning as
well. Whether such expression is used idiomatically
or not has to be inferred from the discourse context.
Likewise, simple dictionary look-up would not work
for truly creative, one-off usages; these can neither
be found in a dictionary nor can they be detected
by standard idiom extraction methods, which apply
statistical measures to accumulated corpus evidence
for an expression to assess its ’idiomaticity’. An ex-
ample of a fairly creative usage can be found in (1),
which is a variation of the idiom put a sock in.
(1) Take the sock out of your mouth and create a

brand-new relationship with your mom.

We propose a method for detecting figurative lan-
guage in context. Because we use context informa-
tion rather than corpus statistics, our approach works
also for truly creative usages.

2 Related Work

Most studies on the detection of idioms and other
types of figurative language focus on one of three
aspects: type-based extraction (detect idioms on the
type level), token-based classification (given a po-
tentially idiomatic phrase in context, decide whether
it is used idiomatically), token-based detection (de-
tect figurative expressions in running text).

Type-based extractions exploit the fact that idioms
have many properties which differentiate them from
other expressions, e.g., they often exhibit a degree of
syntactic and lexical fixedness. These properties can
be used to identify potential idioms, for instance, by
employing measures of association strength between
the elements of an expression (Lin, 1999).

Type-based approaches are unsuitable for expres-
sions which can be used both figuratively and lit-
erally. These have to be disambiguated in context.
Token-based classification aims to do this. A num-
ber of token-based approaches have been proposed:
supervised (Katz and Giesbrecht, 2006), weakly su-
pervised (Birke and Sarkar, 2006), and unsupervised
(Fazly et al., 2009; Sporleder and Li, 2009).

Finally, token-based detection can be viewed
as a two stage task which is the combination of
type-based extraction and token-based classifica-
tion. There has been relatively little work on this so
far. One exception are Fazly et al. (2009) who detect
idiom types by using statistical methods that model
the general idiomaticity of an expression and then
combine this with a simple second-stage process that
detects whether the target expression is used figura-
tively in a given context, based on whether the ex-
pression occurs in canonical form or not.

However, modeling token-based detection as a

297

combination of type-based extraction and token-
based classification has some drawbacks. First,
type-based approaches typically compute statistics
from multiple occurrences of a target expression,
hence they cannot be applied to novel usages. Sec-
ond, these methods were developed to detect figu-
ratively used multi-word expressions (MWEs) and
do not work for figuratively used individual words,
like sparrow in example (2). Ideally, one would like
to have a generic model that can detect any type of
figurative usage in a given context. The model we
propose in this paper is one step in this direction.

(2) During the Iraq war, he was a sparrow; he
didn’t condone the bloodshed but wasn’t both-
ered enough to go out and protest.

3 Using Gaussian Mixture Model to Detect
Figurative Language

We address the problem by using Gaussian Mix-
ture Models (GMMs). We assume that the literal
(l) and non-literal (n) data are generated by two dif-
ferent Gaussians (literal and nonliteral Gaussian).
The token-based detection task is done by compar-
ing which Gaussian has the higher probability of
generating a specific instance.

The Gaussian mixture model is defined as:

p(x) =
∑

c∈{l,n}

wc ×N(x|µc,Σc)

Where, c is the category of the Gaussian, µc is the
mean, Σc is the covariance matrix, and wc is the
Gaussian weight.

Our method is based on the insight that figura-
tive language exhibits less semantic cohesive ties
with the context than literal language (Sporleder and
Li, 2009). We use Normalized Google Distance to
model semantic relatedness (Cilibrasi and Vitanyi,
2007) and represent the data by five types of seman-
tic relatedness features x = (x1, x2, x3, x4, x5):
x1 is the average relatedness between the target

expression and context words,

x1 =
2

|T | × |C|
∑

(wi,cj)∈T×C

relatedness(wi, cj)

where wi is a component word of the target expres-
sion (T); cj is one of the context words (C); |T | is
the total number of words in the target expression,
and |C| is the total number of words in the context.

The term 2
|T |×|C| is the normalization factor, which

is the total number of relatedness pairs between tar-
get component words and context words.
x2 is the average semantic relatedness in the con-

text of the target expression,

x2 =
1(
|C|
2

) ∑
(ci,cj)∈C×C,i6=j

relatedness(ci, cj)

x3 is the difference between the average seman-
tic relatedness between the target expression and the
context words and the average semantic relatedness
of the context (i.e., x3 = x1− x2). It is an indicator
of how strongly the target expression is semantically
related to the discourse context.
x4 is the feature used by Sporleder and Li (2009)

for predicting literal or idiomatic use in the cohesion
graph based method,

x4 =
{

1 if x3 < 0
0 else

x5 is a high dimensional vector which represents
the top relatedness scores between the component
words of the target expression and the context,

x5(k) = max
(wi,cj)∈T×C

(k, {relatedness(wi, cj)})

where the function max(k,A) is defined to choose
the kth highest element from the set A.1

The detection task is done by a Bayes decision
rule, which chooses the category by maximizing the
probability of fitting the data into the different Gaus-
sian components:

c(x) = arg max
i∈{l,n}

{wi ×N(x|µi,Σi)}

4 Evaluating the GMM Approach

4.1 Data

We evaluate our method on two data sets. The
first set (idiom set) is taken from Sporleder and Li
(2009) and consists of 3964 idiom occurrences (17
idiom types) which were manually labeled as ’lit-
eral’ or ’figurative’. The second data set (V+NP
set), consists of a randomly selected sample of
500 V+NP constructions from the Gigaword corpus,
which were manually labeled.

To determine how well our model deals with dif-
ferent types of figurative usage, we distinguish four
phenomena: Phrase-level figurative means that the

1We set k to be 100 in our experiment.

298

whole phrase is used figuratively. We further divide
this class into expressions which are potentially am-
biguous between literal and figurative usage (nsa),
e.g., spill the beans, and those that are unambigu-
ously figurative irrespective of the context (nsu),
e.g., trip the light fantastic. The latter can, theoreti-
cally, be detected by dictionary look-up, the former
cannot. The label token-level figurative (nw) is used
when part of the phrase is used figuratively (e.g.,
sparrow in (2)). Often it is difficult to determine
whether a word is still used in a ’literal’ sense or
whether it is already used figuratively. Since we are
interested in improving the performance of NLP ap-
plications such as MT, we take a pragmatic approach
and classify usages as ’figurative’ if they are not lex-
icalized, i.e., if the specific sense is not listed in a
dictionary.2 For example, we would classify summit
in the ’meeting’ sense as ’literal’ (l). In our data set,
7.3% of the instances were annotated as ’nsa’, 1.9%
as ’nsu’, 9.2% as ’nw’ and 81.5% as ’l’. A randomly
selected sample (100 instances) was annotated inde-
pendently by a second annotator. The kappa score
(Cohen, 1960) is 0.84, which suggest that the anno-
tations are reliable.

4.2 GMM Estimated by EM

We used the MatLab package provided by Cali-
non (2009) for estimating the GMM model. The
GMM is trained by the EM algorithm. The pri-
ors of Gaussian components, means and covariance
of each components, are initialized by the k-means
clustering algorithm (Hartigan, 1975).

To determine whether the GMM is able to per-
form token-based idiom classification, we applied
it to the idiom data set. The results (see Table 1)
show that the GMM can distinguish usages quite
well and gains equally good results as Sporleder and
Li’s cohesion graph method (Co-Graph). In addi-
tion, this method can deal with unobserved occur-
rences of non-literal language.

Table 2 shows the results on the second data set.
The baseline predicts ’idiomatic’ and ’literal’ ac-
cording to a biased probability which is based on the
true distribution in the annotated set. GMM shows
the performance on the whole V+NP set. We also
split the test set into three different subsets to de-

2We used http://www.askoxford.com.

Model C Pre. Rec. F-S. Acc.

Co-Graph
n 90.55 80.66 85.32

78.38
l 50.04 69.72 58.26

GMM
n 90.69 80.66 85.38

78.39
l 50.17 70.15 58.50

Table 1: Results on the idiom data set, n(on-literal) is the
union of the predefined three sub-classes (nsu, nsa, nw),
l(iteral), Acc(uracy), Pre(cision), Rec(all), F-S(core)

Model C Pre. Rec. F-S. Acc.

Baseline n 21.79 22.67 22.22 71.87l 83.19 82.47 82.83

Co-Graph n 37.29 84.62 51.76 70.92l 95.12 67.83 79.19

GMM n 40.71 73.08 52.29 75.41l 92.58 75.94 83.44

GMM{nsu,l} n 8.79 1.00 16.16 76.49l 1.00 75.94 86.33

GMM{nsa,l} n 22.43 77.42 34.78 76.06l 97.40 75.94 85.34

GMM{nw,l} n 23.15 64.10 34.01 74.74l 94.93 75.94 84.38

Table 2: Results on the V+NP data set, Gaussian compo-
nent parameters estimated by EM

termine how the GMM performs on distinguishing
literal usage from the different types of figurative us-
age: GMM{nsu, l}, GMM{nsa, l}, GMM{nw, l}.

The unsupervised GMM model beats the base-
line and achieves good results on the V+NP data set.
It also outperforms the Co-Graph approach, which
suggests that the statistical model, GMM, is more
likely to boost the performance by capturing statisti-
cal properties of the data for more difficult cases (id-
ioms vs. general figurative usages), compared with
the Co-Graph approach.

In conclusion, the model is not only able to clas-
sify idiomatic expressions but also to detect new fig-
urative expressions. However, the performance on
the second data set is worse compared with run-
ning the same model on the idiom data set. This
is because the V+NP data set contains more diffi-
cult examples, e.g., expressions which are only par-
tially figurative (e.g., (2)). One would expect the
literal part of the expression to exhibit cohesive ties
with the context, hence the cohesion based features
may fail to detect this type of figurative usage. Con-
sequently the performance of the GMM is lower
for figuratively used words (’nw’) than for idioms
(’nsa’, ’nsu’). However, even for ’nw’ cases the
model still obtains a relatively high accuracy.

299

4.3 GMM estimated from Annotated Data
In a second experiment, we tested how well the
GMM performs when utilizing the annotated idiom
data set to estimate the two Gaussian components in-
stead of using EM. We give equal weights to the two
Gaussian components and predict the label on the
V+NP data set by fixing the mixture model which
is estimated from the training set (GMM+f). This
method further improves the performance compared
to the unsupervised approach (Table 3).

We also experimented with setting a threshold and
abstaining from making a prediction when the prob-
ability of an instance belonging to the Gaussian is
below the threshold (GMM+f+s). Table 3 shows
the performance when only evaluating on the subset
for which a classification was made. It can be seen
that the accuracy and the overall performance on the
literal class improve, but the precision for the non-
literal class remains relatively low, i.e., many literal
instances are still misclassified as ’non-literal’. One
reason for this may be that there are a few instances
containing named entities, which exhibit weak co-
hesive ties with the context even if though they are
used literally. Using a named-entity tagger before
applying the GMM might solve the problem.

Model C Pre. Rec. F-S. Acc.

GMM+f n 42.22 73.08 53.52 76.60l 92.71 77.39 84.36

GMM+f+s n 41.38 54.55 47.06 83.44l 92.54 87.94 90.18

Table 3: Results on the V+NP data set, Gaussian compo-
nent parameters estimated by annotated data

Finally, Table 4 shows the result when using dif-
ferent idioms to generate the nonliteral Gaussian.
The literal Gaussian can be generated from the au-
tomatically obtained nonliteral examples by Li and
Sporleder (2009). We found the estimation of the
GMM is not sensitive to idioms; our model is robust
and can use any existing idiom data to discover new
figurative expressions. Furthermore, Table 4 also
shows that the GMM does not need a large amount
of annotated data for parameter estimation. A few
hundred instances are sufficient.

5 Conclusion

We described a GMM based approach for detecting
figurative expressions. This method not only works

Train (size) C Pre. Rec. F-S. Acc.
bite one’s tongue n 40.79 79.49 53.91 74.94(166) l 94.10 73.91 82.79

break the ice n 39.05 52.56 44.81 76.12(541) l 88.36 81.45 84.77

Table 4: Results on the V+NP dataset, Gaussian compo-
nent parameters estimated on different idioms

for distinguishing literal and non-literal usages of a
potential idiomatic expression in a discourse con-
text, but also discovers new figurative expressions.

The components of the GMM can be effectively
estimated using the EM algorithm. The performance
can be further improved when employing an anno-
tated data set for parameter estimation. Our results
show that the estimation of Gaussian components
are not idiom-dependent. Furthermore, a small an-
notated data set is enough to obtain good results.

Acknowledgments
This work was funded by the DFG within the Cluster
of Excellence “Multimodal Computing and Interaction”.
Thanks to Benjamin Roth for discussions and comments.

References
J. Birke, A. Sarkar. 2006. A clustering approach for

the nearly unsupervised recognition of nonliteral lan-
guage. In Proceedings of EACL-06.

S. Calinon. 2009. Robot Programming by Demonstra-
tion: A Probabilistic Approach. EPFL/CRC Press.

R. L. Cilibrasi, P. M. B. Vitanyi. 2007. The Google simi-
larity distance. IEEE Trans. on Knowl. and Data Eng.,
19(3):370–383.

J. Cohen. 1960. A coefficient of agreement for nominal
scales. Educational and Psychological Measurements,
20:37–46.

A. Fazly, P. Cook, S. Stevenson. 2009. Unsupervised
type and token identification of idiomatic expressions.
Computational Linguistics, 35(1):61–103.

J. A. Hartigan. 1975. Clustering Algorithm. Wiley.
G. Katz, E. Giesbrecht. 2006. Automatic identification

of non-compositional multi-word expressions using la-
tent semantic analysis. In Proceedings of the ACL06
Workshop on Multiword Expressions: Identifying and
Exploiting Underlying Properties.

L. Li, C. Sporleder. 2009. Contextual idiom detection
without labelled data. In Proceedings of EMNLP-09.

D. Lin. 1999. Automatic identification of non-
compositional phrases. In Proceedings of ACL-99.

C. Sporleder, L. Li. 2009. Unsupervised recognition of
literal and non-literal use of idiomatic expressions. In
Proceedings of EACL-09.

300

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 301–304,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Improving Phrase-Based Translation with Prototypes of Short Phrases

Frank Liberato†, Behrang Mohit‡, Rebecca Hwa†‡

†Department of Computer Science ‡Intelligent Systems Program
University of Pittsburgh

{frank,behrang,hwa@cs.pitt.edu}

Abstract

We investigate methods of generating addi-
tional bilingual phrase pairs for a phrase-
based decoder by translating short sequences
of source text. Because our translation task
is more constrained, we can use a model that
employs more linguistically rich features than
a traditional decoder. We have implemented
an example of this approach. Experimental re-
sults suggest that the phrase pairs produced by
our method are useful to the decoder, and lead
to improved sentence translations.

1 Introduction

Recently, there have been a number of successful
attempts at improving phrase-based statistical ma-
chine translation by exploiting linguistic knowledge
such as morphology, part-of-speech tags, and syn-
tax. Many translation models use such knowledge
before decoding (Xia and McCord, 2004) and dur-
ing decoding (Birch et al., 2007; Gimpel and Smith,
2009; Koehn and Hoang, 2007; Chiang et al., 2009),
but they are limited to simpler features for practi-
cal reasons, often restricted to conditioning left-to-
right on the target sentence. Traditionally, n-best
rerankers (Shen et al., 2004) have applied expen-
sive analysis after the translation process, on both
the source and target side, though they suffer from
being limited to whatever is on the n-best list (Hasan
et al., 2007).

We argue that it can be desirable to pre-translate
parts of the source text before sentence-level decod-
ing begins, using a richer model that would typically
be out of reach during sentence-level decoding. In

this paper, we describe a particular method of gen-
erating additional bilingual phrase pairs for a new
source text, using what we call phrase prototypes,
which are are learned from bilingual training data.
Our goal is to generate improved translations of rel-
atively short phrase pairs to provide the SMT de-
coder with better phrasal choices. We validate the
idea through experiments on Arabic-English trans-
lation. Our method produces a 1.3 BLEU score in-
crease (3.3% relative) on a test set.

2 Approach

Re-ranking tends to use expensive features of the en-
tire source and target sentences, s and t, and align-
ments, a, to produce a score for the translation. We
will call this scoring function φ(s, t, a). While φ(·)
might capture quite a bit of linguistic information, it
can be problematic to use this function for decoding
directly. This is due to both the expense of com-
puting it, and the difficulty in using it to guide the
decoder’s search. For example, a choice of φ(·) that
relies on a top-down parser is difficult to integrate
into a left-to-right decoder (Charniak et al., 2003).

Our idea is to use an expensive scoring function
to guide the search for potential translations for part
of a source sentence, S, even if translating all of it
isn’t feasible. We can then provide these transla-
tions to the decoder, along with their scores, to in-
corporate them as it builds the complete translation
of S. This differs from approaches such as (Och and
Ney, 2004) because we generate new phrase pairs in
isolation, rather than incorporating everything into
the sentence-level decoder. The baseline system is
the Moses phrase-based translation system (Koehn

301

et al., 2007).

2.1 Description of Our Scoring Function

For this work, we consider a scoring function based
on part-of-speech (POS) tags, φPOS(·). It oper-
ates in two steps: it converts the source and target
phrases, plus alignments, into what we call a phrase
prototype, then assigns a score to it based on how
common that prototype was during training.

Each phrase pair prototype is a tuple containing
the source prototype, target prototype, and align-
ment prototype, respectively. The source and tar-
get prototypes are a mix of surface word forms and
POS tags, such as the Arabic string 〈NN Al JJ〉,
or the English string 〈NN NN〉. For example, the
source and target prototypes above might be used in
the phrase prototype 〈NN0 Al JJ1 , NN1 NN0〉,
with the alignment prototype specified implicitly via
subscripts for brevity. For simplicity, the alignment
prototype is restricted to allow a source or target
word/tag to be unaligned, plus 1:1 alignments be-
tween them. We do not consider 1:many, many:1, or
many:many alignments in this work.

For any input 〈s, t, a〉, it is possible to con-
struct potentially many phrase prototypes from it by
choosing different subsets of the source and target
words to represent as POS tags. In the above ex-
ample, the Arabic determiner Al could be converted
into an unaligned POS tag, making the source pro-
totype 〈NN DT JJ〉. For this work, we convert all
aligned words into POS tags. As a practical con-
cern, we insist that unaligned words are always kept
as their surface form.
φPOS(s, t, a) assign a score based on the proba-

bility of the resulting prototypes; more likely proto-
types should yield higher scores. We choose:

φPOS(s, t, a) = p(SP,AP |TP) · p(TP,AP |SP)

where SP is the source prototype constructed from
s, t, a. Similarly, TP and AP are the target and
alignment prototypes, respectively.

To compute φPOS(·), we must build a model for
each of p(SP,AP |TP) and p(TP,AP |SP). To do
this, we start with a corpus of aligned, POS-tagged
bilingual text. We then find phrases that are consis-
tent with (Koehn et al., 2003). As we extract these
phrase pairs, we convert each into a phrase proto-

type by replacing surface forms with POS tags for
all aligned words in the prototype.

After we have processed the bilingual training
text, we have collected a set of phrase prototypes
and a count of how often each was observed.

2.2 Generating New Phrases
To generate phrases, we scan through the source text
to be translated, finding any span of source words
that matches the source prototype of at least one
phrase prototype. For each such phrase, and for each
phrase prototype which it matches, we generate all
target phrases which also match the target and align-
ment prototypes.

To do this, we use a word-to-word dictionary to
generate all target phrases which honor the align-
ments required by the alignment prototype. For each
source word which is aligned to a POS tag in the tar-
get prototype, we substitute all single-word transla-
tions in our dictionary1.

For each target phrase that we generate, we must
ensure that it matches the target prototype. We give
each phrase to a POS tagger, and check the resulting
tags against any tags in the target prototype. If there
are no mismatches, then the phrase pair is retained
for the phrase table, else it is discarded. In the latter
case, φPOS(·) would assign this pair a score of zero.

2.3 Computing Phrase Weights
In the Moses phrase table, each entry has four pa-
rameters: two lexical weights, and the two condi-
tional phrase probabilities p(s|t) and p(t|s). While
the lexical weights can be computed using the stan-
dard method (Koehn et al., 2003), estimating the
conditional phrase probabilities is not straightfor-
ward for our approach because they are not ob-
served in bilingual training data. Instead, we esti-
mate the maximum conditional phrase probabilities
that would be assigned by the sentence-level decoder
for this phrase pair, as if it had generated the tar-
get string from the source string using the baseline
phrase table2. To do this efficiently, we use some

1Since we required that all unaligned target words are kept
as surface forms in the target prototype, this is sufficient. If we
did not insist this, then we might be faced with the unenviable
task of choosing a target languange noun, without further guid-
ance from the source text.

2If we use these probabilities for our generated phrase pair’s
probability estimates, then the sentence-level decoder would see

302

simplifying assumptions: we do not restrict how of-
ten a source word is used during the translation, and
we ignore distortion / reordering costs. These admit
a simple dynamic programming solution.

We must also include the score from φPOS(·), to
give the decoder some idea of our confidence in the
generated phrase pair. We include the phrase pair’s
score as an additional weight in the phrase table.

3 Experimental Setup

The Linguistic Data Consortium Arabic-English
corpus23 is used to train the baseline MT system
(34K sentences, about one million words), and to
learn phrase prototypes. The LDC multi-translation
Arabic-English corpus (NIST2003)4 is used for tun-
ing and testing; the tuning set consists of the first
500 sentences, and the test set consists of the next
500 sentences. The language model is a 4-gram
model built from the English side of the parallel cor-
pus, plus the English side of the wmt07 German-
English and French-English news commentary data.
The baseline translation system is Moses (Koehn
et al., 2007), with the msd-bidirectional-fe
reordering model. Evaluation is done using the
BLEU (Papineni et al., 2001) metric with four ref-
erences. All text is lowercased before evaluation;
recasing is not used. We use the Stanford Arabic
POS Tagging system, based on (Toutanova et al.,
2003)5. The word-to-word dictionary that is used in
the phrase generation step of our method is extracted
from the highest-scoring translations for each source
word in the baseline phrase table. For some closed-
class words, we use a small, manually constructed
dictionary to reduce the noise in the phrase table that
exists for very common words. We use this in place
of a stand-alone dictionary to reduce the need for
additional resources.

4 Experiments

To see the effect on the BLEU score of the result-
ing sentence-level translation, we vary the amount
of bilingual data used to build the phrase prototypes.

(approximately) no difference between building the generated
phrase using the baseline phrase table, or using our generated
phrase pair directly.

3Catalogue numbers LDC2004T17 and LDC2004T18
4Catalogue number: LDC2003T18
5It is available at http://nlp.stanford.edu/software/tagger.shtml

 0.36

 0.37

 0.38

 0.39

 0.4

 0.41

 0.42

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

B
L

E
U

P
e

rc
e

n
ta

g
e

 o
f

G
e

n
e

ra
te

d
 P

h
ra

s
e

s
 i
n

 P
h

ra
s
e

 T
a

b
le

Bilingual Training Sentences

Effect of Biligual Data on Arabic Development Set

Baseline BLEU
Our Approach BLEU

% Generated Phrases

Figure 1: Bilingual training size vs. BLEU score (mid-
dle line, left axis) and phrase table composition (top line,
right axis) on Arabic Development Set. The baseline
BLEU score (bottom line) is included for comparison.

As we increase the amount of training data, we ex-
pect that the phrase prototype extraction algorithm
will observe more phrase prototypes. This will cause
it to generate more phrase pairs, introducing both
more noise and more good phrases into the phrase
table. Because quite a few phrase prototypes are
built in any case, we require that each is seen at
least three times before we use it to generate phrases.
Phrase prototypes seen fewer times than this are dis-
carded before phrase generation begins. Varying this
minimum support parameter does not affect the re-
sults noticeably.

The results on the tuning set are seen in Figure 1.
The BLEU score on the tuning set generally im-
proves as the amount of bilingual training data is in-
creased, even as the percentage of generated phrases
approaches 100%. Manual inspection of the phrase
pairs reveals that many are badly formed; this sug-
gests that the language model is doing its job in fil-
tering out disfluent phrases.

Using the first 5,000 bilingual training sentences
to train our model, we compare our method to the
baseline moses system. Each system was tuned via
MERT (Och, 2003) before running it on the test set.
The tuned baseline system scores 38.45. Including
our generated phrases improves this by 1.3 points to
39.75. This is a slightly smaller gain than exists in
the tuning set experiment, due in part that we did not

303

run MERT for experiment shown in Figure 1.

5 Discussion

As one might expect, generated phrases both
help and hurt individual translations. A sentence
that can be translated starting with the phrase
“korea added that the syrian prime
minister” is translated by the baseline system as
“korean | foreign minister | added |
that | the syrian”. While “the syrian
foreign minister” is an unambiguous source
phrase, the baseline phrase table does not include it;
the language and reordering models must stitch the
translation together. Ours method generates “the
syrian foreign minister” directly.

Generated phrases are not always correct. For
example, a generated phrase causes our system to
choose “europe role”, while the baseline sys-
tem picks “the role of | europe”. While
the same prototype is used (correctly) for reordering
Arabic “NN0 JJ1” constructs into English as “NN1

NN0” in many instances, it fails in this case. The lan-
guage model shares the blame, since it does not pre-
fer the correct phrase over the shorter one. In con-
trast, a 5-gram language model based on the LDC
Web IT 5-gram counts6 prefers the correct phrase.

6 Conclusion

We have shown that translating short spans of source
text, and providing the results to a phrase-based
SMT decoder can improve sentence-level machine
translation. Further, it permits us to use linguisti-
cally informed features to guide the generation of
new phrase pairs.

Acknowledgements

This work is supported by U.S. National Science Foun-
dation Grant IIS-0745914. We thank the anonymous re-
viewers for their suggestions.

References

A. Birch, M. Osborne, and P. Koehn. 2007. CCG su-
pertags in factored statistical machine translation. In
Proc. of the Second Workshop on SMT.

6Catalogue number LDC2006T13.

E. Charniak, K. Knight, and K. Yamada. 2003. Syntax-
based language models for statistical machine transla-
tion. In Proceedings of MT Summit IX.

D. Chiang, K. Knight, and W. Wang. 2009. 11,001 new
features for statistical machine translation. In NAACL
’09: Proceedings of Human Language Technologies:
The 2009 Annual Conference of the North American
Chapter of the Assoc. for Computational Linguistics.

K. Gimpel and N.A. Smith. 2009. Feature-rich transla-
tion by quasi-synchronous lattice parsing. In Proc. of
EMNLP.

S. Hasan, R. Zens, and H. Ney. 2007. Are very large n-
best lists useful for SMT? Proc. NAACL, Short paper,
pages 57–60.

P. Koehn and H. Hoang. 2007. Factored translation
models. In Proceedings of the 2007 Joint Conference
on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning
(EMNLP-CoNLL), pages 868–876.

P. Koehn, F.J. Och, and D. Marcu. 2003. Statisti-
cal phrase-based translation. In Proceedings of the
2003 Conference of the North American Chapter of the
Association for Computational Linguistics on Human
Language Technology-Volume 1, page 54.

P. Koehn, H. Hoang, A. Birch, C. Callison-Burch,
M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, et al. 2007. Moses: Open
source toolkit for statistical machine translation. In
Annual meeting-Association for Computational Lin-
guistics, volume 45, page 2.

F. J. Och and H. Ney. 2004. The alignment template
approach to statistical machine translation. Computa-
tional Linguistics, 30(4):417–449.

F.J. Och. 2003. Minimum error rate training in statisti-
cal machine translation. In Proc. of the 41st Annual
Meeting on Assoc. for Computational Linguistics.

K. Papineni, S. Roukos, T. Ward, and W.J. Zhu. 2001.
Bleu: a method for automatic evaluation of machine
translation. In Proc. of the 40th Annual Meeting of
Association for Computational Linguistics.

L. Shen, A. Sarkar, and F.J. Och. 2004. Discrimina-
tive reranking for machine translation. In Proceedings
of the Joint HLT and NAACL Conference (HLT 04),
pages 177–184.

K. Toutanova, D. Klein, C. D. Manning, and Y. Singer.
2003. Feature-rich part-of-speech tagging with a
cyclic dependency network. In NAACL ’03: Proceed-
ings of the 2003 Conference of the North American
Chapter of the Association for Computational Linguis-
tics on Human Language Technology.

F. Xia and M. McCord. 2004. Improving a statistical mt
system with automatically learned rewrite patterns. In
COLING ’04: Proceedings of the 20th international
conference on Computational Linguistics.

304

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 305–308,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Putting the User in the Loop: Interactive Maximal Marginal Relevance for
Query-Focused Summarization

Jimmy Lin, Nitin Madnani, and Bonnie J. Dorr
University of Maryland

College Park, MD 20742, USA
jimmylin@umd.edu, {nmadnani,bonnie}@umiacs.umd.edu

Abstract

This work represents an initial attempt to
move beyond “single-shot” summarization to
interactive summarization. We present an ex-
tension to the classic Maximal Marginal Rel-
evance (MMR) algorithm that places a user
“in the loop” to assist in candidate selec-
tion. Experiments in the complex interac-
tive Question Answering (ciQA) task at TREC
2007 show that interactively-constructed re-
sponses are significantly higher in quality than
automatically-generated ones. This novel al-
gorithm provides a starting point for future
work on interactive summarization.

1 Introduction

Document summarization, as captured in modern
comparative evaluations such as TAC and DUC, is
mostly conceived as a “one-shot” task. However, re-
searchers have long known that information seeking
is an iterative activity, which suggests that an inter-
active approach might be worth exploring.

This paper present a simple extension of a well-
known algorithm, Maximal Marginal Relevance
(MMR) (Goldstein et al., 2000), that places the user
in the loop. MMR is an iterative algorithm, where
at each step a candidate extract c (e.g., a sentence) is
assigned the following score:

λRel(q, c)− (1− λ) max
s∈S

Sim(s, c)

The score consists of two components: the rele-
vance of the candidate c with respect to the query
q (Rel) and the similarity of the candidate c to each

extract s in the current summary S (Sim). The maxi-
mum score from these similarity comparisons is sub-
tracted from the relevance score, subjected to a tun-
ing parameter that controls the emphasis on rele-
vance and anti-redundancy. Scores are recomputed
after each step and the algorithm iterates until a stop-
ping criterion has been met (e.g., length quota).

We propose a simple extension to MMR: at each
step, we interactively ask the user to select the best
sentence for inclusion in the summary. That is, in-
stead of the system automatically selecting the can-
didate with the highest score, it presents the user
with a ranked list of candidates for selection.

2 Complex, Interactive QA

One obstacle to assessing the effectiveness of in-
teractive summarization algorithms is the lack of a
suitable evaluation vehicle. Given the convergence
of complex QA and summarization (particularly the
query-focused variant) in recent years, we found an
appropriate evaluation vehicle in the ciQA (com-
plex, interactive Question Answering) task at TREC
2007 (Dang et al., 2007).

Information needs in the ciQA task, called top-
ics, consist of two parts: the question template and
the narrative. The question template is a stylized in-
formation need that has a fixed structure and free
slots whose instantiation varies across different top-
ics. The narrative is unstructured prose that elabo-
rates on the information need. For the evaluation,
NIST assessors developed 30 topics, grouped into
five templates. See Figure 1 for an example.

Participants in the task were able to deploy fully-
functional web-based QA systems, with which the

305

Template: What evidence is there for transport of
[drugs] from [Mexico] to [the U.S.]?
Narrative: The analyst would like to know of efforts
to curtail the transport of drugs from Mexico to the
U.S. Specifically, the analyst would like to know of
the success of the efforts by local or international au-
thorities.

Figure 1: Example topic from the TREC 2007 ciQA task.

NIST assessors interacted (serving as surrogates for
users). Upon receiving the topics, participants first
submitted an initial run. During a pre-arranged pe-
riod of time shortly thereafter, each assessor was
given five minutes to interact with the participant’s
system, live over the web. After this interaction pe-
riod, participants submitted a final run, which had
presumably gained the benefit of user interaction.
By comparing initial and final runs, it was possible
to quantify the effect of the interaction.

The target corpus was AQUAINT-2, which con-
sists of around 970k documents totaling 2.5 GB.
System responses consisted of multi-line answers
and were evaluated using the “nugget” methodol-
ogy with the “nugget pyramid” extension (Lin and
Demner-Fushman, 2006).

3 Experiment Design

This section describes our experiments for the
TREC 2007 ciQA task. In summary: the initial run
was generated automatically using standard MMR.
The web-based interactions consisted of iterations of
interactive MMR, where the user selected the best
candidate extract at each step. The final run con-
sisted of the output of interactive MMR padded with
automatically-generated output.

Sentence extracts were used as the basic re-
sponse unit. For each topic, the top 100 documents
were retrieved from the AQUAINT-2 collection with
Lucene, using the topic template verbatim as the
query. Neither the template structure nor the narra-
tive text were exploited. All documents were then
broken into individual sentences, which served as
the pool of candidates. The relevance of each sen-
tence was computed as the sum of the inverse doc-
ument frequencies of matching terms from the topic
template. Redundancy was computed as the cosine
similarity between the current answer (consisting of

Figure 2: Screenshot of the interface for interactive
MMR, which shows the current topic (A), the current an-
swer (B), and a ranked list of document extracts (C).

all previously-selected sentences) and the current
candidate. The relevance and redundancy scores
were then normalized and combined (λ = 0.8). For
the initial run, the MMR algorithm iterated until 25
candidates had been selected.

For interactive MMR, a screenshot of the web-
based system is shown in Figure 2. The interface
consists of three elements: at the top (label A) is the
current topic; in the middle (label B) is the current
answer, containing user selections from previous it-
erations; the bottom area (label C) shows a ranked
list of candidate sentences ordered by MMR score.
At each iteration, the user is asked to select one can-
didate by clicking the “Add to answer” button next
to that candidate. The selected candidate is then
added to the current answer. Ten answer candidates
are shown per page. Clicking on a button labeled
“Show more candidates” at the bottom of the page
(not shown in the screenshot) displays the next ten
candidates. In the ciQA 2007 evaluation, NIST as-
sessors engaged with this interface for the entire al-
lotted five minute interaction period. Note that this
simple interface was designed only to assess the ef-
fectiveness of interactive MMR, and not intended to
represent an actual interactive system.

To prevent users from seeing the same sentences
repeatedly once a candidate selection has been
recorded, we divide the scores of all candidates
ranked higher than the selected candidate by two (an

306

 0

 5

 10

 15

 20

 25

 30

 35

 40

 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

N
um

be
r o

f E
xt

ra
ct

s

Topic

Length of ciQA 2007 Final Answers: Number of Extracts

complete answer
interactive MMR

mean, interactive MMR

Figure 3: Per-topic lengths of final run in terms of num-
ber of extracts. Bars show contribution from interactive
MMR (darker) and “padding” (lighter).

arbitrary constant). For example, if the user clicked
on candidate five, scores for candidates one through
four are cut in half. Previous studies have shown
that users generally examine ranked lists in order, so
the lack of a selection can be interpreted as negative
feedback (Joachims et al., 2007).

The answers constructed interactively were sub-
mitted to NIST as the final (post-interaction) run.
However, since these answers were significantly
shorter than the initial run (given the short interac-
tion period), the responses were “padded” by run-
ning additional iterations of automatic MMR until a
length quota of 4000 characters had been achieved.

4 Results and Discussion

First, we present descriptive statistics of the final
run submitted to NIST. Lengths of the answers on
a per-topic basis are shown in Figure 3 in terms of
number of extracts: darker bars show the number of
manually-selected extracts for each topic during the
five-minute interaction period (i.e., the number of in-
teractive MMR iterations). The average across all
topics was 6.5 iterations, shown by the horizontal
line; the average length of answers (all user selec-
tions) was 1186 characters. The average rank of the
user selection was 4.9, and the user selected the top
ranking sentence 28% of the time. Note that the in-
teraction period included system processing as well
as delays caused by network traffic. The number of
extracts contained in the padding is shown by the
lighter gray portions of the bars. For topic 68, the
system did not record any user interactions (possi-
bly resulting from a network glitch).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 500 1000 1500 2000 2500 3000 3500 4000

W
ei

gh
te

d
R

ec
al

l

Length of Answer (non-whitespace characters)

TREC 2007 ciQA: interactive vs. non-interactive MMR

non-interactive MMR
interactive MMR

sig., p<0.05

Figure 4: Weighted recall at different length increments,
comparing interactive and non-interactive MMR.

The official metric for the ciQA task was F-
measure, but a disadvantage of this single-point met-
ric is that it doesn’t account for answers of vary-
ing lengths. An alternative proposed by Lin (2007)
and used as the secondary metric in the evalua-
tion is recall-by-length plots, which characterize
weighted nugget recall at varying length incre-
ments. Weighted recall captures how much rele-
vant information is contained in the system response
(weighted by each nugget’s importance, with an up-
per bound of one). Responses that achieve higher
nugget recall at shorter length increments are desir-
able in providing concise, informative answers.

Recall-by-length plots for both the initial run
(non-interactive MMR) and final run (interactive
MMR with padding) are shown in Figure 4, in length
increments of 1000 characters. The vertical dotted
line denotes the average length of interactive MMR
answers (without padding). Taking length as a proxy
for time, one natural interpretation of this plot is how
quickly users are able to “learn” about the topic of
interest under the two conditions.

We see that interactive MMR yields higher
weighted recall at all length increments. The
Wilcoxon signed-rank test was applied to assess the
statistical significance of the differences in weighted
recall at each length increment. Solid circles in the
graph represent improvements that are statistically
significant (p < 0.05). Furthermore, in the 700–
1000 character range, weighted recall is significantly
higher for interactive MMR at the 99% level.

Viewing weighted recall as a proxy for answer
quality, interactive MMR yields responses that are
significantly better than non-interactive MMR at

307

a range of length increments. This is an impor-
tant finding, since effective interaction techniques
that require little training and work well in limited-
duration settings are quite elusive. Often, user in-
put actually makes answers worse. Results from
both ciQA 2006 and ciQA 2007 show that, overall,
F-measure improved little between initial and final
runs. Although it is widely accepted that user feed-
back can enhance interactive IR, effective interac-
tion techniques to exploit this feedback are by no
means obvious.

To better understand the characteristics of interac-
tive MMR, it is helpful to compare our experiments
with the ciQA task-wide baseline. As a reference
for all participants, the organizers of the task sub-
mitted a pair of runs to help calibrate effectiveness.
According to Dang et al. (2007), the first run was
prepared by submitting the question template ver-
batim as a query to Lucene to retrieve the top 20
documents. These documents were then tokenized
into individual sentences. Sentences that contained
at least one non-stopword from the question were re-
tained and returned as the initial run (up to a quota
of 5,000 characters). Sentence order within each
document and across the ranked list was preserved.
The interaction associated with this run asked the as-
sessor for relevance judgments on each of the sen-
tences. Three options were given: “relevant”, “not
relevant”, and “no opinion”. The final run was pre-
pared by removing sentences judged not relevant.

Other evidence suggests that the task-wide sen-
tence retrieval algorithm represents a strong base-
line. Similar algorithms performed well in other
complex QA tasks—in TREC 2003, a sentence re-
trieval variant beat all but one run on definition ques-
tions (Voorhees, 2003). The sentence retrieval base-
line also performed well in ciQA 2006.

The MMR runs are compared to the task-wide
reference runs in Figure 5: diamonds denote the
sentence retrieval baseline and triangles mark the
manual sentence selection final run. The manual
sentence selection run outperforms the sentence re-
trieval baseline (as expected), but its weighted recall
is still below that of interactive MMR across almost
all length increments. The weighted recall of inter-
active MMR is significantly better at 1000 characters
(at the 95% level), but nowhere else. So, the bottom
line is: for limited-duration interactions, interactive

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 500 1000 1500 2000 2500 3000 3500 4000

W
ei

gh
te

d
R

ec
al

l

Length of Answer (non-whitespace characters)

TREC 2007 ciQA: MMR vs. task-wide baseline

non-interactive MMR
interactive MMR

sentence retrieval baseline
manual sentence selection

Figure 5: Weighted recall at different length increments,
comparing MMR with the task-wide baseline.

MMR is more effective than simply asking for rele-
vance judgments, but not significantly so.

5 Conclusion

We present an interactive extension of the Maximal
Marginal Relevance algorithm for query-focused
summarization. Results from the TREC 2007 ciQA
task demonstrate it is a simple yet effective tech-
nique for involving users in interactively construct-
ing responses to complex information needs. These
results provide a starting point for future work in in-
teractive summarization.

Acknowledgments

This work was supported in part by NLM/NIH. The
first author would like to thank Esther and Kiri for
their loving support.

References
H. Dang, J. Lin, and D. Kelly. 2007. Overview of the

TREC 2007 question answering track. TREC 2007.
J. Goldstein, V. Mittal, J. Carbonell, and J. Callan. 2000.

Creating and evaluating multi-document sentence ex-
tract summaries. CIKM 2000.

T. Joachims, L. Granka, B. Pan, H. Hembrooke,
F. Radlinski, and G. Gay. 2007. Evaluating the ac-
curacy of implicit feedback from clicks and query re-
formulations in Web search. TOIS, 25(2):1–27.

J. Lin and D. Demner-Fushman. 2006. Will pyramids
built of nuggets topple over? HLT/NAACL 2006.

J. Lin. 2007. Is question answering better than informa-
tion retrieval? Towards a task-based evaluation frame-
work for question series. HLT/NAACL 2007.

E. Voorhees. 2003. Overview of the TREC 2003 ques-
tion answering track. TREC 2003.

308

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 309–312,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Improving Blog Polarity Classification via Topic Analysis and Adaptive
Methods

Feifan Liu
University of Wisconsin, Milwaukee

liuf@uwm.edu

Dong Wang, Bin Li, Yang Liu
The University of Texas at Dallas

dongwang,yangl@hlt.utdallas.edu

Abstract

In this paper we examine different linguistic features
for sentimental polarity classification, and perform a
comparative study on this task between blog and re-
view data. We found that results on blog are much
worse than reviews and investigated two methods
to improve the performance on blogs. First we ex-
plored information retrieval based topic analysis to
extract relevant sentences to the given topics for po-
larity classification. Second, we adopted an adaptive
method where we train classifiers from review data
and incorporate their hypothesis as features. Both
methods yielded performance gain for polarity clas-
sification on blog data.

1 Introduction
Sentimental analysis is a task of text categorization that
focuses on recognizing and classifying opinionated text
towards a given subject. Different levels of sentimental
analysis has been performed in prior work, from binary
classes to more fine grained categories. Pang et al. (2002)
defined this task as a binary classification task and ap-
plied it to movie reviews. More sentiment classes, such
as document objectivity and subjectivity as well as dif-
ferent rating scales on the subjectivity, have also been
taken into consideration (Pang and Lee, 2005; Boiy et
al., 2007). In terms of granularity, this task has been
investigated from building word level sentiment lexicon
(Turney, 2002; Moilanen and Pulman, 2008) to detecting
phrase-level (Wilson et al., 2005; Agarwal et al., 2009)
and sentence-level (Riloff and Wiebe, 2003; Hu and Liu,
2004) sentiment orientation. However, most previous
work has mainly focused on reviews (Pang et al., 2002;
Hu and Liu, 2004), news resources (Wilson et al., 2005),
and multi-domain adaptation (Blitzer et al., 2007; Man-
sour et al., 2008). Sentiment analysis on blogs (Chesley
et al., 2005; Kim et al., 2009) is still at its early stage.

In this paper we investigate binary polarity classifica-
tion (positive vs. negative). We evaluate the genre effect
between blogs and review data and show the difference of

feature effectiveness. We demonstrate improved polarity
classification performance in blogs using two methods:
(a) integrating topic relevance analysis to perform topic
specific polarity classification; (b) adopting an adaptive
method by incorporating multiple classifiers’ hypotheses
from different review domains as features. Our manual
analysis also points out some challenges and directions
for further study in blog domain.

2 Features for Polarity Classification
For the binary polarity classification task, we use a super-
vised learning framework to determine whether a docu-
ment is positive or negative. We used a subjective lex-
icon, containing 2304 positive words and 4145 negative
words respectively, based on (Wilson et al., 2005). The
features we explored are listed below.

(i) Lexical features (LF)
We use the bag of words for the lexical features as they

have been shown very useful in previous work.

(ii) Polarized lexical features (PL)
We tagged each sentiment word in our data set with its

polarity tag based on the sentiment lexicon (“POS” for
positive, and “NEG” for negative), along with its part-
of-speech tag. For example, in the sentence “It is good,
and I like it”, “good” is tagged as “POS/ADJ”, “like” is
tagged as “POS/VRB”. Then we encode the number of
the polarized tags in a document as features.

(iii) Polarized bigram features (PB)
Contextual information around the polarized words

can be useful for sentimental analysis. A word may
flip the polarity of its neighboring sentiment words even
though this word itself is not necessarily a negative word.
For example, in “Given her sudden celebrity with those
on the left...” (a sentence in a political blog), “sudden”
preceding “celebrity” implies the author’s negative atti-
tude towards “her”. We combine the sentiment word’s
polarized tag and its following and preceding word or
its part-of-speech to comprise different bigram features
to represent this kind of contextual information. For ex-

309

ample, in “I recommend this.”, “recommend” is a posi-
tive verb, denoted as “POS/VRB”, and the bigram fea-
tures including this tag and its previous word “I” are
“I POS/VRB” and “pron POS/VRB”.

(iv) Transition word features (T)
Transition words, such as “although”, “even though”,

serve as function words that may change the literal opin-
ion polarity in the current sentence. This information has
not been widely explored for sentiment analysis. In this
study, we compiled a transition word list containing 31
words. We use the co-occurring feature between a transi-
tion word and its nearby content words (noun, verb, ad-
jective and adverb) or polarized tags of sentiment words
within the same sentence, but not spanning over other
transition words. For example, in “Although it is good”,
we use features like “although is”,“although good” and
“although POS/ADJ”, where “POS/ADJ” is the PL fea-
ture for word “good”.

3 Feature Effectiveness on Blogs and
Reviews

The blog data we used is from the TREC Blog Track eval-
uation in 2006 and 2007. The annotation was conducted
for the 100 topics used in the evaluation (blogs are rele-
vant to a given topic and also opinionated). We use 6,896
positive and 5,300 negative blogs. For the review data,
we combined multiple review data sets from (Pang et al.,
2002; Blitzer et al., 2007) together. It contains reviews
from movies and four product domains (kitchen, elec-
tronics, books, and dvd), each of which has 1000 neg-
ative and 1000 positive samples. For the data without
sentence information (e.g., blog data, some review data),
we generated sentences using the maximum entropy sen-
tence boundary detection tool1. We used TnT tagger to
obtain the part-of-speech tags for these data sets.

For classification, we use the maximum entropy clas-
sifier2 with a Gaussian prior of 1 and 100 iterations in
model training. For all the experiments below, we use
a 10-fold cross validation setup and report the average
classification accuracy. Table 1 shows classification re-
sults using various feature sets on blogs and review data.
We keep the lexical feature (LF) as a base feature, and
investigate the effectiveness of adding more different fea-
tures. We used Wilcox signed test for statistical signifi-
cance test. Symbols “†” and “§” in the table indicate the
significant level of 0.05 and 0.1 respectively, compared to
the baseline performance using LF feature setup.

For the review domain, most of the feature sets can sig-
nificantly improve the classification performance over the
baseline of using “LF” features. “PB” features yielded
more significant improvement than “PL” or “T” feature
categories. Combining “PL” and “T” features resulted in
some slight further improvement, achieving the best ac-

1http://stp.ling.uu.se/˜gustav/java/classes/MXTERMINATOR.html
2http://homepages.inf.ed.ac.uk/s0450736/maxent toolkit.html

Feature Set Blogs Reviews
LF 72.07 81.67

LF+PL 70.93 81.93
LF+PB 72.44 83.62†
LF+T 72.17 81.76

LF+PL+PB 70.81 83.61†
LF+PL+T 72.74 82.13§
LF+PB+T 72.29 83.73†

LF+PL+PB+T 71.85 83.94†

Table 1: Polarity classification results (accuracy in %) using
different features for blogs and reviews.

curacy of 83.94%. We notice that incorporating our pro-
posed transition feature (T) always achieves some gain on
different feature settings, suggesting that those transition
features are useful for sentimental analysis on reviews.

From Table 1, we can see that overall the performance
on blogs is worse than on the review data. We hypoth-
esize this may be due to the large variation in terms of
contents and styles in blogs. Regarding the feature ef-
fectiveness, we also observe some differences between
blogs and reviews. Adding the polarized bigram feature
and transition feature (PB and T) individually can yield
some improvement; however, adding both of them did
not result in any further improvement – performance de-
grades compared to LF+PB. Interestingly, although “PL”
feature alone does not seem to help, by adding “PL” and
“T” together, the performance achieved the best accuracy
of 72.74%. We also found that adding all the features
together hurts the performance, suggesting that different
features interact with each other and some do not com-
bine well (e.g., PB and T features). In addition, all the
improvements here are not statistically significant.

Note that for the blog data, we randomly split them for
the cross validation experiments regardless of the queries.
In order to better understand whether the poor results on
blog data is due to the effect of different queries, we per-
formed another experiment where for each query, we ran-
domly divided the corresponding blogs into training and
test splits. Only 66 queries were kept for this experi-
ments – we did not include those queries that have fewer
than 10 relevant blogs. The results for the query balanced
split on blogs are shown in Figure 1. We also include re-
sults for the five individual review data sets in order to see
the topic effect. We present results using four represen-
tative feature sets chosen according to Table 1. For the
review data, we notice some difference across different
data sets, suggesting their inherent difference in terms of
task difficulty. We observe slight performance increase
for some feature sets using the query balanced setup for
blog data, but overall it is still much worse than the review
data. This shows that the query unbalanced training/test
split does not explain the performance gap between blogs
and reviews. This is consistent with (Zhang et al., 2007)
that found that a query-independent classifier performs
even better than query-dependent one. We expect that the

310

query unbalanced setup is more realistic, therefore, in the
following experiments, we continue with this setup.

71

73

75

77

79

81

83

85

87

A
c
c
ur
ac

y(
%)

blog_data

blog_data_query

_balanced

review_books

review_dvd

review_kitchen

review_movie

review_elec

Figure 1: Polarity classification results on query balanced blog
data and five individual review data sets.

4 Improving Blog Polarity Classification

To improve the performance of polarity classification on
blogs, we propose two methods: (a) extract only topic-
relevant segments from blogs for sentiment analysis; (b)
apply adaptive methods to leverage review data.

4.1 Using topic-relevant blog context

Generally a review is written towards one product or one
kind of service, but a blog may cover several topics with
possibly different opinions towards each topic. The blog
data we used is annotated based on some specific topics
in the TREC Blog Track evaluation. Take topic 870 in
the data as an example, “Find opinions on alleged use
of steroids by baseball player Barry”. There is one blog
that talks about 5 different baseball players in issues of
using steroids. Since the reference opinion tag of a blog
is determined by polarity towards the given query topic, it
might be confusing for the classifier if we use the whole
blog to derive features. Recently topic analysis has been
used for polarity classification (Zhang et al., 2007; Titov
and McDonald, 2008; Wiegand and Klakow, 2009). We
take a different approach in this study.

In order to obtain a topic-relevant context, we retrieved
the top 10 relevant sentences corresponding to the given
topic using the Lemur toolkit3. Then we used these sen-
tences and their immediate previous and following sen-
tences for feature extraction in the same way as what
we did on the whole blog. In addition to using all the
words in the relevant context, we also investigated using
only content words since those are more topic indicative
than function words. We extracted content words (nouns,
verbs, adjectives and adverbs) from each blog in their
original order and apply the same feature extraction pro-
cess as for using all the words.

3http://www.lemurproject.org/lemur/

Table 2 shows the blog polarity classification results
using the whole blog vs. relevant context composed of
all the words or only content words. For the significance
test, the comparison was done for using relevant context
with all the words vs. using the whole blog; and us-
ing content words only vs. using all the words in rele-
vant context. Each comparison was with respect to the
same feature setup. We observe improved polarity classi-
fication performance when using sentence retrieval based
topic analysis to extract relevant context. Using all the
words in the topic relevant context, all the improvements
compared to using the original entire blog are statistically
significant at the level of 0.01. We also notice that un-
like on the entire blog document, the “PL” features con-
tribute positively when combined with “LF”. All the fea-
ture settings with “PL” perform very well. The best ac-
curacy of 75.32% is achieved using feature combination
of “LF+PL” or “LF+PL+T”. This suggests that polarized
lexical features suffered from the off-topic content when
using the entire blog and are more useful within contexts
of certain topics.

When using content words only, we observe consistent
gain across all the feature sets. Three feature settings,
“LF+PB”,“LF+T” and “LF+PL+PB+T”, achieve statisti-
cally significant further improvement (compared to using
all the words of relevant contexts). The best accuracy
(75.6%) is achieved by using the “LF+PB” features.

Feature Set Whole Relevant Context
Blog All Words Content Words

LF 72.07 74.92† 75.14
LF+PL 70.93 75.32† 75.34
LF+PB 72.44 75.03† 75.6†
LF+T 72.17 75.01† 75.35§

LF+PL+PB 70.81 75.27† 75.35
LF+PL+T 72.74 75.32† 75.41
LF+PB+T 72.29 75.17† 75.42

LF+PL+PB+T 71.85 75.21† 75.45§

Table 2: Blog polarity classification results (accuracy in %) us-
ing topic relevant context composed of all the words or only
content words.

4.2 Adaptive methods using review data
Domain adaptation has been studied in some previous
work (e.g., (Blitzer et al., 2007; Mansour et al., 2008)).
In this paper, we evaluate two adaptive approaches in or-
der to leverage review data to improve blog polarity clas-
sification. In the first approach, in each of the 10-fold
cross-validation training, we pool the blog training data
(90% of the entire blog data) together with all the review
data from 5 different domains. In the second method, we
augment features with hypotheses obtained from classi-
fiers trained using other domain data. Specifically, we
first trained 5 classifiers from 5 review domain data sets
respectively, and encoded the hypotheses from different
classifiers as features for blog training (together with the
original features of the blog data). Results of these two
approaches are shown in Table 3. We use the topic rele-

311

vant context with content words only in this experiment,
and present results for different feature combinations (ex-
cept the baseline “LF” setting). The significance test is
conducted in comparison to the results using only blog
data for training, for the same feature setting.

We find that the first approach does not yield any gain,
even though the added data is about the same size as
the blog data. It indicates that due to the large differ-
ence between the two genres, simply combining blogs
and reviews in training is not effective. However, we
can see that using augmented features in training signifi-
cantly improved the performance across different feature
sets. The best result is achieved using “LF+T” features,
76.84% compared with the best accuracy of 75.6% when
using the blog data only (“LF+PB” features).

Feature Set Only Blog Pool Data Augment Features
LF+PL 75.34 75.05 76.12†
LF+PB 75.6 74.35 76.28†
LF+T 75.35 74.47 76.84†

LF+PL+PB 75.35 74.94 76.7†
LF+PL+T 75.41 74.85 76.32†
LF+PB+T 75.42 74.46 76.3†

LF+PL+PB+T 75.45 74.96 76.53†

Table 3: Results (accuracy in %) of blog polarity classification
using two methods leveraging review data.

4.3 Error analysis
Notice that after achieving some improvements the per-
formance on blogs is still much worse than on review
data. Thus we performed a manual error analysis for a
better understanding of the difficulties of sentiment anal-
ysis on blog data, and identified the following challenges.

(a) Idiomatic expressions. Compared to reviews, blog-
gers seem to use more idioms. For example, “Of course
he has me over the barrel...” expresses negative opinion,
however, there are no superficially indicative features.

(b) Ironic writing style. Some bloggers prefer ironic
style especially when speaking against something or
somebody, whereas opinions are often expressed using
plain writing style in reviews. Simply using the surface
word level features is not able to model these properly.

(c) Background knowledge. In some political blogs,
the polarized expressions are implicit. Correctly recog-
nizing them requires background knowledge and deeper
language analysis techniques.

5 Conclusions and Future Work
In this paper, we have evaluated various features and the
domain effect on sentimental polarity classification. Our
experiments on blog and review data demonstrated dif-
ferent feature effectiveness and the overall poorer perfor-
mance on blogs than reviews. We found that the polarized
features and the transition word features we introduced
are useful for polarity classification. We also show that
by extracting topic-relevant context and considering only
content words, the system can achieve significantly better

performance on blogs. Furthermore, an adaptive method
using augmented features can effectively leverage data
from other domains, and yield improvement compared
to using in-domain training or training on combined data
from different domains. For our future work, we plan
to investigate other adaption methods, and try to address
some of the problems identified in our error analysis.

6 Acknowledgment
The authors thank the three anonymous reviewers for
their suggestions.

References
Apoorv Agarwal, Fadi Biadsy, and Kathleen McKeown. 2009.

Contextual phrase-level polarity analysis using lexical affect
scoring and syntactic n-grams. In Proc. of EACL.

John Blitzer, Mark Dredze, and Fernando Pereira. 2007. Bi-
ographies, bollywood, boom-boxes and blenders: Domain
adaptation for sentiment classification. In Proc. of ACL.

Erik Boiy, Pieter Hens, Koen Deschacht, and Marie-Francine
Moens. 2007. Automatic sentiment analysis in on-line text.
In Proc. of ELPUB.

Paula Chesley, Bruce Vincent, Li Xu, and Rohini K. Srihari.
2005. Using verbs and adjectives to automatically classify
blog sentiment. In Proc. of AAAI.

Minqing Hu and Bing Liu. 2004. Mining and summarizing
customer reviews. In Proc. of ACM SIGKDD.

Jungi Kim, Jin-Ji Li, and Jong-Hyeok Lee. 2009. Discovering
the discriminative views: Measuring term weights for senti-
ment analysis. In Proc. of ACL-IJCNLP.

Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh.
2008. Domain adaptation with multiple sources. In Proc.
of NIPS.

Karo Moilanen and Stephen Pulman. 2008. The good, the bad,
and the unknown: Morphosyllabic sentiment tagging of un-
seen words. In Proc. of ACL.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting class
relationships for sentiment categorization with respect to rat-
ing scales. In Proc. of ACL.

Bo Pang, Lilian Lee, and Shrivakumar Vaithyanathan. 2002.
Thumbs up? sentiment classification using machine learning
techniques. In Proc. of EMNLP.

Ellen Riloff and Janyce Wiebe. 2003. Learning extraction pat-
terns for subjective expressions. In Proc. of EMNLP.

Ivan Titov and Ryan McDonald. 2008. Modeling online re-
views with multi-grain topic models. In Proc. of WWW.

Peter D. Turney. 2002. Thumbs up or thumbs down? semantic
orientation applied to unsupervised classification of reviews.
In Proc. of ACL.

Michael Wiegand and Dietrich Klakow. 2009. Topic-Related
polarity classification of blog sentences. In Proc. of the 14th
Portuguese Conference on Artificial Intelligence: Progress
in Artificial Intelligence, pages 658–669.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann. 2005.
Recognizing contextual polarity in phrase-level sentiment
analysis. In Proc. of HLT-EMNLP.

Wei Zhang, Clement Yu, and Weiyi Meng. 2007. Opinion re-
trieval from blogs. In Proc. of CIKM, pages 831–840.

312

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 313–316,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Creating Local Coherence: An Empirical Assessment

Annie Louis
University of Pennsylvania

Philadelphia, PA 19104, USA
lannie@seas.upenn.edu

Ani Nenkova
University of Pennsylvania

Philadelphia, PA 19104, USA
nenkova@seas.upenn.edu

Abstract

Two of the mechanisms for creating natural
transitions between adjacent sentences in a
text, resulting in local coherence, involve dis-
course relations and switches of focus of at-
tention between discourse entities. These two
aspects of local coherence have been tradi-
tionally discussed and studied separately. But
some empirical studies have given strong evi-
dence for the necessity of understanding how
the two types of coherence-creating devices
interact. Here we present a joint corpus study
of discourse relations and entity coherence ex-
hibited in news texts from the Wall Street Jour-
nal and test several hypotheses expressed in
earlier work about their interaction.

1 Introduction

Coherent discourse is characterized by local prop-
erties that are crucial for comprehension. In fact, a
long line of linguistics and computational linguistics
tradition has proposed that several levels of struc-
ture contribute to the creation of coherent discourse.
Among these, the attentional structure (Grosz et
al., 1995) and the relational structure (Mann and
Thompson, 1988) of text, are the most widely dis-
cussed in the literature.

Centering theory (Grosz et al., 1995) is the dom-
inant approach for describing and analyzing atten-
tional structure. It assumes that readers of the text
focus (center) their attention on a small number of
salient discourse entities at a time and that there are
preferred patterns for switching attention between
entities mentioned in adjacent sentences. Relational

This work was partially supported by NSF Grant IIS -07-
05671.

structure theories, on the other hand, describe how
certain discourse (also called rhetorical or coher-
ence) relations such asCONTRAST and CAUSE are
inferred by the reader between adjacent units of text.
The existence of richly annotated corpora and the
development of automatic applications based on the
theories have allowed empirical assessments of the
validity and generality of these theories individually.

Such work has also provided increasingly strong
evidence that attentional and relational structures
need to be taken into account simultaneously. The
motivation behind such proposals have been the em-
pirical findings that “weak” discourse relations such
asELABORATION are the most common type of re-
lations, and that a large percentage of adjacent sen-
tences in fact do not haveany entities in common.

In particular, a corpus based evaluation of Center-
ing theory found that only 42% of pairs of adjacent
sentences have at least one entity in common and
hypothesized that discourse relations are responsible
for creating local coherence in the remaining cases
(Poesio et al., 2004). At the same time, the work
of Knott et al. (2001) has discussed several theo-
retical complications arising from the existence of
the very common and semantically weakELABO-
RATION relation. These researchers propose that re-
placing ELABORATION by an account of entity co-
herence such as Centering will be most beneficial.
But work in information ordering (Karamanis, 2007)
has not been able to confirm such claims that better
results can be obtained by combining entity coher-
ence with discourse relations.

Till recently, the absence of large corpora anno-
tated for both discourse relations and coreference in-
formation has prohibited a detailed joint analysis of
attentional and relational structure. We combine two

313

recently released corpora: discourse relations from
the Penn Discourse Treebank and coreference an-
notations from the OntoNotes corpus, to assess the
prevalence and interplay between factors that create
local coherence in newspaper text.

Specifically, in our study we examine how three
hypotheses formulated in prior work play out in the
Wall Street Journal texts in our corpus:
Hypothesis 1Adjacent sentences that do not share
entities are related by non-elaboration discourse re-
lations [Poesio et al. (2004)Sec. 5.2.2 Pg. 354].
Hypothesis 2 Adjacent sentences joined by non-
elaboration discourse relation have lower entity co-
herence: such pairs are less likely to mention the
same entities [Knott et al. (2001)Sec. 7 Pg. 10].
Hypothesis 3Almost all pairs of sentences in a co-
herent text either share entities or participate in non-
elaboration discourse relation (Knott et al., 2001;
Poesio et al., 2004).

None of these hypotheses are validated. We find
that only 38.65% of pairs that do not share enti-
ties participate in “core” relations such as tempo-
ral, contingency or comparison; the rate of coref-
erence in these “core” relations is similar to that in
weaker elaboration relations; about 30% of all sen-
tence pairs neither share entities nor participate in a
“core” discourse relation.

2 Data

In order to jointly analyze both discourse relations
and noun phrase coreference between adjacent sen-
tences, we combine annotations from two corpora,
OntoNotes and the Penn Discourse Treebank. The
two individual corpora are larger, but a smaller sub-
set of 590 Wall Street Journal articles appear in both.
All our analysis is foradjacent sentences within
paragraphs in this subset of texts.

Penn Discourse TreebankThe Penn Discourse
Treebank (PDTB) (Prasad et al., 2008) is the largest
available corpus of annotations for discourse rela-
tions, covering one million words of the Wall Street
Journal (WSJ). In the PDTB, two kinds of discourse
relations are annotated. Inexplicit relations, a dis-
course connective such as “because”, “but” or “so”
is present, as in the example below.

[Ex. 1] There is an incredible pressure on school systems

and teachers to raise test scores.So efforts to beat the tests are

also on the rise.

On the other hand, relations can also exist without
an explicit signal. InEx. 2, it is clear that the second
sentence is theresult of the event mentioned in the
first.

[Ex. 2] In July, the Environmental Protection Agency im-

posed a gradual ban on virtually all uses of asbestos. By 1997,

almost all remaining uses of cancer-causing asbestos will be

outlawed.

Such relations are calledimplicit relations. In the
PDTB, they are annotated between all adjacent sen-
tences within a paragraph which do not already par-
ticipate in an explicit discourse relation.

For both implicit and explicit relations, the se-
mantic sense of the discourse relation is assigned
from a hierarchy of senses. There are four classes
of discourse relations at the topmost general level.
The second level senses are shown within paran-
theses: Comparison(Concession, Contrast, Pragmatic
Concession/Contrast), Contingency(Cause, Condition,
Pragmatic Cause/Condition), Temporal(Asynchronous,
Synchronous) and Expansion(Alternative, Conjunction,
Exception, Instantiation, List, Restatement).

Some of the adjacent sentences in the texts, how-
ever, were found not to have a discourse relation be-
tween the events or propositions mentioned in them.
Instead, they were related because both sentences
mention the same entity, directly or indirectly, and
the second sentence provides some further descrip-
tion of that entity. AnEntity Relation (EntRel) was
annotated for such sentence pairs as below.

[Ex. 3] Pierre Vinken, 61 years old, will join the board as

a nonexecutive director Nov. 29. Mr. Vinken is chairman of

Elsevier N.V., the Dutch publishing group.

OntoNotesFor coreference information, we use
the WSJ portion of the OntoNotes corpus version 2.9
(Hovy et al., 2006) which contains 590 documents.
For these documents, we also have the PDTB anno-
tations available. In OntoNotes, all noun phrases–
pronouns, names and nominals are marked for coref-
erence without any limitation to specific semantic
categories.

3 Corpus study findings

For ease of presentation in the following analy-
sis, we will call the Expansion and Entity relations
“weak” and Temporal, Contingency and Compari-

314

0 to 100 0.41 500 to 1000 0.50
100 to 200 0.37 above 1000 0.51
200 to 500 0.48

Table 1: Proportion of sentence pairs thatdon’t share any
entities for different document lengths (in words)

Type Relation No shared entities

Core
Temporal 122 (2.98)
Contingency 752 (18.40)
Comparison 706 (17.27)

Weak
Expansion 1870 (45.74)
EntRel 638 (15.61)

Table 2: Distribution of the 4088non-entity sharing sen-
tence pairs. The proportions are shown in brackets.

son relations “core”, following the intuition that the
semantics of the latter class is much more clearly
defined. Implicit and explicit relations were not dis-
tinguished in the analysis.1

Hypothesis 1 The first hypothesis is that adja-
cent sentences that do not share entities participate
in core relations and so remain locally coherent.

Pairs of adjacent sentences that do not share any
entities are common. In prior work, Poesio et al.
(2004) found that 58% of adjacent sentence pairs in
their corpus of museum object descriptions did not
have overlapping mentions of any entity. The distri-
bution in the WSJ texts is similar, as seen in Table 1.
Depending on the length of the article, 37% to 51%
of sentence pairs do not have any entity in common.2

Table 2 shows the distribution of discourse rela-
tions for the 4088 sentence pairs in the corpus that
do not share any entities. Contrary to expectation,
the majority of such pairs, 61%, are related by a
weak discourse relation. Especially unexpected is
the high percentage ofentity relations (EntRel) that
don’t have actual entity overlap:

[Ex. 4] All four demonstrators were arrested. The law,
which Bush allowed to take effect without his signature, went
into force Friday.

[Ex. 5] Authorities in Hawaii said the wreckage of a missing

commuter plane with 20 people aboard was spotted in a remote

valley on the island of Molokai. There wasn’t any evidence of

survivors.

1For brevity we present combined results for both implicit
and explicit relations. However, most of our conclusions remain
the same when the two types are distinguished.

2There are around 100 documents in each length range.

Type Relation Total Share entities

Core
Temporal 365 243 (66.57)
Contingency 1570 818 (52.10)
Comparison 1477 771 (52.20)

Weak
Expansion 3569 1699 (47.60)
EntRel 1424 786 (55.20)

Table 3: Rate ofentity sharing

Share entities No sharing
core relations 1832 (21.80) 1580 (18.80)
weak relations 2485 (29.56) 2508 (29.84)

Table 4: Total number (proportion) of sentence pairs in
the corpus in the given categories

Hypothesis 2The second hypothesis states that
adjacent sentences joined by a core discourse rela-
tion are less likely to mention the same entities in
comparison to weak relations. But as Table 3 re-
veals, this is generally not the case.

Adjacent sentences in Temporal relation are very
likely to share entities—almost 70% of them do.
Over half of all Contingency and Comparison rela-
tions also share entities. But, the rates of sharing in
Comparison and Contingency relations are signifi-
cantly lower compared to Entity relations (under a
two-sided binomial test).Ex. 6 shows a Contin-
gency relation without entity sharing.

[Ex. 6] Without machines, good farms can’t get bigger. So

the potato crop, once 47 million tons, is down to 35.

However, adjacent sentences with Expansion rela-
tion turn out least likely to share entities. The entity
sharing rates of all the other relations were found to
be significantly higher than Expansion.

Hypothesis 3Finally, we test the hypothesis that
the majority of adjacent sentences exhibit coherence
because they either share entities or form the argu-
ments of a core discourse relation.

This hypothesis is not supported in the WSJ data
(see Table 4): 30% of all sentence pairs are in a weak
discourse relation—Expansion or EntRel—and do
not have any entities in common. In a sense, nei-
ther of the theories of entity or relational coherence
can explain what mechanisms create the local coher-
ence for these pairs. In order to glean some insights
of how coherence is created there, we examine the
behavior of different types of Elaboration relations
(Table 5). There is a wide variation between the dif-

315

Alternative 67 (0.63) Instantiation 490 (0.34)
Restatement 960 (0.56) List 165 (0.28)
Conjunction 1021 (0.48) EntRel 1424 (0.55)

Table 5: Total number of different Expansion relations
and their coreference probability (in brackets)

ferent types of Expansions.
When the function of an expansion sentence is to

provide analternative explanation or restate an ut-
terance, the probability of entity overlap is very high
and patterns similarily with entity relations (around
60%). Below is an example restatement sentence.

[Ex. 7] {Researchers in Belgium}r said{they}r have de-

veloped a genetic engineering technique for creating hybrid

plants for a number of crops, such as cotton, soybeans and

rice. {The scientists at Plant Genetic Systems N.V.}r isolated

a gene that could lead to a generation of plants possessing a

high-production trait.

However, the two classes–Instantiation and List
largely appear with very little entity overlap, 37%
and 29% respectively. An Instantiation relation is
used to provide an example and hence has little over-
lap with the previous sentence (Ex. 8 and 9).

[Ex. 8] There may be a few cases where the law breaking is

well pinpointed and so completely non-invasive of the rights of

others that it is difficult to criticize it. The case of Rosa Parks,

the black woman who refused to sit at the back of the bus, comes

to mind as an illustration.

[Ex. 9] The economy is showing signs of weakness, partic-

ularly among manufacturers. Exports, which played a key role

in fueling growth over the last two years, seem to have stalled.

List relations, on the other hand, connect sen-
tences where each of them elaborates on a common
proposition mentioned earlier in the discourse. Here
is an example five sentence paragraph with list rela-
tions but no entity repetition at all.

[Ex. 10] Designs call for a L-shaped structure with

a playground in the center.[Implicit List] There

will be recreation and movie rooms.[Implicit List]

Teens will be able to listen to music with head-

sets.[Implicit List] Study halls, complete with ref-

erence materials will be available.[Explicit List]

And there will be a nurse’s station and rooms for

children to meet with the social workers.

In Ex. 10, as well as some others, a broad no-
tion of entity coherence–bridging anaphora can be
applied. Poesio et al. (2004) also note this fact, but

also say that such instances are very difficult to an-
notate reliably. Our work is based on coreference
annotations which can be marked with considerably
high inter-annotator agreement.

4 Conclusions

The recent release of corpora annotated for corefer-
ence and discourse relations for the same texts have
made possible to empirically assess claims about the
interaction between two types of local coherence:
relational and entity. We find that about half of the
pairs of adjacent sentences do not share any entities
at all, and about 60% are related by weak discourse
relations. We test the hypothesis from prior work
that these two types of coherence are complemen-
tary to each other and taken together explain most
local coherence. We find that the two types of co-
herence mechanisms are neither mutually exclusive
nor do they explain all the data. Future work in dis-
course analysis will need to develop better under-
standing of how the two types of coherence interact.

References

B. Grosz, A. Joshi, and S. Weinstein. 1995. Centering:
a framework for modelling the local coherence of dis-
course.Computational Linguistics, 21(2):203–226.

E. Hovy, M. Marcus, M. Palmer, L. Ramshaw, and
R. Weischedel. 2006. Ontonotes: the 90% solution.
In Proceedings of NAACL-HLT, pages 57–60.

N. Karamanis. 2007. Supplementing entity coherence
with local rhetorical relations for information order-
ing. Journal of Logic, Language and Information,
16(4):445–464.

A. Knott, J. Oberlander, M. O’Donnell, and C. Mellish.
2001. Beyond elaboration: the interaction of rela-
tions and focus in coherent text. InText Representa-
tion: Linguistic and Psycholinguistic Aspects, chapter
7, pages 181–196.

W.C. Mann and S.A. Thompson. 1988. Rhetorical struc-
ture theory: Towards a functional theory of text orga-
nization.Text, 8.

M. Poesio, R. Stevenson, B. Di Eugenio, and J. Hitze-
man. 2004. Centering: A parametric theory and its
instantiations.Computational Linguistics, pages 309–
363.

R. Prasad, N. Dinesh, A. Lee, E. Miltsakaki, L. Robaldo,
A. Joshi, and B. Webber. 2008. The penn discourse
treebank 2.0. InProceedings of LREC’08.

316

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 317–320,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Time-Efficient Creation of an Accurate Sentence Fusion Corpus

Kathleen McKeown, Sara Rosenthal, Kapil Thadani and Coleman Moore
Columbia University

New York, NY 10027, USA
{kathy,sara,kapil}@cs.columbia.edu, cjm2140@columbia.edu

Abstract

Sentence fusion enables summarization and
question-answering systems to produce out-
put by combining fully formed phrases from
different sentences. Yet there is little data
that can be used to develop and evaluate fu-
sion techniques. In this paper, we present a
methodology for collecting fusions of simi-
lar sentence pairs using Amazon’s Mechani-
cal Turk, selecting the input pairs in a semi-
automated fashion. We evaluate the results
using a novel technique for automatically se-
lecting a representative sentence from multi-
ple responses. Our approach allows for rapid
construction of a high accuracy fusion corpus.

1 Introduction

Summarization and question-answering systems
must transform input text to produce useful output
text, condensing an input document or document set
in the case of summarization and selecting text that
meets the question constraints in the case of question
answering. While many systems use sentence ex-
traction to facilitate the task, this approach risks in-
cluding additional, irrelevant or non-salient informa-
tion in the output, and the original sentence wording
may be inappropriate for the new context in which
it appears. Instead, recent research has investigated
methods for generating new sentences using a tech-
nique called sentence fusion (Barzilay and McKe-
own, 2005; Marsi and Krahmer, 2005; Filippova and
Strube, 2008) where output sentences are generated
by fusing together portions of related sentences.

While algorithms for automated fusion have been
developed, there is no corpus of human-generated
fused sentences available to train and evaluate such

systems. The creation of such a dataset could pro-
vide insight into the kinds of fusions that people
produce. Furthermore, since research in the related
task of sentence compression has benefited from
the availability of training data (Jing, 2000; Knight
and Marcu, 2002; McDonald, 2006; Cohn and La-
pata, 2008), we expect that the creation of this cor-
pus might encourage the development of supervised
learning techniques for automated sentence fusion.

In this work, we present a methodology for cre-
ating such a corpus using Amazon’s Mechanical
Turk1, a widely used online marketplace for crowd-
sourced task completion. Our goal is the generation
of accurate fusions between pairs of sentences that
have some information in common. To ensure that
the task is performed consistently, we abide by the
distinction proposed by Marsi and Krahmer (2005)
between intersection fusion and union fusion. In-
tersection fusion results in a sentence that contains
only the information that the sentences had in com-
mon and is usually shorter than either of the original
sentences. Union fusion, on the other hand, results
in a sentence that contains all information content
from the original two sentences. An example of in-
tersection and union fusion is shown in Figure 1.

We solicit multiple annotations for both union and
intersection tasks separately and leverage the differ-
ent responses to automatically choose a representa-
tive response. Analysis of the responses shows that
our approach yields 95% accuracy on the task of
union fusion. This is a promising first step and indi-
cates that our methodology can be applied towards
efficiently building a highly accurate corpus for sen-
tence fusion.

1https://www.mturk.com

317

1. Palin actually turned against the bridge project only after it
became a national symbol of wasteful spending.
2. Ms. Palin supported the bridge project while running for
governor, and abandoned it after it became a national scandal.
Intersection: Palin turned against the bridge project after it
became a national scandal.
Union: Ms. Palin supported the bridge project while running
for governor, but turned against it when it became a national
scandal and a symbol of wasteful spending.

Figure 1: Examples of intersection and union

2 Related Work

The combination of fragments of sentences on a
common topic has been studied in the domain of sin-
gle document summarization (Jing, 2000; Daumé III
and Marcu, 2002; Xie et al., 2008). In contrast to
these approaches, sentence fusion was introduced to
combine fragments of sentences with common infor-
mation for multi-document summarization (Barzilay
and McKeown, 2005). Automated fusion of sen-
tence pairs has since received attention as an inde-
pendent task (Marsi and Krahmer, 2005; Filippova
and Strube, 2008). Although generic fusion of sen-
tence pairs based on importance does not yield high
agreement when performed by humans (Daumé III
and Marcu, 2004), fusion in the context of a query
has been shown to produce better agreement (Krah-
mer et al., 2008). We examine similar fusion an-
notation tasks in this paper, but we asked workers
to provide two specific types of fusion, intersection
and union, thus avoiding the less specific definition
based on importance. Furthermore, as our goal is
the generation of corpora, our target for evaluation
is accuracy rather than agreement.

This work studies an approach to the automatic
construction of large fusion corpora using workers
through Amazon’s Mechanical Turk service. Previ-
ous studies using this online task marketplace have
shown that the collective judgments of many work-
ers are comparable to those of trained annotators
on labeling tasks (Snow et al., 2008) although these
judgments can be obtained at a fraction of the cost
and effort. However, our task presents an additional
challenge: building a corpus for sentence fusion re-
quires workers to enter free text rather than simply
choose between predefined options; the results are
prone to variation and this makes comparing and ag-
gregating multiple responses problematic.

A. After a decade on the job, Gordon had become an experi-
enced cop.
B. Gordon has a lot of experience in the police force.

Figure 2: An example of sentences that were judged to be
too similar for inclusion in the dataset

3 Collection Methodology

Data collection involved the identification of the
types of sentence pairs that would make suitable
candidates for fusion, the development of a sys-
tem to automatically identify good pairs and manual
filtering of the sentence pairs to remove erroneous
choices. The selected sentence pairs were then pre-
sented to workers on Mechanical Turk in an inter-
face that required them to manually type in a fused
sentence (intersection or union) for each case.

Not all pairs of related sentences are useful for the
fusion task. When sentences are too similar, the re-
sult of fusion is simply one of the input sentences.
For example (Fig. 2), if sentence A contains all the
information in sentence B but not vice versa, then
B is also their intersection while A is their union
and no sentence generation is required. On the other
hand, if the two sentences are too dissimilar, then
no intersection is possible and the union is just the
conjunction of the sentences.

We experimented with different similarity metrics
aimed at identifying pairs of sentences that were in-
appropriate for fusion. The sentences in this study
were drawn from clusters of news articles on the
same event from the Newsblaster summarization
system (McKeown et al., 2002). While these clus-
ters are likely to contain similar sentences, they will
contain many more dissimilar than similar pairs and
thus a metric that emphasizes precision over recall
is important. We computed pairwise similarity be-
tween sentences within each cluster using three stan-
dard metrics: word overlap, n-gram overlap and co-
sine similarity. Bigram overlap yielded the best pre-
cision in our experiments. We empirically arrived at
a lower threshold of .35 to remove dissimilar sen-
tences and an upper threshold of .65 to avoid near-
identical sentences, yielding a false-positive rate of
44.4%. The remaining inappropriate pairs were then
manually filtered. This semi-automated procedure
enabled fast selection of suitable sentence pairs: one
person was able to select 30 pairs an hour yielding
the 300 pairs for the full experiment in ten hours.

318

Responses Intersection Union
All (1500) 0.49 0.88
Representatives (300) 0.54 0.95

Table 1: Union and intersection accuracy

3.1 Using Amazon’s Mechanical Turk

Based on a pilot study with 20 sentence pairs, we
designed an interface for the full study. For inter-
section tasks, the interface posed the question “How
would you combine the following two sentences into
a single sentence conveying only the information
they have in common?”. For union tasks, the ques-
tion was “How would you combine the following two
sentences into a single sentence that contains ALL of
the information in each?”.

We used all 300 pairs of similar sentences for
both union and intersection and chose to collect five
worker responses per pair, given the diversity of
responses that we found in the pilot study. This
yielded a total of 3000 fused sentences with 1500
intersections and 1500 unions.

3.2 Representative Responses

Using multiple workers provides little benefit unless
we are able to harness the collective judgments of
their responses. To this end, we experiment with
a simple technique to select one representative re-
sponse from all responses for a case, hypothesizing
that such a response would have a lower error rate.
We test the hypothesis by comparing the accuracy of
representative responses with the average accuracy
over all responses.

Our strategy for selecting representatives draws
on the common assumption used in human com-
putation that human agreement in independently-
generated labels implies accuracy (von Ahn and
Dabbish, 2004). We approximate agreement be-
tween responses using a simple and transparent
measure for overlap: cosine similarity over stems
weighted by tf-idf where idf values are learned over
the Gigawords corpus2. After comparing all re-
sponses in a pairwise fashion, we need to choose a
representative response. As using the centroid di-
rectly might not be robust to the presence of er-
roneous responses, we first select the pair of re-
sponses with the greatest overlap as candidates and

2LDC Catalog No. LDC2003T05

Errors Intersection Union
Missing clause 2 7
Union/Intersection 46 6
S1/S2 21 8
Additional clause 10 1
Lexical 3 1

Table 2: Errors seen in 30 random cases (150 responses)

then choose the candidate which has the greatest to-
tal overlap with all other responses.

4 Results and Error Analysis

For evaluating accuracy, fused sentences were man-
ually compared to the original sentence pairs. Due to
the time-consuming nature of the evaluation, 50% of
the 300 cases were randomly selected for analysis.
10% were initially analyzed by two of the authors; if
a disagreement occurred, the authors discussed their
differences and came to a unified decision. The re-
maining 40% were then analyzed by one author. In
addition to this high-level analysis, we further ana-
lyzed 10% of the cases to identify the the types of
errors made in fusion as well as the techniques used
and the effect of task difficulty on performance.

The accuracy for intersection and union tasks is
shown in Table 1. For both tasks, accuracy of the se-
lected representatives significantly exceeded the av-
erage response accuracy. In our error analysis, we
found that workers often answered the intersection
task by providing a union, possibly due to a misin-
terpretation of the question. This caused intersection
accuracy to be significantly worse than union. We
analyzed the impact of this error by computing ac-
curacy on the first 30 cases (10%) without this error
and the accuracy for intersection increased 22%.

Error types were categorized as “missing clause”,
“using union for intersection and vice versa”,
“choosing an input sentence (S1/S2)”, “additional
clause” and “lexical error”. Table 2 shows the num-
ber of occurrences of each in 10% of the cases.

We binned the sentence pairs according to
the difficulty of the fusion task for each pair
(easy/medium/hard) and found that performance
was not dependent on difficulty level; accuracy was
relatively similar across bins. We also observed that
workers typically performed fusion by selecting one
sentence as a base and removing clauses or merging
in additional clauses from the other sentence.

319

Figure 3: Number of cases in which x/5 workers pro-
vided accurate responses for fusion

In order to determine the benefit of using many
workers, we studied the number of workers who an-
swered correctly for each case. Figure 3 reveals that
2/5 or more workers (summing across columns) re-
sponded accurately in 99% of union cases and 82%
of intersection cases. The intersection results are
skewed due to the question misinterpretation issue
which, though it was the most common error, was
made by 3/5 workers only 17% of the time. Thus, in
the majority of the cases, accurate fusions can still
be found using the representative method.

5 Conclusion

We presented a methodology to build a fusion cor-
pus which uses semi-automated techniques to select
similar sentence pairs for annotation on Mechanical
Turk3. Additionally, we showed how multiple re-
sponses for each fusion task can be leveraged by au-
tomatically selecting a representative response. Our
approach yielded 95% accuracy for union tasks, and
while intersection fusion accuracy was much lower,
our analysis showed that workers sometimes pro-
vided unions instead of intersections and we sus-
pect that an improved formulation of the question
could lead to better results. Construction of the fu-
sion dataset was relatively fast; it required only ten
hours of labor on the part of a trained undergraduate
and seven days of active time on Mechanical Turk.

Acknowledgements

This material is based on research supported in part
by the U.S. National Science Foundation (NSF) un-
der IIS-05-34871 Any opinions, findings and con-
clusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily
reflect the views of the NSF.

3The corpus described in this work is available at
http://www.cs.columbia.edu/∼kathy/fusioncorpus

References
Regina Barzilay and Kathleen R. McKeown. 2005. Sen-

tence fusion for multidocument news summarization.
Computational Linguistics, 31(3):297–328.

Trevor Cohn and Mirella Lapata. 2008. Sentence com-
pression beyond word deletion. In Proceedings of
COLING, pages 137–144.

Hal Daumé III and Daniel Marcu. 2002. A noisy-channel
model for document compression. In Proceedings of
ACL, pages 449–456.

Hal Daumé III and Daniel Marcu. 2004. Generic sen-
tence fusion is an ill-defined summarization task. In
Proceedings of the ACL Text Summarization Branches
Out Workshop, pages 96–103.

Katja Filippova and Michael Strube. 2008. Sentence fu-
sion via dependency graph compression. In Proceed-
ings of EMNLP, pages 177–185.

Hongyan Jing. 2000. Sentence reduction for automatic
text summarization. In Proceedings of Applied Natu-
ral Language Processing, pages 310–315.

Kevin Knight and Daniel Marcu. 2002. Summariza-
tion beyond sentence extraction: a probabilistic ap-
proach to sentence compression. Artificial Intelli-
gence, 139(1):91–107.

Emiel Krahmer, Erwin Marsi, and Paul van Pelt. 2008.
Query-based sentence fusion is better defined and
leads to more preferred results than generic sentence
fusion. In Proceedings of ACL, pages 193–196.

Erwin Marsi and Emiel Krahmer. 2005. Explorations in
sentence fusion. In Proceedings of the European Work-
shopon Natural Language Generation, pages 109–117.

Ryan McDonald. 2006. Discriminative sentence com-
pression with soft syntactic evidence. In Proceedings
of EACL, pages 297–304.

Kathleen R. McKeown, Regina Barzilay, David Evans,
Vasileios Hatzivassiloglou, Judith L. Klavans, Ani
Nenkova, Carl Sable, Barry Schiffman, and Sergey
Sigelman. 2002. Tracking and summarizing news on
a daily basis with Columbia’s Newsblaster. In Pro-
ceedings of HLT, pages 280–285.

Rion Snow, Brendan O’Connor, Daniel Jurafsky, and
Andrew Y. Ng. 2008. Cheap and fast—but is it
good?: Evaluating non-expert annotations for natu-
ral language tasks. In Proceedings of EMNLP, pages
254–263.

Luis von Ahn and Laura Dabbish. 2004. Labeling im-
ages with a computer game. In Proceedings of the
SIGCHI conference on Human Factors in Computing
Systems, pages 319–326.

Zhuli Xie, Barbara Di Eugenio, and Peter C. Nel-
son. 2008. From extracting to abstracting: Gener-
ating quasi-abstractive summaries. In Proceedings of
LREC, May.

320

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 321–324,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Towards Cross-Lingual Textual Entailment

Yashar Mehdad1,2, Matteo Negri1, Marcello Federico1

FBK-Irst1, University of Trento2

Trento, Italy
{mehdad,negri,federico}@fbk.eu

Abstract

This paper investigates cross-lingual textual
entailment as a semantic relation between two
text portions in different languages, and pro-
poses a prospective research direction. We
argue that cross-lingual textual entailment
(CLTE) can be a core technology for sev-
eral cross-lingual NLP applications and tasks.
Through preliminary experiments, we aim at
proving the feasibility of the task, and provid-
ing a reliable baseline. We also introduce new
applications for CLTE that will be explored in
future work.

1 Introduction

Textual Entailment (TE) (Dagan and Glickman,
2004) has been proposed as a generic framework for
modeling language variability. Given two texts T
and H, the task consists in deciding if the meaning
of H can be inferred from the meaning of T. So far,
TE has been only applied in a monolingual setting,
where both texts are assumed to be written in the
same language. In this work, we propose and inves-
tigate a cross-lingual extension of TE, where we as-
sume that T and H are written in different languages.

The great potential of integrating (monolingual)
TE recognition components into NLP architectures
has been reported in several works, such as ques-
tion answering (Harabagiu and Hickl, 2006), infor-
mation retrieval (Clinchant et al., 2006), informa-
tion extraction (Romano et al., 2006), and document
summarization (Lloret et al., 2008).

To the best of our knowledge, mainly due to
the absence of cross-lingual TE (CLTE) recognition

components, similar improvements have not been
achieved yet in any cross-lingual application. As
a matter of fact, despite the great deal of attention
that TE has received in recent years (also witnessed
by five editions of the Recognizing Textual Entail-
ment Challenge1), interest for cross-lingual exten-
sions has not been in the mainstream of TE research,
which until now has been mainly focused on the En-
glish language.

Nevertheless, the strong interest towards cross-
lingual NLP applications (both from the market and
research perspectives, as demonstrated by success-
ful evaluation campaigns such as CLEF2) is, to our
view, a good reason to start investigating CLTE, as
well. Along such direction, research can now ben-
efit from recent advances in other fields, especially
machine translation (MT), and the availability of: i)
large amounts of parallel and comparable corpora in
many languages, ii) open source software to com-
pute word-alignments from parallel corpora, and iii)
open source software to set-up strong MT baseline
systems. We strongly believe that all these resources
can potentially help in developing inference mecha-
nisms on multilingual data.

Building on these considerations, this paper aims
to put the basis for future research on the cross-
lingual Textual Entailment task, in order to allow
for semantic inference across languages in different
NLP tasks. Among these, as a long-term goal, we
plan to adopt CLTE to support the alignment of text
portions that express the same meaning in different
languages. As a possible application scenario, CLTE

1http://pascallin.ecs.soton.ac.uk/Challenges/RTE/
2www.clef-campaign.org/

321

can be used to address content merging tasks in tidy
multilingual environments, such as commercial Web
sites, digital libraries, or user generated content col-
lections. Within such framework, as it will be dis-
cussed in the last section of this paper, CLTE com-
ponents can be used for automatic content synchro-
nization in a concurrent, collaborative, and multilin-
gual editing setting, e.g. Wikipedia.

2 Cross Lingual Textual Entailment

Adapting the definition of TE we define CLTE as
a relation between two natural language portions in
different languages, namely a text T (e.g. in En-
glish), and a hypothesis H (e.g. in French), that
holds if a human after reading T would infer that H
is most likely true, or otherwise stated, the meaning
of H can be entailed (inferred) from T .

We can see two main orthogonal directions for ap-
proaching CLTE: i) simply bring CLTE back to the
monolingual case by translating H into the language
of T, or vice-versa; ii) try to embed cross-lingual
processing techniques inside the TE recognition pro-
cess. In the following, we briefly overview and mo-
tivate each approach.

Basic approaches. The simplest approach is to
add a MT component to the front-end of an existing
TE engine. For instance, let the French hypothesis
H be translated into English and then run the TE en-
gine on T and the translation of H. There are sev-
eral good reasons to follow this divide-and-conquer
approach, as well as some drawbacks. Decoupling
the cross-lingual and the entailment components re-
sults in a simple and modular architecture that, ac-
cording to well known software engineering princi-
ples, results easier to develop, debug, and maintain.
Moreover, a decoupled CLTE architecture would al-
low for easy extensions to other languages as it just
requires extra MT systems. Along the same idea of
pivoting through English, in fact, the same TE sys-
tem can be employed to perform CLTE between any
language pair, once MT is available from each lan-
guage into English. A drawback of the decoupled
approach is that as MT is still far from being perfect,
translation errors are propagated to the TE engine
and might likely affect performance. To cope with
this issue, we explored the alternative approach of
applying TE on a list of n-best translations provided

by the MT engine, and take a final decision based on
some system combination criterion. This latter ap-
proach potentially reduces the impact of translation
errors, but might significantly increase the computa-
tional requirements of CLTE.

Advanced approaches. The idea is to move to-
wards a cross-lingual TE approach that takes advan-
tage of a tighter integration of MT and TE algo-
rithms and techniques. This could result in methods
for recognizing TE across languages without trans-
lating the texts and, in principle, with a lower com-
plexity. When dealing with phrase-based statistical
MT (Koehn et al., 2007), a possible approach is to
extract information from the phrase-table to enrich
the inference and entailment rules which could be
used in a distance based entailment system. As an
example the entailment relations between the French
phrase “ordinateur portable” and the English phrase
“laptop”, or between the German phrase “europaeis-
chen union” and the English word “Europe” could
be captured from parallel corpora through statistical
phrase-based MT approaches.

There are several implications that make this ap-
proach interesting. First of all, we believe that re-
search on CLTE can employ inference mechanisms
and semantic knowledge sources to augment exist-
ing MT methods, leading to improvements in the
translation quality (e.g. (Padó et al., 2009)). In
addition, the acquired rules could as well enrich
the available multilingual resources and dictionaries
such as MultiWordNet3.

3 Feasibility studies

The main purpose of our preliminary experiments is
to verify the feasibility of CLTE, as well as setting
baseline results to be further improved over time. To
this aim, we started by adopting the basic approach
previously discussed. In particular, starting from an
English/French corpus of T-H pairs, we automati-
cally translated each H fragment from French into
English.

Our decisions build on several motivations. First
of all, the reason for setting English and French
as a first language pair for experiments is to rely
on higher quality translation models, and larger
amounts of parallel data for future improvements.

3http://multiwordnet.fbk.eu/

322

Second, the reason for translating the hypotheses is
that, according to the notion of TE, they are usually
shorter, less detailed, and barely complex in terms of
syntax and concepts with respect to the texts. This
makes them easier to translate preserving the origi-
nal meaning. Finally, from an application-oriented
perspective, working with English Ts seems more
promising due the richness of English data available
(e.g. in terms of language variability, and more de-
tailed elaboration of concepts). This increases the
probability to discover entailment relations with Hs
in other languages.

In order to create a realistic and standard setting,
we took advantage of the available RTE data, select-
ing the RTE3 development set and manually trans-
lating the hypotheses into French. Since the man-
ual translation requires trained translators, and due
to time and logistics constraints, we obtained 520
translated hypotheses (randomly selected from the
entire RTE3 development set) which built our bi-
lingual entailment corpus for evaluation.

In the initial step, following our basic approach,
we translated the French hypotheses to English us-
ing Google4 and Moses5. We trained a phrase-
base translation model using Europarl6 and News
Commentary parallel corpora in Moses, applying a
6-gram language model trained on the New York
Times portion of the English Gigaword corpus7.

As a TE engine , we used the EDITS8 package
(Edit Distance Textual Entailment Suite). This sys-
tem is an open source software package based on
edit distance algorithms, which computes the T-H
distance as the cost of the edit operations (i.e. in-
sertion, deletion and substitution) that are necessary
to transform T into H. By defining the edit distance
algorithm and a cost scheme (i.e. which defines the
costs of each edit operation), this package is able to
learn a distance model over a set of training pairs,
which is used to decide if an entailment relation
holds over each test pair.

In order to obtain a monolingual TE model, we
trained and tuned (Mehdad, 2009) our model on the
RTE3 test set, to reduce the overfitting bias, since

4http://translate.google.com
5http://www.statmt.org/moses/
6http://www.statmt.org/europarl/
7http://www.ldc.upenn.edu
8http://edits.fbk.eu/

our original data was created over the RTE3 devel-
opment set. Moreover, we used a set of lexical en-
tailment rules extracted from Wikipedia and Word-
Net, as described in (Mehdad et al., 2009). To be-
gin with, we used this model to classify the cre-
ated cross-lingual entailment corpus in three differ-
ent settings: 1) hypotheses translated by Google, 2)
hypotheses translated by Moses (1st best), and 3) the
original RTE3 monolingual English pairs.

Results reported in Table 1 show that using
Google as a translator, in comparison with the orig-
inal manually-created data, does not cause any drop
in performance. This confirms that merely trans-
lating the hypothesis using a very good translation
model (Google) is a feasible and promising direc-
tion for CLTE. Knowing that Google has one of the
best French-English translation models, the down-
trend of results using Moses translator, in contrast
with Google, is not out of our expectation. Trying
to bridge this gap brings us to the next round of
experiments, where we extracted the n-best trans-

Orig. Google Moses Moses Moses
1st best 30 best > 0.4

Acc. 63.48 63.48 61.37 62.90 62.90

Table 1: Results comparison over 520 test pairs.

lations produced by Moses, to have a richer lexical
variability, beneficial for improving the TE recogni-
tion. The graph in Figure 1 shows an incremental
improvement when the n-best translated hypotheses
are used. Besides that, trying to reach a more mono-
tonic distribution of the results, we normalized the
ranking score (from 0 to 1) given by Moses, and in
each step we chose the first n results over a normal-
ized score. In this way, having the hypotheses with
the score of above 0.4, we achieved the highest accu-
racy of 62.9%. This is exactly equal to adopting the
30-best hypotheses translated by Moses. Using this
method, we could improve the performance up to
1.5% above the 1st best results, achieving almost the
same level of performance obtained with Google.

4 A possible application scenario

Among the many possible applications, the task of
managing textual information in multiple languages
represents an ideal application scenario for CLTE.
Along such direction, our long-term goal is to use

323

Figure 1: Accuracy gained by n-best Moses translations.

CLTE components in the task of synchronizing the
content of documents about the same topic (e.g.
Wikipedia articles), written in different languages.
Currently, multilingual Wikis rely on users to manu-
ally translate different Wiki pages on the same sub-
ject. This is not only a time-consuming procedure
but also the source of many inconsistencies, as users
update the different language versions separately,
and every update would require translators to com-
pare the different language versions and synchronize
the updates. Our goal is to automate this process
by integrating MT and CLTE in a two-step process
where: i) CLTE is used to identify text portions that
should “migrate” from one page to the other, and ii)
MT is used to actually translate these portions in the
appropriate target language.

The adoption of entailment-based techniques to
address the multilingual content synchronization
task looks promising, as several issues inherent to
such task can be formalized as TE-related problems.
Given two pages (P1 and P2), these issues include
identifying (and then properly managing):

1. Text portions in P1 and P2 that express exactly
the same meaning (bi-directional entailment, or se-
mantic equivalence) and which should not migrate
across pages;

2. Text portions in P1 that are more specific than
portions of P2 (unidirectional entailment between
P2 and P1 or vice-versa) and should replace them;

3. Text portions in P1 describing facts that are not
present in P2, and which should be added in P2 or
vice-versa (the “unknown” cases in RTE parlance);

4. Meaning discrepancies between text portions
in P1 and text portions in P2 (“contradictions” in

RTE parlance).

5 Conclusion

This paper presented a preliminary investigation to-
wards cross-lingual Textual Entailment, focusing on
possible research directions and alternative method-
ologies. Baseline results have been provided to
demonstrate the potentialities of a simple approach
that integrates MT and monolingual TE compo-
nents. Overall, our work sets a novel framework
for further studies and experiments to improve cross-
lingual NLP tasks. In particular, CLTE can be scaled
to more complex problems, such as cross-lingual
content merging and synchronization.

Acknowledgments

This work has been partially supported by the EC-
funded project CoSyne (FP7-ICT-4-24853)

References
S. Clinchant, C. Goutte, and E. Gaussier. 2006. Lex-

ical entailment for information retrieval. In Proc.
ECIR’06.

I. Dagan and O. Glickman. 2004. Probabilistic tex-
tual entailment: Generic applied modeling of language
variability. Proc. of the PASCAL Workshop of Learn-
ing Methods for Text Understanding and Mining.

S. Harabagiu and A. Hickl. 2006. Methods for using tex-
tual entailment in open-domain question answering.
In Proc. COLING/ACL 2006.

P. Koehn et al. 2007. Moses: Open source toolkit for
statistical machine translation. In Proc. ACL07 Demo
and Poster Sessions.

E. Lloret, Ó. Ferrández, R. Muñoz, and M. Palomar.
2008. A text summarization approach under the in-
fluence of textual entailment. In Proc. NLPCS 2008.

Y. Mehdad, M. Negri, E. Cabrio, M. Kouylekov, and
B. Magnini. 2009. Edits: An open source framework
for recognizing textual entailment. In Proc. TAC 2009.
To appear.

Yashar Mehdad. 2009. Automatic cost estimation for
tree edit distance using particle swarm optimization.
In Proc. ACL ’09.

S. Padó, M. Galley, D. Jurafsky, and C. D. Manning.
2009. Textual entailment features for machine trans-
lation evaluation. In Proc. StatMT ’09.

L. Romano, M. Kouylekov, I. Szpektor, I. Dagan, and
A. Lavelli. 2006. Investigating a generic paraphrase-
based approach for relation extraction. In Proc. EACL
2006.

324

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 325–328,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

A Comparative Study of Word Co-occurrence for Term Clustering
in Language Model-based Sentence Retrieval

Saeedeh Momtazi
Spoken Language Systems

Saarland University
saeedeh.momtazi

@lsv.uni-saarland.de

Sanjeev Khudanpur
Center for Language

and Speech Processing
Johns Hopkins University
khudanpur@jhu.edu

Dietrich Klakow
Spoken Language Systems

Saarland University
dietrich.klakow

@lsv.uni-saarland.de

Abstract
Sentence retrieval is a very important part of
question answering systems. Term clustering,
in turn, is an effective approach for improving
sentence retrieval performance: the more simi-
lar the terms in each cluster, the better the per-
formance of the retrieval system. A key step in
obtaining appropriate word clusters is accurate
estimation of pairwise word similarities, based
on their tendency to co-occur in similar con-
texts. In this paper, we compare four differ-
ent methods for estimating word co-occurrence
frequencies from two different corpora. The re-
sults show that different, commonly-used con-
texts for defining word co-occurrence differ
significantly in retrieval performance. Using an
appropriate co-occurrence criterion and corpus
is shown to improve the mean average preci-
sion of sentence retrieval form 36.8% to 42.1%.

1 Corpus-Driven Clustering of Terms
Since the search in Question Answering (QA) is con-
ducted over smaller segments of text than in docu-
ment retrieval, the problems of data sparsity and ex-
act matching become more critical. The idea of using
class-based language model by applying term clus-
tering, proposed by Momtazi and Klakow (2009), is
found to be effective in overcoming these problems.

Term clustering has a very long history in natu-
ral language processing. The idea was introduced
by Brown et al. (1992) and used in different appli-
cations, including speech recognition, named entity
tagging, machine translation, query expansion, text
categorization, and word sense disambiguation. In
most of the studies in term clustering, one of several
well-know notions of co-occurrence—appearing in

the same document, in the same sentence or follow-
ing the same word—has been used to estimate term
similarity. However, to the best of our knowledge,
none of them explored the relationship between dif-
ferent notions of co-occurrence and the effectiveness
of their resulting clusters in an end task.

In this research, we present a comprehensive study
of how different notions of co-occurrence impact re-
trieval performance. To this end, the Brown algo-
rithm (Brown et al., 1992) is applied to pairwise word
co-occurrence statistics based on different definitions
of word co-occurrence. Then, the word clusters are
used in a class-based language model for sentence
retrieval. Additionally, impact of corpus size and do-
main on co-occurrence estimation is studied.

The paper is organized as follows. In Section 2,
we give a brief description of class-based language
model for sentence retrieval and the Brown word
clustering algorithm. Section 3 presents different
methods for estimating the word co-occurrence. In
Section 4, experimental results are presented. Fi-
nally, Section 5 summarizes the paper.

2 Term Clustering Method and Application
In language model-based sentence retrieval, the prob-
ability P (Q|S) of generating query Q conditioned on
a candidate sentence S is first calculated. Thereafter
sentences in the search collection are ranked in de-
scending order of this probability. For word-based
unigram, P (Q|S) is estimated as

P (Q|S) =
∏

i=1...M

P (qi|S), (1)

where M is the number of query terms, qi denotes the
ith query term in Q, and S is the sentence model.

325

For class-based unigrams, P (Q|S) is computed
using only the cluster labels of the query terms as

P (Q|S) =
∏

i=1...M

P (qi|Cqi , S)P (Cqi |S), (2)

where Cqi is the cluster that contains qi and
P (qi|Cqi , S) is the emission probability of the
ith query term given its cluster and the sen-
tence. P (Cqi |S) is analogous to the sentence model
P (qi|S) in (1), but is based on clusters instead of
terms. To calculate P (Cqi |S), each cluster is con-
sidered an atomic entity, with Q and S interpreted as
sequences of such entities.

In order to cluster lexical items, we use the al-
gorithm proposed by Brown et al (1992), as imple-
mented in the SRILM toolkit (Stolcke, 2002). The al-
gorithm requires an input corpus statistics in the form
〈w, w′, fww′〉, where fww′ is the number of times the
word w′ is seen in the context w. Both w and w′ are
assumed to come from a common vocabulary. Be-
ginning with each vocabulary item in a separate clus-
ter, a bottom-up approach is used to merge the pair of
clusters that minimizes the loss in Average Mutual In-
formation (AMI) between the word cluster Cw′ and
its context cluster Cw. Different words seen in the
same contexts are good candidates for merger, as are
different contexts in which the same words are seen.

While originally proposed with bigram statistics,
the algorithm is agnostic to the definition of co-
occurrence. E.g. if 〈w, w′〉 are verb-object pairs,
the algorithm clusters verbs based on their selectional
preferences, if fww′ is the number of times w and w′

appear in the same document, it will produce seman-
tically (or topically) related word-clusters, etc.

Several notions of co-occurrence have been used
in the literature to cluster words, as described next.

3 Notions of Word Co-occurrence
Co-occurrence in a Document

If two content words w and w′ are seen in the
same document, they are usually topically related. In
this notion of co-occurrence, how near or far away
from each other they are in the document is irrele-
vant, as is their order of appearance in the document.
Document-wise co-occurrence has been successfully
used in many NLP applications such as automatic
thesaurus generation (Manning et al., 2008)

Statistics of document-wise co-occurrence may be
collected in two different ways. In the first case,

fww′ = fw′w is simply the number of documents that
contain both w and w′. This is usually the notion
used in ad hoc retrieval. Alternatively, we may want
to treat each instance of w′ in a document that con-
tains an instance of w to be a co-occurrence event.
Therefore if w′ appears three times in a document
that contains two instances of w, the former method
counts it as one co-occurrence, while the latter as six
co-occurrences. We use the latter statistic, since we
are concerned with retrieving sentence sized “docu-
ments,” wherein a repeated word is more significant.

Co-occurrence in a Sentence
Since topic changes sometimes happen within a

single document, and our end task is sentence re-
trieval, we also investigate the notion of word co-
occurrence in a smaller segment of text such as a
sentence. In contrast to the document-wise model,
sentence-wise co-occurrence does not consider whole
documents, and only concerns itself with the number
of times that two words occur in the same sentence.

Co-occurrence in a Window of Text
The window-wise co-occurrence statistic is an even

narrower notion of context, considering only terms in
a window surrounding w′. Specifically, a window of
a fixed size is moved along the text, and fww′ is set
as the number of times both w and w′ appear in the
window. Since the window size is a free parameter,
different sizes may be applied. In our experiments we
use two window sizes, 2 and 5, that have been studied
in related research (Church and Hanks, 1990).

Co-occurrence in a Syntactic Relationship
Another notion of word similarity derives from

having the same syntactic relationship with the con-
text w. This syntax-wise co-occurrence statistic is
similar to the sentence-wise co-occurrence, in that
co-occurrence is defined at the sentence level. How-
ever, in contrast to the sentence-wise model, w and
w′ are said to co-occur only if there is a syntactic re-
lation between them in that sentence. E.g., this type
of co-occurrence can help cluster nouns that are used
as objects of same verb, such as ‘tea’, ‘water’, and
‘cola,’ which all are used with the verb ‘drink’.

To gather such statistics, all sentences in the corpus
must be syntactically parsed. We found that a depen-
dency parser is an appropriate tool for our goal: it

326

directly captures dependencies between words with-
out the mediation of any virtual (nonterminal) nodes.
Having all sentences in the parsed format, fww′ is de-
fined as the number of times that the words w and w′

have a parent-child relationship of any syntactic type
in the dependency parse tree. For our experiments we
use MINIPAR (Lin, 1998) to parse the whole corpus
due to its robustness and speed.

4 Sentence Retrieval Experiments
4.1 Derivatives of the TREC QA Data Sets

The set of questions from the TREC 2006 QA track1

was used as the test data to evaluate our models,
while the TREC 2005 set was used for development.

The TREC 2006 QA task contains 75 question-
series, each on one topic, for a total of 403 factoid
questions which is used as queries for sentence re-
trieval. For sentence-level relevance judgments, the
Question Answer Sentence Pair corpus of Kaisser
and Lowe (2008) was used. All the documents
that contain relevant sentences are from the NIST
AQUAINT1 corpus.

QA systems typically employ sentence retrieval af-
ter initial, high quality document retrieval. To simu-
late this, we created a separate search collection for
each question using all sentences from all documents
relevant to the topic (question-series) from which the
question was derived. On average, there are 17 rel-
evant documents per topic, many not relevant to the
question itself: they may be relevant to another ques-
tion. So the sentence search collection is realistic,
even if somewhat optimistic.

4.2 Corpora for Term Clustering

We investigated two different corpora2, AQUAINT1
and Google n-grams, to obtain word co-occurrence
statistics for term clustering. Based on this we can
also evaluate the impact of corpus size and corpus
domain on the result of term clustering.

AQUAINT1 consists of English newswire text ex-
tracted from the Xinhua, the New York Times and the
Associated Press Worldstream News Services.

The Google n-gram counts were generated from
publicly accessible English web pages. Since there is

1See http://trec.nist.gov.
2See catalog numbers LDC2002T31 and LDC2006T13 re-

spectively at http://www.ldc.upenn.edu/Catalog.

Corpus Co-occurrence # Word Pairs
AQUAINT1 document 368,109,133
AQUAINT1 sentence 104,084,473
AQUAINT1 syntax 12,343,947
AQUAINT1 window-5 46,307,650
AQUAINT1 window-2 14,093,661

Google n-grams window-5 12,005,479
Google n-grams window-2 328,431,792

Table 1: Statistics for different notions of co-occurrence.

no possibility of extracting document-wise, sentence-
wise or syntax-wise co-occurrence statistics from the
Google n-gram corpus, we only collect window-wise
statistics to the extent available in the corpus.

Table 1 shows the number of word pairs extracted
from the two corpora with different definitions of co-
occurrence. The statistics only include word pairs
for which both constituent words are present in the
35,000 word vocabulary of our search collection.

4.3 Sentence Retrieval Results and Discussion
Sentence retrieval performance for term clustering
using different definitions of word co-occurrence is
shown in Figure 1. Since the Brown algorithm re-
quires specifying the number of clusters, tests were
conducted for 50, 100, 200, 500, and 1000 clusters
of the term vocabulary. The baseline system is the
word-based sentence retrieval model of Equation (1).

Figure 1(a) shows the Mean Average Precision
(MAP) for class-based sentence retrieval of Equation
(2) using clusters based on different co-occurrence
statistics from AQUAINT1. Note that

(i) the best result achieved by sentence-wise co-
occurence is better the best result of document-
wise, perhaps due to more local and relevant in-
formation that it captures;

(ii) all the results achieved by syntax-wise co-
occurrence are better than sentence-wise, indi-
cating that merely co-occurring in a sentence
is not very indicative of word similarity, while
relations extracted from syntactic structure im-
prove system performance significantly;

(iii) window-2 significantly outperforms all other
notions of co-occurrence; i.e., the bigram statis-
tics achieve the best clustering results. In com-
parison, window-5 has the worst results, with
performance very close to baseline.

Although window-5 co-occurrence has been reported

327

50 500
0.35

0.36

0.37

0.38

0.39

0.40

0.41

0.42

0.43

document sentence window2 window5 syntax baseline

log of number of clusters

M
A

P

50 500
0.35

0.36

0.37

0.38

0.39

0.40

0.41

0.42

0.43

AQUAINTwindow2 Googlewindow2 Googlewindow5 baseline

log of number of clusters

M
A

P

(b)(a)

Figure 1: MAP of sentence retrieval for different word co-occurrence statistics from AQUAINT1 and Google n-grams.

to be effective in other applications, it is not helpful
in sentence retrieval.

Figure 1(b) shows the MAP for class-based sen-
tence retrieval of Equation (2) when window-wise
co-occurrence statistics from the Google n-grams are
used. For better visualization, we repeated the MAP
results using AQUAINT1 window-2 co-occurrence
statistics from Figure 1(a) in 1(b). Note that

(iv) window-2 co-occurrence statistics significantly
outperform window-5 for the Google n-grams,
consistent with results from AQUAINT1;

(v) Google n-gram window-2 co-occurrence statis-
tics consistently result in better MAP than
AQUAINT window-2.

The last result indicates that even though the Google
n-grams are from a different (and much broader) do-
main than the test data, they significantly improve the
system performance due to sheer size. Finally

(vi) Google n-gram window-2 MAP curve is flatter
than AQUAINT window-2; i.e., performance is
not very sensitive to the number of clusters.

The best overall result is from Google window-2
co-occurrence statistics with 100 clusters, achiev-
ing 42.1% MAP while the best result derived
from AQUAINT1 is 41.7% MAP for window-2 co-
occurrence with 100 clusters, and the MAP of the
word-based model (baseline) is 36.8%.

5 Concluding Remarks
We compared different notions of word co-
occurrence for clustering terms, using document-
wise, sentence-wise, window-wise, and syntax-wise
co-occurrence statistics derived from AQUAINT1.

We found that different notions of co-occurrence sig-
nificantly change the behavior of a sentence retrieval
system, in which window-wise model with size 2
achieves the best result. In addition, Google n-grams
were used for window-wise model to study the im-
pact of corpus size and domain on the clustering re-
sult. The result showed that although the domain of
the Google n-grams is dissimilar to the test set, it
outperforms models derived from AQUAINT1 due to
sheer size.

Acknowledgments
Saeedeh Momtazi is funded by the German research
foundation DFG through the International Research
Training Group (IRTG 715).

References
P.F. Brown, V.J.D. Pietra, P.V. Souza, J.C. Lai, and R.L.

Mercer. 1992. Class-based n-gram models of natural
language. Computational Linguistics, 18(4):467–479.

K.W. Church and P. Hanks. 1990. Word association
norms, mutual information, and lexicography. Com-
putational Linguistics, 16(1):22–29.

M. Kaisser and J.B. Lowe. 2008. Creating a research
collection of question answer sentence pairs with Ama-
zon’s mechanical turk. In Proc. of LREC.

D. Lin. 1998. Dependency-based evaluation of MINI-
PAR. In Proc. of the Evaluation of Parsing Systems
Workshop.

C.D. Manning, P. Raghavan, and H. Schütze. 2008. Intro-
duction to Information Retrieval. Cambridge Univer-
sity Press.

S. Momtazi and D. Klakow. 2009. A word clustering
approach for language model-based sentence retrieval
in question answering systems. In Proc. of ACM CIKM.

A. Stolcke. 2002. SRILM - an extensible language mod-
eling toolkit. In Proc. of ICSLP.

328

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 329–332,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Information Content Measures of Semantic Similarity
Perform Better Without Sense-Tagged Text

Ted Pedersen
Department of Computer Science
University of Minnesota, Duluth

Duluth, MN 55812
tpederse@d.umn.edu

http://wn-similarity.sourceforge.net

Abstract

This paper presents an empirical comparison
of similarity measures for pairs of concepts
based on Information Content. It shows that
using modest amounts of untagged text to de-
rive Information Content results in higher cor-
relation with human similarity judgments than
using the largest available corpus of manually
annotated sense–tagged text.

1 Introduction

Measures of semantic similarity based on WordNet
have been widely used in Natural Language Pro-
cessing. These measures rely on the structure of
WordNet to produce a numeric score that quantifies
the degree to which two concepts (represented by
a sense or synset) are similar (or not). In their sim-
plest form these measures use path length to identify
concepts that are physically close to each other and
therefore considered to be more similar than con-
cepts that are further apart.

While this is a reasonable first approximation to
semantic similarity, there are some well known limi-
tations. Most significant is that path lengths between
very specific concepts imply much smaller distinc-
tions in semantic similarity than do comparable path
lengths between very general concepts. One pro-
posed improvement is to augment concepts in Word-
Net with Information Content values derived from
sense–tagged corpora or from raw unannotated cor-
pora (Resnik, 1995).

This paper shows that Information Content mea-
sures based on modest amounts of unannotated cor-
pora have greater correlation with human similarity

judgements than do those based on the largest corpus
of sense-tagged text currently available.1 The key
to this success is not in the specific type of corpora
used, but rather in increasing the number of con-
cepts in WordNet that have counts associated with
them. These results show that Information Content
measures of semantic similarity can be significantly
improved without requiring the creation of sense–
tagged corpora (which is very expensive).

1.1 Information Content

Information Content (IC) is a measure of specificity
for a concept. Higher values are associated with
more specific concepts (e.g., pitch fork), while those
with lower values are more general (e.g., idea). In-
formation Content is computed based on frequency
counts of concepts as found in a corpus of text. The
frequency associated with a concept is incremented
in WordNet each time that concept is observed, as
are the counts of the ancestor concepts in the Word-
Net hierarchy (for nouns and verbs). This is neces-
sary because each occurrence of a more specific con-
cept also implies the occurrence of the more general
ancestor concepts.

When a corpus is sense–tagged, mapping occur-
rences of a word to a concept is straightforward
(since each sense of a word corresponds with a con-
cept or synset in WordNet). However, if the text has
not been sense–tagged then all of the possible senses
of a given word are incremented (as are their ances-
tors). For example, if tree (as a plant) occurs in a
sense–tagged text, then only the concept associated

1These experiments were done with version 2.05 of Word-
Net::Similarity (Pedersen et al., 2004).

329

with tree as a kind of plant would be incremented. If
the text is untagged, then all of the possible senses
of tree would be incremented (such as the mathe-
matical sense of tree, a shoe tree, a plant, etc.) In
this case the frequency of all the occurrences of a
word are divided equally among the different pos-
sible senses. Thus, if a word occurs 42 times in a
corpus and there are six possible senses (concepts),
each sense and all of their ancestors would have their
frequency incremented by seven.2

For each concept (synset) c in WordNet, Informa-
tion Content is defined as the negative log of the
probability of that concept (based on the observed
frequency counts):

IC(c) = −logP (c)

Information Content can only be computed for
nouns and verbs in WordNet, since these are the only
parts of speech where concepts are organized in hi-
erarchies. Since these hierarchies are separate, In-
formation Content measures of similarity can only
be applied to pairs of nouns or pairs of verbs.

2 Semantic Similarity Measures

There are three Information Content measures im-
plemented in WordNet::Similarity: (res) (Resnik,
1995), (jcn) (Jiang and Conrath, 1997), and (lin)
(Lin, 1998).

These measures take as input two concepts c1 and
c2 (i.e., senses or synsets in WordNet) and output a
numeric measure of similarity. These measures all
rely to varying degrees on the idea of a least com-
mon subsumer (LCS); this is the most specific con-
cept that is a shared ancestor of the two concepts.
For example, the LCS of automobile and scooter is
vehicle.

The Resnik (res) measure simply uses the Infor-
mation Content of the LCS as the similarity value:

res(c1, c2) = IC(LCS(c1, c2))

The Resnik measure is considered somewhat
coarse, since many different pairs of concepts may
share the same LCS. However, it is less likely to
suffer from zero counts (and resulting undefined val-
ues) since in general the LCS of two concepts will
not be a very specific concept (i.e., a leaf node in

2This is the –resnik counting option in WordNet::Similarity.

WordNet), but will instead be a somewhat more gen-
eral concept that is more likely to have observed
counts associated with it.

Both the Lin and Jiang & Conrath measures at-
tempt to refine the Resnik measure by augmenting it
with the Information Content of the individual con-
cepts being measured in two different ways:

lin(c1, c2) = 2∗res(c1,c2)
IC(c1)+IC(c2)

jcn(c1, c2) = 1
IC(c1)+IC(c2)−2∗res(c1,c2)

All three of these measures have been widely
used in the NLP literature, and have tended to per-
form well in a wide range of applications such as
word sense disambiguation, paraphrase detection,
and Question Answering (c.f., (Resnik, 1999)).

3 Experimental Data

Information Content in WordNet::Similarity is (by
default) derived from SemCor (Miller et al., 1993), a
manually sense–tagged subset of the Brown Corpus.
It is made up of approximately 676,000 words, of
which 226,000 are sense–tagged. SemCor was orig-
inally created using sense–tags from version 1.6 of
WordNet, and has been mapped to subsequent ver-
sions to stay current.3 This paper uses version 3.0 of
WordNet and SemCor.

WordNet::Similarity also includes a utility (raw-
textFreq.pl) that allows a user to derive Information
Content values from any corpus of plain text. This
utility is used with the untagged version of SemCor
and with various portions of the English GigaWord
corpus (1st edition) to derive alternative Information
Content values.

English GigaWord contains more than 1.7 billion
words of newspaper text from the 1990’s and early
21st century, divided among four different sources:
Agence France Press English Service (afe), Associ-
ated Press Worldstream English Service (apw), The
New York Times Newswire Service (nyt), and The
Xinhua News Agency English Service (xie).

This paper compares the ranking of pairs of con-
cepts according to Information Content measures in
WordNet::Similarity with a number of manually cre-
ated gold standards. These include the (RG) (Ruben-
stein and Goodenough, 1965) collection of 65 noun

3http://www.cse.unt.edu/˜rada/downloads.html

330

Table 1: Rank Correlation of Existing Measures
measure WS MC RG
vector .46 .89 .73
lesk .42 .83 .68
wup .34 .74 .69
lch .28 .71 .70
path .26 .68 .69
random -.20 -.16 .15

pairs, the (MC) (Miller and Charles, 1991) collec-
tion of 30 noun pairs (a subset of RG), and the (WS)
WordSimilarity-353 collection of 353 pairs (Finkel-
stein et al., 2002). RG and MC have been scored for
similarity, while WS is scored for relatedness, which
is a more general and less well–defined notion than
similarity. For example aspirin and headache are
clearly related, but they aren’t really similar.

4 Experimental Results

Table 1 shows the Spearman’s rank correlation of
several other measures of similarity and relatedness
in WordNet::Similarity with the gold standards dis-
cussed above. The WordNet::Similarity vector relat-
edness measure achieves the highest correlation, fol-
lowed closely by the adapted lesk measure. These
results are consistent with previous findings (Pat-
wardhan and Pedersen, 2006). This table also shows
results for several path–based measures.4

Table 2 shows the correlation of jcn, res, and lin
when Information Content is derived from 1) the
sense-tagged version of SemCor (semcor), 2) Sem-
Cor without sense tags (semcor-raw), and 3) steadily
increasing subsets of the 133 million word xie por-
tion of the English GigaWord corpus. These sub-
sets start with the entire first month of xie (199501,
from January 1995) and then two months (199501-
02), three months (199501-03), up through all of
1995 (199501-12). Thereafter the increments are an-
nual, with two years of data (1995-1996), then three
(1995-1997), and so on until the entire xie corpus is
used (1995-2001). The afe, apw, and nyt portions of
GigaWord are also used individually and then com-
bined all together along with xie (all).

4wup is the Wu & Palmer measure, lch is the Leacock &
Chodorow measure, path relies on edge counting, and random
provides a simple sanity check.

The size (in tokens) of each corpus is shown in the
second column of Table 2 (size), which is expressed
in thousands (k), millions (m), and billions (b).

The third column (cover) shows what percentage
of the 96,000 noun and verb synsets in WordNet re-
ceive a non-zero frequency count when Information
Content is derived from the specified corpus. These
values show that the 226,000 sense–tagged instances
in SemCor cover about 24%, and the untagged ver-
sion of SemCor covers 37%. As it happens the cor-
relation results for semcor-raw are somewhat better
than semcor, suggesting that coverage is at least as
important (if not more so) to the performance of In-
formation Content measures than accurate mapping
of words to concepts.

A similar pattern can be seen with the xie results
in Table 2. This again shows that an increase in
WordNet coverage is associated with increased per-
formance of the Information Content measures. As
coverage increases the correlation improves, and in
fact the results are better than the path–based mea-
sures and approach those of lesk and vector (see Ta-
ble 1). The one exception is with respect to the WS
gold standard, where vector and lesk perform much
better than the Information Content measures. How-
ever, this seems reasonable since they are related-
ness measures, and the WS corpus is annotated for
relatedness rather than similarity.

As a final test of the hypothesis that coverage
matters as much or more than accurate mapping of
words to concepts, a simple baseline method was
created that assigns each synset a count of 1, and
then propagates that count up to the ancestor con-
cepts. This is equivalent to doing add-1 smoothing
without any text (add1only). This results in corre-
lation nearly as high as the best results with xie and
semcor-raw, and is significantly better than semcor.

5 Conclusions

This paper shows that semantic similarity mea-
sures based on Information Content can be signif-
icantly improved by increasing the coverage of the
frequency counts used to derive Information Con-
tent. Increased coverage can come from unannotated
text or simply assigning counts to every concept in
WordNet and does not require sense–tagged text.

331

Table 2: Rank Correlation of Information Content Measures From Different Corpora
jcn lin res

corpus size cover WS MC RG WS MC RG WS MC RG
semcor 226 k .24 .21 .72 .51 .30 .73 .58 .38 .74 .69
semcor-raw 670 k .37 .26 .82 .58 .32 .79 .65 .38 .76 .70
xie:
199501 1.2 m .35 .35 .78 .57 .37 .75 .63 .37 .73 .68
199501-02 2.3 m .39 .31 .79 .65 .32 .75 .67 .36 .73 .68
199501-03 3.8 m .42 .34 .88 .69 .34 .81 .70 .37 .75 .69
199501-06 7.9 m .46 .36 .88 .69 .36 .81 .70 .37 .75 .69
199501-09 12 m .49 .36 .88 .69 .36 .81 .70 .37 .75 .69
199501-12 16 m .51 .37 .87 .73 .36 .81 .71 .37 .75 .69
1995-1996 34 m .56 .37 .88 .73 .36 .81 .72 .37 .75 .69
1995-1997 53 m .58 .37 .88 .73 .36 .81 .71 .37 .75 .69
1995-1998 73 m .60 .37 .89 .73 .36 .81 .72 .37 .75 .69
1995-1999 94 m .62 .36 .88 .73 .36 .81 .72 .37 .76 .69
1995-2000 115 m .63 .36 .89 .73 .36 .81 .71 .37 .76 .70
1995-2001 133 m .64 .36 .88 .73 .36 .81 .71 .37 .76 .70
afe 174 m .66 .36 .88 .81 .36 .80 .78 .37 .77 .79
apw 560 m .75 .36 .84 .78 .36 .79 .78 .37 .76 .79
nyt 963 m .83 .36 .84 .78 .36 .79 .77 .37 .77 .80
all 1.8 b .85 .34 .85 .79 .35 .80 .78 .37 .77 .79
add1only 96 k 1.00 .36 .85 .73 .37 .77 .73 .39 .76 .70

Acknowledgements

Many thanks to Siddharth Patwardhan and Jason
Michelizzi for their exceptional work on Word-
Net::Similarity over the years, which has made this
and a great deal of other research possible.

References

L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin,
Z. Solan, G. Wolfman, and E. Ruppin. 2002. Plac-
ing search in context: The concept revisited. ACM
Transactions on Information Systems, 20(1):116–131.

J. Jiang and D. Conrath. 1997. Semantic similarity based
on corpus statistics and lexical taxonomy. In Proceed-
ings on International Conference on Research in Com-
putational Linguistics, pages 19–33, Taiwan.

D. Lin. 1998. An information-theoretic definition of
similarity. In Proceedings of the International Con-
ference on Machine Learning, Madison, August.

G.A. Miller and W.G. Charles. 1991. Contextual corre-
lates of semantic similarity. Language and Cognitive
Processes, 6(1):1–28.

G.A. Miller, C. Leacock, R. Tengi, and R. Bunker. 1993.

A semantic concordance. In Proceedings of the Work-
shop on Human Language Technology, pages 303–
308.

S. Patwardhan and T. Pedersen. 2006. Using WordNet-
based Context Vectors to Estimate the Semantic Relat-
edness of Concepts. In Proceedings of the EACL 2006
Workshop on Making Sense of Sense: Bringing Com-
putational Linguistics and Psycholinguistics Together,
pages 1–8, Trento, Italy, April.

T. Pedersen, S. Patwardhan, and J. Michelizzi. 2004.
Wordnet::Similarity - Measuring the relatedness of
concepts. In Proceedings of Fifth Annual Meeting
of the North American Chapter of the Association for
Computational Linguistics, pages 38–41, Boston, MA.

P. Resnik. 1995. Using information content to evaluate
semantic similarity in a taxonomy. In Proceedings of
the 14th International Joint Conference on Artificial
Intelligence, pages 448–453, Montreal, August.

P. Resnik. 1999. Semantic similarity in a taxonomy: An
information-based measure and its application to prob-
lems of ambiguity in natural language. Journal of Ar-
tificial Intelligence Research, 11:95–130.

H. Rubenstein and J.B. Goodenough. 1965. Contextual
correlates of synonymy. Computational Linguistics,
8:627–633.

332

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 333–336,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Generating Expository Dialogue from Monologue:
Motivation, Corpus and Preliminary Rules

Paul Piwek
Centre for Research in Computing

The Open University
Walton Hall, Milton Keynes, UK

p.piwek@open.ac.uk

Svetlana Stoyanchev
Centre for Research in Computing

The Open University
Walton Hall, Milton Keynes, UK
s.stoyanchev@open.ac.uk

Abstract
Generating expository dialogue from mono-
logue is a task that poses an interesting and re-
warding challenge for Natural Language Pro-
cessing. This short paper has three aims:
firstly, to motivate the importance of this
task, both in terms of the benefits of ex-
pository dialogue as a way to present in-
formation and in terms of potential applica-
tions; secondly, to introduce a parallel cor-
pus of monologues and dialogues which en-
ables a data-driven approach to this challenge;
and, finally, to describe work-in-progress on
semi-automatic construction of Monologue-
to-Dialogue (M2D) generation rules.

1 Introduction

The tasks of text generation – e.g., Reiter et al.
(2005) and Demir et al. (2008) – and generation
in dialogue – e.g., Stent (2002) and DeVault et al.
(2008) – are central topics in Natural Language Gen-
eration (NLG). What sets the two tasks apart is the
interactive nature of dialogue, where participants
need to adapt their contributions to each other.

This paper introduces an NLG task, the genera-
tion of expository dialogue, to the Computational
Linguistics community which occupies the middle
ground between these two tasks. An expository di-
alogue is an authored conversation between two fic-
tive characters. It can be presented as text, audio or
film. Although there is no real-time interactivity, in
expository dialogue the contributions of the charac-
ters do need to mesh with each other. The main pur-
pose of expository dialogue is to present informa-
tion (a description, explanation or definition) to the

reader, hearer or viewer, in contrast with dramatic
dialogue, which tells a story.

The use of expository dialogue goes back as far as
Plato (c. 470-399 BC), who expressed his ideas as
dialogues between Socrates and his contemporaries.
Recently, a number of empirical studies show that
for some purposes expository dialogue has advan-
tages over monologue: for learners, dialogue can be
more memorable, stimulate them to formulate their
own questions (Craig et al., 2000), and get them to
talk with each other (Lee et al., 1998). Expository
dialogue has also been found to be more effective
for persuasion (Suzuki and Yamada, 2004).

Additionally, dialogue lends itself very well
for multimedia presentations by computer-animated
agents (André et al., 2000; van Deemter et al.,
2008). Potential application domains include ed-
ucation, (serious) games and E-Health. In educa-
tion, information from textbooks could be presented
in dialogue form, possibly using virtual reality plat-
forms such as Second Life. Automatically gener-
ating dialogue from text for non-player characters
could have a tremendous impact on the gaming in-
dustry; e.g., (IGDA Game Writers SIG, 2003) state
that the amount of dialogue script for a character-
driven computer game is usually many times that
for the average film. In connection with E-health,
consider patient information leaflets, which are of-
ten left unread; presenting them as movies between
a virtual pharmacist and client may help address this.
Thus instead of being presented with

(1) a. You can take aspirin,

b. if you have a headache.

333

c. Though aspirin does have side effects:
d. it can harm circulation.

the patient could watch a movie on their mobile de-
vice of an exchange between a virtual client (lay-
man, L) and pharmacist (expert, E):

(2) L: What if I have a headache?
E: You can take aspirin
L: But does it have side effects?
E: Yes, it can harm circulation.

So far, research on generating expository dialogue
has been firmly rooted in classical AI approaches.
Work in this area starts from knowledge represen-
tations or databases (André et al., 2000), and even
research that does take text as input – e.g., Piwek
et al. (2007) describe a system for generating di-
alogues such as Example 2 – relies on handcrafted
rules. Two challenges present themselves for NLP
research: 1) generation of expository dialogue from
text, and 2) use of data-driven, rather than manually
authored, generation rules.

Apart from the cost of manually authoring gener-
ation rules, previous research has found that human-
authored rules can result in ‘too much information
[being] given too quickly’ (Williams et al., 2007),
which can be addressed by conversational padding.
We argue that rather than trying to invent padding
rules, the best strategy is to learn rules automatically
from professionally authored dialogues.

2 The CODA Corpus

To make inroads into data-driven dialogue genera-
tion, we first need to have the necessary resources.
We propose to view Monologue-to-Dialogue (M2D)
generation as analogous to machine translation; con-
sequently we need a parallel corpus for learning
mappings from the source (monologue) to the tar-
get (dialogue) texts. In the ongoing CODA1 project
we have created such a corpus. It consists of profes-
sionally authored dialogues2 that have been aligned
with monologues (written by ourselves) expressing
the same information. Since our ultimate aim is to
generate dialogues that resemble those written by

1COherent Dialogue Automatically generated from text
2Most dialogues are from the Gutenberg library to facilitate

our planned release of the corpus to the research community.

Sp Dialog act Dialogue Turn Monologue
E: Complex

Question
When you have
a pain in your
foot, how do
you know it?

When you
have a pain in
your foot (i)
you know it
because you

L: Explain I feel it. can feel it. (ii)
E: Explain-

Contradict
But you do not
feel it until a
nerve reports
the hurt to the
brain.

But you do not
feel it until a
nerve reports
the hurt to the
brain. (iii)

E: YN-
Question

Yet the brain is
the seat of the
mind , is it not?

Yet the brain is
the seat of the
mind. (iv)

Table 1: Parallel Monologue and Dialogue Example from
Mark Twain’s “What is Man?”

acclaimed authors, we started with professionally
authored dialogues and created the corresponding
monologues. From a practical point of view, it was
more feasible to use existing dialogue by acclaimed
authors than to hire professional authors to write di-
alogue based on monologues.

We have annotated both dialogues and mono-
logues: dialogue with dialogue acts and monologue
with discourse relations.3 We achieved 91% agree-
ment on segmentation and kappa=.82 for dialogue
act annotation on 11 dialogue act tags. We devel-
oped a D2MTranslation tool for monologue author-
ing, segmentation and dialogue annotation.

In January 2010, the corpus included 500 turns
from “What is man?”, a dialogue by Mark Twain,
and 88 turns from “Evolving Algebras”, an aca-
demic paper in the form of dialogue by Yuri Gure-
vich.4 Both of these expository dialogues present
conversation between an expert (Old Man in Twain
and Author in Gurevich) and a layman (Young Man
in Twain and Quisani in Gurevich). Table 1 shows
an example of a dialogue fragment, aligned mono-
logue and dialogue act annotations. The discourse
structure of the monologue is depicted in Figure 1.

Table 2 shows the distribution of the dialogue acts
between expert and layman. In both dialogues, the

3See (Stoyanchev and Piwek, 2010) for details.
4In addition to these dialogues we are working on a dialogue

by Berkeley (Three Dialogues between Hylas and Philonous)
and a selection of shorter fragments (for copyrights reasons) by
authors such as Douglas Hofstadter and Paul Feyerabend.

334

Figure 1: Discourse structure of the monologue in Table 1

most frequent dialogue act is Explain, where a char-
acter presents information (as a new idea or as a re-
sponse to another utterance). Also, in both dialogues
the layman asks more often for clarification than
the expert. The distribution over information re-
quests (yes/no, factoid, and complex questions) and
responses (yes, no, factoid) differs between the two
dialogues: in Twain’s dialogue, the expert mostly
requests information and the layman responds to re-
quests, whereas in Gurevich’s dialogue it is the other
way around.

The differences in style suggests that the M2D
mapping rules will be author or style-specific. By
applying M2D rules obtained from two different au-
thors (e.g., Twain and Gurevich) to the same text
(e.g., the aspirin example) we can generate two dif-
ferent dialogues. This will enable us to vary the pre-
sentation style of automatically generated dialogues.

Twain Gurevich
Tag Expert Layman Expert Layman

Explain 69 55 49 24
Clarify 1 15 0 6
Request 60 26 2 29

Response 14 43 9 0

Table 2: Dialogue act tag frequencies for expert and lay-
man in a sample of 250 turns from Twain and 88 turns
from Gurevich dialogues.

3 Rules

We automatically derive M2D rules from the aligned
discourse relations and dialogue acts in our parallel
corpus of monologues and dialogues. Table 3 shows
three rules generated from the parallel dialogue–
monologue fragment in Table 1. The first rule, R1,
is based on the complete discourse structure of the
monologue (i–iv), whereas R2 and R3 are based on
only a part of it: R2 is based on i–iii, whereas R3 is
based on i and ii. By generating rules from subtrees
of a discourse structure, we obtain several rules from

a single dialogue fragment in the corpus.

Condition Elaboration

b a dc

Contrast

Condition Elaboration

b a dc

Condition

b a

Contrast

c − d

(1)

(2)

Elaboration

dc

Contrast

a − b

(4)

(3)

Figure 2: Discourse structures of the monologue in Ex-
ample 1. a-b and c-d indicate a concatenation of two
clauses.

Let us illustrate the use of such rules by applying
them to Example 1 about aspirin. The relations be-
tween the clauses of the example are depicted in Fig-
ure 2 (1). To generate a dialogue, we apply a match-
ing M2D rule. Alternatively, we can first simplify
the discourse structure of the monologue by remov-
ing relation nodes as illustrated in Figure 2 (2–4).

The simplified structure in Figure 2 (2) matches
rule R2 from Table 3. By applying R2 we gener-
ate the dialogue in Table 4: the expert asks a com-
plex question composed of clauses a and b, which
the layman answers with an explanation generated
from the same set of clauses. Then the expert offers
a contradicting explanation generated from c and d.
To generate dialogue sentences for a corresponding
discourse structure we are adapting the approach to
paraphrasing of Barzilay and McKeown (2001).

4 Conclusion

This short paper presented three angles on the
Monologue-to-Dialogue (M2D) task. First, as an
opinion piece, it motivates the task of generating ex-
pository dialogue from monologue. We described
empirical research that provides evidence for the
effectiveness of expository dialogue and discussed
applications from education, gaming and E-health.
Second, we introduced the CODA corpus for ad-
dressing the task. Finally, we reported on work-
in-progress on semi-automatic construction of M2D
rules. Our implemented algorithm extracts several
M2D rules from the corpus that are applicable even
to a relatively simple input. Additionally, frequency
analysis of dialogue tags suggests that there is scope
for generating different dialogue styles.

The timeliness of this research is evidenced by the
emergence of a Question Generation (QG) commu-

335

ID Dialogue Structure Monologue Structure
R1 E: Complex Question (i-ii) Contrast (Contrast (Condition(i,ii), iii, iv))

L: Explain (i-ii)
E: Explain-Contradict (iii)
E: YNQuestion (iv)

R2 E: Complex Question (i-ii) Contrast (Condition(i,ii), iii)
L: Explain(i-ii)
E: Explain-Contradict (iii)

R3 E: Complex Question (i-ii) Condition (i,ii)
L: Explain (i-ii)

Table 3: Monologue-to-Dialogue rules extracted from the parallel example in Table 1

Sp Dialogue act Dialogue Turn
E: Complex Ques-

tion a-b
If you have a headache, what
do you do?

L: Explain a-b Take aspirin.
E: Explain-

Contradict
c-d

But aspirin does have side
effects: it can harm circula-
tion

Table 4: A dialogue generated from the monologue about
aspirin by applying the rule R2 (see Table 3)

nity. QG is a subtask of M2D. The first QG work-
shop was held at the end of 2008, resulting in pro-
posals for a Shared Task and Evaluation Campaign
(Rus and Graesser, 2009) for 2010. The CODA cor-
pus should prove to be a useful resource not only for
M2D researchers, but also for the QG community.

Acknowledgments

The research reported in this paper was funded by
the UK Engineering and Physical Sciences Research
Council under grant EP/G/020981/1.

References
E. André, T. Rist, S. van Mulken, M. Klesen, and

S. Baldes. 2000. The automated design of believable
dialogues for animated presentation teams. In Em-
bodied Conversational Agents, pages 220–255. MIT
Press, Cambridge, Mass.

R. Barzilay and K. McKeown. 2001. Extracting para-
phrases from a parallel corpus. In Proc. of ACL/EACL,
Toulouse.

S. Craig, B. Gholson, M. Ventura, A. Graesser, and the
Tutoring Research Group. 2000. Overhearing dia-
logues and monologues in virtual tutoring sessions.
International Journal of Artificial Intelligence in Ed-
ucation, 11:242–253.

S. Demir, S. Carberry, and K. McCoy. 2008. Generating
Textual Summaries of Bar Charts . In Procs of INLG
2008, Ohio, June.

D. DeVault, D. Traum, and R. Artstein. 2008. Making
Grammar-Based Generation Easier to Deploy in Dia-
logue Systems. In Procs SIGdial 2008, Ohio, June.

J. Lee, F. Dinneen, and J. McKendree. 1998. Supporting
student discussions: it isn’t just talk. Education and
Information Technologies, 3:217–229.

P. Piwek, H. Hernault, H. Prendinger, and M. Ishizuka.
2007. T2D: Generating Dialogues between Virtual
Agents Automatically from Text. In Intelligent Virtual
Agents, LNAI 4722, pages 161–174. Springer Verlag.

E. Reiter, S. Sripada, J. Hunter, J. Yu, and I. Davy. 2005.
Choosing Words in Computer-Generated Weather
Forecasts. Artificial Intelligence, 167:137–169.

V. Rus and A. Graesser, editors. 2009. The Ques-
tion Generation Shared Task and Evaluation Chal-
lenge. The University of Memphis. Available at:
http://www.questiongeneration.org/.

IGDA Game Writers SIG. 2003. International game
developers association’s (IGDA) guide to writing for
games. IGDA White Paper.

A. Stent. 2002. A conversation acts model for generating
spoken dialogue contributions. Computer Speech and
Language, 16(3-4):313–352.

S. Stoyanchev and P. Piwek. 2010. Constructing the
CODA corpus. In Procs of LREC 2010, Malta, May.

S. V. Suzuki and S. Yamada. 2004. Persuasion through
overheard communication by life-like agents. In Procs
of the 2004 IEEE/WIC/ACM International Conference
on Intelligent Agent Technology, Beijing, September.

K. van Deemter, B. Krenn, P. Piwek, M. Klesen,
M. Schröder, and S. Baumann. 2008. Fully gener-
ated scripted dialogue for embodied agents. Artificial
Intelligence Journal, 172(10):1219–1244.

S. Williams, P. Piwek, and R. Power. 2007. Generat-
ing Monologue and Dialogue to Present Personalised
Medical Information to Patients. In Procs ENLG
2007, pages 167–170, Schloss Dagstuhl, Germany.

336

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 337–340,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

The Simple Truth about Dependency and Phrase Structure Representations
An Opinion Piece

Owen Rambow
CCLS, Columbia University

New York, NY, USA
rambow@ccls.columbia.edu

Abstract

There are many misconceptions about de-
pendency representations and phrase structure
representations for syntax. They are partly due
to terminological confusion, partly due to a
lack of meta-scientific clarity about the roles
of representations and linguistic theories. This
opinion piece argues for a simple but clear
view of syntactic representation.

1 Introduction

To the machine learning community, treebanks are
just collections of data, like pixels with captions,
structural and behavioral facts about genes, or ob-
servations about wild boar populations. In contrast,
to us computational linguists, treebanks are not nat-
urally occurring data at all: they are the result of
a very complex annotation process. While the text
that is annotated (usually) is naturally occurring, the
annotation itself is already the result of a scientific
activity. This opinion piece argues that the level of
discourse about treebanks often found in our com-
munity does not reflect this fact (presumably due
to the influence of the brute machine learning per-
spective). We, as a community of computational lin-
guists, need to be very precise when talking about
treebanks and syntactic representations in general.

So let’s start with three very important concepts
which we must always distinguish. The representa-
tion type: what type of mathematical object is used
to represent syntactic facts? In this opinion piece,
I only consider dependency trees (DTs) and phrase
structure trees (PSTs) (Section 2). The represented

syntactic content: the morphological and syntactic
facts of the analyzed sentence (Section 3). The syn-
tactic theory: it explains how syntactic content is
represented in the chosen representation type (Sec-
tion 4).

A crucial confusing factor is the fact that the terms
dependency and phrase structure both have both a
mathematical and a linguistic meaning. The math-
ematical meaning refers representation types. The
linguistic meaning refers to syntactic content. I dis-
cuss this issue in Section 3. I discuss the issue of
converting between DTs and PSTs in Section 5, as
an example of how my proposed conceptualization
of syntactic representation throws light on a compu-
tational problem.

This opinion piece will be a success if after read-
ing it, the reader concludes that actually he or she
knew this all along. In fact, this opinion piece does
not advocate for a controversial position; its mission
is to make its readers be more precise when talking
about syntactic representations. This opinion piece
is intentionally polemical for rhetorical reasons.

2 DTs and PSTs as Representation Types

Assume we have two disjoint symbol sets: a set of
terminal symbols which contains the words of the
language we are describing; and a set of nontermi-
nal symbols. A Dependency Tree (DT) is a tree
in which all nodes are labeled with words (elements
of the set of terminal symbols) or empty strings. A
Phrase Structure Tree (PST) is a tree in which all
and only the leaf nodes are labeled with words or
empty strings, and internal nodes are labeled with
nonterminal symbols. There is nothing more to the

337

definitions. Trees of both types can have many other
properties which are not part of the two definitions,
and which do not follow from the definitions. I men-
tion some such properties.

Unordered trees. DTs and PSTs can be ordered or
unordered. For example, the Prague Theory (Sgall
et al., 1986) uses unordered DTs at the deeper level
of representation and ordered DTs at a more surfacy
level. GPSG (Gazdar et al., 1985) uses unordered
trees (or at any rate context-free rules whose right-
hand side is ordered by a separate component of the
grammar), as does current Chomskyan theory (the
PST at spell-out may be unordered).

Empty categories. Empty categories can be empty
pronouns, or traces, which are co-indexed with a
word elsewhere in the tree. Empty pronouns are
widely used in both DT- and PST-based represen-
tations. While most DT-based approaches do not
use traces, Lombardo and Lesmo (1998) do; and
while traces are commonly found in PST-based ap-
proaches, there are many that do not use them, such
as the c-structure of LFG.

Discontinuous Constituents or Non-Projectivity.
Both types of trees can be used with or without dis-
continuous constituents; PSTs are more likely to use
traces to avoid discontinuous constituents, but lin-
guistic proposals for PSTs with discontinuous con-
stituents have been made (work by McCawley, or
(Becker et al., 1991)).

Labeled Arcs. In DTs, arcs often have labels; arcs
in PSTs usually do not, but we can of course label
PST arcs as well, as is done in the German TIGER
corpus.I note that in both DTs and PSTs we can rep-
resent the arc label as a feature on the daughter node,
or as a separate node.

3 Syntactic Content

While there is lots of disagreement about the proper
representation type for syntax, there is actually a
broad consensus among theoretical and descriptive
syntacticians of all persuasions about the range of
syntactic phenomena that exist. What exactly is this
content, then? It is not a theory-neutral representa-
tion of syntax (Section 4). Rather, it is the empirical
matter which linguistic theory attempts to represent
or explain. We cannot represent it without a theory,

but we can refer to it without a theory, using names
such as control constructions or transitive verb. In
the same manner, we use the word light and physi-
cists will agree on what the phenomenon is, but we
cannot represent light within a theory without choos-
ing a representation as either particles or wave.

Note that in linguistics, the terms dependency and
phrase structure refer to syntactic content, i.e., syn-
tactic facts we can represent. Syntactic depen-
dency is direct relation between words. Usually,
this relation is labeled (or typed), and is identical
to (or subsumes) the notion of grammatical func-
tion, which covers relations such as SUBJECT, OB-
JECT, TEMPORAL-ADJUNCT and so forth. Syn-
tactic phrase structure, also known as syntactic
constituency structure is recursive representation
using sets of one or more linguistic units (words
and empty strings), such that at each level, each
set (constituent) acts as a unit syntactically. Lin-
guistic phrase structure is most conveniently ex-
pressed in a phrase structure tree, while linguis-
tic dependency is most conveniently expressed in
a dependency tree. However, we can express the
same content in either type of tree! For exam-
ple, the English Penn Treebank (PTB) encodes the
predicate-argument structure of English using struc-
tural conventions and special nonterminal labels
(“dashtags”), such as NP-SBJ. And a dependency
tree represents constituency: each node can be in-
terpreted both as a preterminal node (X0) and as a
node heading a constituent containing all terminals
included in the subtree it heads (the XP). Of course,
what is more complex to encode in a DT are inter-
mediate projections, such as VP. I leave a fuller dis-
cussion aside for lack of space, but I claim that the
syntactic content which is expressed in intermediate
projections can also be expressed in a DT, through
the use of features and arc labels.

4 Syntactic Theory

The choice of representation type does not deter-
mine the representation for a given sentence. This
is obvious, but it needs to be repeated; I have heard
“What is the DT for this sentence?” one too many
times. There are many possible DTs and PSTs, pro-
posed by serious syntacticians, for even simple sen-

338

tences, even when the syntacticians agree on what
the syntactic content (a transitive verb with SVO or-
der, for example) of the analysis should be! What is
going on?

In order to make sense of this, we need a third player
in addition to the representation type and the con-
tent. This is the syntactic theory. A linguistic the-
ory chooses a representation type and then defines
a coherent mapping for a well-defined set of con-
tent to the chosen representation type. Here, “coher-
ent representation” means that the different choices
made for conceptually independent content are also
representationally independent, so that we can com-
pose representational choices. Note that a theory
can decide to omit some content; for example, we
can have a theory which does not distinguish raising
from control (the English PTB does not).

There are different types of syntactic theories. A
descriptive theory is an account of the syntax of
one language. Examples of descriptive grammars
include works such as Quirk for English, or the an-
notation manuals of monolingual treebanks, such
as (Marcus et al., 1994; Maamouri et al., 2003).
The annotation manual serves two purposes: it tells
the annotators how to represent a syntactic phe-
nomenon, and it tells the users of the treebank (us!)
how to interpret the annotation. A treebank without
manual is meaningless. And an arborescent struc-
ture does not mean the same thing in all treebanks
(for example, a “flat NP” indicates an unannotated
constituent in the English ATB but a fully annotated
construction in the Arabic Treebank is).

An explanatory theory is a theory which attempts
to account for the syntax of all languages, for exam-
ple by reducing their diversity to a set of principles
and finite-valued parameters. Linguistic theories
(and explanatory theories in particular) often take
the form of a one-to-many mapping from a simple
representation of syntactic dependency (predicate-
argument structure) to a structural representation
that determines surface word order. The linguistic
theory itself is formulated as a (computational) de-
vice that relates the deeper level to the more surfacy
level. LFG has a very pure expression of this ap-
proach, with the deeper level expressed using a DT
(actually, dependency directed acyclic graphs, but
the distinction is not relevant here), and the surfacy

level expressed using a PST. But the Chomskyan ap-
proaches fit the same paradigm, as do many other
theories of syntax.

Therefore, there is no theory-neutral representation
of a sentence or a set of sentences, because every
representation needs a theory for us to extract its
meaning! Often what is meant by “theory-neutral
tree” is a tree which is interpreted using some no-
tion of consensus theory, perhaps a stripped-down
representation which omits much content for which
there is no consensus on how to represent it.

5 Converting Between DTs and PSTs

Converting a set of DS annotations to PS or vice
versa means that we want to obtain a representa-
tion which expresses exactly the same content. This
is frequently done these days as interest in depen-
dency parsing grows but many languages only have
PS treebanks. However, this process is often not un-
derstood.

To start, I observe that uninterpreted structures (i.e.,
structures without a syntactic theory, or trees from
a treebank without a manual) cannot be converted
from or into, as we do not know what they mean
and we cannot know if we are preserving the same
content or not.

Now, my central claim about the possibility of au-
tomatically converting between PSTs and DTs is the
following. If we have an interpretation for the source
representation and the goal representation (as we
must in order for this task to be meaningful), then
we can convert any facts that are represented in the
source structure, and we cannot convert any facts
that are not represented in the source structure. It
is that simple. If we are converting from a source
which contains less information than the target, then
we cannot succeed. For example, if we are convert-
ing from a PS treebank that does not distinguish par-
ticles from prepositions to a DS treebank that does,
then we will fail. General claims about the possi-
bility of conversion (“it is easier to convert PS to
DS than DS to PS”) are therefore meaningless. It
only matters what is represented, not how it is rep-
resented.

There is, however, no guarantee that there is a sim-
ple algorithm for conversion, such as a parametrized

339

head percolation algorithm passed down from re-
searcher to researcher like a sorcerer’s incantation.
In general, if the two representations are indepen-
dently devised and both are linguistically motivated,
then we have no reason to believe that the conversion
can be done using a specific simple approach, or us-
ing conversion rules which have some fixed property
(say, the depth of the trees in the rules templates). In
the general case, the only way to write an automatic
converter between two representations is to study the
two annotation manuals and to create a case-by-case
converter, covering all linguistic phenomena repre-
sented in the target representation.

Machine learning-based conversion (for example,
(Xia and Palmer, 2001)) is an interesting exercise,
but it does not give us any general insights into de-
pendency or phrase structure. Suppose the source
contains all the information that the target should
contain. Then if machine learning-based conversion
fails or does not perform completely correctly, the
exercise merely shows that the machine learning is
not adequate. Now suppose that the source does
not contain all the information that the target should
contain. Then no fancy machine learning can ever
provide a completely correct conversion. Also, note
that unlike, for example, parsers which are based
on machine learning and which learn about a natu-
ral phenomenon (language use), machine learning of
conversion merely learns an artificial phenomenon:
the relation between the two syntactic theories in
question, which are created by researchers. (Of
course, in practice, machine learning of automatic
conversion between DT to PSTs is useful.)

6 Conclusion

I have argued that when talking about dependency
and phrase structure representations, one should al-
ways distinguish the type of representation (depen-
dency or phrase structure) from the content of the
representation, and one needs to understand (and
make explicit if it is implicit) the linguistic the-
ory that relates content to representation. Machine
learning researchers have the luxury of treating syn-
tactic representations as mere fodder for their mills;
we as computational linguists do not, since this is
our area of expertise.

Acknowledgments

I would like to thank my colleagues on the Hindi-
Urdu treebank project (Bhatt et al., 2009) (NSF
grant CNS-0751089) for spirited discussions about
the issues discussed here. I would like to thank Syl-
vain Kahane, Yoav Goldberg, and Joakim Nivre for
comments that have helped me improve this paper.
The expressed opinions have been influenced by far
too many people to thank individually here.

References

Tilman Becker, Aravind Joshi, and Owen Rambow.
1991. Long distance scrambling and tree adjoining gram-
mars. In Fifth Conference of the European Chapter of the
Association for Computational Linguistics (EACL’91),
pages 21–26. ACL.
Rajesh Bhatt, Bhuvana Narasimhan, Martha Palmer,
Owen Rambow, Dipti Sharma, and Fei Xia. 2009.
A multi-representational and multi-layered treebank for
hindi/urdu. In Proceedings of the Third Linguistic Anno-
tation Workshop, pages 186–189, Suntec, Singapore.
Gerald Gazdar, Ewan Klein, Geoffrey Pullum, and Ivan
Sag. 1985. Generalized Phrase Structure Grammar.
Harvard University Press, Cambridge, Mass.
Vincenzo Lombardo and Leonardo Lesmo. 1998. For-
mal aspects and parsing issue of dependency theory. In
36th Meeting of the Association for Computational Lin-
guistics and 17th International Conference on Compu-
tational Linguistics (COLING-ACL’98), pages 787–793,
Montréal, Canada.
Mohamed Maamouri, Ann Bies, Hubert Jin, and Tim
Buckwalter. 2003. Arabic treebank: Part 1 v 2.0. Dis-
tributed by the Linguistic Data Consortium. LDC Cata-
log No.: LDC2003T06.
Mohamed Maamouri, Ann Bies, and Tim Buckwalter.
2004. The Penn Arabic Treebank: Building a large-
scale annotated arabic corpus. In NEMLAR Conference
on Arabic Language Resources and Tools, Cairo, Egypt.
M. Marcus, G. Kim, M. Marcinkiewicz, R. MacIntyre,
A. Bies, M. Ferguson, K. Katz, and B. Schasberger.
1994. The Penn Treebank: Annotating predicate argu-
ment structure. In Proceedings of the ARPA Human Lan-
guage Technology Workshop.
Igor A. Mel’čuk. 1988. Dependency Syntax: Theory and
Practice. State University of New York Press, New York.
P. Sgall, E. Hajičová, and J. Panevová. 1986. The mean-
ing of the sentence and its semantic and pragmatic as-
pects. Reidel, Dordrecht.
Fei Xia and Martha Palmer. 2001. Converting depen-
dency structure to phrase structures. In hlt2001, pages
61–65.

340

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 341–344,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Word Alignment with
Stochastic Bracketing Linear Inversion Transduction Grammar

Markus SAERS and Joakim NIVRE

Computational Linguistics Group
Dept. of Linguistics and Philology

Uppsala University
Sweden

first.last@lingfil.uu.se

Dekai WU

Human Language Technology Center
Dept. of Computer Science and Engineering

HKUST
Hong Kong

dekai@cs.ust.hk

Abstract

The class of Linear Inversion Transduction
Grammars (LITGs) is introduced, and used to
induce a word alignment over a parallel cor-
pus. We show that alignment via Stochas-
tic Bracketing LITGs is considerably faster
than Stochastic BracketingITGs, while still
yielding alignments superior to the widely-
used heuristic of intersecting bidirectional
IBM alignments. Performance is measured as
the translation quality of a phrase-based ma-
chine translation system built upon the word
alignments, and an improvement of2.85 BLEU

points over baseline is noted for French–
English.

1 Introduction

Machine translation relies heavily on word align-
ments, which are usually produced by trainingIBM -
models (Brown et al., 1993) in both directions and
combining the resulting alignments via some heuris-
tic. Automatically training an Inversion Transduc-
tion Grammar (ITG) has been suggested as a viable
way of producing superior alignments (Saers and
Wu, 2009). The main problem of using Bracket-
ing ITGs for alignment is that exhaustive biparsing
runs inO(n6) time. Several ways to lower the com-
plexity of ITGs has been suggested, but in this paper,
a different approach is taken. Instead of using full
ITGs, we explore the possibility of subjecting the
grammar to a linear constraint, making exhaustive
biparsing of a sentence pair inO(n4) time possible.
This can be further improved by applying pruning.

2 Background

A transduction is the bilingual version of a language.
A language (Ll) can be formally viewed as a set of
sentences, sequences of tokens taken from a speci-
fied vocabulary (Vl). A transduction (Te,f) between
two languages (Le andLf) is then a set of sentence
pairs, sequences of bitokens from the cross produc-
tion of the vocabularies of the two languages being
transduced (Ve,f = Ve × Vf). This adds an extra
layer of complexity to finding transductions from
raw bitexts, as an alignment has to be imposed.

Simple (STG) and Syntax Directed (SDTG) Trans-
duction Grammars (Aho and Ullman, 1972) can
be used to parse transductions between context-free
languages. Both work fine as long as a grammar is
given and parsing is done as transduction, that is: a
sentence in one language is rewritten into the other
language. InNLP, interest has shifted away from
hand-crafted grammars, towards stochastic gram-
mars induced from corpora. To induce a stochas-
tic grammar from a parallel corpus, expectations of
all possible parses over a sentence pair are typically
needed. STGs can biparse sentence pairs in polyno-
mial time, but are unable to account for the complex-
ities typically found in natural languages. SDTGs do
account for the complexities in natural languages,
but are intractable for biparsing.

Inversion transductions (Wu, 1995; Wu, 1997) are
a special case of transductions that are not mono-
tone, but where permutations are severely limited.
By limiting the possible permutations, biparsing be-
comes tractable. This in turn means that ITGs can be
induced from parallel corpora in polynomial time,

341

as well as account for most of the reorderings found
between natural languages.

An Inversion transduction is limited so that it
must be expressible as non-overlapping groups, in-
ternally permuted either by the identity permuta-
tion or the inversion permutation (hence the name).
This requirement also means that the grammar is bi-
narizable, yielding a two-normal form. A produc-
tion with the identity permutation is written inside
square brackets, while productions with the inver-
sion permutation is written inside angled brackets.
This gives us a two-normal form that looks like this
(wheree/f is a biterminal):

A → [B C]
A → 〈B C〉
A → e/f

The time complexity for exhaustiveITG biparsing is
O(Gn6), which is typically too large to be applica-
ble to large grammars and long sentence. The gram-
mar constantG can be eliminated by limiting the
grammar to a bracketingITG (BITG), which only has
one nonterminal symbol. Saers & Wu (2009) show
that it is possible to apply exhaustive biparsing to a
large parallel corpus (∼ 100, 000 sentence pairs) of
short sentences (≤10 tokens in both language). The
word alignments read off the Viterbi parse also in-
creased translation quality when used instead of the
alignments from bidirectionalIBM alignments.

The O(n6) time complexity is somewhat pro-
hibitive for large corpora, so pruning in some form is
needed. Saers, Nivre & Wu (2009) introduce a beam
pruning scheme, which reduces time complexity to
O(bn3). They also show that severe pruning is pos-
sible without significant deterioration in alignment
quality. Haghighi et. al (2009) use a simpler aligner
as guidance for pruning, which reduce the time com-
plexity by two orders of magnitude, and also intro-
duce blockITG, which gives many-to-one instead of
one-to-one alignments. Zhang et. al (2008) present
a method for evaluating spans in the sentence pair to
determine whether they should be excluded or not.
The algorithm has a best case time complexity of
O(n3).

In this paper we introduce LinearITG (LITG), and
apply it to a word-alignment task which is evaluated
by the phrase-based statistical machine translation
(PBSMT) system that can be built from that.

3 Stochastic Bracketing Linear Inversion
Transduction Grammar

A Bracketing Linear Inversion Transduction Gram-
mar (BLITG) is aBITG where rules may have at most
one nonterminal symbol in their production. This
gives us a normal form that is somewhat different
from the usualITG:

X → [Xe/f]
X → [e/fX]
X → 〈Xe/f〉
X → 〈e/fX〉
X → ǫ/ǫ

where one but not both of the tokens in the bitermi-
nal may be the empty stringǫ, if a nonterminal is
produced. By associating each rule with a probabil-
ity, we get a StochasticBLITG (SBLITG).

3.1 Biparsing Algorithm

The sentence pair to be biparsed consists of two vec-
tors of tokens (e and f). An item is represented
as a nonterminal (X), and one span in each of the
languages (es..t and fu..v). For notational conve-
nience, an item will be written as the nonterminal
with the spans as subscripts (Xs,t,u,v). The length of
an item is defined as the sum of the length of the two
spans:|Xs,t,u,v| = t − s + v − u. Items are gath-
ered in buckets,Bn, according to their length so that
Xs,t,u,v ∈ B|Xs,t,u,v|. The algorithm is initialized
with the item spanning the entire sentence pair:

X0,|e|,0,|f | ∈ B|X0,|e|,0,|f||

Starting from this top bucket, buckets are processed
in larger to smaller order:Bn, Bn−1, . . . , B1. While
processing a bucket, only smaller items are added,
meaning thatB0 is fully constructed by the timeB1

has been processed. Each item inB0 can have the
rule X → ǫ/ǫ applied to it, eliminating the nonter-
minal and halting processing. If there are no items
in B0, parsing has failed.

To process a bucket, each item is extended by all
applicable rules, and the nonterminals in the produc-
tions are added to their respective buckets.

342

System BLEU NIST Phrases
GIZA ++ (intersect) 0.2629 6.7968 146,581,109
GIZA ++ (grow-diag-final) 0.2632 6.7410 1,298,566
GIZA ++ (grow-diag-final-and) 0.2742 6.9228 7,340,369
SBLITG (b = 25) 0.3027 7.3664 13,551,915
SBLITG (b = ∞) 0.3008 7.3303 12,673,361

Table 1: Results for French–English.

Xs,t,u,v →
[es,s+1/fu,u+1 Xs+1,t,u+1,v]

| [Xs,t−1,u,v−1 et−1,t/fv−1,v]
| 〈es,s+1/fv−1,v Xs+1,t,u,v−1〉
| 〈Xs,t−1,u+1,v et−1,t/fu,u+1〉
| [es,s+1/ǫ Xs+1,t,u,v] | 〈es,s+1/ǫ Xs+1,t,u,v〉
| [ǫ/fu,u+1 Xs,t,u+1,v] | 〈Xs,t,u+1,v ǫ/fu,u+1〉
| [Xs,t−1,u,v et−1,t/ǫ] | 〈Xs,t−1,u,v et−1,t/ǫ〉
| [Xs,t,u,v−1 ǫ/fv−1,v] | 〈ǫ/fv−1,v Xs,t,u,v−1〉

Note that there are two productions on each of the
four last rows. These are distinct rules, but the
symbols in the productions are identical. This phe-
nomenon is due to the fact that the empty sym-
bols can be “read” off either end of the span. In
our experiments, such rules were merged into their
non-inverting form, effectively eliminating the last
four inverted rules (productions enclosed in angled
brackets) above.

3.2 Analysis

Let n be the length of the longer sentence in the
pair. The number of buckets will beO(n), since
the longest item will be at most2n long. Within a
bucket, there can beO(n2) starting points for items,
but once the length of one of the spans is fixed, the
length of the other follows, adding a factorO(n),
making the total number of items in a bucketO(n3).
Each item in a bucket can be analyzed in 8 possible
ways, requiringO(1) time. In summary, we have:
O(n)×O(n3)×O(1) = O(n4)

The pruning scheme works by limiting the num-
ber of items that are processed from each bucket, re-
ducing the cost of processing a bucket fromO(n3)
toO(b), whereb is the beam width. This gives time
complexityO(n)×O(b)×O(1) = O(bn).

4 Experiments

We used the guidelines of the shared task of
WMT ’081 to train our baseline system as well as
our experimental system. This includes induction of
word alignments withGIZA++ (Och and Ney, 2003),
induction of a Phrase-basedSMT system (Koehn et
al., 2007), and tuning with minimum error rate train-
ing (Och, 2003), as well as applying some utility
scripts provided for the workshop. The translation
model is combined with a 5-gram language model
(Stolcke, 2002).

Our experimental system uses alignments from
the Viterbi parses, extracted duringEM training of an
SBLITG on the training corpus, instead ofGIZA++.
SinceEM will converge fairly slowly, it was limited
to 10 iterations, after which it was halted.

We used the French–English part of theWMT ’08
shared task, but limited the training set to sentence
pairs where both sentences were of length 20 or less.
This was necessary in order to carry out exhaustive
search in theSBLITG algorithm. In total, we had
381,780 sentence pairs for training, and 2,000 sen-
tence pairs each for tuning and testing. The language
model was trained with the entire training set.

To evaluate the systems we usedBLEU (Papineni
et al., 2002) andNIST (Doddington, 2002)

Results are presented in Table 1. It is interesting
to note that there is no correlation between the num-
ber of phrases extracted and translation quality. The
only explanation for the results we are seeing is that
the SBLITGs findbetter phrases. Since the only dif-
ference is the word alignment strategy, this suggests
that the word alignments fromSBLITGs are better
suited for phrase extraction than those from bidirec-
tional IBM -models. The fact thatSBLITGs extract
more phrases than bidirectionalIBM -models under

1http://www.statmt.org/wmt08/

343

the grow-diag-x heuristics is significant, since
more phrases means that more translation possibil-
ities are extracted. The fact thatSBLITGs extract
fewer phrases than bidirectionalIBM -models under
theintersect heuristic is also significant, since
it implies that simply adding more phrases is a bad
strategy. Combined, the two observations leads us
to believe that there are some alignments missed by
the bidirectionalIBM -models that are found by the
SBLITG-models. It is also interesting to see that the
pruned version outperforms the exhaustive version.
We believe this to be because the pruned version ap-
proaches the correct grammar faster than the exhaus-
tive. That would mean that the exhaustiveSBLITG

would be better in the limit, but the experiment was
limited to 10 iterations.

5 Conclusion

In this paper we have focused on the benefits of ap-
plying SBLITGs to the task of inducing word align-
ments, which leads to a2.85 BLEU points improve-
ment compared to the standard model (heuristically
combined bidirectionalIBM -models). In the future,
we hope thatLITGs will be a spring board towards
full ITGs, with more interesting nonterminals than
theBITGs seen in the literature so far. With the pos-
sibility of inducing full ITG from parallel corpora it
becomes viable to useITG decoders directly as ma-
chine translation systems.

Acknowledgments

This work was funded by the Swedish National Gradu-
ate School of Language Technology (GSLT), the Defense
Advanced Research Projects Agency (DARPA) under
GALE Contract No. HR0011-06-C-0023, and the Hong
Kong Research Grants Council (RGC) under research
grants GRF621008, DAG03/04.EG09, RGC6256/00E,
and RGC6083/99E. Any opinions, findings and conclu-
sions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the
views of DARPA.The computations were performed on
UPPMAX resources under project p2007020.

References

A. V. Aho and J. D. Ullman. 1972.The Theory of Pars-
ing, Translation, and Compiling. Prentice-Halll, En-
glewood Cliffs, New Jersey.

P. F. Brown, S. A. Della Pietra, V. J. Della Pietra, and
R. L. Mercer. 1993. The mathematics of statistical
machine translation: Parameter estimation.Computa-
tional Linguistics, 19(2):263–311.

G. Doddington. 2002. Automatic evaluation of machine
translation quality using n-gram co-occurrence statis-
tics. In Proceedings of Human Language Technology
conference (HLT-2002), San Diego, California.

A. Haghighi, J. Blitzer, J. DeNero, and D. Klein. 2009.
Better word alignments with supervised itg models.
In Proceedings of ACL/IJCNLP 2009, pages 923–931,
Singapore.

P. Koehn, H. Hoang, A. Birch, C. Callison-Burch,
M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin,
and E. Herbst. 2007. Moses: Open source toolkit for
statistical machine translation. InProceedings of the
ACL 2007 Demo and Poster Session, pages 177–180,
Prague, Czech Republic.

F. J. Och and H. Ney. 2003. A systematic comparison of
various statistical alignment models.Computational
Linguistics, 29(1):19–51.

F. J. Och. 2003. Minimum error rate training in statisti-
cal machine translation. InProceedings of ACL 2003,
pages 160–167, Sapporo, Japan.

K. Papineni, S. Roukos, T. Ward, and W. Zhu. 2002.
Bleu: a method for automatic evaluation of machine
translation. InProceedings of ACL 2002, pages 311–
318, Philadelphia, Pennsylvania.

M. Saers and D. Wu. 2009. Improving phrase-based
translation via word alignments from Stochastic In-
version Transduction Grammars. InProceedings of
SSST-3 at NAACL HLT 2009, pages 28–36, Boulder,
Colorado.

M. Saers, J. Nivre, and D. Wu. 2009. Learning stochas-
tic bracketing inversion transduction grammars with
a cubic time biparsing algorithm. InProceedings of
IWPT’09, pages 29–32, Paris, France.

A. Stolcke. 2002. SRILM – an extensible language mod-
eling toolkit. In International Conference on Spoken
Language Processing, Denver, Colorado.

D. Wu. 1995. An algorithm for simultaneously bracket-
ing parallel texts by aligning words. InProceedings of
WVLC-3, pages 69–82, Cambridge, Massachusetts.

D. Wu. 1997. Stochastic inversion transduction gram-
mars and bilingual parsing of parallel corpora.Com-
putational Linguistics, 23(3):377–403.

H. Zhang, C. Quirk, R. C. Moore, and D. Gildea. 2008.
Bayesian learning of non-compositional phrases with
synchronous parsing. InProceedings of ACL/HLT
2008, pages 97–105, Columbus, Ohio.

344

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 345–348,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Crowdsourcing the evaluation of a domain-adapted named entity
recognition system

Asad B. Sayeed, Timothy J. Meyer,
Hieu C. Nguyen, Olivia Buzek

Department of Computer Science
University of Maryland

College Park, MD 20742
asayeed@cs.umd.edu,
tmeyer1@umd.edu,

{hcnguyen88,olivia.buzek}
@gmail.com

Amy Weinberg
Department of Linguistics

University of Maryland
College Park, MD 20742

weinberg@umiacs.umd.edu

Abstract

Named entity recognition systems sometimes
have difficulty when applied to data from do-
mains that do not closely match the training
data. We first use a simple rule-based tech-
nique for domain adaptation. Data for robust
validation of the technique is then generated,
and we use crowdsourcing techniques to show
that this strategy produces reliable results even
on data not seen by the rule designers. We
show that it is possible to extract large im-
provements on the target data rapidly at low
cost using these techniques.

1 Introduction

1.1 Named entities and errors
In this work, we use crowdsourcing to generate eval-
uation data to validate simple techniques designed to
adapt a widely-used high-performing named entity
recognition system to new domains. Specifically, we
achieve a roughly 10% improvement in precision on
text from the information technology (IT) business
press via post hoc rule-based error reduction. We
first tested the system on a small set of data that we
annotated ourselves. Then we collected data from
Amazon Mechanical Turk in order to demonstrate
that the gain is stable. To our knowledge, there is no
previous work on crowdsourcing as a rapid means
of evaluating error mitigation in named entity rec-
ognizer development.

Named entity recognition (NER) is a well-known
problem in NLP which feeds into many other re-
lated tasks such as information retrieval (IR) and
machine translation (MT) and more recently social

network discovery and opinion mining. Generally,
errors in the underlying NER technology correlate
with a steep price in performance in the NLP sys-
tems further along a processing pipeline, as incor-
rect entities propagate into incorrect translations or
erroneous graphs of social networks.

Not all errors carry the same price. In some ap-
plications, omitting a named entity has the conse-
quence of reducing the availability of training data,
but including an incorrectly identified piece of text
as as a named entity has the consequence of pro-
ducing misleading results. Our application would
be opinion mining; an omitted entity may prevent
the system from attributing an opinion to a source,
but an incorrect entity reveals non-existent opinion
sources.

Machine learning is currently used extensively in
building NER systems. One such system is BBN’s
Identifinder (Bikel et al., 1999). The IdentiFinder al-
gorithm, based on Hidden Markov Models, has been
shown to achieve F-measure scores above 90% when
the training and testing data happen to be derived
from Wall Street Journal text produced in the 1990s.
We use IdentiFinder 3.3 as a starting point for per-
formance improvement in this paper.

The use of machine learning in existing systems
requires us to produce new and costly training data
if we want to adapt these systems directly to other
domains. Our post hoc error reduction strategy is
therefore profoundly different: it relieves us of the
burden of generating complete training examples.
The data we generate are strictly corrections of the
existing system’s output. Our thus cheaper evalua-
tion is therefore primarily on improvements to pre-

345

cision, while minimizing damage to recall, unlike
an evaluation based on retraining with new, fully-
annotated text.

1.2 Crowdsourcing

Crowdsourcing is the use of the mass collabora-
tion of Internet passers-by for large enterprises on
the World Wide Web such as Wikipedia and survey
companies. However, a generalized way to mon-
etize the many small tasks that make up a larger
task is relatively new. Crowdsourcing platforms
like Amazon Mechanical Turk have allowed some
NLP researchers to acquire data for small amounts
of money from large, unspecified groups of Internet
users (Snow et al., 2008; Callison-Burch, 2009).

The use of crowdsourcing for an NLP annotation
task required careful definition of the specifics of
the task. The individuals who perform these tasks
have no specific training, and they are trying to get
through as many tasks as they can, so each task must
be specified very simply and clearly.

Part of our work was to define a named entity
error detection task simply enough that the results
would be consistent across anonymous annotators.

2 Methodology

2.1 Process overview

The overall process for running this experiment was
as follows (figure 1).

Figure 1: Diagram of data pipeline.

First, we performed an initial performance assess-
ment of IdentiFinder on our domain. We selected
200 articles from an IT trade journal. IdentiFinder
was used to tag persons and organizations in these
documents. Domain experts (in this case, the au-
thors of this paper) analyzed the entity tags pro-
duced by the NER system and annotated the erro-

neous tags. We built an error reduction system based
on our error analysis. We then ran the IdentiFinder
output through the error reduction system and eval-
uated its performance against our annotations.

Next, we constructed an Amazon Mechanical
Turk-based interface for naı̈ve web users or “Turk-
ers” to annotate the IdentiFinder entities for errors.
We measured the interannotator agreement between
the Turkers and the domain experts, and we evalu-
ated the IdentiFinder output and the repaired output
against the expert-generated and Turker gold stan-
dards.

We selected a new batch of 800 articles and ran
IdentiFinder and the filters on them, and we again
ran our Mechanical Turk application on the Iden-
tiFinder output. We measured the performance of
IdentiFinder and filtered output against the Turker
annotations.

2.2 Performance evaluation
Performance is evaluated in terms of standard pre-
cision and recall of entities. If the system output
contains a person or organization labelled correctly
as such, it considers this to be a hit. If it contains a
person or organization that is mislabelled or other-
wise incorrect in the gold standard annotation, it is
a miss. We compute the F-measure as the harmonic
mean of precision and recall.

As the IdentiFinder output is the baseline, and we
ignore missed entities, by definition the baseline re-
call is 100%.

3 Experiments and results

Here we delve into further detail about the tech-
niques we used and the results that they yielded. The
results are summarized in table 1.

3.1 Baseline performance assessment
We randomly selected 200 documents from Infor-
mationWeek, a major weekly magazine in the IT
business press. Running them through IdentiFinder
produces NIST ACE-standard XML entity markup.
We focused on the ENAMEX tags of person and or-
ganization type that IdentiFinder produces.

After we annotated the ENAMEX tags for errors,
we found that closer inspection of the errors in the
IdentiFinder output allowed us to classify the major-
ity of them into three major categories:

346

Annotator Collection System Precision Recall F-measure
Authors 200 document IdentiFinder only 0.74 1 0.85
Authors 200 document Filtered 0.86 0.98 0.92
MTurk 200 document IdentiFinder only 0.69 1 0.82
MTurk 200 document Filtered 0.79 0.97 0.87
MTurk 800 document IdentiFinder only 0.67 1 0.80
MTurk 800 document Filtered 0.77 0.95 0.85

Table 1: Results of evaluation of different document sets against ground truth source by annotation technique.

• IdentiFinder tags words that are simply not
named entities.

• IdentiFinder assigns the wrong category (per-
son or organization) to an entity.

• IdentiFinder includes extraneous words in an
otherwise correct entity.

The second and third types of error are particu-
larly challenging. An example of the second type is
the following:

Yahoo is a reasonably strong competitor
to Google. It gets about half as much on-
line revenue and search traffic as Google,
. . .

Google is marked twice incorrectly as being a person
rather than an organization.

Finally, here is an example of the third error type:

A San Diego bartender reported that Bill
Gates danced the night away in his bar on
Nov. 11.

IdentiFinder incorrectly marks “danced” as part of a
person tag.

We were able to find the precision of IdentiFinder
against our annotations: 0.74. This is poorer than the
reported performance of IdentiFinder on Wall Street
Journal text (Bikel et al., 1999).

3.2 Domain-specific error reduction
We wrote a series of rule-based filters to remove
instances of the error types—of which there were
many subtypes—described in the previous sec-
tion. For instance, the third example above was
eliminated via the use of a part-of-speech tagger;
“danced” was labelled as a verb, and entities with

tagged verbs were removed. In the second case,
the mislabelling of Google as a person rather than
an organization is identified by looking at Identi-
Finder’s majority labelling of Google throughout the
corpus—as an organization. Simple rules about cap-
italization allow instances like the first example to
be identified as errors.

This step increases the precision of the system
output to 86%, while only sacrificing a tiny amount
of recall. We see that this 10% increase is main-
tained even on the Mechanical Turk-generated an-
notations.

3.3 Mechanical Turk tasks

The basic unit of Mechanical Turk is the Human In-
telligence Task (HIT). Turkers select HITs presented
as web pages and perform the described task. Data-
collectors create HITs and pay Amazon to disburse
small amounts of money to Turkers who complete
them.

We designed our Mechanical Turk process so that
every HIT we create corresponds to an IdentiFinder-
marked document. Within its corresponding HIT,
each document is broken up into paragraphs. Fol-
lowing every paragraph is a table whose rows con-
sist of every person/organization ENAMEX discov-
ered by IdentiFinder and whose columns consist of
one of the four categories: “Person,” “Organization,”
“Neither,” and “Don’t Know.” Then for each entity,
the user selects exactly one of the four options.

Each HIT is assigned to three different Turkers.
Every entity in that HIT is assigned a person or or-
ganization ENAMEX tag if two of the three Turkers
agreed it was one of those (majority vote); other-
wise, it is marked as an invalid entity.

We calculated the agreement between our annota-
tions and those developed from the Turker majority

347

vote scheme. This yields a Cohen’s κ of 0.68. We
considered this to be substantial agreement.

After processing the same 200 document set from
our own annotation, we found that the precision
of IdentiFinder was 69%, but after error reduction,
it increased to 79% with only a miniscule loss of
known valid entities (recall).

We then took another 800 documents from Infor-
mationWeek and ran them through IdentiFinder. We
did not annotate these documents ourselves, but in-
stead turned them over to Turkers. IdentiFinder out-
put alone has a 67% precision, but after error reduc-
tion, it rises to 77%, and recall is still minimally af-
fected.

4 Discussion

4.1 Benefits

It appears that high-performing NER systems ex-
hibit rather severe domain adaption problems. The
performance of IdentiFinder is quite low on the IT
business press. However, a simple rule-based sys-
tem was able to gain 10% improvement in precision
with little recall sacrificed. This is a particularly im-
portant improvement in applications with low toler-
ance for erroneous entities.

However, rule-based systems built by experts are
known to be vulnerable to new data unseen by the
experts. In order to apply this domain-specific error
reduction reliably, it has to be tested on data gathered
elsewhere. We used crowdsourced data to show that
the rule-based system was robust when confronted
with data that the designers did not see.

One danger in crowdsourcing is a potential lack
of commitment on the part of the annotators, as they
attempt to get through tasks as quickly as possible.
It turns out that in an NER context, we can design a
crowdsourced task that yields relatively reliable re-
sults across data sets by ensuring that for every data
point, there were multiple annotators making only
simple decisions about entity classification.

This method also provides us with a source of eas-
ily acquired supervised training data for testing more
advanced techniques, if required.

4.2 Costs

It took not more than an estimated two person weeks
to complete this work. This includes doing the

expert annotations, designing the Mechanical Turk
tasks, and building the domain-specific error reduc-
tion rules.

For each HIT, each annotator was paid 0.05 USD.
For three annotators for 1000 documents, that is
150.00 USD (plus additional small Amazon sur-
charges and any taxes that apply).

5 Conclusions and Future Work

This work was done on a single publication in a sin-
gle domain. One future experiment would be to see
whether these results are reliable across other pub-
lications in the domain. Another set of experiments
would be to determine the optimum number of an-
notators; we assumed three, but cross-domain results
may be more stable with more annotators.

Retraining an NER system for a particular domain
can be expensive if new annotations must be gen-
erated from scratch. While there is work on using
advanced machine learning techniques for domain
transfer (Guo et al., 2009), simply repairing the the
errors post hoc via a rule-based system can have a
low cost for high gains. This work shows a case
where the results are reliable and the verification
simple, in a context where reducing false positives
is a high priority.

Acknowledgements

This paper is based upon work supported by the Na-
tional Science Foundation under Grant IIS-0729459.
This research was also supported in part by NSF
award IIS-0838801.

References
Daniel M. Bikel, Richard Schwartz, and Ralph M.

Weischedel. 1999. An algorithm that learns what‘s
in a name. Mach. Learn., 34(1-3).

Chris Callison-Burch. 2009. Fast, cheap, and creative:
Evaluating translation quality using Amazon’s Me-
chanical Turk. In EMNLP 2009, Singapore, August.

Honglei Guo, Huijia Zhu, Zhili Guo, Xiaoxun Zhang,
Xian Wu, and Zhong Su. 2009. Domain adapta-
tion with latent semantic association for named entity
recognition. In NAACL 2009, Morristown, NJ, USA.

Rion Snow, Brendan O’Connor, Daniel Jurafsky, and An-
drew Y. Ng. 2008. Cheap and fast—but is it good?:
evaluating non-expert annotations for natural language
tasks. In EMNLP 2008, Morristown, NJ, USA.

348

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 349–352,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Generalizing Hierarchical Phrase-based Translation
using Rules with Adjacent Nonterminals

Hendra Setiawan and Philip Resnik
UMIACS Laboratory for Computational Linguistics and Information Processing

University of Maryland, College Park, MD 20742, USA
hendra, resnik @umd.edu

Abstract

Hierarchical phrase-based translation (Hiero,
(Chiang, 2005)) provides an attractive frame-
work within which both short- and long-
distance reorderings can be addressed consis-
tently and ef�ciently. However, Hiero is gen-
erally implemented with a constraint prevent-
ing the creation of rules with adjacent nonter-
minals, because such rules introduce compu-
tational and modeling challenges. We intro-
duce methods to address these challenges, and
demonstrate that rules with adjacent nontermi-
nals can improve Hiero's generalization power
and lead to signi�cant performance gains in
Chinese-English translation.

1 Introduction
Hierarchical phrase-based translation (Hiero, (Chi-
ang, 2005)) has proven to be a very useful com-
promise between syntactically informed and purely
corpus-driven translation. By automatically learn-
ing synchronous grammar rules from parallel text,
Hiero captures short- and long-distance reorderings
consistently and ef�ciently. However, implementa-
tions of Hiero generally forbid adjacent nonterminal
symbols on the source side of hierarchical rules, a
practice we will refer to as the non-adjacent nonter-
minals constraint. The main argument against such
rules is that they cause the system to produce multi-
ple derivations that all lead to the same translation �
a form of redundancy known as spurious ambiguity.
Spurious ambiguity can lead to drastic reductions in
decoding ef�ciency, and the obvious solutions, such
as reducing beam width, erode translation quality.

In Section 2, we argue that the non-adjacent non-
terminals constraints severely limits Hiero's gener-
alization power, limiting its coverage of important
reordering phenomena. In Section 3, we discuss

the challenges that arise in relaxing this constraint.
In Section 4 we introduce new methods to address
those challenges, and Section 5 validates the ap-
proach empirically.

Improving Hiero via variations on rule prun-
ing and �ltering is well explored, e.g., (Chiang,
2005; Chiang et al., 2008; Zollmann and Venugopal,
2006), to name just a few. These proposals dif-
fer from each other mainly in the speci�c linguis-
tic knowledge being used, and on which side the
constraints are applied. In contrast, we complement
previous work by showing that adding rules to Hiero
can provide bene�ts if done judiciously.

2 Judicious Use of Adjacent Nonterminals

Our motivations largely follow Menezes and Quirk's
(2007) discussion of reorderings and generalization.
As a speci�c example, we will use a Chinese to En-
glish verb phrase (VP) translation (Fig. 1), which
represents one of the most prominent phrase con-
structions in Chinese. Here the construction of the
Chinese VP involves joining a prepositional phrase
(PP) and a smaller verbal phrase (VP-A), with the
preposition at the beginning as a PP marker. In the
translation, the VP-A precedes the PP, a shift from
pre-verbal PP in Chinese to post-verbal in English.

À\É¦À\É¦ó Öï��

rank 10th at Eastern division
»»»»»»»»»

PPPPPPP

PPPPPPP

P NP VP-A

PP
VP

©©©
HHH

©© HHHHHH

Figure 1: A Chinese-English verb phrase translation

349

Hiero can correctly translate the example if it
learns any of the following rules from training data:

X→〈ó X1 Öï��, rank 10th at X1〉 (1)
X→〈 óÀ\É¦ X1, X1 at Eastern div.〉 (2)
X→〈X1 À\É¦ X2, X2 X1 Eastern div.〉 (3)

However, in practice, data sparsity makes the chance
of learning these rules rather slim. For instance,
learning Rule 1 depends on training data containing
instances of the shift with identical wording for the
VP-A, which belongs to an open word class.

If Hiero fails to learn any of the above rules, it
will apply the �glue rules� S → 〈S X1, S X1〉 and
S → 〈X, X〉. But these glue rules clearly can-
not model the VP-A's movement. In failing to learn
Rules 1-3, Hiero has no choice but to translate VP-A
in a monotone order.

On the other hand, consider the following rules
with adjacent nonterminals on the source side (or XX
rules, for brevity):

X→〈ó X1X2, X2 at X1〉 (4)
X→〈X1X2Öï��, rank 10th X1X2〉 (5)
X→〈X1X2, X2X1〉 (6)

Note that although XX rules 4-6 can potentially in-
crease the chance of modeling the pre-verbal to post-
verbal shift, not all of them are bene�cial to learn.
For instance, Rule 5 models the word order shift but
introduces spurious ambiguity, since the nontermi-
nals are translated in monotone order. Rule 6, which
resembles the inverted rule of the Inversion Trans-
duction Grammar (Wu, 1997), is highly ambigu-
ous because its application has no lexical grounding.
Rule 4 avoids both problems, and is also easier to
learn, since it is lexically anchored by a preposition,
ó(at), which we can expect to appear frequently in
training. These observations will motivate us to fo-
cus on rules that model non-monotone reordering of
phrases surrounding a lexical item on the target side.

3 Addressing XX Rule Challenges
The �rst challenge created by introducing XX rules
is computational: relaxing the constraint signi�-
cantly increases the grammar size. Motivated by
our earlier discussion, we address this by permitting
only rules that model non-monotone reordering, i.e.

those rules whose nonterminals are projected into
the target language in a different word order, leaving
monotone mappings to be handled by the glue rules
as previously. This choice helps keep the search
space more manageable, and also avoids spurious
ambiguity. In addition, we disallow rules in which
nonterminals are adjacent on both the source and tar-
get sides, by imposing the non adjacent nonterminal
constraint on the target side whenever the constraint
is relaxed on the source side. This forces any non-
monotone reorderings to always be grounded in lex-
ical evidence. We refer to the permitted subset of
XX rules as XX-nonmono rules.

The second challenge involves modeling: intro-
ducing XX rules places them in competition with
the existing glue rules. In particular, these two kinds
of rules try to model the same phenomena, namely
the translations of phrases that appear next to each
other. However, they differ in terms of the features
associated with the rules. XX rules will be asso-
ciated with the same features as any other hierar-
chical rules, since they are all learned via an iden-
tical training method. In contrast, glue rules are
introduced into the grammar in an ad hoc manner,
and the only feature associated with them is a �glue
penalty�. These distinct feature sets makes direct
comparison of scores unreliable. As a result the de-
coder may simply prefer to always select glue rules
because they are associated with fewer features re-
sulting in adjacent phrases always being translated
in a monotone order. To address this issue, we in-
troduce a new model, which we call the target-side
function words orientation-based model, or simply
Porit , which evaluates the application of the two
kinds of rules on the same context, i.e. for our ex-
ample, it is the function wordó(at).

4 Target-side Function Words
Orientation-based Model

The Porit model is motivated by the function words
reordering hypothesis (Setiawan et al., 2007), which
suggests that function words encode essential infor-
mation about the (re)ordering of their neighboring
phrases. In contrast to Setiawan et al. (2007), who
looked at neighboring contexts for function words
on the source side, we focus here on modeling the
in�uence of function words on neighboring phrases

350

on the target side. We argue that this focus better �ts
our purpose, since the phrases that we want to model
are the function words' neighbors on the target side,
as illustrated in Fig. 1.

To develop this idea, we �rst de�ne an orit func-
tion that takes a source function word as a refer-
ence point, along with its neighboring phrase on the
target side. The orit function outputs one of the
following orientation values (Nagata et al., 2006):
Monotone-Adjacent (MA); Reverse-Adjacent (RA);
Monotone-Gap (MG); and Reverse-Gap (RG). The
Monotone/Reverse distinction indicates whether the
source order follows the target order. The Ad-
jacent/Gap distinction indicates whether the two
phrases are adjacent or separated by an intervening
phrase on the source side. For example, in Fig. 1,
the value of orit for right neighbor Eastern division
with respect to function wordó (at) is MA, since its
corresponding source phrase À\É¦ is adjacent
toó (at) and their order is preserved on the English
side. The value for left neighbor rank 10th with re-
spect toó (at) is RG, since Öï�� is separated
from ó (at) and their order is reversed on the En-
glish side.

More formally, we de�ne Porit(orit(Y, X)|Y),
where orit(Y,X) ∈ {MA, RA, MG, RG} is the ori-
entation of a target phrase X with a source function
word Y as the reference point.1

We estimate the orientation model us-
ing maximum likelihood, which involves
counting and normalizing events of interest:
(Y, o = orit(Y, X)). Speci�cally, we estimate
Porit(o|Y) = C(Y, o)/C(Y, ·). Collecting training
counts C(Y, o) involves several steps. First, we
run GIZA++ on the training bitext and apply the
�grow-diag-�nal� heuristic over the training data
to produce a bi-directional word alignment. Then,
we enumerate all occurrences of Y and determine
orit(Y, X). To ensure uniqueness, we enforce
that neighbor X be the longest possible phrase
that satis�es the consistency constraint (Och and
Ney, 2004). Determining orit(Y, X) can then be
done in a straightforward manner by looking at the
monotonicity (monotone or reverse) and adjacency
(adjacent or gap) between Y 's and X .

1In fact, separate models are developed for left and right
neighbors, although for clarity we suppress this distinction
throughout.

MT06 MT08
baseline 30.58 23.59
+itg 29.82 23.21
+XX 30.10 22.86
+XX-nonmono 30.96 24.07
+orit 30.19 23.69
+XX-nonmono+orit 31.49 24.73

Table 1: Experimental results where better than baseline
results are italicized, and statistically signi�cant better
(p < 0.01) are in bold.

5 Experiments

We evaluated the generalization of Hiero to include
XX rules on a Chinese-to-English translation task.
We treat the N = 128 most frequent words in
the corpus as function words, an approximation that
has worked well in the past and minimized depen-
dence on language-speci�c resources (Setiawan et
al., 2007). We report BLEU r4n4 and assess signi�-
cance using the standard bootstrapping approach.

We trained on the NIST MT06 Eval corpus ex-
cluding the UN data (approximately 900K sentence
pairs), segmenting Chinese using the Harbin seg-
menter (Zhao et al., 2001). Our 5-gram language
model with modi�ed Kneser-Ney smoothing was
trained on the English side of our training data plus
portions of the Gigaword v2 English corpus. We
optimized the feature weights using minimum er-
ror rate training, using the NIST MT03 test set as
the development set. We report the results on the
NIST 2006 evaluation test (MT06) and the NIST
2008 evaluation test (MT08).

Table 1 reports experiments in an incremental
fashion, starting from the baseline model (the orig-
inal Hiero), then adding different sets of rules, and
�nally adding the orientation-based model. In our
�rst experiments, we investigated the introduction
of three different sets of XX rules. First (+itg),
we simply add the ITG's inverted rule (Rule 6) to
the baseline system in an ad-hoc manner, similar to
the glue rules. This hurts performance consistently
across MT06 and MT08 sets, which we suspect is
a result of ITG rule applications often aggravating
search error. Second (+XX), we permitted general
XX rules. This results in a grammar size increase of
25-26%, �ltering out rules irrelevant for the test set,

351

and leads to a signi�cant performance drop, again
perhaps attributable to search error. When we in-
spected the rules, we observe that the majority of
these rules involve spurious word insertions. Third
(+XX-nonmono), we introduced only XX-nonmono
rules; this produced only a 5% additional rules, and
yielded a marginal but consistent gain.

In a second experiment (+orit), we introduced
the target-side function words orientation-based
model. Note that this experiment is orthogonal to the
�rst set, since we introduce no additional rules. Re-
sults are mixed, worse for MT06 but better (with sig-
ni�cance) for MT08. Here, we suspect the model's
potential has not been fully realized, since Hiero
only considers monotone reordering in unseen cases.

Finally, we combine both the XX-nonmono rules
and the Porit model (+XX-nonmono+orit). The
combination produces a signi�cant, consistent gain
across all test sets. This result suggests that the ori-
entation model contributes more strongly in unseen
cases when Hiero also considers non-monotone re-
ordering. We interpret this result as a validation
of our hypothesis that carefully relaxing the non-
adjacent constraint improves translation.

6 Discussion and Future Work
To our knowledge, the work reported here is the
�rst to relax the non-adjacent nonterminals con-
straint in hierarchical phrase-based models. The re-
sults con�rm that judiciously adding rules to a Hiero
grammar, adjusting the modeling accordingly, can
achieve signi�cant gains.

Although we found that XX-nonmono rules per-
formed better than general XX rules, we believe the
latter may nonetheless prove useful. Manually in-
specting our system's output, we �nd that the output
is often shorter than the references, and the missing
words often correspond to function words that are
modeled by those rules. Using XX rules to model
legitimate word insertions is a topic for future work.

Acknowledgments
The authors gratefully acknowledge partial support
from the GALE program of the Defense Advanced
Research Projects Agency, Contract No. HR0011-
06-2-001. Any opinions, �ndings, conclusions or
recommendations expressed in this paper are those

of the authors and do not necessarily re�ect the
views of the sponsors.

References
David Chiang, Yuval Marton, and Philip Resnik. 2008.

Online large-margin training of syntactic and struc-
tural translation features. In Proceedings of the 2008
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 224�233, Honolulu, Hawaii,
October.

David Chiang. 2005. A hierarchical phrase-based model
for statistical machine translation. In Proceedings of
the 43rd Annual Meeting of the Association for Com-
putational Linguistics (ACL'05), pages 263�270, Ann
Arbor, Michigan, June. Association for Computational
Linguistics.

Arul Menezes and Chris Quirk. 2007. Using dependency
order templates to improve generality in translation.
In Proceedings of the Second Workshop on Statistical
Machine Translation, pages 1�8, Prague, Czech Re-
public, June. Association for Computational Linguis-
tics.

Masaaki Nagata, Kuniko Saito, Kazuhide Yamamoto,
and Kazuteru Ohashi. 2006. A clustered global phrase
reordering model for statistical machine translation.
In Proceedings of the 21st International Conference
on Computational Linguistics and 44th Annual Meet-
ing of the Association for Computational Linguistics,
pages 713�720, Sydney, Australia, July. Association
for Computational Linguistics.

Franz Josef Och and Hermann Ney. 2004. The align-
ment template approach to statistical machine transla-
tion. Computational Linguistics, 30(4):417�449.

Hendra Setiawan, Min-Yen Kan, and Haizhou Li. 2007.
Ordering phrases with function words. In Proceed-
ings of the 45th Annual Meeting of the Association
of Computational Linguistics, pages 712�719, Prague,
Czech Republic, June. Association for Computational
Linguistics.

Dekai Wu. 1997. Stochastic inversion transduction
grammars and bilingual parsing of parallel corpora.
Computational Linguistics, 23(3):377�404, Sep.

Tiejun Zhao, Yajuan Lv, Jianmin Yao, Hao Yu, Muyun
Yang, and Fang Liu. 2001. Increasing accuracy of
chinese segmentation with strategy of multi-step pro-
cessing. Journal of Chinese Information Processing
(Chinese Version), 1:13�18.

Andreas Zollmann and Ashish Venugopal. 2006. Syntax
augmented machine translation via chart parsing. In
Proceedings on the Workshop on Statistical Machine
Translation, pages 138�141, New York City, June. As-
sociation for Computational Linguistics.

352

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 353–356,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

The Effect of Ambiguity on the Automated Acquisition of WSD Examples

Mark Stevenson and Yikun Guo
Department of Computer Science,

University of Sheffield,
Regent Court, 211 Portobello,

Sheffield, S1 4DP
United Kingdom

m.stevenson@dcs.shef.ac.uk and g.yikun@dcs.shef.ac.uk

Abstract

Several methods for automatically gen-
erating labeled examples that can be
used as training data for WSD systems
have been proposed, including a semi-
supervised approach based on relevance
feedback (Stevenson et al., 2008a). This
approach was shown to generate examples
that improved the performance of a WSD
system for a set of ambiguous terms from
the biomedical domain. However, we find
that this approach does not perform as well
on other data sets. The levels of ambigu-
ity in these data sets are analysed and we
suggest this is the reason for this negative
result.

1 Introduction

Several studies, for example (Mihalcea et al.,
2004; Pradhan et al., 2007), have shown that su-
pervised approaches to Word Sense Disambigua-
tion (WSD) outperform unsupervised ones. But
these rely on labeled training data which is diffi-
cult to create and not always available (e.g. (Wee-
ber et al., 2001)). Various techniques for creating
labeled training data automatically have been sug-
gested in the literature. Stevenson et al. (2008a)
describe a semi-supervised approach that used rel-
evance feedback (Rocchio, 1971) to analyse ex-
isting labeled examples and use the information
produced to generate further ones. The approach
was tested on the biomedical domain and the addi-
tional examples found to improve performance of
a WSD system. However, biomedical documents
represent a restricted domain. In this paper the
same approach is tested against two data sets that
are not limited to a single domain.

2 Application to a Range of Data Sets

In this paper the relevance feedback approach de-
scribed by Stevenson et al. (2008a) is evaluated us-
ing three data sets: the NLM-WSD corpus (Wee-
ber et al., 2001) which Stevenson et al. (2008a)
used for their experiments, the Senseval-3 lexical
sample task (Mihalcea et al., 2004) and the coarse-
grained version of the SemEval English lexical
sample task (Pradhan et al., 2007).

2.1 Generating Examples

To generate examples for a particular sense of an
ambiguous term all of the examples where the
term is used in that sense are considered to be
“relevant documents” while the examples in which
any other sense of the term is used are considered
to be “irrelevant documents”. Relevance feed-
back (Rocchio, 1971) is used to generate a set of
query terms designed to identify relevant docu-
ments, and therefore instances of the sense. The
top five query terms are used to retrieve docu-
ments and these are used as labeled examples of
the sense. Further details of this process are de-
scribed by Stevenson et al. (2008a).

This process requires a collection of documents
that can be queried to generate the additional
examples. For the NLM-WSD data set we
used PubMed, a database of biomedical journal
abstracts queried using the Entrez retrieval sys-
tem (http://www.ncbi.nlm.nih.gov/
sites/gquery). The British National Corpus
(BNC) was used for Senseval-3 and SemEval.1

Lucene (http://lucene.apache.org) was
used to index the BNC and retrieve examples.

1We also experimented with the English WaCky corpus
(Baroni et al., 2009) which contains nearly 2 billion words
automatically retrieved from the web. However, results were
not as good as when the BNC was used.

353

2.2 WSD System

We use a WSD system that has been shown to
perform well when evaluated against ambiguities
found in both general text and the biomedical do-
main (Stevenson et al., 2008b). Medical Subject
Headings (MeSH), a controlled vocabulary used
for document indexing, are obtained from PubMed
and used as additional features for the NLM-WSD
data set since they have been shown to improve
performance. The features are combined using
the Vector Space Model, a simple memory-based
learning algorithm.

2.3 Experiment

Experiments were carried out comparing perfor-
mance when the WSD system was trained using
either the examples in the original data set (orig-
inal), the examples generated from these using
the relevance feedback approach (additional) or a
combination of these (combined). The Senseval-
3 and SemEval corpora are split into training and
test portions so the training portion is used as the
original data set and the WSD system evaluated
against the held-back data. As there is no such
recognised standard split for the NLM-WSD cor-
pus, 10-fold cross-validation was used. For each
fold the training portion is used as the original data
set and automatically generated examples created
by examining just that part of the data. Evaluation
is carried out against the fold’s test data and the
average result across the 10 folds reported.

Table 1 shows the results of this experiment.2

Examples generated using the relevance feedback
approach only improve results for one data set, the
NLM-WSD corpus. In this case there is a sig-
nificant improvement (Mann-Whitney, p < 0.01)
when the original and automatically generated ex-
amples are combined. There is no such improve-
ment for the other two data sets: WSD results us-
ing the additional data are noticeably worse than
when the original data is used alone and, although
performance improves when these examples are
combined with the original data, results are still
lower than using the original data. When exam-
ples are combined there is a drop in performance
of 1.2% and 2.9% for SemEval and Senseval-3 re-

2Results reported here for the NLM-WSD corpus are
slightly different from those reported by (Stevenson et al.,
2008a). We used an additional feature (MeSH headings),
which improved the baseline performance, and more query
terms which improved the quality of the additional examples
for all three data sets.

spectively.

Corpus Original Additional Combined
NLM-WSD 87.9 87.6 89.2

SemEval 83.7 74.6 82.5
Senseval-3 68.8 56.3 65.9

Table 1: Results of relevance feedback approach
applied to three data sets

These results indicate that the relevance feed-
back approach described by Stevenson et al.
(2008a) is not able to generate useful examples for
the Senseval-3 and SemEval data sets, although it
can for the NLM-WSD data set. We hypothesise
that these corpora contain different levels of ambi-
guity which effect suitability of the approach.

3 Analysis of Ambiguities

The three data sets are compared using measures
designed to determine the level of ambiguity they
contain. Section 3.1 reports results using various
widely used measures based on the distribution of
senses. Section 3.2 introduces a measure based
on the semantic similarity between the possible
senses of ambiguous terms.

3.1 Sense Distributions

Three measures for characterising the difficulty of
WSD data sets based on their sense distribution
were used. The first is the widely applied most
frequent sense (MFS) baseline (McCarthy et al.,
2004), i.e. the proportion of examples for an am-
biguous term that are labeled with the commonest
sense. The second is number of senses per am-
biguous term. The final measure, the entropy of
the sense distribution, has been shown to be a good
indication of disambiguation difficulty (Kilgarriff
and Rosenzweig, 2000). For two of these mea-
sures (number of senses and entropy) a higher fig-
ure indicates greater ambiguity while for the MFS
measure a lower figure indicates a more difficult
data set.

Table 2 shows the results of computing these
measures averaged across all terms in the cor-
pus. For two measures (number of senses and en-
tropy) the NLM-WSD corpus is least ambiguous,
Senseval-3 the most ambiguous with SemEval be-
tween them. The MFS scores are very similar for
two data sets (NLM-WSD and SemEval), both of
which are much higher than for Senseval-3.

354

These measures suggest that the NLM-WSD
corpus is less ambiguous than the other two and
also that the Senseval-3 corpus is the most am-
biguous of the three.

Corpus MFS Senses Entropy
NLM-WSD 78.0 2.63 0.73

SemEval 78.4 3.60 0.91
Senseval-3 53.8 6.43 1.75

Table 2: Properties of Data Sets using sense distri-
bution measures

3.2 Semantic Similarity

We also developed a measure that takes into ac-
count the similarity in meaning between the possi-
ble senses for an ambiguous term. This measure is
similar to the one used by Passoneau et al. (2009)
to analyse levels of inter-annotator agreement in
word sense annotation. Our measure is shown in
equation 1 where Senses is the set of possible
senses for an ambiguous term, |Senses| = n and(Senses

2

)
is the set of all subsets of Senses contain-

ing two of its members (i.e the set of unordered
pairs). The similarity between a pair of senses,
sim(x, y), can be computed using any lexical sim-
ilarity measure, see Pedersen et al. (2004). Essen-
tially this measure computes the mean of the sim-
ilarities between each pair of senses for the term.

sim measure =

∑
{x,y}ε(Senses

2) sim(x, y)(n
2

) (1)

One problem with comparing the data sets used
here is that they use a range of sense invento-
ries. Although lexical similarity measures have
been applied to WordNet (Pedersen et al., 2004)
and UMLS (Pedersen et al., 2007), it is not clear
that the scores they produce can be meaningfully
compared. To avoid this problem we mapped the
sense inventories onto a single resource: WordNet
version 3.0.

The mapping was most straightforward for
Senseval-3 which uses WordNet 1.7.1 and could
be automatically mapped onto WordNet 3.0 senses
using publicly available mappings (Daudé et al.,
2000). The SemEval data contains a mapping
from the OntoNotes senses to groups of WordNet
2.1 senses. The first sense from this group was
mapped to WordNet 3.0 using the same mappings.

Mapping the NLM-WSD corpus was more
problematic and had to be carried out manually by
comparing sense definitions in UMLS and Word-
Net 3.0. We had expected this process to be diffi-
cult but found clear mappings for the majority of
senses. There were even found cases in which the
sense definitions were identical in both resources.
(The most likely reason for this is that some of
the resources that are included in the UMLS were
used to compile WordNet.) Another, more serious,
problem is related to the annotation scheme used
in the NLM-WSD corpus. If none of the possi-
ble senses in UMLS were judged to be appropri-
ate the annotators could label the sense as “None”.
We did not map these senses since it would require
examining each instance to determine the most ap-
propriate sense or senses in WordNet and we ex-
pected this to be error prone. In addition, there is
no guarantee that all of the instances of a particular
term labeled with “None” refer to the same mean-
ing. All of the “None” senses were removed from
the NLM-WSD data set and any terms where there
were more than ten instances marked as “None”
were also rejected from the similarity analysis.
This allowed us to compute the similarity score
for just 20 examples (40% of the total) although
we felt that this was a large enough sample to pro-
vide insight into the data set.

The WordNet::Similarity package (Ped-
ersen et al., 2004) was used to compute similar-
ity scores. Results are reported for three of the
measures in this package. (Other measures pro-
duced similar results.) The simple path measure
computes the similarity between a pair of nodes in
WordNet as the reciprocal of the number of edges
in the shortest path between them, the LCh mea-
sure (Leacock et al., 1998) also uses information
about the length of the shortest path between a pair
of nodes and combines this with information about
the maximum depth in WordNet and the JCn mea-
sure (Jaing and Conrath, 1997) makes use of in-
formation theory to assign probabilities to each of
the nodes in the WordNet hierarchy and computes
similarity based on these scores.

Table 3 shows the values of equation 1 for
the three similarity measures with scores averaged
across terms. These results indicate that for all
measures the Senseval-3 data set contains the most
ambiguity and NLM-WSD the least. This analysis
is consistent with the one carried out using mea-
sures based on sense distributions (Section 3.1)

355

MeasureCorpus
Path JCn LCh

NLM-WSD 0.074 0.032 1.027
SemEval 0.136 0.061 1.292

Senseval-3 0.159 0.063 1.500

Table 3: Semantic similarity for each data set us-
ing a variety of measures

and suggest that the senses in the NLM-WSD data
set are more clearly distinguished than the other
two.

4 Conclusion

This paper has explored a semi-supervised ap-
proach to the generation of labeled training data
for WSD that is based on relevance feedback
(Stevenson et al., 2008a). It was tested on three
data sets but was only found to generate examples
that were accurate enough to improve WSD per-
formance for one of these. The data set in which
a performance improvement was observed repre-
sented a limited domain (biomedicine) while the
other two were not restricted in this way. Measures
designed to quantify the level of ambiguity were
applied to these data sets including ones based on
the distribution of senses and another designed to
quantify similarities between senses. These mea-
sures provided evidence that the corpus for which
the relevance feedback approach was successful
contained less ambiguity than the other two and
this suggests that the relevance feedback approach
is most appropriate when the level of ambiguity is
low.

The experiments described in this paper high-
light the importance of the level of ambiguity on
the relevance feedback approach’s ability to gen-
erate useful labeled examples. Since it is semi-
supervised the ambiguity level can be checked us-
ing the measures used in this paper (Section 3)
and the performance of any automatically gener-
ated examples can be compared with the manu-
ally labeled ones (see Section 2.3) before deciding
whether or not they should be applied.

References
M. Baroni, S. Bernardini, A. Ferraresi, and

E. Zanchetta. 2009. The wacky wide web: a
collection of very large linguistically processed
web-crawled corpora. Language Resources and
Evaluation, 43(3):209–226.

J. Daudé, L. Padró, and G. Rigau. 2000. Mapping
wordnets using structural information. In Proceed-
ings of ACL ’00, pages 504–511, Hong Kong.

J. Jaing and D. Conrath. 1997. Semantic similar-
ity based on corpus statistics and lexical taxonomy.
In Proceedings of International Conference on Re-
search in Computational Linguistics, Taiwan.

A. Kilgarriff and J. Rosenzweig. 2000. Framework
and results for English SENSEVAL. Computers and
the Humanities, 34(1-2):15–48.

C. Leacock, M. Chodorow, and G. Miller. 1998.
Using corpus statistics and WordNet relations for
sense identification. Computational Linguistics,
24(1):147–165.

D. McCarthy, R. Koeling, J. Weeds, and J. Carroll.
2004. Finding predominant word senses in untagged
text. In Proceedings of ACL’04, pages 279–286,
Barcelona, Spain.

R. Mihalcea, T. Chklovski, and A. Kilgarriff. 2004.
The Senseval-3 English lexical sample task. In
Proceedings of Senseval-3, pages 25–28, Barcelona,
Spain.

R. Passoneau, A. Salleb-Aouissi, and N. Ide. 2009.
Making sense of word sense variation. In Proceed-
ings of SEW-2009, pages 2–9, Boulder, Colorado.

T. Pedersen, S. Patwardhan, and Michelizzi. 2004.
Wordnet::similarity - measuring the relatedness of
concepts. In Proceedings of AAAI-04, pages 1024–
1025, San Jose, CA.

T. Pedersen, S. Pakhomov, S. Patwardhan, and
C. Chute. 2007. Measures of semantic similarity
and relateness in the biomedical domain. Journal of
Biomedical Informatics, 40(3):288–299.

S. Pradhan, E. Loper, D. Dligach, and M. Palmer.
2007. SemEval-2007 Task-17: English Lexical
Sample, SRL and All Words. In Proceedings of
SemEval-2007, pages 87–92, Prague, Czech Repub-
lic.

J. Rocchio. 1971. Relevance feedback in Informa-
tion Retrieval. In G. Salton, editor, The SMART
Retrieval System – Experiments in Automatic Doc-
ument Processing. Prentice Hall, Englewood Cliffs,
NJ.

M. Stevenson, Y. Guo, and R. Gaizauskas. 2008a.
Acquiring Sense Tagged Examples using Relevance
Feedback. In Proceedings of the Coling 2008, pages
809–816, Manchester, UK, August.

M. Stevenson, Y. Guo, R. Gaizauskas, and D. Martinez.
2008b. Disambiguation of biomedical text using di-
verse sources of information. BMC Bioinformatics,
9(Suppl 11):S7.

M. Weeber, J. Mork, and A. Aronson. 2001. Devel-
oping a Test Collection for Biomedical Word Sense
Disambiguation. In Proceedings of AMIA Sympo-
sium, pages 746–50, Washington, DC.

356

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 357–360,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Word Sense Subjectivity for Cross-lingual Lexical Substitution

Fangzhong Su
School of Computing

University of Leeds, UK
scsfs@leeds.ac.uk

Katja Markert
School of Computing

University of Leeds, UK
scskm@leeds.ac.uk

Abstract

We explore the relation between word sense
subjectivity and cross-lingual lexical substitu-
tion, following the intuition that good substi-
tutions will transfer a word’s (contextual) sen-
timent from the source language into the target
language. Experiments on English-Chinese
lexical substitution show that taking a word’s
subjectivity into account can indeed improve
performance. We also show that just using
word sense subjectivity can perform as well
as integrating fully-fledged fine-grained word
sense disambiguation for words which have
both subjective and objective senses.

1 Introduction

Cross-lingual lexical substitution has been proposed
as a Task at SemEval-2010.1 Given a target word
and its context in a source language (like English),
the goal is to provide correct translations for that
word in a target language (like Chinese). The trans-
lations must fit the given context.

In this paper, we explore the relation between the
sentiment of the used word in the source language
and translation choice in the target language, focus-
ing on English as the source and Chinese as the tar-
get language. Our work is motivated by the intuition
that most good word translations will be sentiment-
invariant, i.e. if a source word is used in a subjec-
tive (opinion-carrying) sense it will be often trans-
lated with a subjective sense in the target language
whereas if it used in an objective sense, it will be

1http://lit.csci.unt.edu/index.php/
Semeval_2010

translated with an objective sense. As an exam-
ple, consider the two words positive and collaborate
with example senses from WordNet 2.0 below.

(1) positive—greater than zero; “positive numbers”
(objective)

(2) plus, positive—involving advantage or good; “a
plus (or positive) factor” (subjective)

(3) collaborate, join forces, cooperate—work together
on a common enterprise of project; “We joined
forces with another research group”(objective)

(4) collaborate—cooperate as a traitor; (subjective)

In most cases, if the word positive is used in
the sense “greater than zero” (objective) in an
English context, the corresponding Chinese trans-
lation is “� �”; if “involving advantage or
good”(subjective) is used, its Chinese translations
are “È4�,Ð�”. Similarly, for the word collab-
orate, the sense “work together on a common en-
terprise of project” (objective) corresponds to “Ü
�,��” in Chinese translation, and “cooperate as
a traitor” (subjective) corresponds to “�(, H�
�r”. Therefore, subjectivity information should
be effective for improving lexical translation for
what we previously (Su and Markert, 2008) termed
subjectivity-ambiguous words, i.e. words with both
subjective and objective senses such as positive and
collaborate above.

We therefore incorporate subjectivity word sense
disambiguation (SWSD) as defined in Akkaya et
al. (2009) into lexical substitution. SWSD is a
binary classification task that decides in context
whether a word occurs with one of its subjective or
one of its objective senses. In contrast to standard

357

multi-class Word Sense Disambiguation (WSD), it
uses a coarse-grained sense inventory that allows to
achieve higher accuracy than WSD and therefore in-
troduces less noise when embedded in another task
such as word translation. For example, the accuracy
reported in Akkaya et al. (2009) for SWSD is over
20% higher than for standard WSD. Coarse-grained
senses are also easier to annotate, so getting train-
ing data for learning is less arduous. On the mi-
nus side, SWSD can only be useful for subjectivity-
ambiguous words. However, we showed (Su and
Markert, 2008) that subjectivity-ambiguity is fre-
quent (around 30% of common words).

2 Related Work

McCarthy and Navigli (2007) organized a monolin-
gual English lexical substitution task in Semeval-
2007, i.e finding English substitutions for an English
target word. Mihalcea et al. organize an English-
Spanish lexical substitution task in SemEval-2010.
Approaches to lexical substitution in the past com-
petitions did not use sentiment features.

Independent of these lexical substitution tasks, the
connection between word senses and word transla-
tion has been explored in Chan et al. (2007) and
Carpuat and Wu (2007), who predict the probabil-
ities of a target word being translated as an item in
a “sense inventory”, where the sense inventory is a
list of possible translations. They then incorporate
these probabilities into machine translation. How-
ever, they do not consider sentiment explicitly.

Subjectivity at the word sense level has been
discussed by (Wiebe and Mihalcea, 2006; Su and
Markert, 2008; Akkaya et al., 2009). Wiebe and
Mihalcea (2006) and Su and Markert (2008) both
show that this is a well-defined concept via human
annotation as well as automatic recognition. Akkaya
et al. (2009) show that subjectivity word sense dis-
ambiguation (SWSD) can boost the performance of
a sentiment analysis system. None of these paper
considers the impact of word sense subjectivity on
cross-lingual lexical substitution.

3 Methodology

3.1 Task and Dataset
We constructed an English-Chinese lexical substi-
tution gold standard by translating the English tar-

get words in the SENSEVAL 2 and SENSEVAL 3
lexical sample training and test sets into Chinese.
We choose the SENSEVAL datasets as they are rel-
atively domain-independent and also because we
can use them for our SWSD/WSD subtasks as well.
The translation is carried out by two native Chinese
speakers with a good command of English. First,
candidate Chinese translations (denoted by T) of the
English target words are provided from the on-line
English-Chinese dictionary iciba2, which is com-
posed of more than 150 different English-Chinese
dictionaries. To reduce annotation bias, the order
of the Senseval sentences is randomized. The an-
notators then independently assign the most fitting
Chinese translation(s) (from T) for the English tar-
get words in the given Senseval sentences. For the
agreement study, different Chinese translations (for
example, “�%” and “�Ì” of the word author-
ity) that are actually synonyms are merged. The
observed agreement between the two annotators is
86.7%. Finally, the two annotators discuss the dis-
agreed examples together, leading to a gold stan-
dard.

Since we evaluate how word sense subjectivity
affects cross-lingual lexical substitution, we lim-
ited our study to the SENSEVAL words that are
subjectivity-ambiguous. Therefore, following the
annotation schemes in (Su and Markert, 2008;
Wiebe and Mihalcea, 2006), all senses of all target
words in SENSEVAL 2&3 are annotated by a near-
native English speaker as subjective orobjective.
This annotator was not involved in the English to
Chinese translation. We also discard subjectivity-
ambiguous words if its subjective or objective senses
do not appear in both training and test set. In total we
collect 28 subjectivity-ambiguous words. Their En-
glish example sentences and translations yield 2890
training sentence pairs and 1444 test sentence pairs.

3.2 Algorithms

For the English-Chinese lexical substitution task, we
first develop a basic system (called B) to assign Chi-
nese translations to the target English words in con-
text. This system uses only standard contextual fea-
tures from the English sentences (see Section 3.3).
We then add word sense subjectivity information to

2http://www.iciba.com

358

the basic system (see Section 3.4). We also compare
including word sense subjectivity to the inclusion of
full fine-grained sense information (Section 3.5).

All systems are supervised classifiers trained on
the SENSEVAL training data and evaluated on the
SENSEVAL test data for each of the 28 words. We
employ an SVM classifier from the libsvm pack-
age3 with a linear kernel.

3.3 Common Features

In the basic system B, we adopt features which are
commonly used in WSD or lexical translation.

Surrounding Words: Lemmatized bag of words
with stop word filtering.

Part-of-Speech (POS): The POS of the neigh-
bouring words of the target word. We extract POS
tag of the 3 words to the right and left together with
position information.

Collocation: The neighbouring words of the tar-
get word. We extract 4 lemmatized words to the
right and left, together with position information.

Syntactic Relations: We employ the MaltParser4

for dependency parsing and extract 4 features: the
head word of the target word, POS of the head word,
the dependency relation between head word and tar-
get word, and the relative position (left or right) of
the head word to the target word.

3.4 Subjectivity Features

We add a feature that incorporates whether the origi-
nal English word is used subjectively or objectively.
For an upper bound, we use the SENSEVAL gold
standard sense annotation (gold-subj), mapped onto
binary subjective/objective labels. For a more re-
alistic assessment, we use SWSD to derive the sub-
jectivity sense label automatically (auto-subj) using
standard supervised binary SVMs and the features in
Section 3.3 on the SENSEVAL data.

3.5 Sense Features

We compare using subjectivity information to using
full fine-grained word sense information, incorpo-
rating a feature that specifies the exact word sense
of the target word to be translated. This setting

3http://www.csie.ntu.edu.tw/˜cjlin/
libsvm

4http://w3.msi.vxu.se/˜nivre/research/
MaltParser.html

also compares the SENSEVAL gold standard (gold-
senses) and automatically predicted sense informa-
tion (auto-senses), the latter via supervised multi-
class learning on the SENSEVAL dataset.

4 Experiments and Evaluation

For the English-Chinese lexical substitution task, we
evaluate 6 different methods: Baseline (assign the
most frequent translation to all examples), B (use
common features), B+gold subj (incorporate gold
standard word sense subjectivity), B+gold sense (in-
corporate gold standard sense), B+auto subj (incor-
porate automatically predicted word sense subjectiv-
ity), and B+auto sense (incorporate automatically
predicted fine-grained senses). We measure lexical
substitution accuracy on the SENSEVAL test data by
comparing to the human gold standard annotation
(see Section 3.1). Results are listed in Table 1.

Results. Table 1 shows that our standard lexical
substitution system B improves strongly (near 11%
average accuracy gain) over the most frequent trans-
lation baseline. Incorporating sense subjectivity as
in B+gold subj leads to a further strong improve-
ment, confirming our hypothesis that word sense
subjectivity can improve lexical substitution. Incor-
porating fine-grained senses B+gold senses yields
only a slightly higher gain, showing that a coarse-
grained subjective/objective classification might be
sufficient for subjectivity-ambiguous words for aid-
ing translation. In addition, the small gain using
fine-grained senses might disappear in practice as
automatic WSD is a more challenging task than
SWSD: in our experiment, B+auto sense performs
worse than B+auto subj. The current improve-
ment of B+auto subj over B is significant (McNe-
mar test at the 5% level). The difference between
the actual performance of word sense subjectivity
and its potential as exemplified in B+gold subj is,
obviously, caused by imperfect performance of the
SWSD component, mostly due to a distributional
bias in the SENSEVAL training data, with few ex-
amples for rarer senses of the target words.

For some words (such as authority and stress),
the additional sense subjectivity feature does not im-
prove lexical substitution, even when gold standard
labels are used. There are two main reasons for this.
First, one candidate Chinese translation might cover

359

Table 1: Accuracy of lexical substitution with different
different feature settings

Word Subjectivity
of Senses

Baseline Basic
(B)

B+gold
subj

B+gold
senses

B+auto
subj

B+auto
senses

authority 3-S 4-O 50.5% 70.3% 70.3% 84.6% 70.3% 79.1%
blind 2-S 1-O 87.0% 88.9% 94.4% 94.4% 88.9% 88.9%
cool 3-S 3-O 46.0% 46.0% 68.0% 68.0% 58.0% 48.0%
dyke 1-S 1-O 89.3% 89.3% 92.9% 92.9% 89.3% 89.3%
fatigue 1-S 2-O 1-B 80.0% 80.0% 82.5% 85.0% 82.5% 82.5%
fine 5-S 4-O 78.5% 78.5% 90.8% 80.0% 80.0% 78.5%
nature 1-S 3-O 1-B 53.3% 62.2% 73.3% 71.1% 64.4% 62.2%
oblique 1-S 1-O 65.5% 75.9% 86.2% 89.7% 79.3% 79.3%
sense 3-S 2-O 47.5% 67.5% 77.5% 77.5% 75.0% 72.5%
simple 2-S 2-O 1-B 71.2% 71.2% 75.8% 74.2% 72.7% 71.2%
stress 3-S 2-O 92.1% 92.1% 92.1% 92.1% 92.1% 92.1%
collaborate 1-S 1-O 90.0% 90.0% 93.3% 93.3% 93.3% 90.0%
drive 3-S 5-O 1-B 51.4% 78.4% 89.2% 86.5% 83.8% 78.4%
play 4-S 13-O 1-B 23.3% 40.0% 48.3% 56.7% 41.7% 43.3%
see 7-S 11-O 30.9% 36.8% 58.8% 61.8% 42.6% 38.2%
strike 3-S 10-O 1-B 20.5% 27.3% 43.2% 45.5% 29.5% 38.6%
treat 2-S 4-O 36.4% 61.4% 65.9% 81.8% 56.8% 65.9%
wander 1-S 2-O 1-B 79.2% 81.3% 83.3% 83.3% 81.3% 81.3%
work 2-S 9-O 2-B 56.8% 56.8% 75.0% 75.0% 63.6% 61.4%
appear 1-S 2-O 42.7% 63.4% 80.2% 90.8% 65.6% 66.4%
express 2-S 2-O 81.5% 81.5% 90.7% 88.9% 83.3% 81.5%
hot 3-S 4-O 1-B 85.0% 85.0% 85.0% 85.0% 85.0% 85.0%
image 3-S 4-O 56.7% 83.6% 94.0% 92.5% 85.1% 79.1%
interest 2-S 4-O 1-B 38.7% 73.1% 84.9% 88.2% 74.2% 71.0%
judgment 4-S 3-O 46.9% 65.6% 78.1% 75.0% 68.8% 62.5%
miss 3-S 5-O 50.0% 63.3% 70.0% 66.7% 63.3% 60.0%
solid 4-S 10-O 40.0% 40.0% 44.0% 48.0% 44.0% 44.0%
watch 3-S 4-O 86.3% 86.3% 90.2% 88.2% 86.3% 86.3%
AVERAGE 57.4% 68.5% 77.9% 80.2% 70.7% 70.1%

both subjective and objective uses of the word. For
example, both the objective sense (“physics force
that produces strain on a physical body”) and sub-
jective senses (“difficulty that causes worry or emo-
tional emotional tension” and “ a state of mental
or emotional strain or suspense”) of stress are of-
ten translated as “Øå” in Chinese. Second, in
some cases, subjectivity word sense disambiguation
is too coarse-grained and finer-grained WSD is ac-
tually necessary. For example, the subjective usages
of authority in SENSEVAL examples are often trans-
lated as “;[, �%”, “g&” or “�&” (called
List-S), and objective usages are often translated
as “Û, Ü”,“�Û”,“�å, ��” or “Ç�, 1O”
(called List-O). In this case, word sense subjectivity
might help to distinguish List-S from List-O, but
not among the candidate translations within a single
list.

5 Discussion

We tackle cross-lingual lexical substitution as a su-
pervised task, using sets of manual translations for a
target word as training data even for baseline system
B. However, we do not necessarily need dedicated
human translated data as we could also use existing
parallel texts in which the target word occurs. There-
fore, we think that a supervised approach to lexical

substitution is feasible. However, we do need addi-
tional monolingual sense-tagged data in the source
language for incorporating our word sense subjec-
tivity features.5 Although a disadvantage, more and
more sense-tagged data does become available (such
as OntoNotes). We also only need tagging at a
coarse-grained sense level, which is much easier to
create than fine-grained data.

6 Conclusion and Future Work

We investigate the relation between word sense sub-
jectivity and cross-lingual lexical substitution. The
experimental results show that incorporating word
sense subjectivity into a standard supervised classi-
fication model yields a significantly better perfor-
mance for an English-Chinese lexical substitution
task. We also compare the effect of sense subjec-
tivity to the effect of fine-grained sense informa-
tion on lexical substitution. The differences be-
tween the two methods turn out to be small, mak-
ing a case for the “easier”, coarse-grained SWSD
over WSD for subjectivity-ambiguous words. Fu-
ture work will widen the study by (i) looking at a
wider range of words and languages, (ii) improv-
ing automatic SWSD results for better application
and (iii) integrating unsupervised subjectivity fea-
tures into cross-lingual lexical substitution.

References
Cem Akkaya, Janyce Wiebe, and Rada Mihalcea. 2009.

Subjectivity Word Sense Disambiguation. Proceed-
ings of EMNLP’09.

Marine Carpuat and Dekai Wu. 2007. Improving Statis-
tical Machine Translation Using Word Sense Disam-
biguation. Proceedings of EMNLP’07.

Yee Seng Chan, Hwee Tou Ng, and David Chiang. 2007.
Word Sense Disambiguation Improves Statistical Ma-
chine Translation. Proceedings of ACL’07.

Diana McCarthy and Roberto Navigli. 2007. SemEval-
2007 Task 10: English Lexical Substitution Task. Pro-
ceedings of SemEval-2007.

Fangzhong Su and Katja Markert. 2008. From Words
to Senses: A Case Study in Subjectivity Recognition.
Proceedings of COLING’08.

Janyce Wiebe and Rada Micalcea. 2006. Word Sense
and Subjectivity. Proceedings of ACL’06.

5In our case, this is the same data as the data the lexical
substitution algorithms are trained on, but this is not mandatory.

360

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 361–364,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Query Ambiguity Revisited: Clickthrough Measures for Distinguishing
Informational and Ambiguous Queries

Yu Wang
Math & Computer Science Department

Emory University
yu.wang@emory.edu

Eugene Agichtein
Math & Computer Science Department

Emory University
eugene@mathcs.emory.edu

Abstract

Understanding query ambiguity in web search
remains an important open problem. In this
paper we reexamine query ambiguity by ana-
lyzing the result clickthrough data. Previously
proposed clickthrough-based metrics of query
ambiguity tend to conflate informational and
ambiguous queries. To distinguish between
these query classes, we introduce novel met-
rics based on the entropy of the click distri-
butions of individual searchers. Our exper-
iments over a clickthrough log of commer-
cial search engine demonstrate the benefits of
our approach for distinguishing informational
from truly ambiguous queries.

1 Introduction

Since query interpretation is the first crucial step in
the operation of the web search engines, more re-
liable query intent classification, such as detecting
whether a query is ambiguous, could allow a search
engine to provide more diverse results, better query
suggestions, or otherwise improve user experience.

In this paper we re-examine query ambiguity
in connection with searcher clickthrough behavior.
That is, we posit that clickthrough information could
provide important evidence for classifying query
ambiguity. However, we find that previously pro-
posed clickthrough-based measures tend to conflate
informational and ambiguous queries. We propose a
novel clickthrough measure for query classification,
user click entropy, and show that it helps distinguish
between informational and truly ambiguous queries.

Previous research on this topic focused on binary
classification of query ambiguity. Notably, (Tee-
van et al., 2008) used click entropy as a proxy for
query ambiguity to estimate the potential for search
personalization. (Mei and Church, 2008) considered

click entropy as measure of search difficulty. More
broadly, clickthrough information has been used for
many other tasks such as improving search rank-
ing (Zhu and Mishne, 2009), learning semantic cat-
egories (Komachi et al., 2009), and for topical query
classification (Li et al., 2008). However, our work
sheds new light on distinguishing between informa-
tional and ambiguous queries, by using clickthrough
data. Our contributions include:

• More precise definition of query ambiguity in
terms of clickthrough behavior (Section 2).

• Entropy-based formalization of resulting click be-
haviors (Section 3).

• Empirical validation of our methods on a large
real query and clickthrough log (Section 4).

2 Defining Query Ambiguity

In this study we focus on two orthogonal query in-
tent dimensions, adapted from the top level of user
goal taxonomies such as (Rose and Levinson, 2004).
Specifically, a query could beambiguous or unam-
biguous; as well asinformational or navigational.
Consider the example queries of each type below:

Ambiguous Unambiguous
Informational “al pacino” “lyrics”
Navigational “people” “google”

The query “al pacino”, the name of a famous ac-
tor, is a typical ambiguous and informational query.
In the clickthrough logs that we examined, the most
popular searcher destinations include sites with pic-
tures of Al Pacino, movie sites, and biography sites –
corresponding to different informational intents. In
contrast, the query “lyrics” has an unambiguous in-
formational intent, which is to explore websites with
song lyrics. For the ambiguous navigational query
“people”, popular destinations include people.com,
Yahoo People or People’s United Bank. Finally, the

361

query “google” is unambiguous and navigational,
with over 94% of the clicks on the Google’s home-
page.

Definitions of query classes: we now more for-
mally define the query classes we consider:

• Clear: Unambiguous navigational query, such as
“google”.

• Informational : Unambiguous informational
query, such as “lyrics”

• Ambiguous: Ambiguous informational or navi-
gational query, such as “people” or “al pacino”.

The key challenge in distinguishing the last two
classes, Informational and Ambiguous, is that the
overall clickthrough patterns for these classes are
similar: in both cases, there are clicks on many re-
sults, without a single dominant result for the query.

3 Clickthrough Measures for
Distinguishing Ambiguous and
Informational Queries

In this section we describe the features used to rep-
resent a query for intent classification, listed in Ta-
ble 1. In addition to popular features such as click-
through frequency and query length, we introduce
novel features related to user click entropy, to cap-
ture the distinction between informational and am-
biguous queries.
Overall Entropy: Previous methods for query classi-
fication utilize entropy of all result clicks for a query,
or overall entropy (the uncertainty associated with
obtaining a click on any specific result), defined as:

H(Rq) = −
∑

r∈Rq

p(r) log p(r)

Rq is the set of resultsr, clicked by all users after
submitting the queryq. For example, a clear query
“target” has the overall entropy of 0.36, and most
results corresponding to this query point to Target’s
company website. The click log data shows that
85% of the users click the Target website for this
query. In contrast, an unclear query “lyrics” has the
overall entropy of 2.26. However, overall entropy
is insufficient for distinguishing between informa-
tional and ambiguous queries. To fill this gap, we
introduce new clickthrough metrics to detect such
ambiguous queries.
User Entropy: Recall, that both informational
queries and ambiguous queries could have high

1 2 3
0

5

10

15

(a) Overall Entropy

F
re

qu
en

cy

Ambiguous

Informational

0.15 0.3 0.45
0

5

10

15

(b) User Entropy

F
re

qu
en

cy

InformationalAmbiguous

Figure 1: Frequency of ambiguous and informational
queries by Overall Entropy (a) and User Entropy (b).

overall entropy, making it difficult to distinguish
them. Thus, we introduce a new metric,user en-
tropy of a query q H(Uq), as the average entropy of
a distribution of clicks for eachsearcher:

H(Uq) =

−
∑

u∈Uq

∑

r∈Ru

p(r) log p(r)

|Uq|

whereUq is the set of users who have submitted the
query q, andRu is the set of resultsr, clicked by
the useru. For the example informational query
“lyrics”, a single user may click many different
URLs, thereby increasing user entropy of this query
to 0.317. While for an ambiguous query, which has
multiple meanings, a user typically searches for only
one meaning of this query at a time, so the results
clicked by each user will concentrate on one topic.
For example, the query “people” is ambiguous, and
has the overall entropy of 1.73 due to the variety
of URLs clicked. However, a particular user usu-
ally clicks only one of the websites, resulting in low
user entropy of 0.007. Figure 1 illustrates the dif-
ference in the distributions of informational and am-
biguous queries according to their overall and user
entropy values: more informational queries tend to
have medium to high User Entropy values, com-
pared to the truly ambiguous queries.
Domain Entropy: One problem with the above mea-
sures is that clickthrough data for individual URLs
is sparse. A common approach is tobackoff to
the URLs domain, with the assumption that URLs
within the same domain usually relate to the same
topic or concept. Therefore, domain entropyH(Dq)
of a query may be more robust, and is defined as:

H(Dq) = −
∑

d∈Dq

p(d) log p(d)

whereDq are the domains of all URL clicked for
q. For example, the query “excite” is a navigational
and clear query, as all the different clicked URLs for
this query are within the same domain,excite.com.

362

Query Feature Description
QueryLength Number of tokens (words) in the query
ClickFrequency Number of total clicks for this query
OverallEntropy Entropy of all URLs for this query
UserEntropy* Average entropy of the URLs clicked by one user for this query
OverallDomainEntropy Entropy of all URL domains for this query
UserDomainEntropy* Average entropy of URL domains clicked by one user for this query
RelativeUserEntropy* Fraction of UserEntropy divided by OverallEntropy
RelativeOverallEntropy* Fraction of OverallEntropy divided by UserEntropy
RelativeUserDomainEntropy* Fraction of UserDomainEntropy divided by OverallDomainEntropy
RelativeOverallDomainEntropy* Fraction of OverallDomainEntropy divided by UserDomainEntropy

Table 1: Features used to represent a query (* indicates features derived from User Entropy).

While this query has high Overall and User Entropy
values, the Domain Entropy is low, as all the clicked
URLs for this query are within the same domain.

The features described here can then be used as
input to many available classifiers. In particular, we
use the Weka toolkit1, as described below.

4 Experimental Results
We describe the dataset and annotation process, and
then present and analyze the experimental results.

Dataset: We use an MSN Search query log
(from 2006 Microsoft data release) with 15 million
queries, from US users, sampled over one month.
Queries with click frequency under 10 are discarded.
As a result, 84,703 unique queries remained, which
form our universe of queries. To separately analyze
queries with different frequencies, we divide the
queries into three groups: low frequency group (10-
100 clicks), medium frequency group (100-1000
clicks) and high frequency group (over 1000 clicks).
From each group, we draw a random sample of 50
queries for manual labeling, for the total of 150
queries. Each query was labeled by three members
of our lab. The inter-annotator agreeement was 85%,
and Cohen’s Kappa value was 0.77.

Table 2 reports the distribution of query classes in
our dataset. Note that low frequency queries dom-
inate, but are equally represented in the data sam-
ples used for classification training and prediction
(we will separately analyze performance on differ-
ent query frequency groups).

Results: Table 3 shows that best classification re-
quired User Entropy features. The Weka classifiers
were Naive Bayes (NB), Logistic Regression (Lo-
gistic), and Support Vector Machines (SVM).

1http://www.cs.waikato.ac.nz/ml/weka/

Clear Informational Ambiguous Frequency (%)

High 76% 8% 16% 255 (0.3%)
Medium 52% 20% 28% 3802 (4.5%)

Low 32% 46% 22% 80646 (95.2%)

Table 2: Frequency distribution of different query types

All Clear Informational Ambiguous
Ac. Pre. Rec. Pre. Rec. Pre. Rec.

All features
NB 0.72 0.90 0.85 0.77 0.54 0.42 0.61

Logistic 0.77 0.84 0.98 0.68 0.73 0.59 0.30
SVM 0.76 0.79 1.00 0.69 0.78 0.71 0.15

Without user entropy
NB 0.73 0.85 0.95 0.63 0.73 0.39 0.21

Logistic 0.73 0.84 0.95 0.63 0.68 0.47 0.27
SVM 0.74 0.79 1.00 0.65 0.76 0.50 0.09

Table 3: Classification performance by query type

High Mid Low
Ac. Ac. Ac. Pre. Rec.

All features
NB 0.76 0.76 0.74 0.80 0.74

Logistic 0.78 0.76 0.70 0.68 0.7
SVM 0.78 0.72 0.79 0.69 0.72

Without user entropy
NB 0.80 0.76 0.70 0.66 0.70

Logistic 0.80 0.82 0.66 0.63 0.66
SVM 0.80 0.78 0.68 0.62 0.68

Table 4: Classification performance by query frequency

Recall, that low frequency queries dominate our
dataset, so we focus on performance of low fre-
quency queries, as reported in Table 4. The respec-
tive χ2 values are reported in (Table 5). The features
UserDomainEntropy andUserEntropy correlate the
most with manual query intent labels.

As an alternative to direct multiclass classification
described above, we first classify clear vs. unclear
queries, and only then attempt to distinguish am-
biguous and informational queries (within the un-

363

Feature χ
2 (multiclass) χ

2 (binary)

UserDomainEntropy 132.9618 23.3629
UserEntropy 128.0111 21.6112
RelativeOverallEntropy 96.6842 20.0255
RelativeUserEntropy 98.6842 20.0255
OverallEntropy 96.1205 0

Table 5:χ2 values of top five features formulticlass clas-
sification (clear vs. informational vs. ambiguous) and for
and forbinary classification (informational vs. ambigu-
ous), given the manualunclear label.

Overall Informational Ambiguous
Ac. Pre. Rec. Pre. Rec.

With User Entropy features
NB 0.72 0.82 0.60 0.65 0.85
Logistic 0.71 0.74 0.70 0.69 0.73
SVM 0.65 0.64 0.73 0.64 0.55
Without User Entropy features
NB 0.66 0.65 0.76 0.67 0.55
Logistic 0.68 0.69 0.73 0.68 0.64
SVM 0.68 0.67 0.81 0.72 0.55

Table 6: Binary classification performance for queries
manually labeled as unclear.

clear category). For classification between clear
and unclear queries, the accuracy was 90%, preci-
sion was 91%, and recall was 90%. The results for
subsequently classifying ambiguous vs. information
queries are reported in Table 6. For this task, User
Entropy features are beneficial, while theχ2 value or
Overall Entropy is 0, supporting our claim that User
Entropy is more useful for distinguishing informa-
tional from ambiguous queries.

Discussion: Interestingly, User Entropy does not
show a large effect on classification of High and
Medium frequency queries. However, as Table 2
indicates, High and Medium frequency queries are
largely clear (76% and 52%, respectively). As dis-
cussed above, User Entropy helps classify unclear
queries, but there are fewer such queries among
the High frequency group, which also tend to have
larger click entropy in general.

An ambiguous query is difficult to detect when
most users interpret it only one way. For instance,
query “ako” was annotated asambiguous, as it could
refer to different popular websites, such as the site
for Army Knowledge Online and the company site
for A.K.O., Inc. However, most users select the re-
sult for the Army Knowledge Online site, making
the overall entropy low, resulting in prediction as

a clear query. On the positive side, we find that
User Entropy helps detect ambiguous queries, such
as “laguna beach”, which was labeledambiguous as
it could refer to both a geographical location and a
popular MTV show. As a result, while the Overall
Entropy value of the clickthrough is high, the low
User Entropy value identifies the query as truly am-
biguous and not informational.

In summary, our techniques are of most help
for Low frequency queries and moderately helpful
for Medium frequency queries. These results are
promising, as Low frequency queries make up the
majority of queries processed by search engines, and
also contain the highest proportion of informational
queries, which our techniques can identify.

5 Conclusions
We explored clickthrough-based metrics for dis-
tinguishing between ambiguous and informational
queries - which, while exhibiting similaroverall
clickthrough distributions, can be more accurately
identified by using our User Entropy-based features.
We demonstrated substantial improvements forlow-
frequency queries, which are the most frequent in
query logs. Hence, our results are likely to have no-
ticeable impact in a real search setting.

Acknowledgments: This work was partially sup-
ported by grants from Yahoo! and Microsoft.

References

M. Komachi, S. Makimoto, K. Uchiumi, and M. Sassano.
2009. Learning semantic categories from clickthrough
logs. InProc. of ACL-IJCNLP.

X. Li, Y.Y. Wang, and A.Acero. 2008. Learning query
intent from regularized click graphs. InSIGIR, pages
339–346.

Q. Mei and K. Church. 2008. Entropy of search logs:
how hard is search? with personalization? with back-
off? In Proc. of WSDM, pages 45–54.

D. E. Rose and D. Levinson. 2004. Understanding user
goals in web search. InProc. of WWW, pages 13–19.

J. Teevan, S. T. Dumais, and D. J. Liebling. 2008. To per-
sonalize or not to personalize: modeling queries with
variation in user intent. InProc. of SIGIR, pages 163–
170.

G. Zhu and G. Mishne. 2009. Mining rich session con-
text to improve web search. InProc. of KDD, pages
1037–1046.

364

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 365–368,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

For the sake of simplicity:
Unsupervised extraction of lexical simplifications from Wikipedia

Mark Yatskar, Bo Pang, Cristian Danescu-Niculescu-Mizil and Lillian Lee
my89@cornell.edu, bopang@yahoo-inc.com, cristian@cs.cornell.edu, llee@cs.cornell.edu

Abstract
We report on work in progress on extract-
ing lexical simplifications (e.g., “collaborate”
→ “work together”), focusing on utilizing
edit histories in Simple English Wikipedia for
this task. We consider two main approaches:
(1) deriving simplification probabilities via an
edit model that accounts for a mixture of dif-
ferent operations, and (2) using metadata to
focus on edits that are more likely to be sim-
plification operations. We find our methods
to outperform a reasonable baseline and yield
many high-quality lexical simplifications not
included in an independently-created manu-
ally prepared list.

1 Introduction

Nothing is more simple than greatness; indeed, to be
simple is to be great. —Emerson, Literary Ethics

Style is an important aspect of information pre-
sentation; indeed, different contexts call for differ-
ent styles. Here, we consider an important dimen-
sion of style, namely, simplicity. Systems that can
rewrite text into simpler versions promise to make
information available to a broader audience, such as
non-native speakers, children, laypeople, and so on.

One major effort to produce such text is the
Simple English Wikipedia (henceforth SimpleEW)1,
a sort of spin-off of the well-known English
Wikipedia (henceforth ComplexEW) where hu-
man editors enforce simplicity of language through
rewriting. The crux of our proposal is to learn lexical
simplifications from SimpleEW edit histories, thus
leveraging the efforts of the 18K pseudonymous in-
dividuals who work on SimpleEW. Importantly, not
all the changes on SimpleEW are simplifications; we
thus also make use of ComplexEW edits to filter out
non-simplifications.

Related work and related problems Previous
work usually involves general syntactic-level trans-

1http://simple.wikipedia.org

formation rules [1, 9, 10].2 In contrast, we explore
data-driven methods to learn lexical simplifications
(e.g., “collaborate” → “work together”), which are
highly specific to the lexical items involved and thus
cannot be captured by a few general rules.

Simplification is strongly related to but distinct
from paraphrasing and machine translation (MT).
While it can be considered a directional form of
the former, it differs in spirit because simplification
must trade off meaning preservation (central to para-
phrasing) against complexity reduction (not a con-
sideration in paraphrasing). Simplification can also
be considered to be a form of MT in which the two
“languages” in question are highly related. How-
ever, note that ComplexEW and SimpleEW do not
together constitute a clean parallel corpus, but rather
an extremely noisy comparable corpus. For ex-
ample, Complex/Simple same-topic document pairs
are often written completely independently of each
other, and even when it is possible to get good
sentence alignments between them, the sentence
pairs may reflect operations other than simplifica-
tion, such as corrections, additions, or edit spam.

Our work joins others in using Wikipedia revi-
sions to learn interesting types of directional lexical
relations, e.g, “eggcorns”3 [7] and entailments [8].

2 Method

As mentioned above, a key idea in our work is to
utilize SimpleEW edits. The primary difficulty in
working with these modifications is that they include
not only simplifications but also edits that serve
other functions, such as spam removal or correction
of grammar or factual content (“fixes”). We describe
two main approaches to this problem: a probabilis-
tic model that captures this mixture of different edit
operations (§2.1), and the use of metadata to filter
out undesirable revisions (§2.2).

2One exception [5] changes verb tense and replaces pro-
nouns. Other lexical-level work focuses on medical text [4, 2],
or uses frequency-filtered WordNet synonyms [3].

3A type of lexical corruption, e.g., “acorn”→“eggcorn”.

365

2.1 Edit model
We say that the kth article in a Wikipedia corre-
sponds to (among other things) a title or topic (e.g.,
“Cat”) and a sequence ~dk of article versions caused
by successive edits. For a given lexical item or
phrase A, we write A ∈ ~dk if there is any version
in ~dk that contains A. From each ~dk we extract a
collection ek = (ek,1, ek,2, . . . , ek,nk

) of lexical edit
instances, repeats allowed, where ek,i = A → a
means that phrase A in one version was changed to
a in the next, A 6= a; e.g., “stands for” → “is the
same as”. (We defer detailed description of how we
extract lexical edit instances from data to §3.1.) We
denote the collection of ~dk in ComplexEW and Sim-
pleEW as C and S, respectively.

There are at least four possible edit operations: fix
(o1), simplify (o2), no-op (o3), or spam (o4). How-
ever, for this initial work we assume P (o4) = 0.4

Let P (oi | A) be the probability that oi is applied
to A, and P (a | A, oi) be the probability of A → a
given that the operation is oi. The key quantities of
interest are P (o2 | A) in S, which is the probability
thatA should be simplified, and P (a | A, o2), which
yields proper simplifications of A. We start with an
equation that models the probability that a phrase A
is edited into a:

P (a | A) =
∑
oi∈Ω

P (oi | A)P (a | A, oi), (1)

where Ω is the set of edit operations. This involves
the desired parameters, which we solve for by esti-
mating the others from data, as described next.

Estimation Note that P (a | A, o3) = 0 if A 6= a.
Thus, if we have estimates for o1-related probabili-
ties, we can derive o2-related probabilities via Equa-
tion 1. To begin with, we make the working as-
sumption that occurrences of simplification in Com-
plexEW are negligible in comparison to fixes. Since
we are also currently ignoring edit spam, we thus
assume that only o1 edits occur in ComplexEW.5

Let fC(A) be the fraction of ~dk in C
containing A in which A is modified:

fC(A) =
|{~dk∈C|∃a,i such that ek,i=A→a}|

|{~dk∈C|A∈~dk}|
.

4Spam/vandalism detection is a direction for future work.
5This assumption also provides useful constraints to EM,

which we plan to apply in the future, by reducing the number of
parameter settings yielding the same likelihood.

We similarly define fS(A) on ~dk in S. Note that we
count topics (version sequences), not individual ver-
sions: if A appears at some point and is not edited
until 50 revisions later, we should not conclude
that A is unlikely to be rewritten; for example, the
intervening revisions could all be minor additions,
or part of an edit war.

If we assume that the probability of any particular
fix operation being applied in SimpleEW is propor-
tional to that in ComplexEW— e.g., the SimpleEW
fix rate might be dampened because already-edited
ComplexEW articles are copied over — we have6

P̂ (o1 | A) = αfC(A)

where 0 ≤ α ≤ 1. Note that in SimpleEW,

P (o1 ∨ o2 | A) = P (o1 | A) + P (o2 | A),

where P (o1 ∨ o2 | A) is the probability that A is
changed to a different word in SimpleEW, which we
estimate as P̂ (o1 ∨ o2 | A) = fS(A). We then set

P̂(o2 | A) = max (0, fS(A)− αfC(A)).

Next, under our working assumption, we estimate
the probability of A being changed to a as a fix
by the proportion of ComplexEW edit instances that
rewrite A to a:

P̂ (a | A, o1) =
|{(k, i) pairs | ek,i = A→ a ∧ ~dk ∈ C}|∑
a′ |{(k, i) pairs | ek,i = A→ a′ ∧ ~dk ∈ C}|

.

A natural estimate for the conditional probability
of A being rewritten to a under any operation type
is based on observations of A → a in SimpleEW,
since that is the corpus wherein both operations are
assumed to occur:

P̂ (a | A) =
|{(k, i) pairs | ek,i = A→ a ∧ ~dk ∈ S}|∑
a′ |{(k, i) pairs | ek,i = A→ a′ ∧ ~dk ∈ S}|

.

Thus, from (1) we get that for A 6= a:

P̂(a | A,o2) =
P̂(a | A)− P̂(o1 | A)P̂(a | A,o1)

P̂(o2 | A)
.

2.2 Metadata-based methods
Wiki editors have the option of associating a com-
ment with each revision, and such comments some-
times indicate the intent of the revision. We there-
fore sought to use comments to identify “trusted”

6Throughout, “hats” denote estimates.

366

revisions wherein the extracted lexical edit instances
(see §3.1) would be likely to be simplifications.

Let ~rk = (r1
k, . . . , r

i
k, . . .) be the sequence of revi-

sions for the kth article in SimpleEW, where ri
k is the

set of lexical edit instances (A → a) extracted from
the ith modification of the document. Let cik be the
comment that accompanies ri

k, and conversely, let
R(Set) = {ri

k|cik ∈ Set}.
We start with a seed set of trusted comments,

Seed. To initialize it, we manually inspected a small
sample of the 700K+ SimpleEW revisions that bear
comments, and found that comments containing a
word matching the regular expression *simpl* (e.g,
“simplify”) seem promising. We thus set Seed :=
{ ∗ simpl∗} (abusing notation).

The SIMPL method Given a set of trusted revi-
sions TRev (in our case TRev = R(Seed)), we
score each A → a ∈ TRev by the point-wise mu-
tual information (PMI) between A and a.7 We write
RANK(TRev) to denote the PMI-based ranking of
A→ a ∈ TRev, and use SIMPL to denote our most
basic ranking method, RANK(R(Seed)).

Two ideas for bootstrapping We also considered
bootstrapping as a way to be able to utilize revisions
whose comments are not in the initial Seed set.

Our first idea was to iteratively expand the set
of trusted comments to include those that most of-
ten accompany already highly ranked simplifica-
tions. Unfortunately, our initial implementations in-
volved many parameters (upper and lower comment-
frequency thresholds, number of highly ranked sim-
plifications to consider, number of comments to add
per iteration), making it relatively difficult to tune;
we thus omit its results.

Our second idea was to iteratively expand the
set of trusted revisions, adding those that contain
already highly ranked simplifications. While our
initial implementation had fewer parameters than
the method sketched above, it tended to terminate
quickly, so that not many new simplifications were
found; so, again, we do not report results here.

An important direction for future work is to differ-
entially weight the edit instances within a revision,
as opposed to placing equal trust in all of them; this

7PMI seemed to outperform raw frequency and conditional
probability.

could prevent our bootstrapping methods from giv-
ing common fixes (e.g., “a”→ “the”) high scores.

3 Evaluation8

3.1 Data

We obtained the revision histories of both Sim-
pleEW (November 2009 snapshot) and ComplexEW
(January 2008 snapshot). In total, ∼1.5M revisions
for 81733 SimpleEW articles were processed (only
30% involved textual changes). For ComplexEW,
we processed ∼16M revisions for 19407 articles.

Extracting lexical edit instances. For each ar-
ticle, we aligned sentences in each pair of adja-
cent versions using tf-idf scores in a way simi-
lar to Nelken and Shieber [6] (this produced sat-
isfying results because revisions tended to repre-
sent small changes). From the aligned sentence
pairs, we obtained the aforementioned lexical edit
instances A → a. Since the focus of our study
was not word alignment, we used a simple method
that identified the longest differing segments (based
on word boundaries) between each sentence, except
that to prevent the extraction of entire (highly non-
matching) sentences, we filtered out A → a pairs if
either A or a contained more than five words.

3.2 Comparison points

Baselines RANDOM returns lexical edit instances
drawn uniformly at random from among those ex-
tracted from SimpleEW. FREQUENT returns the
most frequent lexical edit instances extracted from
SimpleEW.

Dictionary of simplifications The SimpleEW ed-
itor “Spencerk” (Spencer Kelly) has assembled a list
of simple words and simplifications using a combi-
nation of dictionaries and manual effort9. He pro-
vides a list of 17,900 simple words — words that do
not need further simplification — and a list of 2000
transformation pairs. We did not use Spencerk’s set
as the gold standard because many transformations
we found to be reasonable were not on his list. In-
stead, we measured our agreement with the list of
transformations he assembled (SPLIST).

8Results at http://www.cs.cornell.edu/home/llee/data/simple
9http://www.spencerwaterbed.com/soft/simple/about.html

367

3.3 Preliminary results
The top 100 pairs from each system (edit model10

and SIMPL and the two baselines) plus 100 ran-
domly selected pairs from SPLIST were mixed and
all presented in random order to three native English
speakers and three non-native English speakers (all
non-authors). Each pair was presented in random
orientation (i.e., either as A → a or as a → A),
and the labels included “simpler”, “more complex”,
“equal”, “unrelated”, and “?” (“hard to judge”). The
first two labels correspond to simplifications for the
orientations A → a and a → A, respectively. Col-
lapsing the 5 labels into “simplification”, “not a sim-
plification”, and “?” yields reasonable agreement
among the 3 native speakers (κ = 0.69; 75.3% of the
time all three agreed on the same label). While we
postulated that non-native speakers11 might be more
sensitive to what was simpler, we note that they dis-
agreed more than the native speakers (κ = 0.49) and
reported having to consult a dictionary. The native-
speaker majority label was used in our evaluations.

Here are the results; “-x-y” means that x and y are
the number of instances discarded from the precision
calculation for having no majority label or majority
label “?”, respectively:

Method Prec@100 # of pairs
SPLIST 86% (-0-0) 2000

Edit model 77% (-0-1) 1079
SIMPL 66% (-0-0) 2970

FREQUENT 17% (-1-7) -
RANDOM 17% (-1-4) -

Both baselines yielded very low precisions —
clearly not all (frequent) edits in SimpleEW were
simplifications. Furthermore, the edit model yielded
higher precision than SIMPL for the top 100 pairs.
(Note that we only examined one simplification per
A for those A where P̂ (o2 | A) was well-defined;
thus “# of pairs” does not directly reflect the full
potential recall that either method can achieve.)
Both, however, produced many high-quality pairs
(62% and 71% of the correct pairs) not included in
SPLIST. We also found the pairs produced by these
two systems to be complementary to each other. We

10We only considered those A such that freq(A → ∗) >
1 ∧ freq(A) > 100 on both SimpleEW and ComplexEW. The
final top 100 A → a pairs were those with As with the highest
P (o2 | A). We set α = 1.

11Native languages: Russian; Russian; Russian and Kazakh.

believe that these two approaches provide a good
starting point for further explorations.

Finally, some examples of simplifications found
by our methods: “stands for” → “is the same
as”, “indigenous” → “native”, “permitted” → “al-
lowed”, “concealed” → “hidden”, “collapsed” →
“fell down”, “annually”→ “every year”.

3.4 Future work
Further evaluation could include comparison with
machine-translation and paraphrasing algorithms. It
would be interesting to use our proposed estimates
as initialization for EM-style iterative re-estimation.
Another idea would be to estimate simplification pri-
ors based on a model of inherent lexical complexity;
some possible starting points are number of sylla-
bles (which is used in various readability formulae)
or word length.
Acknowledgments We first wish to thank Ainur Yessenalina
for initial investigations and helpful comments. We are
also thankful to R. Barzilay, T. Bruce, C. Callison-Burch, J.
Cantwell, M. Dredze, C. Napoles, E. Gabrilovich, & the review-
ers for helpful comments; W. Arms and L. Walle for access to
the Cornell Hadoop cluster; J. Cantwell for access to computa-
tional resources; R. Hwa & A. Owens for annotation software;
M. Ulinski for preliminary explorations; J. Cantwell, M. Ott, J.
Silverstein, J. Yatskar, Y. Yatskar, & A. Yessenalina for annota-
tions. Supported by NSF grant IIS-0910664.

References
[1] R. Chandrasekar, B. Srinivas. Automatic induction of rules

for text simplification. Knowledge-Based Systems, 1997.
[2] L. Deléger, P. Zweigenbaum. Extracting lay paraphrases

of specialized expressions from monolingual comparable
medical corpora. Workshop on Building and Using Com-
parable Corpora, 2009.

[3] S. Devlin, J. Tait. The use of a psycholinguistic database in
the simplification of text for aphasic readers. In Linguistic
Databases, 1998.

[4] N. Elhadad, K. Sutaria. Mining a lexicon of technical terms
and lay equivalents. Workshop on BioNLP, 2007.

[5] B. Beigman Klebanov, K. Knight, D. Marcu. Text simplifi-
cation for information-seeking applications. OTM Confer-
ences, 2004.

[6] R. Nelken, S. M. Shieber. Towards robust context-sensitive
sentence alignment for monolingual corpora. EACL, 2006.

[7] R. Nelken, E. Yamangil. Mining Wikipedia’s article re-
vision history for training computational linguistics algo-
rithms. WikiAI, 2008.

[8] E. Shnarch, L. Barak, I. Dagan. Extracting lexical reference
rules from Wikipedia. ACL, 2009.

[9] A. Siddharthan, A. Nenkova, K. McKeown. Syntactic
simplification for improving content selection in multi-
document summarization. COLING, 2004.

[10] D. Vickrey, D. Koller. Sentence simplification for seman-
tic role labeling/ ACL, 2008.

368

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 369–372,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Predicting Human-Targeted Translation Edit Rate

via Untrained Human Annotators

Omar F. Zaidan and Chris Callison-Burch
Dept. of Computer Science, Johns Hopkins University

Baltimore, MD 21218, USA
{ozaidan,ccb}@cs.jhu.edu

Abstract

In the field of machine translation, automatic
metrics have proven quite valuable in system
development for tracking progress and meas-
uring the impact of incremental changes.
However, human judgment still plays a large
role in the context of evaluating MT systems.
For example, the GALE project uses human-
targeted translation edit rate (HTER), wherein
the MT output is scored against a post-edited
version of itself (as opposed to being scored
against an existing human reference). This
poses a problem for MT researchers, since
HTER is not an easy metric to calculate, and
would require hiring and training human an-
notators to perform the editing task. In this
work, we explore soliciting those edits from
untrained human annotators, via the online
service Amazon Mechanical Turk. We show
that the collected data allows us to predict
HTER-ranking of documents at a significantly
higher level than the ranking obtained using
automatic metrics.

1 Introduction

In the early days of machine translation (MT), it
was typical to evaluate MT output by soliciting
judgments from human subjects, such as evaluat-
ing the fluency and adequacy of MT output (LDC,
2005). While this approach was appropriate (in-
deed desired) for evaluating a system, it was not a
practical means of tracking the progress of a sys-
tem during its development, since collecting hu-
man judgments is both costly and time-consuming.
The introduction of automatic metrics like BLEU
contributed greatly to MT research, for instance
allowing researchers to measure and evaluate the
impact of small modifications to an MT system.

However, manual evaluation remains a core
component of system evaluation. Teams on the
GALE project, a DARPA-sponsored MT research
program, are evaluated using the HTER metric,
which is a version of TER whereby the output is
scored against a post-edited version of itself, in-
stead of a preexisting reference. Moreover, empha-
sis is placed on performing well across all
documents and across all genres. Therefore, it is
important for a research team to be able to evaluate
their system using HTER, or at least determine the
ranking of the documents according to HTER, for
purposes of error analysis. Instead of hiring a
human translator and training them, we propose
moving the task to the virtual world of Amazon’s
Mechanical Turk (AMT), hiring workers to edit the
MT output and predict HTER from those edits. We
show that edits collected this way are better at
predicting document ranking than automatic
metrics, and furthermore that it can be done at a
low cost, both in terms of time and money.

The paper is organized as follows. We first
discuss options available to predict HTER, such as
automatic metrics. We then discuss the possibility
of relying on human annotators, and the inherent
difficulty in training them, before discussing the
concept of soliciting edits over AMT. We detail
the task given to the workers and summarize the
data that we collected, then show how we can
combine their data to obtain significanly better
rank predictions of documents.

2 Human-Targeted TER

Translation edit rate (TER) measures the number
of edits required to transform a hypothesis into an
appropriate sentence in terms of grammaticality
and meaning (Snover et al., 2006). While TER
usually scores a hypothesis against an existing ref-
erence sentence, human-targeted TER scores a
hypothesis against a post-edited version of itself.

369

While HTER has been shown to correlate quite
well with human judgment of MT quality, it is
quite challenging to obtain HTER scores for MT
output, since this would require hiring and training
human subjects to perform the editing task. There-
fore, other metrics such as BLEU or TER are used
as proxies for HTER.

2.1 Amazon’s Mechanical Turk

The high cost associated with hiring and training a
human editor makes it difficult to imagine an alter-
native to automatic metrics. However, we propose
soliciting edits from workers on Amazon’s Me-
chanical Turk (AMT). AMT is a virtual market-
place where “requesters” can post tasks to be
completed by “workers” (aka Turkers) around the
world. Two main advantages of AMT are the pre-
existing infrastructure, and the low cost of com-
pleting tasks, both in terms of time and money.
Data collected over AMT has already been used in
several papers such as Snow et al. (2008) and Cal-
lison-Burch (2009).

When a requester creates a task to be completed
over AMT, it is typical to have completed by more
than one worker. The reason is that the use of
AMT for data collection has an inherent problem
with data quality. A requester has fewer tools at
their disposal to ensure workers are doing the task
properly (via training, feedback, etc) when com-
pared to hiring annotators in the ‘real’ world.
Those redundant annotations are therefore col-
lected to increase the likelihood of at least one
submission from a faithful (and competent)
worker.

2.2 AMT for HTER

The main idea it to mimic the real-world HTER
setup by supplying workers with the original MT
output that needs to be edited. The worker is also
given a human reference, produced independently
from the MT output. The instructions ask the
worker to modify the MT output, using as few ed-
its as possible, to match the human reference in
meaning and grammaticality.

The submitted edited hypothesis can then be
used as the reference for calculating HTER. The
idea is that, with this setup, a competent worker
would be able to closely match the editing behav-
ior of the professionally trained editor.

3 The Datasets

We solicited edits of the output from one of
GALE’s teams on the Arabic-to-English task. This
MT output was submitted by this team and HTER-
scored by LDC-hired human translators. Therefore,
we already had the edits produced by a
professional translator. These edits were used as
the “gold-standard” to evaluate the edits solicited
from AMT and to evaluate our methods of
combining Turkers’ submissions.

The MT output is a translation of more than
2,153 Arabic segments spread across 195 docu-
ments in 4 different genres: broadcast conversa-
tions (BC), broadcast news (BN), newswire (NW),
and blogs (WB). Table 1 gives a summary of each
genre’s dataset.

Genre # docs Segs/doc Words/seg

BC 40 15.8 28.3

BN 48 9.6 36.1

NW 54 8.7 39.5

WB 53 11.1 31.6

Table 1: The 4 genres of the dataset.

For each of the 2,153 MT output segments, we
collected edits from 5 distinct workers on AMT,
for a total of 10,765 post-edited segments by a total
of about 500 distinct workers.1 The segments were
presented in 1,210 groups of up to 15 segments
each, with a reward of $0.25 per group. Hence the
total rewards to workers was around $300, at a rate
of 36 post-edited segments per dollar (or 2.8 pen-
nies per segment).

4 What are we measuring?

We are interested in predicting the ranking the
documents according to HTER, not necessarily
predicting the HTER itself (though of course at-
tempting to predict the latter accurately is the cor-
nerstone of our approach to predict the former). To
measure the quality of a predicted ranking, we use
Spearman’s rank correlation coefficient, ρ, where
we first convert the raw scores into ranks and then
use the following formula to measure correlation:

)1(

))()((6

1),(
2

1

2

−

−

−=
∑
=

nn

yrankxrank

YX

n

i

ii

ρ

1 Data available at http://cs.jhu.edu/~ozaidan/hter.

370

where n is the number of documents, and each of X
and Y is a vector of n HTER scores.

Notice that values for ρ range from –1 to 1, with
+1 indicating perfect rank correlation, –1 perfect
inverse correlation, and 0 no correlation. That is,
for a fixed X, the best-correlated Y is that for which

),(YXρ is highest.

5 Combining Tukers’ Edits

Once we have collected edits from the human
workers, how should we attempt to predict HTER
from them? If we could assume that all Turkers are
doing the task faithfully (and doing it adequately),
we should use the annotations of the worker per-
forming the least amount of editing, since that
would mirror the real-life scenario.

However, data collected from AMT should be
treated with caution, since a non-trivial portion of
the collected data is of poor quality. Note that this
does not necessarily indicate a ‘cheating’ worker,
for even if a worker is acting in good faith, they
might not be able to perform the task adequately,
due to misunderstanding the task, or neglecting to
attempt to use a small number of edits.
And so we need to combine the redundant edits in
an intelligent manner. Recall that, given a segment,
we collected edits from multiple workers. Some
baseline methods include taking the minimum over
the edits, taking the median, and taking the aver-
age.

Once we start thinking of averages, we should
consider taking a weighted average of the edits for
a segment. The weight associated with a worker
should reflect our confidence in the quality of that
worker’s edits. But how can we evaluate a worker
in the first place?

5.1 Self Verification of Turkers

We have available “gold-standard” editing behav-
ior for the segments, and we treat a small portion
of the segments edited by a Turker as a verification
dataset. On that portion, we evaluate how closely
the Turker matches the LDC editor, and weight
them accordingly when predicting the number of
edits of the rest of that group’s segments. Specifi-
cally, the Turker’s weight is the absolute difference
between the Turker’s edit count and the profes-
sional editor’s edit count.

Notice that we are not simply interested in a
worker whose edited submission closely matches
the edited submission of the professional transla-
tor. Rather, we are interested in mirroring the pro-
fessional translator’s edit rate. That is, the closer a
Turker’s edit rate is to the LDC editor’s, the more
we should prefer the worker. This is a subtle point,
but it is indeed possible for a Turker to have simi-
lar edit rate as the LDC editor but still require a
large number of edits to get the LDC editor’s sub-
mission itself.

6 Experiments

We examine the effectiveness of any of the above
methods by comparing the resulting document
ranking versus the desired ranking by HTER. In
addition to the above methods, we use a baseline a
ranking predicted by TER to a human reference.
(For clarity, we omit discussion with other metrics
such as BLEU and (TER–BLEU)/2, since those
baselines are not as strong as the TER baseline.

6.1 Experimental Setup

We examine each genre individually, since genres
vary quite a bit in difficulty, and, more impor-
tantly, we care about the internal ranking within
each genre, to mirror the GALE evaluation proce-
dure.

We examine the effect of varying the amount of
data by which we judge a Turker’s data quality.
The amount of this “verification” data is varied as
a percentage of the total available segments. Those
segments are chosen at random, and we perform
100 trials for each point.

6.2 Experimental Results

Figure 1 shows the rank correlations for various
methods across different sizes of verification sub-
sets. Notice that some methods, such as the TER
baseline, have horizontal lines, since these do not
rate a Turker based on a verification subset.

It is worth noting that the oracle performs very
well. This is an indication that predicting HTER
accurately is mostly a matter of identifying the best
worker. While oracle scenarios usually represent
unachievable upper bounds, keep in mind that
there are only a very small number of editors per
segment (five, as opposed to oracle scenarios deal-
ing with 100-best lists, etc).

371

Other than that, in general, it is possible to
achieve very high rank correlation using Turkers’
data, significantly outperforming the TER ranking,
even with a small verification subset. The genres
do vary quite a bit in difficulty for Turkers, with
BC and especially NW being quite difficult,
though in the case of NW for instance, this is due
to the human reference doing quite well to begin
with, rather than Turkers performing poorly.

7 Conclusions and Future Work

We proposed soliciting edits of MT output via
Amazon’s Mechanical Turk and showed we can
predict ranking significantly better than an auto-
matic metric. The next step is to explicitly identify
undesired worker behavior, such as not editing the
MT output at all, or using the human reference as
is instead of editing the MT output. This can be
detected by not limiting our verification to compar-
ing behavior to the professional editor’s, but also
by comparing submitted edits to the MT output
itself and to the human reference. In other words, a
worker’s submission could be characterized in
terms of its distance to the MT output and to the
human reference, thus building a complete ‘pro-
file’ of the worker, and adding another component
to guard against poor data quality and to reward
the desired behavior.

Acknowledgments

This work was supported by the EuroMatrixPlus
Project (funded by the European Commission), and
by the DARPA GALE program under Contract No.
HR0011-06-2-0001. The views and findings are
the authors' alone.

References

Chris Callison-Burch. 2009. Fast, Cheap, and Creative:
Evaluating Translation Quality Using Amazon's Me-

chanical Turk. In Proceedings of EMNLP.
LDC. 2005. Linguistic data annotation specification:
Assessment of fluency and adequacy in translations.
Revision 1.5.

Matthew Snover, Bonnie J. Dorr, Richard Schwartz.
2006. A Study of Translation Edit Rate with Targeted
Human Annotation. Proceedings of AMTA.

Rion Snow, Brendan O’Connor, Daniel Jurafsky, and
Andrew Y. Ng. 2008. Cheap and fast – but is it
good? Evaluating non-expert annotations for natural

language tasks. In Proceedings of EMNLP.

Figure 1: Rank correlation between predicted rank-
ing and HTER ranking for different prediction
schemes, across the four genres, and across various
sizes of the worker verification set.

372

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 373–376,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Improving Semantic Role Classification with Selectional Preferences

Beñat Zapirain, Eneko Agirre
IXA NLP Group

Basque Country Univ.
{benat.zapirain,e.agirre}@ehu.es

Lluı́s Màrquez
TALP Research Center

Technical Univ. of Catalonia
lluism@lsi.upc.edu

Mihai Surdeanu
Stanford NLP Group

Stanford Univ.
mihais@stanford.edu

Abstract

This work incorporates Selectional Prefer-
ences (SP) into a Semantic Role (SR) Clas-
sification system. We learn separate selec-
tional preferences for noun phrases and prepo-
sitional phrases and we integrate them in a
state-of-the-art SR classification system both
in the form of features and individual class
predictors. We show that the inclusion of the
refined SPs yields statistically significant im-
provements on both in domain and out of do-
main data (14.07% and 11.67% error reduc-
tion, respectively). The key factor for success
is the combination of several SP methods with
the original classification model using meta-
classification.

1 Introduction

Semantic Role Labeling (SRL) is the process of
extracting simple event structures, i.e., “who” did
“what” to “whom”, “when” and “where”. Current
systems usually perform SRL in two pipelined steps:
argument identification and argument classification.
While identification is mostly syntactic, classifica-
tion requires semantic knowledge to be taken into
account. Semantic information is usually captured
through lexicalized features on the predicate and the
head–word of the argument to be classified. Since
lexical features tend to be sparse, SRL systems are
prone to overfit the training data and generalize
poorly to new corpora.

Indeed, the SRL evaluation exercises at CoNLL-
2004 and 2005 (Carreras and Màrquez, 2005) ob-
served that all systems showed a significant perfor-
mance degradation (∼10 F1 points) when applied to
test data from a different genre of that of the training

set. Pradhan et al. (2008) showed that this perfor-
mance degradation is essentially caused by the argu-
ment classification subtask, and suggested the lexi-
cal data sparseness as one of the main reasons. The
same authors studied the contribution of the different
feature types in SRL and concluded that the lexical
features were the most salient features in argument
classification (Pradhan et al., 2007).

In recent work, we showed (Zapirain et al., 2009)
how automatically generated selectional preferences
(SP) for verbs were able to perform better than pure
lexical features in a role classification experiment,
disconnected from a full-fledged SRL system. SPs
introduce semantic generalizations on the type of ar-
guments preferred by the predicates and, thus, they
are expected to improve results on infrequent and
unknown words. The positive effect was especially
relevant for out-of-domain data. In this paper we ad-
vance (Zapirain et al., 2009) in two directions:
(1) We learn separate SPs for prepositions and verbs,
showing improvement over using SPs for verbs
alone.
(2) We integrate the information of several SP mod-
els in a state-of-the-art SRL system (SwiRL1) and
show significant improvements in SR classifica-
tion. The key for the improvement lies in a meta-
classifier, trained to select among the predictions
provided by several role classification models.

2 SPs for SR Classification
SPs have been widely believed to be an impor-
tant knowledge source when parsing and perform-
ing SRL, especially role classification. Still, present
parsers and SRL systems use just lexical features,
which can be seen as the most simple form of SP,

1http://www.surdeanu.name/mihai/swirl/

373

where the headword needs to be seen in the training
data, and otherwise the SP is not satisfied. Gildea
and Jurafsky (2002) showed barely significant im-
provements in semantic role classification of NPs
for FrameNet roles using distributional clusters. In
(Erk, 2007) a number of SP models are tested in
a pseudo-task related to SRL. More recently, we
showed (Zapirain et al., 2009) that several methods
to automatically generate SPs generalize well and
outperform lexical match in a large dataset for se-
mantic role classification, but the impact on a full
system was not explored.

In this work we apply a subset of the SP meth-
ods proposed in (Zapirain et al., 2009). These meth-
ods can be split in two main families, depending on
the resource used to compute similarity: WordNet-
based methods and distributional methods. Both
families define a similarity score between a word
(the headword of the argument to be classified) and a
set of words (the headwords of arguments of a given
role).

WordNet-based similarity: One of the models
that we used is based on Resnik’s similarity mea-
sure (1993), referring to it as res. The other model is
an in-house method (Zapirain et al., 2009), referred
as wn, which only takes into account the depth of
the most common ancestor, and returns SPs that are
as specific as possible.

Distributional similarity: Following (Zapirain et
al., 2009) we considered both first order and second
order similarity. In first order similarity, the simi-
larity of two words was computed using the cosine
(or Jaccard measure) of the co-occurrence vectors of
the two words. Co-occurrence vectors where con-
structed using freely available software (Padó and
Lapata, 2007) run over the British National Corpus.
We used the optimal parameters (Padó and Lapata,
2007, p. 179). We will refer to these similarities as
simcos and simJac, respectively. In contrast, sec-
ond order similarity uses vectors of similar words,
i.e., the similarity of two words was computed us-
ing the cosine (or Jaccard measure) between the
thesaurus entries of those words in Lin’s thesaurus
(Lin, 1998). We refer to these as sim2

cos and sim2
Jac.

Given a target sentence with a verb and its argu-
ments, the task of SR classification is to assign the
correct role to each of the arguments. When using
SPs alone, we only use the headwords of the ar-

guments, and each argument is classified indepen-
dently of the rest. For each headword, we select the
role (r) of the verb (c) which fits best the head word
(w), where the goodness of fit (SPsim(v, r, w)) is
modeled using one of the similarity models above,
between the headword w and the headwords seen in
training data for role r of verb v. This selection rule
is formalized as follows:

Rsim(v, w) = arg max
r∈Roles(v)

SPsim(v, r, w) (1)

In our previous work (Zapirain et al., 2009), we
modelled SPs for pairs of predicates (verbs) and ar-
guments, independently of the fact that the argu-
ment is a core argument (typically a noun) or an
adjunct argument (typically a prepositional phrase).
In contrast, (Litkowski and Hargraves, 2005) show
that prepositions have SPs of their own, especially
when functioning as adjuncts. We therefore decided
to split SPs according to whether the potential argu-
ment is a Prepositional Phrase (PP) or a Noun Phrase
(NP). For NPs, which tend to be core arguments2,
we use the SPs of the verb (as formalized above).
For PPs, which have an even distribution between
core and adjunct arguments, we use the SPs of the
prepositions alone, ignoring the verbs. Implementa-
tion wise, this means that in Eq. (1), we change v
for p, where p is the preposition heading the PP.

3 Experiments with SPs in isolation
In this section we evaluate the use of SPs for classi-
fication in isolation, i.e., we use formula 1, and no
other information. In addition we contrast the use
of both verb-role and preposition-role SPs, as com-
pared to the use of verb-role SPs alone.

The dataset used in these experiments (and in Sec-
tion 4) is the same as provided by the CoNLL-2005
shared task on SRL (Carreras and Màrquez, 2005).
This dataset comprises several sections of the Prop-
Bank corpus (news from the WSJ) as well as an ex-
tract of the Brown Corpus. Sections 02-21 are used
for generating the SPs and training, Section 00 for
development, and Section 23 for testing, as custom-
ary. The Brown Corpus is used for out-of-domain
testing, but due to the limited size of the provided
section, we extended it with instances from Sem-
Link3. Since the focus of this work is on argument

2In our training data, NPs are adjuncts only 5% of the times
3http://verbs.colorado.edu/semlink/

374

Verb-Role SPs Preposition-Role and Verb-Role SPs
WSJ-test Brown WSJ-test Brown

prec. rec. F1 prec. rec. F1 prec. rec. F1 prec. rec. F1

lexical 70.75 26.66 39.43 59.39 05.51 10.08 82.98 43.77 57.31 68.47 13.60 22.69
SPres 45.07 37.11 40.71 36.34 27.58 31.33 63.47 53.24 57.91 55.12 44.15 49.03
SPwn 55.44 45.58 50.03 41.76 31.58 35.96 65.70 63.88 64.78 60.08 48.10 53.43
SPsimJac

48.85 46.38 47.58 42.10 34.34 37.82 61.83 61.40 61.61 55.42 53.45 54.42
SPsimcos 53.13 50.44 51.75 43.24 35.27 38.85 64.67 64.22 64.44 56.56 54.54 55.53
SPsim2

Jac
61.76 58.63 60.16 51.97 42.39 46.69 70.82 70.33 70.57 62.37 60.15 61.24

SPsim2
cos

61.12 58.12 59.63 51.92 42.35 46.65 70.28 69.80 70.04 62.36 60.14 61.23

Table 1: Results for SPs in isolation, left for verb SPs, and right both preposition and verb SPs.

Labels proposed by the base models
Number of base models that proposed this datum’s label
List of actual base models that proposed this datum’s label

Table 2: Features of the binary meta-classifier.

classification, we use the gold PropBank data to
identify argument boundaries. Considering that SPs
can handle only nominal arguments, in these exper-
iments we used only arguments mapped to NPs and
PPs containing a nominal head. From the training
sections, we extracted over 140K such arguments for
the supervised generation of SPs. The development
and test sections contain over 5K and 8K examples,
respectively, and the portion of the Brown Corpus
comprises an amount of 8.1K examples.

Table 1 lists the results of the different SPs in iso-
lation. The results reported in the left part of Table
1 are comparable to those we reported in (Zapirain
et al., 2009). The differences are due to the fact that
we do not discard roles like MOD, DIS, NEG and
that our previous work used only the subset of the
data that could be mapped to VerbNet (around 50%).
All in all, the table shows that splitting SPs into verb
and preposition SPs yields better results, both in pre-
cision and recall, improving F1 up to 10 points in
some cases.

4 Integrating SPs in a SRL system
For these experiments we modified SwiRL (Sur-
deanu et al., 2007): (a) we matched the gold bound-
aries against syntactic constituents predicted inter-
nally using the Charniak parser (Charniak, 2000);
and (b) we classified these constituents with their
semantic role using a modified version of SwiRL’s
feature set.

We explored two different strategies for integrat-
ing SPs in SwiRL. The first, obvious method is to
extend SwiRL’s feature set with features that model

the preferences of the SPs, i.e., for each SP model
SPi we add a feature whose value is Ri. The second
method combines SwiRL’s classification model and
our SP models using meta-classification. We opted
for a binary classification approach: first, for each
constituent we generate n datums, one for each dis-
tinct role label proposed by the pool of base models;
then we use a binary meta-classifier to label each
candidate role as correct or incorrect. Table 2 lists
the features of the meta-classifier. We trained the
meta-classifier on the usual PropBank training par-
tition, using cross-validation to generate outputs for
the base models that require the same training ma-
terial. At prediction time, for each candidate con-
stituent we selected the role label that was classified
as correct with the highest confidence.

Table 3 compares the performance of both
combination approaches against the standalone
SwiRL classifier. We show results for both core
arguments (Core), adjunct arguments (Arg) and
all arguments combined (All). In the table, the
SwiRL+SP∗ models stand for SwiRL classifiers
enhanced with one feature from the correspond-
ing SP. Adding more than one SP-based feature to
SwiRL did not improve results. Our conjecture
is that the SwiRL classifier enhanced with SP-
based features does not learn relevant weights for
these features because their signal is “drowned” by
SwiRL’s large initial feature set and the correlation
between the different SPs. This observation moti-
vated the development of the meta-classifier. The
meta-classifier shown in the table combines the out-
put of the SwiRL+SP∗ models with the predictions
of SP models used in isolation. We implemented
the meta-classifier using Support Vector Machines
(SVM)4 with a quadratic polynomial kernel, and

4http://svmlight.joachims.org

375

WSJ-test Brown
Core Adj All Core Adj All

SwiRL 93.25 81.31 90.83 84.42 57.76 79.52
+SPRes 93.17 81.08 90.76 84.52 59.24 79.86
+SPwn 92.88 81.11 90.56 84.26 59.69 79.73
+SPsimJac

93.37 80.30 90.86 84.43 59.54 79.83
+SPsimcos 93.33 80.92 90.87 85.14 60.16 80.50
+SPsim2

Jac
93.03 82.75 90.95 85.62 59.63 80.75

+SPsim2
cos

93.78 80.56 91.23 84.95 61.01 80.48
Meta 94.37 83.40 92.12 86.20 63.40 81.91

Table 3: Classification accuracy for the combination ap-
proaches. +SPx stands for SwiRL plus each SP model.

C = 0.01 (tuned in development).
Table 3 indicates that four out of the six

SwiRL+SP∗ models perform better than SwiRL in
domain (WSJ-test), and all of them outperform
SwiRL out of domain (Brown). However, the im-
provements are small and, generally, not statistically
significant. On the other hand, the meta-classifier
outperforms SwiRL both in domain (14.07% error
reduction) and out of domain (11.67% error reduc-
tion), and the differences are statistically signifi-
cant (measured using two-tailed paired t-test at 99%
confidence interval on 100 samples generated us-
ing bootstrap resampling). We also implemented
two unsupervised voting baselines, one unweighted
(each base model has the same weight) and one
weighted (each base model is weighted by its accu-
racy in development). However, none of these base-
lines outperformed the standalone SwiRL classifier.
This is further proof that, for SR classification, meta-
classification is crucial because it can learn the dis-
tinct specializations of the various base models.

Finally, Table 3 shows that our approach yields
consistent improvements for both core and adjunct
arguments. Out of domain, we see a bigger accuracy
improvement for adjunct arguments (5.64 absolute
points) vs. core arguments (1.78 points). This is
to be expected, as most core arguments fall under
the Arg0 and Arg1 classes, which can typically be
disambiguated based on syntactic information, i.e.,
subject vs. object. On the other hand, there are no
syntactic hints for adjunct arguments, so the system
learns to rely more on SP information in this case.

5 Conclusions
This paper is the first work to show that SPs improve
a state-of-the-art SR classification system. Sev-
eral decisions were crucial for success: (a) we de-

ployed separate SP models for verbs and preposi-
tions, which in conjunction outperform SP models
for verbs alone; (b) we incorporated SPs into SR
classification using a meta-classification approach
that combines eight base models, developed from
variants of a state-of-the-art SRL system and the
above SP models. We show that the resulting system
outperforms the original SR classification system for
arguments mapped to nominal or prepositional con-
stituents. The improvements are statistically sig-
nificant both on in-domain and out-of-domain data
sets.

Acknowledgments
This work was partially supported by projects KNOW-
2 (TIN2009-14715-C04-01 / 04), KYOTO (ICT-2007-
211423) and OpenMT-2 (TIN2009-14675C03)

References
X. Carreras and L. Màrquez. 2005. Introduction to the

CoNLL-2005 Shared Task: Semantic role labeling. In
Proc. of CoNLL.

E. Charniak. 2000. A maximum-entropy-inspired parser.
In Proc. of NAACL.

K. Erk. 2007. A simple, similarity-based model for se-
lectional preferences. In Proc. of ACL.

D. Gildea and D. Jurafsky. 2002. Automatic labeling of
semantic roles. Computational Linguistics, 28(3).

D. Lin. 1998. Automatic retrieval and clustering of sim-
ilar words. In Proc. of COLING-ACL.

K. Litkowski and O. Hargraves. 2005. The preposi-
tion project. In Proceedings of the Workshop on The
Linguistic Dimensions of Prepositions and their Use
in Computational Linguistic Formalisms and Applica-
tions.

S. Padó and M. Lapata. 2007. Dependency-based con-
struction of semantic space models. Computational
Linguistics, 33(2).

S. Pradhan, W. Ward, and J. Martin. 2007. Towards ro-
bust semantic role labeling. In Proc. of NAACL-HLT.

S. Pradhan, W. Ward, and J. Martin. 2008. Towards ro-
bust semantic role labeling. Computational Linguis-
tics, 34(2).

P. Resnik. 1993. Semantic classes and syntactic ambigu-
ity. In Proc. of HLT.

M. Surdeanu, L. Màrquez, X. Carreras, and P.R. Comas.
2007. Combination strategies for semantic role label-
ing. Journal of Artificial Intelligence Research, 29.

B. Zapirain, E. Agirre, and L. Màrquez. 2009. General-
izing over lexical features: Selectional preferences for
semantic role classification. In Proc. of ACL-IJCNLP.

376

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 377–380,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Generalizing Syntactic Structures for Product Attribute Candidate
Extraction

Yanyan Zhao, Bing Qin, Shen Hu, Ting Liu
Harbin Institute of Technology, Harbin, China

{yyzhao,bqin,shu,tliu}@ir.hit.edu.cn

Abstract

Noun phrases (NP) in a product review are
always considered as the product attribute
candidates in previous work. However, this
method limits the recall of the product at-
tribute extraction. We therefore propose
a novel approach by generalizing syntactic
structures of the product attributes with two
strategies: intuitive heuristics and syntactic
structure similarity. Experiments show that
the proposed approach is effective.

1 Introduction

Product attribute extraction is a fundamental task of
sentiment analysis. It aims to extract the product at-
tributes from a product review, such as “picture qual-
ity” in the sentence “The picture quality of Canon is
perfect.” This task is usually performed in two steps:
product attribute candidate extraction and candidate
classification.

Almost all the previous work pays more attention
to the second step, fewer researchers make in-depth
research on the first step. They simply choose the
NPs in a product review as the product attribute can-
didates (Hu and Liu, 2004; Popescu and Etzioni,
2005; Yi et al., 2003). However, this method lim-
its the recall of the product attribute extraction for
two reasons. First, there exist other structures of the
product attributes except NPs. Second, the syntactic
parsing is not perfect, especially for the Non-English
languages, such as Chinese. Experiments on three
Chinese datasets1 show that nearly 15% product at-
tributes are lost, when only using NPs as the can-
didates. Obviously, if using the candidate classifi-
cation techniques on these NP candidates, it would

1It refers to the training data in Section 3.1.

lead to poor performance (especially for recall) for
the final product attribute extraction.

Based on the above discussion, it can be observed
that product attribute candidate extraction is well
worth studying. In this paper, we propose an ap-
proach by generalizing the syntactic structures of the
product attributes to solve this problem. Figure 1
lists some syntactic structure samples from an an-
notated corpus, including the special forms of NPs
in Figure 1(a) and other syntactic structures, such as
VP or IP in Figure 1(b). We can find that the syntac-
tic structures can not only cover more phrase types
besides NP, but also describe the detailed forms of
the product attributes.

NP

NN

屏幕
(screen)

NP

NN

屏幕

NP

NN

分辨率
(screen resolution)

NP

QP

CD

单

NP

NN

声道
(single track)

NP

ADJP

JJ

前

NP

NN

座椅
(front seats)

NP

VB

拍照

NP

NN

功能
(photographing function)

VP

NP

NN

屏幕

VP

VB

显示
(screen display)

IP

(a) syntactic structure samples of NP

(b) syntactic structure samples of other phrases

Figure 1: Syntactic structure samples of the product at-
tributes (acquired by an automatic phrase parser).

In order to exploit more and useful syntactic struc-
tures, two generalization strategies: intuitive heuris-
tics and syntactic structure similarity are used. Ex-
periments on three Chinese domain-specific datasets
show that our approach can significantly improve the
recall of the product attribute candidate extraction,
and furthermore, improve the performance of the fi-
nal product attribute extraction.

377

2 Approach

The standard syntactic structures of the product at-
tributes can be collected from a training set2. Then
a simple method of exact matching can be used to
select the product attribute candidates from the test
set. In particular, for a syntactic structure3 T in
the test set, if T exactly matches with one of the
standard syntactic structures, then its corresponding
string can be treated as a product attribute candidate.

However, this method fails to handle similar syn-
tactic structures, such as the two structures in Fig-
ure 2. Besides, this method treats the syntactic struc-
ture as a whole during exact matching, without con-
sidering any structural information. Therefore, it is
difficult to describe the syntactic structure informa-
tion explicitly. All of these prevent this method from
generalizing unseen data well.

To overcome the above problems, two generaliza-
tion strategies are proposed in this paper. One is to
generalize the syntactic structures with two intuitive
heuristics. The other is to deeply mine the syntactic
structure by decomposing it into several substruc-
tures. Both strategies will be introduced in the fol-
lowing subsections.

2.1 Intuitive Heuristics

Two intuitive heuristics are adopted to generalize the
syntactic structures.

Heu1: For the near-synonymic grammar tags in
syntactic structures, we can generalize them by a
normalized one. Such as the red boxes in Figure 2,
the POSs “NNS” and “NN” show the same syntactic
meaning, we can generalize “NNS” with “NN”. The
near-synonymic grammar tags are listed in Table 1.

NP

VP NP

VB NNS NP

NN

NP

VP NP

VB NN NN

Heu2

Heu1

Figure 2: Generalizing a syntactic structure with two in-
tuitive heuristics.

Heu2: For the sequence of identical grammar tags
in syntactic structures, we can replace them with

2We use Dan Bikel’s phrase parser for syntactic parsing.
3We simply select the syntactic structures of the strings un-

der three words or four words with “的”(“of” in English).

Replaced by Near-synonymic grammar tags
JJ JJR, JJS

NN NNS, NNP, NNPS, CD, NR
RB RBR, RBS
VB VBD, VBG, VBN, VBP, VBZ, VV
S SBAR, SBARQ, SINU, SQ

Table 1: The near-synonymic grammar tags.

one. The reason is that the sequential grammar tags
always describe the same syntactic function as one
grammar tag. Such as the blue circles in Figure 2.

2.2 Syntactic Structure Similarity
The heuristic generalization strategy is too restric-
tive to give a good coverage. Moreover, after this
kind of generalization, the syntactic structure is used
as a whole in exact matching all the same. Thus,
as an alternative to the exact matching, tree kernel
based methods can be used to implicitly explore the
substructures of the syntactic structure in a high-
dimensional space. This kind of methods can di-
rectly calculate the similarity between two substruc-
ture vectors using a kernel function. Tree kernel
based methods are effective in modeling structured
features, which are widely used in many natural
language processing tasks, such as syntactic pars-
ing (Collins and Duffy, 2001) and semantic role la-
beling (Che et al., 2008) and so on.

NP

NN

VP

VB

IP

NP VP

VB

IP

NP

NN

VP

VB
NP

NN

VP

VB

IP

NP

NN

VP

IP

NP VP

IP

NP

NN

VP

VB

IP IP

Figure 3: Substructures from a syntactic structure.

In this paper, the syntactic structure for a product
attribute can be decomposed into several substruc-
tures, such as in Figure 3. Correspondingly, the syn-
tactic structure T can be represented by a vector of
integer counts of each substructure type:

Φ(T) = (ϕ1(T), ϕ2(T), ..., ϕn(T))
= (# of substructures of type 1,
= # of substructures of type 2,

...,
= # of substructures of type n)

378

After syntactic structure decomposition, we can
count the number of the common substructures as
the similarity between two syntactic structures. The
commonly used convolution tree kernel is applied in
this paper. Its kernel function is defined as follows:

K(T1, T2) = ⟨Φ(T1), Φ(T2)⟩
=

∑
i(ϕi(T1) · ϕi(T2))

Based on these, for a syntactic structure T in the
test set, we can compute the similarity between T
and all the standard syntactic structures by the above
kernel function. A similarity threshold thsim

4 is set
to determine whether the string from T is a correct
product attribute candidate.

3 Experiments

3.1 Datasets and Evaluation Metrics

Three domain-specific datasets are used in the ex-
periments, which is from an official Chinese Opin-
ion Analysis Evaluation 2008 (COAE2008) (Zhao et
al., 2008). Table 2 shows the statistics of the three
datasets, each of which is divided into training, de-
velopment and test data in a proportion of 2:1:1.

Domain # of sentences # of standard
product attributes

Camera 1,780 1,894
Car 2,166 2,504

Phone 2,196 2,293

Table 2: The datasets for three product domains.

Two evaluation metrics, recall and noise ratio, are
designed to evaluate the performance of the prod-
uct attribute candidate extraction. Recall refers to
the proportion of correctly identified attribute candi-
dates in all standard product attributes. Noise ratio
refers to the proportion of incorrectly identified at-
tribute candidates in all candidates.

3.2 Comparative methods

We choose the method, which considers NPs as the
product attribute candidates, as the baseline (shown
as NPs based).

Besides, in order to assess the two generaliza-
tion strategies’ effectiveness, four experiments are
designed as follows:

4In the experiments, thsim is set to 0.7, which is tuned on
the development set.

SynStru based: It refers to the syntactic struc-
ture exact matching method, which is implemented
without the two proposed generation strategies.

SynStru h: It refers to the strategy only using the
first generalization.

SynStru kernel: It refers to the strategy only us-
ing the second generalization.

SynStru h+kernel: It refers to the strategy us-
ing both two generalizations, i.e., it refers to our ap-
proach in this paper.

3.3 Results
Table 3 lists the comparative performances on the
test data between our approach and the comparative
methods for product attribute candidate extraction.

Domain Method Recall Noise ratio

Camera
NPs based 81.20% 63.64%

SynStru based 84.80% 67.67%
SynStru h 92.08% 74.74%

SynStru kernel 92.51% 75.92%
SynStru h+kernel 92.72% 76.25%

Car
NPs based 85.25% 69.35%

SynStru based 86.31% 72.66%
SynStru h 93.78% 78.01%

SynStru kernel 94.56% 79.50%
SynStru h+kernel 94.71% 80.44%

Phone
NPs based 84.11% 63.76%

SynStru based 86.26% 67.09%
SynStru h 93.13% 73.62%

SynStru kernel 93.47% 75.11%
SynStru h+kernel 93.63% 75.35%

Table 3: Comparisons between our approach and the
comparative methods for product attribute candidate ex-
traction.

Analyzing the recalls in Table 3, we can find that:
1. The performance of SynStru based method

is better than NPs based method for each domain.
This can illustrate that syntactic structures can cover
more forms of the product attributes. However, the
recall of SynStru based method is not high, either.

2. The two generalization strategies, SynStru h
and SynStru kernel can both significantly improve
the performance for each domain, comparing to the
SynStru based method. This can illustrate that our
two generalization strategies are helpful.

3. Our approach SynStru h+kernel achieves the
best performance. This can illustrate that the two
generalization strategies are complementary to each

379

other. And further, mining and generalizing the syn-
tactic structures is effective for candidate extraction.

However, the noise ratio for each domain is in-
creasing when employing our approach. That’s be-
cause, more kinds of syntactic structures are consid-
ered, more noise is added. However, we can easily
remove the noise in the candidate classification step.
Thus in the next section, we will assess our candi-
date extraction approach by applying it to the prod-
uct attribute extraction task.

4 Application in Product Attribute
Extraction

For the extracted product attribute candidates, we
train a maximum entropy (ME) based binary clas-
sifier to find the correct product attributes. Several
commonly used features are listed in Table 4.

Feature Description

lexical

the words of the product attribute(PA)
the POS for each word of the PA

three words before the PA
three words after the PA

the words’ number of the PA
syntactic the syntactic structure of the PA

Is there a stop word in the PA?
binary Is there a polarity word in the PA?
(Y/N) Is there an English word or number in the PA?

Table 4: The feature set for product attribute extraction.

Table 5 shows the product attribute extraction per-
formances on the test data. We can find that the
performance (F1) of our approach is better than
NPs based method for each domain. We discuss the
results as follows:

1. Comparing to the NPs based method, the re-
call of our approach increases a lot for each domain.
This demonstrates that generalized syntactic struc-
tures can cover more forms of product attributes.

2. Comparing to the NPs based method, the pre-
cision of our approach also increases for each do-
main. That’s because syntactic structures are more
specialized than the phrase forms (such as NP, VP)
in the previous work, which can filter some noises
from the phrase(NP) candidates.

5 Conclusion

This paper describes a simple but effective way to
extract the product attribute candidates from product

Domain Method R (%) P (%) F1 (%)

Camera NPs based 59.62 68.38 63.70
Our approach 62.96 73.32 67.74

Car NPs based 59.94 64.87 62.31
Our approach 67.34 65.90 66.61

Phone NPs based 58.53 71.14 64.22
Our approach 67.84 76.13 71.74

Table 5: Comparisons between our approach and the
NPs based method for product attribute extraction.

reviews. The proposed approach is based on deep
analysis into syntactic structures of the product at-
tributes, via intuitive heuristics and syntactic struc-
ture decomposition. Experimental results indicate
that our approach is promising. In future, we will try
more syntactic structure generalization strategies.

Acknowledgments

This work was supported by National Natural
Science Foundation of China (NSFC) via grant
60803093, 60975055, and the “863”National
High- Tech Research and Development of China via
grant 2008AA01Z144.

References
Wanxiang Che, Min Zhang, AiTi Aw, Chew Lim Tan,

Ting Liu, and Sheng Li. 2008. Using a hybrid con-
volution tree kernel for semantic role labeling. ACM
Trans. Asian Lang. Inf. Process., 7(4).

Michael Collins and Nigel Duffy. 2001. Convolution
kernels for natural language. In NIPS, pages 625–632.

Minqing Hu and Bing Liu. 2004. Mining opinion fea-
tures in customer reviews. In Proceedings of AAAI-
2004, pages 755–760.

Ana-Maria Popescu and Oren Etzioni. 2005. Extract-
ing product features and opinions from reviews. In
hltemnlp2005, pages 339–346.

Jeonghee Yi, Tetsuya Nasukawa, Razvan Bunescu, and
Wayne Niblack. 2003. Sentiment analyzer: Extract-
ing sentiments about a given topic using natural lan-
guage processing techniques. In Proceedings of the
IEEE International Conference on Data Mining.

Jun Zhao, Hongbo Xu, Xuanjing Huang, Songbo Tan,
Kang Liu, and Qi Zhang. 2008. Overview of chinese
opinion analysis evaluation 2008.

380

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 381–384,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

“cba to check the spelling”
Investigating Parser Performance on Discussion Forum Posts

Jennifer Foster
National Centre for Language Technology

School of Computing
Dublin City University

jfoster@computing.dcu.ie

Abstract

We evaluate the Berkeley parser on text from
an online discussion forum. We evaluate the
parser output with and without gold tokens
and spellings (using Sparseval and Parseval),
and we compile a list of problematic phenom-
ena for this domain. The Parseval f-score for a
small development set is 77.56. This increases
to 80.27 when we apply a set of simple trans-
formations to the input sentences and to the
Wall Street Journal (WSJ) training sections.

1 Introduction

Parsing techniques have recently become efficient
enough for parsers to be used as part of a pipeline in
a variety of tasks. Another recent development is the
rise of user-generated content in the form of blogs,
wikis and discussion forums. Thus, it is both inter-
esting and necessary to investigate the performance
of NLP tools trained on edited text when applied to
unedited Web 2.0 text. McClosky et al. (2006) re-
port a Parseval f-score decrease of 5% when a WSJ-
trained parser is applied to Brown corpus sentences.
In this paper, we move even further from the WSJ by
investigating the performance of the Berkeley parser
(Petrov et al., 2006) on user-generated content.

We create gold standard phrase structure trees for
the posts on two threads of the same online dis-
cussion forum. We then parse the sentences in
one thread, our development set, with the Berke-
ley parser under three conditions: 1) when it per-
forms its own tokenisation, 2) when it is provided
with gold tokens and 3) when misspellings in the in-
put have been corrected. A qualitative evaluation is

then carried out on parser output under the third con-
dition. Based on this evaluation, we identify some
“low-hanging fruit” which we attempt to handle ei-
ther by transforming the input sentence or by trans-
forming the WSJ training material. The success of
these transformations is evaluated on our develop-
ment and test sets, with encouraging results.

2 Parser Evaluation Experiments

Data Our data consists of sentences that occur on
the BBC Sport 606 Football discussion forum. The
posts on this forum are quite varied, ranging from
throwaway comments to more considered essay-like
contributions. The development set consists of 42
posts (185 sentences) on a thread discussing a con-
troversial refereeing decision in a soccer match.1

The test set is made up of 40 posts (170 sentences)
on a thread discussing a player’s behaviour in the
same match.2 The average sentence length in the
development set is 18 words and the test set 15
words. Tokenisation and spelling correction were
carried out by hand on the sentences in both sets.3

They were then parsed using Bikel’s parser (Bikel,
2004) and corrected by hand using the Penn Tree-
bank Bracketing Guidelines (Bies et al., 1995).

Parser The Berkeley parser is an unlexicalised
phrase structure parser which learns a latent vari-
able PCFG by iteratively splitting the treebank non-

1http://www.bbc.co.uk/dna/606/F15264075?
thread=7065503&show=50

2http://www.bbc.co.uk/dna/606/F15265997?
thread=7066196&show=50

3Note that abbreviated forms such ascos which are typical
of computer-mediated communication are not corrected.

381

terminals, estimating rule probabilities for the new
grammar using EM and merging the less useful
splits. We train a PCFG from WSJ2-21 by carrying
out five cycles of the split-merge process (SM5).

Tokenisation and Spelling Effects In the first ex-
periment, the parser is given the original devel-
opment set sentences which contain spelling mis-
takes and which have not been tokenised. We ask
the parser to perform its own tokenisation. In the
second experiment, the parser is given the hand-
tokenised sentences which still contain spelling mis-
takes. These are corrected for the third experiment.

Since the yields of the parser output and gold trees
are not guaranteed to match exactly, we cannot use
theevalb implementation of the Parseval evalua-
tion metrics. Instead we use Sparseval (Roark et al.,
2006), which was designed to be used to evaluate the
parsing ofspoken data and can handle this situation.
An unaligned dependency evaluation is carried out:
head-finding rules are used to convert a phrase struc-
ture tree into a dependency graph. Precision and re-
call are calculated over the dependencies

The Sparseval results are shown in Table 1. For
the purposes of comparison, the WSJ23 perfor-
mance is displayed in the top row. We can see that
performance suffers when the parser performs its
own tokenisation. A reason for this is the under-use
of apostrophes in the forum data, with the result that
words such asdidnt andim remain untokenised and
are tagged by the parser as common nouns:
(NP (NP (DT the) (NNS refs)) (SBAR (S (NP (NN didnt))
(VP want to make it to obvious))))

To properly see the effect of the 39 spelling errors
on parsing accuracy, we factor out the mismatches
between the correctly spelled words in the reference
set and their incorrectly spelled equivalents. We do
this by evaluating against a version of the gold stan-
dard which contains the original misspellings (third
row). We can see that the effect of spelling errors
is quite small. The Berkeley parser’s mechanism
for handling unknown words makes use of suffix in-
formation and it is able to ignore many of the con-
tent word spelling errors. It is the errors in function
words that appear to cause a greater problem:
(NP (DT the) (JJ zealous) (NNS fans) (NN whpo) (NN
care) (JJR more))

Test Set R P F
WSJ 23 88.66 88.66 88.66
Football 68.49 70.74 69.60
Football Gold Tokens 71.54 73.25 72.39
Ft Gold Tok (misspelled gold) 73.49 75.25 74.36
Football Gold Tokens+Spell 73.94 75.59 74.76

Table 1:Sparsevalscores for Berkeley SM5

Test Set R P F
WSJ 23 88.88 89.46 89.17
Football Gold Tokens+Spell 78.15 76.97 77.56

Table 2:Parsevalscores for Berkeley SM5

Gold Tokens and Spelling Leaving aside the
problems of automatic tokenisation and spelling cor-
rection, we focus on the results of the third experi-
ment. The Parseval results are given in Table 2. Note
that the performance degradation is quite large, more
than has been reported for the Charniak parser on
the Brown corpus. We examine the parser output for
each sentence in the development set. The phenom-
ena which lead the parser astray are listed in Table 3.
One problem is coordination which is difficult for
parsers on in-domain data but which is exacerbated
here by the omission of conjunctions, the use of a
comma as a conjunction and the tendency towards
unlike constituent coordination.

Parser Comparison We test the lexicalised Char-
niak parser plus reranker (Charniak and Johnson,
2005) on the development set sentences. We also
test the Berkeley parser with an SM6 grammar. The
f-scores are shown in Table 4. The parser achiev-
ing the highest score on WSJ23, namely, the C&J
reranking parser, also achieves the highest score on
our development set. The difference between the
two Berkeley grammars supports the claim that an
SM6 grammar overfits to the WSJ (Petrov and Klein,
2007). However, the differences between the four
parser/grammar configurations are small.

Parser WSJ23 Football
Berkeley SM5 89.17 77.56
Berkeley SM6 89.56 77.01
Charniak First-Stage 89.13 77.13
C & J Reranking 91.33 78.33

Table 4: Cross-parser and cross-grammar comparison

382

Problematic Phenomena Examples

Idioms/Fixed Expressions
Spot on
(S (VP (VB Spot) (PP (IN on))) (. .))

Acronyms

lmao
(S (NP (PRP you))
(VP (VBZ have) (RB n’t) (VP (VBN done)
(NP (ADVP (RB that) (RB once)) (DT this) (NN season))
(NP (NN lmao)))))

Missing subject
Does n’t change the result though
(SQ (VBZ Does) (RB n’t) (NP (NN change))
(NP (DT the) (NN result)) (ADVP (RB though)) (. !))

Lowercase proper nouns
paul scholes
(NP (JJ paul) (NNS scholes))

Coordination

Very even game and it’s sad that...
(S (ADVP (RB Very))
(NP (NP (JJ even) (NN game)) (CC and) (NP (PRP it)))
(VP (VBZ ’s) (ADJP (JJ sad)) (SBAR (IN that)...

Adverb/Adjective Confusion
when playing bad
(SBAR (WHADVP (WRB when))
(S (VP (VBG playing) (ADJP (JJ bad)))))

CAPS LOCK IS ON
YOU GOT BEATEN BY THE BETTER TEAM
(S (NP (PRP YOU)) (VP (VBP GOT) (NP (NNP BEATEN)
(NNP BY) (NNP THE) (NNP BETTER) (NNP TEAM))))

cos instead ofbecause
or it was cos you lost
(VP (VBD was) (ADJP (NN cos)
(SBAR (S (NP (PRP you)) (VP (VBD lost))))))

Table 3: Phenomena which lead the parser astray. The output of the parser is given for each example.

3 Initial Improvements

Parsing performance on noisy data can be improved
by transforming the input data so that it resembles
the parser’s training data (Aw et al., 2006), trans-
forming the training data so that it resembles the in-
put data (van der Plas et al., 2009), applying semi-
supervised techniques such as the self-training pro-
tocol used by McClosky et al. (2006), and changing
the parser internals, e.g. adapting the parser’s un-
known word model to take into account variation in
capitalisation and function word misspelling.4

We focus on the first two approaches and attempt
to transform both the input data and the WSJ training
material. The transformations that we experiment
with are shown in Table 5. The treebank transfor-
mations are performed in such a way that their fre-
quency distribution mirrors their distribution in the
development data. We remove discourse-marking
acronyms such aslol5 from the input sentence, but

4Even when spelling errors have been corrected, unknown
words are still an issue: 8.5% of the words in the football devel-
opment set do not occur in WSJ2-21, compared to 3.6% of the
words in WSJ23.

5In a study of teenage instant messaging, Tagliamonte and
Dennis (2008) found that forms such aslol are not as ubiquitous
as is commonly perceived. Although only occurring a couple of

do not attempt to handle acronyms which are inte-
grated into the sentence.6

We examine the effect of each transformation on
development set parsing performance and discard
those which do not improve performance. We keep
all the input sentence transformations and those tree-
bank transformations which affect lexical rules, i.e.
changing the endings on adverbs and changing the
first character of proper nouns. The treebank trans-
formations which delete subject pronouns and co-
ordinating conjunctions are not as effective. They
work in individual cases, e.g. the original analysis
of the sentenceWill be here all day is
(S (NP (NNP Will)) (VP be here all day) (. .))
After applying the treebank transformation, it is
(S (VP (MD Will) (VP be here all day)) (. .))
Their overall effect is, however, negative. It is likely
that, for complex phenomena such as coordination
and subject ellipsis, the development set is still too
small to inform how much of and in what way the
original treebank should be transformed. The results
of applying the effective transformations to the de-
velopment set and the test set are shown in Table 6.

times in our data, they are problematic for the parser.
6An example is:your loss to Wigan would be more scrutu-

nized (cba to check spelling) than it has been this year

383

Input Sentence
cos→ because
Sentences consisting of all uppercase characters converted to standard capitalisation
DEAL WITH IT → Deal with it
Remove certain acronyms
lol→ ε

Treebank
Delete subject noun phrases when the subject is a pronoun
(S (NP (PRP It)) (VP (VBD arrived)... −→ (S (VP (VBD arrived)...
Delete or replace conjunctions with a comma (for sentence coordination)
(S ...) (CC and) (S ...) −→ (S ...) (, ,) (S ...) OR (S ...) (CC and) (S ...) −→ (S ...) (S ...)
Deletely from adverbs
(VP (VBD arrived) (ADVP (RB quickly))) −→ (VP (VBD arrived) (ADVP (RB quick)))
Replace uppercase first character in proper nouns
(NP (NP (NNP Warner) (POS ’s)) (NN price)) −→ (NP (NP (NNP warner) (POS ’s)) (NN price))

Table 5: Input Sentence and Treebank Transformations

Configuration Recall Precision F-Score
Baseline Dev 78.15 76.97 77.56
Transformed Dev 80.83 79.73 80.27
Baseline Test 77.61 79.14 78.37
Transformed Test 80.10 79.77 79.93

Table 6: Effect of transformations on dev and test set

The recall and precision improvements on the devel-
opment set are statistically significant (p< 0.02), as
is the recall improvement on the test set (p< 0.05).

4 Conclusion

Ongoing research on the problem of parsing
unedited informal text has been presented. At the
moment, because of the small size of the data sets
and the variety of writing styles in the development
set, only tentative conclusions can be drawn. How-
ever, even this small data set reveals clear problems
for WSJ-trained parsers: the handling of long co-
ordinated sentences (particularly in the presence of
erratic punctuation usage), domain-specific fixed ex-
pressions and unknown words. We have presented
some preliminary experimental results using simple
transformations to both the input sentence and the
parser’s training material. Treebank transformations
need to be more thoroughly explored with use made
of the Switchboard corpus as well as the WSJ.

Acknowledgments

Thanks to the reviewers and to EmmetÓ Briain,
Deirdre Hogan, Adam Bermingham, Joel Tetreault.

References

AiTi Aw, Min Zhang, Juan Xiao, and Jian Su. 2006. A
phrase-based statistical model for SMS text normali-
sation. InProceedings of the 21st COLING/44th ACL.

Ann Bies, Mark Ferguson, Karen Katz, and Robert Mac-
Intyre. 1995. Bracketing guidelines for Treebank II
style, Penn Treebank Project. Technical Report Tech
Report MS-CIS-95-06, University of Pennsylvania.

Daniel Bikel. 2004. Intricacies of Collins Parsing Model.
Computational Linguistics, 30(4):479–511.

Eugene Charniak and Mark Johnson. 2005. Course-to-
fine n-best-parsing and maxent discriminative rerank-
ing. In Proceedings of the 43rd ACL.

David McClosky, Eugene Charniak, and Mark Johnson.
2006. Reranking and self-training for parser adapta-
tion. In Proceedings of the 21st COLING/44th ACL.

Slav Petrov and Dan Klein. 2007. Improved infer-
ence for unlexicalized parsing. InProceedings of HLT
NAACL 2007.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact and inter-
pretable tree annotation. InProceedings of the 21st
COLING and the 44th ACL.

Brian Roark, Mary Harper, Eugene Charniak, Bonnie
Dorr, Mark Johnson, Jeremy G. Kahn, Yang Liu, Mari
Ostendorf, John Hale, Anna Krasnyanskaya, Matthew
Lease, Izhak Shafran, Matthew Snover, Robin Stewart,
and Lisa Yung. 2006. SParseval: Evaluation metrics
for parsing speech. InProceedings of LREC.

Sali A. Tagliamonte and Derek Dennis. 2008. Linguis-
tic ruin? LOL! Instant messaging and teen language.
American Speech, 83(1).

Lonneke van der Plas, James Henderson, and Paola
Merlo. 2009. Domain adaptation with artificial data
for semantic parsing of speech. InProceedings of HLT
NAACL 2009, Companion Volume: Short Papers.

384

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 385–393,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Coreference Resolution in a Modular, Entity-Centered Model

Aria Haghighi
Computer Science Division

University of California, Berkeley
aria42@cs.berkeley.edu

Dan Klein
Computer Science Division

University of California, Berkeley
klein@cs.berkeley.edu

Abstract

Coreference resolution is governed by syntac-
tic, semantic, and discourse constraints. We
present a generative, model-based approach in
which each of these factors is modularly en-
capsulated and learned in a primarily unsu-
pervised manner. Our semantic representation
first hypothesizes an underlying set of latent
entity types, which generate specific entities
that in turn render individual mentions. By
sharing lexical statistics at the level of abstract
entity types, our model is able to substantially
reduce semantic compatibility errors, result-
ing in the best results to date on the complete
end-to-end coreference task.

1 Introduction

Coreference systems exploit a variety of informa-
tion sources, ranging from syntactic and discourse
constraints, which are highly configurational, to se-
mantic constraints, which are highly contingent on
lexical meaning and world knowledge. Perhaps be-
cause configurational features are inherently easier
to learn from small data sets, past work has often
emphasized them over semantic knowledge.

Of course, all state-of-the-art coreference systems
have needed to capture semantic compatibility to
some degree. As an example of nominal headword
compatibility, a “president” can be a “leader” but
cannot be not an “increase.” Past systems have of-
ten computed the compatibility of specific headword
pairs, extracted either from lexical resources (Ng,
2007; Bengston and Roth, 2008; Rahman and Ng,
2009), web statistics (Yang et al., 2005), or sur-
face syntactic patterns (Haghighi and Klein, 2009).
While the pairwise approach has high precision, it is
neither realistic nor scalable to explicitly enumerate

all pairs of compatible word pairs. A more compact
approach has been to rely on named-entity recog-
nition (NER) systems to give coarse-grained entity
types for each mention (Soon et al., 1999; Ng and
Cardie, 2002). Unfortunately, current systems use
small inventories of types and so provide little con-
straint. In general, coreference errors in state-of-the-
art systems are frequently due to poor models of se-
mantic compatibility (Haghighi and Klein, 2009).

In this work, we take a primarily unsupervised ap-
proach to coreference resolution, broadly similar to
Haghighi and Klein (2007), which addresses this is-
sue. Our generative model exploits a large inven-
tory of distributional entity types, including standard
NER types like PERSON and ORG, as well as more
refined types like WEAPON and VEHICLE. For each
type, distributions over typical heads, modifiers, and
governors are learned from large amounts of unla-
beled data, capturing type-level semantic informa-
tion (e.g. “spokesman” is a likely head for a PER-
SON). Each entity inherits from a type but captures
entity-level semantic information (e.g. “giant” may
be a likely head for the Microsoft entity but not all
ORGs). Separately from the type-entity semantic
module, a log-linear discourse model captures con-
figurational effects. Finally, a mention model assem-
bles each textual mention by selecting semantically
appropriate words from the entities and types.

Despite being almost entirely unsupervised, our
model yields the best reported end-to-end results on
a range of standard coreference data sets.

2 Key Abstractions

The key abstractions of our model are illustrated in
Figure 1 and described here.

Mentions: A mention is an observed textual ref-
erence to a latent real-world entity. Mentions are as-

385

Person

[0: 0.30,
 1:0.25,
 2:0.20, ...]

NOM-HEAD

[1: 0.39,
 0:0.18,
 2:0.13, ...]

[Obama: 0.02,
 Smith:0.015,
 Jr.: 0.01, ...]
[president: 0.14,
 painter:0.11,
 senator: 0.10,...]

NAM-HEAD

r θr fr

NOM-HEAD [president, leader]
NAM-HEAD [Obama, Barack]

r Lr

Barack Obama

NOM-HEAD [painter]
NAM-HEAD [Picasso, Pablo]

r Lr

Pablo Picasso

NN-MOD Mr.
NAM-HEAD Obama

r wr
NOM-HEAD president

r wr

Types

Entities

Mentions

(c)

(b)

(a)

“Mr. Obama” “the president”

...

Figure 1: The key abstractions of our model (Section 2).
(a) Mentions map properties (r) to words (wr). (b) Enti-
ties map properties (r) to word lists (Lr). (c) Types map
properties (r) to distributions over property words (θr)
and the fertilities of those distributions (fr). For (b) and
(c), we only illustrate a subset of the properties.

sociated with nodes in a parse tree and are typically
realized as NPs. There are three basic forms of men-
tions: proper (denoted NAM), nominal (NOM), and
pronominal (PRO). We will often describe proper
and nominal mentions together as referring men-
tions.

We represent each mention M as a collection of
key-value pairs. The keys are called properties and
the values are words. For example, the left mention
in Figure 1(a) has a proper head property, denoted
NAM-HEAD, with value “Obama.” The set of prop-
erties we consider, denoted R, includes several va-
rieties of heads, modifiers, and governors (see Sec-
tion 5.2 for details). Not every mention has a value
for every property.

Entities: An entity is a specific individual or ob-
ject in the world. Entities are always latent in text.
Where a mention has a single word for each prop-
erty, an entity has a list of signature words. For-
mally, entities are mappings from properties r ∈ R
to lists Lr of “canonical” words which that entity
uses for that property. For instance in Figure 1(b),
the list of nominal heads for the Barack Obama en-
tity includes “president.”

Types: Coreference systems often make a men-
tion / entity distinction. We extend this hierarchy
to include types, which represent classes of entities
(PERSON, ORGANIZATION, and so on). Types allow

the sharing of properties across entities and mediate
the generation of entities in our model (Section 3.1).
See Figure 1(c) for a concrete example.

We represent each type τ as a mapping between
properties r and pairs of multinomials (θr, fr). To-
gether, these distributions control the lists Lr for en-
tities of that type. θr is a unigram distribution of
words that are semantically licensed for property r.
fr is a “fertility” distribution over the integers that
characterizes entity list lengths. For example, for the
type PERSON, θr for proper heads is quite flat (there
are many last names) but fr is peaked at 1 (people
have a single last name).

3 Generative Model

We now describe our generative model. At the pa-
rameter level, we have one parameter group for the
types τ = (φ, τ1, . . . , τt), where φ is a multinomial
prior over a fixed number t of types and the {τi} are
the parameters for each individual type, described in
greater detail below. A second group comprises log-
linear parameters π over discourse choices, also de-
scribed below. Together, these two groups are drawn
according to P (τ |λ)P (π|σ2), where λ and σ2 are a
small number of scalar hyper-parameters described
in Section 4.

Conditioned on the parameters (τ ,π), a docu-
ment is generated as follows: A semantic module
generates a sequence E of entities. E is in prin-
ciple infinite, though during inference only a finite
number are ever instantiated. A discourse module
generates a vector Z which assigns an entity in-
dex Zi to each mention position i. Finally, a men-
tion generation module independently renders the
sequence of mentions (M) from their underlying en-
tities. The syntactic position and structure of men-
tions are treated as observed, including the mention
forms (pronominal, etc.). We use X to refer to this
ungenenerated information. Our model decomposes
as follows:

P (E,Z,M|τ ,π,X) =

P (E|τ) [Semantic, Section 3.1]

P (Z|π,X) [Discourse, Section 3.2]

P (M|Z,E, τ) [Mention, Section 3.3]

We detail each of these components in subsequent
sections.

386

T

Lr

φ

fr θr

ORG: 0.30
 PERS: 0.22
GPE: 0.18
LOC: 0.15
WEA: 0.12
VEH: 0.09

...

T = PERS
0: 0.30
1: 0.25
2: 0.20
3: 0.18

...

PERS

For T = PERS
president: 0.14
 painter: 0.11
senator: 0.10
minister: 0.09
leader: 0.08
official: 0.06

executive: 0.05
...

president
leader
official

R
E

Figure 2: Depiction of the entity generation process (Sec-
tion 3.1). Each entity draws a type (T) from φ, and, for
each property r ∈ R, forms a word list (Lr) by choosing
a length from T ’s fr distribution and then independently
drawing that many words from T ’s θr distribution. Ex-
ample values are shown for the person type and the nom-
inal head property (NOM-HEAD).

3.1 Semantic Module
The semantic module is responsible for generating
a sequence of entities. Each entity E is generated
independently and consists of a type indicator T , as
well as a collection {Lr}r∈R of word lists for each
property. These elements are generated as follows:

Entity Generation
Draw entity type T ∼ φ
For each mention property r ∈ R,

Fetch {(fr, θr)} for τ T
Draw word list length |Lr| ∼ fr
Draw |Lr| words from w ∼ θr

See Figure 2 for an illustration of this process. Each
word list Lr is generated by first drawing a list
length from fr and then independently populating
that list from the property’s word distribution θr.1

Past work has employed broadly similar distribu-
tional models for unsupervised NER of proper men-

1There is one exception: the sizes of the proper and nomi-
nal head property lists are jointly generated, but their word lists
are still independently populated.

tions (Collins and Singer, 1999; Elsner et al., 2009).
However, to our knowledge, this is the first work
to incorporate such a model into an entity reference
process.

3.2 Discourse Module

The discourse module is responsible for choosing
an entity to evoke at each of the n mention posi-
tions. Formally, this module generates an entity as-
signment vector Z = (Z1, . . . , Zn), where Zi indi-
cates the entity index for the ith mention position.
Most linguistic inquiry characterizes NP anaphora
by the pairwise relations that hold between a men-
tion and its antecedent (Hobbs, 1979; Kehler et al.,
2008). Our discourse module utilizes this pairwise
perspective to define each Zi in terms of an interme-
diate “antecedent” variable Ai. Ai either points to a
previous antecedent mention position (Ai < i) and
“steals” its entity assignment or begins a new entity
(Ai = i). The choice ofAi is parametrized by affini-
ties sπ(i, j;X) between mention positions i and j.
Formally, this process is described as:

Entity Assignment

For each mention position, i = 1, . . . , n,
Draw antecedent position Ai ∈ {1, . . . , i}:

P (Ai = j|X) ∝ sπ(i, j;X)

Zi =

{
ZAi , if Ai < i

K + 1, otherwise

Here, K denotes the number of entities allocated in
the first i-1 mention positions. This process is an in-
stance of the sequential distance-dependent Chinese
Restaurant Process (DD-CRP) of Blei and Frazier
(2009). During inference, we variously exploit both
the A and Z representations (Section 4).

For nominal and pronoun mentions, there are sev-
eral well-studied anaphora cues, including centering
(Grosz et al., 1995), nearness (Hobbs, 1978), and
deterministic constraints, which have all been uti-
lized in prior coreference work (Soon et al., 1999;
Ng and Cardie, 2002). In order to combine these
cues, we take a log-linear, feature-based approach
and parametrize sπ(i, j;X) = exp{π>fX(i, j)},
where fX(i, j) is a feature vector over mention po-
sitions i and j, and π is a parameter vector; the fea-
tures may freely condition on X. We utilize the
following features between a mention and an an-

387

tecedent: tree distance, sentence distance, and the
syntactic positions (subject, object, and oblique) of
the mention and antecedent. Features for starting a
new entity include: a definiteness feature (extracted
from the mention’s determiner), the top CFG rule
of the mention parse node, its syntactic role, and a
bias feature. These features are conjoined with the
mention form (nominal or pronoun). Additionally,
we restrict pronoun antecedents to the current and
last two sentences, and the current and last three sen-
tences for nominals. Additionally, we disallow nom-
inals from having direct pronoun antecedents.

In addition to the above, if a mention is in a de-
terministic coreference configuration, as defined in
Haghighi and Klein (2009), we force it to take the
required antecedent. In general, antecedent affini-
ties learn to prefer close antecedents in prominent
syntactic positions. We also learn that new entity
nominals are typically indefinite or have SBAR com-
plements (captured by the CFG feature).

In contrast to nominals and pronouns, the choice
of entity for a proper mention is governed more by
entity frequency than antecedent distance. We cap-
ture this by setting sπ(i, j;X) in the proper case to
1 for past positions and to a fixed α otherwise. 2

3.3 Mention Module

Once the semantic module has generated entities and
the discourse model selects entity assignments, each
mention Mi generates word values for a set of ob-
served properties Ri:

Mention Generation
For each mention Mi, i = 1, . . . , n

Fetch (T, {Lr}r∈R) from EZi

Fetch {(fr, θr)}r∈R from τ T
For r ∈ Ri :

w ∼ (1− αr)UNIFORM(Lr) + (αr)θr

For each property r, there is a hyper-parameter αr
which interpolates between selecting a word from
the entity list Lr and drawing from the underlying
type property distribution θr. Intuitively, a small
value of αr indicates that an entity prefers to re-use

2As Blei and Frazier (2009) notes, when marginalizing out
the Ai in this trivial case, the DD-CRP reduces to the traditional
CRP (Pitman, 2002), so our discourse model roughly matches
Haghighi and Klein (2007) for proper mentions.

τ 1

Person Organization

[software]NN-
NOD

ORG
[Microsoft]

[company,
 firm]

NOM-
HEAD

NAM-
HEAD

T

τ 2

E1 E2

Z1 Z2 Z3

M1 M2 M3

[Steve,chief,
Microsoft]

NN-
NOD

PERS
[Ballmer,
 CEO]
[officer,
 executive]

NOM-
HEAD

NAM-
HEAD

T

joinedGOV-
SUBJ

Ballmer

SteveNN-
HEAD

NAM-
HEAD

joinedGOV-
DOBJ

MicrosoftNAM-
HEAD

becameGOV-
DOBJ

CEONAM-
HEAD

τ τ

E, τ E, τ E, τ

E,M E,M

E2E1 E1

M M

Figure 3: Depiction of the discourse module (Sec-
tion 3.2); each random variable is annotated with an ex-
ample value. For each mention position, an entity as-
signment (Zi) is made. Conditioned on entities (EZi

),
mentions (Mi) are rendered (Section 3.3). The Y sym-
bol denotes that a random variable is the parent of all Y
random variables.

a small number of words for property r. This is typ-
ically the case for proper and nominal heads as well
as modifiers. At the other extreme, setting αr to 1
indicates the property isn’t particular to the entity
itself, but rather only on its type. We set αr to 1
for pronoun heads as well as for the governor of the
head properties.

4 Learning and Inference

Our learning procedure involves finding parame-
ters and assignments which are likely under our
model’s posterior distribution P (E,Z, τ ,π|M,X).
The model is modularized in such a way that run-
ning EM on all variables simultaneously would be
very difficult. Therefore, we adopt a variational ap-
proach which optimizes various subgroups of the
variables in a round-robin fashion, holding approx-
imations to the others fixed. We first describe the
variable groups, then the updates which optimize
them in turn.

Decomposition: We decompose the entity vari-

388

ables E into types, T, one for each entity, and word
lists, L, one for each entity and property. We decom-
pose the mentions M into referring mentions (prop-
ers and nominals), Mr, and pronominal mentions,
Mp (with sizes nr and np respectively). The en-
tity assignments Z are similarly divided into Zr and
Zp components. For pronouns, rather than use Zp,
we instead work with the corresponding antecedent
variables, denoted Ap, and marginalize over an-
tecedents to obtain Zp.

With these variable groups, we would
like to approximation our model posterior
P (T,L,Zr,Ap, τ ,π|M,X) using a simple fac-
tored representation. Our variational approximation
takes the following form:

Q(T,L,Zr,Ap, τ ,π) = δr(Z
r,L)(

n∏
k=1

qk(Tk)

)(np∏
i=1

ri(A
p
i)

)
δs(τ)δd(π)

We use a mean field approach to update each of the
RHS factors in turn to minimize the KL-divergence
between the current variational posterior and the
true model posterior. The δr, δs, and δd factors
place point estimates on a single value, just as in
hard EM. Updating these factors involves finding the
value which maximizes the model (expected) log-
likelihood under the other factors. For instance, the
δs factor is a point estimate of the type parameters,
and is updated with:3

δs(τ)← argmax
τ

EQ−δs lnP (E,Z,M, τ ,π) (1)

where Q−δs denotes all factors of the variational
approximation except for the factor being updated.
The ri (pronoun antecedents) and qk (type indica-
tor) factors maintain a soft approximation and so are
slightly more complex. For example, the ri factor
update takes the standard mean field form:

ri(A
p
i) ∝ exp{EQ−ri lnP (E,Z,M, τ ,π)} (2)

We briefly describe the update for each additional
factor, omitting details for space.

Updating type parameters δs(τ): The type pa-
rameters τ consist of several multinomial distri-
butions which can be updated by normalizing ex-
pected counts as in the EM algorithm. The prior

3Of course during learning, the argmax is performed over
the entire document collection, rather than a single document.

P (τ |λ) consists of several finite Dirichlet draws for
each multinomial, which are incorporated as pseu-
docounts.4 Given the entity type variational poste-
riors {qk(·)}, as well as the point estimates of the
L and Zr elements, we obtain expected counts from
each entity’s attribute word lists and referring men-
tion usages.

Updating discourse parameters δd(π): The
learned parameters for the discourse module rely on
pairwise antecedent counts for assignments to nom-
inal and pronominal mentions.5 Given these ex-
pected counts, which can be easily obtained from
other factors, the update reduces to a weighted max-
imum entropy problem, which we optimize using
LBFGS. The prior P (π|σ2) is a zero-centered nor-
mal distribution with shared diagonal variance σ2,
which is incorporated via L2 regularization during
optimization.

Updating referring assignments and word lists
δr(Z

r,L): The word lists are usually concatena-
tions of the words used in nominal and proper
mentions and so are updated together with the
assignments for those mentions. Updating the
δr(Z

r,L) factor involves finding the referring men-
tion entity assignments, Zr, and property word
lists L for instantiated entities which maximize
EQ−δr lnP (T,L,Zr,Ap,M, τ ,π). We actually
only need to optimize over Zr, since for any Zr, we
can compute the optimal set of property word lists
L. Essentially, for each entity we can compute the
Lr which optimizes the probability of the referring
mentions assigned to the entity (indicated by Zr). In
practice, the optimal Lr is just the set of property
words in the assigned mentions. Of course enumer-
ating and scoring all Zr hypotheses is intractable,
so we instead utilize a left-to-right sequential beam
search. Each partial hypothesis is an assignment to a
prefix of mention positions and is scored as though
it were a complete hypothesis. Hypotheses are ex-
tended via adding a new mention to an existing en-
tity or creating a new one. For our experiments, we
limited the number of hypotheses on the beam to the
top fifty and did not notice an improvement in model
score from increasing beam size.

4See software release for full hyper-parameter details.
5Propers have no learned discourse parameters.

389

Updating pronominal antecedents ri(Api) and en-
tity types qk(Tk): These updates are straightfor-
ward instantiations of the mean-field update (2).

To produce our final coreference partitions, we as-
sign each referring mention to the entity given by the
δr factor and each pronoun to the most likely entity
given by the ri.

4.1 Factor Staging

In order to facilitate learning, some factors are ini-
tially set to fixed heuristic values and only learned
in later iterations. Initially, the assignment factors
δr and {ri} are fixed. For δr, we use a determin-
istic entity assignment Zr, similar to the Haghighi
and Klein (2009)’s SYN-CONSTR setting: each re-
ferring mention is coreferent with any past men-
tion with the same head or in a deterministic syn-
tactic configuration (appositives or predicative nom-
inatives constructions).6 The {ri} factors are heuris-
tically set to place most of their mass on the closest
antecedent by tree distance. During training, we pro-
ceed in stages, each consisting of 5 iterations:

Stage Learned Fixed B3All

1 δs, δd, {qk} {ri},δr 74.6
2 δs, δd, {qk}, δr {ri} 76.3
3 δs, δd, {qk}, δr, {ri} – 78.0

We evaluate our system at the end of stage using the
B3All metric on the A05CU development set (see
Section 5 for details).

5 Experiments

We considered the challenging end-to-end system
mention setting, where in addition to predicting
mention partitions, a system must identify the men-
tions themselves and their boundaries automati-
cally. Our system deterministically extracts mention
boundaries from parse trees (Section 5.2). We uti-
lized no coreference annotation during training, but
did use minimal prototype information to prime the
learning of entity types (Section 5.3).

5.1 Datasets

For evaluation, we used standard coreference data
sets derived from the ACE corpora:

6Forcing appositive coreference is essential for tying proper
and nominal entity type vocabulary.

• A04CU: Train/dev/test split of the newswire
portion of the ACE 2004 training set7 utilized
in Culotta et al. (2007), Bengston and Roth
(2008) and Stoyanov et al. (2009). Consists of
90/68/38 documents respectively.

• A05ST: Train/test split of the newswire portion
of the ACE 2005 training set utilized in Stoy-
anov et al. (2009). Consists of 57/24 docu-
ments respectively.

• A05RA: Train/test split of the ACE 2005 train-
ing set utilized in Rahman and Ng (2009). Con-
sists of 482/117 documents respectively.

For all experiments, we evaluated on the dev and test
sets above. To train, we included the text of all doc-
uments above, though of course not looking at ei-
ther their mention boundaries or reference annota-
tions in any way. We also trained on the following
much larger unlabeled datasets utilized in Haghighi
and Klein (2009):

• BLLIP: 5k articles of newswire parsed with the
Charniak (2000) parser.

• WIKI: 8k abstracts of English Wikipedia arti-
cles parsed by the Berkeley parser (Petrov et
al., 2006). Articles were selected to have sub-
jects amongst the frequent proper nouns in the
evaluation datasets.

5.2 Mention Detection and Properties

Mention boundaries were automatically detected as
follows: For each noun or pronoun (determined by
parser POS tag), we associated a mention with the
maximal NP projection of that head or that word it-
self if no NP can be found. This procedure recovers
over 90% of annotated mentions on the A05CU dev
set, but also extracts many unannotated “spurious”
mentions (for instance events, times, dates, or ab-
stract nouns) which are not deemed to be of interest
by the ACE annotation conventions.

Mention properties were obtained from parse
trees using the the Stanford typed dependency ex-
tractor (de Marneffe et al., 2006). The mention prop-
erties we considered are the mention head (anno-
tated with mention type), the typed modifiers of the
head, and the governor of the head (conjoined with

7Due to licensing restriction, the formal ACE test sets are
not available to non-participants.

390

MUC B3All B3None Pairwise F1

System P R F1 P R F1 P R F1 P R F1
ACE2004-STOYANOV-TEST

Stoyanov et al. (2009) - - 62.0 - - 76.5 - - 75.4 - - -
Haghighi and Klein (2009) 67.5 61.6 64.4 77.4 69.4 73.2 77.4 67.1 71.3 58.3 44.5 50.5

THIS WORK 67.4 66.6 67.0 81.2 73.3 77.0 80.6 75.2 77.3 59.2 50.3 54.4
ACE2005-STOYANOV-TEST

Stoyanov et al. (2009) - - 67.4 - - 73.7 - - 72.5 - - -
Haghighi and Klein (2009) 73.1 58.8 65.2 82.1 63.9 71.8 81.2 61.6 70.1 66.1 37.9 48.1

THIS WORK 74.6 62.7 68.1 83.2 68.4 75.1 82.7 66.3 73.6 64.3 41.4 50.4
ACE2005-RAHMAN-TEST

Rahman and Ng (2009) 75.4 64.1 69.3 - - - 54.4 70.5 61.4 - - -
Haghighi and Klein (2009) 72.9 60.2 67.0 53.2 73.1 61.6 52.0 72.6 60.6 57.0 44.6 50.0

THIS WORK 77.0 66.9 71.6 55.4 74.8 63.8 54.0 74.7 62.7 60.1 47.7 53.0

Table 1: Experimental results with system mentions. All systems except Haghighi and Klein (2009) and current work
are fully supervised. The current work outperforms all other systems, supervised or unsupervised. For comparison pur-
poses, the B3None variant used on A05RA is calculated slightly differently than other B3None results; see Rahman
and Ng (2009).

the mention’s syntactic position). We discard deter-
miners, but make use of them in the discourse com-
ponent (Section 3.2) for NP definiteness.

5.3 Prototyping Entity Types
While it is possible to learn type distributions in a
completely unsupervised fashion, we found it use-
ful to prime the system with a handful of important
types. Rather than relying on fully supervised data,
we took the approach of Haghighi and Klein (2006).
For each type of interest, we provided a (possibly-
empty) prototype list of proper and nominal head
words, as well as a list of allowed pronouns. For
instance, for the PERSON type we might provide:

NAM Bush, Gore, Hussein
NOM president, minister, official
PRO he, his, she, him, her, you, ...

The prototypes were used as follows: Any entity
with a prototype on any proper or nominal head
word attribute list (Section 3.1) was constrained to
have the specified type; i.e. the qk factor (Section 4)
places probability one on that single type. Simi-
larly to Haghighi and Klein (2007) and Elsner et al.
(2009), we biased these types’ pronoun distributions
to the allowed set of pronouns.

In general, the choice of entity types to prime
with prototypes is a domain-specific question. For
experiments here, we utilized the types which are
annotated in the ACE coreference data: person
(PERS), organization (ORG), geo-political entity
(GPE), weapon (WEA), vehicle (VEH), location

(LOC), and facility (FAC). Since the person type
in ACE conflates individual persons with groups
of people (e.g., soldier vs. soldiers), we added
the group (GROUP) type and generated a prototype
specification.

We obtained our prototype list by extracting at
most four common proper and nominal head words
from the newswire portions of the 2004 and 2005
ACE training sets (A04CU and A05ST); we chose
prototype words to be minimally ambiguous with
respect to type.8 When there are not at least three
proper heads for a type (WEA for instance), we
did not provide any proper prototypes and instead
strongly biased the type fertility parameters to gen-
erate empty NAM-HEAD lists.

Because only certain semantic types were anno-
tated under the arbitrary ACE guidelines, there are
many mentions which do not fall into those limited
categories. We therefore prototype (refinements of)
the ACE types and then add an equal number of un-
constrained “other” types which are automatically
induced. A nice consequence of this approach is
that we can simply run our model on all mentions,
discarding at evaluation time any which are of non-
prototyped types.

5.4 Evaluation

We evaluated on multiple coreference resolution
metrics, as no single one is clearly superior, partic-

8Meaning those headwords were assigned to the target type
for more than 75% of their usages.

391

ularly in dealing with the system mention setting.
We utilized MUC (Vilain et al., 1995), B3All (Stoy-
anov et al., 2009), B3None (Stoyanov et al., 2009),
and Pairwise F1. The B3All and B3None are B3

variants (Bagga and Baldwin, 1998) that differ in
their treatment of spurious mentions. For Pairwise
F1, precision measures how often pairs of predicted
coreferent mentions are in the same annotated entity.
We eliminated any mention pair from this calcula-
tion where both mentions were spurious.9

5.5 Results

Table 1 shows our results. We compared to two
state-of-the-art supervised coreference systems. The
Stoyanov et al. (2009) numbers represent their
THRESHOLD ESTIMATION setting and the Rahman
and Ng (2009) numbers represent their highest-
performing cluster ranking model. We also com-
pared to the strong deterministic system of Haghighi
and Klein (2009).10 Across all data sets, our model,
despite being largely unsupervised, consistently out-
performs these systems, which are the best previ-
ously reported results on end-to-end coreference res-
olution (i.e. including mention detection). Perfor-
mance on the A05RA dataset is generally lower be-
cause it includes articles from blogs and web forums
where parser quality is significantly degraded.

While Bengston and Roth (2008) do not report on
the full system mention task, they do report on the
more optimistic setting where mention detection is
performed but non-gold mentions are removed for
evaluation using an oracle. On this more lenient set-
ting, they report 78.4B3 on the A04CU test set. Our
model yields 80.3.

6 Analysis

We now discuss errors and improvements made
by our system. One frequent source of error is
the merging of mentions with explicitly contrasting
modifiers, such as new president and old president.
While it is not unusual for a single entity to admit
multiple modifiers, the particular modifiers new and
old are incompatible in a way that new and popular

9Note that we are still penalized for marking a spurious
mention coreferent with an annotated one.

10Haghighi and Klein (2009) reports on true mentions; here,
we report performance on automatically detected mentions.

are not. Our model does not represent the negative
covariance between these modifiers.

We compared our output to the deterministic sys-
tem of Haghighi and Klein (2009). Many improve-
ments arise from correctly identifying mentions
which are semantically compatible but which do
not explicitly appear in an appositive or predicate-
nominative configuration in the data. For example,
analyst and it cannot corefer in our system because
it is not a likely pronoun for the type PERSON.

While the focus of our model is coreference res-
olution, we can also isolate and evaluate the type
component of our model as an NER system. We
test this component by presenting our learned model
with boundary-annotated non-pronominal entities
from the A05ST dev set and querying their predicted
type variable T . Doing so yields 83.2 entity clas-
sification accuracy under the mapping between our
prototyped types and the coarse ACE types. Note
that this task is substantially more difficult than the
unsupervised NER in Elsner et al. (2009) because
the inventory of named entities is larger (7 vs. 3)
and because we predict types over nominal mentions
that are more difficult to judge from surface forms.
In this task, the plurality of errors are confusions be-
tween the GPE (geo-political entity) and ORG entity
types, which have very similar distributions.

7 Conclusion

Our model is able to acquire and exploit knowledge
at either the level of individual entities (“Obama” is
a “president”) and entity types (“company” can refer
to a corporation). As a result, it leverages semantic
constraints more effectively than systems operating
at either level alone. In conjunction with reasonable,
but simple, factors capturing discourse and syntac-
tic configurational preferences, our entity-centric se-
mantic model lowers coreference error rate substan-
tially, particularly on semantically disambiguated
references, giving a sizable improvement over the
state-of-the-art.11

Acknowledgements: This project is funded in
part by the Office of Naval Research under MURI
Grant No. N000140911081.

11See nlp.cs.berkeley.edu and aria42.com/software.html for
software release.

392

References

A Bagga and B Baldwin. 1998. Algorithms for scoring
coreference chains. In Linguistic Coreference Work-
shop (LREC).

Eric Bengston and Dan Roth. 2008. Understanding
the Value of Features for Corefernce Resolution. In
Empirical Methods in Natural Language Processing
(EMNLP).

David Blei and Peter I. Frazier. 2009. Dis-
tance Dependent Chinese Restaurant Processes.
http://arxiv.org/abs/0910.1022/.

Eugene Charniak. 2000. Maximum Entropy Inspired
Parser. In North American Chapter of the Association
of Computational Linguistics (NAACL).

Michael Collins and Yoram Singer. 1999. Unsupervised
Models for Named Entity Classification. In Empirical
Methods in Natural Language Processing (EMNLP).

Mike Collins. 1999. Head-Driven Statistical Models for
Natural Language Parsing. Ph.D. thesis, University of
Pennsylvania.

A Culotta, M Wick, R Hall, and A McCallum. 2007.
First-order Probabilistic Models for Coreference Res-
olution. In Proceedings of the conference on Human
Language Technology and Empirical Methods in Nat-
ural Language Processing (NAACL-HLT).

M. C. de Marneffe, B. Maccartney, and C. D. Manning.
2006. Generating Typed Dependency Parses from
Phrase Structure Parses. In LREC.

M Elsner, E Charniak, and M Johnson. 2009. Structured
generative models for unsupervised named-entity clus-
tering. In Proceedings of Human Language Technolo-
gies: The 2009 Annual Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics, pages 164–172.

Barbara J. Grosz, Aravind K. Joshi, and Scott Weinstein.
1995. Centering: A Framework for Modeling the Lo-
cal Coherence of Discourse. Computational Linguis-
tics, 21(2):203–225.

Aria Haghighi and Dan Klein. 2006. Prototype-Driven
Learning for Sequence Models. In HLT-NAACL. As-
sociation for Computational Linguistics.

Aria Haghighi and Dan Klein. 2007. Unsupervised
Coreference Resolution in a Nonparametric Bayesian
Model. In Proceedings of the 45th Annual Meeting of
the Association of Computational Linguistics. Associ-
ation for Computational Linguistics.

Aria Haghighi and Dan Klein. 2009. Simple Coreference
Resolution with Rich Syntactic and Semantic Features.
In Proceedings of the 2009 Conference on Empirical
Conference in Natural Language Processing.

J. R. Hobbs. 1978. Resolving Pronoun References. Lin-
gua, 44.

J. R. Hobbs. 1979. Coherence and Coreference. Cogni-
tive Science, 3:67–90.

Andrew Kehler, Laura Kertz, Hannah Rohde, and Jeffrey
Elman. 2008. Coherence and Coreference Revisited.

Vincent Ng and Claire Cardie. 2002. Improving
Machine Learning Approaches to Coreference Res-
olution. In Association of Computational Linguists
(ACL).

Vincent Ng. 2005. Machine Learning for Corefer-
ence Resolution: From Local Classification to Global
Ranking. In Association of Computational Linguists
(ACL).

Vincent Ng. 2007. Shallow semantics for coreference
resolution. In IJCAI’07: Proceedings of the 20th in-
ternational joint conference on Artifical intelligence,
pages 1689–1694.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning Accurate, Compact, and Inter-
pretable Tree Annotation. In Proceedings of the 21st
International Conference on Computational Linguis-
tics and 44th Annual Meeting of the Association for
Computational Linguistics, pages 433–440, Sydney,
Australia, July. Association for Computational Lin-
guistics.

J. Pitman. 2002. Combinatorial Stochastic Processes. In
Lecture Notes for St. Flour Summer School.

A Rahman and V Ng. 2009. Supervised models for
coreference resolution. In Proceedings of the 2009
Conference on Empirical Conference in Natural Lan-
guage Processing.

W.H. Soon, H. T. Ng, and D. C. Y. Lim. 1999. A Ma-
chine Learning Approach to Coreference Resolution
of Noun Phrases.

V Stoyanov, N Gilbert, C Cardie, and E Riloff. 2009.
Conundrums in Noun Phrase Coreference Resolution:
Making Sense of the State-of-the-art. In Associate of
Computational Linguistics (ACL).

Marc Vilain, John Burger, John Aberdeen, Dennis Con-
nolly, and Lynette Hirschman. 1995. A model-
theoretic coreference scoring scheme. In MUC-6.

X Yang, J Su, and CL Tan. 2005. Improving pronoun
resolution using statistics-based semantic compatibil-
ity information. In Association of Computational Lin-
guists (ACL).

393

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 394–402,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Stream-based Translation Models for Statistical Machine Translation

Abby Levenberg
School of Informatics

University of Edinburgh
a.levenberg@ed.ac.uk

Chris Callison-Burch
Computer Science Department

Johns Hopkins University
ccb@cs.jhu.edu

Miles Osborne
School of Informatics

University of Edinburgh
miles@inf.ed.ac.uk

Abstract

Typical statistical machine translation sys-
tems are trained with static parallel corpora.
Here we account for scenarios with a continu-
ous incoming stream of parallel training data.
Such scenarios include daily governmental
proceedings, sustained output from transla-
tion agencies, or crowd-sourced translations.
We show incorporating recent sentence pairs
from the stream improves performance com-
pared with a static baseline. Since frequent
batch retraining is computationally demand-
ing we introduce a fast incremental alternative
using an online version of the EM algorithm.
To bound our memory requirements we use
a novel data-structure and associated training
regime. When compared to frequent batch re-
training, our online time and space-bounded
model achieves the same performance with
significantly less computational overhead.

1 Introduction

There is more parallel training data available to-
day than there has ever been and it keeps increas-
ing. For example, the European Parliament1 releases
new parallel data in 22 languages on a regular basis.
Project Syndicate2 translates editorials into seven
languages (including Arabic, Chinese and Russian)
every day. Existing translation systems often get
‘crowd-sourced’ improvements such as the option
to contribute a better translation to GoogleTrans-
late3. In these and many other instances, the data can
be viewed as an incomingunbounded streamsince

1http://www.europarl.europa.eu
2http://www.project-syndicate.org
3http://www.translate.google.com

the corpus grows continually with time. Dealing
with such unbounded streams of parallel sentences
presents two challenges: making retraining efficient
and operating within a bounded amount of space.

Statistical Machine Translation (SMT) systems
are typically batch trained, often taking many CPU-
days of computation when using large volumes of
training material. Incorporating new data into these
models forces us to retrain from scratch. Clearly,
this makes rapidly adding newly translated sen-
tences into our models a daunting engineering chal-
lenge. We introduce an adaptive training regime us-
ing an online variant of EM that is capable of in-
crementally adding new parallel sentences without
incurring the burdens of full retraining.

For situations with large volumes of incoming
parallel sentences we are also forced to consider
placing space-bounds on our SMT system. We in-
troduce a dynamic suffix array which allows us to
add and delete parallel sentences, thereby maintain-
ing bounded space despite processing a potentially
high-rate input stream of unbounded length.

Taken as a whole we show that online translation
models operating within bounded space can perform
as well as systems which are batch-based and have
no space constraints thereby making our approach
suitable for stream-based translation.

2 Stepwise Online EM

The EM algorithm is a common way of inducing
latent structure from unlabeled data in an unsuper-
vised manner (Dempster et al., 1977). Given a set
of unlabeled examples and an initial, often uniform
guess at a probability distribution over the latent
variables, the EM algorithm maximizes the marginal

394

log-likelihood of the examples by repeatedly com-
puting the expectation of the conditional probability
of the latent data with respect to the current distri-
bution, and then maximizing the expectations over
the observations into a new distribution used in the
next iteration. EM (and related variants such as vari-
ational or sampling approaches) form the basis of
how SMT systems learn their translation models.

2.1 Batch vs. Online EM

Computing an expectation for the conditional prob-
abilities requires collecting thesufficient statisticsS
over the set ofn unlabeled examples. In the case
of a multinomial distribution,S is comprised of the
counts over each conditional observation occurring
in then examples. In traditionalbatchEM, we col-
lect the counts over the entire dataset ofn unlabeled
training examples via the current ‘best-guess’ proba-
bility model θ̂t at iterationt (E-step) before normal-
izing the counts into probabilities̄θ(S) (M-step)4.
After each iteration all the counts in the sufficient
statistics vectorS are cleared and the count collec-
tion begins anew using the new distributionθ̂t+1.

When we move to processing an incoming data
stream, however, the batch EM algorithm’s require-
ment that all data be available for each iteration be-
comes impractical since we do not have access to all
n examples at once. Instead we receive examples
from the input stream incrementally. For this reason
online EM algorithms have been developed to up-
date the probability model̂θ incrementally without
needing to store and iterate through all the unlabeled
training data repeatedly.

Various online EM algorithms have been investi-
gated (see Liang and Klein (2009) for an overview)
but our focus is on thestepwise onlineEM (sOEM)
algorithm (Cappe and Moulines, 2009). Instead
of iterating over the full set of training examples,
sOEM stochastically approximates the batch E-step
and incorporates the information from the newly
available streaming observations in steps. Each step
is called amini-batchand is comprised of one or
more new examples encountered in the stream.

Unlike in batch EM, in sOEM the expected counts
are retained between EM iterations and not cleared.

4As the M-step can be computed in closed form we desig-
nate it in this work as̄θ(S).

Algorithm 1 : Batch EM for Word Alignments

Input : {F (source),E (target)} sentence-pairs
Output : MLE θ̂T over alignmentsa
θ̂0 ←MLE initialization;
for iterationk = 0, . . . , T do

S ← 0; // reset counts

foreach (f, e) ∈ {F, E} do // E-step

S ← S +
∑

a′∈a

Pr(f, a′|e; θ̂t);

end
θ̂t+1 ← θ̄t(S) ; // M-step

end

That is, for each new example we interpolate its ex-
pected count with the existing set of sufficient statis-
tics. For each step we use astepsizeparameterγ
which mixes the information from the current ex-
ample with information gathered from all previous
examples. Over time the sOEM model probabilities
begin to stabilize and are guaranteed to converge to
a local maximum (Cappe and Moulines, 2009).

Note that the stepsizeγ has a dependence on the
current mini-batch. As we observe more incoming
data the model’s current probability distribution is
closer to the true distribution so the new observa-
tions receive less weight. From Liang and Klein
(2009), if we set the stepsize asγt = (t + 2)−α,
with 0.5 < α ≤ 1, we can guarantee convergence in
the limit asn → ∞. If we setα low, γ weighs the
newly observed statistics heavily whereas ifγ is low
new observations are down-weighted.

2.2 Batch EM for Word Alignments

Batch EM is used in statistical machine translation
to estimate word alignment probabilities between
parallel sentences. From these alignments, bilingual
rules or phrase pairs can be extracted. Given a set
of parallel sentence examples,{F,E}, with F the
set of source sentences andE the corresponding tar-
get sentences, we want to find the latent alignments
a for a sentence pair(f , e) ∈ {F,E} that defines
the most probable correspondence between wordsfj

andei such thataj = i. We can induce these align-
ments using anHMM-basedalignment model where
the probability of alignmentaj is dependent only on
the previous alignment ataj−1 (Vogel et al., 1996).

395

We can write

Pr(f ,a | e) =
∑

a′∈a

|f |∏

j=1

p(aj | aj−1, |e|) · p(fj | eaj
)

where we assume a first-order dependence on previ-
ously aligned positions.

To find the most likely parameter weights for
the translation and alignment probabilities for the
HMM-based alignments, we employ the EM algo-
rithm via dynamic programming. Since HMMs have
multiple local minima, we seed the HMM-based
model probabilities with a better than random guess
using IBM Model 1 (Brown et al., 1993) as is stan-
dard. IBM Model 1 is of the same form as the
HMM-based model except it uses a uniform distri-
bution instead of a first-order dependency. Although
a series of more complex models are defined, IBM
Models 2 to Model 6 (Brown et al., 1993; Och and
Ney, 2003), researchers typically find that extract-
ing phrase pairs or translation grammar rules using
Model 1 and the HMM-based alignments results in
equivalently high translation quality. Nevertheless,
there is nothing in our approach which limits us to
using just Model 1 and the HMM model.

A high-level overview of the standard, batch EM
algorithm applied to HMM-based word alignment
model is shown in Algorithm 1.

2.3 Stepwise EM for Word Alignments

Application of sOEM to HMM and Model 1 based
word aligning is straightforward. The process of
collecting the counts over the expected conditional
probabilities inside each iteration loop remains the
same as in the batch case. However, instead of clear-
ing the sufficient statistics between the iterations we
retain them and interpolate them with the batch of
counts gathered in the next iteration.

Algorithm 2 shows high level pseudocode of our
sOEM framework as applied to HMM-based word
alignments. Here we have an unbounded input
stream of source and target sentences{F,E} which
we do not have access to in its entirety at once.
Instead we observe mini-batches{M} comprised
of chronologically ordered strict subsets of the full
stream. To word align the sentences for each mini-
batchm ∈ M, we use the probability assigned by
the current model parameters and then interpolate

Algorithm 2 : sOEM Algorithm for Word Align-
ments
Input : mini-batches of sentence pairs

{M : M ⊂ {F (source), E(target)}}
Input : stepsize weightα
Output : MLE θ̂T over alignmentsa
θ̂0 ←MLE initialization;
S ← 0; k = 0;
foreachmini-batch{m : m ∈M} do

for iteration t = 0, . . . , T do
foreach (f, e) ∈ {m} do // E-step

s̄←
∑

a′∈a

Pr(f, a′|e; θ̂t);

end
γ = (k + 2)−α; k = k + 1; // stepsize

S ← γs̄ + (1− γ)S; // interpolate

θ̂t+1 ← θ̄t(S) ; // M-step

end
end

the newest sufficient statistics̄s with our full count
vectorS using an interpolation parameterγ. The in-
terpolation parameterγ has a dependency on how
far along the input stream we are processing.

3 Dynamic Suffix Arrays

So far we have shown how to incrementally retrain
translation models. We now consider how we might
bound the space we use for them when processing
(potentially) unbounded streams of parallel data.

Suffix arraysare space-efficient data structures for
fast searching over large text strings (Manber and
Myers, 1990). Treating the entire corpus as a sin-
gle string, a suffix array holds in lexicographical or-
der (only) the starting index of each suffix of the
string. After construction, since the corpus is now
ordered, we can query the suffix array quickly us-
ing binary search to efficiently find all occurrences
of a particular token or sequence of tokens. Then we
can easily compute, on-the-fly, the statistics required
such as translation probabilities for a given source
phrase. Suffix arrays can also be compressed, which
make them highly attractive structures for represent-
ing massive translation models (Callison-Burch et
al., 2005; Lopez, 2008).

We need to delete items if we wish to maintain

396

 epoch 2

epoch 1 epoch 2 model coverage

model coverage

input stream

Test Points

input stream

Test Points

Static

Unbounded

input stream

Test Points

Bounded

model coverage

sliding windows

Figure 1: Streaming coverage conditions. In traditional
batch based modeling the coverage of a trained model
never changes. Unbounded coverage operates without
any memory constraints so the model is able to contin-
ually add data from the input stream. Bounded coverage
uses just a fixed window.

constant space when processing unbounded streams.
Standard suffix arrays are static, store a fixed corpus
and do not support deletions. Nevertheless, a dy-
namic variant of the suffix array does support dele-
tions as well as insertions and therefore can be used
in our stream-based approach (Salson et al., 2009).
Using a dynamic suffix array, we can compactly
represent the set of parallel sentences from which
we eventually extract grammar rules. Furthermore,
when incorporating new parallel sentences, we sim-
ply insert them into the array and, to maintain con-
stant space usage, we delete an equivalent number.

4 Experiments

In this section we describe the experiments con-
ducted comparing various batch trained translation
models (TMs) versus online incrementally retrained
TMs in a full SMT setting with different conditions
set on model coverage. We used publicly available
resources for all our tests. We start by showing that
recency motivates incremental retraining.

4.1 Effects of Recency on SMT

For language modeling, it is known that perfor-
mance can be improved using the criterion ofre-
cency where training data is drawn from times
chronologically closer to the test data (Rosenfeld,

 0

 0.5

 1

 1.5

 2

 2.5

 5 10 15 20 25 30 35

D
el

ta
 in

 B
LE

U
 s

co
re

s

epochs

Figure 2: Recency effects to SMT performance. De-
picted are the differences in BLEU scores for multiple
test points decoded by a static baseline system and a sys-
tem batched retrained on a fixed sized window prior to
the test point in question. The results are accentuated at
the end of the timeline when more time has passed con-
firming that recent data impacts translation performance.

1995). Given an incoming stream of parallel text,
we gauged the extent to which incorporating recent
data into a TM affects translation quality.

We used the Europarl corpus5 with the Fr-En lan-
guage pair using French as source and English as tar-
get. Europarl is released in the format of a daily par-
liamentary session per time-stamped file. The actual
dates of the full corpus are interspersed unevenly
(they do not convene daily) over a continuous time-
line corresponding to the parliament sessions from
April,1996 through October, 2006, but for concep-
tual simplicity we treated the corpus as a continual
input stream over consecutive days.

As a baseline we aligned the first 500k sentence
pairs from the beginning of the corpus timeline. We
extracted a grammar for and translated 36 held out
test documents that were evenly spaced along the re-
mainder of the Europarl timeline. These test docu-
ments effectively divided the remaining training data
into epochsand we used asliding windowover the
timeline to build 36 distinct, overlapping training
sets of 500k sentences each.

We then translated all 36 test points again using
a new grammar for each document extracted from
only the sentences contained in the epoch that was
before it. To explicitly test the effect of recency

5Available athttp://www.statmt.org/europarl

397

on the TM all other factors of the SMT pipeline re-
mained constant including the language model and
the feature weights. Hence, the only change from
the static baseline to the epochs performance was the
TM data which was based on recency. Note that at
this stage we did not use any incremental retraining.

Results are shown in Figure 2 as the differences
in BLEU score (Papineni et al., 2001) between the
baseline TM versus the translation models trained
on material chronologically closer to the given test
point. The consistently positive deltas in BLEU
scores between the model that is never retrained and
the models that are retrained show that we achieve a
higher translation performance when using more up-
to-date TMs that incorporate recent sentence pairs.
As the chronological distance between the initial,
static model and the retrained models increases, we
see ever-increasing differences in translation perfor-
mance. This underlines the need to retrain transla-
tion models with timely material.

4.2 Unbounded and Bounded Translation
Model Retraining

Here we consider how to process a stream along two
main axes: by bounding time (batch versus incre-
mental retraining) and by bounding space (either us-
ing all the stream seen so far, or only using a fixed
sized sample of it).

To ensure the recency results reported above were
not limited to French-English, this time our paral-
lel input stream was generated from the German-
English language pair of Europarl with German as
source and English again as target. For testing we
held out a total of 22k sentences from 10 evenly
spaced intervals in the input stream which divided
the input stream into 10 epochs. Stream statistics for
three example epochs are shown in Table 1. We held
out 4.5k sentence pairs as development data to opti-
mize the feature function weights using minimum
error rate training (Och, 2003) and these weights
were used by all models. We usedJoshua(Li et
al., 2009), a syntax-based decoder with a suffix array
implementation, and rule induction via the standard
Hiero grammar extraction heuristics (Chiang, 2007)
for the TMs. Note that nothing hinges on whether
we used a syntax or a phrase-based system.

We used a 5-gram, Kneser-Ney smoothed lan-
guage model (LM) trained on the initial segment of

Ep From–To Sent Pairs Source/Target
00 04/1996–12/2000 600k 15.0M/16.0M
03 02/2002–09/2002 70k 1.9M/2.0M
06 10/2003–03/2004 60k 1.6M/1.7M
10 03/2006–09/2006 73k 1.9M/2.0M

Table 1: Date ranges, total sentence pairs, and source and
target word counts encountered in the input stream for
example epochs. Epoch 00 is baseline data that is also
used as a seed corpus for the online models.

the target side parallel data used in the first base-
line as described further in the next subsection. As
our initial experiments aim to isolate the effect of
changes to the TM on overall translation system per-
formance, our in-domain LM remains static for ev-
ery decoding run reported below until indicated.

We used the open-source toolkit GIZA++ (Och
and Ney, 2003) for all word alignments. For the
online adaptation experiments we modified Model
1 and the HMM model in GIZA++ to use the sOEM
algorithm. Batch baselines were aligned using the
standard version of GIZA++. We ran the batch and
incremental versions of Model 1 and HMM for the
same number of iterations each in both directions.

4.3 Time and Space Bounds

For both batch and sOEM we ran a number of ex-
periments listed below corresponding to the differ-
ent training scenarios diagrammed in Figure 1.

1. Static: We used the first half of the in-
put stream, approximately 600k sentences and
15/16 million source/target words, as parallel
training data. We then translated each of the 10
test sets using the static model. This is the tradi-
tional approach and the coverage of the model
never changes.

2. Unbounded Space: Batch or incremental re-
training with no memory constraint. For each
epoch in the stream, we retrained the TM us-
ing all the data from the beginning of the in-
put stream until just before the present with re-
spect to a given test point. As more time passes
our training data set grows so eachbatch run
of GIZA++ takes more time. Overall this is the
most computationally expensive approach.

398

Baseline Unbounded Bounded
Epoch Test Date Test Sent.Train Sent. Rules Train Sent. Rules Train Sent. Rules

03 09/23/2002 1.0k 580k 4.0M 800k 5.0M 580k 4.2M
06 03/29/2004 1.5k 580k 5.0M 1.0M 7.0M 580k 5.5M
10 09/26/2006 3.5k 580k 8.5M 1.3M 14.0M 580k 10.0M

Table 2: Translation model statistics for example epochs and the next test dates grouped by experimental condition.
TestandTrain Sent.is the number of sentence pairs in test and training data respectively.Rulesis the count of unique
Hiero grammar rules extracted for the corresponding test set.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1 2 3 4 5 6 7 8 9 10

D
el

ta
 in

 B
LE

U
 s

co
re

s

epochs

unbounded
bounded

Figure 3: Static vs. online TM performance. Gains in
translation performance measured by BLEU are achieved
when recent German-English sentence pairs are auto-
matically incorporated into the TM. Shown are relative
BLEU improvements for the online models against the
static baseline.

3. Bounded Space: Batch and incremental re-
training with an enforced memory constraint.
Here we batch or incrementally retrain using
a sliding windowapproach where the training
set size (the number of sentence pairs) remains
constant. In particular, we ensured that we
used the same number of sentences as the base-
line. Each batch run of GIZA++ takes approxi-
mately the same time.

Thetimefor aligning in the sOEM model is unaf-
fected by the bounded/unbounded conditions since
we always only align the mini-batch of sentences
encountered in the last epoch. In contrast, for batch
EM we must realign all the sentences in our training
set from scratch to incorporate the new training data.

Similarly spaceusage for the batch training grows
with the training set size. For sOEM, in theory mem-
ory used is with respect to vocabulary size (which

grows slowly with the stream size) since we retain
count history for the entire stream. To make space
usage truly constant, we filter for just the needed
word pairs in the current epoch being aligned. This
effectively means that online EM is more mem-
ory efficient than the batch version. As our exper-
iments will show, the sufficient statistics kept be-
tween epochs by sOEM benefits performance com-
pared to the batch models which can only use infor-
mation present within the batch itself.

4.4 Incremental Retraining Procedure

Our incremental adaptation procedure was as fol-
lows: after the latest mini-batch of sentences had
been aligned using sOEM we added all newly
aligned sentence pairs to the dynamic suffix ar-
rays. For the experiments where our memory was
bounded, we alsodeletedan equal number of sen-
tences from the suffix arrays before extracting the
Hiero grammar for the next test point. For the un-
bounded coverage experiments we deleted nothing
prior to grammar extraction. Table 2 presents statis-
tics for the number of training sentence pairs and
grammar rules extracted for each coverage condition
for various test points.

4.5 Results

Figure 3 shows the results of the static baseline
against both the unbounded and bounded online EM
models. We can see that both the online models
outperform the static baseline. On average the un-
constrained model that contains more sentence pairs
for rule extraction slightly outperforms the bounded
condition which uses less data per epoch. However,
the static baseline and the bounded models both use
the same number of sentence-pairs for TM training.
We see there is a clear gain by incorporating recent
sentence-pairs made available by the stream.

399

Static Baseline Retrained (Unbounded) Retrained (Bounded)
Test Date Batch Batch Online Batch Online
09/23/2002 26.10 26.60 26.43 26.19 26.40
03/29/2004 27.40 28.33 28.42 28.06 28.38
09/26/2006 28.56 29.74 29.75 29.73 29.80

Table 3: Sample BLEU results for all baseline and online EM model conditions. Thestatic baselineis a traditional
model that is never retrained. Thebatch unboundedandbatch boundedmodels incorporate new data from the stream
but retraining is slow and computationally expensive (bestresults are bolded). In contrast both unbounded and bounded
online models incrementally retrain only the mini-batch ofnew sentences collected from the incoming stream so
quickly adopt the new data (best results are italicized).

Table 3 gives results of the online models com-
pared to the batch retrained models. For presentation
clarity we show only a sample of the full set of ten
test points though all results follow the pattern that
using more aligned sentences to derive our gram-
mar set resulted in slightly better performance ver-
sus a restricted training set. However, for the same
coverage constraints not only do we achieve com-
parable performance to batch retrained models us-
ing the sOEM method of incremental adaptation, we
are able to align and adopt new data from the input
stream orders of magnitude quicker since we only
align the mini-batch of sentences collected from the
last epoch. In the bounded condition, not only do
we benefit from quicker adaptation, we also see that
sOEM models slightly outperform the batch based
models due to the online algorithm employing a
longer history of count-based evidence to draw on
when aligning new sentence pairs.

Figure 4 shows two example test sentences that
benefited from the online TM adaptation. Trans-
lations from the online model produce more and
longer matching phrases for both sentences (e.g.,
“creation of such a”, “of the occupying forces”)
leading to more fluent output as well as the improve-
ments achieved in BLEU scores.

We experimented with a variety of interpolation
parameters (see Algorithm 2) but found no signifi-
cant difference between them (the biggest improve-
ment gained over all test points for all parameter set-
tings was less than 0.1% BLEU).

4.6 Increasing LM Coverage

A natural and interesting extension to the experi-
ments above is to use the target side of the incoming
stream to extend the LM coverage alongside the TM.

Test Date Static Unbounded Bounded
09/23/2002 26.46 27.11 26.96
03/29/2004 28.11 29.53 29.20
09/26/2006 29.53 30.94 30.88

Table 4: Unbounded LM coverage improvements. Shown
are the BLEU scores for each experimental conditional
when we allow the LM coverage to increase.

It is well known that more LM coverage (via larger
training data sets) is beneficial to SMT performance
(Brants et al., 2007) so we investigated whether re-
cency gains for the TM were additive with recency
gains afforded by a LM.

To test this we added all the target side data from
the beginning of the stream to the most recent epoch
into the LM training set before each test point. We
then batch retrained6 and used the new LM with
greater coverage for the next decoding run. Experi-
ments were for the static baseline and online models.

Results are reported in Table 4. We can see that
increasing LM coverage is complimentary to adapt-
ing the TM with recent data. Comparing Tables
3 and 4, for the bounded condition, adapting only
the TM achieved an absolute improvement of +1.24
BLEU over the static baseline for the final test point.
We get another absolute gain of +1.08 BLEU by al-
lowing the LM coverage to adapt as well. Using an
online, adaptive model gives a total gain of +2.32
BLEU over a static baseline that does not adapt.

6Although we batch retrain the LMs we could use an online
LM that incorporates new vocabulary from the input stream as
in Levenberg and Osborne (2009).

400

Static: The commission is prepared, in the creation of a legal framework, taking account of four fundamental principles them.

Online: The commission is prepared to participate in the creation of such a legal framework, based on four fundamental principles.

Reference: The commission is willing to cooperate in the creation of such a legal framework on the basis of four essential principles.

Source: Die Kommission ist bereit, an der Schaffung eines solchen Rechtsrahmens unter Zugrundelegung von vier wesentlichen
 Prinzipien mitzuwirken.

Static: Our position is clear and we all know: we are against the war and the occupation of Iraq by the United States and the United
 Kingdom, and we are calling for the immediate withdrawal of the besatzungsmächte from this country.

Online: Our position is clear and well known: we are against the war and the occupation of Iraq by the United States and the United
 Kingdom, and we demand the immediate withdrawal of the occupying forces from this country .

Reference: Our position is clear and well known: we are against the war and the US-British occupation in Iraq and we demand the
 immediate withdrawal of the occupying forces from that country.

Source: Unser Standpunkt ist klar und allseits bekannt: Wir sind gegen den Krieg und die Besetzung des Irak durch die USA und das
 Vereinigte Königreich, und wir verlangen den unverzüglichen Abzug der Besatzungsmächte aus diesem Land.

Figure 4: Example sentences and improvements to their translation fluency by the adaptation of the TM with recent
sentences. In both examples we get longer matching phrases in the online translation compared to the static one.

5 Related Work

5.1 Translation Model Domain Adaptation

Our work is related to domain adaptation for transla-
tion models. See, for example, Koehn and Schroeder
(2007) or Bertoldi and Federico (2009). Most tech-
niques center around using mixtures of translation
models. Once trained, these models generally never
change. They therefore fall under thebatchtraining
regime. The focus of this work instead is on incre-
mental retraining and also on supporting bounded
memory consumption. Our experiments examine
updating model parameters in a single domain over
different periods in time. Naturally, we could also
use domain adaptation techniques to further improve
how we incorporate new samples.

5.2 Online EM for SMT

For stepwise online EM for SMT models, the only
prior work we are aware of is Liang and Klein
(2009), where variations of online EM were exper-
imented with on various NLP tasks including word
alignments. They showed application of sOEM can
produce quicker convergence compared to the batch
EM algorithm. However, the model presented does
not incorporate any unseen data, instead iterating
over a static data set multiple times using sOEM.
For Liang and Klein (2009) incremental retraining
is simply an alternative way to use a fixed training
set.

5.3 Streaming Language Models

Recent work in Levenberg and Osborne (2009) pre-
sented a streaming LM that was capable of adapt-
ing to an unbounded monolingual input stream in
constant space and time. The LM has the ability to
add or deleten-grams (and their counts) based on
feedback from the decoder after translation points.
The model was tested in an SMT setting and results
showed recent data benefited performance. How-
ever, adaptation was only to the LM and no tests
were conducted on the TM.

6 Conclusion and Future Work

We have presented an online EM approach for word
alignments. We have shown that, for a SMT system,
incorporating recent parallel data into a TM from an
input stream is beneficial to translation performance
compared to a traditional, static baseline.

Our strategy for populating the suffix array was
simply to use a first-in, first-out stack. For future
work we will investigate whether information pro-
vided by the incoming stream coupled with the feed-
back from the decoder allows for more sophisti-
cated adaptation strategies that reinforce useful word
alignments and delete bad or unused ones.

In the near future we also hope to test the online
EM setup in an application setting such as a com-
puter aided translation or crowdsourced generated
streams via Amazon’s Mechanical Turk.

401

Acknowledgements

Research supported by EuroMatrixPlus funded by
the European Commission, by the DARPA GALE
program under Contract Nos. HR0011-06-2-0001
and HR0011-06-C-0022, and the NSF under grant
IIS-0713448.

References

Nicola Bertoldi and Marcello Federico. 2009. Do-
main adaptation for statistical machine translation with
monolingual resources. InWMT09: Proceedings of
the Fourth Workshop on Statistical Machine Transla-
tion, pages 182–189, Morristown, NJ, USA. Associa-
tion for Computational Linguistics.

Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och,
and Jeffrey Dean. 2007. Large language models in
machine translation. InProceedings of the 2007 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL), pages 858–867.

Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della
Pietra, and Robert L. Mercer. 1993. The mathemat-
ics of statistical machine translation: parameter esti-
mation.Computational Linguistics, 19(2):263–311.

Chris Callison-Burch, Colin Bannard, and Josh
Schroeder. 2005. Scaling phrase-based statisti-
cal machine translation to larger corpora and longer
phrases. InProceedings of the 43rd Annual Meeting
of the Association for Computational Linguistics
(ACL’05), pages 255–262, Ann Arbor, Michigan,
June. Association for Computational Linguistics.

Olivier Cappe and Eric Moulines. 2009. Online EM al-
gorithm for latent data models.Journal Of The Royal
Statistical Society Series B, 71:593.

David Chiang. 2007. Hierarchical phrase-based transla-
tion. Computational Linguistics, 33(2):201–228.

A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977.
Maximum likelihood from incomplete data via the EM
algorithm.Journal of the Royal Statistical Society. Se-
ries B (Methodological), 39:1–38.

Philipp Koehn and Josh Schroeder. 2007. Experiments
in domain adaptation for statistical machine transla-
tion. In Proceedings of the Second Workshop on Sta-
tistical Machine Translation, pages 224–227, Prague,
Czech Republic, June. Association for Computational
Linguistics.

Abby Levenberg and Miles Osborne. 2009. Stream-
based randomised language models for SMT. InPro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP).

Zhifei Li, Chris Callison-Burch, Chris Dyer, Juri Gan-
itkevitch, Sanjeev Khudanpur, Lane Schwartz, Wren

N. G. Thornton, Jonathan Weese, and Omar F. Zaidan.
2009. Joshua: an open source toolkit for parsing-
based machine translation. InWMT09: Proceedings
of the Fourth Workshop on Statistical Machine Trans-
lation, pages 135–139, Morristown, NJ, USA. Associ-
ation for Computational Linguistics.

Percy Liang and Dan Klein. 2009. Online EM for unsu-
pervised models. InNorth American Association for
Computational Linguistics (NAACL).

Adam Lopez. 2008. Tera-scale translation models via
pattern matching. InProceedings of the 22nd Interna-
tional Conference on Computational Linguistics (Col-
ing 2008), pages 505–512, Manchester, UK, August.
Coling 2008 Organizing Committee.

Udi Manber and Gene Myers. 1990. Suffix arrays:
A new method for on-line string searches. InThe
First Annual ACM-SIAM Symposium on Dicrete Algo-
rithms, pages 319–327.

Franz Josef Och and Hermann Ney. 2003. A system-
atic comparison of various statistical alignment mod-
els. Computational Linguistics, 29(1):19–51, March.

Franz Josef Och. 2003. Minimum error rate training
in statistical machine translation. InACL ’03: Pro-
ceedings of the 41st Annual Meeting on Association
for Computational Linguistics, pages 160–167, Mor-
ristown, NJ, USA. Association for Computational Lin-
guistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2001. Bleu: a method for automatic evalua-
tion of machine translation. InACL ’02: Proceedings
of the 40th Annual Meeting on Association for Compu-
tational Linguistics, pages 311–318, Morristown, NJ,
USA. Association for Computational Linguistics.

Ronald Rosenfeld. 1995. Optimizing lexical and n-gram
coverage via judicious use of linguistic data. InIn
Proc. European Conf. on Speech Technology, pages
1763–1766.

Mikaël Salson, Thierry Lecroq, Martine Léonard, and
Laurent Mouchard. 2009. Dynamic extended suffix
arrays.Journal of Discrete Algorithms, March.

Stephan Vogel, Hermann Ney, and Christoph Tillmann.
1996. HMM-based word alignment in statistical trans-
lation. InProceedings of the 16th conference on Com-
putational linguistics, pages 836–841, Morristown,
NJ, USA. Association for Computational Linguistics.

402

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 403–411,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Extracting Parallel Sentences from Comparable Corpora using Document
Level Alignment

Jason R. Smith∗
Center for Lang. and Speech Processing

Johns Hopkins University
Baltimore, MD 21218

jsmith@cs.jhu.edu

Chris Quirk and Kristina Toutanova
Microsoft Research
One Microsoft Way

Redmond, WA 98052
{chrisq,kristout}@microsoft.com

Abstract

The quality of a statistical machine transla-
tion (SMT) system is heavily dependent upon
the amount of parallel sentences used in train-
ing. In recent years, there have been several
approaches developed for obtaining parallel
sentences from non-parallel, or comparable
data, such as news articles published within
the same time period (Munteanu and Marcu,
2005), or web pages with a similar structure
(Resnik and Smith, 2003). One resource not
yet thoroughly explored is Wikipedia, an on-
line encyclopedia containing linked articles
in many languages. We advance the state
of the art in parallel sentence extraction by
modeling the document level alignment, mo-
tivated by the observation that parallel sen-
tence pairs are often found in close proximity.
We also include features which make use of
the additional annotation given by Wikipedia,
and features using an automatically induced
lexicon model. Results for both accuracy
in sentence extraction and downstream im-
provement in an SMT system are presented.

1 Introduction

For any statistical machine translation system, the
size of the parallel corpus used for training is a ma-
jor factor in its performance. For some language
pairs, such as Chinese-English and Arabic-English,
large amounts of parallel data are readily available,
but for most language pairs this is not the case. The

∗This research was conducted during the author’s intern-
ship at Microsoft Research.

domain of the parallel corpus also strongly influ-
ences the quality of translations produced. Many
parallel corpora are taken from the news domain, or
from parliamentary proceedings. Translation qual-
ity suffers when a system is not trained on any data
from the domain it is tested on.

While parallel corpora may be scarce, compara-
ble, or semi-parallel corpora are readily available
in several domains and language pairs. These cor-
pora consist of a set of documents in two languages
containing similar information. (See Section 2.1
for a more detailed description of the types of non-
parallel corpora.) In most previous work on ex-
traction of parallel sentences from comparable cor-
pora, some coarse document-level similarity is used
to determine which document pairs contain paral-
lel sentences. For identifying similar web pages,
Resnik and Smith (2003) compare the HTML struc-
ture. Munteanu and Marcu (2005) use publication
date and vector-based similarity (after projecting
words through a bilingual dictionary) to identify
similar news articles.

Once promising document pairs are identified,
the next step is to extract parallel sentences. Usu-
ally, some seed parallel data is assumed to be avail-
able. This data is used to train a word align-
ment model, such as IBM Model 1 (Brown et al.,
1993) or HMM-based word alignment (Vogel et al.,
1996). Statistics from this word alignment model
are used to train a classifier which identifies bilin-
gual sentence pairs as parallel or not parallel. This
classifier is applied to all sentence pairs in docu-
ments which were found to be similar. Typically,
some pruning is done to reduce the number of sen-

403

tence pairs that need to be classified.
While these methods have been applied to news

corpora and web pages, very little attention has
been given to Wikipedia as a source of parallel sen-
tences. This is surprising, given that Wikipedia
contains annotated article alignments, and much
work has been done on extracting bilingual lexi-
cons on this dataset. Adafre and de Rijke (2006)
extracted similar sentences from Wikipedia article
pairs, but only evaluated precision on a small num-
ber of extracted sentences.

In this paper, we more thoroughly investigate
Wikipedia’s viability as a comparable corpus, and
describe novel methods for parallel sentence ex-
traction. Section 2 describes the multilingual re-
sources available in Wikipedia. Section 3 gives fur-
ther background on previous methods for parallel
sentence extraction on comparable corpora, and de-
scribes our approach, which finds a global sentence
alignment between two documents. In Section
4, we compare our approach with previous meth-
ods on datasets derived from Wikipedia for three
language pairs (Spanish-English, German-English,
and Bulgarian-English), and show improvements in
downstream SMT performance by adding the paral-
lel data we extracted.

2 Wikipedia as a Comparable Corpus

Wikipedia (Wikipedia, 2004) is an online collabo-
rative encyclopedia available in a wide variety of
languages. While the English Wikipedia is the
largest, with over 3 million articles, there are 24
language editions with at least 100,000 articles.

Articles on the same topic in different languages
are also connected via “interwiki” links, which are
annotated by users. This is an extremely valuable
resource when extracting parallel sentences, as the
document alignment is already provided. Table
1 shows how many of these “interwiki” links are
present between the English Wikipedia and the 16
largest non-English Wikipedias.

Wikipedia’s markup contains other useful indica-
tors for parallel sentence extraction. The many hy-
perlinks found in articles have previously been used
as a valuable source of information. (Adafre and
de Rijke, 2006) use matching hyperlinks to iden-
tify similar sentences. Two links match if the arti-

Figure 1: Captions for an image of a foil in English and
Spanish

cles they refer to are connected by an “interwiki”
link. Also, images in Wikipedia are often stored
in a central source across different languages; this
allows identification of captions which may be par-
allel (see Figure 1). Finally, there are other minor
forms of markup which may be useful for finding
similar content across languages, such as lists and
section headings. In Section 3.3, we will explain
how features are derived from this markup.

2.1 Types of Non-Parallel Corpora

Fung and Cheung (2004) give a more fine-grained
description of the types of non-parallel corpora,
which we will briefly summarize. A noisy parallel
corpus has documents which contain many parallel
sentences in roughly the same order. Comparable
corpora contain topic aligned documents which are
not translations of each other. The corpora Fung
and Cheung (2004) examine are quasi-comparable:
they contain bilingual documents which are not
necessarily on the same topic.

Wikipedia is a special case, since the aligned
article pairs may range from being almost com-
pletely parallel (e.g., the Spanish and English en-
tries for “Antiparticle”) to containing almost no par-
allel sentences (the Spanish and English entries for
“John Calvin”), despite being topic-aligned. It is
best characterized as a mix of noisy parallel and
comparable article pairs. Some Wikipedia authors
will translate articles from another language; others

404

French German Polish Italian Dutch Portuguese Spanish Japanese
496K 488K 384K 380K 357K 323K 311K 252K

Russian Swedish Finnish Chinese Norwegian Volapük Catalan Czech
232K 197K 146K 142K 141K 106K 103K 87K

Table 1: Number of aligned bilingual articles in Wikipedia by language (paired with English).

write the content themselves. Furthermore, even ar-
ticles created through translations may later diverge
due to independent edits in either language.

3 Models for Parallel Sentence Extraction

In this section, we will focus on methods for ex-
tracting parallel sentences from aligned, compara-
ble documents. The related problem of automatic
document alignment in news and web corpora has
been explored by a number of researchers, includ-
ing Resnik and Smith (2003), Munteanu and Marcu
(2005), Tillmann and Xu (2009), and Tillmann
(2009). Since our corpus already contains docu-
ment alignments, we sidestep this problem, and will
not discuss further details of this issue. That said,
we believe that our methods will be effective in cor-
pora without document alignments when combined
with one of the aforementioned algorithms.

3.1 Binary Classifiers and Rankers

Much of the previous work involves building a
binary classifier for sentence pairs to determine
whether or not they are parallel (Munteanu and
Marcu, 2005; Tillmann, 2009). The training data
usually comes from a standard parallel corpus.
There is a substantial class imbalance (O(n) pos-
itive examples, and O(n2) negative examples), and
various heuristics are used to mitigate this prob-
lem. Munteanu and Marcu (2005) filter out neg-
ative examples with high length difference or low
word overlap (based on a bilingual dictionary).

We propose an alternative approach: we learn
a ranking model, which, for each sentence in the
source document, selects either a sentence in the
target document that it is parallel to, or “null”. This
formulation of the problem avoids the class imbal-
ance issue of the binary classifier.

In both the binary classifier approach and the
ranking approach, we use a Maximum Entropy
classifier, following Munteanu and Marcu (2005).

3.2 Sequence Models
In Wikipedia article pairs, it is common for par-
allel sentences to occur in clusters. A global sen-
tence alignment model is able to capture this phe-
nomenon. For both parallel and comparable cor-
pora, global sentence alignments have been used,
though the alignments were monotonic (Gale and
Church, 1991; Moore, 2002; Zhao and Vogel,
2002). Our model is a first order linear chain Condi-
tional Random Field (CRF) (Lafferty et al., 2001).
The set of source and target sentences are observed.
For each source sentence, we have a hidden vari-
able indicating the corresponding target sentence
to which it is aligned (or null). The model is simi-
lar to the discriminative CRF-based word alignment
model of (Blunsom and Cohn, 2006).

3.3 Features
Our features can be grouped into four categories.

Features derived from word alignments
We use a feature set inspired by (Munteanu and

Marcu, 2005), who defined features primarily based
on IBM Model 1 alignments (Brown et al., 1993).
We also use HMM word alignments (Vogel et al.,
1996) in both directions (source to target and target
to source), and extract the following features based
on these four alignments:1

1. Log probability of the alignment

2. Number of aligned/unaligned words

3. Longest aligned/unaligned sequence of words

4. Number of words with fertility 1, 2, and 3+

We also define two more features which are in-
dependent of word alignment models. One is a
sentence length feature taken from (Moore, 2002),

1These are all derived from the one best alignment, and
normalized by sentence length.

405

which models the length ratio between the source
and target sentences with a Poisson distribution.
The other feature is the difference in relative doc-
ument position of the two sentences, capturing the
idea that the aligned articles have a similar topic
progression.

The above features are all defined on sentence
pairs, and are included in the binary classifier and
ranking model.

Distortion features
In the sequence model, we use additional dis-

tortion features, which only look at the difference
between the position of the previous and current
aligned sentences. One set of features bins these
distances; another looks at the absolute difference
between the expected position (one after the previ-
ous aligned sentence) and the actual position.

Features derived from Wikipedia markup
Three features are derived from Wikipedia’s

markup. The first is the number of matching links
in the sentence pair. The links are weighted by their
inverse frequency in the document, so a link that
appears often does not contribute much to this fea-
ture’s value. The image feature fires whenever two
sentences are captions of the same image, and the
list feature fires when two sentences are both items
in a list. These last two indicator features fire with
a negative value when the feature matches on one
sentence and not the other.

None of the above features fire on a null align-
ment, in either the ranker or CRF. There is also a
bias feature for these two models, which fires on all
non-null alignments.

Word-level induced lexicon features
A common problem with approaches for paral-

lel sentence classification, which rely heavily on
alignment models trained from unrelated corpora,
is low recall due to unknown words in the candi-
date sentence-pairs. One approach that begins to
address this problem is the use of self-training, as
in (Munteanu and Marcu, 2005). However, a self-
trained sentence pair extraction system is only able
to acquire new lexical items that occur in parallel
sentences. Within Wikipedia, many linked article
pairs do not contain any parallel sentences, yet con-

tain many words and phrases that are good transla-
tions of each other.

In this paper we explore an alternative approach
to lexicon acquisition for use in parallel sentence
extraction. We build a lexicon model using an ap-
proach similar to ones developed for unsupervised
lexicon induction from monolingual or compara-
ble corpora (Rapp, 1999; Koehn and Knight, 2002;
Haghighi et al., 2008). We briefly describe the lex-
icon model and its use in sentence-extraction.

The lexicon model is based on a probabilistic
modelP (wt|ws, T, S) wherewt is a word in the tar-
get language, ws is a word in the source language,
and T and S are linked articles in the target and
source languages, respectively.

We train this model similarly to the sentence-
extraction ranking model, with the difference that
we are aligning word pairs and not sentence pairs.
The model is trained from a small set of annotated
Wikipedia article pairs, where for some words in
the source language we have marked one or more
words as corresponding to the source word (in the
context of the article pair), or have indicated that the
source word does not have a corresponding transla-
tion in the target article. The word-level annotated
articles are disjoint from the sentence-aligned arti-
cles described in Section 4. The following features
are used in the lexicon model:
Translation probability. This is the translation
probability p(wt|ws) from the HMM word align-
ment model trained on the seed parallel data. We
also use the probability in the other direction, as
well as the log-probabilities in the two directions.
Position difference. This is the absolute value of
the difference in relative position of words ws and
wt in the articles S and T .
Orthographic similarity. This is a function of the
edit distance between source and target words. The
edit distance between words written in different al-
phabets is computed by first performing a determin-
istic phonetic translation of the words to a common
alphabet. The translation is inexact and this is a
promising area for improvement. A similar source
of information has been used to create seed lexicons
in (Koehn and Knight, 2002) and as part of the fea-
ture space in (Haghighi et al., 2008).
Context translation probability. This feature
looks at all words occurring next to word ws in the

406

article S and next to wt in the article T in a local
context window (we used one word to the left and
one word to the right), and computes several scor-
ing functions measuring the translation correspon-
dence between the contexts (using the IBM Model
1 trained from seed parallel data). This feature is
similar to distributional similarity measures used in
previous work, with the difference that it is limited
to contexts of words within a linked article pair.
Distributional similarity. This feature corre-
sponds more closely to context similarity measures
used in previous work on lexicon induction. For
each source headword ws, we collect a distribu-
tion over context positions o ∈ {−2,−1,+1,+2}
and context words vs in those positions based on a
count of times a context word occurred at that off-
set from a headword: P (o, vs|ws) ∝ weight(o) ·
C(ws, o, vs). Adjacent positions −1 and +1 have
a weight of 2; other positions have a weight of 1.
Likewise we gather a distribution over target words
and contexts for each target headword P (o, vt|wt).
Using an IBM Model 1 word translation table
P (vt|vs) estimated on the seed parallel corpus,
we estimate a cross-lingual context distribution as
P (o, vt|ws) =

∑
vs
P (vt|vs) · P (o, vs|ws). We de-

fine the similarity of a words ws and wt as one mi-
nus the Jensen-Shannon divergence of the distribu-
tions over positions and target words.2

Given this small set of feature functions, we
train the weights of a log-linear ranking model for
P (wt|ws, T, S), based on the word-level annotated
Wikipedia article pairs. After a model is trained,
we generate a new translation table Plex(t|s) which
is defined as Plex(t|s) ∝

∑
t∈T,s∈S P (t|s, T, S).

The summation is over occurrences of the source
and target word in linked Wikipedia articles. This
new translation table is used to define another
HMM word-alignment model (together with dis-
tortion probabilities trained from parallel data) for
use in the sentence extraction models. Two copies
of each feature using the HMM word alignment
model are generated: one using the seed data HMM

2We restrict our attention to words with ten or more occur-
rences, since rare words have poorly estimated distributions.
Also we discard the contribution from any context position and
word pair that relates to more than 1,000 distinct source or tar-
get words, since it explodes the computational overhead and
has little impact on the final similarity score.

model, and another using this new HMM model.
The training data for Bulgarian consisted of two

partially annotated Wikipedia article pairs. For
German and Spanish we used the feature weights
of the model trained on Bulgarian, because we did
not have word-level annotated Wikipedia articles.

4 Experiments

4.1 Data

We annotated twenty Wikipedia article pairs for
three language pairs: Spanish-English, Bulgarian-
English, and German-English. Each sentence
in the source language was annotated with pos-
sible parallel sentences in the target language
(the target language was English in all experi-
ments). The pairs were annotated with a quality
level: 1 if the sentences contained some parallel
fragments, 2 if the sentences were mostly paral-
lel with some missing words, and 3 if the sen-
tences appeared to be direct translations. In all
experiments, sentence pairs with quality 2 or 3
were taken as positive examples. The resulting
datasets are available at http://research.microsoft.com/en-

us/people/chrisq/wikidownload.aspx.
For our seed parallel data, we used the Europarl

corpus (Koehn, 2005) for Spanish and German and
the JRC-Aquis corpus for Bulgarian, plus the article
titles for parallel Wikipedia documents, and trans-
lations available from Wiktionary entries.3

4.2 Intrinsic Evaluation

Using 5-fold cross-validation on the 20 document
pairs for each language condition, we compared the
binary classifier, ranker, and CRF models for paral-
lel sentence extraction. To tune for precision/recall,
we used minimum Bayes risk decoding. We define
the loss L(τ, µ) of picking target sentence τ when
the correct target sentence is µ as 0 if τ = µ, λ
if τ = NULL and µ 6= NULL, and 1 otherwise.
By modifying the null loss λ, the precision/recall
trade-off can be adjusted. For the CRF model, we
used posterior decoding to make the minimum risk
decision rule tractable. As a summary measure of
the performance of the models at different levels of
recall we use average precision as defined in (Ido

3Wiktionary is an online collaborative dictionary, similar to
Wikipedia.

407

Language Pair Binary Classifier Ranker CRF
Avg Prec R@90 R@80 Avg Prec R@90 R@80 Avg Prec R@90 R@80

English-Bulgarian 75.7 33.9 56.2 76.3 38.8 57.0 80.6 52.9 59.5
English-Spanish 90.4 81.3 87.6 93.4 81.0 84.5 94.7 87.6 90.2
English-German 61.8 9.4 27.5 66.4 25.7 42.4 78.9 52.2 54.7

Table 2: Average precision, recall at 90% precision, and recall at 80% precision for each model in all three language
pairs. In these experiments, the Wikipedia features and lexicon features are omitted.

Setting Ranker CRF
Avg Prec R@90 R@80 Avg Prec R@90 R@80

English-Bulgarian
One Direction 76.3 38.8 57.0 80.6 52.9 59.5

Intersected 78.2 47.9 60.3 79.9 38.8 57.0
Intersected +Wiki 80.8 39.7 68.6 82.1 53.7 62.8

Intersected +Wiki +Lex 89.3 64.4 79.3 90.9 72.0 81.8
English-Spanish
One Direction 93.4 81.0 84.5 94.7 87.6 90.2

Intersected 94.3 82.4 89.0 95.4 88.5 91.8
Intersected +Wiki 94.5 82.4 89.0 95.6 89.2 92.7

Intersected +Wiki +Lex 95.8 87.4 91.1 96.4 90.4 93.7
English-German
One Direction 66.4 25.7 42.4 78.9 52.2 54.7

Intersected 71.9 36.2 43.8 80.9 54.0 67.0
Intersected +Wiki 74.0 38.8 45.3 82.4 56.9 71.0

Intersected +Wiki +Lex 78.7 46.4 59.1 83.9 58.7 68.8

Table 3: Average precision, recall at 90% precision, and recall at 80% precision for the Ranker and CRF in all three
language pairs. “+Wiki” indicates that Wikipedia features were used, and “+Lex” means the lexicon features were
used.

et al., 2006). We also report recall at precision of
90 and 80 percent. Table 2 compares the different
models in all three language pairs.

In our next set of experiments, we looked at the
effects of the Wikipedia specific features. Since the
ranker and CRF are asymmetric models, we also
experimented with running the models in both di-
rections and combining their outputs by intersec-
tion. These results are shown in Table 3.

Identifying the agreement between two asym-
metric models is a commonly exploited trick else-
where in machine translation. It is mostly effec-
tive here as well, improving all cases except for
the Bulgarian-English CRF where the regression is
slight. More successful are the Wikipedia features,
which provide an auxiliary signal of potential par-
allelism.

The gains from adding the lexicon-based features
can be dramatic as in the case of Bulgarian (the
CRF model average precision increased by nearly
9 points). The lower gains on Spanish and German
may be due in part to the lack of language-specific
training data. These results are very promising and
motivate further exploration. We also note that this
is perhaps the first successful practical application
of an automatically induced word translation lexi-
con.

4.3 SMT Evaluation

We also present results in the context of a full ma-
chine translation system to evaluate the potential
utility of this data. A standard phrasal SMT sys-
tem (Koehn et al., 2003) serves as our testbed, us-
ing a conventional set of models: phrasal mod-

408

els of source given target and target given source;
lexical weighting models in both directions, lan-
guage model, word count, phrase count, distortion
penalty, and a lexicalized reordering model. Given
that the extracted Wikipedia data takes the standard
form of parallel sentences, it would be easy to ex-
ploit this same data in a number of systems.

For each language pair we explored two training
conditions. The “Medium” data condition used eas-
ily downloadable corpora: Europarl for German-
English and Spanish-English, and JRC/Acquis for
Bulgarian-English. Additionally we included titles
of all linked Wikipedia articles as parallel sentences
in the medium data condition. The “Large” data
condition includes all the medium data, and also in-
cludes using a broad range of available sources such
as data scraped from the web (Resnik and Smith,
2003), data from the United Nations, phrase books,
software documentation, and more.

In each condition, we explored the impact of in-
cluding additional parallel sentences automatically
extracted from Wikipedia in the system training
data. For German-English and Spanish-English,
we extracted data with the null loss adjusted to
achieve an estimated precision of 95 percent, and
for English-Bulgarian a precision of 90 percent. Ta-
ble 4 summarizes the characteristics of these data
sets. We were pleasantly surprised at the amount
of parallel sentences extracted from such a var-
ied comparable corpus. Apparently the average
Wikipedia article contains at least a handful of
parallel sentences, suggesting this is a very fertile
ground for training MT systems.

The extracted Wikipedia data is likely to make
the greatest impact on broad domain test sets – in-
deed, initial experimentation showed little BLEU
gain on in-domain test sets such as Europarl, where
out-of-domain training data is unlikely to provide
appropriate phrasal translations. Therefore, we ex-
perimented with two broad domain test sets.

First, Bing Translator provided a sample of trans-
lation requests along with translations in German-
English and Spanish-English, which acted our stan-
dard development and test set. Unfortunately no
such tagged set was available in Bulgarian-English,
so we held out a portion of the large system’s train-
ing data to use for development and test. In each
language pair, the test set was split into a devel-

opment portion (“Dev A”) used for minimum error
rate training (Och, 2003) and a test set (“Test A”)
used for final evaluation.

Second, we created new test sets in each of
the three language pairs by sampling parallel sen-
tences from held out Wikipedia articles. To
ensure that this test data was clean, we man-
ually filtered the sentence pairs that were not
truly parallel and edited them as necessary to
improve adequacy. We called this “Wikitest”.
This test set is available at http://research.microsoft.com/en-

us/people/chrisq/wikidownload.aspx. Characteristics of these
test sets are summarized in Table 5.

We evaluated the resulting systems using BLEU-
4 (Papineni et al., 2002); the results are pre-
sented in Table 6. First we note that the extracted
Wikipedia data are very helpful in medium data
conditions, significantly improving translation per-
formance in all conditions. Furthermore we found
that the extracted Wikipedia sentences substantially
improved translation quality on held-out Wikipedia
articles. In every case, training on medium data
plus Wikipedia extracts led to equal or better trans-
lation quality than the large system alone. Further-
more, adding the Wikipedia data to the large data
condition still made substantial improvements.

5 Conclusions

Our first substantial contribution is to demonstrate
that Wikipedia is a useful resource for mining par-
allel data. The sheer volume of extracted parallel
sentences within Wikipedia is a somewhat surpris-
ing result in the light of Wikipedia’s construction.
We are also releasing several valuable resources to
the community to facilitate further research: man-
ually aligned document pairs, and an edited test
set. Hopefully this will encourage research into
Wikipedia as a resource for machine translation.

Secondly, we improve on prior pairwise mod-
els by introducing a ranking approach for sentence
pair extraction. This ranking approach sidesteps the
problematic class imbalance issue, resulting in im-
proved average precision while retaining simplicity
and clarity in the models.

Also by modeling the sentence alignment of the
articles globally, we were able to show a substan-
tial improvement in task accuracy. Furthermore a

409

German English Spanish English Bulgarian English
sentences 924,416 924,416 957,884 957,884 413,514 413,514

Medium types 351,411 320,597 272,139 247,465 115,756 69,002
tokens 11,556,988 11,751,138 18,229,085 17,184,070 10,207,565 10,422,415

sentences 6,693,568 6,693,568 7,727,256 7,727,256 1,459,900 1,459,900
Large types 1,050,832 875,041 1,024,793 952,161 239,076 137,227

tokens 100,456,622 96,035,475 155,626,085 137,559,844 29,741,936 29,889,020
sentences 1,694,595 1,694,595 1,914,978 1,914,978 146,465 146,465

Wiki types 578,371 525,617 569,518 498,765 107,690 74,389
tokens 21,991,377 23,290,765 29,859,332 28,270,223 1,455,458 1,516,231

Table 4: Statistics of the training data size in all three language pairs.

German English Spanish English Bulgarian English
Dev A sentences 2,000 2,000 2,000 2,000 2,000 2,000

tokens 16,367 16,903 24,571 21,493 39,796 40,503
Test A sentences 5,000 5,000 5,000 5,000 2,473 2,473

tokens 42,766 43,929 68,036 60,380 52,370 52,343
Wikitest sentences 500 500 500 500 516 516

tokens 8,235 9,176 10,446 9,701 7,300 7,701

Table 5: Statistics of the test data sets.

Language pair Training data Dev A Test A Wikitest
Spanish-English Medium 32.6 30.5 33.0

Medium+Wiki 36.7 (+4.1) 33.8 (+3.3) 39.1 (+6.1)
Large 39.2 37.4 38.9

Large+Wiki 39.5 (+0.3) 37.3 (-0.1) 41.1 (+2.2)
German-English Medium 28.7 26.6 13.0

Medium+Wiki 31.5 (+2.8) 29.6 (+3.0) 18.2 (+5.2)
Large 35.0 33.7 17.1

Large+Wiki 34.8 (-0.2) 33.9 (+0.2) 20.2 (+3.1)
Bulgarian-English Medium 36.9 26.0 27.8

Medium+Wiki 37.9 (+1.0) 27.6 (+1.6) 37.9 (+10.1)
Large 51.7 49.6 36.0

Large+Wiki 51.7(+0.0) 49.4 (-0.2) 39.5(+3.5)

Table 6: BLEU scores under various training and test conditions. The first column is from minimum error rate training;
the next two columns are on held-out test sets. For training data conditions including extracted Wikipedia sentences,
parenthesized values indicate absolute BLEU difference against the corresponding system without Wikipedia extracts.

small sample of annotated articles is sufficient to
train these global level features, and the learned
classifiers appear very portable across languages. It
is difficult to say whether such improvement will
carry over to other comparable corpora with less
document structure and meta-data. We plan to ad-
dress this question in future work.

Finally, initial investigations have shown that
substantial gains can be achieved by using an in-
duced word-level lexicon in combination with sen-
tence extraction. This helps address modeling word
pairs that are out-of-vocabulary with respect to the
seed parallel lexicon, while avoiding some of the
issues in bootstrapping.

410

References

S. F Adafre and M. de Rijke. 2006. Finding similar
sentences across multiple languages in wikipedia. In
Proceedings of EACL, pages 62–69.

Phil Blunsom and Trevor Cohn. 2006. Discriminative
word alignment with conditional random fields. In
Proceedings of ACL.

P. F Brown, V. J Della Pietra, S. A Della Pietra, and
R. L Mercer. 1993. The mathematics of statistical
machine translation: Parameter estimation. Compu-
tational linguistics, 19(2):263–311.

P. Fung and P. Cheung. 2004. Multi-level bootstrap-
ping for extracting parallel sentences from a quasi-
comparable corpus. In Proceedings of the 20th in-
ternational conference on Computational Linguistics,
page 1051.

W. A Gale and K. W Church. 1991. Identifying word
correspondences in parallel texts. In Proceedings
of the workshop on Speech and Natural Language,
pages 152–157.

Aria Haghighi, Percy Liang, Taylor Berg-Kirkpatrick,
and Dan Klein. 2008. Learning bilingual lexicons
from monolingual corpora. In Proceedings of ACL,
pages 771–779.

Roy Bar-Haim Ido, Ido Dagan, Bill Dolan, Lisa Ferro,
Danilo Giampiccolo, Bernardo Magnini, and Idan
Szpektor. 2006. The second pascal recognising tex-
tual entailment challenge.

P. Koehn and K. Knight. 2002. Learning a translation
lexicon from monolingual corpora. In Proceedings of
the ACL Workshop on Unsupervised Lexical Acquisi-
tion.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Pro-
ceedings of HLT/NAACL, pages 127–133, Edmonton,
Canada, May.

P. Koehn. 2005. Europarl: A parallel corpus for statisti-
cal machine translation. In MT summit, volume 5.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In Proceed-
ings of the 18th International Conference on Machine
Learning, pages 282–289.

R. C Moore. 2002. Fast and accurate sentence align-
ment of bilingual corpora. Lecture Notes in Computer
Science, 2499:135–144.

D. S Munteanu and D. Marcu. 2005. Improv-
ing machine translation performance by exploiting
non-parallel corpora. Computational Linguistics,
31(4):477–504.

Franz Josef Och. 2003. Minimum error rate training in
statistical machine translation. In Proceedings of the

Annual Meeting of the Association for Computational
Linguistics, pages 160–167, Sapporo, Japan.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the
Annual Meeting of the Association for Computational
Linguistics, pages 311–318, Philadelpha, Pennsylva-
nia, USA.

R. Rapp. 1999. Automatic identification of word trans-
lations from unrelated English and German corpora.
In Proceedings of ACL.

P. Resnik and N. A Smith. 2003. The web as a parallel
corpus. Computational Linguistics, 29(3):349–380.

C. Tillmann and J. Xu. 2009. A simple sentence-level
extraction algorithm for comparable data. In Pro-
ceedings of HLT/NAACL, pages 93–96.

C. Tillmann. 2009. A Beam-Search extraction algo-
rithm for comparable data. In Proceedings of ACL,
pages 225–228.

S. Vogel, H. Ney, and C. Tillmann. 1996. HMM-
based word alignment in statistical translation. In
Proceedings of the 16th conference on Computational
linguistics-Volume 2, pages 836–841.

Wikipedia. 2004. Wikipedia, the free encyclopedia.
[Online; accessed 20-November-2009].

B. Zhao and S. Vogel. 2002. Adaptive parallel sentences
mining from web bilingual news collection. In Pro-
ceedings of the 2002 IEEE International Conference
on Data Mining, page 745. IEEE Computer Society.

411

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 412–419,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Statistical Machine Translation of Texts with Misspelled Words

Nicola Bertoldi Mauro Cettolo Marcello Federico
FBK - Fondazione Bruno Kessler

via Sommarive 18 - 38123 Povo, Trento, Italy
{bertoldi,cettolo,federico}@fbk.eu

Abstract

This paper investigates the impact of mis-
spelled words in statistical machine transla-
tion and proposes an extension of the transla-
tion engine for handling misspellings. The en-
hanced system decodes a word-based confu-
sion network representing spelling variations
of the input text.

We present extensive experimental results on
two translation tasks of increasing complex-
ity which show how misspellings of different
types do affect performance of a statistical ma-
chine translation decoder and to what extent
our enhanced system is able to recover from
such errors.

1 Introduction
With the widespread adoption of the Internet, of
modern communication, multimedia and mobile de-
vice technologies, the amount of multilingual in-
formation distributed and available to anyone, any-
where, has exploded. So called social media have
rapidly reshaped information exchange among Inter-
net users, providing new means of communication
(blogs, tweets, etc.), collaboration (e.g. wikis), and
sharing of multimedia content, and entertainment.
In particular, social media have today become also
an important market for advertisement as well as a
global forum for consumer opinions (Kushal et al.,
2003).

The growing spread of user-generated content is
scaling-up the potential demand for on-line machine
translation (MT) but also setting new challenges to
the field of natural language processing (NLP) in

general. The language written and spoken in the
social media presents an impressive variety of con-
tent and styles (Schler et al., 2006), and writing con-
ventions that rapidly evolve over time. Moreover,
much of the content is expressed in informal style,
that more or less violates the standard grammar, con-
tains many abbreviations and acronyms, and finally
many misspelled words. From the point of view of
MT, language of social media is hence very different
from the one represented in the text corpora nowa-
days available to train statistical MT systems.

Facing all these challenges, we pragmatically
scaled down our ambition and decided to investigate
a basic, somehow preliminary, well defined prob-
lem: the impact of misspelled words in statistical
MT. Unintentional typing errors are indeed remark-
ably frequent in online chats, blogs, wikis, reviews,
and hence constitute a major source of noise (Subra-
maniam et al., 2009).

In this paper we aim at studying performance
degradation of statistical MT under different levels
and kinds of noise, and at analyzing to what extent
statistical MT is able to recover from errors by en-
riching its input with spelling variations.

After a brief overview of NLP literature related
to noisy texts, in Section 3 we consider different
types of misspellings and derive simple but realistic
models that are able to reproduce them. Such mod-
els are then used to generate errors in texts passed
to a phrase-based statistical MT system. Next, in
Section 4 we introduce an extension of a statistical
MT system able to handle misspellings by exploiting
confusion network decoding (Bertoldi et al., 2008).

Experiments are reported in Section 5 that in-

412

vestigate the trade-off between complexity of the
extended MT decoder versus translation accuracy.
Moreover, as the proposed model for handling mis-
spellings embeds specific assumptions on how er-
rors are generated, we also measure the robustness
of the enhanced MT decoder with respect to differ-
ent noise sources. Experiments are reported on two
tasks of different complexity, the translation of Eu-
roparl texts and weather bulletins, involving English
and Italian languages.

2 Previous Work
Most contributions addressing NLP of noisy user-
generated content are from the text mining commu-
nity. A survey about the different types of noise that
might affect text mining is in (Subramaniam et al.,
2009), while an analysis of how noise phenomena,
commonly occurring in blogs, affect an opinion min-
ing application is in (Dey and Haque, 2009).

Concerning spelling correction literature, many
works apply the noisy channel model which con-
sists of two components: a source model (prior
of word probabilities) and a channel (error) model,
that accounts for spelling transformations on let-
ter sequences. Several approaches have been
proposed under this framework, that mainly dif-
fer in the employed error model; see for exam-
ple: (Church and Gale, 1991), (Brill and Moore,
2000) and (Toutanova and Moore, 2002).

Comprehensive surveys on methods to model and
recover spelling errors can be found in (Kukich,
1992) and (Pedler, 2007); in particular, the latter
work is specifically centered on methods for cor-
recting so-called real-word errors (cf. Section 3).
The detection of errors and the suggestion of cor-
rections typically rely on the availability of text cor-
pora or human-made lexical resources. Search for
correct alternatives can be based on word similarity
measures, such as the edit distance (Mitton, 1995),
anagram hashing (Reynaert, 2006), and semantic
distance based on WordNet (Hirst and Budanitsky,
2005). More sophisticated approaches have been
proposed by (Fossati and Di Eugenio, 2008), that
mixes surface and Part-Of-Speech Information, and
(Schaback and Li, 2007), which combines similarity
measures at the character, phonetic, word, syntax,
and semantic levels into one global feature-based
framework.

a) *W *w had just come in from Australia [Australia]
b) good service we *staid one week. [Tahiti]
c) The room was *exellent but the hallway was *filty .

[NJ]
d) is a good place to stay, if you are looking for a hotel

*arround LAX airport. [Tahiti]
e) The staff was *freindly ... I was *conerned about

the noise [CT]

Table 1: Examples of misspellings found in on-line re-
views of an hotel close to Los Angeles Int’l Airport. Cor-
responding corrections are: a) We, ε, b) stayed, c) excel-
lent, filthy, d) around, e) friendly, concerned.

Concerning the literature of statistical MT, inter-
est in noisy data has been so far considering is-
sues different from misspelled words. For instance,
(Davis et al., 1995) and (Vogel, 2003) address train-
ing methods coping with noisy parallel data, in the
sense that translations do not perfectly match. Work
on speech translation (Casacuberta et al., 2008) fo-
cused instead on efficient methods to couple speech
recognition and MT in order to avoid error propaga-
tion. Very recently, (Carrera et al., 2009) conducted
a qualitative study on the impact of noisy social me-
dia content on statistical and rule-based MT. Unfor-
tunately, this work does not report any quantitative
result, it is only based on a small selection of exam-
ples that are manually evaluated, and finally it does
not address the problem of integrating error correc-
tion with MT.

3 Types of Misspellings
In general, a misspelled word is a sequence of let-
ters that corresponds to no correctly spelled word of
the same language (non-word error), or to a correct
spelling of another word (real-word error). In the
examples shown in Table 1, all marked errors are
non-word errors, but the one in sentence b), which
indeed is likely a misspelling of the word stayed.

Causes of a misspelling may be an unintentional
typing error (e.g. *freindly for friendly), or lack of
knowledge about the proper spelling. Typing errors
can originate from six different typing operations
(Kukich, 1992): substitution, insertion, deletion,
transposition, run-on, and split.1 Lack of knowledge
could be the cause of the misspelled *exellent in sen-
tence c).

1 Run-on and split are the special cases of deleting and in-
serting blank spaces, respectively.

413

1. your - you’re
2. then - than
3. its - it’s
4. to - too - two
5. were - where - we’re
6. there - their - they’re
7. a - an - and
8. off - of
9. here - hear

10. lose - loose

Table 2: List of frequent real-word errors found in blogs.
Source: http://www.theprobabilist.com.

An interesting combination of cause and effect is
when lack of linguistic competence results in con-
fusing the spelling of a word with the spelling of
another word that sounds similarly (Hirst and Bu-
danitsky, 2005). This could be likely the case of the
Polynesian tourist that authored sentence b).

A short list of words frequently confused in blogs
is reported in Table 2 while a longer list can be found
in the Wikipedia.2 Real-word errors typically fool
spell checkers because their identification requires
analyzing the context in which they occur.

In this paper, we automatically corrupt clean text
with three types of noise described below. This pro-
cedure permits us to analyze the MT performance
against different sources and levels of noise and to
systematically evaluate our error-recovering strat-
egy.

Non-word Noise We randomly replace words in
the text according to a list of 4,100 frequently non-
word errors provided in the Wikipedia. A qualitative
analysis of these errors reveals that all of them origi-
nate by one or two keyboard typing errors of the kind
described beforehand. Practically, non-word noise is
introduced by defining a desired level of corruption
of the source text.

Real-word Noise Similarly to the previous case,
real-word errors are automatically introduced by
another list of frequently misused words in the
Wikipedia. This list contains about 300 pairs of con-
fusable words to which we also added the 10 fre-
quent real-word errors occurring in blogs reported
in Table 2.

2See Wikipedia’s “list of frequently misused English
words”.

Random Noise Finally, we may corrupt the origi-
nal text by randomly replacing, inserting, and delet-
ing characters in it up to a desired percentage.

4 Error-recovering Statistical MT
An enhancement of a statistical MT system is pro-
posed with the goal of improving robustness to mis-
spellings in the input. Rrror recovery is realized
by performing a sequence of actions before the ac-
tual translation, which create reliable spelling alter-
natives of the input and store them into a compact
word-based Confusion Network (CN).

Starting from the possibly noisy input text,
spelling variations are generated by assuming that
each character is a potential typing error, indepen-
dent from other characters.

The variants are represented as a character-based
CN that models possible substitutions, insertion,
deletions of each character, with an empirically de-
termined weight assigned to each alternative. The
network is then searched by a non-monotonic search
process that scores possible character sequences
through a character n-gram language model, and
outputs a set of multiple spelling variants that is fi-
nally converted into a word-based CN. The result-
ing word-based network is finally passed to the MT
engine. In the following, more details are provided
on the augmented MT system with the help of Fig-
ure 1, which shows how the system acts on the cor-
rupted example “all off ame”, supposed to be “hall
of fame”.

Step 1 The input text (a) is split into a sequence
of characters (b) including punctuation marks and
blank spaces (), which are here considered as stan-
dard characters. Moreover, single characters inter-
leaved with the conventional empty character ε.

Step 2 A CN (c) is built by adding all alternative
characters of the keyboard to each input character,
including the space character and the empty char-
acter. When the string character is , the only ad-
mitted alternative is ε. Possible alternative spellings
of the original string correspond to paths in the CN.
Notice that each CN column beginning with a stan-
dard character permits to manage insertion, substi-
tution and split errors, while each column beginning
with the empty character permits to handle deletion
and run-on errors.

414

...

d
e

ε
a

c
bj

ε

e

g
...d

c

ε

b

...

a

e

y

m

ε

...

rb

c

d

ε

e

a

...

...

s

z

ε

w

a

f
...

...

b

ε

a

e

ε

_

e

d

a

...

c

ε

b

f

d

...

c

ε

b

ε

d

c

b

...

a

e

ε

...

r

c

f

d

c

a

...

ε

e

b

dk

p

i

ε

o

...e

c

d

...

a

b

ε_

εa

c

...

b

ε

e
d

k

p

l

...

ε

o

ε

...

b

e
d

a

c

ε

o
p
...

l

k

...
i
h ...

z
...

s

a

w

ε

d
e

b

ε

c

a

...

a

g

c

ε

b

........

ah emaf_fo_ll
la em_fo_l

a lh emaf_ol
uh em_ffo_ll

ela maf_fo_l

ema_ffo_lla

arca della gloria

...
hull ...

...εhallo
ofhall me

fameoffall

(a)

(b) εeεmεaε_εfεfεoε_εlεla εε

(c)

(d)

(e)

(f)

p(w|a) ∝ 0.91

1

2

3

5

4

Figure 1: The whole process to translate the mistaken
input “all off ame [hall of fame]” into “arca della gloria”.

A probability distribution of confusable
keystrokes is generated based on the distance
between the keys on a standard QWERTY key-
board. This distribution is intended to model how a
spelling error is actually produced. Hence, character
alternatives in the CN are associated to a probability
given by:

p (x|y) ∝ · 1
k · d(x, y) + 1

(1)

where d(x, y) is the physical distance between the
key of x and the key of y on the keyboard layout;
for example, the character a has a distance of 3 from
the character c on the considered keyboard layout.
The free parameter k tunes the discriminative power
of the model between correct and wrong typing. In
this paper, k was empirically set to 0.1. The ε and

characters are assigned a default distance of 9 and

999 from any other character, respectively.
For the sake of clarity, the probability p(w|a) of

just one entry is reported in Figure 1.

Step 3 The generation of spelling variations (d) is
operated by means of the same decoder employed
for translation (see below), but in a much simplified
configuration which does not exploit any translation
model. It is designed to search the input character-
based CN for the n-best character sequences which
better “correct” the mistaken input. In Figure 1 the
best sequence is marked by bold boxes (c), and the
empty character ε is removed for the sake of clarity
(d). This process relies only on the character-based
6-gram language model trained on monolingual data
in the source language. It is worth noticing that the
generated spelling alternatives may in principle still
contain non-words, just because they are selected by
a character-based language model, which does not
explicitly embed the notion of word.

Transposition errors are modeled both (i) indi-
rectly through consecutive substitutions with appro-
priate characters and (ii) directly by permitting some
re-orderings of adjacent characters. Moreover, pre-
liminary experiments revealed that the explicit han-
dling of deletion and run-on errors by interleaving
input characters with the empty character ε (Step 1)
is crucial to achieve good performance. Although
the size of the character-based CN doubles, its de-
coding time increases only by a small factor.

Step 4 The n-best character sequences (d) are
transformed into a word-based CN (e) (Mangu et
al., 2000). First, each character-based sequence is
transformed into a unifilar word-based lattice, whose
edges correspond to words and timestamps to the
character positions. Then, the unifilar lattices are put
in parallel to create one lattice with all spelling vari-
ations of the input text (a). Finally, a word-based CN
is generated by means of the lattice-tool available in
the SRILM Toolkit (Stolcke, 2002).

Step 5 Translation of the CN (e) is performed
with the Moses decoder (Koehn et al., 2007), that
has been successfully applied mainly to text trans-
lation, but also to process multiple input hypothe-
ses (Bertoldi et al., 2008), representing, for exam-
ple, speech transcriptions, word segmentations, texts
with possible punctuation marks, etc. In general,

415

set #sent. English Italian
#wrd dict. #wrd dict.

EP train 1.2M 36M 106K 35M 146K
test 2K 60K 6.5K 60K 8.3K

WF train 42K 996K 2641 994K 2843
test 328 8789 606 8704 697

Table 3: Statistics of train/test data of the Europarl (EP)
and the Weather Forecast (WF) tasks.

Moses looks for the best translation exploring the
search space defined by a set of feature functions
(models), which are log-linearly interpolated with
weights estimated during a tuning stage.

The rationale of storing the spelling alternatives
into a word-based CN instead of n-best list is two-
fold: (i) the CN contains a significantly larger num-
ber of variations, and (ii) the translation system is
much more efficient to translate CNs instead of n-
best lists.

5 Experiments
Extensive experiments have been conducted on the
Europarl shared task, from English to Italian, as
specified by the Workshop on Statistical Machine
Translation of the ACL 2008.3 Additional experi-
ments were conducted on a smaller task, namely the
translation of weather forecast bulletins between the
same language pair. Statistics on texts employed in
experiments are reported in Table 3.

For both tasks, we created evaluation data by ar-
tificially corrupting input text with the noise sources
described in Section 3. The module for generating
spelling variations (Step 3) was trained on additional
4M and 16M running words in English and Italian,
respectively.

We empirically investigated the following issues:
(a) performance of the standard MT engine versus
nature and level of the input noise; (b) performance
of the error-recovering MT engine versus number of
provided spelling variations; (c) portability of the
approach to another task and translation direction;
(d) computational requirements of the approach.

5.1 Impact of Noise

The first set of experiments involved the translation
of corrupted versions of the Europarl test set. Fig-

3http://www.statmt.org/wmt08/

 10

 15

 20

 25

20105210.50

 10

 15

 20

 25

B
LE

U

Noise Level (%)

baseline
random, no-recovery

non-word, no-recovery
real-word, no-recovery

Figure 2: Translation performance as function of the
noise level (in log-scale) for different types of noise.

ure 2 plots three curves of BLEU(%) scores, corre-
sponding to different noise sources and noise ratios,
given in terms of percentage of word error rate. It
also shows the BLEU score on the original clean
text. Notice that this baseline performance (25.16)
represents the state-of-the-art4 for this task.

The major outcome of these experiments is that
the different types of errors seem to affect MT per-
formance in a very similar manner. Quantitatively,
performance degradation begins even for low noise
levels – about 0.5 absolute BLEU loss at 1% of
noise level – and reaches 50% when text corruption
reaches the level of 30%. The similar impact of non-
word and random errors is somehow expected. The
plain reason is that both types of errors very likely5

generate Out-Of-Vocabulary (OOV) words.

We find instead less predictable that the impact of
real-word errors is indistinguishable from that of the
other two noise sources. Notice also that most of the
real-word errors produce indeed words known to the
MT system. Hence, the question regards the behav-
ior of the MT system when the sentence includes on
OOV word or an out-of-context known word. Em-
pirically it seems that in both cases the decoder pro-
duces translations with the same amount of errors.
In some sense, the good news is that real-word er-
rors do not induce more translation errors than OOV
words do.

4http://matrix.statmt.org/matrix
5Modulo noise in the parallel data and the chance that a ran-

dom error generates a true word.

416

 15

 20

 25

5020105210.50

 15

 20

 25

B
LE

U

Noise Level (%)

baseline
no-recovery

single
multiple, 200

 20

 25

105210.50

 20

 25

B
LE

U

Noise Level (%)

baseline
no-recovery

single
multiple, 200

Figure 3: Performance of error-recovering method with random (left) and real-word (right) noise.

5.2 Impact of Multiple Corrections

Experiments presented here address evaluation of
our enhanced MT system. In addition to nature and
level of noise, translation performance is also an-
alyzed with respect to the number (1 and 200) of
spelling alternatives generated at Step 3. Figure 3
plots BLEU scores for random (left plot) and real-
word (right plot) noises. For comparison purposes,
the curves with no error recovery are also shown.
Results with non-word noise are not provided since
they are pretty similar to those with random noise.
It is worth noticing that real-word errors are re-
covered in a different way than random errors; in
fact, for the latter a single spelling alternative seems
sufficient to guarantee a substantial error recovery,
whereas for real-word errors this is not the case.

Concerning the use of spelling variations, it is
worth remarking that our system is able to fully re-
cover from both random and non-word errors up to
noise levels of 10%, which remains high even for
noise levels up to 20%, where the BLEU degrada-
tion is limited to around 5% relative.

Real-word errors are optimally recovered in the
case of multiple spelling variations until they do not
exceed 2% of the words in the input text; after that,
the decrement of the MT quality becomes signif-
icant but still limited to about 5% BLEU relative
for a noise level of 10%. So the question arises
about what could be a realistic real-word noise level.
Clearly this question is not easy to address. How-
ever, to get a rough idea we can look at the exam-
ples reported in Table 1. These five sentences were
extracted from a text of about 100 words (of which

Table 1 only shows the sentences containing errors)
that contain in total 8 errors: 7 of which are non-
words and 1 is a real-word. Although from these
figures reliable statistics cannot be estimated, a rea-
sonable assumption could be that a global noise level
of 10%6 might contain a 1/10 ratio for real-word vs.
non-word errors. Thus, looking at the real-word er-
ror curve of Figure 3, the inability to recover errors
for noise levels greater than 2-5% should actually be
acceptable given this empirical observation.

Another relevant remark from Figure 3 is that
for low noise levels (less than 1%) the use of the
error-recovering module is counterproductive, since
it introduces more errors than those actually affect-
ing the original input text, causing a slight degra-
dation of the translation performance. If the com-
putational cost to generate variants, which will be
analyzed in the next paragraph, is also taken into ac-
count, it results evident the importance of design-
ing a good strategy for enabling or disabling on de-
mand the error-recovering stage. A starting point for
defining an effective activation strategy is the esti-
mation of the noise rate. For doing this, non-words
can be counted by exploiting proper dictionaries or
spell checkers; concerning real-word noise, its rate
can be inferred either from the non-word rate, or by
means of the perplexity, which is expected to be-
come higher as the real-word error rate increases
(Subramaniam et al., 2009). Once the noise level
of the input text is known, the decision of activat-
ing the correction module can be easily taken on a

6By the way, at this noise rate, an error-recovering strategy
would be highly recommended.

417

 0

 10

 20

 30

 40

 50

 60

501010.10
 0

 10

 20

 30

 40

 50

 60
B

LE
U

Noise Level (%)

English-Italian

baseline
no-recovery

multiple, 200
 0

 10

 20

 30

 40

 50

501010.10
 0

 10

 20

 30

 40

 50

Noise Level (%)

Italian-English

baseline
no-recovery

multiple, 200

Figure 4: Effects of random noise and noise correction
on translation performance for the WF task.

threshold basis. Alternatively, the proper working
point, in terms of precision and recall, of the correc-
tion model could be dynamically chosen as a func-
tion of the actual noise level.

5.3 Computational Costs

Although our investigation does not address explic-
itly computational aspects of translating noisy in-
put, nevertheless some general considerations can be
drawn.

The effectiveness of our recovering approach re-
lies on the compact representation of many spelling
alternatives in a word-based CN. The CN decod-
ing has been shown to be efficient, just minimally
larger than the single string decoding (Bertoldi et
al., 2008). On the contrary, in the current enhanced
MT setting, the sequence of Steps 1 to 4 for build-
ing the CN from the noisy input text is quite costly.
Rather than to an intrinsic complexity, this is due to
our choice of creating a rich character-based CN in
Step 3 for the sake of flexibility and to a naive im-
plementation of Step 4.

5.4 Portability

So far we have analyzed in detail our approach
on the medium-large sized Europarl task, for the
English-to-Italian translation direction. For assess-
ing portability, we also considered a simpler task
–the translation of weather forecast bulletins– where
the translation quality is definitely higher, for the
same language pair but in both translation directions.
The choice of the weather forecast task is not by
chance. In fact, as the automatically translated bul-
letins are published on the Web, a very high transla-
tion quality is required, and then the presence of any
typing error in the original text could be a concern.
(By the way, for this task the presence of real-word
errors is very marginal.)

Figure 4 plots curves of MT performance under
random noise conditions against multiple spelling
variations, for two translation directions. It can
be noticed that the error-recovering system behaves
qualitatively as for the Europarl task but even better
from a quantitative viewpoint. Again, the recovering
model introduces spurious errors which affect trans-
lation quality for low levels of noisy input, but in
this case the break-even point is less than 0.1% noise
level. On the other side, errors corrupting the input
text are fully recovered up to 30-40% of noise lev-
els, for which the BLEU score would be more than
halved for non-corrected texts.

6 Future Work
There are a number of important issues that this
work has still left open. First of all, we focused
on a specific way of generating spelling varia-
tions, based on single characters, but other possible
choices should be investigated and compared to our
approach, like the use of n-grams of words.

An important open question regards efficiency of
the proposed recovering strategy, since the problem
has been only sketched in Section 5.3. It is our in-
tention to analyze the intrinsic complexity of our
model, possibly discover its bottlenecks and imple-
ment a more efficient solution.

Another topic, mentioned in Section 5.2, is the ac-
tivation strategy of the misspelling recovery. Some
further investigation is required on how its working
point can be effectively selected; in fact, since the
enhanced system necessarily introduces spurious er-
rors, it would be desirable to increase its precision
for low-corrupted input texts.

7 Conclusions
This paper addressed the issue of automatically
translating written texts that are corrupted by mis-
spelling errors. An enhancement of a state-of-the-art
statistical MT system is proposed which efficiently
performs the translation of multiple spelling variants
of noisy input. These alternatives are generated by a
character-based error recovery system under the as-
sumption that misspellings are due to typing errors.

The enhanced MT system has been tested on texts
corrupted with increasing noise levels of three dif-
ferent sources: random, non-word, and real-word er-
rors.

418

Analysis of experimental results has led us to
draw the following conclusions:

• The impact of misspelling errors on MT perfor-
mance depends on the noise rate, but not on the
noise source.

• The capability of the enhanced MT system to
recover from errors differs according to the
noise source: real-word noise is significantly
harder to remove than random and non-word
noise, which behave substantially the same.

• The exploitation of several spelling alternatives
permits to almost fully recover from errors if
the noise rate does not exceed 10% for non-
word noise and 2% for real-word noise, which
are likely above the corruption level observed
in many social media.

• Finally, performance slightly decreases when
input text is correct or just mistaken at a negli-
gible level, because the error recovery module
rewards recall rather than precision and hence
tends to overgenerate correction alternatives,
even if not needed.

Acknowledgments

This work was supported by the EuroMatrixPlus
project (IST-231720), which is funded by the EC un-
der the 7th Framework Programme for Research and
Technological Development.

References
N. Bertoldi, et al. 2008. Efficient speech translation

through confusion network decoding. IEEE Trans-
actions on Audio, Speech, and Language Processing,
16(8):1696–1705.

E. Brill and R. C. Moore. 2000. An improved error
model for noisy channel spelling correction. In Pro-
ceedings of ACL. Hong Kong.

J. Carrera, et al. 2009. Machine trans-
lation for cross-language social media.
http://www.promt.com/company/technology/pdf/mach
ine translation for cross language social media.pdf.

F. Casacuberta, et al. 2008. Recent efforts in spoken lan-
guage processing. IEEE Signal Processing Magazine,
25(3):80–88.

K. W. Church and W. A. Gale. 1991. Probability scor-
ing for spelling correction. Statistics and Computing,
1(2):93–103.

M. W. Davis, et al. 1995. Text alignment in the real
world: Improving alignments of noisy translations us-
ing common lexical features, string matching strate-
gies and n-gram comparisons. In Proceedings of
EACL, Dublin, Ireland.

L. Dey and S. M. Haque. 2009. Studying the effects of
noisy text on text mining applications. In Proceedings
of AND, pages 107–114, Barcelona, Spain.

D. Fossati and B. Di Eugenio. 2008. I saw tree trees in
the park: How to correct real-word spelling mistakes.
In Proceedings of LREC, Marrakech, Morocco.

G. Hirst and A. Budanitsky. 2005. Correcting real-word
spelling errors by restoring lexical cohesion. Natural
Language Engineering, 11(01):87–111.

P. Koehn, et al. 2007. Moses: Open source toolkit for
statistical machine translation. In Proceedings of ACL
- Demo and Poster Sessions, pages 177–180, Prague,
Czech Republic.

K. Kukich. 1992. Spelling correction for the telecom-
munications network for the deaf. Communications of
the ACM, 35(5):80–90.

D. Kushal, et al. 2003. Mining the peanut gallery:
opinion extraction and semantic classification of prod-
uct reviews. In Proceedings of the WWW conference,
pages 519–528, Budapest, Hungary.

L. Mangu, et al. 2000. Finding consensus in speech
recognition: Word error minimization and other appli-
cations of confusion networks. Computer, Speech and
Language, 14(4):373–400.

R. Mitton. 1995. English Spelling and the Computer
(Studies in Language and Linguistics). Addison Wes-
ley Publishing Company.

J. Pedler. 2007. Computer correction of real-word
spelling errors in dyslexic text. Ph.D. thesis, Univer-
sity of London.

M. Reynaert. 2006. Corpus-induced corpus cleanup. In
Proceedings of LREC, Genoa, Italy.

J. Schaback and F. Li. 2007. Multi-level feature extrac-
tion for spelling correction. In IJCAI - Workshop on
Analytics for Noisy Unstructured Text Data, pages 79–
86, Hyderabad, India.

J. Schler, et al. 2006. Effects of age and gender on blog-
ging. In Proceedings of AAAI-CAAW, Palo Alto, CA.

A. Stolcke. 2002. Srilm - an extensible language model-
ing toolkit. In Proceedings of ICSLP, Denver, CO.

L. V. Subramaniam, et al. 2009. A survey of types of text
noise and techniques to handle noisy text. In Proceed-
ings of AND, pages 115–122, Barcelona, Spain.

K. Toutanova and R. C. Moore. 2002. Pronunciation
modeling for improved spelling correction. In Pro-
ceedings of ACL, pages 144–151, Philadelphia, PA

S. Vogel. 2003. Using noisy biligual data for statisti-
cal machine translation. In Proceedings of EACL, Bu-
dapest, Hungary.

419

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 420–428,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Everybody loves a rich cousin: An empirical study of transliteration through
bridge languages

Mitesh M. Khapra
Indian Institute of Technology

Bombay,
Powai, Mumbai 400076,

India
miteshk@cse.iitb.ac.in

A Kumaran
Microsoft Research India,

Bangalore,
India

a.kumaran@microsoft.com

Pushpak Bhattacharyya
Indian Institute of Technology

Bombay,
Powai, Mumbai 400076,

India
pb@cse.iitb.ac.in

Abstract

Most state of the art approaches for machine
transliteration are data driven and require sig-
nificant parallel names corpora between lan-
guages. As a result, developing translitera-
tion functionality amongn languages could
be a resource intensive task requiring paral-
lel names corpora in the order ofnC2. In this
paper, we explore ways of reducing this high
resource requirement by leveraging the avail-
able parallel data between subsets of then lan-
guages, transitively. We propose, and show
empirically, that reasonable quality transliter-
ation engines may be developed between two
languages,X andY , even when no direct par-
allel names data exists between them, but only
transitively through languageZ. Such sys-
tems alleviate the need forO(nC2) corpora,
significantly. In addition we show that the per-
formance of such transitive transliteration sys-
tems is in par with direct transliteration sys-
tems, in practical applications, such as CLIR
systems.

1 Introduction

Names and Out Of Vocabulary (OOV) terms appear
very frequently in written and spoken text and hence
play a very important role in several Natural Lan-
guage Processing applications. Several studies have
shown that handling names correctly across lan-
guages can significantly improve the performance of
CLIR Systems (Mandl and Womser-Hacker, 2004)
and the utility of machine translation systems. The
fact that translation lexicons or even statistical dic-
tionaries derived from parallel data do not provide a
good coverage of name and OOV translations, un-

derscores the need for good transliteration engines
to transform them between the language.

The importance of machine transliteration, in the
above context, is well realized by the research com-
munity and several approaches have been proposed
to solve the problem. However, most state of the art
approaches are data driven and require significant
parallel names corpora between languages. Such
data may not always be available between every pair
of languages, thereby limiting our ability to support
transliteration functionality between many language
pairs, and subsequently information access between
languages. For example, let us consider a practi-
cal scenario where we have six languages from four
different language families as shown in Figure 1.
The nodes in the graph represent languages and the
edges indicate the availability of data between that
language pair and thus the availability of a Machine
Transliteration system for that pair. It is easy to see
the underlying characteristics of the graph. Data is
available between a language pair due to one of the
following three reasons:
Politically related languages: Due to the political
dominance of English it is easy to obtain parallel
names data between English and most languages.
Genealogically related languages: Arabic and He-
brew share a common origin and there is a signifi-
cant overlap between their phoneme and grapheme
inventory. It is easy to obtain parallel names data
between these two languages.
Demographically related languages: Hindi and
Kannada are languages spoken in the Indian sub-
continent, though they are from different language
families. However, due to the shared culture and de-
mographics, it is easy to create parallel names data
between these two languages.

420

Figure 1: A connected graph of languages

On the other hand, for politically, demographi-
cally and genealogically unrelated languages such
as, say, Hindi and Hebrew, parallel data is not readily
available, either due to the unavailability of skilled
bilingual speakers. Even the argument of using
Wikipedia resources for such creation of such par-
allel data does not hold good, as the amount of inter-
linking may be very small to yield data. For exam-
ple, only 800 name pairs between Hindi and Hebrew
were mined using a state of the art mining algorithm
(Udupa et al., 2009), from Wikipedia interwiki links.

We propose a methodology to develop a practi-
cal Machine Transliteration system between any two
nodes of the above graph, provided a two-step path
exists between them. That is, even when no parallel
data exists betweenX & Y but sufficient data exists
betweenX & Z andZ & Y it is still possible to de-
velop transliteration functionality betweenX & Y

by combining aX → Z system with aZ → Y

system. For example, given the graph of Figure 1,
we explore the possibility of developing translitera-
tion functionality between Hindi and Russian even
though no direct data is available between these two
languages. Further, we show that in many cases the
bridge language can be suitably selected to ensure
optimal MT accuracy.

To establish the practicality and utility of our ap-
proach we integrated such a bridge transliteration
system with a standard CLIR system and compared
its performance with that of a direct transliteration
system. We observed that such a bridge system

performs well in practice and in specific instances
results in improvement in CLIR performance over
a baseline system further strengthening our claims
that such bridge systems are good practical solutions
for alleviating the resource scarcity problem.

To summarize, our main contributions in this pa-
per are:

1. Constructing bridge transliteration systems and
establishing empirically their quality.

2. Demonstrating their utility in providing prac-
tical transliteration functionality between two
languages X & Y with no direct parallel data
between them.

3. Demonstrating that in specific cases it is pos-
sible to select the bridge language so that op-
timal Machine Transliteration accuracy is en-
sured while stepping through the bridge lan-
guage.

1.1 Organization of the Paper

This paper is organized in the following manner. In
section 2 we present the related work and highlight
the lack of work on transliteration in resource scarce
scenarios. In section 3 we discuss the methodology
of bridge transliteration. Section 4 discusses the ex-
periments and datasets used. Section 4.3 discusses
the results and error analysis. Section 5 discusses or-
thographic characteristics to be considered while se-
lecting the bridge language. Section 6 demonstrates
the effectiveness of such bridge systems in a practi-
cal scenario,viz., Cross Language Information Re-
trieval. Section 7 concludes the paper, highlighting
future research issues.

2 Related Work

Current models for transliteration can be classi-
fied as grapheme-based, phoneme-based and hy-
brid models. Grapheme-based models, such as,
Source Channel Model (Lee and Choi, 1998), Max-
imum Entropy Model (Goto et al., 2003), Condi-
tional Random Fields (Veeravalli et al., 2008) and
Decision Trees (Kang and Choi, 2000) treat translit-
eration as an orthographic process and try to map
the source language graphemes directly to the tar-
get language graphemes. Phoneme based models,
such as, the ones based on Weighted Finite State

421

Transducers (WFST) (Knight and Graehl, 1997)
and extended Markov window (Jung et al., 2000)
treat transliteration as a phonetic process rather than
an orthographic process. Under such frameworks,
transliteration is treated as a conversion from source
grapheme to source phoneme followed by a conver-
sion from source phoneme to target grapheme. Hy-
brid models either use a combination of a grapheme
based model and a phoneme based model (Stalls
and Knight, 1998) or capture the correspondence be-
tween source graphemes and source phonemes to
produce target language graphemes (Oh and Choi,
2002).

A significant shortcoming of all the previous
works was that none of them addressed the issue of
performing transliteration in a resource scarce sce-
nario, as there was always an implicit assumption
of availability of data between a pair of languages.
In particular, none of the above approaches address
the problem of developing transliteration functional-
ity between a pair of languages when no direct data
exists between them but sufficient data is available
between each of these languages and an intermedi-
ate language. Some work on similar lines has been
done in Machine Translation (Wu and Wang, 2007)
wherein an intermediate bridge language (say,Z) is
used to fill the data void that exists between a given
language pair (say,X andY). In fact, recently it has
been shown that the accuracy of aX → Z Machine
Translation system can be improved by using addi-
tional X → Y data providedZ andY share some
common vocabulary and cognates (Nakov and Ng,
2009). However, no such effort has been made in the
area of Machine Transliteration. To the best of our
knowledge, this work is the first attempt at providing
a practical solution to the problem of transliteration
in the face of resource scarcity.

3 Bridge Transliteration Systems

In this section, we explore the salient question“Is
it possible to develop a practical machine transliter-
ation system betweenX and Y , by composing two
intermediateX → Z and Z → Y transliteration
systems?”We use a standard transliteration method-
ology based on orthography for all experiments (as
outlined in section 3.1), to ensure the applicability
of the methodology to a variety of languages.

3.1 CRF based transliteration engine

Conditional Random Fields ((Lafferty et al., 2001))
are undirected graphical models used for labeling
sequential data. Under this model, the conditional
probability distribution of the target word given the
source word is given by,

P (Y |X;λ) =
1

N(X)
· e

P

T

t=1

P

K

k=1
λkfk(Yt−1,Yt,X,t)

(1)

where,

X = source word

Y = target word

T = length of source word

K = number of features

λk = feature weight

N(X) = normalization constant

CRF++1, an open source implementation of CRF
was used for training and decoding (i.e. transliter-
ating the names). GIZA++ (Och and Ney, 2003),
a freely available implementation of the IBM align-
ment models (Brown et al., 1993) was used to get
character level alignments for the name pairs in the
parallel names training corpora. Under this align-
ment, each character in the source word is aligned to
zero or more characters in the corresponding target
word. The following features are then generated us-
ing this character-aligned data (hereei andhi form
the i-th pair of aligned characters in the source word
and target word respectively):

• hi andej such thati− 2 ≤ j ≤ i + 2

• hi and source character bigrams ({ei−1, ei} or
{ei, ei+1})

• hi and source character trigrams ({ei−2, ei−1,
ei} or {ei−1, ei, ei+1} or {ei, ei+1, ei+2})

• hi, hi−1 andej such thati− 2 ≤ j ≤ i + 2

• hi, hi−1 and source character bigrams

• hi, hi−1 and source character trigrams

1http://crfpp.sourceforge.net/

422

3.2 Bridge Transliteration Methodology

In this section, we outline our methodology for com-
posing transitive transliteration systems betweenX

andY , using a bridge languageZ, by chaining indi-
vidual direct transliteration systems. Our approach
of using bridge transliteration for finding the best
target string (Y ∗), given the input stringX can be
represented by the following probabilistic expres-
sion:

Y ∗ = arg max
Y

P (Y |X)

=
∑

Z

P (Y,Z|X)

=
∑

Z

P (Y |Z,X) ∗ P (Z|X) (2)

We simplify the above expression, by assuming that
Y is independent ofX givenZ; the linguistic intu-
ition behind this assumption is that thetop-koutputs
of the X → Z system corresponding to a string in
X, capture all the transliteration information neces-
sary for transliterating toY . Subsequently, in sec-
tion 5 we discuss the characteristics of the effective
bridge languages to maximize the capture of neces-
sary information for the second stage of the translit-
eration, namely for generating correct strings ofZ.
Thus,

Y ∗ =
∑

Z

P (Y |Z) ∗ P (Z|X) (3)

The probabilitiesP (Y |Z) andP (Z|X) in Equation
(3) are derived from the two stages of the bridge sys-
tem. Specifically, we assume that the parallel names
corpora are available between the language pair,X

andZ, and the language pair,Z andY . We train two
baseline CRF based transliteration systems (as out-
lined in Section 3.1), between the languageX and
Z, andZ and Y . Each name in languageX was
provided as an input intoX → Z transliteration sys-
tem, and the top-10 candidate strings in languageZ

produced by this first stage system were given as an
input into the second stage systemZ → Y . The re-
sults were merged using Equation (2). Finally, the
top-10 outputs of this system were selected as the
output of the bridge system.

4 Experiments

It is a well known fact that transliteration is lossy,
and hence the transitive systems may be expected to

suffer from the accumulation of errors in each stage,
resulting in a system that is of much poorer quality
than a direct transliteration system. In this section,
we set out to quantify this expected loss in accuracy,
by a series of experiments in a set of languages us-
ing bridge transliteration systems and a baseline di-
rect systems. We conducted a comprehensive set of
experiments in a diverse set of languages, as shown
in Figure 1, that include English, Indic (Hindi and
Kannada), Slavic (Russian) and Semitic (Arabic and
Hebrew) languages. The datasets and results are de-
scribed in the following subsections.

4.1 Datasets

To be consistent, for training each of these systems,
we used approximately 15K name pairs corpora (as
this was the maximum data available for some lan-
guage pairs). While we used the NEWS 2009 train-
ing corpus (Li et al., 2009) as a part of our train-
ing data, we enhanced the data set to about 15K by
adding more data of similar characteristics (such as,
name origin, domain, length of the name strings,
etc.), taken from the same source as the original
NEWS 2009 data. For languages such as Arabic
and Hebrew which were not part of the NEWS 2009
shared task, the data was created along the same
lines. All results are reported on the standard NEWS
2009 test set, wherever applicable. The test set con-
sists of about 1,000 name pairs in languagesX and
Y ; to avoid any bias, it was made sure that there is
no overlap between the test set with the training sets
of both theX → Z andZ → Y systems. To estab-
lish a baseline, the same CRF based transliteration
system (outlined in Section 3.1) was trained with a
15K name pairs corpora between the languagesX

→ Y . The same test set used for testing the transi-
tive systems was used for testing the direct system
as well. As before, to avoid any bias, we made sure
that there is no overlap between the test set and the
training set for the direct system as well.

4.2 Results

We produce top-10 outputs from the bridge system
as well from the direct system and compare their
performance. The performance is measured using
the following standard measures,viz., top-1 accu-
racy (ACC-1) and Mean F-score. These measures
are described in detail in (Li et al., 2009). Table 1

423

Language
Pair

ACC-1 Relative change in
ACC-1

Mean F-score Relative change in
Mean F-score

Hin-Rus 0.507 0.903
Hin-Eng-Rus 0.466 -8.08% 0.886 -1.88%

Hin-Ara 0.458 0.897
Hin-Eng-Ara 0.420 -8.29% 0.876 -2.34%

Eng-Heb 0.544 0.917
Eng-Ara-Heb 0.544 0% 0.917 0%

Hin-Eng 0.422 0.884
Hin-Kan-Eng 0.382 -9.51% 0.871 -1.47%

Table 1: Stepping through an intermediate language

presents the performance measures, both for a di-
rect system (say, Hin-Rus), and a transitional sys-
tem (say, Hin-Eng-Rus), in 4 different transitional
systems, between English, Indic, Semitic and Slavic
languages. In each case, we observe that the transi-
tional systems have a slightly lower quality, with an
absolute drop in accuracy (ACC-1) of less than 0.05
(relative drop under 10%), and an absolute drop in
Mean F-Score of 0.02 (relative drop under 3%).

4.3 Analysis of Results

Intuitively, one would expect that the errors of the
two stages of the transitive transliteration system
(i.e., X → Z, andZ → Y) to compound, leading
to a considerable loss in the overall performance of
the system. Given that the accuracies of the direct
transliteration systems are as given in Table 2, the
transitive systems are expected to have accuracies
close to the product of the accuracies of the individ-
ual stages, for independent systems.

Language Pair ACC-1 Mean F-Score
Hin-Eng 0.422 0.884
Eng-Rus 0.672 0.935
Eng-Ara 0.514 0.905
Ara-Heb 1.000 1.000
Hin-Kan 0.433 0.879
Kan-Eng 0.434 0.886

Table 2: Performance of Direct Transliteration Systems

However, as we observe in Table 1, the relative
drop in the accuracy (ACC-1) is less than 10% from
that of the direct system, which goes against our in-

tuition. To identify the reasons for the better than
expected performance, we performed a detailed er-
ror analysis of each stage of the bridge translitera-
tion systems, and the results are reported in Tables 3
– 5. We draw attention to two interesting facts which
account for the better than expected performance of
the bridge system:

Improved 2nd stage performance on correct
inputs: In each one of the cases, as expected, the
ACC-1 of the first stage is same as the ACC-1 of the
X → Z system. However, we notice that the ACC-1
of the second stageon the correct strings output
in the first stage, is significantly better than the the
ACC-1 of theZ → Y system! For example, the
ACC-1 of the Eng-Rus system is 67.2% (see Table
2), but, that of the 2nd stage Eng-Rus system is
77.8%, namely, on the strings that are transliterated
correctly by the first stage. Our analysis indicate
that there are two reasons for such improvement:
First, the strings that get transliterated correctly in
the first stage are typically shorter or less ambigu-
ous and hence have a better probability of correct
transliterations in the both stages. This phenomenon
could be verified empirically: Names likegopAl
{Gopal}, rm�ш {Ramesh}, rAm {Ram} are
shorter and in general have less ambiguity on target
orthography. Second, also significantly, the use of
top-10 outputs from the first stage as input to the
second stage provides a better opportunity for the
second stage to produce correct string inZ. Again,
this phenomenon is verified by providing increasing
number oftop-n results to the 2nd stage.

424

Hi→En→Ru
En → Ru
(Stage-2)

Stage-2
Acc.

Correct Error
Hi→En Correct 263 75 77.81%
(Stage-1) Error 119 362 24.74%

Table 3: Error Analysis for Hi→En→Ru

Hi→En→Ar
En → Ar
(Stage-2)

Stage-2
Acc.

Correct Error
Hi→En Correct 221 127 63.50%
(Stage-1) Error 119 340 25.70%

Table 4: Error Analysis for Hi→En→Ar

2nd stage error correction on incorrect inputs:
The last rows in each of the above tables 3 – 5 re-
port the performance of the second stage system on
strings that were transliterated incorrectly by the first
stage. While we expected the second row to pro-
duce incorrect transliterations nearly for all inputs
(as the input themselves were incorrect inZ), we
find to our surprise that upto 25% of the erroneous
strings inZ were getting transliterated correctly in
Y ! This provides credence to our hypothesis that
sufficient transliteration information is captured in
the 1st stage output (even when incorrect) that may
be exploited in the 2nd stage. Empirically, we veri-
fied that in most cases (nearly60%) the errors were
due to the incorrectly transliterated vowels, and in
many cases, they get corrected in the second stage,
and re-ranked higher in the output. Figure 2 shows a
few examples of such error corrections in the second
stage.

Figure 2: Examples of error corrections

Hi→Ka→En
Ka → En
(Stage-2)

Stage-2
Acc.

Correct Error
Hi→Ka Correct 225 196 53.44%
(Stage-1) Error 151 400 27.40%

Table 5: Error Analysis for Hi→Ka→En

5 Characteristics of the bridge language

An interesting question that we explore in this sec-
tion is “how the choice of bridge language influence
the performance of the bridge system?”. The under-
lying assumption in transitive transliteration systems
(as expressed in Equation 3), is that“ Y is indepen-
dent ofX givenZ” . In other words, we assume that
the representations in the language willZ “capture
sufficient transliteration information fromX to pro-
duce correct strings inY ” . We hypothesize that two
parameters of the bridge language, namely, the or-
thography inventory and the phoneme-to-grapheme
entropy, that has most influence on the quality of the
transitional systems, and provide empirical evidence
for this hypothesis.

5.1 Richer Orthographic Inventory

In each of the successful bridge systems (that is,
those with a relative performance drop of less than
10%), presented in Table 1, namely,Hin-Eng-Ara,
Eng-Ara-Heb and Hin-Kan-Eng, the bridge lan-
guage has, in general, richer orthographic inven-
tory than the target language. Arabic has a reduced
set of vowels, and hence poorer orthographic inven-
tory compared with English. Similarly, between the
closely related Semitic languages Arabic-Hebrew,
there is a many-to-one mapping from Arabic to He-
brew, and between Kannada-English, Kannada has
nearly a superset of vowels and consonants as com-
pared to English or Hindi.

As an example for a poor choice ofZ, we present
a transitional system,Hindi → Arabic→ English, in
Table 6, in which the transitional languagez (Ara-
bic) has smaller orthographic inventory thanY (En-
glish).

Arabic has a reduced set of vowels and, unlike En-
glish, in most contexts short vowels are optional. As
a result, when Arabic is used as the bridge language
the loss of information (in terms of vowels) is large

425

Language
Pair

ACC-1 Relative change in
ACC-1

Hin-Eng 0.422
Hin-Ara-Eng 0.155 -64.28%

Table 6: Incorrect choice of bridge language

and the second stage system has no possibility of re-
covering from such a loss. The performance of the
bridge system confirms such a drastic drop in ACC-
1 of nearly 64% compared with the direct system.

5.2 Higher Phoneme-Grapheme Entropy

We also find that the entropy in phoneme - grapheme
mapping of a language indicate a good correlation
with a good choice for a transition language. In
a good transitional system (say,Hin-Eng-Rus), En-
glish has a more ambiguous phoneme-to-grapheme
mapping than Russian; for example, in English the
phoneme ‘s’ as inSam or Cecilia can be repre-
sented by the graphemes ‘c’ and ‘s’, whereas Rus-
sian uses only a single character to represent this
phoneme. In such cases, the ambiguity introduced
by the bridge language helps in recovering from er-
rors in theX → Z system. The relative loss of
ACC-1 for this transitional system is only about 8%.
The Table 7 shows another transitional system, in
which a poor choice was for the transitional lan-
guage was made.

Language
Pair

ACC-1 Relative change in
ACC-1

Hin-Eng 0.422
Hin-Tam-Eng 0.231 -45.26%

Table 7: Incorrect choice of bridge language

Tamil has a reduced set of consonants compared
with Hindi or English. For example, the Hindi con-
sonants (k, kh, g, gh) are represented by a sin-
gle character in Tamil. As a result, when Tamil is
used as the bridge language it looses information (in
terms of consonants) and results in a significant drop
in performance (nearly a 45% drop in ACC-1) for
the bridge system.

6 Effectiveness of Bridge Transliteration
on CLIR System

In this section, we demonstrate the effectiveness of
our bridge transliteration system on a downstream
application, namely, a Crosslingual Information Re-
trieval system. We used the standard document col-
lections from CLEF 2006 (Nardi and Peters, 2006),
CLEF 2007 (Nardi and Peters, 2007) and FIRE 2008
(FIRE, 2008). We used Hindi as the query language.
All the three fields (title, description and narration)
of the topics were used for the retrieval. Since the
collection and topics are from the previous years,
their relevance judgments were also available as a
reference for automatic evaluation.

6.1 Experimental Setup
We used primarily the statistical dictionaries gen-
erated by training statistical word alignment mod-
els on an existing Hindi-English parallel corpora.
As with any CLIR system that uses translation lex-
icon, we faced the problem of out-of-vocabulary
(OOV) query terms that need to be transliterated,
as they are typically proper names in the target lan-
guage. First, for comparison, we used the above
mentioned CLIR system with no transliteration en-
gine (Basic), and measured the crosslingual retrieval
performance. Clearly, the OOV terms would not be
converted into target language, and hence contribute
nothing to the retrieval performance. Second, we in-
tegrated a direct machine transliteration system be-
tween Hindi and English (D-HiEn), and calibrated
the improvement in performance. Third, we inte-
grate, instead of a direct system, a bridge transliter-
ation system between Hindi and English, transition-
ing through Kannada (B-HiKaEn). For both, direct
as well as bridge transliteration, we retained the top-
5 transliterations generated by the appropriate sys-
tem, for retrieval.

6.2 Results and Discussion
The results of the above experiments are given in
Table 7. The current focus of these experiments is
to answer the question ofwhether the bridge ma-
chine transliteration systems used to transliterate
the OOV words in Hindi queries to English(by step-
ping through Kannada)performs at par with a di-
rect transliteration system. As expected, enhancing
the CLIR system with a machine transliteration sys-

426

Collection CLIR System MAP Relative MAP change
from Basic

Recall Relative Recall change
from Basic

Basic 0.1463 - 0.4952 -
CLEF 2006 D-HiEn 0.1536 +4.98% 0.5151 +4.01%

B-HiKaEn 0.1529 +4.51% 0.5302 +7.06%

Basic 0.2521 - 0.7156 -
CLEF 2007 D-HiEn 0.2556 +1.38% 0.7170 + 0.19%

B-HiKaEn 0.2748 +9.00% 0.7174 + 0.25%

Basic 0.4361 - 0.8457 -
FIRE 2008 D-HiEn 0.4505 +3.30% 0.8506 +0.57%

B-HiKaEn 0.4573 +4.86% 0.8621 +1.93%

Table 8: CLIR Experiments with bridge transliteration systems

tem (D-HiEn) gives better results over a CLIR sys-
tem with no transliteration functionality (Basic). On
the standard test collections, the bridge translitera-
tion system performs in par or better than the di-
rect transliteration system in terms of MAP as well
as recall. Even though, the bridged system is of
slightly lesser quality in ACC-1 in Hi-Ka-En, com-
pared to Hi-En (see Table 1), the top-5 results had
captured the correct transliteration, as shown in our
analysis. A detailed analysis of the query transla-
tions produced by the above systems showed that in
some cases the bridge systems does produce a bet-
ter transliteration thereby leading to a better MAP.
As an illustration, consider the OOV termsv�EVкn
{Vatican} and n�-l� {Nestle} and the corre-
sponding transliterations generated by the different
systems. The Direct-HiEn system was unable to

OOV term D-HiEn B-HiKaEn
vetican vetican
veticon vettican

v�EVкn vettican vatican
(vatican) vetticon watican

wetican wetican
nesle nestle
nesly nesle

n�-l� nesley nesley
(nestle) nessle nestley

nesey nesly

Table 9: Sample output in direct and bridge systems

generate the correct transliteration in the top-5 re-
sults whereas the B-HiKaEn was able to produce the

correct transliteration in the top-5 results thereby re-
sulting in an improvement in MAP for these queries.

7 Conclusions

In this paper, we introduced the idea of bridge
transliteration systems that were developed employ-
ing well-studied orthographic approaches between
constituent languages. We empirically established
the quality of such bridge transliteration systems
and showed that quite contrary to our expectations,
the quality of such systems does not degrade dras-
tically as compared to the direct systems. Our er-
ror analysis showed that these better-than-expected
results can be attributed to (i) Better performance
(∼10-12%) of the second stage system on the strings
transliterated correctly by the first stage system and
(ii) Significant (∼25%) error correction in the sec-
ond stage. Next, we highlighted that the perfor-
mance of such bridge systems will be satisfactory as
long as the orthographic inventory of the bridge lan-
guage is either richer or more ambiguous as com-
pared to the target language. We showed that our
results are consistent with this hypothesis and pro-
vided two examples where there is a significant drop
in the accuracy when the bridge language violates
the above constraints. Finally, we showed that a
state of the art CLIR system integrated with a bridge
transliteration system performs in par with the same
CLIR system integrated with a direct translitera-
tion system, vindicating our claim that such bridge
transliteration systems can be use in real-world ap-
plications to alleviate the resource requirement of
nC2 parallel names corpora.

427

References

Peter E Brown, Vincent J. Della Pietra, Stephen A. Della
Pietra, and Robert L. Mercer. 1993. The mathemat-
ics of statistical machine translation: parameter esti-
mation.Computational Linguistics, 19:263–311.

FIRE. 2008. Forum for information retrieval evaluation.
Isao Goto, Naoto Kato, Noriyoshi Uratani, and Terumasa

Ehara. 2003. Transliteration considering context in-
formation based on the maximum entropy method. In
Proceedings of MT-Summit IX, pages 125–132.

Sung Young Jung, SungLim Hong, and Eunok Paek.
2000. An english to korean transliteration model of
extended markov window. InProceedings of the 18th
conference on Computational linguistics, pages 383–
389.

Byung-Ju Kang and Key-Sun Choi. 2000. Automatic
transliteration and back-transliteration by decision tree
learning. InProceedings of the 2nd International Con-
ference on Language Resources and Evaluation, pages
1135–1411.

Kevin Knight and Jonathan Graehl. 1997. Machine
transliteration. InComputational Linguistics, pages
128–135.

John D. Lafferty, Andrew Mccallum, and Fernando C. N.
Pereira. 2001. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data.
In ICML ’01: Proceedings of the Eighteenth Interna-
tional Conference on Machine Learning, pages 282–
289, San Francisco, CA, USA.

Jae Sung Lee and Key-Sun Choi. 1998. English to ko-
rean statistical transliteration for information retrieval.
In Computer Processing of Oriental Languages, pages
17–37.

Haizhou Li, A Kumaran, , Min Zhang, and Vladimir Per-
vouvhine. 2009. Whitepaper of news 2009 machine
transliteration shared task. InProceedings of the 2009
Named Entities Workshop: Shared Task on Transliter-
ation (NEWS 2009), pages 19–26, Suntec, Singapore,
August. Association for Computational Linguistics.

Thomas Mandl and Christa Womser-Hacker. 2004. How
do named entities contribute to retrieval effectiveness?
In CLEF, pages 833–842.

Preslav Nakov and Hwee Tou Ng. 2009. Improved statis-
tical machine translation for resource-poor languages
using related resource-rich languages. InProceedings
of the 2009 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1358–1367, Singa-
pore, August. Association for Computational Linguis-
tics.

A Nardi and C Peters. 2006. Working notes for the clef
2006 workshop.

A Nardi and C Peters. 2007. Working notes for the clef
2007 workshop.

Franz Josef Och and Hermann Ney. 2003. A system-
atic comparison of various statistical alignment mod-
els. Computational Linguistics, 29(1):19–51.

Jong-hoon Oh and Key-Sun Choi. 2002. An english-
korean transliteration model using pronunciation and
contextual rules. InProceedings of the 19th In-
ternational Conference on Computational Linguistics
(COLING), pages 758–764.

Bonnie Glover Stalls and Kevin Knight. 1998. Trans-
lating names and technical terms in arabic text. In
Proceedings of COLING/ACL Workshop on Computa-
tional Approaches to Semitic Languages, pages 34–41.

Raghavendra Udupa, K Saravanan, Anton Bakalov, and
Abhijit Bhole. 2009. ”they are out there, if you know
where to look: Mining transliterations of oov query
terms for cross language information retrieval”. In
ECIR’09: Proceedings of the 31st European Confer-
ence on IR research on Advances in Information Re-
trieval, pages 437–448, Toulouse, France.

Suryaganesh Veeravalli, Sreeharsha Yella, Prasad Pin-
gali, and Vasudeva Varma. 2008. Statistical translit-
eration for cross language information retrieval using
hmm alignment model and crf. InProceedings of the
2nd workshop on Cross Lingual Information Access
(CLIA) Addressing the Information Need of Multilin-
gual Societies.

Hua Wu and Haifeng Wang. 2007. Pivot language
approach for phrase-based statistical machine transla-
tion. Machine Translation, 21(3):165–181.

428

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 429–437,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Discriminative Learning over Constrained Latent Representations

Ming-Wei Chang and Dan Goldwasser and Dan Roth and Vivek Srikumar
University of Illinois at Urbana Champaign

Urbana, IL 61801
{mchang,goldwas1,danr,vsrikum2}@uiuc.edu

Abstract

This paper proposes a general learning frame-
work for a class of problems that require learn-
ing over latent intermediate representations.
Many natural language processing (NLP) de-
cision problems are defined over an expressive
intermediate representation that is not explicit
in the input, leaving the algorithm with both
the task of recovering a good intermediate rep-
resentation and learning to classify correctly.
Most current systems separate the learning
problem into two stages by solving the first
step of recovering the intermediate representa-
tion heuristically and using it to learn the final
classifier. This paper develops a novel joint
learning algorithm for both tasks, that uses the
final prediction to guide the selection of the
best intermediate representation. We evalu-
ate our algorithm on three different NLP tasks
– transliteration, paraphrase identification and
textual entailment – and show that our joint
method significantly improves performance.

1 Introduction
Many NLP tasks can be phrased as decision prob-

lems over complex linguistic structures. Successful
learning depends on correctly encoding these (of-
ten latent) structures as features for the learning sys-
tem. Tasks such as transliteration discovery (Kle-
mentiev and Roth, 2008), recognizing textual en-
tailment (RTE) (Dagan et al., 2006) and paraphrase
identification (Dolan et al., 2004) are a few proto-
typical examples. However, the input to such prob-
lems does not specify the latent structures and the
problem is defined in terms of surface forms only.
Most current solutions transform the raw input into

a meaningful intermediate representation1, and then
encode its structural properties as features for the
learning algorithm.

Consider the RTE task of identifying whether the
meaning of a short text snippet (called the hypoth-
esis) can be inferred from that of another snippet
(called the text). A common solution (MacCartney
et al., 2008; Roth et al., 2009) is to begin by defining
an alignment over the corresponding entities, pred-
icates and their arguments as an intermediate rep-
resentation. A classifier is then trained using fea-
tures extracted from the intermediate representation.
The idea of using a intermediate representation also
occurs frequently in other NLP tasks (Bergsma and
Kondrak, 2007; Qiu et al., 2006).

While the importance of finding a good inter-
mediate representation is clear, emphasis is typi-
cally placed on the later stage of extracting features
over this intermediate representation, thus separat-
ing learning into two stages – specifying the la-
tent representation, and then extracting features for
learning. The latent representation is obtained by an
inference process using predefined models or well-
designed heuristics. While these approaches often
perform well, they ignore a useful resource when
generating the latent structure – the labeled data for
the final learning task. As we will show in this pa-
per, this results in degraded performance for the ac-
tual classification task at hand. Several works have
considered this issue (McCallum et al., 2005; Gold-
wasser and Roth, 2008b; Chang et al., 2009; Das
and Smith, 2009); however, they provide solutions

1In this paper, the phrases “intermediate representation” and
“latent representation” are used interchangeably.

429

that do not easily generalize to new tasks.
In this paper, we propose a unified solution to the

problem of learning to make the classification deci-
sion jointly with determining the intermediate rep-
resentation. Our Learning Constrained Latent Rep-
resentations (LCLR) framework is guided by the in-
tuition that there is no intrinsically good intermedi-
ate representation, but rather that a representation is
good only to the extent to which it improves perfor-
mance on the final classification task. In the rest of
this section we discuss the properties of our frame-
work and highlight its contributions.

Learning over Latent Representations This pa-
per formulates the problem of learning over latent
representations and presents a novel and general so-
lution applicable to a wide range of NLP applica-
tions. We analyze the properties of our learning
solution, thus allowing new research to take advan-
tage of a well understood learning and optimization
framework rather than an ad-hoc solution. We show
the generality of our framework by successfully ap-
plying it to three domains: transliteration, RTE and
paraphrase identification.

Joint Learning Algorithm In contrast to most
existing approaches that employ domain specific
heuristics to construct intermediate representations
to learn the final classifier, our algorithm learns to
construct the optimal intermediate representation to
support the learning problem. Learning to represent
is a difficult structured learning problem however,
unlike other works that use labeled data at the in-
termediate level, our algorithm only uses the binary
supervision supplied for the final learning problem.

Flexible Inference Successful learning depends
on constraining the intermediate representation with
task-specific knowledge. Our framework uses the
declarative Integer Linear Programming (ILP) infer-
ence formulation, which makes it easy to define the
intermediate representation and to inject knowledge
in the form of constraints. While ILP has been ap-
plied to structured output learning, to the best of our
knowledge, this is the first work that makes use of
ILP in formalizing the general problem of learning
intermediate representations.

2 Preliminaries
We introduce notation using the Paraphrase Iden-

tification task as a running example. This is the bi-

nary classification task of identifying whether one
sentence is a paraphrase of another. A paraphrase
pair from the MSR Paraphrase corpus (Quirk et al.,
2004) is shown in Figure 1. In order to identify
that the sentences paraphrase each other , we need
to align constituents of these sentences. One possi-
ble alignment is shown in the figure, in which the
dotted edges correspond to the aligned constituents.
An alignment can be specified using binary variables
corresponding to every edge between constituents,
indicating whether the edge is included in the align-
ment. Different activations of these variables induce
the space of intermediate representations.

The notification was first reported Friday by MSNBC.

MSNBC.com first reported the CIA request on Friday.

Figure 1: The dotted lines represent a possible intermediate
representation for the paraphrase identification task. Since dif-
ferent representation choices will impact the binary identifica-
tion decision directly, our approach chooses the representation
that facilitates the binary learning task.

To formalize this setting, let x denote the input
to a decision function, which maps x to {−1, 1}.
We consider problems where this decision depends
on an intermediate representation (for example, the
collection of all dotted edges in Figure 1), which can
be represented by a binary vector h.

In the literature, a common approach is to sepa-
rate the problem into two stages. First, a genera-
tion stage predicts h for each x using a pre-defined
model or a heuristic. This is followed by a learn-
ing stage, in which the classifier is trained using h.
In our example, if the generation stage predicts the
alignment shown, then the learning stage would use
the features computed based on the alignments. For-
mally, the two-stage approach uses a pre-defined in-
ference procedure that finds an intermediate repre-
sentation h′. Using features Φ(x,h′) and a learned
weight vector θ, the example is classified as positive
if θT Φ(x,h′) ≥ 0.

However, in the two stage approach, the latent
representation, which is provided to the learning al-
gorithm, is determined before learning starts, and
without any feedback from the final task. It is dic-
tated by the intuition of the developer. This approach
makes two implicit assumptions: first, it assumes

430

the existence of a “correct” latent representation and,
second, that the model or heuristic used to generate
it is the correct one for the learning problem at hand.

3 Joint Learning with an Intermediate
Representation

In contrast to two-stage approaches, we use the
annotated data for the final classification task to
learn a suitable intermediate representation which,
in turn, helps the final classification.

Choosing a good representation is an optimization
problem that selects which of the elements (features)
of the representation best contribute to success-
ful classification given some legitimacy constraints;
therefore, we (1) set up the optimization framework
that finds legitimate representations (Section 3.1),
and (2) learn an objective function for this optimiza-
tion problem, such that it makes the best final deci-
sion (Section 3.2.)

3.1 Inference

Our goal is to correctly predict the final label
rather than matching a “gold” intermediate repre-
sentation. In our framework, attempting to learn the
final decision drives both the selection of the inter-
mediate representation and the final predictions.

For each x, let Γ(x) be the set of all substructures
of all possible intermediate representations. In Fig-
ure 1, this could be the set of all alignment edges
connecting the constituents of the sentences. Given
a vocabulary of such structures of sizeN , we denote
intermediate representations by h ∈ {0, 1}N , which
“select” the components of the vocabulary that con-
stitute the intermediate representation. We define
φs(x) to be a feature vector over the substructure
s, which is used to describe the characteristics of s,
and define a weight vector u over these features.

Let C denote the set of feasible intermediate repre-
sentations h, specified by means of linear constraints
over h. While Γ(x) might be large, the set of those
elements in h that are active can be constrained by
controlling C. After we have learned a weight vec-
tor u that scores intermediate representations for the
final classification task, we define our decision func-
tion as

fu(x) = max
h∈C

uT
∑

s∈Γ(x)

hsφs(x), (1)

and classify the input as positive if fu(x) ≥ 0.

In Eq. (1), uTφs(x) is the score associated with
the substructure s, and fu(x) is the score for the en-
tire intermediate representation. Therefore, our de-
cision function fu(x) ≥ 0 makes use of the interme-
diate representation and its score to classify the in-
put. An input is labeled as positive if its underlying
intermediate structure allows it to cross the decision
threshold. The intermediate representation is cho-
sen to maximize the overall score of the input. This
design is especially beneficial for many phenomena
in NLP, where only positive examples have a mean-
ingful underlying structure. In our paraphrase iden-
tification example, good alignments generally exist
only for positive examples.

One unique feature of our framework is that we
treat Eq. (1) as an Integer Linear Programming
(ILP) instance. A concrete instantiation of this set-
ting to the paraphrase identification problem, along
with the actual ILP formulation is shown in Section
4.

3.2 Learning

We now present an algorithm that learns the
weight vector u. For a loss function ` : R → R,
the goal of learning is to solve the following opti-
mization problem:

min
u

λ

2
‖u‖2 +

∑
i

` (−yifu(xi)) (2)

Here, λ is the regularization parameter. Substituting
Eq. (1) into Eq. (2), we get

min
u

λ

2
‖u‖2+

∑
i

`

−yi max
h∈C

uT
∑

s∈Γ(x)

hsφs(xi)

 (3)

Note that there is a maximization term inside the
global minimization problem, making Eq. (3) a non-
convex problem. The minimization drives u towards
smaller empirical loss while the maximization uses
u to find the best representation for each example.

The algorithm for Learning over Constrained La-
tent Representations (LCLR) is listed in Algorithm
1. In each iteration, first, we find the best feature
representations for all positive examples (lines 3-5).
This step can be solved with an off-the-shelf ILP
solver. Having fixed the representations for the pos-
itive examples, we update the u by solving Eq. (4)
at line 6 in the algorithm. It is important to observe

431

Algorithm 1 LCLR :The algorithm that optimizes (3)

1: initialize: u← u0

2: repeat
3: for all positive examples (xi, yi = 1) do
4: Find h∗i ← arg maxh∈C

∑
s
hsu

Tφs(xi)

5: end for
6: Update u by solving

min
u

λ

2
‖u‖2 +

∑
i:yi=1

`(−uT
∑

s

h∗i,sφs(xi))

+
∑

i:yi=−1

`(max
h∈C

uT
∑

s

hsφs(xi)) (4)

7: until convergence
8: return u

that for positive examples in Eq. (4), we use the in-
termediate representations h∗ from line 4.

Algorithm 1 satisfies the following property:

Theorem 1 If the loss function ` is a non-
decreasing function, then the objective function
value of Eq. (3) is guaranteed to decrease in every
iteration of Algorithm 1. Moreover, if the loss func-
tion is also convex, then Eq. (4) in Algorithm 1 is
convex.

Due to the space limitation, we omit the proof.
Theoretically, we can use any loss function that

satisfies the conditions of the theorem. In the exper-
iments in this paper, we use the squared-hinge loss
function: `(−yfu(x)) = max(0, 1− yfu(x))2.

Recall that Eq. (4) is not the traditional SVM or
logistic regression formulation. This is because in-
side the inner loop, the best representation for each
negative example must be found. Therefore, we
need to perform inference for every negative exam-
ple when updating the weight vector solution. In-
stead of solving a difficult non-convex optimization
problem (Eq. (3)), LCLR iteratively solves a series
of easier problems (Eq. (4)). This is especially true
for our loss function because Eq. (4) is convex and
can be solved efficiently.

We use a cutting plane algorithm to solve Eq. (4).
A similar idea has been proposed in (Joachims et al.,
2009). The algorithm for solving Eq. (4) is presented
as Algorithm 2. This algorithm uses a “cache” Hj

to store all intermediate representations for negative
examples that have been seen in previous iterations

Algorithm 2 Cutting plane algorithm to optimize Eq. (4)

1: for each negative example xj , Hj ← ∅
2: repeat
3: for each negative example xj do
4: Find h∗j ← arg maxh∈C

∑
s hsu

Tφs(xj)
5: Hj ← Hj ∪ {h∗j}
6: end for
7: Solve

min
u

λ

2
‖u‖2 +

∑
i:yi=1

`(−uT
∑

s

h∗i,sφs(xi))

+
∑

i:yi=−1

`(max
h∈Hj

uT
∑

s

hsφs(xi)) (5)

8: until no new element is added to any Hj

9: return u

(lines 3-6) 2. The difference between Eq. (5) in line
7 of Algorithm 2 and Eq. (4) is that in Eq. (5), we do
not search over the entire space of intermediate rep-
resentations. The search space for the minimization
problem Eq. (5) is restricted to the cache Hj . There-
fore, instead of solving the minimization problem
Eq. (4), we can now solve several simpler problems
shown in Eq. (5). The algorithm is guaranteed to
stop (line 8) because the space of intermediate rep-
resentations is finite. Furthermore, in practice, the
algorithm needs to consider only a small subset of
“hard” examples before it converges.

Inspired by (Hsieh et al., 2008), we apply an effi-
cient coordinate descent algorithm for the dual for-
mulation of (5) which is guaranteed to find its global
minimum. Due to space considerations, we do not
present the derivation of dual formulation and the
details of the optimization algorithm.

4 Encoding with ILP: A Paraphrase
Identification Example

In this section, we define the latent representation
for the paraphrase identification task. Unlike the ear-
lier example, where we considered the alignment of
lexical items, we describe a more complex interme-
diate representation by aligning graphs created using
semantic resources.

An input example is represented as two acyclic

2In our implementation, we keep a global cache Hj for each
negative example xj . Therefore, in Algorithm 2, we start with
a non-empty cache improving the speed significantly.

432

graphs, G1 and G2, corresponding to the first
and second input sentences. Each vertex in the
graph contains word information (lemma and part-
of-speech) and the edges denote dependency rela-
tions, generated by the Stanford parser (Klein and
Manning, 2003). The intermediate representation
for this task can now be defined as an alignment be-
tween the graphs, which captures lexical and syntac-
tic correlations between the sentences.

We use V (G) and E(G) to denote the set of ver-
tices and edges in G respectively, and define four
hidden variable types to encode vertex and edge
mappings between G1 and G2.

• The word-mapping variables, denoted by
hv1,v2 , define possible pairings of vertices,
where v1 ∈ V (G1) and v2 ∈ V (G2).
• The edge-mapping variables, denoted by
he1,e2 , define possible pairings of the graphs
edges, where e1 ∈ E(G1) and e2 ∈ E(G2).
• The word-deletion variables hv1,∗ (or h∗,v2) al-

low for vertices v1 ∈ V (G1) (or v2 ∈ V (G2))
to be deleted. This accounts for omission of
words (like function words).
• The edge-deletion variables, he1,∗ (or h∗,e2) al-

low for deletion of edges from G1 (or G2).

Our inference problem is to find the optimal set of
hidden variable activations, restricted according to
the following set of linear constraints

• Each vertex inG1 (orG2) can either be mapped
to a single vertex in G2 (or G1) or marked as
deleted. In terms of the word-mapping and
word-deletion variables, we have

∀v1 ∈ V (G1);hv1,∗ +
∑

v2∈V (G2)

hv1,v2 = 1 (6)

∀v2 ∈ V (G2);h∗,v2 +
∑

v1∈V (G1)

hv1,v2 = 1 (7)

• Each edge in G1 (or G2) can either be mapped
to a single edge in G2 (or G1) or marked as
deleted. In terms of the edge-mapping and
edge-deletion variables, we have

∀e1 ∈ E(G1);he1,∗ +
∑

e2∈E(G2)

he1,e2 = 1 (8)

∀e2 ∈ E(G2);h∗,e2 +
∑

e1∈E(G1)

he1,e2 = 1 (9)

• The edge mappings can be active if, and only
if, the corresponding node mappings are ac-
tive. Suppose e1 = (v1, v

′
1) ∈ E(G1) and

e2 = (v2, v
′
2) ∈ E(G2), where v1, v

′
1 ∈ V (G1)

and v2, v
′
2 ∈ V (G2). Then, we have

hv1,v2 + hv′
1,v′

2
− he1,e2 ≤ 1 (10)

hv1,v2 ≥ he1,e2 ;hv′
1,v′

2
≥ he1,e2 (11)

These constraints define the feasible set for the in-
ference problem specified in Equation (1). This in-
ference problem can be formulated as an ILP prob-
lem with the objective function from Equation (1):

max
h

∑
s

hsu
Tφs(x)

subject to (6)-(11); ∀s;hs ∈ {0, 1} (12)

This example demonstrates the use of integer linear
programming to define intermediate representations
incorporating domain intuition.

5 Experiments
We applied our framework to three different NLP

tasks: transliteration discovery (Klementiev and
Roth, 2008), RTE (Dagan et al., 2006), and para-
phrase identification (Dolan et al., 2004).

Our experiments are designed to answer the fol-
lowing research question: “Given a binary classifi-
cation problem defined over latent representations,
will the joint LCLR algorithm perform better than a
two-stage approach?” To ensure a fair comparison,
both systems use the same feature functions and def-
inition of intermediate representation. We use the
same ILP formulation in both configurations, with a
single exception – the objective function parameters:
the two stage approach uses a task-specific heuristic,
while LCLR learns it iteratively.

The ILP formulation results in very strong two
stage systems. For example, in the paraphrase iden-
tification task, even our two stage system is the cur-
rent state-of-the-art performance. In these settings,
the improvement obtained by our joint approach is
non-trivial and can be clearly attributed to the su-
periority of the joint learning algorithm. Interest-
ingly, we find that our more general approach is bet-
ter than specially designed joint approaches (Gold-
wasser and Roth, 2008b; Das and Smith, 2009).

Since the objective function (3) of the joint ap-
proach is not convex, a good initialization is re-
quired. We use the weight vector learned by the two

433

stage approach as the starting point for the joint ap-
proach. The algorithm terminates when the relative
improvement of the objective is smaller than 10−5.

5.1 Transliteration Discovery

Transliteration discovery is the problem of iden-
tifying if a word pair, possibly written using two
different character sets, refers to the same underly-
ing entity. The intermediate representation consists
of all possible character mappings between the two
character sets. Identifying this mapping is not easy,
as most writing systems do not perfectly align pho-
netically and orthographically; rather, this mapping
can be context-dependent and ambiguous.

For an input pair of words (w1, w2), the interme-
diate structure h is a mapping between their charac-
ters, with the latent variable hij indicating if the ith

character in w1 is aligned to the jth character in w2.
The feature vector associated with the variable hij

contains unigram character mapping, bigram char-
acter mapping (by considering surrounding charac-
ters). We adopt the one-to-one mapping and non-
crossing constraint used in (Chang et al., 2009).

We evaluated our system using the English-
Hebrew corpus (Goldwasser and Roth, 2008a),
which consists of 250 positive transliteration pairs
for training, and 300 pairs for testing. As negative
examples for training, we sample 10% from random
pairings of words from the positive data. We report
two evaluation measurements – (1) the Mean Recip-
rocal Rank (MRR), which is the average of the mul-
tiplicative inverse of the rank of the correct answer,
and (2) the accuracy (Acc), which is the percentage
of the top rank candidates being correct.

We initialized the two stage inference process as
detailed in (Chang et al., 2009) using a Romaniza-
tion table to assign uniform weights to prominent
character mappings. This initialization procedure
resembles the approach used in (Bergsma and Kon-
drak, 2007). An alignment is first built by solving
the constrained optimization problem. Then, a sup-
port vector machine with squared-hinge loss func-
tion is used to train a classifier using features ex-
tracted from the alignment. We refer to this two
stage approach as Alignment+Learning.

The results summarized in Table 1 show the sig-
nificant improvement obtained by the joint approach
(95.4% MRR) compared to the two stage approach

Transliteration System Acc MRR
(Goldwasser and Roth,
2008b)

N/A 89.4

Alignment + Learning 80.0 85.7
LCLR 92.3 95.4

Table 1: Experimental results for transliteration. We compare
a two-stage system: “Alignment+Learning” with LCLR, our
joint algorithm. Both “Alignment+Learning” and LCLR use
the same features and the same intermediate representation def-
inition.

(85.7%). Moreover, LCLR outperforms the joint
system introduced in (Goldwasser and Roth, 2008b).

5.2 Textual Entailment

Recognizing Textual Entailment (RTE) is an im-
portant textual inference task of predicting if a given
text snippet, entails the meaning of another (the hy-
pothesis). In many current RTE systems, the entail-
ment decision depends on successfully aligning the
constituents of the text and hypothesis, accounting
for the internal linguistic structure of the input.

The raw input – the text and hypothesis – are
represented as directed acyclic graphs, where ver-
tices correspond to words. Directed edges link verbs
to the head words of semantic role labeling argu-
ments produced by (Punyakanok et al., 2008). All
other words are connected by dependency edges.
The intermediate representation is an alignment be-
tween the nodes and edges of the graphs. We used
three hidden variable types from Section 4 – word-
mapping, word-deletion and edge-mapping, along
with the associated constraints as defined earlier.
Since the text is typically much longer than the hy-
pothesis, we create word-deletion latent variables
(and features) only for the hypothesis.

The second column of Table 2 lists the resources
used to generate features corresponding to each hid-
den variable type. For word-mapping variables, the
features include a WordNet based metric (WNSim),
indicators for the POS tags and negation identifiers.
We used the state-of-the-art coreference resolution
system of (Bengtson and Roth, 2008) to identify the
canonical entities for pronouns and extract features
accordingly. For word deletion, we use only the POS
tags of the corresponding tokens (generated by the
LBJ POS tagger3) to generate features. For edge

3
http://L2R.cs.uiuc.edu/˜cogcomp/software.php

434

Hidden RTE Paraphrase
Variable features features
word-mapping WordNet, POS,

Coref, Neg
WordNet, POS,
NE, ED

word-deletion POS POS, NE
edge-mapping NODE-INFO NODE-INFO,

DEP
edge-deletion N/A DEP

Table 2: Summary of latent variables and feature resources for
the entailment and paraphrase identification tasks. See Section
4 for an explanation of the hidden variable types. The linguistic
resources used to generate features are abbreviated as follows –
POS: Part of speech, Coref: Canonical coreferent entities; NE:
Named Entity, ED: Edit distance, Neg: Negation markers, DEP:
Dependency labels, NODE-INFO: corresponding node align-
ment resources, N/A: Hidden variable not used.

Entailment System Acc
Median of TAC 2009 systems 61.5
Alignment + Learning 65.0
LCLR 66.8

Table 3: Experimental results for recognizing textual entail-
ment. The first row is the median of best performing systems of
all teams that participated in the RTE5 challenge (Bentivogli et
al., 2009). Alignment + Learning is our two-stage system im-
plementation, and LCLR is our joint learning algorithm. Details
about these systems are provided in the text.

mapping variables, we include the features of the
corresponding word mapping variables, scaled by
the word similarity of the words forming the edge.

We evaluated our system using the RTE-5
data (Bentivogli et al., 2009), consisting of 600 sen-
tence pairs for training and testing respectively, in
which positive and negative examples are equally
distributed. In these experiments the joint LCLR al-
gorithm converged after 5 iterations.

For the two stage system, we used WN-
Sim to score alignments during inference. The
word-based scores influence the edge variables
via the constraints. This two-stage system (the
Alignment+Learning system) is significantly better
than the median performance of the RTE-5 submis-
sions. Using LCLR further improves the result by al-
most 2%, a substantial improvement in this domain.

5.3 Paraphrase Identification

Our final task is Paraphrase Identification, dis-
cussed in detail at Section 4. We use all the four
hidden variable types described in that section. The
features used are similar to those described earlier

Paraphrase System Acc
Experiments using (Dolan et al., 2004)
(Qiu et al., 2006) 72.00
(Das and Smith, 2009) 73.86
(Wan et al., 2006) 75.60
Alignment + Learning 76.23
LCLR 76.41
Experiments using Extended data set
Alignment + Learning 72.00
LCLR 72.75

Table 4: Experimental Result For Paraphrasing Identification.
Our joint LCLR approach achieves the best results compared
to several previously published systems, and our own two stage
system implementation (Alignment + Learning). We evaluated
the systems performance across two datasets: (Dolan et al.,
2004) dataset and the Extended dataset, see the text for details.
Note that LCLR outperforms (Das and Smith, 2009), which is a
specifically designed joint approach for this task.

for the RTE system and are summarized in Table 2.
We used the MSR paraphrase dataset of (Dolan

et al., 2004) for empirical evaluation. Additionally,
we generated a second corpus (called the Extended
dataset) by sampling 500 sentence pairs from the
MSR dataset for training and using the entire test
collection of the original dataset. In the Extended
dataset, for every sentence pair, we extended the
longer sentence by concatenating it with itself. This
results in a more difficult inference problem because
it allows more mappings between words. Note that
the performance on the original dataset sets the ceil-
ing on the second one.

The results are summarized in Table 4. The first
part of the table compares the LCLR system with
a two stage system (Alignment + Learning) and
three published results that use the MSR dataset.
(We only list single systems in the table4) Inter-
estingly, although still outperformed by our joint
LCLR algorithm, the two stage system is able per-
form significantly better than existing systems for
that dataset (Qiu et al., 2006; Das and Smith, 2009;
Wan et al., 2006). We attribute this improvement,
consistent across both the ILP based systems, to the
intermediate representation we defined.

We hypothesize that the similarity in performance
between the joint LCLR algorithm and the two stage

4Previous work (Das and Smith, 2009) has shown that com-
bining the results of several systems improves performance.

435

(Alignment + Learning) systems is due to the limited
intermediate representation space for input pairs in
this dataset. We evaluated these systems on the more
difficult Extended dataset. Results indeed show that
the margin between the two systems increases as the
inference problem becomes harder.

6 Related Work
Recent NLP research has largely focused on two-

stage approaches. Examples include RTE (Zanzotto
and Moschitti, 2006; MacCartney et al., 2008; Roth
et al., 2009); string matching (Bergsma and Kon-
drak, 2007); transliteration (Klementiev and Roth,
2008); and paraphrase identification (Qiu et al.,
2006; Wan et al., 2006).

(MacCartney et al., 2008) considered construct-
ing a latent representation to be an independent task
and used manually labeled alignment data (Brockett,
2007) to tune the inference procedure parameters.
While this method identifies alignments well, it does
not improve entailment decisions. This strengthens
our intuition that the latent representation should be
guided by the final task.

There are several exceptions to the two-stage ap-
proach in the NLP community (Haghighi et al.,
2005; McCallum et al., 2005; Goldwasser and Roth,
2008b; Das and Smith, 2009); however, the interme-
diate representation and the inference for construct-
ing it are closely coupled with the application task.
In contrast, LCLR provides a general formulation
that allows the use of expressive constraints, mak-
ing it applicable to many NLP tasks.

Unlike other latent variable SVM frameworks
(Felzenszwalb et al., 2009; Yu and Joachims, 2009)
which often use task-specific inference procedure,
LCLR utilizes the declarative inference framework
that allows using constraints over intermediate rep-
resentation and provides a general platform for a
wide range of NLP tasks.

The optimization procedure in this work and
(Felzenszwalb et al., 2009) are quite different.
We use the coordinate descent and cutting-plane
methods ensuring we have fewer parameters and
the inference procedure can be easily parallelized.
Our procedure also allows different loss functions.
(Cherry and Quirk, 2008) adopts the Latent SVM al-
gorithm to define a language model. Unfortunately,
their implementation is not guaranteed to converge.

In CRF-like models with latent variables (McCal-

lum et al., 2005), the decision function marginal-
izes over the all hidden states when presented with
an input example. Unfortunately, the computational
cost of applying their framework is prohibitive with
constrained latent representations. In contrast, our
framework requires only the best hidden representa-
tion instead of marginalizing over all possible repre-
sentations, thus reducing the computational effort.

7 Conclusion
We consider the problem of learning over an inter-

mediate representation. We assume the existence of
a latent structure in the input, relevant to the learn-
ing problem, but not accessible to the learning algo-
rithm. Many NLP tasks fall into these settings and
each can consider a different hidden input structure.
We propose a unifying thread for the different prob-
lems and present a novel framework for Learning
over Constrained Latent Representations (LCLR).
Our framework can be applied to many different la-
tent representations such as parse trees, orthographic
mapping and tree alignments. Our approach con-
trasts with existing work in which learning is done
over a fixed representation, as we advocate jointly
learning it with the final task.

We successfully apply the proposed framework to
three learning tasks – Transliteration, Textual En-
tailment and Paraphrase Identification. Our joint
LCLR algorithm achieves superior performance in
all three tasks. We attribute the performance im-
provement to our novel training algorithm and flex-
ible inference procedure, allowing us to encode do-
main knowledge. This presents an interesting line of
future work in which more linguistic intuitions can
be encoded into the learning problem. For these rea-
sons, we believe that our framework provides an im-
portant step forward in understanding the problem
of learning over hidden structured inputs.

Acknowledgment We thank James Clarke and Mark Sam-

mons for their insightful comments. This research was partly sponsored

by the Army Research Laboratory (ARL) (accomplished under Cooper-

ative Agreement Number W911NF-09-2-0053) and by Air Force Re-

search Laboratory (AFRL) under prime contract no. FA8750-09-C-

0181. Any opinions, findings, and conclusion or recommendations ex-

pressed in this material are those of the author(s) and do not necessarily

reflect the view of the ARL or of AFRL.

436

References
E. Bengtson and D. Roth. 2008. Understanding the value

of features for coreference resolution. In EMNLP.
L. Bentivogli, I. Dagan, H. T. Dang, D. Giampiccolo, and

B. Magnini. 2009. The fifth PASCAL recognizing
textual entailment challenge. In Proc. of TAC Work-
shop.

S. Bergsma and G. Kondrak. 2007. Alignment-based
discriminative string similarity. In ACL.

C. Brockett. 2007. Aligning the RTE 2006 corpus.
In Technical Report MSR-TR-2007-77, Microsoft Re-
search.

M. Chang, D. Goldwasser, D. Roth, and Y. Tu. 2009.
Unsupervised constraint driven learning for transliter-
ation discovery. In NAACL.

C. Cherry and C. Quirk. 2008. Discriminative, syntactic
language modeling through latent svms. In Proc. of
the Eighth Conference of AMTA.

I. Dagan, O. Glickman, and B. Magnini, editors. 2006.
The PASCAL Recognising Textual Entailment Chal-
lenge.

D. Das and N. A. Smith. 2009. Paraphrase identifica-
tion as probabilistic quasi-synchronous recognition. In
ACL.

W. Dolan, C. Quirk, and C. Brockett. 2004. Unsuper-
vised construction of large paraphrase corpora: Ex-
ploiting massively parallel news sources. In COLING.

P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and
D. Ramanan. 2009. Object detection with discrimina-
tively trained part based models. IEEE Transactions
on Pattern Analysis and Machine Intelligence.

D. Goldwasser and D. Roth. 2008a. Active sample se-
lection for named entity transliteration. In ACL. Short
Paper.

D. Goldwasser and D. Roth. 2008b. Transliteration as
constrained optimization. In EMNLP.

A. Haghighi, A. Ng, and C. Manning. 2005. Robust
textual inference via graph matching. In HLT-EMNLP.

C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and
S. Sundararajan. 2008. A dual coordinate descent
method for large-scale linear svm. In ICML.

T. Joachims, T. Finley, and Chun-Nam Yu. 2009.
Cutting-plane training of structural svms. Machine
Learning.

D. Klein and C. D. Manning. 2003. Fast exact inference
with a factored model for natural language parsing. In
NIPS.

A. Klementiev and D. Roth. 2008. Named entity translit-
eration and discovery in multilingual corpora. In
Cyril Goutte, Nicola Cancedda, Marc Dymetman, and
George Foster, editors, Learning Machine Translation.

B. MacCartney, M. Galley, and C. D. Manning. 2008.
A phrase-based alignment model for natural language
inference. In EMNLP.

A. McCallum, K. Bellare, and F. Pereira. 2005. A condi-
tional random field for discriminatively-trained finite-
state string edit distance. In UAI.

V. Punyakanok, D. Roth, and W. Yih. 2008. The impor-
tance of syntactic parsing and inference in semantic
role labeling. Computational Linguistics.

L. Qiu, M.-Y. Kan, and T.-S. Chua. 2006. Paraphrase
recognition via dissimilarity significance classifica-
tion. In EMNLP.

C. Quirk, C. Brockett, and W. Dolan. 2004. Monolin-
gual machine translation for paraphrase generation. In
EMNLP.

D. Roth, M. Sammons, and V.G. Vydiswaran. 2009. A
framework for entailed relation recognition. In ACL.

S. Wan, M. Dras, R. Dale, and C. Paris. 2006. Using
dependency-based features to take the p̈ara-farceöut
of paraphrase. In Proc. of the Australasian Language
Technology Workshop (ALTW).

C. Yu and T. Joachims. 2009. Learning structural svms
with latent variables. In ICML.

F. M. Zanzotto and A. Moschitti. 2006. Automatic learn-
ing of textual entailments with cross-pair similarities.
In ACL.

437

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 438–446,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Some Empirical Evidence for Annotation Noise in a Benchmarked Dataset

Beata Beigman Klebanov
Kellogg School of Management

Northwestern University
beata@northwestern.edu

Eyal Beigman
Washington University in St. Louis

beigman@wustl.edu

Abstract

A number of recent articles in computational
linguistics venues called for a closer exami-
nation of the type of noise present in anno-
tated datasets used for benchmarking (Rei-
dsma and Carletta, 2008; Beigman Klebanov
and Beigman, 2009). In particular, Beigman
Klebanov and Beigman articulated a type of
noise they call annotation noise and showed
that in worst case such noise can severely
degrade the generalization ability of a linear
classifier (Beigman and Beigman Klebanov,
2009). In this paper, we provide quantita-
tive empirical evidence for the existence of
this type of noise in a recently benchmarked
dataset. The proposed methodology can be
used to zero in on unreliable instances, facili-
tating generation of cleaner gold standards for
benchmarking.

1 Introduction

Traditionally, studies in computational linguistics
use few trained annotators. Lately this might be
changing, as inexpensive annotators are available in
large numbers through projects like Amazon Me-
chanical Turk or through online games where an-
notations are produced as a by-product (Poesio et
al., 2008; von Ahn, 2006), and, at least for certain
tasks, the quality of multiple non-expert annotations
is close to that of a small number of experts (Snow
et al., 2008; Callison-Burch, 2009).

Apart from the reduced costs, mass annotation is
a promising way to get detailed information about
the dataset, such as the level of difficulty of the dif-
ference instances. Such information is important
both from the linguistic and from the machine learn-

ing perspective, as the existence of a group of in-
stances difficult enough to look like they have been
labeled by random guesses can in the worst case
induce the machine learner training on the dataset
to misclassify a constant proportion of easy, non-
controversial instances, as well as produce incor-
rect comparative results in a benchmarking setting
(Beigman Klebanov and Beigman, 2009; Beigman
and Beigman Klebanov, 2009) .

In this article, we employ annotation generation
models to estimate the types of instances in a multi-
ply annotated dataset for a binary classification task.
We provide the first quantitative empirical demon-
stration, to our knowledge, of the existence of what
Beigman Klebanov and Beigman (2009) call “anno-
tation noise” in a benchmarked dataset, that is, for
a case where instances cannot be plausibly assigned
to just two classes, and where instances in the third
class can be plausibly described as having been an-
notated by flips of a nearly fair coin. The ability to
identify such instances helps improve the gold stan-
dard by eliminating them, and allows further empiri-
cal investigation of their impact on machine learning
for the task in question.

2 Generative models of annotation

We present a graphical model for the generation of
annotations. The basic idea is that there are different
types of instances that induce different responses
from annotators. Each instance may have a true la-
bel of “0” or “1”, however, the researcher’s access
to it is mediated by annotators who are guessing the
true label by flipping a coin, where the bias of the
coin depends on the type of the instance. The bias
of the coin essentially models the difficulty of label-

438

ing the instance; coins biased close to 0 and 1 cor-
respond to instances that are easy to classify; a fair
coin represents instances that are very difficult if not
impossible to classify correctly with the given pool
of annotators. The model presented in Beigman Kle-
banov and Beigman (2009) is a special case with 3
types (A,B,C) where pA=0, pC=1 (easy cases), and
0<pB<1 represents the hard cases, the harder the
closer pB is to 0.5. Models used here are a type of la-
tent class models (McCutcheon, 1987) widely used
in the Biometrics community (Espeland and Handel-
man, 1989; Yang and Becker, 1997; Albert et al.,
2001; Albert and Dodd, 2004).

The goal of modeling is to determine whether
more than two types of instances need to be postu-
lated, to estimate how difficult each type is, and to
identify the troublemaking instances.

The graphical model is presented in figure 1. We
assume the dataset of size N is a mixture of k dif-
ferent types of instances. The proportion of types is
given by θ = (θ1, . . . , θk), and coin biases for each
type are given by p = (p1, . . . , pk). Each instance is
annotated by n i.i.d coinflips, and random variable
x ∈ {0, . . . , n} counts the number of “1”s in the n
annotations given to an instance. Each instance be-
longs to a type t ∈ {1, ..., k}, characterized by a coin
with the probability pt of annotating with the label
“1”. Conditioned on t, the number of “1”s in n an-
notations has a binomial distribution with parameter
pt: Pr(x = j|t) =

(
n
j

)
pj

t (1− pt)n−j .

x t !
N

x t !

N a "

p

p

x a "
N

p

Figure 1: A graphical model of annotation generation.

The probability of observing j “1”s out of n an-
notations for an instance given θ and p is therefore
Pr(x = j|θ, p) =

∑k
t=1 Pr(t|θ) · Pr(x = j|t) =

=
(
n
j

) ∑k
t=1 θtp

j
t (1 − pt)n−j . The annotations are

thus generated by a superposition of k binomials.

3 Data

3.1 Recognizing Textual Entailment -1

For the experiments reported here we use the 800
item test data of the first Recognizing Textual Entail-
ment benchmark (RTE-1) from Dagan et al. (2006).
This task drew a lot of attention in the community,
with a series of benchmarks in 2005-2007.

The task is defined as follows: “... textual entail-
ment is defined as a directional relationship between
pairs of text expressions, denoted by T - the entail-
ing “Text”, and H - the entailed “Hypothesis”. We
say that T entails H if the meaning of H can be in-
ferred from the meaning of T, as would typically be
interpreted by people. This somewhat informal defi-
nition is based on (and assumes) common human
understanding of language as well as common back-
ground knowledge” (Dagan et al., 2006). Further
guidelines included an instruction to disregard tense
differences, to accept cases where the inference is
“very probable (but not completely certain)” and to
avoid cases where the inference “has some positive
probability that is not clearly very high.” An exam-
ple of a true entailment is the pair T-H: (T) Cavern
Club sessions paid the Beatles £15 evenings and £5
lunchtime. (H) The Beatles perform at Cavern.

Although annotated by a small number of experts
for the benchmark, the RTE-1 dataset has been later
transferred to a mass annotation framework by Snow
et al. (2008), who submitted simplified guidelines
to the Amazon Mechanical Turk workplace (hence-
forth, AMT), collected 10 annotations per item from
the total of 164 annotators, and showed that major-
ity vote by Turkers agreed with expert annotation in
89.7% of the cases. We call the Snow et al. (2008)
Turker annotations SRTE dataset, and use it in sec-
tion 6. The instructions, followed by two examples,
read: “Please state whether the second sentence (the
Hypothesis) is implied by the information in the first
sentence (the Text), i.e., please state whether the Hy-
pothesis can be determined to be true given that the
Text is true. Assume that you do not know anything
about the situation except what the Text itself says.
Also, note that every part of the Hypothesis must be
implied by the Text in order for it to be true.” The
guidelines for Turkers are somewhat different from
the original, not mentioning the issue of highly prob-
able though not certain inference or a special treat-

439

ment of tense mismatch between H and T, as well as
discouraging reliance on background knowledge.

Using Snow et al. (2008) instructions, we col-
lected 20 annotations for each of the 800 items
through AMT from the total of 441 annotators. Each
annotator did the minimum of 2 items, and was
paid $0.01 for 2 items, for the total annotator cost
of $80. We used only annotators with prior AMT
approval rate of at least 95%, that is, only people
whose performance in previous tasks on AMT was
almost always approved by the requester of the task.
Our design is thus somewhat different from Snow et
al. (2008), as we paid more and selected annotators
with a stake in their AMT reputation.

3.2 Preparing the data for model fitting

We collected the annotations in two separate batches
of 10 annotations per item, using the same set of in-
structions, incentives, and examples. We hypothe-
sized that controlling for these elements, we would
get two random samples from the same distribution
of Turkers, and hence will have two samples to make
sure a model fitted on one sample generalized to
the other. It turned out, however, that a 3-Binomial
model with a good fit on one of the samples was re-
jected with high probability for the other.1 Thus, on
the one hand, the variations between annotators in
each sample were not as high as to preclude a model
that captures only instance variability from fitting
well; on the other hand, evidently, the two samples
did not come from the same annotator distribution,
but differed systematically due to factors we did not
control for.2 In order for our models not to inherit a
systematic bias of any of the two samples, we mixed
the two samples, and constructed two sets, BRTEa
and BRTEb, each with 10 annotations per item, by
randomly splitting the 20 answers per item into two
groups, allowing the same annotator to contribute
to different groups on different instances. Indeed,
after the randomization, a model fitted for BRTEa
produced excellent generalization on BRTEb, as we
will see in section 4.2.

1For details of the model fitting procedure, see section 4.
2Such factors could be the hour and day of assignment, as

the composition of AMT’s global 24/7 workforce could differ
systematically by day and hour.

4 Fitting a model to BRTE data

Using the model template presented in section 2, we
successively attempt to fit a model with k = 2, 3, . . .
until a model with a good fit is found or no degrees
of freedom are left. For a given k, we fit the pa-
rameters θ and p using non-linear least squares trust-
region method as implemented in the default version
of MATLAB’s lsqnonlin function. We then use χ2 to
measure goodness of fit; a model that cannot be re-
jected with 95% confidence (p>0.05) would be con-
sidered a good fit. In all cases N=800, n=10, as we
use 10 annotations for each instance.

4.1 Mixture of 2 Binomials

Suppose k=2, with types t0 and t1. The best fit yields
p0=0.237, p1=0.867, θ0=431

800 , θ1=1-θ0. The model
(shown in figure 2) is a poor fit, with χ2=73.66 well
above the critical value of 14.07 for df=7, p=0.05.3

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8 9 10

Number of label "1" annotations

N
u
m

b
e
r
 o

f
in

s
t
a
n
c
e
s

Observed

Predicted

Figure 2: Fitting the model B1+B2 to BRTEa data. B1∼
B(10,0.237) on 431 instances, B2∼ B(10,0.867) on 369
instances. The point (x,y) means that there are y in-
stances given label “1” in exactly x out of 10 annotations.

4.2 Model M: Mixture of 3 Binomials

Suppose now k=3. The best fitting model
M=B1+B2+B3 is specified in figure 3; M fits the
data very well. Assuming B1 and B3 reflect items

3For degrees of freedom, we take the number of datapoints
being fitted (11), take one degree of freedom off for knowing in
advance the total number of instances, and take off additional 3
degrees of freedom for estimating p0, p1, and θ0 from the data.
We are therefore left with 7 degrees of freedom in this case.

440

with uncontroversial labels “0” and “1”, respec-
tively, the model suggests that detecting “0” (no tex-
tual entailment) is somewhat more difficult for non-
experts than detecting “1” (there is textual entail-
ment) in this dataset, with the rate of incorrect pre-
dictions of about 20% and 10%, respectively.4 The
model also predicts that 159

800 ≈ 20% of the data are
difficult cases, with annotators flipping a close-to-a-
fair coin (p=0.5487).

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9 10

Observed
B1
B2
B3
Predicted

Figure 3: Fitting the model M=B1+B2+B3 to BRTEa
data. B1∼ B(10,0.1978) on 343 instances, B2∼
B(10,0.5487) on 159 instances, B3∼ B(10,0.8942) on
298 instances. The binomials are shown in grey lines.
The model M fits with χ2=5.091; for df=5, this corre-
sponds to p=0.4.

We use the dataset BRTEb to test the model de-
veloped on BRTEa. The model fits with χ2=13.13,
which, for df=10,5 corresponds to p=0.2154.

We therefore conclude that, after eliminating sys-
tematic differences between annotators, we were un-
able to fit a model with two types of instances,
whereas a model with three types of instances pro-
vides a good fit both for the dataset on which it is
estimated and for a new dataset. This constitutes
empirical evidence for the existence of a group of
instances with near-random labels in this recently

4We note that any conclusions from the model hold for the
particular 800 item dataset in question, and not for the task of
recognizing textual entailment in general, as the dataset is not
necessarily a representative sample. In fact, we know from Da-
gan et al. (2006) that these 800 items are not a random sam-
ple, but rather what remained after some 400 instances were re-
moved due to disagreements between expert annotators or due
to the judgment of one of organizers of the RTE-1 challenge.

5No parameters are fitted using the BRTEb data.

benchmarked dataset, at least for our pool of more
than 400 non-expert annotators.

5 Could annotator heterogeneity provide
an alternative explanation?

In the previous section, we established that instance
heterogeneity can explain the observations. We
might however ask whether a different model could
provide a similarly fitting explanation. Specifically,
heterogeneity among annotators has been seen as a
major source of noise in the aggregate data and there
are several works attempting to separate high qual-
ity annotators from low quality ones (Raykar et al.,
2009; Donmez et al., 2009; Sheng et al., 2008; Car-
penter, 2008). Could we explain the observed beha-
vior with a model with only two types of instances
that allows for annotator heterogeneity?

In this section we construct such a model. We
show that this model entails an instance distribu-
tion that is a superposition of two normal distribu-
tions. We subsequently show that the best fitting
two-Gaussian model does not provide a good fit.

We use a generation model similar to those in
(Raykar et al., 2009; Carpenter, 2008) but with
weaker parametric assumptions. The graphical
model is given in figure 4.

x t !
N

x t !

N a "

p

p

x

N

p

t !

Figure 4: Annotation generation model with annotator
heterogeneity.

We assume there are two types of instances t ∈
{0, 1} with the proportions θ = (θ0, θ1). The 2n
probabilities p = (pt1, . . . , ptn) for t = 0, 1 cor-
respond to coins drawn independently from some
distribution with parameter α = (α1, . . . , αn). We
make no assumption on the functional form apart
from a positive probability to draw a value between
0 and 1, this in particular is true for the beta distribu-
tion used in (Raykar et al., 2009; Carpenter, 2008).
As before, the number of “1”s attributed to an in-
stance of type t is a random variable x, determined

441

by independent flips of the n coins that correspond
to the value of t. The marginal distribution of x is:

Pr(x = j|θ, α) =

=
∑
t=0,1

Pr(t|θ)
∫

[0,1]n
Pr(pt|α)·Pr(x = j|pt, t, α)dpt

=
∑
t=0,1

θt

∫
[0,1]n

Pr(pt|α)

 ∑
|S|=j

∏
i∈S

pti

∏
i6∈S

(1− pti)

 dpt

Let x1, . . . , xN be the random variables correspond-
ing to the number of “1”s attributed to instances
1, . . . , N . W.l.g we assume instances 1, . . . , N ′ are
all of type t0 (N ′ = θ0 · N) and the rest of type t1.
Since 0 ≤ xj ≤ n it follows that E(xj), Var(xj) <
∞ for j = 1, . . . , N . If for each instance the coin-
flips are independent, we can think of this as a two
step process where we first draw the coins and then
flip them. Thus, x1, . . . , xN ′ are i.i.d and the cen-
tral limit theorem implies that the average number
of “1”s on t0 instances, namely the random variable
y0 = 1

N ′
∑N ′

j=1 xj has an approximately normal dis-
tribution.6 Making the same argument for the distri-
bution of y1 for instances of type t1, it follows that
the number of “1”s attributed to an instance of any
type y = y0 + y1 would have a distribution that is a
superposition of two Gaussians.

The best least-squares fit of all two-Gaussian
models to BRTEa data is produced by G=N1+N2,
N1∼ N (2.22, 1.73) on 418 instances, N2∼
N (9.07,1.41) on 382 instances; G is shown in
figure 5. G fits with χ2=36.77, much above the crit-
ical value χ2=11.07 for df=5, p=0.05. We can thus
rule out annotator heterogeneity as the only expla-
nation of the observed pattern of responses.

6 Testing M on SRTE data

We further test M on the annotations collected by
Snow et al. (2008) for the same 800 item dataset.
While the instructions and the task were identical in
BRTEa, BRTEb, and BRTE datasets, and in all cases

6It can be shown that y0 ∼ N (µ, σ) for µ = n · EDist(α)(p)

and σ =
p

VarDist(α)(p) · n, using the expectation and variance
of the coin parameter for type t0 instances. For example, for a
beta distribution with parameters α and β these would be µ =

α
α+β

n and σ =
q

αβ
α+β

n.

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10

Observed

Predicted

Figure 5: Model G’s fit to BRTEa data, G= N1+N2, a
mixture of two Gaussians.

each item was given 10 annotations, the incentive
design was different (see section 3).

Figure 6 shows that model M=B1+B2+B3 does
not fit well, as SRTE dataset exhibits a rather diffe-
rent distribution from both BRTE datasets. In par-
ticular, it is clear that had a model been fitted on
SRTE data, the coin flipping probabilities for the
clear types, B1 and B3, would have to be moved
towards 0.5; that is, an average annotator in SRTE
dataset had worse ability to detect clear 0s and clear
1s than an average BRTE annotator. We note that
BRTEa and BRTEb agreed with expert annotation
in 92.5% and 90.8% of the instances, respectively,
both better than 89.7% in SRTE.7 Since we offered
somewhat better incentives in BRTE, it is tempting
to attribute the observed better quality of BRTE an-
notations to the improved incentives, although it is
possible that some other uncontrolled AMT-related
factor is responsible for the difference between the
datasets, just as we found for our original two col-
lected samples (see section 3.2).

Supposing the main source of misfit is difference
in incentives, we conjecture that the difference be-
tween the 441 BRTE annotators and the 164 SRTE
ones is due to the existence in SRTE of unmotivated,
or “lazy” annotators, that is, people who flipped the
same coin on every instance, no matter what type.
Our hypothesis is that once an annotator is diligent
(and motivated) enough to pay attention to the data,
her annotations can be described by model M, but
some annotators are not sufficiently diligent.

7Turker annotations were aggregated using majority vote, as
in Snow et al. (2008) section 4.3.

442

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9 10

BRTEa

BRTEb

Observed (SRTE)

Predicted by M

Figure 6: Model M’s fit to SRTE data. BRTEa and
BRTEb are shown in grey lines.

In this model we assume there are three types
of instances as before, and two types of annotators
a ∈ {D,L}, for Diligent and Lazy, with their pro-
portions in the population ξ = (ξD, ξL). The corre-
sponding graphical model is shown in figure 7.

x t !
N

x

t ! N

a "

p

p

x

N

p

t !

x

t ! N

a " p

c

Figure 7: Annotation generation with diligent and lazy
annotators.

We assume that diligent annotators flip coins cor-
responding to the types of instances, whereas lazy
annotators always flip the same coin pL.

Let nD and nL=n−nD be the number of diligent
and lazy annotations given to a certain instance, thus
Pr(nD=r|ξ)=

(
n
r

)
ξr
Dξn−r

L , and the probability of ob-
serving j label “1” annotations for an instance of
type t is given by:

Pr(x = j|t, ξ, p) =
n∑

r=1

[(
n

r

)
ξr
Dξn−r

L ×

×
[∑

(j1,j2)∈S

(
r

j1

)
pj1

t (1− pt)r−j1 ×

×
(

n− r

j2

)
pj2

L (1− pL)n−r−j2

]]
where S={(j1, j2):j1+j2=j; j1≤r;j2≤n-r}. Finally,
Pr(x=j|θ, ξ, p)=

∑k
t=1 θt Pr(x=j|t, ξ, p).

We assume that model M provides the values for
θ and p for all diligent annotators, and estimate ξ
and pL, the proportion of the lazy annotators and
the coin they flip. The best fitting model yields
ξ=(0.79,0.21), and pL=0.74, predicting that about
one-fifth of SRTE annotators are lazy.8 This model
fits with χ2=14.63, which is below the critical level
of χ2=15.51 for df=8,p=0.05, hence a hypothesis
that model M behavior for the diligent annotators
and flipping a coin with bias 0.74 for the lazy ones
generated the SRTE data cannot be rejected with
high confidence. We note that Carpenter (2008) ar-
rived at a similar conclusion – that there are quite
a few annotators making random guesses in SRTE
dataset – by means of jointly estimating annotator
accuracies.

7 Discussion

To summarize our findings: With systematic dif-
ferences between annotators smoothed out, there
is evidence that non-expert annotators performing
RTE task on RTE-1 test data tend to flip a close-
to-fair coin on about 20% of instances, according
to the best fitting model.9 This constitutes, to our
knowledge, the first empirical evidence for the ex-
istence of the kind of noise termed annotation noise
in Beigman Klebanov and Beigman (2009). Given
Beigman Klebanov and Beigman (2009) warning
against annotation noise in test data and their find-
ing in Beigman and Beigman Klebanov (2009) that
annotation noise in training data can potentially dev-
astate a linear classifier learning from the data, the
immediate usefulness of our result is that instances
of this difficult type can be identified, removed from
the dataset before further benchmarking, and pos-

8A more precise statement is that there are about one-fifth
lazy potential annotators in the SRTE pool for any given item.
It is possible that the length of stay of an annotator in the pool is
not independent of her diligence; for example, Callison-Burch
(2009) found in his AMT experiments with tasks related to ma-
chine translation that lazy annotators tended to stay longer and
do more annotations.

9Beigman Klebanov and Beigman (2009) discuss the con-
nection between noise models and inter-annotator agreement.

443

sibly used in a controlled fashion for subsequent
studies of the impact of annotation noise on specific
learning algorithms and feature spaces for this task.

The current literature on generating benchmark-
ing data from AMT annotations overwhelmingly
considers annotator heterogeneity as the source of
observed discrepancies, with instances falling into
two classes only. Our results suggest that, at least in
RTE data, instance heterogeneity cannot be ignored.

It also transpired that small variations in incen-
tives (as between SRTE and BRTE), and even un-
known factors possibly related to differences in the
composition of AMT’s workforce can lead to sys-
tematic differences in the resulting annotator pools,
which results in annotations that are described by
models with somewhat different parameter values.
This can potentially limit the usefulness of our main
finding, because it is not clear how reliable the iden-
tification of hard cases is using any particular group
of Turkers. While this is a valid concern in general,
we show in section 7.1 that many items consistently
found to be hard by different groups of Turkers war-
rant at least an additional examination, as they often
represent borderline cases of highly or not-so-highly
probable inferences, corruption of meaning by un-
grammaticality, or difficulties related to the treat-
ment of time references and background knowledge.

Finally, our findings seem to be at odds with the
fact that the 800 items analyzed here were left af-
ter all items on which two experts disagreed and all
items that looked controversial to the arbiter were
removed (see section 3). One potential explanation
is that things that are hard for Turkers are not nec-
essarily hard for experts. Yet it is possible that two
or three annotators, graduate students or faculty in
computational linguistics, are an especially homoge-
nous and small pool of people to base gold standard
annotations of the way things are “typically inter-
preted by people” upon. Furthermore, there is some
evidence from additional expert re-annotations of
this dataset that some controversies remain; we dis-
cuss relation to expert annotations in section 7.2.

7.1 Hard cases
We examine some of the instances that in all likeli-
hood belong to the difficult type, according to Turk-
ers. We focus on items that received between 4 and
7 class “1” annotations in SRTE and in each of our

two datasets (before randomization).

(1) T: Saudi Arabia, the biggest oil producer in
the world, was once a supporter of Osama bin
Laden and his associates who led attacks against
the United States. H: Saudi Arabia is the
world’s biggest oil exporter.

(2) T: Seiler was reported missing March 27 and
was found four days later in a marsh near her
campus apartment. H: Abducted Audrey Seiler
found four days after missing.

(3) T: The spokesman for the rescue authorities,
Linart Ohlin, said that the accident took place
between 01:00 and dawn today, Friday (00:00
GMT) in a disco behind the theatre, where “hun-
dreds” of young people were present. H: The
fire happened in the early hours of Friday morn-
ing, and hundreds of young people were present.

(4) T: William Leonard Jennings sobbed loudly as
was charged with killing his 3-year-old son,
Stephen, who was last seen alive on Dec.12,
1962. H: William Leonard Jennings killed his
3-year-old son, Stephen.

Labeling of examples 1-4 seems to hinge on the
assessment of the likelihood of an alternative expla-
nation. Thus, it is possible that the biggest producer
of oil is not the biggest exporter, because, for ex-
ample, its internal consumption is much higher than
in the second-biggest producer. In 2, abduction is
a possible cause for being missing, but how rela-
tively probable is it? Similarly, fire is a kind of ac-
cident, but can we infer that there was fire from a
report about an accident? In 4, could the man have
sobbed because on top of loosing his son he was
also being falsely accused of having killed him? Ex-
perts marked all five as true entailments, while many
Turkers had reservations.

(5) T: Bush returned to the White House late Satur-
day while his running mate was off campaigning
in the West. H: Bush left the White House.

(6) T: De la Cruz’s family said he had gone to Saudi
Arabia a year ago to work as a driver after a long
period of unemployment. H: De la Cruz was
unemployed.

(7) T: Measurements by ground-based instruments
around the world have shown a decrease of up
to 10 percent in sunlight from the late 1950s to
the early 1990s. H: The world is about 10 per
cent darker than half a century ago.

444

In examples 5-7 time seems to be an issue. If Bush
returned to White House, he must have left it before-
hand, but does this count as entailment, or is the hy-
pothesis referencing a time concurrent with the text,
in which case T and H are in contradiction? In 6,
can H be seen as referring to some time more than a
year ago? In 7, if the hypothesis is taken to be stated
in mid- or late-2000s, the time of annotation, half
a century ago would reach to late 1950s, but it is
possible that further substantial reduction occurred
between early 1990s mentioned in the text and mid
2000s, amounting to much more than 10%. Experts
labeled example 5 as false, 6 and 7 as true.

(8) T: On 2 February 1990, at the opening of Parlia-
ment, he declared that apartheid had failed and
that the bans on political parties, including the
ANC, were to be lifted. H: Apartheid in South
Africa was abolished in 1990.

(9) T: Kennedy had just won California’s Demo-
cratic presidential primary when Sirhan shot
him in Los Angeles on June 5, 1968. H: Sirhan
killed Kennedy.

Labeling examples 8 and 9 (both true according to
the experts) requires knowledge about South African
and American politics, respectively. Was the ban on
ANC the only or the most important manifestation
of apartheid? Was abolishing apartheid merely an
issue of declaring that it failed? In 9, killing is a po-
tential but not necessary outcome of shooting, so de-
tails of Robert Kennedy’s case need to be known to
the annotator to render the case-specific judgment.

(10) T: The version for the PC has essentially the
same packaging as those for the big game con-
soles, but players have been complaining that
it offers significantly less versatility when it
comes to swinging through New York. H: Play-
ers have been complaining that it sells signifi-
cantly less versatility when it comes to swinging
through New York.

(11) T: During his trip to the Middle East that took
three days, Clinton made the first visit by an
American president to the Palestinian Territories
and participated in a three-way meeting with Is-
raeli Prime Minister Benjamin Netanyahu and
Palestinian President Yasser Arafat. H: During
his trip to the east of the Middle which lasted
three days, the Clinton to first visit to Ameri-
can President to the occupied Palestinian terri-
tories and participated in meeting tripartite co-

operation with Israeli Prime Minister Benjamin
Netanyahu and Palestinian President, Yasser
Arafat.

(12) T: The ISM non-manufacturing index rose to
64.8 in July from 59.9 in June. H: The non-
manufacturing index of the ISM raised 64.8 in
July from 59.9 in June.

(13) T: Henryk Wieniawski, a Polish-born musician,
was known for his special preference for resur-
recting neglected or lost works for the violin. H:
Henryk Wieniawski was born in Polish.

Examples 10-13 were labeled as false by experts,
possibly betraying over-sensitivity to the failings of
language technology. Sells is not an ideal substitu-
tion for offers, but in a certain sense versatility is
sold as part of a product. In 11-13, some Turkers
felt the hypothesis is not too bad a rendition of the
text or of its part, while experts seemed to hold MT
to a higher standard.

7.2 Turkers vs experts
Model M puts 159 items in the difficult type B2.
While M is the best fitting model, it is possible to
find a model that still fits with p>0.05 but places
a smaller number of items in B2, in order to ob-
tain a conservative estimate on the number of dif-
ficult cases. The model with B1∼ B(10, 0.21) on
373 items, B2∼ B(10,0.563) on 110 items, B3∼
B(10,0.89) on 327 items still produces a fit with
p>0.05, but going down to 100 instances in B2
makes it impossible to find a good fit with a 3 type
model. There are therefore about 110 difficult cases
by a conservative estimate. Assuming there remain
110 hard cases in the 800 item dataset for which
even experts flip a fair coin, we expect about 55
disagreements between the 800 item gold standard
from RTE-1 and a replication by a new expert, or
an agreement of 745

800=93% on average. This estimate
is consistent with reports of 91% to 96% replication
accuracy for the expert annotations on various sub-
sets of the data by different groups of experts (see
section 2.3 in Dagan et al. (2006)).

Acknowledgments

We would like to thank the anonymous reviewers of
this and the previous draft for helping us improve the
paper significantly. We also thank Amar Cheema for
his advice on AMT.

445

References

Paul Albert and Lori Dodd. 2004. A Cautionary Note on
the Robustness of Latent Class Models for Estimating
Diagnostic Error without a Gold Standard. Biometrics,
60(2):427–435.

Paul Albert, Lisa McShane, Joanna Shih, and The U.S.
National Cancer Institute Bladder Tumor Marker Net-
work. 2001. Latent Class Modeling Approaches for
Assessing Diagnostic Error without a Gold Standard:
With Applications to p53 Immunohistochemical As-
says in Bladder Tumors. Biometrics, 57(2):610–619.

Eyal Beigman and Beata Beigman Klebanov. 2009.
Learning with Annotation Noise. In Proceedings of
the 47th Annual Meeting of the Association for Com-
putational Linguistics, pages 280–287, Singapore.

Beata Beigman Klebanov and Eyal Beigman. 2009.
From Annotator Agreement to Noise Models. Ac-
cepted to Computational Linguistics.

Chris Callison-Burch. 2009. Fast, Cheap, and Cre-
ative: Evaluating Translation Quality Using Amazon’s
Mechanical Turk. In Proceedings of the Empirical
Methods in Natural Language Processing Conference,
pages 286–295, Singapore.

Bob Carpenter. 2008. Multilevel Bayesian Mod-
els of Categorical Data Annotation. Unpub-
lished manuscript, last accessed 28 July 2009
at lingpipe.files.wordpress.com/2009/01/anno-bayes-
entities-09.pdf.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The PASCAL Recognising Textual Entail-
ment Challenge. In J. Quiñonero Candela, I. Dagan,
B. Magnini, and F. d’Alché-Buc, editors, Machine
Learning Challenges, pages 177–190. Springer.

Pinar Donmez, Jaime Carbonell, and Jeff Schneider.
2009. Efficiently Learning and Accuracy of Labeling
Sources for Selective Sampling. In Proceedings of the
15th International Conference on Knowledge Discov-
ery and Data Mining, pages 259–268, Paris, France.

Mark Espeland and Stanley Handelman. 1989. Using
Class Models to Characterize and Assess Relative Er-
ror in Discrete Measurements. Biometrics, 45(2):587–
599.

Allan McCutcheon. 1987. Latent Class Analysis. New-
bury Park, CA, USA: Sage.

Massimo Poesio, Udo Kruschwitz, and Jon Chamberlain.
2008. ANAWIKI: Creating Anaphorically Annotated
Resources through Web Cooperation. In Proceedings
of the 6th International Conference on Language Re-
sources and Evaluation, Marrakech, Morocco.

Vikas Raykar, Shipeng Yu, Linda Zhao, Anna Jerebko,
Charles Florin, Gerardo Hermosillo Valadez, Luca Bo-
goni, and Linda Moy. 2009. Supervised Learning

from Multiple Experts: Whom to Trust when Every-
one Lies a Bit. In Proceedings of the 26th Annual In-
ternational Conference on Machine Learning, pages
889–896, Montreal, Canada.

Dennis Reidsma and Jean Carletta. 2008. Reliability
Measurement without Limits. Computational Linguis-
tics, 34(3):319–326.

Victor Sheng, Foster Provost, and Panagiotis Ipeirotis.
2008. Get Another Label? Improving Data Quality
and Data Mining Using Multiple, Noisy Labelers. In
Proceedings of the 14th International Conference on
Knowledge Discovery and Data Mining, pages 614–
622, Las Vegas, Nevada, USA.

Rion Snow, Brendan O’Connor, Daniel Jurafsky, and An-
drew Ng. 2008. Cheap and Fast - But is it Good?
Evaluating Non-Expert Annotations for Natural Lan-
guage Tasks. In Proceedings of the Empirical Methods
in Natural Language Processing Conference, pages
254–263, Honolulu, Hawaii.

Luis von Ahn. 2006. Games with a Purpose. Computer,
39(6):92–94.

Ilsoon Yang and Mark Becker. 1997. Latent Vari-
able Modeling of Diagnostic Accuracy. Biometrics,
53(3):948–958.

446

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 447–455,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Bayesian Inference for Finite-State Transducers∗

David Chiang1 Jonathan Graehl1 Kevin Knight1 Adam Pauls2 Sujith Ravi1

1Information Sciences Institute
University of Southern California
4676 Admiralty Way, Suite 1001

Marina del Rey, CA 90292

2Computer Science Division
University of California at Berkeley

Soda Hall
Berkeley, CA 94720

Abstract

We describe a Bayesian inference algorithm
that can be used to train any cascade of
weighted finite-state transducers on end-to-
end data. We also investigate the problem
of automatically selecting from among mul-
tiple training runs. Our experiments on four
different tasks demonstrate the genericity of
this framework, and, where applicable, large
improvements in performance over EM. We
also show, for unsupervised part-of-speech
tagging, that automatic run selection gives a
large improvement over previous Bayesian ap-
proaches.

1 Introduction

In this paper, we investigate Bayesian infer-
ence for weighted finite-state transducers (WFSTs).
Many natural language models can be captured
by weighted finite-state transducers (Pereira et al.,
1994; Sproat et al., 1996; Knight and Al-Onaizan,
1998; Clark, 2002; Kolak et al., 2003; Mathias and
Byrne, 2006), which offer several benefits:

• WFSTs provide a uniform knowledge represen-
tation.
• Complex problems can be broken down into a

cascade of simple WFSTs.
• Input- and output-epsilon transitions allow

compact designs.
• Generic algorithms exist for doing inferences

with WFSTs. These include best-path de-
coding, k-best path extraction, composition,
∗The authors are listed in alphabetical order. Please direct

correspondence to Sujith Ravi (sravi@isi.edu). This work
was supported by NSF grant IIS-0904684 and DARPA contract
HR0011-06-C0022.

intersection, minimization, determinization,
forward-backward training, forward-backward
pruning, stochastic generation, and projection.
• Software toolkits implement these generic al-

gorithms, allowing designers to concentrate on
novel models rather than problem-specific in-
ference code. This leads to faster scientific ex-
perimentation with fewer bugs.

Weighted tree transducers play the same role for
problems that involve the creation and transforma-
tion of tree structures (Knight and Graehl, 2005). Of
course, many problems do not fit either the finite-
state string or tree transducer framework, but in this
paper, we concentrate on those that do.

Bayesian inference schemes have become popu-
lar recently in natural language processing for their
ability to manage uncertainty about model param-
eters and to allow designers to incorporate prior
knowledge flexibly. Task-accuracy results have gen-
erally been favorable. However, it can be time-
consuming to apply Bayesian inference methods to
each new problem. Designers typically build cus-
tom, problem-specific sampling operators for ex-
ploring the derivation space. They may factor their
programs to get some code re-use from one problem
to the next, but highly generic tools for string and
tree processing are not available.

In this paper, we marry the world of finite-state
machines with the world of Bayesian inference, and
we test our methods across a range of natural lan-
guage problems. Our contributions are:

• We describe a Bayesian inference algorithm
that can be used to train any cascade of WFSTs
on end-to-end data.
• We propose a method for automatic run selec-

447

tion, i.e., how to automatically select among
multiple training runs in order to achieve the
best possible task accuracy.

The natural language applications we consider
in this paper are: (1) unsupervised part-of-speech
(POS) tagging (Merialdo, 1994; Goldwater and
Griffiths, 2007), (2) letter substitution decipher-
ment (Peleg and Rosenfeld, 1979; Knight et al.,
2006; Ravi and Knight, 2008), (3) segmentation of
space-free English (Goldwater et al., 2009), and (4)
Japanese/English phoneme alignment (Knight and
Graehl, 1998; Ravi and Knight, 2009a). Figure 1
shows how each of these problems can be repre-
sented as a cascade of finite-state acceptors (FSAs)
and finite-state transducers (FSTs).

2 Generic EM Training

We first describe forward-backward EM training for
a single FST M. Given a string pair (v,w) from our
training data, we transform v into an FST Mv that
just maps v to itself, and likewise transform w into
an FST Mw. Then we compose Mv with M, and com-
pose the result with Mw. This composition follows
Pereira and Riley (1996), treating epsilon input and
output transitions correctly, especially with regards
to their weighted interleaving. This yields a deriva-
tion lattice D, each of whose paths transforms v into
w.1 Each transition in D corresponds to some tran-
sition in the FST M. We run the forward-backward
algorithm over D to collect fractional counts for the
transitions in M. After we sum fractional counts for
all examples, we normalize with respect to com-
peting transitions in M, assign new probabilities to
M, and iterate. Transitions in M compete with each
other if they leave the same state with the same input
symbol, which may be empty (ε).

In order to train an FSA on observed string data,
we convert the FSA into an FST by adding an input-
epsilon to every transition. We then convert each
training string v into the string pair (ε, v). After run-
ning the above FST training algorithm, we can re-
move all input-ε from the trained machine.

It is straightforward to modify generic training to
support the following controls:

1Throughout this paper, we do not assume that lattices are
acyclic; the algorithms described work on general graphs.

B:E

a:A b:B A:D
A:C

=
a:

 :D

 :E b:

a: :C

Figure 2: Composition of two FSTs maintaining separate
transitions.

Maximum iterations and early stopping. We spec-
ify a maximum number of iterations, and we halt
early if the ratio of log P(data) from one iteration
to the next exceeds a threshold (such as 0.99999).
Initial point. Any probabilities supplied on the pre-
trained FST are interpreted as a starting point for
EM’s search. If no probabilities are supplied, EM
begins with uniform probabilities.
Random restarts. We can request n random restarts,
each from a different, randomly-selected initial
point.
Locking and tying. Transitions on the pre-trained
FST can be marked as locked, in which case EM
will not modify their supplied probabilities. Groups
of transitions can be tied together so that their frac-
tional counts are pooled, and when normalization
occurs, they all receive the same probability.
Derivation lattice caching. If memory is available,
training can cache the derivation lattices computed
in the first EM iteration for all training pairs. Subse-
quent iterations then run much faster. In our experi-
ments, we observe an average 10-fold speedup with
caching.

Next we turn to training a cascade of FSTs on
end-to-end data. The algorithm takes as input: (1) a
sequence of FSTs, and (2) pairs of training strings
(v,w), such that v is accepted by the first FST in
the cascade, and w is produced by the last FST. The
algorithm outputs the same sequence of FSTs, but
with trained probabilities.

To accomplish this, we first compose the supplied
FSTs, taking care to keep the transitions from differ-
ent machines separate. Figure 2 illustrates this with a
small example. It may thus happen that a single tran-
sition in an input FST is represented multiple times
in the composed device, in which case their prob-

448

ABCD:a

REY:r

!:c

1. Unsupervised part-of-speech tagging with constrained dictionary

POS Tag

sequence

Observed

word

sequence

2. Decipherment of letter-substitution cipher

English

letter

sequence

Observed

enciphered

text

3. Re-Spacing of English text written without spaces

Word

sequence

Observed

letter

sequence

w/o spaces

4. Alignment of Japanese/English phoneme sequences

English

phoneme

sequence

Japanese

katakana

phoneme

sequence

26 x 26 table

letter bigram model,

learned separately

constrained tag!word

substitution model tag bigram model

unigram model over

words and non-words deterministic spell-out

mapping from each English

phoneme to each Japanese

phoneme sequence of length 1 to 3

NN

JJ

JJ

JJ

NN

VB
!

!

!

NN:fish

IN:at

VB:fish

SYM:a
DT:a

a

b

b

b

a

c !

!

!
a:A

a:B

a:C

b:A
b:B

b:C

A AR

ARE
AREY

AREYO

!:!

AREY:a

!:b

!:d

!:r
!:e
!:y

AE:!
!:S

!:S

!:U

Figure 1: Finite-state cascades for five natural language problems.

449

abilities are tied together. Next, we run FST train-
ing on the end-to-end data. This involves creating
derivation lattices and running forward-backward on
them. After FST training, we de-compose the trained
device back into a cascade of trained machines.

When the cascade’s first machine is an FSA,
rather than an FST, then the entire cascade is viewed
as a generator of strings rather than a transformer of
strings. Such a cascade is trained on observed strings
rather than string pairs. By again treating the first
FSA as an FST with empty input, we can train using
the FST-cascade training algorithm described in the
previous paragraph.

Once we have our trained cascade, we can apply it
to new data, obtaining (for example) the k-best out-
put strings for an input string.

3 Generic Bayesian Training

Bayesian learning is a wide-ranging field. We focus
on training using Gibbs sampling (Geman and Ge-
man, 1984), because it has been popularly applied
in the natural language literature, e.g., (Finkel et al.,
2005; DeNero et al., 2008; Blunsom et al., 2009).

Our overall plan is to give a generic algorithm
for Bayesian training that is a “drop-in replacement”
for EM training. That is, we input an FST cas-
cade and data and output the same FST cascade
with trained weights. This is an approximation to a
purely Bayesian setup (where one would always in-
tegrate over all possible weightings), but one which
makes it easy to deploy FSTs to efficiently decode
new data. Likewise, we do not yet support non-
parametric approaches—to create a drop-in replace-
ment for EM, we require that all parameters be spec-
ified in the initial FST cascade. We return to this is-
sue in Section 5.

3.1 Particular Case

We start with a well-known application of Bayesian
inference, unsupervised POS tagging (Goldwater
and Griffiths, 2007). Raw training text is provided,
and each potential corpus tagging corresponds to a
hidden derivation of that data. Derivations are cre-
ated and probabilistically scored as follows:

1. i← 1

2. Choose tag t1 according to P0(t1)

3. Choose word w1 according to P0(w1 | t1)

4. i← i + 1

5. Choose tag ti according to

αP0(ti | ti−1) + ci−1
1 (ti−1, ti)

α + ci−1
1 (ti−1)

(1)

6. Choose word wi according to

βP0(wi | ti) + ci−1
1 (ti,wi)

β + ci−1
1 (ti)

(2)

7. With probability Pquit, quit; else go to 4.

This defines the probability of any given derivation.
The base distribution P0 represents prior knowl-
edge about the distribution of tags and words, given
the relevant conditioning context. The ci−1

1 are the
counts of events occurring before word i in the
derivation (the “cache”).

When α and β are large, tags and words are essen-
tially generated according to P0. When α and β are
small, tags and words are generated with reference
to previous decisions inside the cache.

We use Gibbs sampling to estimate the distribu-
tion of tags given words. The key to efficient sam-
pling is to define a sampling operator that makes
some small change to the overall corpus derivation.
With such an operator, we derive an incremental
formula for re-scoring the probability of an entire
new derivation based on the probability of the old
derivation. Exchangeability makes this efficient—
we pretend like the area around the small change oc-
curs at the end of the corpus, so that both old and
new derivations share the same cache. Goldwater
and Griffiths (2007) choose the re-sampling operator
“change the tag of a single word,” and they derive
the corresponding incremental scoring formula for
unsupervised tagging. For other problems, design-
ers develop different sampling operators and derive
different incremental scoring formulas.

3.2 Generic Case
In order to develop a generic algorithm, we need
to abstract away from these problem-specific de-
sign choices. In general, hidden derivations corre-
spond to paths through derivation lattices, so we first

450

Figure 3: Changing a decision in the derivation lattice.
All paths generate the observed data. The bold path rep-
resents the current sample, and the dotted path represents
a sidetrack in which one decision is changed.

compute derivation lattices for our observed training
data through our cascade of FSTs. A random path
through these lattices constitutes the initial sample,
and we calculate its derivation probability directly.

One way to think about a generic small change
operator is to consider a single transition in the cur-
rent sample. This transition will generally compete
with other transitions. One possible small change is
to “sidetrack” the derivation to a competing deriva-
tion. Figure 3 shows how this works. If the sidetrack
path quickly re-joins the old derivation path, then an
incremental score can be computed. However, side-
tracking raises knotty questions. First, what is the
proper path continuation after the sidetracking tran-
sition is selected? Should the path attempt to re-join
the old derivation as soon as possible, and if so, how
is this efficiently done? Then, how can we compute
new derivation scores for all possible sidetracks, so
that we can choose a new sample by an appropriate
weighted coin flip? Finally, would such a sampler be
reversible? In order to satisfy theoretical conditions
for Gibbs sampling, if we move from sample A to
sample B, we must be able to immediately get back
to sample A.

We take a different tack here, moving from point-
wise sampling to blocked sampling. Gao and John-
son (2008) employed blocked sampling for POS tag-
ging, and the approach works nicely for arbitrary
derivation lattices. We again start with a random
derivation for each example in the corpus. We then
choose a training example and exchange its entire
derivation lattice to the end of the corpus. We cre-
ate a weighted version of this lattice, called the pro-
posal lattice, such that we can approximately sample
whole paths by stochastic generation. The probabil-
ities are based on the event counts from the rest of
the sample (the cache), and on the base distribution,

and are computed in this way:

P(r | q) =
αP0(r | q) + c(q, r)

α + c(q)
(3)

where q and r are states of the derivation lattice, and
the c(·) are counts collected from the corpus minus
the entire training example being resampled. This is
an approximation because we are ignoring the fact
that P(r | q) in general depends on choices made
earlier in the lattice. The approximation can be cor-
rected using the Metropolis-Hastings algorithm, in
which the sample drawn from the proposal lattice is
accepted only with a certain probability α; but Gao
and Johnson (2008) report that α > 0.99, so we skip
this step.

3.3 Choosing the best derivations

After the sampling run has finished, we can choose
the best derivations using two different methods.
First, if we want to find the MAP derivations of the
training strings, then following Goldwater and Grif-
fiths (2007), we can use annealing: raise the proba-
bilities in the sampling distribution to the 1

T power,
where T is a temperature parameter, decrease T to-
wards zero, and take a single sample.

But in practice one often wants to predict the
MAP derivation for a new string w′ not contained
in the training data. To approximate the distribution
of derivations of w′ given the training data, we aver-
age the transition counts from all the samples (after
burn-in) and plug the averaged counts into (3) to ob-
tain a single proposal lattice.2 The predicted deriva-
tion is the Viterbi path through this lattice. Call this
method averaging. An advantage of this approach is
that the trainer, taking a cascade of FSAs as input,
outputs a weighted version of the same cascade, and
this trained cascade can be used on unseen examples
without having to rerun training.

3.4 Implementation

That concludes the generic Bayesian training algo-
rithm, to which we add the following controls:

2A better approximation might have been to build a proposal
lattice for each sample (after burn-in), and then construct a sin-
gle FSA that computes the average of the probability distribu-
tions computed by all the proposal lattices. But this FSA would
be rather large.

451

Number of Gibbs sampling iterations. We execute
the full number specified.
Base distribution. Any probabilities supplied on the
pre-trained FST are interpreted as base distribution
probabilities. If no probabilities are supplied, then
the base distribution is taken to be uniform.
Hyperparameters. We supply a distinct α for each
machine in the FST cascade. We do not yet support
different α values for different states within a single
FST.
Random restarts. We can request multiple runs
from different, randomly-selected initial samples.
EM-based initial point. If random initial samples
are undesirable, we can request that the Gibbs sam-
pler be initialized with the Viterbi path using param-
eter values obtained by n iterations of EM.
Annealing schedule. If annealing is used, it follows
a linear annealing schedule with starting and stop-
ping temperature specified by the user.

EM and Bayesian training for arbitrary FST
cascades are both implemented in the finite-state
toolkit Carmel, which is distributed with source
code.3 All controls are implemented as command-
line switches. We use Carmel to carry out the exper-
iments in the next section.

4 Run Selection

For both EM and Bayesian methods, different train-
ing runs yield different results. EM’s objective func-
tion (probability of observed data) is very bumpy for
the unsupervised problems we work on—different
initial points yield different trained WFST cascades,
with different task accuracies. Averaging task accu-
racies across runs is undesirable, because we want to
deploy a particular trained cascade in the real world,
and we want an estimate of its performance. Select-
ing the run with the best task accuracy is illegal in an
unsupervised setting. With EM, we have a good al-
ternative: select the run that maximizes the objective
function, i.e., the likelihood of the observed training
data. We find a decent correlation between this value
and task accuracy, and we are generally able to im-
prove accuracy using this run selection method. Fig-
ure 4 shows a scatterplot of 1000 runs for POS tag-
ging. A single run with a uniform start yields 81.8%

3http://www.isi.edu/licensed-sw/carmel

 0.75

 0.8

 0.85

 0.9

 211200

 211300

 211400

 211500

 211600

 211700

 211800

 211900

 212000

 212100

 212200

T
a

g
g

in
g

 a
c
c
u

ra
c
y
 (

%
 o

f
w

o
rd

 t
o

k
e

n
s
)

-log P(data)

EM (random start)
EM (uniform start)

Figure 4: Multiple EM restarts for POS tagging. Each
point represents one random restart; the y-axis is tag-
ging accuracy and the x-axis is EM’s objective function,
− log P(data).

accuracy, while automatic selection from 1000 runs
yields 82.4% accuracy.

Gibbs sampling runs also yield WFST cascades
with varying task accuracies, due to random initial
samples and sampling decisions. In fact, the varia-
tion is even larger than what we find with EM. It is
natural to ask whether we can do automatic run se-
lection for Gibbs sampling. If we are using anneal-
ing, it makes sense to use the probability of the fi-
nal sample, which is supposed to approximate the
MAP derivation. When using averaging, however,
choosing the final sample would be quite arbitrary.
Instead, we propose choosing the run that has the
highest average log-probability (that is, the lowest
entropy) after burn-in. The rationale is that the runs
that have found their way to high-probability peaks
are probably more representative of the true distri-
bution, or at least capture a part of the distribution
that is of greater interest to us.

We find that this method works quite well in prac-
tice. Figure 5 illustrates 1000 POS tagging runs
for annealing with automatic run selection, yield-
ing 84.7% accuracy. When using averaging, how-
ever, automatic selection from 1000 runs (Figure 6)
produces a much higher accuracy of 90.7%. This
is better than accuracies reported previously using

452

 0.75

 0.8

 0.85

 0.9

 235100

 235150

 235200

 235250

 235300

 235350

 235400

T
a
g
g
in

g
 a

c
c
u
ra

c
y
 (

%
 o

f
w

o
rd

 t
o
k
e
n
s
)

-log P(derivation) for final sample

Bayesian run (with annealing)

Figure 5: Multiple Bayesian learning runs (using anneal-
ing with temperature decreasing from 2 to 0.08) for POS
tagging. Each point represents one run; the y-axis is tag-
ging accuracy and the x-axis is the − log P(derivation) of
the final sample.

 0.75

 0.8

 0.85

 0.9

 236800

 236900

 237000

 237100

 237200

 237300

 237400

 237500

 237600

 237700

 237800

 237900

T
a

g
g

in
g

 a
c
c
u

ra
c
y
 (

%
 o

f
w

o
rd

 t
o

k
e

n
s
)

-log P(derivation) averaged over all post-burnin samples

Bayesian run (using averaging)

Figure 6: Multiple Bayesian learning runs (using averag-
ing) for POS tagging. Each point represents one run; the
y-axis is tagging accuracy and the x-axis is the average
− log P(derivation) over all samples after burn-in.

Bayesian methods (85.2% from Goldwater and Grif-
fiths (2007), who use a trigram model) and close to
the best accuracy reported on this task (91.8% from
Ravi and Knight (2009b), who use an integer linear
program to minimize the model directly).

5 Experiments and Results

We run experiments for various natural language ap-
plications and compare the task accuracies achieved
by the EM and Bayesian learning methods. The
tasks we consider are:

Unsupervised POS tagging. We adopt the com-
mon problem formulation for this task described
by Merialdo (1994), in which we are given a raw
24,115-word sequence and a dictionary of legal tags
for each word type. The tagset consists of 45 dis-
tinct grammatical tags. We use the same modeling
approach as as Goldwater and Griffiths (2007), us-
ing a probabilistic tag bigram model in conjunction
with a tag-to-word model.

Letter substitution decipherment. Here, the task
is to decipher a 414-letter substitution cipher and un-
cover the original English letter sequence. The task
accuracy is defined as the percent of ciphertext to-

kens that are deciphered correctly. We work on the
same standard cipher described in previous litera-
ture (Ravi and Knight, 2008). The model consists
of an English letter bigram model, whose probabil-
ities are fixed and an English-to-ciphertext channel
model, which is learnt during training.

Segmentation of space-free English. Given
a space-free English text corpus (e.g.,
iwalkedtothe...), the task is to segment the
text into words (e.g., i walked to the ...).
Our input text corpus consists of 11,378 words,
with spaces removed. As illustrated in Figure 1,
our method uses a unigram FSA that models every
letter sequence seen in the data, which includes
both words and non-words (at most 10 letters long)
composed with a deterministic spell-out model.
In order to evaluate the quality of our segmented
output, we compare it against the gold segmentation
and compute the word token f-measure.

Japanese/English phoneme alignment. We
use the problem formulation of Knight and
Graehl (1998). Given an input English/Japanese
katakana phoneme sequence pair, the task is to
produce an alignment that connects each English

453

MLE Bayesian
EM prior VB-EM Gibbs

POS tagging 82.4 α = 10−2, β = 10−1 84.1 90.7
Letter decipherment 83.6 α = 106, β = 10−2 83.6 88.9
Re-spacing English 0.9 α = 10−8, β = 104 0.8 42.8
Aligning phoneme strings∗ 100 α = 10−2 99.9 99.1

Table 1: Gibbs sampling for Bayesian inference outperforms both EM and Variational Bayesian EM. ∗The output of
EM alignment was used as the gold standard.

phoneme to its corresponding Japanese sounds (a
sequence of one or more Japanese phonemes). For
example, given a phoneme sequence pair ((AH B
AW T) → (a b a u t o)), we have to produce
the alignments ((AH → a), (B → b), (AW →
a u), (T → t o)). The input data consists of
2,684 English/Japanese phoneme sequence pairs.
We use a model that consists of mappings from each
English phoneme to Japanese phoneme sequences
(of length up to 3), and the mapping probabilities
are learnt during training. We manually analyzed
the alignments produced by the EM method for
this task and found them to be nearly perfect.
Hence, for the purpose of this task we treat the EM
alignments as our gold standard, since there are no
gold alignments available for this data.

In all the experiments reported here, we run EM
for 200 iterations and Bayesian for 5000 iterations
(the first 2000 for burn-in). We apply automatic run
selection using the objective function value for EM
and the averaging method for Bayesian.

Table 1 shows accuracy results for our four tasks,
using run selection for both EM and Bayesian learn-
ing. For the Bayesian runs, we compared two infer-
ence methods: Gibbs sampling, as described above,
and Variational Bayesian EM (Beal and Ghahra-
mani, 2003), both of which are implemented in
Carmel. We used the hyperparameters (α, β) as
shown in the table. Setting a high value yields a fi-
nal distribution that is close to the original one (P0).
For example, in letter decipherment we want to keep
the language model probabilities fixed during train-
ing, and hence we set the prior on that model to
be very strong (α = 106). Table 1 shows that the
Bayesian methods consistently outperform EM for
all the tasks (except phoneme alignment, where EM
was taken as the gold standard). Each iteration of

Gibbs sampling was 2.3 times slower than EM for
POS tagging, and in general about twice as slow.

6 Discussion

We have described general training algorithms for
FST cascades and their implementation, and exam-
ined the problem of run selection for both EM and
Bayesian training. This work raises several interest-
ing points for future study.

First, is there an efficient method for perform-
ing pointwise sampling on general FSTs, and would
pointwise sampling deliver better empirical results
than blocked sampling across a range of tasks?

Second, can generic methods similar to the ones
described here be developed for cascades of tree
transducers? It is straightforward to adapt our meth-
ods to train a single tree transducer (Graehl et al.,
2008), but as most types of tree transducers are
not closed under composition (Gécseg and Steinby,
1984), the compose/de-compose method cannot be
directly applied to train cascades.

Third, what is the best way to extend the FST for-
malism to represent non-parametric Bayesian mod-
els? Consider the English re-spacing application. We
currently take observed (un-spaced) data and build
a giant unigram FSA that models every letter se-
quence seen in the data of up to 10 letters, both
words and non-words. This FSA has 207,253 tran-
sitions. We also define P0 for each individual transi-
tion, which allows a preference for short words. This
set-up works fine, but in a nonparametric approach,
P0 is defined more compactly and without a word-
length limit. An extension of FSTs along the lines
of recursive transition networks may be appropriate,
but we leave details for future work.

454

References
Matthew J. Beal and Zoubin Ghahramani. 2003. The

Variational Bayesian EM algorithm for incomplete
data: with application to scoring graphical model
structures. Bayesian Statistics, 7:453–464.

Phil Blunsom, Trevor Cohn, Chris Dyer, and Miles Os-
borne. 2009. A Gibbs sampler for phrasal syn-
chronous grammar induction. In Proceedings of ACL-
IJCNLP 2009.

Alexander Clark. 2002. Memory-based learning of mor-
phology with stochastic transducers. In Proceedings
of ACL 2002.

John DeNero, Alexandre Bouchard-Côté, and Dan Klein.
2008. Sampling alignment structure under a Bayesian
translation model. In Proceedings of EMNLP 2008.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by Gibbs sam-
pling. In Proceedings of ACL 2005.

Jianfeng Gao and Mark Johnson. 2008. A comparison of
Bayesian estimators for unsupervised Hidden Markov
Model POS taggers. In Proceedings of EMNLP 2008.

Ferenc Gécseg and Magnus Steinby. 1984. Tree Au-
tomata. Akadémiai Kiadó, Budapest.

Stuart Geman and Donald Geman. 1984. Stochastic re-
laxation, Gibbs distributions and the Bayesian restora-
tion of images. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 6(6):721–741.

Sharon Goldwater and Thomas L. Griffiths. 2007.
A fully Bayesian approach to unsupervised part-of-
speech tagging. In Proceedings of ACL 2007.

Sharon Goldwater, Thomas L. Griffiths, and Mark John-
son. 2009. A Bayesian framework for word segmen-
tation: Exploring the effects of context. Cognition,
112(1):21 – 54.

Jonathan Graehl, Kevin Knight, and Jonathan May. 2008.
Training tree transducers. Computational Linguistics,
34(3):391–427.

Kevin Knight and Yaser Al-Onaizan. 1998. Transla-
tion with finite-state devices. In Proceedings of AMTA
1998.

Kevin Knight and Jonathan Graehl. 1998. Machine
transliteration. Computational Linguistics, 24(4):599–
612.

Knight Knight and Jonathan Graehl. 2005. An overview
of probabilistic tree transducers for natural language
processing. In Proceedings of CICLing-2005.

Kevin Knight, Anish Nair, Nishit Rathod, and Kenji Ya-
mada. 2006. Unsupervised analysis for decipherment
problems. In Proceedings of COLING-ACL 2006.

Okan Kolak, Willian Byrne, and Philip Resnik. 2003. A
generative probabilistic OCR model for NLP applica-
tions. In Proceedings of HLT-NAACL 2003.

Lambert Mathias and William Byrne. 2006. Statisti-
cal phrase-based speech translation. In Proceedings
of ICASSP 2006.

Bernard Merialdo. 1994. Tagging English text with
a probabilistic model. Computational Linguistics,
20(2):155–171.

Shmuel Peleg and Azriel Rosenfeld. 1979. Break-
ing substitution ciphers using a relaxation algorithm.
Communications of the ACM, 22(11):598–605.

Fernando C. N. Pereira and Michael D. Riley. 1996.
Speech recognition by composition of weighted finite
automata. Finite-State Language Processing, pages
431–453.

Fernando Pereira, Michael Riley, and Richard Sproat.
1994. Weighted rational transductions and their appli-
cations to human language processing. In ARPA Hu-
man Language Technology Workshop.

Sujith Ravi and Kevin Knight. 2008. Attacking deci-
pherment problems optimally with low-order n-gram
models. In Proceedings of EMNLP 2008.

Sujith Ravi and Kevin Knight. 2009a. Learning
phoneme mappings for transliteration without parallel
data. In Proceedings of NAACL HLT 2009.

Sujith Ravi and Kevin Knight. 2009b. Minimized mod-
els for unsupervised part-of-speech tagging. In Pro-
ceedings of ACL-IJCNLP 2009.

Richard Sproat, Chilin Shih, William Gale, and Nancy
Chang. 1996. A stochastic finite-state word-
segmentation algorithm for Chinese. Computational
Linguistics, 22(3):377–404.

455

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 456–464,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Distributed Training Strategies for the Structured Perceptron

Ryan McDonald Keith Hall Gideon Mann
Google, Inc., New York / Zurich

{ryanmcd|kbhall|gmann}@google.com

Abstract

Perceptron training is widely applied in the
natural language processing community for
learning complex structured models. Like all
structured prediction learning frameworks, the
structured perceptron can be costly to train
as training complexity is proportional to in-
ference, which is frequently non-linear in ex-
ample sequence length. In this paper we
investigate distributed training strategies for
the structured perceptron as a means to re-
duce training times when computing clusters
are available. We look at two strategies and
provide convergence bounds for a particu-
lar mode of distributed structured perceptron
training based on iterative parameter mixing
(or averaging). We present experiments on
two structured prediction problems – named-
entity recognition and dependency parsing –
to highlight the efficiency of this method.

1 Introduction

One of the most popular training algorithms for
structured prediction problems in natural language
processing is the perceptron (Rosenblatt, 1958;
Collins, 2002). The structured perceptron has many
desirable properties, most notably that there is no
need to calculate a partition function, which is
necessary for other structured prediction paradigms
such as CRFs (Lafferty et al., 2001). Furthermore,
it is robust to approximate inference, which is of-
ten required for problems where the search space
is too large and where strong structural indepen-
dence assumptions are insufficient, such as parsing
(Collins and Roark, 2004; McDonald and Pereira,
2006; Zhang and Clark, 2008) and machine trans-

lation (Liang et al., 2006). However, like all struc-
tured prediction learning frameworks, the structure
perceptron can still be cumbersome to train. This
is both due to the increasing size of available train-
ing sets as well as the fact that training complexity
is proportional to inference, which is frequently non-
linear in sequence length, even with strong structural
independence assumptions.

In this paper we investigate distributed training
strategies for the structured perceptron as a means
of reducing training times when large computing
clusters are available. Traditional machine learning
algorithms are typically designed for a single ma-
chine, and designing an efficient training mechanism
for analogous algorithms on a computing cluster –
often via a map-reduce framework (Dean and Ghe-
mawat, 2004) – is an active area of research (Chu
et al., 2007). However, unlike many batch learning
algorithms that can easily be distributed through the
gradient calculation, a distributed training analog for
the perceptron is less clear cut. It employs online up-
dates and its loss function is technically non-convex.

A recent study by Mann et al. (2009) has shown
that distributed training through parameter mixing
(or averaging) for maximum entropy models can
be empirically powerful and has strong theoretical
guarantees. A parameter mixing strategy, which can
be applied to any parameterized learning algorithm,
trains separate models in parallel, each on a disjoint
subset of the training data, and then takes an average
of all the parameters as the final model. In this paper,
we provide results which suggest that the percep-
tron is ill-suited for straight-forward parameter mix-
ing, even though it is commonly used for large-scale
structured learning, e.g., Whitelaw et al. (2008) for
named-entity recognition. However, a slight mod-

456

ification we call iterative parameter mixing can be
shown to: 1) have similar convergence properties to
the standard perceptron algorithm, 2) find a sepa-
rating hyperplane if the training set is separable, 3)
reduce training times significantly, and 4) produce
models with comparable (or superior) accuracies to
those trained serially on all the data.

2 Related Work

Distributed cluster computation for many batch
training algorithms has previously been examined
by Chu et al. (2007), among others. Much of the
relevant prior work on online (or sub-gradient) dis-
tributed training has been focused on asynchronous
optimization via gradient descent. In this sce-
nario, multiple machines run stochastic gradient de-
scent simultaneously as they update and read from
a shared parameter vector asynchronously. Early
work by Tsitsiklis et al. (1986) demonstrated that
if the delay between model updates and reads is
bounded, then asynchronous optimization is guaran-
teed to converge. Recently, Zinkevich et al. (2009)
performed a similar type of analysis for online learn-
ers with asynchronous updates via stochastic gra-
dient descent. The asynchronous algorithms in
these studies require shared memory between the
distributed computations and are less suitable to
the more common cluster computing environment,
which is what we study here.

While we focus on the perceptron algorithm, there
is a large body of work on training structured pre-
diction classifiers. For batch training the most com-
mon is conditional random fields (CRFs) (Lafferty
et al., 2001), which is the structured analog of maxi-
mum entropy. As such, its training can easily be dis-
tributed through the gradient or sub-gradient com-
putations (Finkel et al., 2008). However, unlike per-
ceptron, CRFs require the computation of a partition
function, which is often expensive and sometimes
intractable. Other batch learning algorithms include
M3Ns (Taskar et al., 2004) and Structured SVMs
(Tsochantaridis et al., 2004). Due to their efficiency,
online learning algorithms have gained attention, es-
pecially for structured prediction tasks in NLP. In
addition to the perceptron (Collins, 2002), others
have looked at stochastic gradient descent (Zhang,
2004), passive aggressive algorithms (McDonald et

Perceptron(T = {(xt,yt)}|T |t=1)
1. w(0) = 0; k = 0
2. for n : 1..N
3. for t : 1..T
4. Let y′ = arg maxy′ w(k) · f(xt,y′)
5. if y′ 6= yt

6. w(k+1) = w(k) + f(xt,yt)− f(xt,y′)
7. k = k + 1
8. return w(k)

Figure 1: The perceptron algorithm.

al., 2005; Crammer et al., 2006), the recently intro-
duced confidence weighted learning (Dredze et al.,
2008) and coordinate descent algorithms (Duchi and
Singer, 2009).

3 Structured Perceptron

The structured perceptron was introduced by Collins
(2002) and we adopt much of the notation and pre-
sentation of that study. The structured percetron al-
gorithm – which is identical to the multi-class per-
ceptron – is shown in Figure 1. The perceptron is an
online learning algorithm and processes training in-
stances one at a time during each epoch of training.
Lines 4-6 are the core of the algorithm. For a input-
output training instance pair (xt,yt) ∈ T , the algo-
rithm predicts a structured output y′ ∈ Yt, where Yt
is the space of permissible structured outputs for in-
put xt, e.g., parse trees for an input sentence. This
prediction is determined by a linear classifier based
on the dot product between a high-dimensional fea-
ture representation of a candidate input-output pair
f(x,y) ∈ RM and a corresponding weight vector
w ∈ RM , which are the parameters of the model1.
If this prediction is incorrect, then the parameters
are updated to add weight to features for the cor-
responding correct output yt and take weight away
from features for the incorrect output y′. For struc-
tured prediction, the inference step in line 4 is prob-
lem dependent, e.g., CKY for context-free parsing.

A training set T is separable with margin γ >
0 if there exists a vector u ∈ RM with ‖u‖ = 1
such that u · f(xt,yt) − u · f(xt,y′) ≥ γ, for all
(xt,yt) ∈ T , and for all y′ ∈ Yt such that y′ 6= yt.
Furthermore, letR ≥ ||f(xt,yt)−f(xt,y′)||, for all
(xt,yt) ∈ T and y′ ∈ Yt. A fundamental theorem

1The perceptron can be kernalized for non-linearity.

457

of the perceptron is as follows:

Theorem 1 (Novikoff (1962)). Assume training set
T is separable by margin γ. Let k be the number of
mistakes made training the perceptron (Figure 1) on
T . If training is run indefinitely, then k ≤ R2

γ2 .

Proof. See Collins (2002) Theorem 1.

Theorem 1 implies that if T is separable then 1) the
perceptron will converge in a finite amount of time,
and 2) will produce a w that separates T . Collins
also proposed a variant of the structured perceptron
where the final weight vector is a weighted average
of all parameters that occur during training, which
he called the averaged perceptron and can be viewed
as an approximation to the voted perceptron algo-
rithm (Freund and Schapire, 1999).

4 Distributed Structured Perceptron

In this section we examine two distributed training
strategies for the perceptron algorithm based on pa-
rameter mixing.

4.1 Parameter Mixing

Distributed training through parameter mixing is a
straight-forward way of training classifiers in paral-
lel. The algorithm is given in Figure 2. The idea is
simple: divide the training data T into S disjoint
shards such that T = {T1, . . . , TS}. Next, train
perceptron models (or any learning algorithm) on
each shard in parallel. After training, set the final
parameters to a weighted mixture of the parameters
of each model using mixture coefficients µ. Note
that we call this strategy parameter mixing as op-
posed to parameter averaging to distinguish it from
the averaged perceptron (see previous section). It is
easy to see how this can be implemented on a cluster
through a map-reduce framework, i.e., the map step
trains the individual models in parallel and the re-
duce step mixes their parameters. The advantages of
parameter mixing are: 1) that it is parallel, making
it possibly to scale to extremely large data sets, and
2) it is resource efficient, in particular with respect
to network usage as parameters are not repeatedly
passed across the network as is often the case for
exact distributed training strategies.

For maximum entropy models, Mann et al. (2009)
show it is possible to bound the norm of the dif-

PerceptronParamMix(T = {(xt,yt)}|T |t=1)
1. Shard T into S pieces T = {T1, . . . , TS}
2. w(i) = Perceptron(Ti) †
3. w =

∑
i µiw(i) ‡

4. return w

Figure 2: Distributed perceptron using a parameter mix-
ing strategy. † Each w(i) is computed in parallel. ‡ µ =
{µ1, . . . , µS}, ∀µi ∈ µ : µi ≥ 0 and

∑
i µi = 1.

ference between parameters trained on all the data
serially versus parameters trained with parameter
mixing. However, their analysis requires a stabil-
ity bound on the parameters of a regularized max-
imum entropy model, which is not known to hold
for the perceptron. In Section 5, we present empir-
ical results showing that parameter mixing for dis-
tributed perceptron can be sub-optimal. Addition-
ally, Dredze et al. (2008) present negative parame-
ter mixing results for confidence weighted learning,
which is another online learning algorithm. The fol-
lowing theorem may help explain this behavior.
Theorem 2. For a any training set T separable by
margin γ, the perceptron algorithm trained through
a parameter mixing strategy (Figure 2) does not nec-
essarily return a separating weight vector w.

Proof. Consider a binary classification setting
where Y = {0, 1} and T has 4 instances.
We distribute the training set into two shards,
T1 = {(x1,1,y1,1), (x1,2,y1,2)} and T2 =
{(x2,1,y2,1), (x2,2,y2,2)}. Let y1,1 = y2,1 = 0 and
y1,2 = y2,2 = 1. Now, let w, f ∈ R6 and using
block features, define the feature space as,

f(x1,1, 0) = [1 1 0 0 0 0] f(x1,1, 1) = [0 0 0 1 1 0]

f(x1,2, 0) = [0 0 1 0 0 0] f(x1,2, 1) = [0 0 0 0 0 1]

f(x2,1, 0) = [0 1 1 0 0 0] f(x2,1, 1) = [0 0 0 0 1 1]

f(x2,2, 0) = [1 0 0 0 0 0] f(x2,2, 1) = [0 0 0 1 0 0]

Assuming label 1 tie-breaking, parameter mixing re-
turns w1=[1 1 0 -1 -1 0] and w2=[0 1 1 0 -1 -1]. For
any µ, the mixed weight vector w will not separate
all the points. If both µ1/µ2 are non-zero, then all
examples will be classified 0. If µ1=1 and µ2=0,
then (x2,2,y2,2) will be incorrectly classified as 0
and (x1,2,y1,2) when µ1=0 and µ2=1. But there is a
separating weight vector w = [-1 2 -1 1 -2 1].

This counter example does not say that a parameter
mixing strategy will not converge. On the contrary,

458

if T is separable, then each of its subsets is separa-
ble and converge via Theorem 1. What it does say
is that, independent of µ, the mixed weight vector
produced after convergence will not necessarily sep-
arate the entire data, even when T is separable.

4.2 Iterative Parameter Mixing
Consider a slight augmentation to the parameter
mixing strategy. Previously, each parallel percep-
tron was trained to convergence before the parame-
ter mixing step. Instead, shard the data as before, but
train a single epoch of the perceptron algorithm for
each shard (in parallel) and mix the model weights.
This mixed weight vector is then re-sent to each
shard and the perceptrons on those shards reset their
weights to the new mixed weights. Another single
epoch of training is then run (again in parallel over
the shards) and the process repeats. This iterative
parameter mixing algorithm is given in Figure 3.

Again, it is easy to see how this can be imple-
mented as map-reduce, where the map computes the
parameters for each shard for one epoch and the re-
duce mixes and re-sends them. This is analogous
to batch distributed gradient descent methods where
the gradient for each shard is computed in parallel in
the map step and the reduce step sums the gradients
and updates the weight vector. The disadvantage of
iterative parameter mixing, relative to simple param-
eter mixing, is that the amount of information sent
across the network will increase. Thus, if network
latency is a bottleneck, this can become problematic.
However, for many parallel computing frameworks,
including both multi-core computing as well as clus-
ter computing with high rates of connectivity, this is
less of an issue.

Theorem 3. Assume a training set T is separable
by margin γ. Let ki,n be the number of mistakes that
occurred on shard i during the nth epoch of train-
ing. For any N , when training the perceptron with
iterative parameter mixing (Figure 3),

N∑
n=1

S∑
i=1

µi,nki,n ≤
R2

γ2

Proof. Let w(i,n) to be the weight vector for the
ith shard after the nth epoch of the main loop and
let w([i,n]−k) be the weight vector that existed on
shard i in the nth epoch k errors before w(i,n). Let

PerceptronIterParamMix(T = {(xt,yt)}|T |t=1)
1. Shard T into S pieces T = {T1, . . . , TS}
2. w = 0
3. for n : 1..N
4. w(i,n) = OneEpochPerceptron(Ti,w) †
5. w =

∑
i µi,nw(i,n) ‡

6. return w

OneEpochPerceptron(T , w∗)
1. w(0) = w∗; k = 0
2. for t : 1..T
3. Let y′ = arg maxy′ w(k) · f(xt,y′)
4. if y′ 6= yt

5. w(k+1) = w(k) + f(xt,yt)− f(xt,y′)
6. k = k + 1
7. return w(k)

Figure 3: Distributed perceptron using an iterative param-
eter mixing strategy. † Each w(i,n) is computed in paral-
lel. ‡ µn = {µ1,n, . . . , µS,n}, ∀µi,n ∈ µn: µi,n ≥ 0 and
∀n:

∑
i µi,n = 1.

w(avg,n) be the mixed vector from the weight vec-
tors returned after the nth epoch, i.e.,

w(avg,n) =
S∑

i=1

µi,nw(i,n)

Following the analysis from Collins (2002) Theorem
1, by examining line 5 of OneEpochPerceptron in
Figure 3 and the fact that u separates the data by γ:

u ·w(i,n) = u ·w([i,n]−1)

+ u · (f(xt,yt)− f(xt,y′))
≥ u ·w([i,n]−1) + γ

≥ u ·w([i,n]−2) + 2γ
. . . ≥ u ·w(avg,n−1) + ki,nγ (A1)

That is, u · w(i,n) is bounded below by the average
weight vector for the n-1st epoch plus the number
of mistakes made on shard i during the nth epoch
times the margin γ. Next, by OneEpochPerceptron
line 5, the definition ofR, and w([i,n]−1)(f(xt,yt)−
f(xt,y′)) ≤ 0 when line 5 is called:

‖w(i,n)‖2 = ‖w([i,n]−1)‖2

+‖f(xt,yt)− f(xt,y′)‖2

+ 2w([i,n]−1)(f(xt,yt)− f(xt,y′))
≤ ‖w([i,n]−1)‖2 +R2

≤ ‖w([i,n]−2)‖2 + 2R2

. . . ≤ ‖w(avg,n−1)‖2 + ki,nR
2 (A2)

459

That is, the squared L2-norm of a shards weight vec-
tor is bounded above by the same value for the aver-
age weight vector of the n-1st epoch and the number
of mistakes made on that shard during the nth epoch
times R2.

Using A1/A2 we prove two inductive hypotheses:

u ·w(avg,N) ≥
N∑

n=1

S∑
i=1

µi,nki,nγ (IH1)

‖w(avg,N)‖2 ≤
N∑

n=1

S∑
i=1

µi,nki,nR
2 (IH2)

IH1 implies ‖w(avg,N)‖ ≥
∑N

n=1

∑S
i=1 µi,nki,nγ

since u ·w ≤ ‖u‖‖w‖ and ‖u‖ = 1.
The base case is w(avg,1), where we can observe:

u ·wavg,1 =
S∑

i=1

µi,1u ·w(i,1) ≥
S∑

i=1

µi,1ki,1γ

using A1 and the fact that w(avg,0) = 0 for the sec-
ond step. For the IH2 base case we can write:

‖w(avg,1)‖2 =

∥∥∥∥∥
S∑

i=1

µi,1w(i,1)

∥∥∥∥∥
2

≤
S∑

i=1

µi,1‖w(i,1)‖2 ≤
S∑

i=1

µi,1ki,1R
2

The first inequality is Jensen’s inequality, and the
second is true by A2 and ‖w(avg,0)‖2 = 0.

Proceeding to the general case, w(avg,N):

u ·w(avg,N) =
S∑

i=1

µi,N (u ·w(i,N))

≥
S∑

i=1

µi,N (u ·w(avg,N−1) + ki,Nγ)

= u ·w(avg,N−1) +
S∑

i=1

µi,Nki,Nγ

≥

[
N−1∑
n=1

S∑
i=1

µi,nki,nγ

]
+

S∑
i=1

µi,Nki,N

=
N∑

n=1

S∑
i=1

µi,nki,nγ

The first inequality uses A1, the second step∑
i µi,N = 1 and the second inequality the induc-

tive hypothesis IH1. For IH2, in the general case,

we can write:

‖w(avg,N)‖2 ≤
S∑

i=1

µi,N‖w(i,N)‖2

≤
S∑

i=1

µi,N (‖w(avg,N−1)‖2 + ki,NR
2)

= ‖w(avg,N−1)‖2 +
S∑

i=1

µi,Nki,NR
2

≤

[
N−1∑
n=1

S∑
i=1

µi,nki,nR
2

]
+

S∑
i=1

µi,Nki,NR
2

=
N∑

n=1

S∑
i=1

µi,nki,nR
2

The first inequality is Jensen’s, the second A2, and
the third the inductive hypothesis IH2. Putting to-
gether IH1, IH2 and ‖w(avg,N)‖ ≥ u ·w(avg,N):[

N∑
n=1

S∑
i=1

µi,nki,n

]2

γ2 ≤

[
N∑

n=1

S∑
i=1

µi,nki,n

]
R2

which yields:
∑N

n=1

∑S
i=1 µi,nki,n ≤

R2

γ2

4.3 Analysis

If we set each µn to be the uniform mixture, µi,n =
1/S, then Theorem 3 guarantees convergence to
a separating hyperplane. If

∑S
i=1 µi,nki,n = 0,

then the previous weight vector already separated
the data. Otherwise,

∑N
n=1

∑S
i=1 µi,nki,n is still in-

creasing, but is bounded and cannot increase indefi-
nitely. Also note that if S = 1, then µ1,n must equal
1 for all n and this bound is identical to Theorem 1.

However, we are mainly concerned with how fast
convergence occurs, which is directly related to the
number of training epochs each algorithm must run,
i.e., N in Figure 1 and Figure 3. For the non-
distributed variant of the perceptron we can say that
Nnon dist ≤ R2/γ2 since in the worst case a single
mistake happens on each epoch.2 For the distributed
case, consider setting µi,n = ki,n/kn, where kn =∑

i ki,n. That is, we mix parameters proportional to
the number of errors each made during the previous
epoch. Theorem 3 still implies convergence to a sep-
arating hyperplane with this choice. Further, we can

2It is not hard to derive such degenerate cases.

460

bound the required number of epochs Ndist:

Ndist ≤
Ndist∑
n=1

S∏
i=1

[ki,n]
ki,n
kn ≤

Ndist∑
n=1

S∑
i=1

ki,n

kn
ki,n ≤

R2

γ2

Ignoring when all ki,n are zero (since the algorithm
will have converged), the first inequality is true since
either ki,n ≥ 1, implying that [ki,n]ki,n/kn ≥ 1, or
ki,n = 0 and [ki,n]ki,n/kn = 1. The second inequal-
ity is true by the generalized arithmetic-geometric
mean inequality and the final inequality is Theo-
rem 3. Thus, the worst-case number of epochs is
identical for both the regular and distributed percep-
tron – but the distributed perceptron can theoreti-
cally process each epoch S times faster. This ob-
servation holds only for cases where µi,n > 0 when
ki,n ≥ 1 and µi,n = 0 when ki,n = 0, which does
not include uniform mixing.

5 Experiments

To investigate the distributed perceptron strategies
discussed in Section 4 we look at two structured pre-
diction tasks – named entity recognition and depen-
dency parsing. We compare up to four systems:

1. Serial (All Data): This is the classifier returned
if trained serially on all the available data.

2. Serial (Sub Sampling): Shard the data, select
one shard randomly and train serially.

3. Parallel (Parameter Mix): Parallel strategy
discussed in Section 4.1 with uniform mixing.

4. Parallel (Iterative Parameter Mix): Parallel
strategy discussed in Section 4.2 with uniform
mixing (Section 5.1 looks at mixing strategies).

For all four systems we compare results for both the
standard perceptron algorithm as well as the aver-
aged perceptron algorithm (Collins, 2002).

We report the final test set metrics of the con-
verged classifiers to determine whether any loss in
accuracy is observed as a consequence of distributed
training strategies. We define convergence as ei-
ther: 1) the training set is separated, or 2) the train-
ing set performance measure (accuracy, f-measure,
etc.) does not change by more than some pre-defined
threshold on three consecutive epochs. As with most
real world data sets, convergence by training set sep-
aration was rarely observed, though in both cases

training set accuracies approached 100%. For both
tasks we also plot test set metrics relative to the user
wall-clock taken to obtain the classifier. The results
were computed by collecting the metrics at the end
of each epoch for every classifier. All experiments
used 10 shards (Section 5.1 looks at convergence rel-
ative to different shard size).

Our first experiment is a named-entity recogni-
tion task using the English data from the CoNLL
2003 shared-task (Tjong Kim Sang and De Meul-
der, 2003). The task is to detect entities in sentences
and label them as one of four types: people, organi-
zations, locations or miscellaneous. For our exper-
iments we used the entire training set (14041 sen-
tences) and evaluated on the official development
set (3250 sentences). We used a straight-forward
IOB label encoding with a 1st order Markov fac-
torization. Our feature set consisted of predicates
extracted over word identities, word affixes, orthog-
raphy, part-of-speech tags and corresponding con-
catenations. The evaluation metric used was micro
f-measure over the four entity class types.

Results are given in Figure 4. There are a num-
ber of things to observe here: 1) training on a single
shard clearly provides inferior performance to train-
ing on all data, 2) the simple parameter mixing strat-
egy improves upon a single shard, but does not meet
the performance of training on all data, 3) iterative
parameter mixing achieves performance as good as
or better than training serially on all the data, and
4) the distributed algorithms return better classifiers
much quicker than training serially on all the data.
This is true regardless of whether the underlying al-
gorithm is the regular or the averaged perceptron.
Point 3 deserves more discussion. In particular, the
iterative parameter mixing strategy has a higher final
f-measure than training on all the data serially than
the standard perceptron (f-measure of 87.9 vs. 85.8).
We suspect this happens for two reasons. First, the
parameter mixing has a bagging like effect which
helps to reduce the variance of the per-shard classi-
fiers (Breiman, 1996). Second, the fact that parame-
ter mixing is just a form of parameter averaging per-
haps has the same effect as the averaged perceptron.

Our second set of experiments looked at the much
more computationally intensive task of dependency
parsing. We used the Prague Dependency Tree-
bank (PDT) (Hajič et al., 2001), which is a Czech

461

Wall Clock

0.65

0.7

0.75

0.8

0.85
Te

st
 D

at
a

F-
m

ea
su

re

Perceptron -- Serial (All Data)
Perceptron -- Serial (Sub Sampling)
Perceptron -- Parallel (Parameter Mix)
Perceptron -- Parallel (Iterative Parameter Mix)

Wall Clock

0.7

0.75

0.8

0.85

Te
st

 D
at

a
F-

m
ea

su
re

Averaged Perceptron -- Serial (All Data)
Averaged Perceptron -- Serial (Sub Sampling)
Averaged Perceptron -- Parallel (Parameter Mix)
Averaged Perceptron -- Parallel (Iterative Parameter Mix)

Reg. Perceptron Avg. Perceptron
F-measure F-measure

Serial (All Data) 85.8 88.2
Serial (Sub Sampling) 75.3 76.6

Parallel (Parameter Mix) 81.5 81.6
Parallel (Iterative Parameter Mix) 87.9 88.1

Figure 4: NER experiments. Upper figures plot test data f-measure versus wall clock for both regular perceptron (left)
and averaged perceptron (right). Lower table is f-measure for converged models.

language treebank and currently one of the largest
dependency treebanks in existence. We used the
CoNLL-X training (72703 sentences) and testing
splits (365 sentences) of this data (Buchholz and
Marsi, 2006) and dependency parsing models based
on McDonald and Pereira (2006) which factors fea-
tures over pairs of dependency arcs in a tree. To
parse all the sentences in the PDT, one must use a
non-projective parsing algorithm, which is a known
NP-complete inference problem when not assuming
strong independence assumptions. Thus, the use of
approximate inference techniques is common in or-
der to find the highest weighted tree for a sentence.
We use the approximate parsing algorithm given in
McDonald and Pereira (2006), which runs in time
roughly cubic in sentence length. To train such a
model is computationally expensive and can take on
the order of days to train on a single machine.

Unlabeled attachment scores (Buchholz and
Marsi, 2006) are given in Figure 5. The same trends
are seen for dependency parsing that are seen for
named-entity recognition. That is, iterative param-
eter mixing learns classifiers faster and has a final
accuracy as good as or better than training serially
on all data. Again we see that the iterative parame-
ter mixing model returns a more accurate classifier
than the regular perceptron, but at about the same
level as the averaged perceptron.

5.1 Convergence Properties

Section 4.3 suggests that different weighting strate-
gies can lead to different convergence properties,
in particular with respect to the number of epochs.
For the named-entity recognition task we ran four
experiments comparing two different mixing strate-
gies – uniform mixing (µi,n=1/S) and error mix-
ing (µi,n=ki,n/kn) – each with two shard sizes –
S = 10 and S = 100. Figure 6 plots the number
of training errors per epoch for each strategy.

We can make a couple observations. First, the
mixing strategy makes little difference. The rea-
son being that the number of observed errors per
epoch is roughly uniform across shards, making
both strategies ultimately equivalent. The other ob-
servation is that increasing the number of shards
can slow down convergence when viewed relative to
epochs3. Again, this appears in contradiction to the
analysis in Section 4.3, which, at least for the case
of error weighted mixtures, implied that the num-
ber of epochs to convergence was independent of
the number of shards. But that analysis was based
on worst-case scenarios where a single error occurs
on a single shard at each epoch, which is unlikely to
occur in real world data. Instead, consider the uni-

3As opposed to raw wall-clock/CPU time, which benefits
from faster epochs the more shards there are.

462

Wall Clock

0.74

0.76

0.78

0.8

0.82

0.84

Un
la

be
le

d
At

ta
ch

m
en

t S
co

re

Perceptron -- Serial (All Data)
Perceptron -- Serial (Sub Sampling)
Perceptron -- Parallel (Iterative Parameter Mix)

Wall Clock
0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

Un
la

be
le

d
At

ta
ch

m
en

t S
co

re

Averaged Perceptron -- Serial (All Data)
Averaged Perceptron -- Serial (Sub Sampling)
Averaged Perceptron -- (Iterative Parameter Mix)

Reg. Perceptron Avg. Perceptron
Unlabeled Attachment Score Unlabeled Attachment Score

Serial (All Data) 81.3 84.7
Serial (Sub Sampling) 77.2 80.1

Parallel (Iterative Parameter Mix) 83.5 84.5

Figure 5: Dependency Parsing experiments. Upper figures plot test data unlabeled attachment score versus wall clock
for both regular perceptron (left) and averaged perceptron (right). Lower table is unlabeled attachment score for
converged models.

0 10 20 30 40 50
Training Epochs

0

2000

4000

6000

8000

10000

Tr

ai
ni

ng
 M

ist
ak

es

Error mixing (10 shards)
Uniform mixing (10 shards)
Error mixing (100 shards)
Uniform mixing (100 shards)

Figure 6: Training errors per epoch for different shard
size and parameter mixing strategies.

form mixture case. Theorem 3 implies:
N∑

n=1

S∑
i=1

ki,n

S
≤ R2

γ2
=⇒

N∑
n=1

S∑
i=1

ki,n ≤ S ×
R2

γ2

Thus, for cases where training errors are uniformly
distributed across shards, it is possible that, in the
worst-case, convergence may slow proportional the
the number of shards. This implies a trade-off be-
tween slower convergence and quicker epochs when
selecting a large number of shards. In fact, we ob-
served a tipping point for our experiments in which
increasing the number of shards began to have an ad-
verse effect on training times, which for the named-
entity experiments occurred around 25-50 shards.
This is both due to reasons described in this section
as well as the added overhead of maintaining and
summing multiple high-dimensional weight vectors
after each distributed epoch.

It is worth pointing out that a linear term S in
the convergence bound above is similar to conver-
gence/regret bounds for asynchronous distributed
online learning, which typically have bounds lin-
ear in the asynchronous delay (Mesterharm, 2005;
Zinkevich et al., 2009). This delay will be on aver-
age roughly equal to the number of shards S.

6 Conclusions

In this paper we have investigated distributing the
structured perceptron via simple parameter mixing
strategies. Our analysis shows that an iterative pa-
rameter mixing strategy is both guaranteed to sepa-
rate the data (if possible) and significantly reduces
the time required to train high accuracy classifiers.
However, there is a trade-off between increasing
training times through distributed computation and
slower convergence relative to the number of shards.
Finally, we note that using similar proofs to those
given in this paper, it is possible to provide theoreti-
cal guarantees for distributed online passive aggres-
sive learning (Crammer et al., 2006), which is a form
of large-margin perceptron learning. Unfortunately
space limitations prevent exploration here.

Acknowledgements: We thank Mehryar Mohri, Fer-
nando Periera, Mark Dredze and the three anonymous re-
views for their helpful comments on this work.

463

References
L. Breiman. 1996. Bagging predictors. Machine Learn-

ing, 24(2):123–140.
S. Buchholz and E. Marsi. 2006. CoNLL-X shared

task on multilingual dependency parsing. In Proceed-
ings of the Conference on Computational Natural Lan-
guage Learning.

C.T. Chu, S.K. Kim, Y.A. Lin, Y.Y. Yu, G. Bradski, A.Y.
Ng, and K. Olukotun. 2007. Map-Reduce for ma-
chine learning on multicore. In Advances in Neural
Information Processing Systems.

M. Collins and B. Roark. 2004. Incremental parsing with
the perceptron algorithm. In Proceedings of the Con-
ference of the Association for Computational Linguis-
tics.

M. Collins. 2002. Discriminative training methods for
hidden Markov models: Theory and experiments with
perceptron algorithm. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Pro-
cessing.

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz,
and Y. Singer. 2006. Online passive-aggressive algo-
rithms. The Journal of Machine Learning Research,
7:551–585.

J. Dean and S. Ghemawat. 2004. MapReduce: Simpli-
fied data processing on large clusters. In Sixth Sym-
posium on Operating System Design and Implementa-
tion.

M. Dredze, K. Crammer, and F. Pereira. 2008.
Confidence-weighted linear classification. In Pro-
ceedings of the International Conference on Machine
learning.

J. Duchi and Y. Singer. 2009. Efficient learning using
forward-backward splitting. In Advances in Neural In-
formation Processing Systems.

J.R. Finkel, A. Kleeman, and C.D. Manning. 2008. Effi-
cient, feature-based, conditional random field parsing.
In Proceedings of the Conference of the Association
for Computational Linguistics.

Y. Freund and R.E. Schapire. 1999. Large margin clas-
sification using the perceptron algorithm. Machine
Learning, 37(3):277–296.

J. Hajič, B. Vidova Hladka, J. Panevová, E. Hajičová,
P. Sgall, and P. Pajas. 2001. Prague Dependency Tree-
bank 1.0. LDC, 2001T10.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In Proceedings
of the International Conference on Machine Learning.

P. Liang, A. Bouchard-Côté, D. Klein, and B. Taskar.
2006. An end-to-end discriminative approach to ma-
chine translation. In Proceedings of the Conference of
the Association for Computational Linguistics.

G. Mann, R. McDonald, M. Mohri, N. Silberman, and
D. Walker. 2009. Efficient large-scale distributed
training of conditional maximum entropy models. In
Advances in Neural Information Processing Systems.

R. McDonald and F. Pereira. 2006. Online learning of
approximate dependency parsing algorithms. In Pro-
ceedings of the Conference of the European Chapter
of the Association for Computational Linguistics.

R. McDonald, K. Crammer, and F. Pereira. 2005. On-
line large-margin training of dependency parsers. In
Proceedings of the Conference of the Association for
Computational Linguistics.

C. Mesterharm. 2005. Online learning with delayed la-
bel feedback. In Proceedings of Algorithmic Learning
Theory.

A.B. Novikoff. 1962. On convergence proofs on percep-
trons. In Symposium on the Mathematical Theory of
Automata.

F. Rosenblatt. 1958. The perceptron: A probabilistic
model for information storage and organization in the
brain. Psychological Review, 65(6):386–408.

B. Taskar, C. Guestrin, and D. Koller. 2004. Max-margin
Markov networks. In Advances in Neural Information
Processing Systems.

E. F. Tjong Kim Sang and F. De Meulder. 2003. Intro-
duction to the CoNLL-2003 Shared Task: Language-
Independent Named Entity Recognition. In Proceed-
ings of the Conference on Computational Natural Lan-
guage Learning.

J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans. 1986.
Distributed asynchronous deterministic and stochastic
gradient optimization algorithms. IEEE Transactions
on Automatic Control, 31(9):803–812.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun.
2004. Support vector machine learning for interdepen-
dent and structured output spaces. In Proceedings of
the International Conference on Machine learning.

C. Whitelaw, A. Kehlenbeck, N. Petrovic, and L. Ungar.
2008. Web-scale named entity recognition. In Pro-
ceedings of the International Conference on Informa-
tion and Knowledge Management.

Y. Zhang and S. Clark. 2008. A tale of two parsers: In-
vestigating and combining graph-based and transition-
based dependency parsing using beam-search. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing.

T. Zhang. 2004. Solving large scale linear prediction
problems using stochastic gradient descent algorithms.
In Proceedings of the International Conference on Ma-
chine Learning.

M. Zinkevich, A. Smola, and J. Langford. 2009. Slow
learners are fast. In Advances in Neural Information
Processing Systems.

464

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 465–473,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

TermWeighting Schemes for Latent Dirichlet Allocation

Andrew T. Wilson
Sandia National Laboratories
PO Box 5800, MS 1323

Albuquerque, NM 87185-1323, USA
atwilso@sandia.gov

Peter A. Chew
Moss Adams LLP

6100 Uptown Blvd. NE, Suite 400
Albuquerque, NM 87110-4489, USA

Peter.Chew@MossAdams.com

Abstract

Many implementations of Latent Dirichlet Al-
location (LDA), including those described in
Blei et al. (2003), rely at some point on the
removal of stopwords, words which are as-
sumed to contribute little to the meaning of
the text. This step is considered necessary be-
cause otherwise high-frequency words tend to
end up scattered across many of the latent top-
ics without much rhyme or reason. We show,
however, that the ‘problem’ of high-frequency
words can be dealt with more elegantly, and
in a way that to our knowledge has not been
considered in LDA, through the use of appro-
priate weighting schemes comparable to those
sometimes used in Latent Semantic Indexing
(LSI). Our proposed weighting methods not
only make theoretical sense, but can also be
shown to improve precision significantly on a
non-trivial cross-language retrieval task.

1 Introduction

Latent Dirichlet Allocation (LDA) (Blei et al., 2003),
like its more established competitors Latent Seman-
tic Indexing (LSI) (Deerwester et al., 1990) and
Probabilistic Latent Semantic Indexing (PLSI) (Hof-
mann, 1999), is a model which is applicable to the
analysis of text corpora. It is claimed to differ from
LSI in that LDA is a generative Bayesianmodel (Blei
et al., 2003), although this may depend upon the
manner in which one approaches LSI (see for exam-
ple Chew et al. (2010)). In LDA as applied to text
analysis, each document in the corpus is modeled as
a mixture over an underlying set of topics, and each

topic is modeled as a probability distribution over the
terms in the vocabulary.
As the newest among the above-mentioned tech-

niques, LDA is still in a relatively early stage of de-
velopment. It is also sufficiently different from LSI,
probably themost popular andwell-known compres-
sion technique for information retrieval (IR), that
many practitioners of LSI may perceive a ‘barrier to
entry’ to LDA. This in turn perhaps explains why no-
tions such as term weighting, which have been com-
monplace in LSI for some time (Dumais, 1991), have
not yet found a place in LDA. In fact, it is often as-
sumed that weighting is unnecessary in LDA. For
example, Blei et al. (2003) contrast the use of tf-
idf weighting in both non-reduced space (Salton and
McGill, 1983) and LSI on the one hand with PLSI
and LDA on the other, where no mention is made of
weighting. Ramage et al. (2008) propose a simple
term-frequency weighting scheme for tagged docu-
ments within the framework of LDA, although term
weighting is not their focus and their scheme is in-
tended to incorporate document tags into the same
model that represents the documents themselves.
In this paper, we produce evidence that term

weighting should be given consideration within
LDA. First and foremost, this is shown empiri-
cally through a non-trivial multilingual retrieval task
which has previously been used as the basis for
tests of variants of LSI. We also show that term
weighting allows one to avoid maintenance of stop-
lists, which can be awkward especially for multilin-
gual data. With appropriate term weighting, high-
frequency words (which might otherwise be elimi-
nated as stopwords) are assigned naturally to topics

465

by LDA, rather than dominating and being scattered
across many topics as happens with the standard uni-
form weighting. Our approach belies the usually
unstated, but widespread, assumption in papers on
LDA that the removal of stopwords is a necessary
pre-processing step (see e.g. Blei et al. (2003); Grif-
fiths and Steyvers (2004)).
It might seem that to demonstrate this it would be

necessary to perform a test that directly compares the
results when stoplists are used to those when weight-
ing are used. However, we believe that stopwords
are highly ad-hoc to begin with. Assuming a vocab-
ulary of n words and a stoplist of x items, there are
(at least in theory)

(n
x

)
possible stoplists. To be sure

that no stoplist improves on a particular termweight-
ing scheme we would have to test every one of these.
In addition, our tests are with a multilingual dataset,
which raises the issue that a domain-appropriate sto-
plist for a particular corpus and language may not be
available. This is even more true if we pre-process
the dataset morphologically (for example, with stem-
ming). Therefore, rather than attempting a direct
comparison of this type, we take the position that it
is possible to sidestep the need for stoplists and to do
so in a non-ad-hoc way.
The paper is organized as follows. Section 2 de-

scribes the general framework of LDA, which has
only very recently been applied to cross-language
IR. In Section 3, we look at alternatives to the
‘standard’ uniform weighting scheme (i.e., lack of
weighting scheme) commonly used in LDA. Sec-
tion 4 discusses the framework we use for empiri-
cal testing of our hypothesis that a weighting scheme
would be beneficial. We present the results of this
comparison in Section 5 along with an impressionis-
tic comparison of the output of the different alterna-
tives. We conclude in Section 6.

2 Latent Dirichlet Allocation

Our IR framework is multilingual Latent Dirich-
let Allocation (LDA), first proposed by Blei et al.
(2003) as a general Bayesian framework with initial
application to topicmodeling. It is only very recently
that variants of LDA have been applied to cross-
language IR: examples are Cimiano et al. (2009) and
Ni et al. (2009).
As an approach to topic modeling, LDA relies on

the idea that the tokens in a document are drawn in-
dependently from a set of topics where each topic is
a distribution over types (words) in the vocabulary.
The mixing coefficients for topics within each docu-
ment and weights for types in each topic can be spec-
ified a priori or learned from a training corpus. Blei
et al. initially proposed a variational model (2003)
for learning topics from data. Griffiths and Steyvers
(2004) later developed a Markov chain Monte Carlo
approach based on collapsed Gibbs sampling.

In this model, the mixing weights for topics within
each document and the multinomial coefficients for
terms within each topic are hidden (latent) and must
be learned from a training corpus. Blei et al. (2003)
proposed LDA as a general Bayesian framework and
gave a variational model for learning topics from
data. Griffiths and Steyvers (2004) subsequently de-
veloped a stochastic learning algorithm based on col-
lapsed Gibbs sampling. In this paper we will focus
on the Gibbs sampling approach.

2.1 Generative Document Model

The LDA algorithm models the D documents in a
corpus as mixtures of K topics where each topic is
in turn a distribution over W terms. Given θ, the
matrix of mixing weights for topics within each doc-
ument, andϕ, the matrix of multinomial coefficients
for each topic, we can use this formulation to de-
scribe a generative model for documents (Alg. 1).

Restating the LDA model in linear-algebraic
terms, we can say that the product of ϕ (the K × W
column-stochastic topic-by-type matrix) and θ (the
D × K column-stochastic topic-by-document ma-
trix) is the originalD×W term-by-documentmatrix.
In this sense, LDA computes a matrix factorization
of the term-by-document matrix in the sameway that
LSI or non-negative matrix factorization (NMF) do.
In fact, LDA is a special case of NMF, but unlike in
NMF, there is a unique factorization in LDA. We see
this as a feature recommending LDA above NMF.

Our objective is to reverse the generative model to
learn the contents of θ and ϕ given a training corpus
D, a number of topics K, and symmetric Dirichlet
prior distributions over both θ and ϕ with hyperpa-
rameters α and β, respectively.

466

for k = 1 to K do
Draw ϕk ∼ Dirichlet(β)

end for
for d = 1 to D do
Draw θ ∼ Dirichlet(α)
Draw N ∼ Poisson(ξ)
for i = 1 to N do
Draw z ∼ Multinomial(θ)
Draw w ∼ Multinomial(ϕ(z))

end for
end for

Algorithm 1: Generative algorithm for LDA. This will
generate D documents with N tokens each. Each token
is drawn from one of K topics. The distributions over
topics and terms have Dirichlet hyperparameters α and
β respectively. The Poisson distribution over the token
count may be replaced with any other convenient distri-
bution.

2.2 Learning Topics via Collapsed Gibbs
Sampling

Rather than learn θ and ϕ directly, we use collapsed
Gibbs sampling (Geman et al. (1993), Chatterji and
Pachter (2004)) to learn the latent assignment of to-
kens to topics z given the observed tokens x.
The algorithm operates by repeatedly sampling

each zij from a distribution conditioned on the val-
ues of all other elements of z. This requires main-
taining counts of tokens assigned to topics globally
and within each document. We use the following no-
tation for these sums:

Nijk: Number of tokens of type wi in document dj

assigned to topic k

N−st
ijk : The sum Nijk with the contribution of token

xst excluded

We indicate summation over all values of an index
with (·).
Given the current state of z the conditional proba-

bility of zij is:

p(zij = k|z−ij , x, d, α, β) =

p(xij |ϕk) p(k|dj) ∝
N−ij

i(·)k + β

N−ij
(·)(·)k + Wβ

N−ij
(·)jk + α

N(·)j(·) + Tα

(1)

As Griffiths and Steyvers (2004) point out, this is
an intuitive result. The first term, p(xij |ϕk), indi-
cates the importance of term xij in topic k. The sec-
ond term, p(k|dj), indicates the importance of topic
k in document j. The sum of the terms is normalized
implicitly to 1 when we draw each new zij .
We sample a new value for zij for every token xij

during each iteration of Gibbs sampling. We run the
sampler for a burn-in period of a few hundred itera-
tions to allow it to reach its converged state and then
estimate θ and ϕ from z as follows:

θjk =
N(·)jk + α

N(·)j(·) + Tα
(2)

ϕki =
Ni(·)k + β

N(·)(·)k + Wβ
(3)

2.3 Classifying New Documents

In LSI, new documents not in the original training
set can be ‘projected’ into the semantic space of the
training set. The equivalent process in LDA is one
of classification: given a corpus D′ of one or more
new documents we use the existing topics ϕ to com-
pute a maximum a posteriori estimate of the mixing
coefficients θ′. This follows the same Monte Carlo
process of repeatedly resampling a set of token-to-
topic assignments z′ for the tokens x′ in the new doc-
uments. These new tokens are used to compute the
first term p(k|dj) in Eq. 1. We re-use the topic as-
signments z from the training corpus to compute the
second term p(xij |ϕk). Tokens with new types that
were not present in the vocabulary of the training
corpus do not participate in classification.
The resulting distribution θ′ essentially encodes

how likely each new document is to relate to each of
the K topics. We can use this matrix to compute
pairwise similarities between any two documents
from either corpus (training or newly-classified).
Whereas in LSI it may make sense to compute sim-
ilarity between documents using the cosine met-
ric (since the ‘dimensions’ defining the space are
orthogonal), we compute similarities in LDA us-
ing either the symmetrized Kullback-Leibler (KL)
or Jensen-Shannon (JS) divergences (Kullback and
Leibler (1951), Lin (2002)) since these are methods
of measuring the similarity between probability dis-
tributions.

467

3 Term Weighting Schemes and LDA

The standard approach presented above assumes, ef-
fectively, that each token is equally important in cal-
culating the conditional probabilities. From both an
information-theoretic and a linguistic point of view,
however, it is clear that this is not the case. In En-
glish, a term such as ‘the’ which occurs with high
frequency in many documents does not contribute as
much to the meaning of each document as a lower-
frequency term such as ‘corpus’. It is an axiom of
information theory that an event a’s information con-
tent (in bits) is equal to log2

1
p(a) = − log2 p(a).

Treating tokens as events, we can say that the in-
formation content of a particular token of type t is
− log2 p(t). Furthermore, as is well-known, we can
estimate p(t) from observed frequencies in a corpus:
it is simply the number of tokens of type t in the cor-
pus, divided by the total number of tokens in the cor-
pus. For high-probability terms such as ‘the’, there-
fore, − log2 p(t) is low. Our basic hypothesis is that
recalculating p(zij |z, x, α, β) to take the information
content of each token into account will improve the
results of LDA. Specifically, we have incorporated
a weighting term into Eq. 1 by replacing the counts
denoted N with weights denoted M .

p(zij = k|z−ij , x, d, α, β) ∝
M−ij

i(·)k + β

M−ij
(·)(·)k + Wβ

M−ij
(·)jk + α

M(·)j(·) + Tα

(4)

Here Mijk is the total weight of tokens of type i
in document j assigned to topic k instead of the total
number of tokens. All of the machinery for Gibbs
sampling and the estimation of θ and ϕ from z re-
mains unchanged.
We appeal to an urn model to explain the intuition

behind this approach. In the original LDA formula-
tion, each topic ϕ can be modeled as an urn contain-
ing a large number of balls of uniform size. Each
ball assumes one ofW different colors (one color for
each term in the vocabulary). The frequency of oc-
currence of each color in the urn is proportional to the
corresponding term’s weight in topic ϕ. We incor-
porate a term weighting scheme by making the size
of each ball proportional to the weight of its corre-
sponding term. This makes the probability of draw-
ing the ball for a termw proportional to both the term

weight m(w) and its multinomial weight ϕw:

p(w|ϕ, β, m) =
ϕw m(w)∑
w∈W m(w)

(5)

We can now expand Eq. 4 to obtain a new sampling
equation for use with the Gibbs sampler.

p(zij = k|z−ij , x,d, m, α, β) =

m(xi)N
−ij
i(·)k + β∑

w m(w)N−ij
w(·)k + Wβ

∑
w m(w)N−ij

wjk + α∑
w m(w)Nwj(·) + Tα

(6)

If all weights m(w) = 1 this reduces immediately
to the standard LDA formulation in Eq. 1.
The information measure we describe above is

constant for a particular term across the entire cor-
pus, but it is possible to conceive of other, more so-
phisticated weighting schemes as well, for example
those where term weights vary by document. Point-
wise mutual information (PMI) is one such weight-
ing scheme which has a solid basis in information
theory and has been shown to work well in the con-
text of LSI (Chew et al., 2010). According to PMI,
the weight of a given term w in a given document
d is the pointwise mutual information of the term
and document, or − log2

p(w|d)
p(w) . Extending the LDA

model to accommodate PMI is straightforward. We
replace m(xi) and m(w) in Eq. 4 with m(xi, d) as
follows.

m(xi, d) = − log2

p(xi|d)

p(xi)

= − log2

#[tokens of type xi in d]

#[tokens of type xi]

(7)

It is possible for PMI of a term within a document
to be negative. When this happens, we clamp the
weight of the offending term to zero in that docu-
ment. In practice, we observe this only with com-
mon words (e.g. ‘and’, ‘in’, ‘of’, ‘that’, ‘the’ and
‘to’ in English) that are assigned very lowweight ev-
erywhere else in the corpus. This clamping does not
noticeably affect the results.
In the next sections, we describe tests which have

enabled us to evaluate empirically which of these
formulations works best in practice.

468

4 Testing Framework

In this paper, we chose to test our hypotheses with
the same cross-language retrieval task used in a num-
ber of previous studies of LSI (e.g. Chew and Abde-
lali (2007)). Briefly, the task is to train an IR model
on one particular multilingual corpus, then deploy
it on a separate multilingual corpus, using a docu-
ment in one language to retrieve related documents
in other languages. This task is difficult because of
the size of the datasets involved. Its usefulness be-
comes apparent when we consider the following two
use cases: a humanwishing (1) to use a search engine
to retrieve relevant documents in many languages re-
gardless of the language in which the query is posed;
or (2) to produce a clustering or visualization of doc-
uments according to their topics even when the doc-
uments are in different languages.
The training corpus consists of the text of the Bible

in 31,226 parallel chunks, corresponding generally
to verses, in Arabic, English, French, Russian and
Spanish. These data were obtained from the Un-
bound Bible project (Biola University (2006)). The
test data, obtained from http://www.kuran.gen.

tr/, is the text of the Quran in the same 5 languages,
in 114 parallel chunks corresponding to suras (chap-
ters). The task, in short, is to use the training data
to inform whatever linguistic, semantic, or statistical
model is being tested, and then to infer characteris-
tics of the test data in such a way that the test docu-
ments can automatically be matched with their trans-
lations in other languages. Though the documents
come from a specific domain (scriptural texts), what
is of interest is comparative results using different
weighting schemes, holding the datasets and other
settings constant. The training and test datasets are
large enough to allow statistically significant obser-
vations to be made, and if a significant difference is
observed between experiments using two settings, it
is to be expected that similar basic differences would
be observed with any other set of training and test
data. In any case, it should be noted that the Bible
and Quran were written centuries apart, and in differ-
ent original languages; we believe this contributes
to a clean separation of training and test data, and
makes for a non-trivial retrieval task.
In our framework, a term-by-document matrix is

formed from the Bible as a parallel verse-aligned

corpus. We employed two different approaches
to tokenization, one (word-based tokenization) in
which text was tokenized at every non-word char-
acter, and the other (unsupervised morpheme-based
tokenization) in which after word-based tokeniza-
tion, a further pre-processing step (based on Gold-
smith (2001)) was performed to add extra breaks at
everymorpheme. It is shown elsewhere (Chew et al.,
2010) that this step leads to improved performance
with LSI. In each verse, all languages are concate-
nated together, allowing terms (either morphemes or
words) from all languages to be represented in every
verse. Cross-language homographs such as ‘mien’
in English and French are treated as distinct terms
in our framework. Thus, if there are L languages,
D documents (each of which is translated into each
of the L languages), and W distinct linguistic terms
across all languages, then the term-by-document ma-
trix is of dimensionsW byD (notW byD×L); with
the Bible as a training corpus, the actual numbers in
our case are 160,345 × 31,226. As described in Sec.
2.2, we use this matrix as the input to a collapsed
Gibbs sampling algorithm to learn the latent assign-
ment of tokens in all five languages to language-
independent topics, as well as the latent assignment
of language-independent topics to the multilingual
(parallel) documents. In general, we specified, arbi-
trarily but consistently across all tests, that the num-
ber of topics to be learned should be 200. Other pa-
rameters for the Gibbs sampler held constant were
the number of iterations for burn-in (200) and the
number of iterations for sampling (1).
To evaluate our different approaches to weighting,

we use classification as described in Sec. 2.3 to ob-
tain, for each document from the Quran test corpus,
a probability distribution across the topics learned
from the Bible. While in training we have D multi-
lingual documents, in testing we have D′ × L docu-
ments, each in a specific language, for which a distri-
bution is computed. For theQuran data, this amounts
to 114 × 5 = 570 documents. This is because our
goal is to match documents with their translations
in other languages using just the probability distri-
butions. For each source-language/target-language
pair L1 and L2, we obtain the similarity of each of
the 114 documents in L1 to each of the 114 doc-
uments in L2. We found that similarity here is
best computed using the Jensen-Shannon divergence

469

Tokenization
Weighting Scheme Word Morpheme

Unweighted 0.505 0.544
log p(w|L) 0.616 0.641

PMI 0.612 0.686

Table 1: Summary of comparison results. This table
shows the average precision at one document (P1) for
each of the tokenization and weighting schemes we eval-
uated. Detailed results are presented in Table 2.

(Lin, 2002) and so this measure was used in all
tests. Ultimately, the measure of how well a partic-
ular method performs is average precision at 1 doc-
ument (P1). Among the various measurements for
evaluating the performance of IR systems (Salton
and McGill (1983), van Rijsbergen (1979)), this is
a fairly standard measure. For a particular source-
target pair, this is the percentage (out of 114 cases)
where a document in L1 is most similar to its mate
in L2. With 5 languages, there are 25 source-target
pairs, and we can also calculate average P1 across
all language pairs. Here, we average across 114 ×
25 (or 2,850) cases. This is why even small differ-
ences in P1 can be statistically significant.

5 Results

First, we present a summary of our results in Table 1
which clearly demonstrates that it is better in LDA to
use some kind of weighting scheme rather than the
uniform weights in the standard LDA formulation
from Eq. 1. This is true whether tokenization is by
word or by morpheme. All increases from the base-
line precision at 1 document (0.505 and 0.544 re-
spectively), whether under log or PMIweighting, are
highly significant (p < 10−11). Furthermore, all in-
creases in precision when moving from word-based
to morphology-based tokenization are also highly
significant (p < 5 × 10−5 without weighting, p <
5×10−3 with log-weighting, and p< 2×10−15 with
PMI weighting). The best result overall, where P1 is
0.686, is obtained with morphological tokenization
and PMI weighting (parallel to the results in (Chew
et al., 2010) with LSI), and again the difference be-
tween this result and its nearest competitor of 0.641
is highly significant (p < 3 × 10−6). We return to
comment below on lack of an increase in P1 when
moving from log-weighting to PMI-weighting under

word-based tokenization.
These results can also be broken out by language

pair, as shown in Table 2. Here, it is apparent that
Arabic, and to a lesser extent Russian, are harder lan-
guages in the IR problem at hand. Our intuition is
that this is connected with the fact that these two lan-
guages have a more complex morphological struc-
ture: words are formed by a process of agglutination.
A consequence of this is that single Arabic and Rus-
sian tokens can less frequently be mapped to single
tokens in other languages, which appears to “con-
fuse” LDA (and also, as we have found, LSI). The
complex morphology of Russian and Arabic is also
reflected in the type-token ratios for each language:
in our English Bible, there are 12,335 types (unique
words) and 789,744 tokens, a type-token ratio of
0.0156. The ratios for French, Spanish, Russian and
Arabic are 0.0251, 0.0404, 0.0843 and 0.1256 re-
spectively. Though the differences may not be ex-
plicable in purely statistical terms (there may be lin-
guistic factors at play which cannot be reduced to
statistics), it seems plausible that choosing a subop-
timal term-weighting scheme could exacerbate any
intrinsic problems of statistical imbalance. Consid-
ering this, it is interesting to note that the greatest
gains, when moving from unweighted LDA to ei-
ther form of weighted LDA, are often to be found
where Russian and/or Arabic are involved. This, to
us, shows the value of using a multilingual dataset
as a testbed for our different formulations of LDA:
it allows problems which may not be apparent when
working with a monolingual dataset to come more
easily to light.
We have mentioned that the best results are with

PMI and morphological tokenization, and also that
there is an increase in precision for many language of
the pairs when morphological (as opposed to word-
based) tokenization is employed. To us, the results
leave little doubt that both weighting and morpho-
logical tokenization are independently beneficial. It
appears, though, that morphology and weighting are
also complementary and synergistic strategies for
improving the results of LDA: for example, a subop-
timal approach in tokenization may at best place an
upper bound on the overall precision achievable, and
perhaps at worst undo the benefits of a good weight-
ing scheme. This may explain the one apparently
anomalous result, which is the lack of an increase in

470

Original Words Morphological Tokenization
EN ES RU AR FR EN ES RU AR FR

LDA

EN 1.000 0.500 0.447 0.132 0.816 1.000 0.500 0.658 0.211 0.640 EN
ES 0.649 1.000 0.307 0.175 0.781 0.605 1.000 0.482 0.175 0.737 ES
RU 0.430 0.316 1.000 0.149 0.430 0.553 0.421 1.000 0.272 0.553 RU
AR 0.070 0.149 0.114 1.000 0.096 0.123 0.105 0.228 1.000 0.114 AR
FR 0.781 0.693 0.421 0.175 1.000 0.693 0.640 0.667 0.211 1.000 FR

Log-WLDA

EN 1.000 0.518 0.518 0.228 0.658 1.000 0.675 0.561 0.219 0.754 EN
ES 0.558 1.000 0.605 0.254 0.763 0.711 1.000 0.570 0.289 0.860 ES
RU 0.605 0.615 1.000 0.298 0.702 0.684 0.667 1.000 0.289 0.728 RU
AR 0.404 0.430 0.526 1.000 0.439 0.430 0.439 0.535 1.000 0.404 AR
FR 0.667 0.667 0.658 0.281 1.000 0.711 0.667 0.561 0.289 1.000 FR

PMI-WLDA

EN 1.000 0.579 0.658 0.272 0.702 1.000 0.719 0.658 0.342 0.851 EN
ES 0.596 1.000 0.623 0.246 0.693 0.816 1.000 0.675 0.272 0.798 ES
RU 0.649 0.579 1.000 0.307 0.693 0.702 0.693 1.000 0.360 0.772 RU
AR 0.351 0.368 0.421 1.000 0.351 0.456 0.474 0.509 1.000 0.377 AR
FR 0.693 0.667 0.605 0.254 1.000 0.825 0.772 0.719 0.333 1.000 FR

Table 2: Full results for precision at one document for all combinations of LDA, Log-WLDA, PMI-WLDA, word
tokenization and morphological tokenization.

precision moving from log-WLDA to PMI-WLDA
under word-based tokenization: if word-based tok-
enization is suboptimal, PMI weighting cannot com-
pensate for that. Effectively, for best results, the
right strategies have to be pursued with respect both
to morphology and to weighting.
Finally, we can illustrate the differences between

weighted and unweighted LDA in another way. As
discussed earlier, each topic in LDA is a probabil-
ity distribution over terms. For each topic, we can
list the most probable terms in decreasing order of
probability; this gives a sense of what each topic
is ‘about’ and whether the groupings of terms ap-
pear reasonable. Since we use 200 topics, an ex-
haustive listing is impractical here, but in Table 3
we present some representative examples from un-
weighted LDA and PMI-WLDA that we judged to
be of interest. It appears to us that the groupings are
not perfect under either LDA or PMI-WLDA; under
both methods, we find examples of rather heteroge-
neous topics, whereas we would like each topic to be
semantically focused. Still, a comparison of the out-
put with LDA and PMI-WLDA sheds some light on
why PMI-WLDA makes it less necessary to remove
stopwords. Note that all words listed for the top two
topics under LDA would commonly be considered
stopwords. This might also be true of the words in

topic 1 for PMI-WLDA, but in the latter case, the
topic is actually one of themost semantically focused
in that the top words have a clear semantic connec-
tion to one another. This cannot be said of topics 1
and 2 in LDA. For one thing, many of the same terms
that appear in topic 1 reappear in topic 2, making the
two topics hard to distinguish from one another. Sec-
ondly, the terms have only a loose semantic connec-
tion to one another: ‘the’, ‘and’, and ‘of’ are all high-
frequency and likely to co-occur, but they are differ-
ent parts of speech and have very different functions
in English. One might say that topics 1 and 2 in LDA
are a rag-bag of high-frequency words, and it is un-
surprising that these topics do little to help charac-
terize documents in our cross-language IR task. The
same cannot be said of any of the top 5 topics in PMI-
WLDA.We believe this illustrates well, and at a fun-
damental level, why weighted forms of LDA work
better in practice than unweighted LDA.

6 Conclusion

We have conducted a series of experiments to evalu-
ate the effect of different weighting schemes on La-
tent Dirichlet Allocation. Our results demonstrate,
perhaps contrary to the conventional wisdom that
weighting is unnecessary in LDA, that weighting
schemes (and other pre-processing strategies) simi-

471

Weighting Scheme
LDA (no weighting) PMI-WLDA

Topic 1 2 3 4 5 1 2 3 4 5

Terms

the the vanité as cárcel under city coeur sat colère
et de vanidad comme prison sous ville heart assis ira
and et vanity como السجن под ciudad corazón vent wrath
los of باطل как prison تحت لمدينة сердце wind anger
и and суета un темницу debajo город сердца viento furor
y y aflicción a prisonniers ombre twelve قلبه sentado гнев
les de poursuite one темницы bases douze قلب ветер fureur
á и الباطل كما bound basas doce قلبي الريح غضب

de la prédicateur une prisión sombra دينة قلبك sitting гнева
of la وقبض واحد prisoners dessous города сердцем сел contre

Table 3: Top 10 terms within top 5 topics for each of LDA and PMI-WLDA. Terms that appear twice within the same
topic (e.g. ‘la’ in LDA topic 2) are words from different languages with the same spelling (here Spanish and French).

lar to those commonly employed in other approaches
to IR (such as LSI) can significantly improve the
performance of a system. Our approach also runs
counter to the standard position in LDA that it is
necessary or desirable to remove stopwords as a pre-
processing step, and we have presented an alterna-
tive approach of applying an appropriate weighting
scheme within LDA. This approach is preferable be-
cause it is considerably less ad-hoc than the construc-
tion of stoplists. We have shown mathematically
how alternative weighting schemes can be incorpo-
rated into the Gibbs sampling model. We have also
demonstrated that, far from being arbitrary, the in-
troduction of weighting into the LDA model has a
solid and rational basis in information and probabil-
ity theory, just as the basic LDA model itself has.

In future work, we would like to explore further
enhancements to weighting in LDA. There are many
variants which can be considered: one example is
the incorporation of word order and context through
an n-gram model based on conditional probabilities.
We also aim to evaluate LDA against LSIwith a view
to establishingwhether one can be said to outperform
the other consistently in terms of precision, with ap-
propriate settings held constant. Finally, we would
like to determine whether other techniques which
have been shown to benefit LSI can also be usefully
brought to bear in LDA, just as we have shown here
in the case of term weighting.

References
David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent Dirichlet Allocation. Journal of Machine
Learning Research 3, pages 993–1022.

Sourav Chatterji and Lior Pachter. 2004. Multiple Or-
ganism Gene Finding by Collapsed Gibbs Sampling.
In RECOMB ’04: Proceedings of the eighth annual in-
ternational conference on Research in computational
molecular biology, pages 187–193, New York, NY,
USA. ACM.

Peter A. Chew and Ahmed Abdelali. 2007. Bene-
fits of the ‘Massively Parallel Rosetta Stone’: Cross-
Language Information Retrieval with Over 30 Lan-
guages. In Association for Computational Linguistics,
editor, Proceedings of the 45th meeting of the Associ-
ation of Computational Linguistics, pages 872–879.

Peter A. Chew, Brett W. Bader, Stephen Helmreich,
Ahmed Abdelali, and Stephen J. Verzi. 2010.
An Information-Theoretic, Vector-Space-Model Ap-
proach to Cross-Language Information Retrieval.
Journal of Natural Language Engineering. Forthcom-
ing.

Philipp Cimiano, Antje Schultz, Sergej Sizov, Philipp
Sorg, and Steffen Staab. 2009. Explicit Versus
Latent Concept Models for Cross-Language Informa-
tion Retrieval. In Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence,
pages 1513–1518.

Scott Deerwester, Susan T. Dumais, George W. Fur-
nas, Thomas K. Landauer, and Richard Harshman.
1990. Indexing by Latent Semantic Analysis. Jour-
nal of the American Society of Information Science,
41(6):391–407.

Susan T. Dumais. 1991. Improving the Retrieval of In-
formation from External Sources. Behavior Research
Methods, Instruments and Computers, 23(2):229–236.

472

Stuart Geman, Donald Geman, K. Abend, T. J. Harley,
and L. N. Kanal. 1993. Stochastic Relaxation, Gibbs
Distributions and the Bayesian Restoration of Images*.
Journal of Applied Statistics, 20(5):25–62.

J. Goldsmith. 2001. Unsupervised Learning of the Mor-
phology of a Natural Language. Computational Lin-
guistics, 27(2):153–198.

Thomas L. Griffiths and Mark Steyvers. 2004. Find-
ing Scientific Topics. In Proceedings of the Na-
tional Academy of Sciences USA, volume 101, pages
5228–5235.

Thomas Hofmann. 1999. Probablistic Latent Semantic
Indexing. In Proceedings of the 22nd Annual Interna-
tional SIGIR Conference, pages 53–57.

Solomon Kullback and Richard A. Leibler. 1951. On
Information and Sufficiency. Annals of Mathematical
Statistics, 22:49–86.

J. Lin. 2002. DivergenceMeasures based on the Shannon
Entropy. IEEE Transactions on Information Theory,
37(1):145–151, August.

Xiaochuan Ni, Jian-Tao Sun, Jian Hu, and Zheng Chen.
2009. Mining Multilingual Topics from Wikipedia. In
18th International World Wide Web Conference, pages
1155–1155, April.

Daniel Ramage, Paul Heymann, Christopher D. Man-
ning, and Hector Garcia-Molina. 2008. Clustering the
Tagged Web. In Second ACM International Confer-
ence on Web Search and Data Mining (WSDM 2009),
November.

G. Salton and M. McGill, editors. 1983. Introduction to
Modern Information Retrieval. McGraw-Hill.

Biola University. 2006. The Unbound Bible.
http://www.unboundbible.com.

C.J. van Rijsbergen. 1979. Information Retrieval.
Butterworth-Heinemann.

473

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 474–482,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Learning Dense Models of Query Similarity from User Click Logs

Fabio De Bona∗
Friedrich Miescher Laboratory

of the Max Planck Society
Tübingen, Germany

fabio@tuebingen.mpg.de

Stefan Riezler
Google Research

Zürich, Switzerland
riezler@google.com

Keith Hall
Google Research

Zürich, Switzerland
kbhall@google.com

Massimiliano Ciaramita
Google Research

Zürich, Switzerland
massi@google.com

Amaç Herdaǧdelen∗
University of Trento

Rovereto, Italy
amac@herdagdelen.com

Maria Holmqvist∗
Linkopings University
Linkopings, Sweden
marho@ida.liu.se

Abstract

The goal of this work is to integrate query
similarity metrics as features into a dense
model that can be trained on large amounts
of query log data, in order to rank query
rewrites. We propose features that incorpo-
rate various notions of syntactic and semantic
similarity in a generalized edit distance frame-
work. We use the implicit feedback of user
clicks on search results as weak labels in train-
ing linear ranking models on large data sets.
We optimize different ranking objectives in a
stochastic gradient descent framework. Our
experiments show that a pairwise SVM ranker
trained on multipartite rank levels outperforms
other pairwise and listwise ranking methods
under a variety of evaluation metrics.

1 Introduction

Measures of query similarity are used for a wide
range of web search applications, including query
expansion, query suggestions, or listings of related
queries. Several recent approaches deploy user
query logs to learn query similarities. One set of ap-
proaches focuses on user reformulations of queries
that differ only in one phrase, e.g., Jones et al.
(2006). Such phrases are then identified as candi-
date expansion terms, and filtered by various signals
such as co-occurrence in similar sessions, or log-
likelihood ratio of original and expansion phrase.
Other approaches focus on the relation of queries
and search results, either by clustering queries based

∗The work presented in this paper was done while the au-
thors were visiting Google Research, Zürich.

on their search results, e.g., Beeferman and Berger
(2000), or by deploying the graph of queries and re-
sults to find related queries, e.g., Sahami and Heil-
man (2006).

The approach closest to ours is that of Jones et al.
(2006). Similar to their approach, we create a train-
ing set of candidate query rewrites from user query
logs, and use it to train learners. While the dataset
used in Jones et al. (2006) is in the order of a few
thousand query-rewrite pairs, our dataset comprises
around 1 billion query-rewrite pairs. Clearly, man-
ual labeling of rewrite quality is not feasible for our
dataset, and perhaps not even desirable. Instead, our
intent is to learn from large amounts of user query
log data. Such data permit to learn smooth mod-
els because of the effectiveness of large data sets to
capture even rare aspects of language, and they also
are available as in the wild, i.e., they reflect the ac-
tual input-output behaviour that we seek to automate
(Halevy et al., 2009). We propose a technique to au-
tomatically create weak labels from co-click infor-
mation in user query logs of search engines. The
central idea is that two queries are related if they
lead to user clicks on the same documents for a large
amount of documents. A manual evaluation of a
small subset showed that a determination of positive
versus negative rewrites by thresholding the number
of co-clicks correlates well with human judgements
of similarity, thus justifying our method of eliciting
labels from co-clicks.

Similar to Jones et al. (2006), the features of our
models are not based on word identities, but instead
on general string similarity metrics. This leads to
dense rather than sparse feature spaces. The dif-

474

ference of our approach to Jones et al. (2006) lies
in our particular choice of string similarity metrics.
While Jones et al. (2006) deploy “syntactic” fea-
tures such as Levenshtein distance, and “semantic”
features such as log-likelihood ratio or mutual in-
formation, we combine syntactic and semantic as-
pects into generalized edit-distance features where
the cost of each edit operation is weighted by vari-
ous term probability models.

Lastly, the learners used in our approach are appli-
cable to very large datasets by an integration of lin-
ear ranking models into a stochastic gradient descent
framework for optimization. We compare several
linear ranking models, including a log-linear prob-
ability model for bipartite ranking, and pairwise and
listwise SVM rankers. We show in an experimen-
tal evaluation that a pairwise SVM ranker trained on
multipartite rank levels outperforms state-of-the-art
pairwise and listwise ranking methods under a vari-
ety of evaluation metrics.

2 Query Similarity Measures

2.1 Semantic measures

In several of the similarity measures we describe be-
low, we employ pointwise mutual information (PMI)
as a measure of the association between two terms or
queries. Let wi and wj be two strings that we want
to measure the amount of association between. Let
p(wi) and p(wj) be the probability of observing wi
and wj in a given model; e.g., relative frequencies
estimated from occurrence counts in a corpus. We
also define p(wi, wj) as the joint probability of wi
and wj ; i.e., the probability of the two strings occur-
ring together. We define PMI as follows:

PMI(wi, wj) = log
p(wi, wj)

p(wi)p(wj)
. (1)

PMI has been introduced by Church and Hanks
(1990) as word assosiatio ratio, and since then
been used extensively to model semantic similar-
ity. Among several desirable properties, it correlates
well with human judgments (Recchia and Jones,
2009).

2.2 Taxonomic normalizations

As pointed out in earlier work, query transitions tend
to correlate with taxonomic relations such as gener-

alization and specialization (Lau and Horvitz, 1999;
Rieh and Xie, 2006). Boldi et al. (2009) show how
knowledge of transition types can positively impact
query reformulation. We would like to exploit this
information as well. However, rather than building a
dedicated supervised classifier for this task we try to
capture it directly at the source. First, we notice how
string features; e.g., length, and edit distance already
model this phenomenon to some extent, and in fact
are part of the features used in Boldi et al. (2009).
However, these measures are not always accurate
and it is easy to find counterexamples both at the
term level (e.g., “camping” to “outdoor activities” is
a generalization) and character level (“animal pic-
tures” to “cat pictures” is a specialization). Sec-
ondly, we propose that by manipulating PMI we can
directly model taxonomic relations to some extent.

Rather than using raw PMI values we re-
normalize them. Notice that it is not obvious in our
context how to interpret the relation between strings
co-occurring less frequently than random. Such
noisy events will yield negative PMI values since
p(wi, wj) < p(wi)p(wj). We enforce zero PMI val-
ues for such cases. If PMI is thus constrained to
non-negative values, normalization will bound PMI
to the range between 0 and 1.

The first type of normalization, called joint nor-
malization, uses the negative log joint probability
and is defined as

PMI(J)(wi, wj) = PMI(wi, wj)/−log(p(wi, wj)).

The jointly normalized PMI(J) is a symmetric
measure between wi and wj in the sense that
PMI(J)(wi, wj) = PMI(J)(wj , wi). Intuitively it
is a measure of the amount of shared information
between the two strings relative to the sum of indi-
vidual strings information. The advantages of the
joint normalization of PMI have been noticed be-
fore (Bouma, 2009).

To capture asymmetries in the relation between
two strings, we introduce two non-symmetric nor-
malizations which also bound the measure between
0 and 1. The second normalization is called special-
ization normalization and is defined as

PMI(S)(wi, wj) = PMI(wi, wj)/− log(p(wi)).

The reason we call it specialization is that PMI(S)
favors pairs where the second string is a specializa-

475

tion of the first one. For instance, PMI(S) is at its
maximum when p(wi, wj) = p(wj) and that means
the conditional probability p(wi|wj) is 1 which is an
indication of a specialization relation.

The last normalization is called the generalization
normalization and is defined in the reverse direction
as

PMI(G)(wi, wj) = PMI(wi, wj)/− log(p(wj)).

Again, PMI(G) is a measure between 0 and 1 and is
at its maximum value when p(wj |wi) is 1.

The three normalizations provide a richer rep-
resentation of the association between two strings.
Furthermore, jointly, they model in an information-
theoretic sense the generalization-specialization di-
mension directly. As an example, for the query
transition “apple” to “mac os” PMI(G)=0.2917 and
PMI(S)=0.3686; i.e., there is more evidence for a
specialization. Conversely for the query transition
“ferrari models” to “ferrari” we get PMI(G)=1 and
PMI(S)=0.5558; i.e., the target is a “perfect” gener-
alization of the source1.

2.3 Syntactic measures
Let V be a finite vocabulary and ξ be the null
symbol. An edit operation: insertion, deletion or
substitution, is a pair (a, b) ∈ {V ∪ {ξ} × V ∪
{ξ}} \ {(ξ, ξ)}. An alignment between two se-
quences wi and wj is a sequence of edit oper-
ations ω = (a1, b1), ..., (an, bn). Given a non-
negative cost function c, the cost of an alignment is
c(ω) =

∑n
i=1 c(ωi). The Levenshtein distance, or

edit distance, defined over V , dV (wi, wj) between
two sequences is the cost of the least expensive se-
quence of edit operations which transforms wi into
wj (Levenshtein, 1966). The distance computation
can be performed via dynamic programming in time
O(|wi||wj |). Similarity at the string, i.e., character
or term, level is an indicator of semantic similar-
ity. Edit distance captures the amount of overlap be-
tween the queries as sequences of symbols and has
been previously used in information retrieval (Boldi
et al., 2009; Jones et al., 2006).

We use two basic Levenshtein distance models.
The first, called Edit1 (E1), employs a unit cost func-
tion for each of the three operations. That is, given

1The values are computed from Web counts.

a finite vocabulary T containing all terms occurring
in queries:

∀a, b ∈ T, cE1(a, b) = 1 if(a 6= b), 0 else.

The second, called Edit2 (E2), uses unit costs for
insertion and deletion, but computes the character-
based edit distance between two terms to decide on
the substitution cost. If two terms are very similar
at the character level, then the cost of substitution is
lower. Given a finite vocabulary T of terms and a
finite vocabulary A of characters, the cost function
is defined as:

∀a, b ∈ T, cE2(a, b) = dA(a, b) ifa ∧ b 6= ξ, 1 else.

where dA(a, b) is linearly scaled between 0 and 1
dividing by max(|a|, |b|).

We also investigate a variant of the edit distance
algorithm in which the terms in the input sequences
are sorted, alphabetically, before the distance com-
putation. The motivation behind this variant is the
observation that linear order in queries is not always
meaningful. For example, it seems reasonable to as-
sume that “brooklyn pizza” and “pizza brooklyn”
denote roughly the same user intent. However, the
pair has an edit distance of two (delete-insert), while
the distance between “brooklyn pizza” and the less
relevant “brooklyn college” is only one (substitute).
The sorted variant relaxes the ordering constraint.

2.4 Generalized measures

In this section we extend the edit distance frame-
work introduced in Section 2.3 with the semantic
similarity measures described in Section 2.1, using
the taxonomic normalizations defined in Section 2.2.

Extending the Levenshtein distance framework
to take into account semantic similarities between
terms is conceptually simple. As in the Edit2 model
above we use a modified cost function. We introduce
a cost matrix encoding individual costs for term sub-
stitution operations; the cost is defined in terms of
the normalized PMI measures of Section 2.2, recall
that these measures range between 0 and 1. Given a
normalized similarity measure f , an entry in a cost
matrix S for a term pair (wi, wj) is defined as:

s(wi, wj) = 2− 2f(wi, wj) + ε

476

We call these models SEdit (SE), where S specifies
the cost matrix used. Given a finite term vocabulary
T and cost matrix S, the cost function is defined as:

∀a, b ∈ T, cSE(a, b) = s(a, b) ifa ∧ b 6= ξ, 1 else.

The cost function has the following properties.
Since insertion and deletion have unit cost, a term
is substituted only if a substitution is “cheaper” than
deleting and inserting another term, namely, if the
similarity between the terms is not zero. The ε
correction, coupled with unit insertion and deletion
cost, guarantees that for an unrelated term pair a
combination of insertion and deletion will always be
less costly then a substitution. Thus in the compu-
tation of the optimal alignment, each operation cost
ranges between 0 and 2.

As a remark on efficiency, we notice that here the
semantic similarities are computed between terms,
rather than full queries. At the term level, caching
techniques can be applied more effectively to speed
up feature computation. The cost function is imple-
mented as a pre-calculated matrix, in the next sec-
tion we describe how the matrix is estimated.

2.5 Cost matrix estimation

In our experiments we evaluated two different
sources to obtain the PMI-based cost matrices. In
both cases, we assumed that the cost of the substitu-
tion of a term with itself (i.e. identity substitution)
is always 0. The first technique uses a probabilis-
tic clustering model trained on queries and clicked
documents from user query logs. The second model
estimates cost matrices directly from user session
logs, consisting of approximately 1.3 billion U.S.
English queries. A session is defined as a sequence
of queries from the same user within a controlled
time interval. Let qs and qt be a query pair observed
in the session data where qt is issued immediately
after qs in the same session. Let q′s = qs \ qt and
q′t = qt \ qs, where \ is the set difference opera-
tor. The co-occurrence count of two terms wi and
wj from a query pair qs, qt is denoted by ni,j(qs, qt)
and is defined as:

ni,j(qs, qt) =

1 if wi = wj ∧ wi ∈ qs ∧ wj ∈ qt
1/(|q′s| |q′t|) if wi ∈ q′s ∧ wj ∈ q′t
0 else.

In other words, if a term occurs in both queries,
it has a co-occurrence count of 1. For all other term
pairs, a normalized co-occurrence count is computed
in order to make sure the sum of co-occurrence
counts for a term wi ∈ qs sums to 1 for a given
query pair. The normalization is an attempt to avoid
the under representation of terms occurring in both
queries.

The final co-occurrence count of two arbitrary
terms wi and wj is denoted by Ni,j and it is defined
as the sum over all query pairs in the session logs,
Ni,j =

∑
qs,qt

ni,j(qs, qt). Let N =
∑

wi,wj
Ni,j be

the sum of co-occurrence counts over all term pairs.
Then we define a joint probability for a term pair as
p(wi, wj) = Ni,j

N . Similarly, we define the single-
occurrence counts and probabilities of the terms
by computing the marginalized sums over all term
pairs. Namely, the probability of a termwi occurring
in the source query is p(i, ·) =

∑
wj
Ni,j/N and

similarly the probability of a term wj occurring in
the target query is p(·, j) =

∑
wi
Ni,j/N . Plugging

in these values in Eq. (1), we get the PMI(wi, wj)
for term pair wi and wj , which are further normal-
ized as described in Section 2.2.

More explanation and evaluation of the features
described in this section can be found in Ciaramita
et al. (2010).

3 Learning to Rank from Co-Click Data

3.1 Extracting Weak Labels from Co-Clicks

Several studies have shown that implicit feedback
from clickstream data is a weaker signal than human
relevance judgements. Joachims (2002) or Agrawal
et al. (2009) presented techniques to convert clicks
into labels that can be used for machine learning.
Our goal is not to elicit relevance judgments from
user clicks, but rather to relate queries by pivoting on
commonly clicked search results. The hypothesis is
that two queries are related if they lead to user clicks
on the same documents for a large amount of docu-
ments. This approach is similar to the method pro-
posed by Fitzpatrick and Dent (1997) who attempt
to measure the relatedness between two queries by
using the normalized intersection of the top 200 re-
trieval results. We add click information to this
setup, thus strengthening the preference for preci-
sion over recall in the extraction of related queries.

477

Table 1: Statistics of co-click data sets.
train dev test

number of queries 250,000 2,500 100
average number of
rewrites per query 4,500 4,500 30

percentage of rewrites
with ≥ 10 coclicks 0.2 0.2 43

In our experiments we created two ground-truth
ranking scenarios from the co-click signals. In a first
scenario, called bipartite ranking, we extract a set
of positive and a set of negative query-rewrite pairs
from the user logs data. We define positive pairs as
queries that have been co-clicked with at least 10 dif-
ferent results, and negative pairs as query pairs with
fewer than 10 co-clicks. In a second scenario, called
multipartite ranking, we define a hierarchy of levels
of “goodness”, by combining rewrites with the same
number of co-clicks at the same level, with increas-
ing ranks for higher number of co-clicks. Statistics
on the co-click data prepared for our experiments are
given in Table 1.

For training and development, we collected
query-rewrite pairs from user query logs that con-
tained at least one positive rewrite. The training set
consists of about 1 billion of query-rewrite pairs; the
development set contains 10 million query-rewrite
pairs. The average number of rewrites per query is
around 4,500 for the training and development set,
with a very small amount of 0.2% positive rewrites
per query. In order to confirm the validity of our co-
click hypothesis, and for final evaluation, we held
out another sample of query-rewrite pairs for man-
ual evaluation. This dataset contains 100 queries for
each of which we sampled 30 rewrites in descending
order of co-clicks, resulting in a high percentage of
43% positive rewrites per query. The query-rewrite
pairs were annotated by 3 raters as follows: First the
raters were asked to rank the rewrites in descend-
ing order of relevance using a graphical user inter-
face. Second the raters assigned rank labels and bi-
nary relevance scores to the ranked list of rewrites.
This labeling strategy is similar to the labeling strat-
egy for synonymy judgements proposed by Ruben-
stein and Goodenough (1965). Inter-rater agree-
ments on binary relevance judgements, and agree-
ment between rounded averaged human relevance

scores and assignments of positive/negative labels
by the co-click threshold of 10 produced a Kappa
value of 0.65 (Siegel and Castellan, 1988).

3.2 Learning-to-Rank Query Rewrites
3.2.1 Notation

Let S = {(xq, yq)}nq=1 be a training sample
of queries, each represented by a set of rewrites
xq = {xq1, . . . , xq,n(q)}, and set of rank labels
yq = {yq1, . . . , yq,n(q)}, where n(q) is the num-
ber of rewrites for query q. For full rankings of
all rewrites for a query, a total order on rewrites is
assumed, with rank labels taking on values yqi ∈
{1, . . . , n(q)}. Rewrites of equivalent rank can be
specified by assuming a partial order on rewrites,
where a multipartite ranking involves r < n(q) rele-
vance levels such that yqi ∈ {1, . . . , r} , and a bipar-
tite ranking involves two rank values yqi ∈ {1, 2}
with relevant rewrites at rank 1 and non-relevant
rewrites at rank 2.

Let the rewrites in xq be identified by the integers
{1, 2, . . . , n(q)}, and let a permutation πq on xq be
defined as a bijection from {1, 2, . . . , n(q)} onto it-
self. Let Πq denote the set of all possible permuta-
tions on xq, and let πqi denote the rank position of
xqi. Furthermore, let (i, j) denote a pair of rewrites
in xq and let Pq be the set of all pairs in xq.

We associate a feature function φ(xqi) with each
rewrite i = 1, . . . , n(q) for each query q. Further-
more, a partial-order feature map as used in Yue et
al. (2007) is created for each rewrite set as follows:

φ(xq, πq) =
1
|Pq|

∑
(i,j)∈Pq

φ(xqi)−φ(xqj)sgn(
1
πqi
− 1
πqj

).

The goal of learning a ranking over the rewrites
xq for a query q can be achieved either by sorting the
rewrites according to the rewrite-level ranking func-
tion f(xqi) = 〈w, φ(xqi)〉, or by finding the permu-
tation that scores highest according to a query-level
ranking function f(xq, πq) = 〈w, φ(xq, πq)〉.

In the following, we will describe a variety
of well-known ranking objectives, and extensions
thereof, that are used in our experiments. Optimiza-
tion is done in a stochastic gradient descent (SGD)
framework. We minimize an empirical loss objec-
tive

min
w

∑
xq ,yq

`(w)

478

by stochastic updating

wt+1 = wt − ηtgt

where ηt is a learning rate, and gt is the gradient

gt = ∇`(w)

where

∇`(w) =
〈

∂

∂w1
`(w),

∂

∂w2
`(w), . . . ,

∂

∂wn
`(w)

〉
.

3.2.2 Listwise Hinge Loss
Standard ranking evaluation metrics such as

(Mean) Average Precision (Manning et al., 2008)
are defined on permutations of whole lists and are
not decomposable over instances. Joachims (2005),
Yue et al. (2007), or Chakrabarti et al. (2008) have
proposed multivariate SVM models to optimize such
listwise evaluation metrics. The central idea is to
formalize the evaluation metric as a prediction loss
function L, and incorporate L via margin rescal-
ing into the hinge loss function, such that an up-
per bound on the prediction loss is achieved (see
Tsochantaridis et al. (2004), Proposition 2).

The loss function is given by the following list-
wise hinge loss:

`lh(w) = (L(yq, π∗q)−
〈
w, φ(xq, yq)− φ(xq, π∗q)

〉
)+

where π∗q is the maximizer of the
maxπq∈Πq\yq

L(yq, π∗q) +
〈
w, φ(xq, π∗q)

〉
ex-

pression, (z)+ = max{0, z} and L(yq, πq) ∈ [0, 1]
denotes a prediction loss of a predicted ranking πq
compared to the ground-truth ranking yq.2

In this paper, we use Average Precision (AP) as
prediction loss function s.t.

LAP (yq, πq) = 1−AP (yq, πq)

where AP is defined as follows:

AP (yq, πq) =

∑n(q)
j=1 Prec(j) · (|yqj − 2|)∑n(q)

j=1 (|yqj − 2|)
,

P rec(j) =

∑
k:πqk≤πqj

(|yqk − 2|)
πqj

.

2We slightly abuse the notation yq to denote the permutation
on xq that is induced by the rank labels. In case of full rankings,
the permutation πq corresponding to ranking yq is unique. For
multipartite and bipartite rankings, there is more than one pos-
sible permutation for a given ranking, so that we let πq denote
a permutation that is consistent with ranking yq .

Note that the ranking scenario is in this case bipartite
with yqi ∈ {1, 2}.

The derivatives for `lh are as follows:

∂

∂wk
`lh =

0 if

(〈
w, φ(xq, yq)− φ(xq, π∗q)

〉)
> L(yq, π∗q),

−(φk(xq, yq)− φk(xq, π∗q)) else.

SGD optimization involves computing π∗q for each
feature and each query, which can be done effi-
ciently using the greedy algorithm proposed by Yue
et al. (2007). We will refer to this method as the
SVM-MAP model.

3.2.3 Pairwise Hinge Loss for Bipartite and
Multipartite Ranking

Joachims (2002) proposed an SVM method that
defines the ranking problem as a pairwise classifi-
cation problem. Cortes et al. (2007) extended this
method to a magnitude-preserving version by penal-
izing a pairwise misranking by the magnitude of the
difference in preference labels. A position-sensitive
penalty for pairwise ranking SVMs was proposed
by Riezler and De Bona (2009) and Chapelle and
Keerthi (2010), and earlier for perceptrons by Shen
and Joshi (2005). In the latter approaches, the mag-
nitude of the difference in inverted ranks is accrued
for each misranked pair. The idea is to impose an
increased penalty for misrankings at the top of the
list, and for misrankings that involve a difference of
several rank levels.

Similar to the listwise case, we can view the
penalty as a prediction loss function, and incor-
porate it into the hinge loss function by rescaling
the margin by a pairwise prediction loss function
L(yqi, yqj). In our experiments we used a position-
sensitive prediction loss function

L(yqi, yqj) = | 1
yqi
− 1
yqj
|

defined on the difference of inverted ranks. The
margin-rescaled pairwise hinge loss is then defined
as follows:

`ph(w) =
∑

(i,j)∈Pq

(L(yqi, yqj)−

〈w, φ(xqi)− φ(xqj)〉 sgn(
1
yqi
− 1
yqj

))+

479

Table 2: Experimental evaluation of random and best feature baselines, and log-linear, SVM-MAP, SVM-bipartite,
SVM-multipartite, and SVM-multipartite-margin-rescaled learning-to-rank models on manually labeled test set.

MAP NDCG@10 AUC Prec@1 Prec@3 Prec@5
Random 51.8 48.7 50.4 45.6 45.6 46.6
Best-feature 71.9 70.2 74.5 70.2 68.1 68.7
SVM-bipart. 73.7 73.7 74.7 79.4 70.1 70.1
SVM-MAP 74.3 75.2 75.3 76.3 71.8 72.0
Log-linear 74.7 75.1 75.7 75.3 72.2 71.3
SVM-pos.-sens. 75.7 76.0 76.6 82.5 72.9 73.0
SVM-multipart. 76.5 77.3 77.2 83.5 74.2 73.6

The derivative of `ph is calculated as follows:

∂

∂wk
`lp =

0 if (〈w, φ(xqi)− φ(xqj)〉

sgn(1
yqi
− 1

yqj
)) > L(yqi, yqj),

−(φk(xqi)− φk(xqj))sgn(1
yqi
− 1

yqj
)

else.

Note that the effect of inducing a position-
sensitive penalty on pairwise misrankings applies
only in case of full rankings on n(q) rank levels,
or in case of multipartite rankings involving 2 <
r < n(q) rank levels. Henceforth we will refer to
margin-rescaled pairwise hinge loss for multipartite
rankings as the SVM-pos.-sens. method.

Bipartite ranking is a special case where
L(yqi, yqj) is constant so that margin rescaling does
not have the effect of inducing position-sensitivity.
This method will be referred to as the SVM-bipartite
model.

Also note that for full ranking or multipartite
ranking, predicting a low ranking for an instance
that is ranked high in the ground truth has a domino
effect of accruing an additional penalty at each
rank level. This effect is independent of margin-
rescaling. The method of pairwise hinge loss
for multipartite ranking with constant margin will
henceforth be referred to as the SVM-multipartite
model.

Computation in SGD optimization is dominated
by the number of pairwise comparisons |Pq| for
each query. For full ranking, a comparison of
|Pq| =

(
n(q)

2

)
pairs has to be done. In the case

of multipartite ranking at r rank levels, each in-
cluding |li| rewrites, pairwise comparisons between
rewrites at the same rank level can be ignored.
This reduces the number of comparisons to |Pq| =

∑r−1
i=1

∑r
j=i+1 |li||lj |. For bipartite ranking of p

positive and n negative instances, |Pq| = p · n com-
parisons are necessary.

3.2.4 Log-linear Models for Bipartite Ranking
A probabilistic model for bipartite ranking can be

defined as the conditional probability of the set of
relevant rewrites, i.e., rewrites at rank level 1, given
all rewrites at rank levels 1 and 2. A formalization in
the family of log-linear models yields the following
logistic loss function `llm that was used for discrim-
inative estimation from sets of partially labeled data
in Riezler et al. (2002):

`llm(w) = − log

∑
xqi∈xq |yqi=1 e

〈w,φ(xqi)〉∑
xqi∈xq

e〈w,φ(xqi)〉
.

The gradient of `llm is calculated as a difference be-
tween two expectations:

∂

∂wk
`llm = −pw [φk|xq; yqi = 1] + pw [φk|xq] .

The SGD computation for the log-linear model is
dominated by the computation of expectations for
each query. The logistic loss for bipartite ranking is
henceforth referred to as the log-linear model.

4 Experimental Results

In the experiments reported in this paper, we trained
linear ranking models on 1 billion query-rewrite
pairs using 60 dense features, combined of the build-
ing blocks of syntactic and semantic similarity met-
rics under different estimations of cost matrices. De-
velopment testing was done on a data set that was
held-out from the training set. Final testing was car-
ried out on the manually labeled dataset. Data statis-
tics for all sets are given in Table 1.

480

Table 3: P-values computed by approximate randomization test for 15 pairwise comparisons of result differences.

Best-feature SVM-bipart. SVM-MAP Log-linear SVM-pos.-sens. SVM-multipart.
Best-feature - < 0.005 < 0.005 < 0.005 < 0.005 < 0.005
SVM-bipart. - - 0.324 < 0.005 < 0.005 < 0.005
SVM-MAP - - - 0.374 < 0.005 < 0.005
Log-linear - - - - 0.053 < 0.005
SVM-pos.-sens. - - - - - < 0.005
SVM-multipart. - - - - - -

Model selection was performed by adjusting
meta-parameters on the development set. We
trained each model at constant learning rates η ∈
{1, 0.5, 0.1, 0.01, 0.001}, and evaluated each variant
after every fifth out of 100 passes over the training
set. The variant with the highest MAP score on the
development set was chosen and evaluated on the
test set. This early stopping routine also served for
regularization.

Evaluation results for the systems are reported in
Table 2. We evaluate all models according to the fol-
lowing evaluation metrics: Mean Average Precision
(MAP), Normalized Discounted Cumulative Gain
with a cutoff at rank 10 (NDCG@10), Area-under-
the-ROC-curve (AUC), Precision@n3. As baselines
we report a random permutation of rewrites (ran-
dom), and the single dense feature that performed
best on the development set (best-feature). The latter
is the log-probability assigned to the query-rewrite
pair by the probabilistic clustering model used for
cost matrix estimation (see Section 2.5). P-values
are reported in Table 3 for all pairwise compar-
isons of systems (except the random baseline) us-
ing an Approximate Randomization test where strat-
ified shuffling is applied to results on the query level
(see Noreen (1989)). The rows in Tables 2 and 3
are ranked according to MAP values of the systems.
SVM-multipartite outperforms all other ranking sys-
tems under all evaluation metrics at a significance
level ≥ 0.995. For all other pairwise comparisons
of result differences, we find result differences of
systems ranked next to each other to be not statis-
tically significant. All systems outperform the ran-
dom and best-feature baselines with statistically sig-
nificant result differences. The distinctive advantage
of the SVM-multipartite models lies in the possibil-

3For a definition of these metrics see Manning et al. (2008)

ity to rank rewrites with very high co-click num-
bers even higher than rewrites with reasonable num-
bers of co-clicks. This preference for ranking the
top co-clicked rewrites high seems the best avenue
for transferring co-click information to the human
judgements encoded in the manually labeled test set.
Position-sensitive margin rescaling does not seem to
help, but rather seems to hurt.

5 Discussion

We presented an approach to learn rankings of query
rewrites from large amounts of user query log data.
We showed how to use the implicit co-click feed-
back about rewrite quality in user log data to train
ranking models that perform well on ranking query
rewrites according to human quality standards. We
presented large-scale experiments using SGD opti-
mization for linear ranking models. Our experimen-
tal results show that an SVM model for multipartite
ranking outperforms other linear ranking models un-
der several evaluation metrics. In future work, we
would like to extend our approach to other models,
e.g., sparse combinations of lexicalized features.

References

R. Agrawal, A. Halverson, K. Kenthapadi, N. Mishra,
and P. Tsaparas. 2009. Generating labels from clicks.
In Proceedings of the 2nd ACM International Con-
ference on Web Search and Data Mining, Barcelona,
Spain.

Doug Beeferman and Adam Berger. 2000. Agglom-
erative clustering of a search engine query log. In
Proceedings of the 6th ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing (KDD’00), Boston, MA.

P. Boldi, F. Bonchi, C. Castillo, and S. Vigna. 2009.
From ’Dango’ to ’Japanese cakes’: Query reformula-

481

tion models and patterns. In Proceedings of Web Intel-
ligence. IEEE Cs Press.

G. Bouma. 2009. Normalized (pointwise) mutual in-
formation in collocation extraction. In Proceedings of
GSCL.

Soumen Chakrabarti, Rajiv Khanna, Uma Sawant, and
Chiru Bhattacharayya. 2008. Structured learning for
non-smooth ranking losses. In Proceedings of the 14th
ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD’08), Las Vegas, NV.

Olivier Chapelle and S. Sathiya Keerthi. 2010. Efficient
algorithms for ranking with SVMs. Information Re-
trieval Journal.

Kenneth Church and Patrick Hanks. 1990. Word asso-
ciation norms, mutual information and lexicography.
Computational Linguistics, 16(1):22–29.

Massimiliano Ciaramita, Amaç Herdaǧdelen, Daniel
Mahler, Maria Holmqvist, Keith Hall, Stefan Riezler,
and Enrique Alfonseca. 2010. Generalized syntactic
and semantic models of query reformulation. In Pro-
ceedings of the 33rd ACM SIGIR Conference, Geneva,
Switzerland.

Corinna Cortes, Mehryar Mohri, and Asish Rastogi.
2007. Magnitude-preserving ranking algorithms. In
Proceedings of the 24th International Conference on
Machine Learning (ICML’07), Corvallis, OR.

Larry Fitzpatrick and Mei Dent. 1997. Automatic feed-
back using past queries: Social searching? In Pro-
ceedings of the 20th Annual International ACM SIGIR
Conference, Philadelphia, PA.

Alon Halevy, Peter Norvig, and Fernando Pereira. 2009.
The unreasonable effectiveness of data. IEEE Intelli-
gent Systems, 24:8–12.

Thorsten Joachims. 2002. Optimizing search engines
using clickthrough data. In Proceedings of the 8th
ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD’08), New York, NY.

Thorsten Joachims. 2005. A support vector method for
multivariate performance measures. In Proceedings of
the 22nd International Conference on Machine Learn-
ing (ICML’05), Bonn, Germany.

Rosie Jones, Benjamin Rey, Omid Madani, and Wiley
Greiner. 2006. Generating query substitutions. In
Proceedings of the 15th International World Wide Web
conference (WWW’06), Edinburgh, Scotland.

T. Lau and E. Horvitz. 1999. Patterns of search: analyz-
ing and modeling web query refinement. In Proceed-
ings of the seventh international conference on User
modeling, pages 119–128. Springer-Verlag New York,
Inc.

V.I. Levenshtein. 1966. Binary codes capable of correct-
ing deletions, insertions, and reversals. Soviet Physics
Doklady, 10(8):707–710.

Christopher D. Manning, Prabhakar Raghavan, and Hin-
rich Schütze. 2008. Introduction to Information Re-
trieval. Cambridge University Press.

Eric W. Noreen. 1989. Computer Intensive Methods
for Testing Hypotheses. An Introduction. Wiley, New
York.

G. Recchia and M.N. Jones. 2009. More data trumps
smarter algorithms: comparing pointwise mutual in-
formation with latent semantic analysis. Behavioral
Research Methods, 41(3):647–656.

S.Y. Rieh and H. Xie. 2006. Analysis of multiple query
reformulations on the web: the interactive information
retrieval context. Inf. Process. Manage., 42(3):751–
768.

Stefan Riezler and Fabio De Bona. 2009. Simple risk
bounds for position-sensitive max-margin ranking al-
gorithms. In Proceedings of the Workshop on Ad-
vances in Ranking at the 23rd Annual Conference
on Neural Information Processing Systems (NIPS’09),
Whistler, Canada.

Stefan Riezler, Tracy H. King, Ronald M. Kaplan,
Richard Crouch, John T. Maxwell, and Mark John-
son. 2002. Parsing the Wall Street Journal using a
Lexical-Functional Grammar and discriminative esti-
mation techniques. In Proceedings of the 40th Annual
Meeting of the Association for Computational Linguis-
tics (ACL’02), Philadelphia, PA.

Herbert Rubenstein and John B. Goodenough. 1965.
Contextual correlates of synonymy. Communications
of the ACM, 10(3):627–633.

Mehran Sahami and Timothy D. Heilman. 2006. A web-
based kernel function for measuring the similarity of
short text snippets. In Proceedings of the 15th Inter-
national World Wide Web conference (WWW’06), Ed-
inburgh, Scotland.

Libin Shen and Aravind K. Joshi. 2005. Ranking and
reranking with perceptron. Journal of Machine Learn-
ing Research, 60(1-3):73–96.

Sidney Siegel and John Castellan. 1988. Nonparametric
Statistics for the Behavioral Sciences. Second Edition.
MacGraw-Hill, Boston, MA.

Ioannis Tsochantaridis, Thomas Hofmann, Thorsten
Joachims, and Yasemin Altun. 2004. Support vec-
tor machine learning for interdependent and structured
output spaces. In Proceedings of the 21st International
Conference on Machine Learning (ICML’04), Banff,
Canada.

Yisong Yue, Thomas Finley, Filip Radlinski, and
Thorsten Joachims. 2007. A support vector method
for optimizing average precision. In Proceedings of
the 30th Annual International ACM SIGIR Confer-
ence, Amsterdam, The Netherlands.

482

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 483–491,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Learning to Link Entities with Knowledge Base

Zhicheng Zheng, Fangtao Li, Minlie Huang, Xiaoyan Zhu
State Key Laboratory of Intelligent Technology and Systems

Tsinghua National Laboratory for Information Science and Technology
Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
{zhengzc04,fangtao06}@gmail.com, {aihuang,zxy-dcs}@tsinghua.edu.cn

Abstract

This paper address the problem of entity link-
ing. Specifically, given an entity mentioned in
unstructured texts, the task is to link this entity
with an entry stored in the existing knowledge
base. This is an important task for informa-
tion extraction. It can serve as a convenient
gateway to encyclopedic information, and can
greatly improve the web users’ experience.
Previous learning based solutions mainly fo-
cus on classification framework. However, it’s
more suitable to consider it as a ranking prob-
lem. In this paper, we propose a learning to
rank algorithm for entity linking. It effectively
utilizes the relationship information among
the candidates when ranking. The experi-
ment results on the TAC 20091 dataset demon-
strate the effectiveness of our proposed frame-
work. The proposed method achieves 18.5%
improvement in terms of accuracy over the
classification models for those entities which
have corresponding entries in the Knowledge
Base. The overall performance of the system
is also better than that of the state-of-the-art
methods.

1 Introduction

The entity linking task is to map a named-entity
mentioned in a text to a corresponding entry stored
in the existing Knowledge Base. The Knowledge
Base can be considered as an encyclopedia for en-
tities. It contains definitional, descriptive or rele-
vant information for each entity. We can acquire the
knowledge of entities by looking up the Knowledge

1http://www.nist.gov/tac/

Base. Wikipedia is an online encyclopedia, and now
it becomes one of the largest repositories of encyclo-
pedic knowledge. In this paper, we use Wikipedia as
our Knowledge Base.

Entity linking can be used to automatically aug-
ment text with links, which serve as a conve-
nient gateway to encyclopedic information, and can
greatly improve user experience. For example, Fig-
ure 1 shows news from BBC.com. When a user is
interested in ”Thierry Henry”, he can acquire more
detailed information by linking”Thierry Henry” to
the corresponding entry in the Knowledge Base.

Figure 1: Entity linking example

Entity linking is also useful for some information
extraction (IE) applications. We can make use of
information stored in the Knowledge Base to assist
the IE problems. For example, to answer the ques-
tion ”When was the famous basketball player Jor-
dan born?”, if the Knowledge Base contains the en-

483

tity of basketball player Michael Jordan and his in-
formation (such as infobox2 in Wikipedia), the cor-
rect answer”February 17, 1963” can be easily re-
trieved.

Entity linking encounters the problem of entity
ambiguity. One entity may refer to several entries
in the Knowledge Base. For example, the entity
”Michael Jordan” can be linked to the basketball
player or the professor in UC Berkeley.

Previous solutions find that classification based
methods are effective for this task (Milne and Wit-
ten, 2008). These methods consider each candidate
entity independently, and estimate a probability that
the candidate entry corresponds to the target entity.
The candidate with the highest probability was cho-
sen as the target entity. In this way, it’s more like
a ranking problem rather than a classification prob-
lem. Learning to rank methods take into account the
relations between candidates, which is better than
considering them independently. Learning to rank
methods are popular in document information re-
trieval, but there are few studies on information ex-
traction. In this paper, we investigate the application
of learning to rank methods to the entity linking task.
And we compare several machine learning methods
for this task. We investigate the pairwise learning to
rank method, Ranking Perceptron (Shen and Joshi,
2005), and the listwise method, ListNet (Cao et al.,
2007). Two classification methods, SVM and Per-
ceptron, are developed as our baselines. In com-
parison, learning to rank methods show significant
improvements over classification methods, and List-
Net achieves the best result. The best overall per-
formance is also achieved with our proposed frame-
work.

This paper is organized as follows. In the next
section we will briefly review the related work. We
present our framework for entity linking in section
3. We then describe in section 4 learning to rank
methods and features for entity linking. A top1 can-
didate validation module will be explained in section
5. Experiment results will be discussed in section 6.
Finally, we conclude the paper and discusses the fu-
ture work in section 7.

2Infoboxes are tables with semi-structured information in
some pages of Wikipedia

2 Related Work

There are a number of studies on named entity dis-
ambiguation, which is quite relevant to entity link-
ing. Bagga and Baldwin (1998) used a Bag of Words
(BOW) model to resolve ambiguities among people.
Mann and Yarowsky (2003) improved the perfor-
mance of personal names disambiguation by adding
biographic features. Fleischman (2004) trained a
Maximum Entropy model with Web Features, Over-
lap Features, and some other features to judge
whether two names refer to the same individual.
Pedersen (2005) developed features to represent the
context of an ambiguous name with the statistically
significant bigrams.

These methods determined to which entity a spe-
cific name refer by measuring the similarity between
the context of the specific name and the context of
the entities. They measured similarity with a BOW
model. Since the BOW model describes the con-
text as a term vector, the similarity is based on co-
occurrences. Although a term can be one word or
one phrase, it can’t capture various semantic rela-
tions. For example, ”Michael Jordan now is the boss
of Charlotte Bobcats” and ”Michael Jordan retired
from NBA”. The BOW model can’t describe the re-
lationship betweenCharlotte BobcatsandNBA. Ma-
lin and Airoldi (2005) proposed an alternative sim-
ilarity metric based on the probability of walking
from one ambiguous name to another in a random
walk within the social network constructed from all
documents. Minkov (2006) considered extended
similarity metrics for documents and other objects
embedded in graphs, facilitated via a lazy graph
walk, and used it to disambiguate names in email
documents. Bekkerman and McCallum (2005) dis-
ambiguated web appearances of people based on the
link structure of Web pages. These methods tried to
add background knowledge via social networks. So-
cial networks can capture the relatedness between
terms, so the problem of a BOW model can be
solved to some extent. Xianpei and Jun (2009) pro-
posed to use Wikipedia as the background knowl-
edge for disambiguation. By leveraging Wikipedia’s
semantic knowledge like social relatedness between
named entities and associative relatedness between
concepts, they can measure the similarity between
entities more accurately. Cucerzan (2007) and

484

Bunescu (2006) used Wikipedia’s category informa-
tion in the disambiguation process. Using different
background knowledge, researcher may find differ-
ent efficient features for disambiguation.

Hence researchers have proposed so many effi-
cient features for disambiguation. It is important to
integrate these features to improve the system per-
formance. Some researchers combine features by
manual rules or weights. However, it is not conve-
nient to directly use these rules or weights in another
data set. Some researchers also try to use machine
learning methods to combine the features. Milne and
Witten (2008) used typical classifiers such as Naive
Bayes, C4.5 and SVM to combine features. They
trained a two-class classifier to judge whether a can-
didate is a correct target. And then when they try
to do disambiguation for one query, each candidate
will be classified into the two classes: correct tar-
get or incorrect target. Finally the candidate answer
with the highest probability will be selected as the
target if there are more than one candidates classi-
fied as answers. They achieve great performance in
this way with three efficient features. The classifier
based methods can be easily used even the feature
set changed. However, as we proposed in Introduc-
tion, it’s not the best way for such work. We’ll detail
the learning to rank methods in the next section.

3 Framework for Entity Linking

Input%a%query

Output%the%

final answerfinal%answer

Figure 2: The framework for entity linking

Entity linking is to align a named-entity men-
tioned in a text to a corresponding entry stored in
the existing Knowledge Base. We proposed a frame-
work to solve the ”entity linking” task. As illustrated
in Figure 2, when inputting a query which is an en-

tity mentioned in a text, the system will return the
target entry in Knowledge Base with four modules:

1. Query Processing. First, we try to correct the
spelling errors in the queries by using query
spelling correction supplied by Google. Sec-
ond, we expand the query in three ways: ex-
panding acronym queries from the text where
the entity is located, expanding queries with the
corresponding redirect pages of Wikipedia and
expanding queries by using the anchor text in
the pages from Wikipedia.

2. Candidates Generation. With the queries gen-
erated in the first step, the candidate genera-
tion module retrieves the candidates from the
Knowledge Base. The candidate generation
module also makes use of the disambiguation
pages in Wikipedia. If there is a disambigua-
tion page corresponding to the query, the linked
entities listed in the disambiguation page are
added to the candidate set.

3. Candidates Ranking. In the module, we rank all
the candidates with learning to rank methods.

4. Top1 Candidate Validation. To deal with those
queries without appropriate matching, we fi-
nally add a validation module to judge whether
the top one candidate is the target entry.

The detail information of ranking module and val-
idation module will be introduced in next two sec-
tions.

4 Learning to Rank Candidates

In this section we first introduce the learning to rank
methods, and then describe the features for ranking
methods.

4.1 Learning to rank methods

Learning to rank methods are popular in the area of
document retrieval. There are mainly two types of
learning to rank methods: pairwise and listwise. The
pairwise approach takes as instances object pairs in
a ranking list for a query in learning. In this way,
it transforms the ranking problem to the classifica-
tion problem. Each pair from ranking list is labeled
based on the relative position or with the score of

485

ranking objects. Then a classification model can be
trained on the labeled data and then be used for rank-
ing. The pairwise approach has advantages in that
the existing methodologies on classification can be
applied directly. The listwise approach takes can-
didate lists for a query as instances to train ranking
models. Then it trains a ranking function by min-
imizing a listwise loss function defined on the pre-
dicted list and the ground truth list.

To describe the learning to rank methods, we first
introduce some notations:

∙ Query set Q ={q(i)∣i = 1 : m}.

∙ Each queryq(i) is associated with a list of ob-
jects(in document retrieval, the objects should
be documents),d(i) = {d

(i)
j ∣j = 1 : n(i)}.

∙ Each object list has a labeled score listy(i) =

{y
(i)
j ∣j = 1 : n(i)} represents the relevance de-

gree between the objects and the query.

∙ Features vectorsx(i)
j from each query-object

pair, j = 1 : n(i).

∙ Ranking function f, for eachx(i)
j it outputs a

scoref(x
(i)
j). After the training phase, to rank

the objects, just use the ranking function f to
output the score list of the objects, and rank
them with the score list.

In the paper we will compare two different learn-
ing to rank approaches: Ranking Perceptron for pair-
wise and ListNet for listwise. A detailed introduc-
tion on Ranking Perceptron (Shen and Joshi, 2005)
and ListNet (Cao et al., 2007) is given.

4.1.1 Ranking Perceptron

Ranking Perceptron is a pairwise learning to rank
method. The score functionf!(x

(i)
j) is defined as

< !, x
(i)
j >.

For each pair(x(i)
j1 , x

(i)
j2), f!(x

(i)
j1 − x

(i)
j2) is com-

puted. With a given margin functiong(x
(i)
j1 , x

(i)
j2) and

a positive rate� , if f!(x
(i)
j1 − x

(i)
j2) ≤ g(x

(i)
j1 , x

(i)
j2)� ,

an update is performed:

!t+1 = !t + (x
(i)
j1 − x

(i)
j2)�g(x

(i)
j1 , x

(i)
j2)

After iterating enough times, we can use the func-
tion f! to rank candidates.

4.1.2 ListNet

ListNet takes lists of objects as instances in learn-
ing. It uses a probabilistic method to calculate the
listwise loss function.

ListNet transforms into probability distributions
both the scores of the objects assigned by the ora-
cle ranking function and the real score of the objects
given by human.

Let� denote a permutation on the objects. In List-
Net algorithm, the probability of� with given scores
is defined as:

Ps(�) =
n∏

j=1

exp(s�(j))∑n
k=j exp(s�(k))

Then the top k probability ofGk(j1, j2, ..., jk) can
be calculated as:

Ps(Gk(j1, j2, ..., jk)) =
k∏

t=1

exp(sjt)∑l
l=t exp(sjl)

The ListNet uses a listwise loss function with
Cross Entropy as metric:

L(y(i), z(i)) = −
∑

∀g∈Gk

Py(i)(g)log(Pz(i) (g))

Denote asf! the ranking function based on
Neural Network model!. The gradient of
L(y(i), z(i)(f!)) with respect to parameter! can be
calculated as:

Δ! =
∂L(y(i), z(i)(f!))

∂!

= −
∑

∀g∈Gk

∂Pz(i)(f!)(g)

∂!

Py(i)(g)

Pz(i)(f!)(g)

In each iteration, the! is updated with−� ×Δ!

in a gradient descent way. Here� is the learning
rate.

To train a learning to rank model, the manually
evaluated score list for each query’s candidate list is
required. We assign 1 to the real target entity and 0
to the others.

486

4.2 Features for Ranking

In the section, we will introduce the features used
in the ranking module. For convenience, we define
some symbols first:

∙ Q represents a query, which contains a named
entity mentioned in a text. CSet represents the
candidate entries in Knowledge Base for the
query Q. C represents a candidate in CSet.

∙ Q’s nameString represents the name string of
Q. Q’s sourceText represents the source text of
Q. Q’s querySet represents the queries which
are expansions of Q’s nameString.

∙ C’s title represents the title of corresponding
Wikipedia article of C. C’s titleExpand repre-
sents the union set of the redirect set of C and
the anchor text set of C. C’s article represents
the Wikipedia article of C.

∙ C’s nameEntitySet represents the set of all
named entities in C’s article labeled by Stan-
ford NER (Finkel et al., 2005). Q’s nameEnti-
tySet represents the set of all named entities in
Q’s sourceText.

∙ C’s countrySet represents the set of all coun-
tries in C’s article, and we detect the countries
from text via a manual edited country list. Q’s
countrySet represents the set of all countries
in Q’s sourceText. C’s countrySetInTitle rep-
resents the set of countries exist in one of the
string s from C’s titleExpand.

∙ C’s citySetInTitle represents the set of all cities
exist in one of the string s from C’s titleExpand,
and we detect the cities from text via a manual
edited list of famous cities. Q’s citySet repre-
sents the set of all cities in Q’s sourceText.

∙ Q’s type represents the type of query Q. It’s la-
beled by Stanford NER. C’s type is manually
labeled already in the Knowledge Base.

The features that used in the ranking module can
be divided into 3 groups: Surface, Context and Spe-
cial. Each of these feature groups will be detailed
next.

4.2.1 Surface Features

The features in Surface group are used to measure
the similarity between the query string and candidate
entity’s name string.

∙ StrSimSurface. The feature value is the max-
imum similarity between the Q’s nameString
and each string s in the set C’s titleExpand. The
string similarity is measured with edit distance.

∙ ExactEqualSurface. The feature value is 1 if
there is a string s in set C’s titleExpand same as
the Q’s nameString, or the Candidate C is ex-
tracted from the disambiguation page. In other
case, the feature value is set to 0.

∙ StartWithQuery. The feature value is 1 if there
is a string s in set C’s titleExpand starting with
the Q’s nameString, and C’s ExactEqualSur-
face is not 1. In other case, the feature value
is set to 0.

∙ EndWithQuery. The feature value is 1 if there
is a string s in set C’s titleExpand ending with
the Q’s nameString, and C’s ExactEqualSur-
face is not 1. In other case, the feature value
is set to 0.

∙ StartInQuery. The feature value is 1 if there is a
string s in set C’s titleExpand that s is the prefix
of the Q’s nameString, and C’s ExactEqualSur-
face is not 1. In other case, the feature value is
set to 0.

∙ EndInQuery. The feature value is 1 if there is a
string s in set C’s titleExpand that s is the post-
fix of the Q’s nameString, and C’s ExactEqual-
Surface is not 1. In other case, the feature value
is set to 0.

∙ EqualWordNumSurface. The feature value is
the maximum number of same words between
the Q’s nameString and each string s in the set
C’s titleExpand.

∙ MissWordNumSurface. The feature value is
the minimum number of different words be-
tween the Q’s nameString and each string s in
the set C’s titleExpand.

487

4.2.2 Context Features

The features in Context group are used to measure
the context relevance between query and the candi-
date entity. We mainly consider the TF-IDF similar-
ity and named entity co-occurrence.

∙ TFSimContext. The feature value is the TF-
IDF similarity between the C’s article and Q’s
sourceText.

∙ TFSimRankContext. The feature value is the
inverted rank of C’s TFSimContext in the CSet.

∙ AllWordsInSource. The feature value is 1 if all
words in C’s title exist in Q’s sourceText, and
in other case, the feature value is set to 0.

∙ NENumMatch. The feature value is the num-
ber of of same named entities between C’s
nameEntitySet and Q’s nameEntitySet. Two
named entities are judged to be the same if and
only if the two named entities’ strings are iden-
tical.

4.2.3 Special Features

Besides the features above, we also find that the
following features are quite significant in the entity
linking task: country names, city names and types
of queries and candidates.

∙ CountryInTextMatch. The feature value is the
number of same countries between C’s coun-
trySet and Q’s countrySet.

∙ CountryInTextMiss. The feature value is the
number of countries that exist in Q’s country-
Set but do not exist in C’s countrySet.

∙ CountryInTitleMatch. The feature value is the
number of same countries between C’s coun-
trySetInTitle and Q’s countrySet.

∙ CountryInTitleMiss. The feature value is the
number of countries that exist in C’s country-
SetInTitle but do not exist in Q’s countrySet.

∙ CityInTitleMatch. The feature value is the
number of same cities between C’s citySetInTi-
tle and Q’s citySet.

∙ TypeMatch. The feature value is 0 if C’s type is
not consistent with Q’s type, in other case, the
feature value is set to 1.

When ranking the candidates in CSet, the fea-
tures’ value was normalized into [0, 1] to avoid noise
caused by large Integer value or small double value.

5 Top 1 Candidate Validation

To deal with those queries without target entities in
the Knowledge Base, we supply a Top 1 candidate
validation module. In the module, a two-class classi-
fier is used to judge whether the top one candidate is
the true target entity. The top one candidate selected
from the ranking module can be divided into two
classes: target and non-target, depending on whether
it’s the correct target link of the query. According
to the performance of classification, SVM is chosen
as the classifier (In practice, the libsvm package is
used) and the SVM classifier is trained on the entire
training set.

Most of the features used in the validation mod-
ule are the same as those in ranking module, such as
StrSimSurface, EqualWordNumSurface, MissWord-
NumSurface, TFSimContext, AllWordsInSource,
NENumMatch and TypeMatch. We also design
some other features, as follows:

∙ AllQueryWordsInWikiText. The feature value
is one if Q’s textRetrievalSet contains C, and
in other case the feature value is set to zero.
The case that Q’s textRetrievalSet contains C
means the candidate C’s article contains the Q’s
nameString.

∙ CountryInTextPer. The feature is the percent-
age of countries from Q’s countrySet exist in
C’s countrySet too. The feature can be seen as
a normalization of CountryInTextMatch/Miss
features in ranking module.

∙ ScoreOfRank. The feature value is the score
of the candidate given by the ranking module.
The ScoreOfRank takes many features in rank-
ing module into consideration, so only fewer
features of ranking module are used in the clas-
sifier.

488

6 Experiment and Analysis

6.1 Experiment Setting

Algorithm Accuracy
Improvement

over SVM
ListNet 0.9045 +18.5%

Ranking Perceptron 0.8842 +15.8%
SVM 0.7636 -

Perceptron 0.7546 -1.2%

Table 1: Evaluation of different ranking algorithm

Entity linking is initiated as a task in this year’s
TAC-KBP3 track, so we use the data from this track.
The entity linking task in the KBP track is to map
an entity mentioned in a news text to the Knowl-
edge Base, which consist of articles from Wikipedia.
The KBP track gives a sample query set which con-
sists of 416 queries for developing. The test set con-
sists of 3904 queries. 2229 of these queries can’t
be mapped to Knowledge Base, for which the sys-
tems should return NIL links. The remaining 1675
queries all can be aligned to Knowledge Base. We
will firstly analyze the ranking methods with those
non-NIL queries, and then with an additional vali-
dation module, we train and test with all queries in-
cluding NIL queries.

As in the entity linking task of KBP track, the ac-
curacy is taken as

accuracy =
#(correct answered queries)

#(total queries)

6.2 Evaluation of Machine Learning Methods
in ranking

As mentioned in the section of related work, learn-
ing to rank methods in entity linking performs bet-
ter than the classification methods. To justify this,
some experiments are designed to evaluate the per-
formance of our ranking module when adopting dif-
ferent algorithms.

To evaluate the performance of the ranking mod-
ule, we use all the queries which can be aligned to a
target entry in the Knowledge Base. The training set
contains 285 valid queries and the test set contains
1675.

3http://apl.jhu.edu/ paulmac/kbp.html

Set Features in Set
Set1 Surface Features
Set2 Set1+TF-IDF Features
Set3 Set2+AllWordsInSource
Set4 Set3+NENumMatch
Set5 Set4+CountryInTitle Features
Set6 Set5+CountryInText Features
Set7 Set6+CityInTitleMatch
Set8 Set7+MatchType

Table 2: Feature Sets

Three algorithms are taken into comparison: List-
Net, Ranking Perceptron, and classifier based meth-
ods. The classifier based methods are trained by di-
viding the candidates into two classes: target and
non-target. Then, the candidates are ranked accord-
ing to their probability of being classified as target.
two different classifiers are tested here, SVM and
Perceptron.

!

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Set1 Set2 Set3 Set4 Set5 Set6 Set7 Set8

A
c
c
u
ra
c
y

Feature)Set

ListNet

Ranking!Perceptron

Figure 3: Comparison of ListNet and Ranking Perceptron

As shown in Table 1, the two learning to rank
methods perform much better than the classification
based methods. The experiment results prove our
point that the learning to rank algorithms are more
suitable in this work. And the ListNet shows slight
improvement over Ranking Perceptron, but since the
improvement is not so significant, maybe it depends
on the feature set. To confirm this, we compare the
two algorithms with different features, as showed
in Table 2. In Figure 3, The ListNet outperforms
Ranking Perceptron with all feature sets except Set1,
which indicates that the listwise approach is more
suitable than the pairwise approach. The pairwise
approach suffers from two problems: first, the ob-
jective of learning is to minimize classification er-

489

Systems Accuracy of all queries Accuracy of non-NIL queries Accuracy of NIL queries
System1 0.8217 0.7654 0.8641
System2 0.8033 0.7725 0.8241
System3 0.7984 0.7063 0.8677

ListNet+SVM 0.8494 0.79 0.8941

Table 3: Evaluation of the overall performance, compared with KBP results (System 1-3 demonstrate the top three
ranked systems)

rors but not to minimize the errors in ranking; sec-
ond, the number of pairs generated from list varies
largely from list to list, which will result in a model
biased toward lists with more objects. The issues are
also discussed in (Y.B. Cao et al., 2006; Cao et al.,
2007). And the listwise approach can fix the prob-
lems well.

As the feature sets are added incrementally, it can
be used for analyzing the importance of the features
to the ranking task. Although Surface Group only
takes into consideration the candidate’s title and the
query’s name string, its accuracy is still higher than
60%. This is because many queries have quite small
number of candidates, the target entry can be picked
out with the surface features only. The result shows
that after adding the TF-IDF similarity related fea-
tures, the accuracy increases significantly to 84.5%.
Although TF-IDF similarity is a simple way to mea-
sure the contextual similarity, it performs well in
practice. Another improvement is achieved when
adding the CountryInTitleMatch and CountryInTi-
tleMiss features. Since a number of queries in test
set need to disambiguate candidates with different
countries in their titles, the features about coun-
try in the candidates’ title are quite useful to deal
with these queries. But it doesn’t mean that the
features mentioned above are the most important.
Because many features correlated with each other
quite closely, adding these features doesn’t lead to
remarkable improvement. The conclusion from the
results is that the Context Features significantly im-
prove the ranking performance and the Special Fea-
tures are also useful in the entity linking task.

6.3 Overall Performance Evaluation

We are also interested in overall performance with
the additional validation module. We use all the
3904 queries as the test set, including both NIL
and non-NIL queries. The top three results from

the KBP track (McNamee and Dang, 2009) are se-
lected as comparison. The evaluation result in Table
3 shows that our proposed framework outperforms
the best result in the KBP track, which demonstrates
the effectiveness of our methods.

7 Conclusions and Future Work

This paper demonstrates a framework of learning to
rank for linking entities with the Knowledge Base.
Experimenting with different ranking algorithms, it
shows that the learning to rank methods perform
much better than the classification methods in this
problem. ListNet achieves 18.5% improvement over
SVM, and Ranking Perceptron gets 15.8% improve-
ment over SVM. We also observe that the listwise
learning to rank methods are more suitable for this
problem than pairwise methods. We also add a vali-
dation module to deal with those entities which have
no corresponding entry in the Knowledge Base. We
also evaluate the proposed method on the whole data
set given by the KBP track, for which we add a bi-
nary SVM classification module to validate the top
one candidate. The result of experiment shows the
proposed strategy performs better than all the sys-
tems participated in the entity linking task.

In the future, we will try to develop more sophis-
ticated features in entity linking and design a typical
learning to rank method for the entity linking task.

Acknowledgments

This work was partly supported by the Chinese Nat-
ural Science Foundation under grant No.60973104
and No. 60803075, partly carried out with the aid
of a grant from the International Development Re-
search Center, Ottawa, Canada IRCI project from
the International Development.

490

References

Bagga and Baldwin. 1998. Entity-Based Cross-
Document Coreferencing Using the Vector Spcae
Model. in Proceedings of HLT/ACL.

Gideon S. Mann and David Yarowsky. 2003.Unsuper-
vised Personal Name Disambiguation. in Proceedings
of CONIL.

Michael Ben Fleishman. 2004.Multi-Document Person
Name Resolution. in Proceedings of ACL.

Ted Pedersen, Amruta Purandare and Anagha Kulkarni.
2005. Name Discrimination by Clustering Similar
Contexts. in Proceedings of CICLing.

B.Malin and E. Airoldi. 2005. A Network Analysis
Model for Disambiguation of Names in Lists. in Pro-
ceedings of CMOT.

Einat Minkov, William W. Cohen and Andrew Y. Ng.
2006. Contextual Search and Name Disambiguation
in Email Using Graph. in Proceedings of SIGIR.

Ron Bekkerman and Andrew McCallum. 2005.Disam-
biguating Web Appearances of People in a Social Net-
work. in Proceedings of WWW.

Xianpei Han and Jun Zhao. 2009.Named Entity Disam-
biguation by Leveraging Wikipedia Semantic Knowl-
edge. in Proceedings of CIKM.

David Milne and Ian H. Witten. 2008.Learning to Link
with Wikipedia. in Proceedings of CIKM.

Herbrich, R., Graepel, T. and Obermayer K. 1999.Sup-
port vector learning for ordinal regression. in Pro-
ceedings of ICANN.

Freund, Y., Iyer, R., Schapire, R. E. and Singer, Y. 1998.
An efficient boosting algorithm for combining prefer-
ences. in Proceedings of ICML.

Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds,
M., Hamilton, N. and Hullender, G. 2005.Learning to
rank using gradient descent. in Proceedings of ICML.

Cao, Y. B., Xu, J., Liu, T. Y., Li, H., Huang, Y. L. and
Hon, H. W. 2006.Adapting ranking SVM to document
retrieval. in Proceedings of SIGIR.

Cao, Z., Qin, T., Liu, T. Y., Tsai, M. F. and Li, H. 2007.
Learning to rank: From pairwise approach to listwise
approach. in Proceedings of ICML.

Qin, T., Zhang, X.-D., Tsai, M.-F., Wang, D.-S., Liu,
T.Y., and Li, H. 2007.Query-level loss functions for
information retrieval. in Proceedings of Information
processing and management.

L. Shen and A. Joshi. 2005.Ranking and Reranking with
Perceptron. Machine Learning,60(1-3),pp. 73-96.

Silviu Cucerzan. 2007.Large-Scale Named Entity Dis-
ambiguation Based on Wikipedia Data. in Proceed-
ings of EMNLP-CoNLL.

Razvan Bunescu and Marius Pasca. 2006.Using En-
cyclopedic Knowledge for Named Entity Disambigua-
tion. in Proceedings of EACL.

Paul McNamee and Hoa Dang. 2009.Overview
of the TAC 2009 Knowledge Base Population Track
(DRAFT). in Proceedings of TAC.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005.Incorporating Non-local Information
into Information Extraction Systems by Gibbs Sam-
pling. Proceedings of the 43nd Annual Meeting of
the Association for Computational Linguistics (ACL
2005), pp. 363-370.

491

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 492–500,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Improving the Multilingual User Experience of Wikipedia Using
Cross-Language Name Search

Raghavendra Udupa
Microsoft Research India

Bangalore, India.

Mitesh Khapra ∗

Indian Institute of Technology Bombay
Powai, India.

Abstract

Although Wikipedia has emerged as a power-
ful collaborative Encyclopedia on the Web, it
is only partially multilingual as most of the
content is in English and a small number of
other languages. In real-life scenarios, non-
English users in general and ESL/EFL1 users
in particular, have a need to search for rele-
vant English Wikipedia articles as no relevant
articles are available in their language. The
multilingual experience of such users can be
significantly improved if they could express
their information need in their native language
while searching for English Wikipedia arti-
cles. In this paper, we propose a novel cross-
language name search algorithm and employ
it for searching English Wikipedia articles in
a diverse set of languages including Hebrew,
Hindi, Russian, Kannada, Bangla and Tamil.
Our empirical study shows that the multilin-
gual experience of users is significantly im-
proved by our approach.

1 Introduction

Since its inception in 2001, Wikipedia has emerged
as the most famous free, web-based, collaborative,
and multilingual encyclopedia with over 13 million
articles in over 270 languages. However, Wikipedia
exhibits severe asymmetry in the distribution of its
content in the languages of the world with only a
small number of languages dominating (see Table

∗This work was done when the author was a summer intern
at Microsoft Research India.

1English as Second LanguageandEnglish as Foreign Lan-
guage.

1). As a consequence, most users of the under-
represented languages of the world have no choice
but to consult foreign language Wikipedia articles
for satisfying their information needs.

Table 1: Linguistic asymmetry of Wikipedia
Language Speakers Contributors Articles
English 1500M 47.1% 3,072,373
Russian 278M 5.2% 441,860
Hebrew 10M 0.7% 97,987
Hindi 550M 0.06% 50,926
Bangla 230M 0.02% 20,342
Tamil 66M 0.04% 19,472
Kannada 47M 0.02% 7,185

Although consulting foreign language Wikipedia
is not a solution for the problem of linguistic asym-
metry, in the specific case of ESL/EFL users who
form a sizable fraction of Internet users of the world
2, it is arguably the most practical option today. Typ-
ically, ESL/EFL users are reasonably good at read-
ing and extracting relevant information from English
content but not so good at expressing their infor-
mation needs in English. In particular, getting the
spellings of foreign names in English correctly is
very difficult for most ESL/EFL users due to the dif-
ferences in the way a foreign name is pronounced
in the native languages. For instance, Japanese
EFL speakers often break consonant clusters in for-
eign names using vowels (see Table 2) and Hindi
ESL speakers find it difficult to differentiate between
‘an’, ‘en’, and ‘on’ in English names (such as ‘Clin-

2As per some estimates, there are about 1 Billion ESL and
EFL speakers in the world today and their number is growing.

492

ton’) and will most likely use ‘an’ (‘Clintan’).

Table 2: Influence of native language on the English
spelling of names.

Wikipedia
Entity Hindi Japanese Kannada

Stephen
Hawking

Stefan
Hoking

Suchifun
Houkingu

Steephan
Haakimg

Paul Krug-
man

Pol Crugmun
Pooru
Kuruguman

Paal Kraga-
man

Haroun
al-Rashid

Haroon
al-Rashid

Haruun
aru-Rasheedo

Haroon
al-Rasheed

Subrahmaniya
Bharati

Subramaniya
Bharati

Suburaamaniya
Bahaarachi

Subrahmanya
Bharathi

In principle, English spell-checkers (Ahmad and
Kondrak, 2005) can handle the problem of incor-
rect spellings in the queries formed by ESL/EFL
users. But in practice, there are two difficulties.
Firstly, most English spell-checkers do not have a
good coverage of names which form the bulk of user
queries. Secondly, spelling correction of names is
difficult because spelling mistakes are markedly in-
fluenced by the native language of the user. Not
surprisingly, Wikipedia’s inbuilt spell-checker sug-
gests“Suchin Housing”as the only alternative to the
query “Suchifun Houkingu” instead of the correct
entity “Stephen Hawking”(See Table 3 for more ex-
amples).

The inability of ESL/EFL speakers to express
their information needs correctly in English and the
poor performance of spell-checkers highlight the
need for a practical solution for the linguistic asym-
metry problem of Wikipedia. In this work, we argue
the multilingual user experience of ESL/EFL users
can be significantly improved by allowing them to
express their information need in their native lan-
guage. While it might seem that we would need
a fully functional cross-language retrieval system
that supports translation of non-English queries to
English, we note that a good number of the pages
in Wikipedia are on people. This empirical fact
allows us to improve the multilingual experience
of ESL/EFL Wikipedia users by means of cross-
language name search which is less resource de-
manding than a fully functional cross-language re-
trieval system.

There are several challenges that need to be ad-
dressed in order to enable cross-language name

Table 3: Spelling suggestions by Wikipedia.

User Input
Wikipedia’s

Suggestion
Correct Spelling

Suchifun Houkingu Suchin Housing Stephen Hawking

Stefan Hoking Stefan Ho king Stephen Hawking

Pol Crugman Poll Krugman Paul Krugman

Paal Kragaman Paul Krugman Paul Krugman

Suburaamaniya Ba-
haarachi

Subramaniya
Baracchi

Subrahmaniya
Bharati

search in Wikipedia.

• Firstly, name queries are expressed by
ESL/EFL users in the native languages using
the orthography of those languages. Translit-
erating the name into Latin script using a
Machine Transliteration system is an option
but state-of-the-art Machine Transliteration
technologies are still far away from producing
the correct transliteration. Further, as pointed
out by (Udupa et al., 2009a), it is not enough
if a Machine Transliteration system generates
a correct transliteration; it must produce the
transliteration that is present in the Wikipedia
title.

• Secondly, there are about 6 million titles (in-
cluding redirects) in English Wikipedia which
rules out the naive approach of comparing the
query with every one of the English Wikipedia
titles for transliteration equivalence as is done
typically in transliteration mining tasks. A
practical cross-language name search system
for Wikipedia must be able to search millions
of Wikipedia titles in a fraction of a second and
return the most relevant titles.

• Thirdly, names are typically multi-word and
as a consequence there might not be an ex-
act match between the query and English
Wikipedia titles. Any cross-language name
search system for Wikipedia must be able
to deal with multi-word names and partial
matches effectively.

• Fourthly, the cross-language name search sys-

493

tem must be tolerant to spelling variations in
the query as well as the Wikipedia titles.

In this work, we propose a novel approach to
cross-language name search in Wikipedia that ad-
dresses all the challenges described above. Fur-
ther, our approach does not depend on either spell-
checkers or Machine Transliteration. Rather we
transform the problem into a geometric search prob-
lem and employ a state-of-the-art geometric algo-
rithm for searching a very large database of names.
This enables us to accurately search the relevant
Wikipedia titles for a given user query in a fraction
of a second even on a single processor.

1.1 Our Contributions

Our contributions can be summarized as follows:

1. We introduce a language and orthography in-
dependent geometric representation for single-
word names (Section 3.1).

2. We model the problem of learning the geo-
metric representation of names as a multi-view
learning problem and employ the machinery
of Canonical Correlation Analysis (CCA) to
compute a low-dimensional Euclidean feature
space. We map both foreign single-word names
and English single-word names to points in the
common feature space and the similarity be-
tween two single-word names is an exponen-
tially decaying function of the squared geomet-
ric distance between the corresponding points
(Section 3).

3. We model the problem of searching a database
of names as a geometric nearest neighbor prob-
lem in low-dimensional Euclidean space and
employ the well-known ANN algorithm for
approximate nearest neighbors to search for
the equivalent of a query name in the English
Wikipedia titles (Arya et al., 1998) (Section
3.3).

4. We introduce a simple and efficient algorithm
for computing the similarity scores of multi-
word names from the single-word similarity
scores (Section 3.4).

5. We show experimentally that our approach sig-
nificantly improves the multilingual experience
of ESL/EFL users (Section 4).

2 Related Work

Although approximate similarity search is well-
studied, we are not aware of any non-trivial cross-
language name search algorithm in the litera-
ture. However, several techniques for mining name
transliterations from monolingual and comparable
corpora have been studied (Pasternack and Roth,
2009), (Goldwasser and Roth, 2008), (Klementiev
and Roth, 2006), (Sproat et al., 2006), (Udupa et al.,
2009b). These techniques employ various translit-
eration similarity models. Character unigrams and
bigrams were used as features to learn a discrimi-
native transliteration model and time series similar-
ity was combined with the transliteration similarity
model (Klementiev and Roth, 2006). A generative
transliteration model was proposed and used along
with cross-language information retrieval to mine
named entity transliterations from large comparable
corpora (Udupa et al., 2009b). However, none of
these transliteration similarity models are applicable
for searching very large name databases as they rely
on brute-force search. Not surprisingly, (Pasternack
and Roth, 2009) report that“.. testing [727 single
word English names] with fifty thousand [Russian]
candidates is a large computational hurdle (it takes
our model about seven hours)”.

Several algorithms for string similarity search
have been proposed and applied to various problems
(Jin et al., 2005). None of them are directly applica-
ble to cross-language name search as they are based
on the assumption that the query string shares the
same alphabet as the database strings.

Machine Transliteration has been studied exten-
sively in the context of Machine Translation and
Cross-Language Information Retrieval (Knight and
Graehl, 1998), (Virga and Khudanpur, 2003), (Kuo
et al., 2006), (Sherif and Kondrak, 2007), (Ravi and
Knight, 2009), (Li et al., 2009), (Khapra and Bhat-
tacharyya, 2009). However, Machine Transliteration
followed by string similarity search gives less-than-
satisfactory solution for the cross-language name
search problem as we will see later in Section 4.

CCA was introduced by Hotelling in 1936 and has

494

been applied to various problems including CLIR,
Text Clustering, and Image Retrieval (Hardoon et
al., 2004). Recently, CCA has gained importance
in the Machine Learning community as a technique
for multi-view learning. CCA computes a common
semantic feature space for two-view data and al-
lows users to query a database using either of the
two views. CCA has been used in bilingual lexi-
con extraction from comparable corpora (Gaussier
et al., 2004) and monolingual corpora (Haghighi et
al., 2008).

Nearest neighbor search is a fundamental prob-
lem where challenge is to preprocess a set of points
in some metric space into a geometric data struc-
ture so that given a query point, its k-nearest neigh-
bors in the set can be reported as fast as possi-
ble. It has applications in many areas including pat-
tern recognition and classification, machine learn-
ing, data compression, data mining, document re-
trieval and statistics. The brute-force search algo-
rithm can find the nearest neighbors in running time
proportional to the product of the number of points
and the dimension of the metric space. When the di-
mension of the metric space is small, there exist al-
gorithms which give better running time than brute-
force search. However, the search time grows expo-
nentially with the dimension and none of the algo-
rithms do significantly better than brute-force search
for high-dimensional data. Fortunately, efficient al-
gorithms exist if instead of exact nearest neighbors,
we ask for approximate nearest neighbors (Arya et
al., 1998).

3 Cross-Language Name Search as a
Geometric Search Problem

The key idea behind our approach is the following:
if we can embed names as points (or equivalently
as vectors) in a suitable geometric space, then the
problem of searching a very large database of names
can be casted as a geometric search problem, i.e. one
of finding the nearest neighbors of the query point in
the database.

As illustrative examples, consider the names
StephenandSteven. A simple geometric represen-
tation for these names is the one induced by their
corresponding features:{St, te, ep, ph, he, en} and

{St, te, ev, ve, en} 3. In this representation, each
character bigram constitutes a dimension of the geo-
metric feature space whose coordinate value is the
number of times the bigram appears in the name.
It is possible to find a low-dimensional representa-
tion for the names by using Principal Components
Analysis or any other dimensionality reduction tech-
nique on the bigram feature vectors. However, the
key point to note is that once we have an appropri-
ate geometric representation for names, the similar-
ity between two names can be computed as

Kmono (name1, name2) = e−||φ1−φ2||
2/2ε2 (1)

whereφ1 andφ2 are the feature vectors of the two
names andε is a constant. Armed with the geomet-
ric similarity measure, we can leverage geometric
search techniques for finding names similar to the
query.

In the case of cross-language name search, we
need a feature representation of names that is lan-
guage/script independent. Once we map names in
different languages/scripts to the same feature space,
we can essentially treat similarity search as a geo-
metric search problem.

3.1 Language/Script Independent Geometric
Representation of Names

To obtain language/script independent geometric
representation of names, we start by forming the lan-
guage/script specific feature vectors as described in
Section 3. Given two names,Stephenin Latin script
and-VFPn in Devanagari script, we form the corre-
sponding character bigram feature vectorsφ (using
features{St, te, ep, ph, en}) andψ (using features
{-V, VF, FP, Pn}) respectively. We then map these
vectors to a common geometric feature space using
two linear transformationsA andB:

φ→ ATφ = φs ∈ Rd (2)

ψ → BTψ = ψs ∈ Rd (3)

The vectorsφs and ψs can be viewed as lan-
guage/script independent representation of the
namesStephenand-VFPn.

3Here, we have employed character bigrams as features. In
principle, we can use any suitable set of features includingpho-
netic features extracted from the strings.

495

3.1.1 Cross-Language Similarity of Names

In order to search a database of names in English
when the query is in a native language, say Hindi, we
need to be able to measure the similarity of a name in
Devangari script with names in Latin script. The lan-
guage/script independent representation gives a nat-
ural way to measure the similarity of names across
languages. By embedding the language/script spe-
cific feature vectorsφ andψ in a common feature
space via the projectionsA andB, we can com-
pute the similarity of the corresponding names as
follows:

Kcross (name1, name2) = e−||φs−ψs||2/2ε2 (4)

It is easy to see from Equation 4 that the similarity
score of two names is small when the projections of
the names are negatively correlated.

3.2 Learning Common Feature Space using
CCA

Ideally, the transformationsA andB should be such
that similar names in the two languages are mapped
to close-by points in the common geometric fea-
ture space. It is possible to learn such transforma-
tions from a training set of name transliterations in
the two languages using the well-known multi-view
learning framework of Canonical Correlation Anal-
ysis (Hardoon et al., 2004). By viewing the lan-
guage/script specific feature vectors as two represen-
tations/views of the same semantic object, the entity
whose name is written asStephen in English and as
-VFPn in Hindi, we can employ the machinery of
CCA to find the transformationsA andB.

Given a sample of multivariate data with two
views, CCA finds a linear transformation for each
view such that the correlation between the projec-
tions of the two views is maximized. Consider
a sampleZ = {(xi, yi)}Ni=1 of multivariate data
wherexi ∈ Rm andyi ∈ Rn are two views of the
object. LetX = {xi}Ni=1 andY = {yi}Ni=1. As-
sume thatX andY are centered4, i.e., they have zero
mean. Leta andb be two directions. We can project
X onto the directiona to getU = {ui}Ni=1 where
ui = aTxi. Similarly, we can projectY onto the di-
rectionb to get the projectionsV = {vi}ni=1 where

4If X andY are not centered, they can be centered by sub-
tracting the respective means.

vi = bT yi. The aim of CCA is to find a pair of di-
rections(a, b) such that the projectionsU andV are
maximally correlated. This is achieved by solving
the following optimization problem:

ρ = max(a,b)
< Xa,Xb >

||Xa||||Xb||

= max(a,b)
aTXY T b√

aTXXT a
√
bTY Y T b

The objective function of Equation 5 can be max-
imized by solving the following generalized eigen
value problem (Hardoon et al., 2004):

XY T
(

Y Y T
)−1

Y XTa = λ2XXTa
(

Y Y T
)−1

Y XTa = λb

The subsequent basis vectors can be found
by adding the orthogonality of bases con-
straint to the objective function. Although
the number of basis vectors can be as high as
min{Rank(X), Rank(Y)}, in practice, only the
first few basis vectors are used since the correlation
of the projections is high for these vectors and small
for the remaining vectors.

LetA andB be the firstd > 0 basis vectors com-
puted by CCA.

Figure 1: Projected names (English-Hindi).

3.2.1 Common Geometric Feature Space

As described in Section 3.1, we represent names
as points in the common geometric feature space de-
fined by the projection matricesA andB. Figure 1

496

shows a 2-dimensional common feature space com-
puted by CCA for English (Latin script) and Hindi
(Devanagari script) names. As can be seen from the
figure, names that are transliterations of each other
are mapped to near-by points in the common feature
space.

Figure 2 shows a 2-dimensional common feature
space for English (Latin script) and Russian (Cyrillic
script) names. As can be seen from the figure, names
that are transliterations of each other are mapped to
near-by points in the common feature space.

Figure 2: Projected names (English-Russian).

3.3 Querying the Name Database

Given a databaseD = {ei}Mi=1 of single-word
names in English, we first compute their lan-
guage/script specific feature vectorsφ(i), i =

1, . . . ,M . We then compute the projectionsφ(i)s =
ATφ(i). Thus, we transform the name databaseD

into a set of vectors{φ(1)s , . . . , φ
(M)
s } in Rd.

Given a query nameh in Hindi, we compute its
language/script specific feature vectorψ and project
it on to the common feature space to getψs =
BTψ ∈ Rd. Names similar toh in the databaseD
can be found as solutions of thek-nearest neighbor
problem:

eik = argmaxei∈D−{eij }
k−1
j=1

Kcross (ei, h)

= argmaxei∈D−{eij }
k−1
j=1

e−||φ
(i)
s −ψs||2/2ε2

= argminei∈D−{eij }
k−1
j=1

||φ(i)s − ψs||

Unfortunately, computing exact k-nearest neigh-
bors in dimensions much higher than 8 is difficult
and the best-known methods are only marginally
better than brute-force search (Arya et al., 1998).
Fortunately, there exist very efficient algorithms for
computing approximate nearest neighbors and in
practice they do nearly as well as the exact near-
est neighbors algorithms (Arya et al., 1998). It is
also possible to control the tradeoff between accu-
racy and running time by specifiying a maximum
approximation error bound. We employ the well-
known Approximate Nearest Neighbors (aka ANN)
algorithm by Arya and Mount which is known to do
well in practice whend ≤ 100 (Arya et al., 1998).

3.4 Combining Single-Word Similarities

The approach described in the previous sections
works only for single-word names. We need to com-
bine the similarities at the level of individual words
into a similarity function for multi-word names. To-
wards this end, we form a weighted bipartite graph
from the two multi-word names as follows:

We first tokenize the Hindi query name into sin-
gle word tokens and find the nearest English neigh-
bors for each of these Hindi tokens using the method
outlined section 3.3. We then find out all the En-
glish Words which contain one or more of the En-
glish neighbors thus fetched. LetE = e1e2 . . . eI
be one such multi-word English name andH =
h1h2 . . . hJ be the multi-word Hindi query. We form
a weighted bipartite graphG = (S ∪ T,W) with a
nodesi for the ith wordei in E and nodetj for the
jth wordhj in H. The weight of the edge(si, tj) is
set aswij = Kcross (ei, hj).

Let w be the weight of the maximum weighted
bipartite matching in the graphG. We define the
similarity betweenE andH as follows:

Kcross (E,H) =
w

|I − J |+ 1
. (5)

The numerator of the right hand side of Equation
5 favors name pairs which have a good number of
high quality matches at the individual word level
whereas the denominator penalizes pairs that have
disproportionate lengths.

Note that, in practice, bothI andJ are small and
hence we can find the maximum weighted bipartite
matching very easily. Further, most edge weights in

497

Figure 3: Combining Single-Word Similarities.

the bipartite graph are negligibly small. Therefore,
even a greedy matching algorithm suffices in prac-
tice.

4 Experiments and Results

In the remainder of this section, we refer to our sys-
tem by GEOM-SEARCH.

4.1 Experimental Setup

We tested our cross language name search system
using six native languages,viz., Russian, Hebrew,
Hindi, Kannada, Tamil and Bangla. For each of
these languages, we created a test set consisting of
1000 multi-word name queries and found manually
the most relevant Wikipedia article for each query in
the test set. The Wikipedia articles thus found and
all the redirect titles that linked to them formed the
gold standard for evaluating the performance of our
system.

In order to compare the performance of GEOM-
SEARCH with a reasonable baseline, we imple-
mented the following baseline: We used a state-of-
the art Machine Transliteration system to generate
the best transliteration of each of the queries. We
used the edit distance between the transliteration and
the single-word English name as the similarity score.
We combined single word similarities using the ap-
proach described in Section 3.4. We refer to this
baseline by TRANS-SEARCH.

Note that several English Wikipedia names some-
times get the same score for a query. Therefore,
we used a tie-aware mean-reciprocal rank measure
to evaluate the performance (McSherry and Najork,
2008).

4.2 GEOM-SEARCH

The training and search procedure employed by
GEOM-SEARCH are described below.

4.2.1 CCA Training

We learnt the linear transformationsA andB that
project the language/script specific feature vectors to
the common feature space using the approach dis-
cussed in Section 3.2. The learning algorithm re-
quires a training set consisting of pairs of single-
word names in English and the respective native lan-
guage. We used approximately15, 000 name pairs
for each native language.

A key parameter in CCA training is the number of
dimensions of the common feature space. We found
the optimal number of dimensions using a tuning set
consisting of1, 000 correct name pairs and1, 000
incorrect name pairs for each native language. We
found thatd = 50 is a very good choice for each
native language.

Another key aspect of training is the choice of
language/script specific features. For the six lan-
guages we experimented with and also for English,
we found that character bigrams formed a good set
of features. We note that for languages such as Chi-
nese, Japanese, and Korean, unigrams are the best
choice. Also, for these languages, it may help to
syllabify the English name.

4.2.2 Search

As a pre-processing step, we extracted a list of 1.3
million unique words from the Wikipedia titles. We
computed the language/script specific feature vector
for each word in this list and projected the vector to
the common feature space as described in Section
3.1. The low-dimensional embeddings thus com-
puted formed the input to the ANN algorithm.

We tokenized each query in the native language
into constituent words. For each constituent, we first
computed the language/script specific feature vector,
projected it to the common feature space, and found
the k-nearest neighbors using the ANN algorithm.
We usedk=100 for all our experiments.

After finding the nearest neighbors and the corre-
sponding similarity scores, we combined the scores
using the approach described in Section 3.4.

4.3 TRANS-SEARCH

The training and search procedure employed by
TRANS-SEARCH are described below.

498

Figure 4: Top scoring English Wikipedia page retrieved by GEOM-SEARCH

4.3.1 Transliteration Training

We used a state-of-the-art CRF-based translitera-
tion technique for transliterating the native language
names (Khapra and Bhattacharyya, 2009). We used
CRF++, an open-source CRF training tool, to train
the transliteration system. We used exactly the
same features and parameter settings as described in
(Khapra and Bhattacharyya, 2009). As in the case of
CCA, we use around15, 000 single word name pairs
in the training.

4.3.2 Search

The preprocessing step for TRANS-SEARCH is
the same as that for GEOM-SEARCH. We translit-
erated each constituent of the query into English and
find all single-word English names that are at an edit
distance of at most 3. We computed the similarity
score as described in Section 3.4.

4.4 Evaluation

We evaluated the performance of GEOM-SEARCH
and TRANS-SEARCH using a tie-aware mean re-
ciprocal rank (MRR). Table 4 compares the average
time per query and the MRR of the two systems.

GEOM-SEARCH performed significantly better
than the transliteration based baseline system for all
the six languages. On an average, the relevant En-
glish Wikipedia page was found in the top 2 re-
sults produced by GEOM-SEARCH for all the six
native languages. Clearly, this shows that GEOM-
SEARCH is highly effective as a cross-langauge
name search system. The good results also validate
our claim that cross-language name search can im-

Table 4: MRR and average time per query (in seconds)
for the two systems.

Language GEOM TRANS

Time MRR Time MRR

Hin 0.51 0.686 2.39 0.485
Tam 0.23 0.494 2.16 0.291
Kan 1.08 0.689 2.17 0.522
Ben 1.30 0.495 – –
Rus 0.15 0.563 1.65 0.476
Heb 0.65 0.723 – –

prove the multi-lingual user experience of ESL/EFL
users.

5 Conclusions

GEOM-SEARCH, a geometry-based cross-
language name search system for Wikipedia,
improves the multilingual experience of ESL/EFL
users of Wikipedia by allowing them to formulate
queries in their native languages. Further, it is easy
to integrate a Machine Translation system with
GEOM-SEARCH. Such a system would find the
relevant English Wikipedia page for a query using
GEOM-SEARCH and then translate the relevant
Wikipedia pages to the native language using the
Machine Translation system.

6 Acknowledgement

We thank Jagadeesh Jagarlamudi and Shaishav Ku-
mar for their help.

499

References

Farooq Ahmad and Grzegorz Kondrak. 2005. Learn-
ing a spelling error model from search query logs. In
HLT ’05: Proceedings of the conference on Human
Language Technology and Empirical Methods in Nat-
ural Language Processing, pages 955–962, Morris-
town, NJ, USA. Association for Computational Lin-
guistics.

Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth
Silverman, and Angela Y. Wu. 1998. An optimal
algorithm for approximate nearest neighbor searching
fixed dimensions.J. ACM, 45(6):891–923.

Éric Gaussier, Jean-Michel Renders, Irina Matveeva,
Cyril Goutte, and Hervé Déjean. 2004. A geometric
view on bilingual lexicon extraction from comparable
corpora. InACL, pages 526–533.

Dan Goldwasser and Dan Roth. 2008. Transliteration as
constrained optimization. InEMNLP, pages 353–362.

Aria Haghighi, Percy Liang, Taylor Berg-Kirkpatrick,
and Dan Klein. 2008. Learning bilingual lexicons
from monolingual corpora. InProceedings of ACL-
08: HLT, pages 771–779, Columbus, Ohio, June. As-
sociation for Computational Linguistics.

David R. Hardoon, Sándor Szedmák, and John Shawe-
Taylor. 2004. Canonical correlation analysis: An
overview with application to learning methods.Neu-
ral Computation, 16(12):2639–2664.

Liang Jin, Nick Koudas, Chen Li, and Anthony K. H.
Tung. 2005. Indexing mixed types for approximate
retrieval. InVLDB, pages 793–804.

Mitesh Khapra and Pushpak Bhattacharyya. 2009. Im-
proving transliteration accuracy using word-origin de-
tection and lexicon lookup. InProceedings of the 2009
Named Entities Workshop: Shared Task on Translit-
eration (NEWS 2009). Association for Computational
Linguistics.

Alexandre Klementiev and Dan Roth. 2006. Named
entity transliteration and discovery from multilingual
comparable corpora. InHLT-NAACL.

Kevin Knight and Jonathan Graehl. 1998. Machine
transliteration.Computational Linguistics, 24(4):599–
612.

Jin-Shea Kuo, Haizhou Li, and Ying-Kuei Yang. 2006.
Learning transliteration lexicons from the web. In
ACL.

John D. Lafferty, Andrew McCallum, and Fernando C. N.
Pereira. 2001. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data.
In ICML, pages 282–289.

Haizhou Li, A Kumaran, Vladimir Pervouchine, and
Min Zhang. 2009. Report of news 2009 machine
transliteration shared task. InProceedings of the 2009

Named Entities Workshop: Shared Task on Translit-
eration (NEWS 2009). Association for Computational
Linguistics.

Frank McSherry and Marc Najork. 2008. Computing
information retrieval performance measures efficiently
in the presence of tied scores. InECIR, pages 414–
421.

Jeff Pasternack and Dan Roth. 2009. Learning better
transliterations. InCIKM, pages 177–186.

Sujith Ravi and Kevin Knight. 2009. Learning phoneme
mappings for transliteration without parallel data. In
NAACL-HLT.

Hanan Samet. 2006.Foundations of Multidimensional
and Metric Data Structures (The Morgan Kaufmann
Series in Computer Graphics). Morgan Kaufmann,
August.

Tarek Sherif and Grzegorz Kondrak. 2007. Substring-
based transliteration. InACL.

Richard Sproat, Tao Tao, and ChengXiang Zhai. 2006.
Named entity transliteration with comparable corpora.
In ACL.

Raghavendra Udupa, K. Saravanan, Anton Bakalov, and
Abhijit Bhole. 2009a. “they are out there, if you
know where to look”: Mining transliterations of oov
query terms for cross-language information retrieval.
In ECIR, pages 437–448.

Raghavendra Udupa, K. Saravanan, A. Kumaran, and Ja-
gadeesh Jagarlamudi. 2009b. Mint: A method for ef-
fective and scalable mining of named entity transliter-
ations from large comparable corpora. InEACL, pages
799–807.

Paola Virga and Sanjeev Khudanpur. 2003. Transliter-
ation of proper names in cross-language applications.
In SIGIR, pages 365–366.

500

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 501–509,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Learning Words and Their Meanings from Unsegmented Child-directed
Speech

Bevan K. Jones & Mark Johnson
Dept of Cognitive and Linguistic Sciences

Brown University
Providence, RI 02912, USA

{Bevan Jones,Mark Johnson}@Brown.edu

Michael C. Frank
Dept of Brain and Cognitive Science

Massachusetts Institute of Technology
Cambridge, MA 02139, USA

mcfrank@mit.edu

Abstract

Most work on language acquisition treats
word segmentation—the identification of lin-
guistic segments from continuous speech—
and word learning—the mapping of those seg-
ments to meanings—as separate problems.
These two abilities develop in parallel, how-
ever, raising the question of whether they
might interact. To explore the question, we
present a new Bayesian segmentation model
that incorporates aspects of word learning and
compare it to a model that ignores word mean-
ings. The model that learns word meanings
proposes more adult-like segmentations for
the meaning-bearing words. This result sug-
gests that the non-linguistic context may sup-
ply important information for learning word
segmentations as well as word meanings.

1 Introduction

Acquiring a language entails mastering many learn-
ing tasks simultaneously, including identifying
where words begin and end in continuous speech
and learning meanings for those words. It is com-
mon to treat these tasks as separate, sequential pro-
cesses, where segmentation is a prerequisite to word
learning but otherwise there are few if any depen-
dencies. The earliest evidence of segmentation,
however, is for words bordering a child’s own name
(Bortfeld et al., 2005). In addition, infants begin
learning their first words before they achieve adult-
level competence in segmentation. These two pieces
of evidence raise the question of whether the tasks of
meaning learning and segmentation might mutually
inform one another.

To explore this question we present a joint model
that simultaneously identifies word boundaries and
attempts to associate meanings with words. In do-
ing so we make two contributions. First, by model-
ing the two levels of structure in parallel we simu-
late a more realistic situation. Second, a joint model
allows us to explore possible synergies and interac-
tions. We find evidence that our joint model per-
forms better on a segmentation task than an alterna-
tive model that does not learn word meanings.

The picture in Figure 1 depicts a language learn-
ing situation from our corpus (originally from Fer-
nald and Morikawa, 1993; recoded in Frank et al.,
2009) where a mother talks while playing with var-
ious toys. Setting down the dog and picking up the
hand puppet of a pig, she asks, “Is that the pig?”
Starting out, a young learner not only does not know
that the word “pig” refers to the puppet but does not
even know that “pig” is a word at all. Our model
simulates the learning task, taking as input the un-
segmented phonemic representation of the speech
along with the set of objects in the non-linguistic
context as shown in Figure 1 (a), and infers both a
segmentation and a word-object mapping as in Fig-
ure 1 (b).

One can formulate the word learning task as
that of finding a reasonably small set of reusable
word-meaning pairs consistent with the underlying
communicative intent. Infant directed speech often
refers to objects in the immediate environment, and
early word learning seems to involve associating fre-
quently co-occurring word-object pairs (Akhtar and
Montague, 1999; Markman, 1990). Several compu-
tational models are based on this idea that a word

501

Figure 1: (a) The input to our system for the utterance
“Is that the pig?” consists of an unsegmented sequence
of phonemes and the set of objects representing the non-
linguistic context. These objects were manually iden-
tified by inspecting the associated video, a frame from
which is shown above. (b) The gold-standard segmenta-
tion and word-object assignments of the same utterance,
against which the output of our system is evaluated (all
words except “pIg” are mapped to a special “null” object,
as explained in the text).

that frequently occurs in the presence of an object
and not so frequently in its absence is likely to re-
fer to that object (Frank et al., 2009a; Siskind, 1996;
Yu and Ballard, 2007). Importantly, all these models
assume words are pre-segmented in the input.

While the word segmentation task relates less
clearly to the communicative content, it can be for-
mulated according to a similar objective, that of at-
tempting to explain the sound sequences in the input
in terms of some reasonably small set of reusable
units, or words. Computational models have suc-
cessfully addressed the problem in much this way
(Johnson and Goldwater, 2009; Goldwater et al.,
2009; Brent, 1999), and the general approach is con-
sistent with experimental observations that humans
are sensitive to statistics of sound sequences (Saffran
et al., 1996; Frank et al., 2007).

The two tasks can be integrated in a relatively
seamless way, since, as we have just formulated
them, they have a common objective, that of finding
a minimal, consistent set of reusable units. However,
the two deal with different types of information with

different dependencies. The basic idea is that learn-
ing a vocabulary that both meets the constraints of
the word-learning task and is consistent with the ob-
jective of the segmentation task can yield a better
segmentation. That is, we hope to find a synergy in
the joint inference of meaning and segmentation.

Note that to the best of our knowledge there is
very little computational work that combines word
form and word meaning learning (Frank et al. 2006
takes a first step but their model is applicable only
to small artificial languages). Frank et al. (2009a)
and Regier (2003) review pure word learning mod-
els and, in addition to the papers we have already
cited, Brent (1999) presents a fairly comprehensive
review of previous pure segmentation models. How-
ever, none of the models reviewed make any attempt
to jointly address the two problems. Similarly, in the
behavioral literature on development, we are aware
of only one segmentation study (Graf-Estes et al.,
2007) that involves non-linguistic context, though
this study treats the two tasks sequentially rather
than jointly.

We now describe our model and inference proce-
dure and follow with evaluation and discussion.

2 Model Definition

Cross-situational meaning learning in our joint word
learning and segmenting model is inspired by the
model of Frank et al. (2009a). Our model can
be viewed as a variant of the Latent Dirichlet Al-
location (LDA) topic model of Blei et al. (2003),
where topics are drawn from the objects in the non-
linguistic context. The model associates each utter-
ance with a single referent object, the topic, and ev-
ery word in the utterance is either generated from a
distribution over words associated with that object
or else from a distribution associated with a special
“null” object shared by all utterances. Note that in
this paper we use “topic” to denote the referent ob-
ject of an utterance, otherwise we depart from topic
modeling convention and use the term “object” in-
stead.

Segmentation is based on the unigram model pro-
posed by Brent (1999) and reformulated by Goldwa-
ter et al. (2009) in terms of a Dirichlet process. Since
both LDA and the unigram segmenter are based on
unigram distributions it is relatively straightforward

502

Figure 2: Topical Unigram Model:Oj is the set of objects
in the non-linguistic context of thejth utterance,zj is the
utterance topic,wji is theith word of the utterance,xji is
the category of the word (referring or non-referring), and
the other variables are distribution parameters.

to integrate the two to simultaneously infer word
boundaries and word-object associations.

Figure 2 illustrates a slightly simplified form of
the model, and the the relevant distributions are as
follows:

z|O ∼ Uniform(O)

Gz|z, α0, α1, P0 ∼

{

DP(α1, P0) if z 6= 0

DP(α0, P0) otherwise

π ∼ Beta(1, 1)

x|π ∼ Bernoulli(π)

w|G, z, x ∼

{

Gz if x = 1

G0 if x = 0

Note thatUniform(O) denotes a discrete uniform
distribution over the elements of the setO. P0 is
described later.

Briefly, each utterance has a single topiczj , drawn
from the objects in the non-linguistic contextOj ,
and then for each wordwji we first flip a coinxji

to determine if it refers to the topic or not. Then, de-
pending onxji the word is either drawn from a dis-
tribution specific to the topic (xji = 1) or from a dis-
tribution associated with the “null” object (xji = 0).
In slightly greater detail but still glossing over the

details of how the multinomial parameters are gen-
erated, the generative story proceeds as follows:

1. For each utterance, indexed byj

2. (a) Pick a single topiczj uniformly from the set
of objects in the environmentOj

(b) For each wordwji of the utterance

(c) i. Determine if it refers tozj or not by set-
tingxji to 1 (referring) with probabilityπ,
and to0 (non-referring) otherwise.

ii. if xji is1, drawwji from the topic specific
distribution over wordsGzj

.
iii. otherwise, drawwji fromG0, the distribu-

tion over words associated with the “null”
object.

This generative story is a simplification since it
does not describe how we model utterance bound-
aries. It is important for segmentation purposes
to explicitly model utterance boundaries since, un-
like utterance-internal word boundaries, we as-
sume utterance boundaries are observed. Thus,
the story is complicated by the fact that there is
a chance each time we generate a word that we
also generate an utterance boundary. The choice of
whether to terminate the utterance or not is captured
by a Bernoulli(γ) random variable$ji indicating
whether theith word was the last word of thejth

utterance.

γ ∼ Beta(1, 1)

$|γ ∼ Bernoulli(γ)

The Gz multinomial parameters are generated
from a Dirichlet process with base distribution over
words, P0, which describes how new word types
are generated from their constituent phonemes.
Phonemes are generated sequentially, i.i.d. uni-
formly from m phonemic types. In addition, there
is a probabilityp# of generating a word boundary.

P0(w) = (1− p#)|w|−1p#
1

m|w|

The concentration parametersα0 andα1 also play
a critical role in the generation of words and word
types. Any given word has a certain probability
of either being produced from the set of previously
seen word types, or from an entirely new one. The

503

greater the concentration parameter, the more likely
the model is to appeal to the base distributionP0 to
introduce a new word type.

Like Frank et al. (2009a), we distinguish between
two coarse grammatical categories, referring and
non-referring. Referring words are generated by the
topic, while non-referring words are drawn fromG0,
a distribution associated with the “null” object. The
distinction ensures sparse word-object maps that
obey the principle of mutual exclusion. Otherwise
all words in the utterance would be associated with
the topic object, resulting in a very large set of words
for each object that is very likely to overlap with the
words for other objects. As a further bias toward
a small lexicon, we employ different concentration
parameters (α0 andα1) for the non-referring and re-
ferring words, using a much smaller value for the
referring words. Intuitively, there should be a rela-
tively small prior probability of introducing a new
word-object pair, corresponding to a smallα1 value.
On the other hand, most other words don’t refer to
the topic object (or any other object for that matter),
corresponding to a much largerα0 value.

Note that this topical unigram model is a straight-
forward generalization of the unigram segmentation
model (Goldwater et al., 2009) to the case of multi-
ple topics. In fact, if all words were assumed to refer
to the same object (or to no object at all) the models
would be identical.

Unlike LDA, each “document” has only one topic,
which is necessitated by the fact that in our model
documents correspond single utterances. The ut-
terances in our corpus of child directed speech are
often only four or five words long, whereas the
general LDA model assumes documents are much
larger. Thus, there may not be enough words to in-
fer a useful utterance specific distribution over top-
ics. Consequently, rather than inferring a separate
topic distribution for each utterance, we simply as-
sume a uniform distribution over objects in the non-
linguistic context. In effect, we rely entirely on the
non-linguistic context and word-object associations
to infer topics. Though necessitated by data sparsity
issues, we also note that it is very rare in our cor-
pus for utterances to refer to more than one object in
the non-linguistic context, so the choice of a single
topic may also be a more accurate model. In fact,
even with multi-sentence documents, LDA may per-

form better if only one topic is assumed per sentence
(Gruber et al., 2007).

3 Inference

We use a collapsed Gibbs sampling procedure, in-
tegrating over all possibleGz, π, andγ values and
then iteratively sample values for each variable con-
ditioned on the current state of all other variables.
We visit each utterance once per iteration, sample a
topic, and then visit each possible word boundary lo-
cation to sample the boundary and word categories
simultaneously according to their joint probability.

A single topic is sampled for each utterance, con-
ditioned on the words and their current determina-
tions as referring or non-referring. Sincezj is drawn
from a uniform distribution, this probability is sim-
ply proportionate to the conditional probability of
the words givenzj and thexji variables.

P (zj |wj,xj,h
−j) ∝

Γ(
∑Wj

w n
(h−)
w,zj

+ α1P0(w))

Γ(
∑Wj

w n
(h)
w,zj

+ α1P0(w))

·

Wj
∏

w

Γ(n
(h)
w,zj

+ α1P0(w))

Γ(n
(h−)
w,zj

+ α1P0(w))

Here,P (zj |wj,xj,h
−j) is the probability of topic

zj given the current hypothesish for all variables ex-

cluding those for the current utterance. Also,n
(h−j)
w,zj

is the count of occurrences of word typew that refer
to topiczj among the current variable assignments,
andWj is the set of word types appearing in utter-
ancej. The vectors of word and category variables
in utterancej are represented aswj andxj, respec-
tively. Note that only referring words have any bear-
ing on the appropriate selection ofzj and so all fac-
tors involving only non-referring words are absorbed
by the constant of proportionality.

The word categories can be sampled conditioned
on the current word boundary states according to the

following conditional probability, wheren(h−ji)
xji

is
the number of words categorized according to label

504

xji over the entire corpus excluding wordwji.

P (xji|wji, zj ,h
−ji) ∝ P (wji|zj , xji,h

−ji)

·P (xji|h
−ji)

=
n

(h−ji)
wji,xjizj

+ αxji
P0(wji)

n
(h−ji)
•,xjizj

+ αxji

·
n

(h−ji)
xji

+ 1

n
(h−ji)
• + 2

(1)

In practice, however, we actually sample the word
category variables jointly with the boundary states,
using a scheme similar to that outlined in Gold-
water et al. (2009). We visit each possible word
boundary location (any point between two consec-
utive phonemes) and compute probabilities for the
hypotheses for which the phonemic environment
makes up either one word or two. As illustrated be-
low there are two sets of cases: those where we treat
the segment as a single word, and those where we
treat it as two words.

x1 x2 x3

. . .#w1#. . . vs. . . .#w2#w3#. . .

↑ ↑

The probabilities of the hypotheses can be derived
by application of equation 1. Since thex variables
can each describe two possible events, there are a to-
tal of six different cases to consider for each bound-
ary assignment: two cases without and four with a
word boundary.

The probability of each of the two cases without
a word boundary can be computed as follows:

P (w1, x1|z,h−) =
n

(h−)
w1,x1z + αx1

P0(w1)

n
(h−)
•,x1z + αx1

·
n

(h−)
x1

+ 1

n
(h−)
• + 2

·
n

(h−)
$1

+ 1

n
(h−)
• + 2

Here h
− signifies the current hypothesis for all

variables excluding those for the current segment

andn
(h−)
$1

is the count forh− of either utterance fi-
nal words ifw1 is utterance final or non-utterance
final words ifw1 is also not utterance final.

In the four cases with a word boundary, we have
two words and two categories to sample.

P (w2, x2, w3, x3|z,h−) =
n

(h−)
w2,x2z + αx2

P0(w2)

n
(h−)
•,x2z + αx2

·
n

(h−)
x2

+ 1

n
(h−)
• + 2

·
n

(h−)
$2=0 + 1

n
(h−)
• + 2

·
n

(h−)
w3,x3z + δx2

(x3)δw2
(w3) + αx3

P0(w3)

n
(h−)
•,x3z + δx2

(x3) + αx3

·
n

(h−)
x3

+ δx2
(x3) + 1

n
(h−)
• + 3

·
n

(h−)
$3

+ δ$2
($3) + 1

n
(h−)
• + 3

Hereδx(y) is 1 if x = y and0 otherwise.

4 Results & Model Comparisons

4.1 Corpus

Our training corpus (Fernald and Morikawa, 1993;
Frank et al., 2009b) consists of about 22,000 words
and 5,600 utterances. Video recordings consisting
of mother-child play over pairs of toys were ortho-
graphically transcribed, and each utterance was an-
notated with the set of objects present in the non-
linguistic context. The object referred to by the ut-
terance, if any, was noted, as described in Frank et al.
(2009b). We used the VoxForge dictionary to map
orthographic words to phoneme sequences in a pro-
cess similar to that described in Brent (1999).

Figure 1 (a) presents an example of the coding
of phonemic transcription and non-linguistic context
for a single utterance. The input to the system con-
sists solely of the phonemic transcription and the ob-
jects in the non-linguistic context.

4.2 Evaluation

We ran the sampler ten times for 100,000 iterations
with parameter settings ofα1 = 0.01, α0 = 20, and
p# = 0.5, keeping only the final sample for evalu-
ation. We defined the word-object pairs for a sam-
ple as the words in the referring category that were
paired at least once with a particular topic. These
pairs were then compared against a gold standard
set of word-object pairs, while segmentation perfor-
mance was evaluated by comparing the final bound-
ary assignments against the gold standard segmenta-
tion.

505

4.2.1 Word Learning

To explore the contribution of word boundaries
to the joint word learning and segmenting task, we
compare our full joint model against a variant that
only infers topics, using the gold standard segmen-
tation as input. In this way we also reproduce the
usual assumption of a sequential relationship be-
tween segmentation and word learning and test the
necessity of the simplifying assumption. The re-
sults are shown in Table 2. We compare them with
three different metric types: topic accuracy; preci-
sion, recall, and F-score of the word-object pairs;
and Kullback-Liebler (KL) divergence.

First, treating utterances with no referring words
as though they have no topic, we compute the ac-
curacy of the inferred topics. Note that we don’t
report accuracy for the the variant with no non-
linguistic context, since in this case the objects are
interchangeable, and we have a problem identifying
which cluster corresponds to which topic. Table 2
shows that the joint segmentation and word learning
model gets the topic right for 81% of the utterances.
The variant that assumes pre-segmented input does
comparably well with an accuracy of 79%. Surpris-
ingly, it seems that knowing the gold segmentation
doesn’t add very much, at least for the topic infer-
ence task.

To evaluate how well we discovered the word-
object map, we manually compiled a list of all the
nouns in the corpus that named one of the 30 ob-
jects. We used this set of nouns, cross-referenced
with their topic objects, as a gold standard set of
word-object pairs. By counting the co-occurrences,
we also compute a gold standard probability distri-
bution for the words given the topic,P (w|z, x = 1).

Precision, recall and F-score are computed as per
Frank et al. (2009a). In particular, precision is the
fraction of gold pairs among the sampled set and re-
call is the fraction of sampled pairs among the gold
standard pairs.

p =
|Sampled∩ Gold|

|Sampled|
, r =

|Sampled∩ Gold|
|Gold|

KL divergence is a way of measuring the differ-
ence between distributions. Small numbers gener-
ally indicate a close match and is zero only when
the two are equal. Using the empirical distribution

Object Words
BOX thebox box
BRUSH brush
BUNNY rabbit Rosie
BUS bus
CAR car thecar
CHEESE cheese
DOG thedoggy doggy
DOLL doll thedoll yeah benice
DOUGH dough
ERNIE Ernie

Table 1: Subset of an inferred word-object mapping. For
clarity, the proposed words have been converted to stan-
dard English orthography.

p r f KL acc
Joint 0.21 0.45 0.28 2.78 0.81
Gold Seg 0.21 0.60 0.31 1.82 0.79

Table 2: Word Learning Performance. Comparing
precision, recall, and F-score of word-object pairs,
DKL(P (w, z)||Q(w, z)), and accuracy of utterance top-
ics for the full joint model and a variant that only infers
meanings given a gold standard segmentation.

over gold topicsP (z), we use the standard formula
for KL divergence to compare the gold standard dis-
tribution P against the inferred distributionQ. I.e.,
we computeDKL(P (w, z)||Q(w, z)).

The model learns fairly meaningful word-object
associations; results are shown in Table 2. As in the
case of topic accuracy, the joint and word learning
only variants perform similarly, this time with some-
what better performance for the easier task with an
F-score and KL divergence of 0.31 and 1.82 vs. 0.28
and 2.78 for the joint task.

Table 1 illustrates the sort of word-object pairs
the model discovers. As can be seen, many of the
errors are due to the segmentation, usually under-
segmentation errors where it segments two words as
one. This is a general problem with the unigram seg-
menter on which our model is based (Goldwater et
al., 2009). Yet, even though these segmentation er-
rors are also counted as word learning errors, they
are often still meaningful in the sense that the true
referring word is a subsequence.

So, word segmentation has an impact on word
learning. Yet, the joint model still tends to uncover
reasonable meanings. The next question is whether
these meanings have an impact on the segmentation.

506

NoCon Random Joint
Referring Nouns 0.36 0.35 0.50
Neighbors 0.33 0.33 0.37
Utt Final Nouns 0.36 0.36 0.52
Entire Corpus 0.53 0.53 0.54

Table 3: Segmentation performance. F-score for three
subsets and the full corpus for three variants: the model
without non-linguistic context, the model with random
topics, and the full joint model.

4.2.2 Word Segmentation

To measure the impact of word learning on seg-
mentation, we again compare the model on the full
joint task against two other variants: one where top-
ics are randomly selected, and one that ignores the
non-linguistic context. For the random topics vari-
ant, we choose each topic during initialization ac-
cording to the empirical distribution over gold topics
and treat these topic assignments as observed vari-
ables for subsequent iterations. The variant that ig-
nores non-linguistic context draws topics uniformly
from the entire set of objects ever discussed in the
corpus, another test of the contribution of the non-
linguistic context to segmentation. We report token
F-score, computed as per Goldwater et al. (2009),
where any segment proposed by the model is a true
positive only if it matches the gold segmentation and
is a false positive otherwise. Any segment in the
gold data not found by the model is a false negative.

Table 3 shows the segmentation performance for
various subsets as well as for the entire corpus. Be-
cause we are primarily interested in synergies be-
tween word learning and segmentation, we focus on
the words most directly impacted by the meanings:
gold standard referring nouns and their neighboring
words.

The model behaves the same with randomized
topics as without context; it learns none of the gold
standard pairs (no matter how we identify clusters
with topics for the contextless case). On all subsets,
the full joint model outperforms the other two vari-
ants. In particular, the greatest gain is for the refer-
ring nouns, with a 21% reduction in error. Also, sim-
ilar to the findings of Bortfeld et al. (2005) regarding
6 month olds’ abilities to segment words adjoining a
familiar name, we also find that neighboring words
benefit from sharing a word boundary with a learned

word.
The model performs exceptionally well on utter-

ance final referring nouns, with a 24% reduction
in error. This may explain certain psycholinguistic
observations. Frank et al. (2006) performed an ar-
tificial language experiment with humans subjects
demonstrating that adults were able to learn words
at the same time as they learned to segment the lan-
guage. However, subjects did much better on a word
learning task when the meaning bearing words were
consistently placed at the end of utterances. There
are several possible reasons why this might have
been the case. For instance, it is common in English
for the object noun to occur at the end of the sen-
tence, and since the subjects were all English speak-
ers, they may have found it easier to learn an artifi-
cial language with a similar pattern. However, our
model predicts another simple possibility: the seg-
mentation task is easier at the end because one of
the two word boundaries is already known (the ut-
terance boundary itself).

4.3 Discussion

The word learning model generally prefers a very
sparse word-to-object map. This is enforced by us-
ing a concentration parameterα1 that is quite small
relative to theα0 parameter, and it biases the model
so that the distributions over referring words are
very different from that over non-referring words. A
small concentration parameter biases the estimator
to prefer a small set of word types. In contrast, the
relatively large concentration parameter for the non-
referring words tends to result in most of the words
receiving highest probability as non-referring words.
The model thus categorizes words accordingly. It is
in part due to this tendency towards sparse word-
object maps that the model enforces mutual exclu-
sivity, a phenomenon well documented among natu-
ral word learners (Markman, 1990).

Aside from contributing to mutual exclusivity
and specialization among the topical word distri-
butions, the small concentration parameter also has
important implications for the segmentation task.
A very small value forα1 discourages the learner
from acquiring more word types for each mean-
ing than absolutely necessary, thereby forcing the
segmenter to use fewer types to explain the se-
quence of phonemes. A model without any notion

507

of meaning cannot maintain separate distributions
for different topics, and must in some sense treat all
words as non-referring. A segmenting model with-
out meanings cannot share the word learner’s reluc-
tance to propose new meaning-bearing word types
and might propose three separate types for “your
book”, “a book”, and “the book”. However, with
a small enough prior on new referring word types,
the word learner that discovers a common refer-
ent for all three sequences and, preferring fewer re-
ferring word types, is more likely to discover the
common subsequence “book”. With a single word-
object pair (“book”, BOOK), the word learner could
explain reference for all three sequences instead of
using the three separate pairs (“yourbook”, BOOK),
(“abook”, BOOK), and (“thebook”, BOOK).

While relying on non-linguistic context helps seg-
ment the meaning-bearing words, the overall im-
provement is small in our current corpus. One rea-
son for this small improvement was that only 9%
of the tokens in the corpus were referring words.
In corpora containing a larger variety of objects –
and in cases where sub- and super-ordinate labels
like “eyes” and “ears” are coded – this percentage is
likely to be much higher, leading to a greater boost
in overall segmentation performance.

We should acknowledge that the decisions en-
tailed in enriching the annotations are neither triv-
ial nor without theoretic implication, however. It is
not immediately obvious how to represent the non-
linguistic correlates of verbs, for instance. Devel-
opmentally, verbs are typically acquired much later
than nouns, and it has been argued that this may be
due to the difficulty of producing a cognitive rep-
resentation of the associated meaning (Gentner and
Boroditsky, 2001). Even among concrete nouns, not
all are equal. Children tend to have a bias toward
whole objects when mapping novel words to their
non-linguistic counterparts (Markman, 1990). De-
cisions about more sophisticated encoding of non-
linguistic information may thus require more knowl-
edge about children’s representations of the world
around them

5 Conclusion and Future Work

We find (1) that it is possible to jointly infer both
meanings and a segmentation in a fully unsupervised

way and (2) that doing so improves the segmenta-
tion performance of our model. In particular, we
found that although the word learning side suffered
from segmentation errors, and performed worse than
a model that learned from a gold standard segmen-
tation, the loss was only slight. On the other hand,
segmentation performance for the meaning bearing
words improved a great deal. The first result sug-
gests that is not necessary to assume fully segmented
input in order to learn word meanings, and that the
segmentation and word learning tasks can be effec-
tively modeled in parallel, allowing us to explore po-
tential developmental interactions. The second re-
sult suggests that synergies do actually exist and ar-
gue not only that we can model the two as parallel
processes, but that doing so could prove fruitful.

Our model is relatively simple both in terms of
word learning and in terms of word segmentation.
For instance, social cues and shared attention, or dis-
course effects, might all play a role (Frank et al.,
2009b). Shared features or other relationships can
also potentially impact how quickly one might gen-
eralize a label to multiple instances (Tenenbaum and
Xu, 2000). There are many ways to elaborate on the
word learning task, with additional potential syner-
gistic implications.

We might also elaborate the linguistic structures
we incorporate into the word learning model. For
instance, Johnson (2008) explores synergies in syl-
lable and morphological structures in word segmen-
tation. Aspects of linguistic structure, such as mor-
phology, may contribute to word meaning learning
beyond its contribution to word segmentation per-
formance.

Acknowledgments

This research was funded by NSF awards 0544127
and 0631667 to Mark Johnson and by NSF DDRIG
0746251 to Michael C. Frank. We would also like
to thank Anne Fernald for providing the corpus and
Maeve Cullinane for help in coding it.

References

Nameera Akhtar and Lisa Montague. 1999. Early lexi-
cal acquisition: The role of cross-situational learning.
First Language, 19(57 Pt 3):347–358.

508

David Blei, Andrew Ng, and Michael Jordan. 2003. La-
tent dirichlet allocation.Journal of Machine Learning
Research, 3:993–1022.

Heather Bortfeld, James L. Morgan, Roberta Michnick
Golinkoff, and Karen Rathbun. 2005. Mommy
and me: Familiar names help launch babies into
speechstream segmentation.Psychological Science,
16(4):298–304.

Michael R. Brent. 1999. An efficient, probabilistically
sound algorithm for segmentation and word discovery.
Machine Learning, 34:71–105.

Anne Fernald and Hiromi Morikawa. 1993. Common
themes and cultural variations in japanese and ameri-
can mothers’ speech to infants. InChild Development,
number 3, pages 637–656, June.

Michael C. Frank, Vikash Mansinghka, Edward Gibson,
and Joshua B. Tenenbaum. 2006. Word segmentation
as word learning: Integrating stress and meaning with
distributional cues. InProceedings of the 31st Annual
Boston University Conference on Language Develop-
ment.

Michael C. Frank, Sharon Goldwater, Vikash Mans-
inghka, Tom Griffiths, and Joshua Tenenbaum. 2007.
Modeling human performance in statistical word seg-
mentation.Proceedings of the 29th Annual Meeting of
the Cognitive Science Society, pages 281–286.

Michael C. Frank, Noah D. Goodman, and Joshua B.
Tenenbaum. 2009a. Using speakers’ referential inten-
tions to model early cross-situational word learning.
Psychological Science, 5:578–585.

Michael C. Frank, Noah D. Goodman, Joshua B. Tenen-
baum, and Anne Fernald. 2009b. Continuity of dis-
course provides information for word learning.

Dedre Gentner and Lera Boroditsky. 2001. Individua-
tion, relativity, and early word learning.Language,
culture, & cognition, 3:215–56.

Sharon Goldwater, Thomas L. Griffiths, and Mark John-
son. 2009. A bayesian framework for word segmen-
tation: Exploring the effects of context.Cognition,
112(1):21–54.

Katharine Graf-Estes, Julia L. Evans, Martha W. Alibali,
and Jenny R. Saffran. 2007. Can infants map meaning
to newly segmented words? statistical segmentation
and word learning.Psychological Science, 18(3):254–
260.

Amit Gruber, Michal Rosen-Zvi, and Yair Weiss. 2007.
Hidden topic markov models. InArtificial Intelligence
and Statistics (AISTATS), March.

Mark Johnson and Sharon Goldwater. 2009. Improving
nonparameteric bayesian inference: experiments on
unsupervised word segmentation with adaptor gram-
mars. InProceedings of Human Language Technolo-
gies: The 2009 Annual Conference of the North Ameri-

can Chapter of the Association for Computational Lin-
guistics, pages 317–325, Boulder, Colorado, June. As-
sociation for Computational Linguistics.

Mark Johnson. 2008. Using adaptor grammars to identi-
fying synergies in the unsupervised acquisition of lin-
guistic structure. InProceedings of the 46th Annual
Meeting of the Association of Computational Linguis-
tics, Columbus, Ohio. Association for Computational
Linguistics.

Ellen M. Markman. 1990. Constraints children place on
word learning.Cognitive Science, 14:57–77.

Terry Regier. 2003. Emergent constraints on word-
learning: A computational review.Trends in Cognitive
Sciences, 7:263–268.

Jenny R. Saffran, Elissa L. Newport, and Richard N.
Aslin. 1996. Word segmentation: The role of dis-
tributional cues. Journal of memory and Language,
35:606–621.

Jeffrey M. Siskind. 1996. A computational study
of cross-situational techniques for learning word-to-
meaning mappings.Cognition, 61(1-2):39–91.

Joshua B. Tenenbaum and Fei Xu. 2000. Word learn-
ing as bayesian inference. InProceedings of the 22nd
Annual Conference of the Cognitive Science Society,
pages 517–522.

Chen Yu and Dana H. Ballard. 2007. A unified model of
early word learning: Integrating statistical and social
cues.Neurocomputing, 70(13-15):2149–2165.

509

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 510–518,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Subword Variation in Text Message Classification

Robert Munro
Department of Linguistics

Stanford University
Stanford, CA 94305

rmunro@stanford.edu

Christopher D. Manning
Department of Computer Science

Stanford University
Stanford, CA 94305

manning@stanford.edu

Abstract

For millions of people in less resourced re-
gions of the world, text messages (SMS) pro-
vide the only regular contact with their doc-
tor. Classifying messages by medical labels
supports rapid responses to emergencies, the
early identification of epidemics and everyday
administration, but challenges include text-
brevity, rich morphology, phonological vari-
ation, and limited training data. We present
a novel system that addresses these, working
with a clinic in rural Malawi and texts in the
Chichewa language. We show that model-
ing morphological and phonological variation
leads to a substantial average gain of F=0.206
and an error reduction of up to 63.8% for spe-
cific labels, relative to a baseline system opti-
mized over word-sequences. By comparison,
there is no significant gain when applying the
same system to the English translations of the
same texts/labels, emphasizing the need for
subword modeling in many languages. Lan-
guage independent morphological models per-
form as accurately as language specific mod-
els, indicating a broad deployment potential.

1 Introduction

The whole world is texting, but rarely in English.
Africa has seen the greatest recent uptake of cell-
phones, with an 8-fold increase over the last 5 years
and saturation possible in another 5 (Buys et al.,
2009). This is a leapfrog technology – for the ma-
jority of new users cellphones are the only form of
remote communication, surpassing landlines, (non-
mobile) internet access and even grid electricity,

with costs making texts the dominant communica-
tion method. This has led social development orga-
nizations to leverage mobile technologies to support
health (Leach-Lemens, 2009), banking (Peevers et
al., 2008), access to market information (Jagun et al.,
2008), literacy (Isbrandt, 2009) and emergency re-
sponse (Munro, 2010). The possibility to automate
many of these services through text-classification is
huge, as are the potential benefits – those with the
least resources have the most to gain.

However, the data presents many challenges, as
text messages are brief, most languages have rich
morphology, spellings may be overly-phonetic, and
there is often limited training data. We partnered
with a medical clinic in rural Malawi and Front-
lineSMS:Medic, whose text message management
systems serve a patient population of over 2 million
in less developed regions of the world. The system
allows remote community health workers (CHWs)
to communicate directly with more qualified medi-
cal staff at centralized clinics, many for the first time.

We present a short-message classification sys-
tem that incorporates morphological and phono-
logical/orthographic variation, with substantial im-
provements over a system optimized on word-
sequences alone. The average gain is F=0.206 with
an error reduction of up to 63.8% for specific labels.
For 6 of the 9 labels this more than doubles the accu-
racy. By comparison, there is not a significant gain
in accuracy when applying the same system to the
English translations of the same texts/labels, empha-
sizing the need for modeling subword structures, but
also highlighting why morphology has been periph-
eral in text classification until now.

510

2 Language and data

Chichewa is a Bantu language with about 13 mil-
lion speakers in Southern Africa including 65%
of Malawians. We limit examples to the nouns:
odwala ‘patient’, mankhwala ‘medicine’; verb: fun
‘want’; and the 1st person pronoun/marker: ndi-
‘I’. Chichewa is closely related to many neighbor-
ing languages – more than 100 million people could
recognize ndifuna as ‘I want’.

The morphological complexity is average with
about 2-3 morpheme boundaries per word, but this is
rich and complex compared to estimates for English,
Spanish and Chinese with average of 0.33, 0.85 and
0.01 morpheme boundaries per word. A typical verb
is ndimakafunabe, ‘I am still wanting’, consisting
of six morphemes, ndi-ma-ka-fun-a-be, expressing:
1st person Subject; present tense; noun-class (gen-
der) agreement with the Object; ‘want’; verb part-
of-speech; and incompletive aspect.

2.1 Labels
The text messages are coded for 0-9 labels in 3
groupings (with counts):

Administrative: related to the clinic:
1. Patient-related (394)
2. Clinic-admin: meetings, supplies etc (169)
3. Technological: phone-credit, batteries etc (21)

Requests: from Community Health Workers:
4. Response: any action requested by CHW (124)
5. Request for doctor (62)
6. Medical advice: CHW asking for advice (23)

Illness: changes of interest to monitoring bodies:
7. TB: tuberculosis (44)
8. HIV: HIV, AIDS and/or treatments (45)
9. Death: reported death of a patient (30)

The groupings correspond to the three main stake-
holders of the messages: the clinic itself, interested
in classifying messages according to internal work-
practices; the Community Health Workers and their
patients, acting as the direct care-givers outside the
clinic; and broader bodies like the World Health Or-
ganization who are interested in monitoring diseases
and early identification of epidemics (biosurveil-
lance). The labels are the three most frequent labels
required by each of these user groups.

We analyzed 4 months of texts messages with ap-
proximately 1,500 labels from 600 messages, con-

sisting of 8,000 words and 30,000 morphemes.
While this is small, the final system is being piloted
at a clinic in rural Malawi, where users can define
new labels at any time according to changing work-
practices, new diseases etc. If more than 4 months
of manually labeling were required it could limit the
utility and user acceptance.

All the messages were translated into English by
a medical practitioner, allowing us to make cross-
linguistic comparisons of our system.

2.2 Variation

The variation in the data is large. There are >40
forms for ‘patient’ and only 32% are odwala. Of the
rest, >50% occur only once. The variation results
from morphology: ndi-odwala; phonology: odwara,
ndiwodwala, and compounding: ndatindidziwewod-
wala. There are also >10 spellings for the English
borrowing: patient, pachenti etc, and 3 for the syn-
onym matenda.

Similarly, there are >20 forms for ‘medicine’.
For fun ‘want’, there are >30 forms with >80% oc-
curing only once. There are >200 forms containing
ndi and no one form accounts for more than 5% of
the instances.

The co-occurrence of ndi and fun within a word is
a strong non-redundant predictor for several labels,
but >75% of forms occur only once and >85% of
the forms are non-contiguous, as above and in the
most frequent ndi-ma-funa ‘I currently want’.

By contrast, in the English translations ‘needing’
occurs just once but all other forms of ‘patient’,
‘medicine’ and ‘(I) want/need’ are frequent.

This brief introduction to the language and data
should make it clear that specialized methods are re-
quired for modeling variation in text messages, es-
pecially in many languages where text messaging is
the dominant form of digital communication.

3 Morphological models

We compared language specific and language inde-
pendent morphological models, comparing 3 meth-
ods (with ndimafuna as an example):

Stemmed: {ndi, fun}
Segmented: {ndi, ma, fun, a}
Morph-config: {ndi-ma, ndi-fun, ndi-a, ma-fun...}

511

We also looked at character ngrams, as used by Hi-
dalgo et al. (2006) for morphological variation in
English and Spanish. The results converged with
those of the segmented model, which is not surpris-
ing as the most frequent features would be simi-
lar and increasing data items would overcome the
sparcity. We leave more sophisticated character
ngram modeling for future work.

3.1 Language specific
For the language specific morphological models
we implemented a morphological parser as a set
of context-free grammars for all possible prefixes
and suffixes according to the formal definitions of
Chichewa morphology in Mchombo (2004).

We identified stems by parsing potential prefixes
and suffixes, segmenting a word w into n mor-
phemes wm,0, . . . , wm,n−1 leaving a stem ws with
length len(ws) and corpus frequency of f(ws), such
that len(ws) > 0 (ie, there must be a stem). Where
multiple parses could be applied, we minimized
len(ws), then maximized n.

3.2 Language independent
For the language independent morphological mod-
els we adapted the word-segmenter of Goldwa-
ter, Griffiths and Johnson (2009), to morphological
parsing (see Related Work for other algorithms we
tested/considered). It was suited to our task because
a) it is largely nonparametric, meaning that it can
be deployed as a black-box before language-specific
properties are known b) it favored recall over preci-
sion (see the Results for discussion) and c) using a
segmentation algorithm, rather than explicitly mod-
eling morphology, also addresses compounds.

This model uses a Hierarchical Dirichlet Process
(HDP) (Teh et al., 2005). Every morpheme in the
corpus mi is drawn from a distribution G which con-
sists of possible morphemes (the affixes and stems)
and probabilities associated with each morpheme. G
is generated from a Dirichlet Process (DP) distri-
bution DP (α0, P0), with morphemes sampled from
P0 and their probabilities determined by a concen-
tration parameter α0. The context-sensitive model
where Hm is the DP for a specific morpheme is:

mi|mi−1 = m,Hm∼Hm ∀m
Hm|α1, G ∼DP (α1, G) ∀m

G|α0, P ∼DP (α0, P0)

Note that this part of our model is identical to the
bigram HDP in Goldwater et al. (2009), except that
we possess a set of morphemes, not words. Because
word boundaries are already marked in the major-
ity of the messages, we constrain the model to treat
all existing word boundaries in the corpus as mor-
pheme boundaries, thus constraining the model to
morpheme and compound segmentation.

Unlike word-segmentation, not all tokens in the
morpheme lexicon are equal, as we want to model
stems separately from affixes in the stemmed mod-
els. We assume a) the free morphemes (stems and
through compounding) are the least frequent and
therefore have the lowest final probability, P (m), in
the HDP model; and b) each word w must have at
least one free morpheme, the stem ws (ws 6= ∅).1

The token-optimal process for identifying
stems is straightforward and efficient. The
words are sorted by the argmin probabilities
of P (wm,0), . . . , P (wm,n−1). For each word
w, unless ws can be identified by a previously
observed free morpheme, ws is identified as
argmin(P (wm,0), . . . , P (wm,n−1)) and ws is
added to our lexicon of free morphemes. This algo-
rithm iterates over the words with one extra pass to
mark all free morphemes in each word (assuming
that there might be compounds we missed on the
first pass). The cost, where M is the total number
of morphemes and W the total number of words, is
O(log(W) + M).

This process has the potential to miss free mor-
phemes that only happened to occur in compounds
with less-probable stems, but this did not occur in
our data.

4 Phonological/Orthographic Models

We compared three models of phonologi-
cal/orthographic variation:

Chichewa: Chichewa specific
Script: Roman script specific
Indep: language independent

We refer to these using the term ‘phonology’ very
broadly. The majority of the variation stems from

1Note that identifying stems must be a separate step – if we
allowed multiple free morphemes for each word to enter the
lexicon without penalty in the HDP model it would converge on
a zero-penalty distribution where all morphemes were free.

512

the phonology, but also from phonetic variation as
expressed in a given writing system, and variation in
the writing system itself arising from fluent speakers
with varying literacy.

4.1 Chichewa specific

For the language specific normalization, we applied
a set of heuristics to the data, based on the varia-
tion given in (Paas, 2005) and our own knowledge
of how Bantu languages are expressed in Roman
scripts. The heuristics were used to normalize all
alternates, eg: {iwo → i∅o} and {r → l}, resulting
in ndiwodwara → ndiodwala.

The heuristics represented forms for phonemes
with the same potential place of articulation (‘c/k’),
forms with an adjacent place-of-articulation that are
common phonological alternates (‘l/r’, ‘e,i’), voic-
ing alternations (‘s/z’), or language-internal phono-
logical processes like the insertion of a glide be-
tween vowels that the morphology has made adja-
cent (like we pronounce but don’t spell in ‘go(w)ing’
in English).

We also implemented hard-coded acronym-
recovery methods for acronyms associated with the
‘Illness’ labels: ‘HIV’, ‘TB’, ‘AIDS’, ‘ARV’.

4.2 Script specific

The script specific techniques used the same sets of
alternates in the language specific model, but nor-
malized such that the heuristic H was applied to
a word w in the corpus C resulting in an alternate
w′, iff w′ ∈ C. This method limits the alternates
to those whose existence is supported by the data.
It is therefore more conservative than the previous
method.

For more general acronym identification, we
adapted the method of Schwartz & Hearst (2003).
We created a set of candidate acronyms by iden-
tifying capitalized sequences in non-capitalized
contexts and period-delimited single character se-
quences. All case-insensitive sequences that were
segmented by consistent non-alphabetic characters
were then identified as acronyms, provided that they
ended in a non-alphabetic character. We could not
define a similar acronym-start boundary, as pre-
fixes were often added to acronyms, even when the
acronyms themselves contained spaces, eg: ‘aT. B.’.

4.3 Language independent

For complete language independence we applied a
noise-reduction algorithm to the stream of charac-
ters in order to learn the heuristics that represented
potential phonological alternates by identifying all
minimal pairs of characters sequences (sequences
that alternated by one character, include the absence
of a character).

Given all sequences of characters, we identified
all pairs of sequences of length > l that differed
by one character c1, where c1 could be null. We
then ranked the pairs of alternating sequences by de-
scending length and applied a threshold t, selecting
the t longest sequences, creating alternating patterns
from all pairs. Regardless of l or t, the resulting
heuristics did not resemble those in 4.1 or 4.2.

We did not implement any acronym identification
methods, for obvious reasons.

5 Results

The results are compared to a baseline system op-
timized over word sequences (words and ngrams
but no subword modeling). All results presented
here are from a MaxEnt model using a leave-one-
out cross-validation.

For the English translations of the texts there was
no phonological/orthographic variation beyond that
resulting from morphology, so we only applied the
language independent morphological models.

5.1 Morphology

With the exception of the unsupervised stemming,
all the morphological models led to substantial gains
in accuracy. As Table 1 shows, the most accu-
rate system used the language specific segmenta-
tion, with an average accuracy of F=0.476, a macro-
average gain of 22.4%.

The greatest increase in accuracy occured where
verbs were the best predictors – the words with the
most complex morphology. The ‘Response’ label
showed the greatest relative gain in accuracy for
those with a non-zero baseline, where the accuracy
increased 4-fold from F=0.113 to F=0.442. It is ex-
pected that a label predicated on requests for action
should rely on the isolation of verb stems, but this
is still a very substantial gain. In contrast to this
391.2% gain in accuracy for Chichewa, the gain for

513

Baseline Stemmed Segmented Morph-Config Gain
Label Chich Indep Chich Indep Chich Indep Best Final
Patient-related 0.830 0.842 0.735 0.857 0.832 0.851 0.867 +3.7 +3.7
Clinic-admin 0.358 0.490 0.295 0.612 0.561 0.577 0.580 +25.5 +22.2
Technological 0 0 0 0.320 0.174 0.320 0.091 +32.0 +09.1

Response 0.113 0.397 0.115 0.440 0.477 0.459 0.442 +36.4 +32.9
Request for doctor 0.121 0.312 0.090 0.505 0.395 0.477 0.375 +38.4 +25.4
Medical advice 0 0 0 0.083 0.160 0.083 0.083 +16.0 +08.3

HIV 0.379 0.597 0 0.554 0.357 0.484 0.351 +21.8 (-2.8)
TB 0.235 0.357 0 0.414 0.200 0.386 0.327 +17.8 +09.2
Death 0.235 0.333 0.229 0.500 0.667 0.462 0.723 +48.8 +48.8
Average. 0.252 0.370 0.163 0.476 0.425 0.455 0.427 +22.4 +17.4

Table 1: Morphology results: F-values for leave-one-out cross-validation comparing different morphological models.
Indep = language independent, Chich = specific to Chichewa, () = not significant (ρ > 0.05, χ2), Final = Gain of the
‘Morph-Config, Indep’ model over the Baseline.

English, while still relying on the isolation of verb
stems, only increased the accuracy by 5.4%.

The unsupervised stemming underperformed the
baseline model by 8.9%, due to over-segmentation.
Compared to the Chichewa stemmer, we estimate
that the unsupervised stemmer had 90-95% recall
and 40-50% precision, resulting in over-stemmed to-
kens. However, this seemed to be favor the seg-
mented and morph-config models, as unnecessary
segmentation can be recovered when the tokens
are sequenced or re-configured, with the supervised
model arriving at the optimal weights for each can-
didate token or sequence. This can be seen by com-
paring the stemmed and morph-config results for
the Chichewa-specific and language independent re-
sults. The difference in stemming is 20.7% but for
the morph-config models it is only 2.8%. A loss in
segmentation recall could not be recovered in the
same way, as adjacent non-segmented morphemes
will remain one token. This leads us to conclude that
recall should be weighted more highly than preci-
sion in unsupervised morphological models applied
to supervised classification tasks.

5.2 Phonology

For the phonological models the results in Table 2
show that the script-specific model was the most ac-
curate with an average of F=0.443, a gain of 19.1%
over the baseline.

There are correlations between morphological
variation and phonological variation, with the gains
similar for each label in Table 1 and Table 2. This
is because much phonological variation often arises
from the morphology, as in ndiwodwala where the
glide w is pronounced and variably written be-
tween the vowels made adjacent through morphol-
ogy. It is also because more morphologically com-
plex words are longer and simply have more poten-
tial for phonological and written variation. The were
greater gains in identifying the ‘TB’ and ‘HIV’ la-
bels here than in the morphological models as the
result of acronym identification.

The language independent model did not perform
well. Despite changing the data considerably, there
was little change in the accuracy, indicating that the
changes it made were largely random with respect
to the target concepts. The most frequent alterna-
tions in large contexts were noun-class prefixes dif-
fering by a single character, which has the potential
to change the meaning, and this seemed to negate
any gains from normalization.

While language independent results would have
been ideal, a system with script-specific assump-
tions is realistic. It is likely that text messages are
regularly sent in 1000s of languages but less than
10 scripts, and our definition of ‘script specific’
would be considered ‘language independent’ else-
where. For example, in the Morpho Challenge (see

514

Baseline Model Gain
Label Chichewa Script Indep Best Final
Patient-related 0.830 0.842 0.848 0.838 (+1.8) (+1.8)
Clinic-admin 0.358 0.511 0.594 0.358 +23.6 +23.6
Technological 0 0.091 0.091 0 +9.1 +9.1

Response 0.113 0.420 0.473 0.207 +36.0 +36.0
Request for doctor 0.121 0.154 0.354 0 +23.3 +23.3
Medical advice 0 0.375 0.222 0.121 +37.5 +22.2

HIV 0.379 0.508 0.492 0.379 +12.9 +11.3
TB 0.235 0.327 0.492 0.235 +25.7 +25.7
Death 0.235 0.333 0.421 0.235 +18.6 +18.6
Average 0.252 0.396 0.443 0.264 +19.1 +19.1

Table 2: Phonological results: F-values for leave-one-out cross-validation comparing different phonological models.
Chichewa = Chichewa specific heuristics, Script = specific to Roman scripts, Indep = language independent, () = not
significant (ρ > 0.05, χ2), Final = Gain of the ‘Script’ model over the Baseline.

Related Work) Arabic data was converted to Ro-
man script, and it is likely that the methods could be
adapted with some success to any alphabetic script.

5.3 Combined results

Table 3 gives the final results, comparing the sys-
tems over the original text messages and the English
translations of the same messages. The most accu-
rate results were achieved by applying the phono-
logical normalization before the morphological seg-
mentation, giving a (macro) average of 0.459 which
is an increase of 20.6% over the baseline. The
increase in accuracy was not cumulative – the
combined system outperforms both the standalone
phonological and morphological systems, but with a
comparatively modest gain.

The final English system is 9.2% more accurate
than the final Chichewa system, but the Chichewa
system has closed the gap considerably as the En-
glish baseline system was 25.7% more accurate than
the baseline Chichewa system. Assuming that the
potential accuracy is approximately equal (given
both languages are encoding exactly the same infor-
mation) we conclude that we have made substantial
gains in accuracy but there are further large gains to
be made. Therefore, while we have not solved the
problem of text message classification in morpho-
logically rich languages, we have been able to make
promising gains in an exciting new area of research.

5.4 Practical effectiveness

The FrontlineSMS system currently allows users to
filter messages by keywords, similar to many email
clients. Because of the large number of variants per
word this is sub-optimal in many languages. We de-
fined a second baseline to model an idealized version
of the current system that assumes oracle knowledge
of the keyword/label and the optimal order in which
to apply rules created from this knowledge. The only
constraint was that we excluded words that occurred
only once. In essence, it is a MaxEnt model that in-
cludes seen test items and assigns a label according
to the single strongest feature for each test item.

Here, we evaluated the systems according to
Micro-F, recall and precision, as these give a bet-
ter gauge of the frequency of error per incoming
text, and therefore the usability for someone need-
ing to correct mislabeled texts. We also calculated
the Micro-F for each label/non-label decision to give
exact figures per classification decision. The results
are in Table 4. The Micro-F is 0.684 as compared to
0.403 for the keyword system. The higher precision
is also promising, indicating that when we assign a
label we are more often correct. By adjusting the
precision and recall through label confidence thresh-
olds, 90% precision can be achieved with 35.3% re-
call.2 In terms of usability, the Label/no-Label re-

2We confirmed significance relative to confidence by ROC
analysis – results omitted for space.

515

Chichewa English
Label Baseline Final Sys Gain Baseline Final Sys Gain
Patient-related 0.830 0.847 (+1.7) 0.878 0.878 0
Clinic-admin 0.358 0.624 +26.6 0.682 0.717 (+3.4)
Technological 0 0.174 +17.4 0.174 0.320 +14.6

Response 0.113 0.476 +36.3 0.573 0.555 (-1.8)
Request for doctor 0 0.160 +16.0 0.160 0.357 +19.7
Medical advice 0.121 0.500 +37.9 0.560 0.580 (+2.0)

HIV 0.379 0.357 (-2.2) 0.414 0.576 +16.2
TB 0.235 0.351 +11.6 0.557 0.533 (-2.4)
Death 0.235 0.638 +40.3 0.591 0.439 -15.2
Average 0.252 0.459 +20.6 0.510 0.551 +4.1
Micro F 0.593 0.684 +9.1 0.728 0.737 (+0.9)

Table 3: Final Results, comparing the systems in Chichewa and the English translations.

sults are very promising, reducing errors from 1 in 4
to 1 in 20.

The learning rates in Figure 1 show that the learn-
ers are converging on accurate models after only see-
ing a handful of text messages. This figure also
makes it clear that subword processing gives rela-
tively little gain to the English translations. The
disparity between the final model and the baseline
widens as more items are seen, indicating that the
failure of the word-optimal baseline model is not just
due to a lack of training items.

5.5 Other models investigated

Much recent work in text classification has been in
machine-learning, comparing models over constant
features. We tested SVMs and joint learning strate-
gies. The gains were significant but small and did
not closed the gap between systems with and with-
out subword modeling. We therefore omit these for
space and scope.

However, one interesting result came from ex-
tending the feature space with topics derived from
Latent Dirichlet Allocation (LDA) using similar
methods to Ramage et al. (2009). This produced
significant gains (micro-F=0.029), halving the re-
maining gap with the English system, but only
when the topics were derived from modeling non-
contiguous morpheme sequences, not words-alone
or segmented morphemes. We found that the differ-
ent surface forms of each word cooccurred less often

than chance (0.46 as often as chance for the different
forms of odwala) forming disjunctive distributions.
We suspect that this acts as a bias against robust un-
supervised clustering of the different forms.

6 Related Work

To our best knowledge, no prior researchers have
worked on subword models for text message cate-
gorization, or any NLP task with the Chichewa, but
we build on many recent developments in computa-
tional morphology and NLP for Bantu languages.

Badenhorst et al. (2009) found substantial varia-
tion in a speech recognition corpus for 9 Southern
Bantu languages, where accurate models could also
be built with limited data. Morphological segmenta-
tion improved Swahili-English machine translation
in De Pauw et al. (2009), even in the absense of
gold standard reference segmentations, as was the
case here. The complexity and necessity of model-
ing non-contiguous morphemes in Bantu languages
is discussed by Pretorius et al. (2009).

Computational morphology (Goldsmith, 2001;
Creutz, 2006; Kurimo et al., 2008; Johnson and
Goldwater, 2009; Goldwater et al., 2009) has be-
gun to play a prominent role in machine transla-
tion and speech recognition for morphologically rich
languages (Goldwater and McClosky, 2005; Tach-
belie et al., 2009). In the current-state-of-the-art, a
combination of the ParaMor (Monson et al., 2008)
and Morfessor (Creutz, 2006) algorithms achieved

516

0.65

0.75

0.45

0.55

10% 100%

Chichewa Baseline Chichewa Final

English Baseline English Final

Figure 1: The learning rate, comparing micro-F for the
Chichewa and English systems on different training set
sizes. A random stratified sample was used for subsets.

the most accurate results in 2008 Morpho Challenge
Workshop (Kurimo et al., 2008). ParaMor assumes
a single affix and is not easily adapted to more com-
plex morphologies, but we were able to test and eval-
uate Morfessor and the earlier Linguistica (Gold-
smith, 2001). Both were more accurate for segmen-
tation than our adaptation of Goldwater et al. (2009),
but with lower recall. For the reasons discussed in
Section 5.3 this meant less accuracy in classification.
Goldwater et al. have also used the Pitman-Yor algo-
rithm for morphological modeling (Goldwater et al.,
2006). In results too recent to test here, Pitman-Yor
has been used for segmentation with accuracy com-
parable to the HDP model but with greater efficiency
(Mochihashi et al., 2009). Biosurveillance systems
currently use simple rule-based pre-processing for
subword models. Dara et al. (2008) found only mod-
est gains, although the data was limited to English.

For text message classification, prior work is lim-
ited to identifying SPAM (Healy et al., 2005; Hi-
dalgo et al., 2006; Cormack et al., 2007), where
specialized algorithms and feature representations
were also found to improve accuracy. For written
variation, Kobus et al. (2008) focussed on SMS-
specific abbreviations in French. Unlike their data,
SMS-specific abbreviations were not present in our
data. This is consistent with the reports on SMS
practices in the related isiXhosa language (Deumert
and Masinyana, 2008), but it may also be because
the data we used contained professional communi-
cations not personal messages.

Label class Label/No-Label
KWF Final KWF Final

F-val 0.403 0.684 0.713 0.950
Prec. 0.265 0.796 0.570 0.972
Rec. 0.842 0.599 0.953 0.929

Table 4: Micro-F, precision and recall, compared with the
oracle keyword system. KWF = Oracle Keyword Filter.

7 Conclusions

We have demonstrated that subword modeling in
Chichewa leads to significant gains in classifying
text messages according to medical labels, reducing
the error from 1 in 4 to 1 in 20 in a system that should
generalize to other languages with similar morpho-
logical complexity.

The rapid expansion of cellphone technologies
has meant that digital data is now being generated
in 100s, if not 1000s, of languages that have not
previously been the focus of language technologies.
The results here therefore represent just one of a
large number of potential new applications for short-
message classification systems.

Acknowledgements

Thank you to FrontlineSMS:Medic and the health
care workers they partner with. The first author was
supported by a Stanford Graduate Fellowship.

References
Jaco Badenhorst, Charl van Heerden, Marelie Davel, and

Etienne Barnard. 2009. Collecting and evaluating
speech recognition corpora for nine Southern Bantu
languages. In The EACL Workshop on Language Tech-
nologies for African Languages.

Piet Buys, Susmita Dasgupta, Timothy S. Thomas, and
David Wheeler. 2009. Determinants of a digital divide
in Sub-Saharan Africa: A spatial econometric analysis
of cell phone coverage. World Development, 37(9).

Gordon V. Cormack, José Mara Gómez Hidalgo, and En-
rique Puertas Sánz. 2007. Feature engineering for
mobile (SMS) spam filtering. In The 30th annual in-
ternational ACM SIGIR conference on research and
development in information retrieval.

Mathias Creutz. 2006. Induction of the Morphology of
Natural Language: Unsupervised Morpheme Segmen-
tation with Application to Automatic Speech Recogni-
tion. Ph.D. thesis, University of Technology, Helsinki.

517

Jagan Dara, John N. Dowling, Debbie Travers, Gre-
gory F. Cooper, and Wendy W. Chapman. 2008.
Evaluation of preprocessing techniques for chief com-
plaint classification. Journal of Biomedical Informat-
ics, 41(4):613–23.

Ana Deumert and Sibabalwe Oscar Masinyana. 2008.
Mobile language choices: the use of English and isiX-
hosa in text messages (SMS) evidence from a bilin-
gual South African sample. English World-Wide,
29(2):117–147.

John Goldsmith. 2001. Unsupervised learning of the
morphology of a natural language. Computational
Linguistics, 27(2):153–198.

Sharon Goldwater and David McClosky. 2005. Improv-
ing statistical MT through morphological analysis. In
Human Language Technology Conference and Confer-
ence on Empirical Methods in Natural Language Pro-
cessing.

Sharon Goldwater, Thomas L. Griffiths, and Mark John-
son. 2006. Interpolating between types and tokens by
estimating power-law generators. Advances in Neural
Information Processing Systems, 18.

Sharon Goldwater, Thomas L. Griffiths, and Mark John-
son. 2009. A bayesian framework for word segmen-
tation: Exploring the effects of context. Cognition,
112(1):21–54.

Matt Healy, Sarah Jane Delany, and Anton Zamolotskikh.
2005. An assessment of case-based reasoning for
Short Text Message Classification. In The 16th Irish
Conference on Artificial Intelligence & Cognitive Sci-
ence.

José Mara Gómez Hidalgo, Guillermo Cajigas Bringas,
Enrique Puertas Sánz, and Francisco Carrero Garca.
2006. Content based SMS spam filtering. In ACM
symposium on Document engineering.

Scott Isbrandt. 2009. Cell Phones in West Africa: im-
proving literacy and agricultural market information
systems in Niger. White paper: Projet Alphabétisation
de Base par Cellulaire.

Abi Jagun, Richard Heeks, and Jason Whalley. 2008.
The impact of mobile telephony on developing country
micro-enterprise: A Nigerian case study. Information
Technologies and International Development, 4.

Mark Johnson and Sharon Goldwater. 2009. Improving
nonparameteric Bayesian inference: experiments on
unsupervised word segmentation with adaptor gram-
mars. In Human Language Technologies.

Catherine Kobus, François Yvon, and Geéraldine
Damnati. 2008. Normalizing SMS: are two metaphors
better than one? In The 22nd International Confer-
ence on Computational Linguistics.

Mikko Kurimo, Matti Varjokallio, and Ville Turunen.
2008. Unsupervised morpheme analysis. In Morpho

Challenge Workshop, Finland. Helsinki University of
Technology.

Carole Leach-Lemens. 2009. Using mobile phones in
HIV care and prevention. HIV and AIDS Treatment in
Practice, 137.

Sam Mchombo. 2004. The Syntax of Chichewa. Cam-
bridge University Press, New York, NY.

Daichi Mochihashi, Takeshi Yamada, and Naonori Ueda.
2009. Bayesian unsupervised word segmentation with
nested Pitman-Yor language modeling. In The 47th
Annual Meeting of the Association for Computational
Linguistics.

Christian Monson, Jaime Carbonell, Alon Lavie, and Lori
Levin. 2008. ParaMor: finding paradigms across mor-
phology. Lecture Notes in Computer Science, 5152.

Robert Munro. 2010. Haiti Emergency Response: the
power of crowdsourcing and SMS. In Haiti Crisis Re-
lief 2.0, Stanford, CA.

Steven Paas. 2005. English Chichewa-Chinyanja Dictio-
nary. Mvunguti Books, Zomba, Malawi.

Guy De Pauw, Peter Waiganjo Wagacha, and Gilles-
Maurice de Schryver. 2009. The SAWA Corpus: a
parallel corpus of English - Swahili. In The EACL
Workshop on Language Technologies for African Lan-
guages.

Gareth Peevers, Gary Douglas, and Mervyn A. Jack.
2008. A usability comparison of three alternative mes-
sage formats for an SMS banking service. Interna-
tional Journal of Human-Computer Studies, 66.

Rigardt Pretorius, Ansu Berg, Laurette Pretorius, and
Biffie Viljoen. 2009. Setswana tokenisation and com-
putational verb morphology: Facing the challenge of
a disjunctive orthography. In The EACL Workshop on
Language Technologies for African Languages.

Daniel Ramage, David Hall, Ramesh Nallapati, and
Christopher D. Manning. 2009. Labeled LDA: A
supervised topic model for credit attribution in multi-
labeled corpora. In Proceedings of the 2009 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, Singapore.

Ariel S. Schwartz and Marti A. Hearst. 2003. A sim-
ple algorithm for identifying abbreviation definitions
in biomedical texts. In The Pacific Symposium on Bio-
computing, University of California, Berkeley.

Martha Yifiru Tachbelie, Solomon Teferra Abate, and
Wolfgang Menzel. 2009. Morpheme-based language
modeling for amharic speech recognition. In The 4th
Language and Technology Conference.

Yee Whye Teh, Michael I. Jordan, Matthew J. Beal, and
David M. Blei. 2005. Hierarchical Dirichlet pro-
cesses. In Advances in Neural Information Processing
Systems, 17.

518

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 519–527,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Automatic Diacritization for Low-Resource Languages Using a Hybrid

Word and Consonant CMM

Robbie A. Haertel, Peter McClanahan, and Eric K. Ringger

Department of Computer Science

Brigham Young University

Provo, Utah 84602, USA

rah67@cs.byu.edu, petermcclanahan@gmail.com, ringger@cs.byu.edu

Abstract

We are interested in diacritizing Semitic lan-

guages, especially Syriac, using only dia-

critized texts. Previous methods have required

the use of tools such as part-of-speech taggers,

segmenters, morphological analyzers, and lin-

guistic rules to produce state-of-the-art results.

We present a low-resource, data-driven, and

language-independent approach that uses a

hybrid word- and consonant-level conditional

Markov model. Our approach rivals the best

previously published results in Arabic (15%

WER with case endings), without the use of

a morphological analyzer. In Syriac, we re-

duce the WER over a strong baseline by 30%

to achieve a WER of 10.5%. We also report

results for Hebrew and English.

1 Introduction

Abjad writing systems omit vowels and other di-

acritics. The ability to restore these diacritics is

useful for personal, industrial, and governmental

purposes—especially for Semitic languages. In its

own right, the ability to diacritize can aid language

learning and is necessary for speech-based assis-

tive technologies, including speech recognition and

text-to-speech. Diacritics are also useful for tasks

such as segmentation, morphological disambigua-

tion, and machine translation, making diacritization

important to Natural Language Processing (NLP)

systems and intelligence gathering. In alphabetic

writing systems, similar techniques have been used

to restore accents from plain text (Yarowsky, 1999)

and could be used to recover missing letters in the

compressed writing styles found in email, text, and

instant messages.

We are particularly interested in diacritizing Syr-

iac, a low-resource dialect of Aramaic, which pos-

sesses properties similar to Arabic and Hebrew. This

work employs conditional Markov models (CMMs)

(Klein and Manning, 2002) to diacritize Semitic

(and other) languages and requires only diacritized

texts for training. Such an approach is useful for

languages (like Syriac) in which annotated data and

linguistic tools such as part-of-speech (POS) tag-

gers, segmenters, and morphological analyzers are

not available. Our main contributions are as follows:

(1) we introduce a hybrid word and consonant CMM

that allows access to the diacritized form of the pre-

vious words; (2) we introduce new features avail-

able in the proposed model; and (3) we describe an

efficient, approximate decoder. Our models signifi-

cantly outperform existing low-resource approaches

across multiple related and unrelated languages and

even achieve near state-of-the-art results when com-

pared to resource-rich systems.

In the next section, we review previous work rel-

evant to our approach. Section 3 then motivates and

describes the models and features used in our frame-

work, including a description of the decoder. We

describe our data in Section 4 and detail our exper-

imental setup in Section 5. Section 6 presents our

results. Finally, Section 7 briefly discusses our con-

clusions and offers ideas for future work.

2 Previous Work

Diacritization has been receiving increased attention

due to the rising interest in Semitic languages, cou-

519

pled with the importance of diacritization to other

NLP-related tasks. The existing approaches can be

categorized based on the amount of resources they

require, their basic unit of analysis, and of course

the language they are targeting. Probabilistic sys-

tems can be further divided into generative and con-

ditional approaches.

Existing methodologies can be placed along a

continuum based on the quantity of resources they

require—a reflection of their cost. Examples of

resources used include morphological analyzers

(Habash and Rambow, 2007; Ananthakrishnan et al.,

2005; Vergyri and Kirchhoff, 2004; El-Sadany and

Hashish, 1989), rules for grapheme-to-sound con-

version (El-Imam, 2008), transcribed speech (Ver-

gyri and Kirchhoff, 2004), POS tags (Zitouni et al.,

2006; Ananthakrishnan et al., 2005), and a list of

prefixes and suffixes (Nelken and Shieber, 2005).

When such resources exist for a particular language,

they typically improve performance. For instance,

Habash and Rambow’s (2007) approach reduces the

error rate of Zitouni et al.’s (2006) by as much as

30% through its use of a morphological analyzer. In

fact, such resources are not always available. Sev-

eral data-driven approaches exist that require only

diacritized texts (e.g., Kübler and Mohamed, 2008;

Zitouni et al., 2006; Gal, 2002) which are relatively

inexpensive to obtain: most literate speakers of the

target language could readily provide them.

Apart from the quantity of resources required, di-

acritization systems also differ in their basic unit of

analysis. A consonant-based approach treats each

consonant1 in a word as a potential host for one

or more (possibly null) diacritics; the goal is to

predict the correct diacritic(s) for each consonant

(e.g., Kübler and Mohamed, 2008). Zitouni et al.

(2006) extend the problem to a sequence labeling

task wherein they seek the best sequence of diacrit-

ics for the consonants. Consequently, their approach

has access to previously chosen diacritics.

Alternatively, the basic unit of analysis can be the

full, undiacritized word. Since morphological ana-

lyzers produce analyses of undiacritized words, di-

acritization approaches that employ them typically

fall into this category (e.g., Habash and Rambow,

1We refer to all graphemes present in undiacritized texts as

consonants.

2007; Vergyri and Kirchoff, 2004). Word-based,

low-resource solutions tend to treat the problem as

word-level sequence labeling (e.g., Gal, 2002).

Unfortunately, word-based techniques face prob-

lems due to data sparsity: not all words in the

test set are seen during training. In contrast,

consonant-based approaches rarely face the anal-

ogous problem of previously unseen consonants.

Thus, one low-resource solution to data sparsity is to

use consonant-based techniques for unknown words

(Ananthakrishnan et al., 2005; Nelken and Shieber,

2005).

Many of the existing systems, especially recent

ones, are probabilistic or contain probabilistic com-

ponents. Zitouni et al. (2006) show the superior-

ity of their conditional-based approaches over the

best-performing generative approaches. However,

the instance-based learning approach of Kübler and

Mohamed (2008) slightly outperforms Zitouni et

al. (2006). In the published literature for Arabic,

the latter two have the best low-resource solutions.

Habash and Rambow (2007) is the state-of-the-art,

high-resource solution for Arabic. To our knowl-

edge, no work has been done in this area for Syriac.

3 Models

In this work, we are concerned with diacritiza-

tion for Syriac for which a POS tagger, segmenter,

and other tools are not readily available, but for

which diacritized text is obtainable.2 Use of a sys-

tem dependent on a morphological analyzer such as

Habash and Rambow’s (2007) is therefore not cost-

effective. Furthermore, we seek a system that is ap-

plicable to a wide variety of languages. Although

Kübler and Mohamed’s (2008) approach is compet-

itive to Zitouni et al.’s (2006), instance-based ap-

proaches tend to suffer with the addition of new fea-

tures (their own experiments demonstrate this). We

desire to add linguistically relevant features to im-

prove performance and thus choose to use a condi-

tional model. However, unlike Zitouni et al. (2006),

we use a hybrid word- and consonant-level approach

based on the following observations (statistics taken

from the Syriac training and development sets ex-

plained in Section 4):

2Kiraz (2000) describes a morphological analyzer for Syriac

that is not publicly available and is costly to reproduce.

520

1. Many undiacritized words are unambiguous:

90.8% of the word types and 63.5% of the to-

kens have a single diacritized form.

2. Most undiacritized word types have only a few

possible diacritizations: the average number of

possible diacritizations is 1.11.

3. Low-frequency words have low ambiguity:

Undiacritized types occurring fewer than 5

times have an average of 1.05 possible diacriti-

zations.

4. Diacritized words not seen in the training data

occur infrequently at test time: 10.5% of the

diacritized test tokens were not seen in training.

5. The diacritics of previous words can provide

useful morphological information such as per-

son, number, and gender.

Contrary to observations 1 and 2, consonant-level

approaches dedicate modeling capacity to an expo-

nential (in the number of consonants) number of

possible diacritizations of a word. In contrast, a

word-level approach directly models the (few) dia-

critized forms seen in training. Furthermore, word-

based approaches naturally have access to the dia-

critics of previous words if used in a sequence la-

beler, as per observation 5. However, without a

“backoff” strategy, word-level models cannot pre-

dict a diacritized form not seen in the training data.

Also, low-frequency words by definition have less

information from which to estimate parameters. In

contrast, abundant information exists for each dia-

critic in a consonant-level system. To the degree

to which they hold, observations 3 and 4 mitigate

these latter two problems. Clearly a hybrid approach

would be advantageous.

To this end we employ a CMM in which we treat

the problem as an instance of sequence labeling at

the word level with less common words being han-

dled by a consonant-level CMM. Let u be the undi-

acriatized words in a sentence. Applying an order o

Markov assumption, the distribution over sequences

of diacritized words d is:

P (d|u) =

‖d‖∏

i=1

P (di|di−o...i−1,u;ω,γ, α) (1)

in which the local conditional distribution of a di-

acritized word is an interpolation of a word-level

model (ωui
) and a consonant-level model (γ):

P (di|di−o...i−1,u;ω,γ, α) =

αP (di|di−o...i−1,u;ωui
) +

(1 − α)P (di|di−o...i−1,u;γ)

We let the consonant-level model be a standard

CMM, similar to Zitouni et al. (2006), but with ac-

cess to previously diacritized words. Note that the

order of this “inner” CMM need not be the same as

that of the outer CMM.

The parameter α reflects the degree to which we

trust the word-level model. In the most general case,

α can be a function of the undiacritized words and

the previous o diacritized words. Based on our ear-

lier enumerated observations, we use a simple delta

function for α: we let α be 0 when ui is rare and 1

otherwise. We leave discussion for what constitutes

a “rare” undiacritized type for Section 5.2.

Figure 1b presents a graphical model of a sim-

ple example sentence in Syriac. The diacritiza-

tion for non-rare words is predicted for a whole

word, hence the random variable D for each such

word. These diacritized words Di depend on previ-

ous Di−1 as per equation (1) for an order-1 CMM

(note that the capitalized A, I, and O are in fact con-

sonants in this transliteration). Because “NKTA”

and “RGT” are rare, their diacritization is repre-

sented by a consonant-level CMM: one variable for

each possible diacritic in the word. Importantly,

these consonant-level models have access to the pre-

viously diacritized word (D4 and D6, respectively).

We use log-linear models for all local distribu-

tions in our CMMs, i.e., we use maximum entropy

(maxent) Markov models (McCallum et al., 2000;

Berger et al., 1996). Due to the phenomenon known

as d-separation (Pearl and Shafer, 1988), it is possi-

ble to independently learn parameters for each word

model ωui
by training only on those instances for

the corresponding word. Similarly, the consonant

model can be learned independent of the word mod-

els. We place a spherical normal prior centered at

zero with a standard deviation of 1 over the weights

of all models and use an L-BFGS minimizer to find

the MAP estimate of the weights for all the models

(words and consonant).

521

γ

C C C C C C �

CSIA AO

C5,1 C5,2 C5,3 C5,4 C5,1 C5,2 �

(a)

ω DHBA

ωCSIA

ω AO γ

ω LA

D1

CSIA

D2

AO

D3

DHBA

D4

AO NKTA

D6

LA RGT

C5,1 C5,2 C5,3 C5,4 C7,1 C7,2 C7,3

(b)

Figure 1: Graphical models of Acts 20:33 in Syriac, CSIA AO DHBA AO NKTA LA RGT ‘silver or gold or

garment I have not coveted,’ using Kiraz’s (1994) transliteration for (a) the initial portion of a consonant-

level-only model and (b) a combined word- and consonant-level model. For clarity, both models assume a

consonant-level Markov order of 1; (b) shows a word-level Markov order of 1. For simplicity, the figure

further assumes that additional features come only from the current (undiacritized) word.

Note that Zitouni et al.’s (2006) model is a spe-

cial case of equation (1) where all words are rare, the

word-level Markov order (o) is 0, and the consonant-

level Markov order is 2. A simplified version of Zi-

touni’s model is presented in Figure 1a.

3.1 Features

Our features are based on those found in Zitouni et

al. (2006), although we have added a few of our own

which we consider to be one of the contributions of

this paper. Unlike their work, our consonant-level

model has access to previously diacritized words,

allowing us to exploit information noted in obser-

vation 5.

Each of the word-level models shares the same set

of features, defined by the following templates:

• The prefixes and suffixes (up to 4 characters) of

the previously diacritized words.

• The string of the actual diacritics, including the

null diacritic, from each of the previous o dia-

critized words and n-grams of these strings; a

similar set of features is extracted but without

the null diacritics.

• Every possible (overlapping) n-gram of all

sizes from n = 1 to n = 5 of undiacritized

words contained within the window defined by

2 words to the right and 2 to the left. These

templates yield 15 features for each token.

• The count of how far away the current token

is from the beginning/end of the sentence up

to the Markov order; also, their binary equiva-

lents.

The first two templates rely on diacritizations of pre-

vious words, in keeping with observation 5.

The consonant-level model has the following fea-

ture templates:

• The current consonant.

• Previous diacritics (individually, and n-grams

of diacritics ending in the diacritic prior to the

current consonant, where n is the consonant-

level Markov order).

• Conjunctions of the first two templates.

• Indicators as to whether this is the first or last

consonant.

• The first three templates independently con-

joined with the current consonant.

• Every possible (overlapping) n-gram of all

sizes from n = 1 to n = 11 consisting of con-

sonants contained within the window defined

by 5 words to the right and 5 to the left.

• Same as previous, but available diacritics are

included in the window.

• Prefixes and suffixes (of up to length 4) of pre-

viously diacritized words conjoined with previ-

ous diacritics in the current token, both individ-

ually and n-grams of such.

522

This last template is only possible because of our

model’s dependency on previous diacritized words.

3.2 Decoder

Given a sentence consisting of undiacritized words,

we seek the most probable sequence of diacritized

words, i.e., arg maxd P (d|u...). In sentences con-

taining no rare words, the well-known Viterbi algo-

rithm can be used to find the optimum.

However, as can be seen in Figure 1b, predictions

in the consonant-level model (e.g., C5,1...4) depend

on previously diacritized words (D4), and some dia-

critized words (e.g., D6) depend on diacritics in the

previous rare word (C5,1...4). These dependencies

introduce an exponential number of states (in the

length of the word) for rare words, making exact de-

coding intractable. Instead, we apply a non-standard

beam during decoding to limit the number of states

for rare words to the n-best (locally). This is ac-

complished by using an independent “inner” n-best

decoder for the consonant-level CMM to produce

the n-best diacritizations for the rare word given the

previous diacritized words and other features. These

become the only states to and from which transitions

in the “outer” word-level decoder can be made. We

note this is the same type of decoding that is done in

pipeline models that use n-best decoders (Finkel et

al., 2006). Additionally, we use a traditional beam-

search of width 5 to further reduce the search space

both in the outer and inner CMMs.

4 Data

Although our primary interest is in the Syriac lan-

guage, we also experimented with the Penn Arabic

Treebank (Maamouri et al., 2004) for the sake of

comparison with other approaches. We include He-

brew to provide results for yet another Semitic lan-

guage. We also apply the models to English to show

that our method and features work well outside of

the Semitic languages. A summary of the datasets,

including the number of diacritics, is found in Fig-

ure 2. The number of diacritics shown in the table

is less than the number of possible predictions since

we treat contiguous diacritics between consonants as

a single prediction.

For our experiments in Syriac, we use the New

Testament portion of the Peshitta (Kiraz, 1994) and

lang diacs train dev test

Syriac 9 87,874 10,747 11,021

Arabic 8 246,512 42,105 51,664

Hebrew 17 239,615 42,133 49,455

English 5 1,004,073 80,156 89,537

Figure 2: Number of diacritics and size (in tokens)

of each dataset

treat each verse as if it were a sentence. The diacrit-

ics we predict are the five short vowels, as well as

Se̊yāmē, Rukkākhā, Quššāyā, and linea ocultans.

For Arabic, we use the training/test split defined

by Zitouni et al. (2006). We group all words having

the same P index value into a sentence. We build our

own development set by removing the last 15% of

the sentences of the training set. Like Zitouni, when

no solution exists in the treebank, we take the first

solution as the gold tag. Zitouni et al. (2006) report

results on several different conditions, but we focus

on the most challenging of the conditions: we pre-

dict the standard three short vowels, three tanween,

sukuun, shadda, and all case endings. (Preliminary

experiments show that our models perform equally

favorably in the other scenarios as well.)

For Hebrew, we use the Hebrew Bible (Old Tes-

tament) in the Westminster Leningrad Codex (Zefa-

nia XML Project, 2009). As with Syriac, we treat

each verse as a sentence and remove the paragraph

markers (pe and samekh). There is a large number

of diacritics that could be predicted in Hebrew and

no apparent standardization in the literature. For

these reasons, we attempt to predict as many dia-

critics as possible. Specifically, we predict the di-

acritics whose unicode values are 05B0-B9, 05BB-

BD, 05BF, 05C1-C2, and 05C4. We treat the follow-

ing list of punctuation as consonants: maqaf, paseq,

sof pasuq, geresh, and gershayim. The cantillation

marks are removed entirely from the data.

Our English data comes from the Penn Treebank

(Marcus et al., 1994). We used sections 0–20 as

training data, 21–22 as development data, and 23–

24 as our test set. Unlike words in the Semitic lan-

guages, English words can begin with a vowel, re-

quiring us to prepend a prosthetic consonant to every

word; we also convert all English text to lowercase.

523

5 Experiments

For all feature engineering and tuning, we trained

and tested on training and development test sets, re-

spectively (as specified above). Final results are re-

ported by folding the development test set into the

training data and evaluating on the blind test set. We

retain only those features that occur more than once.

For each approach, we report the Word Error Rate

(WER) (i.e., the percentage of words that were in-

correctly diacritized), along with the Diacritic Er-

ror Rate (DER) (i.e., the percentage of diacritics, in-

cluding the null diacritic, that were incorrectly pre-

dicted). We also report both WER and DER for

only those words that were not seen during training

(UWER and UDER, respectively). We found that

precision, recall, and f-score were nearly perfectly

correlated with DER; hence, we omit this informa-

tion for brevity.

5.1 Models for Evaluation

In previous work, Kübler et al. (2008) report the

lowest error rates of the low-resource models. Al-

though their results are not directly comparable to

Zitouni et al. (2006), we have independently con-

firmed that the former slightly outperforms the latter

using the same diacritics and on the same dataset

(see Figure 4), thereby providing the strongest pub-

lished baseline for Arabic on a common dataset. We

denote this model as kübler and use it as a strong

baseline for all datasets.

For the Arabic results, we additionally include Zi-

touni et al.’s (2006) lexical model (zitouni-lex)

and their model that uses a segmenter and POS

tagger (zitouni-all), which are not immediately

available to us for Syriac. For yet another point of

reference for Arabic, we provide the results from the

state-of-the-art (resource-rich) approach of Habash

and Rambow (2007) (habash). This model is at an

extreme advantage, having access to a full morpho-

logical analyzer. Note that for these three models

we simply report their published results and do not

attempt to reproduce them.

Since kübler is of a different model class than

ours, we consider an additional baseline that is a

consonant-level CMM with access to the same in-

formation, namely, only those consonants within a

window of 5 to either side (ccmm). This is equiva-

lent to a special case of our hybrid model wherein

both the word-level and the consonant-level Markov

order are 0. The features that we extract from this

window are the windowed n-gram features.

In order to assess the utility of previous diacritics

and how effectively our features leverage them, we

build a model based on the methodology from Sec-

tion 3 but specify that all words are rare, effectively

creating a consonant-only model that has access to

the diacritics of previous words. We call this model

cons-only. We note that the main difference be-

tween this model and zitouni-lex are features

that depend on previous diacritized words.

Finally, we present results using our full hybrid

model (hybrid). We use a Markov order of 2 at

the word and consonant level for both hybrid and

cons-only.

5.2 Consonant-Level Model and Rare Words

The hybrid nature of hybrid naturally raises the

question of whether or not the inner consonant

model should be trained only on rare words or on

all of the data. In other words, is the distribution

of diacritics different in rare words? If so, the con-

sonant model should be trained only on rare words.

To answer this question, we trained our consonant-

level model (cons-only) on words occurring fewer

than n times. We swept the value of the threshold n

and compared the results to the same model trained

on a random selection of words. As can be seen in

Figure 3, the performance on unknown words (both

UWER and UDER) using a model trained on rare

words can be much lower than using a model trained

on the same amount of randomly selected data. In

fact, training on rare words can lead to a lower error

rate on unknown words than training on all tokens

in the corpus. This suggests that the distribution of

diacritics in rare words is different from the distri-

bution of diacritics in general. This difference may

come from foreign words, especially in the Arabic

news corpus.

While this phenomenon is more pronounced in

some languages and with some models more than

others, it appears to hold in the cases we tried. We

found the WER for unknown words to be lowest for

a threshold of 8, 16, 32, and 32 for Syriac, Arabic,

Hebrew, and English, respectively.

524

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

e
rr

o
r

ra
te

tokens

UWER (random)
UWER (rare)

UDER (random)
UDER (rare)

(a) Syriac

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50000 100000 150000 200000 250000

e
rr

o
r

ra
te

tokens

UWER (random)
UWER (rare)

UDER (random)
UDER (rare)

(b) Arabic

Figure 3: Learning curves showing impact on consonant-level models when training on rare tokens for

Syriac and Arabic. Series marked “rare” were trained with the least common tokens in the dataset.

Approach WER DER UWER UDER

S
y

ri
ac

kübler 15.04 5.23 64.65 18.21

ccmm 13.99 4.82 54.54 15.18

cons-only 12.31 5.03 55.68 19.09

hybrid 10.54 4.29 55.16 18.86

A
ra

b
ic

zitouni-lex 25.1 8.2 NA NA

kübler 23.61 7.25 66.69 20.51

ccmm 22.63 6.61 57.71 16.10

cons-only 15.02 5.15 48.10 15.76

hybrid 17.87 5.67 47.85 15.63

zitouni-all 18.0 5.5 NA NA

habash 14.9 4.8 NA NA

H
eb

re
w

kübler 30.60 12.96 89.52 36.86

ccmm 29.67 12.05 80.02 29.39

cons-only 23.39 10.92 75.70 33.34

hybrid 22.18 10.71 74.38 32.40

E
n

g
li

sh

kübler 10.54 4.38 54.96 16.31

ccmm 11.60 4.71 58.55 16.34

cons-only 8.71 3.87 58.93 17.85

hybrid 5.39 2.38 57.24 16.51

Figure 4: Results for all languages and approaches

6 Discussion of Results

Since Syriac is of primary interest to us, we begin

by examining the results from this dataset. Syriac

appears to be easier to diacritize than Arabic, con-

sidering it has a similar number of diacritics and

only one-third the amount of data. On this dataset,

hybrid has the lowest WER and DER, achieving

nearly 30% and 18% reduction in WER and DER,

respectively, over kübler; it reduces both error

rates over cons-only by more than 14%. These

results attest to the effectiveness of our model in ac-

counting for the observations made in Section 3.

A similar pattern holds for the Hebrew and En-

glish datasets, namely that hybrid reduces the

WER over kübler by 28% to upwards of 50%;

cons-only also consistently and significantly out-

performs kübler and ccmm. However, the reduc-

tion in error rate for our cons-only and hybrid

models tends to be lower for DER than WER in

all languages except for English. In the case of

hybrid, this is probably because it is inherently

word-based. Having access to entire previous dia-

critized words may be a contributing factor as well,

especially in cons-only.

When comparing model classes (kübler and

ccmm), it appears that performance is comparable

across all languages, with the maxent approach en-

joying a slight advantage except in English. Interest-

ingly, the maxent solution usually handles unknown

words better, although it does not specifically target

this case. Both models outperform zitouni-lex

in Arabic, despite the fact that they use a much

simpler feature set, most notably, the lack of pre-

vious diacritics. In the case of ccmm this may be at-

tributable in part to our use of an L-BFGS optimizer,

convergence criteria, feature selection, or other po-

tential differences not noted in Zitouni et al. (2006).

We note that the maxent-based approaches are much

more time and memory intensive.

Using the Arabic data, we are able to com-

pare our methods to several other published results.

525

The cons-only model significantly outperforms

zitouni-all despite the additional resources to

which the latter has access. This is evidence sup-

porting our hypothesis that the diacritics from pre-

vious words in fact contain useful information for

prediction. This empirically suggests that the inde-

pendence assumptions in consonant-only models are

too strict.

Perhaps even more importantly, our low-resource

method approaches the performance of habash. We

note that the differences may not be statistically sig-

nificant, and also that Habash and Rambow (2007)

omit instances in the data that lack solutions. In fact,

cons-only has a lower WER than all but two of

the seven techniques used by Habash and Rambow

(2007), which use a morphological analyzer.

Interestingly, hybrid does worse than

cons-only on this dataset, although it is still

competitive with zitouni-all. We hypothesize

that the observations from Section 3 do not hold

as strongly for this dataset. For this reason, using

a smooth interpolation function (rather than the

abrupt one we employ) may be advantageous and is

an interesting avenue for future research.

One last observation is that the approaches that

use diacritics from previous words (i.e., cons-only

and hybrid) usually have lower sentence error rates

(not shown in Figure 4). This highlights an advan-

tage of observation 5: that dependencies on previ-

ously diacritized words can help ensure a consistent

tagging within a sentence.

7 Conclusions and Future Work

In this paper, we have presented a low-resource so-

lution for automatic diacritization. Our approach is

motivated by empirical observations of the ambigu-

ity and frequency of undiacritized and diacritized

words as well as by the hypothesis that diacrit-

ics from previous words provide useful informa-

tion. The main contributions of our work, based

on these observations, are (1) a hybrid word-level

CMM combined with a consonant-level model for

rare words, (2) a consonant-level model with depen-

dencies on previous diacritized words, (3) new fea-

tures that leverage these dependencies, and (4) an

efficient, approximate decoder for these models. As

expected, the efficacy of our approach varies across

languages, due to differences in the actual ambigu-

ity and frequency of words in these languages. Nev-

ertheless, our models consistently reduce WER by

15% to nearly 50% over the best performing low-

resource models in the literature. In Arabic, our

models approach state-of-the-art despite not using a

morphological analyzer. Arguably, our results have

brought diacritization very close to being useful for

practical application, especially when considering

that we evaluated our method on the most difficult

task in Arabic, which has been reported to have dou-

ble the WER (Zitouni et al., 2006).

The success of this low-resource solution natu-

rally suggests that where more resources are avail-

able (e.g., in Arabic), they could be used to further

reduce error rates. For instance, it may be fruitful to

incorporate a morphological analyzer or segmenta-

tion and part-of-speech tags.

In future work, we would like to consider using

CRFs in place of MEMMs. Also, other approximate

decoders used in pipeline approaches could be ex-

plored as alternatives to the one we used (e.g., Finkel

et al., 2006). Additionally, we wish to include our

model as a stage in a pipeline that segments, dia-

critizes, and labels morphemes. Since obtaining data

for these tasks is substantially more expensive, we

hope to use active learning to obtain more data.

Our framework is applicable for any sequence la-

beling task that can be done at either a word or a

sub-word (e.g., character) level. Segmentation and

lemmatization are particularly promising tasks to

which our approach could be applied.

Finally, for the sake of completeness, we note that

more recent work has been done based on our base-

line models that has emerged since the preparation

of the current work, particularly Zitouni et al. (2009)

and Mohamed et al. (2009). We wish to address any

improvements captured by this more recent work

such as the use of different data sets and addressing

problems with the hamza to decrease error rates.

Acknowledgments

We thank Imed Zitouni, Nizar Habash, Sandra

Kübler, and Emad Mohamed for their assistance in

reconstructing datasets, models, and features.

526

References

S. Ananthakrishnan, S. Narayanan, and S. Bangalore.

2005. Automatic diacritization of Arabic transcripts

for automatic speech recognition. In Proceedings of

the International Conference on Natural Language

Processing.

A. L. Berger, S. Della Pietra, and V. J. Della Pietra. 1996.

A maximum entropy approach to natural language pro-

cessing. Computational Linguistics, 22:39–71.

Y. A. El-Imam. 2008. Synthesis of the intonation of neu-

trally spoken Modern Standard Arabic speech. Signal

Processing, 88(9):2206–2221.

T. A. El-Sadany and M. A. Hashish. 1989. An Ara-

bic morphological system. IBM Systems Journal,

28(4):600–612.

J. R. Finkel, C. D. Manning, and A. Y. Ng. 2006. Solv-

ing the problem of cascading errors: Approximate

Bayesian inference for linguistic annotation pipelines.

In Proceedings of the 2006 Conference on Empirical

Methods in Natural Language Processing, pages 618–

626.

Y. Gal. 2002. An HMM approach to vowel restoration

in Arabic and Hebrew. In Proceedings of the ACL-

02 Workshop on Computational Approaches to Semitic

Languages, pages 1–7.

N. Habash and O. Rambow. 2007. Arabic diacritiza-

tion through full morphological tagging. In Human

Language Technologies 2007: The Conference of the

North American Chapter of the Association for Com-

putational Linguistics; Companion Volume, Short Pa-

pers, pages 53–56.

G. Kiraz. 1994. Automatic concordance generation of

Syriac texts. In R. Lavenant, editor, VI Symposium

Syriacum 1992, pages 461–471, Rome, Italy.

G. A. Kiraz. 2000. Multitiered nonlinear morphology

using multitape finite automata: a case study on Syr-

iac and Arabic. Computational Linguistics, 26(1):77–

105.

D. Klein and C. D. Manning. 2002. Conditional structure

versus conditional estimation in NLP models. In Pro-

ceedings of the 2002 Conference on Empirical Meth-

ods in Natural Language Processing, pages 9–16.

S. Kübler and E. Mohamed. 2008. Memory-based vocal-

ization of Arabic. In Proceedings of the LREC Work-

shop on HLT and NLP within the Arabic World.

M. Maamouri, A. Bies, T. Buckwalter, and W. Mekki.

2004. The Penn Arabic Treebank: Building a large-

scale annotated Arabic corpus. In Proceedings of the

NEMLAR Conference on Arabic Language Resources

and Tools, pages 102–109.

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz.

1994. Building a large annotated corpus of En-

glish: The Penn Treebank. Computational Linguistics,

19:313–330.

A. McCallum, D. Freitag, and F. Pereira. 2000. Maxi-

mum entropy Markov models for information extrac-

tion and segmentation. In Proceedings of the 17th In-

ternational Conference on Machine Learning, pages

591–598.

E. Mohamed and S. Kübler. 2009. Diacritization for

real-world Arabic texts. In Proceedings of Recent Ad-

vances in Natural Language Processing 2009.

R. Nelken and S. M. Shieber. 2005. Arabic diacritiza-

tion using weighted finite-state transducers. In Pro-

ceedings of the ACL Workshop on Computational Ap-

proaches to Semitic Languages, pages 79–86.

J. Pearl and G. Shafer. 1988. Probabilistic reasoning

in intelligent systems: networks of plausible inference.

Morgan Kaufman, San Mateo, CA.

D. Vergyri and K. Kirchhoff. 2004. Automatic diacritiza-

tion of Arabic for acoustic modeling in speech recog-

nition. In Proceedings of the COLING 2004 Workshop

on Computational Approaches to Arabic Script-based

Languages, pages 66–73.

D. Yarowsky. 1999. A comparison of corpus-based tech-

niques for restoring accents in Spanish and French

text. Natural language processing using very large

corpora, pages 99–120.

Zefania XML Project. 2009. Zefania XML bible:

Leningrad codex. http://sourceforge.

net/projects/zefania-sharp/files/

Zefania\%20XML\%20Bibles\%204\

%20hebraica/Leningrad\%20Codex/sf_

wcl.zip/download.

I. Zitouni and R. Sarikaya. 2009. Arabic diacritic

restoration approach based on maximum entropy mod-

els. Computer Speech & Language, 23(3):257–276.

I. Zitouni, J. S. Sorensen, and R. Sarikaya. 2006. Max-

imum entropy based restoration of Arabic diacritics.

In Proceedings of the 21st International Conference

on Computational Linguistics and 44th Annual Meet-

ing of the Association for Computational Linguistics,

pages 577–584.

527

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 528–536,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Urdu Word Segmentation

Nadir Durrani Sarmad Hussain

Institute for NLP Center for Research in Urdu Language Processing

Universität Stuttgart National University of Computer and Emerging Sciences
durrani@ims.uni-stuttgart.de sarmad.hussain@nu.edu.pk

Abstract

Word Segmentation is the foremost obligatory task in

almost all the NLP applications where the initial phase

requires tokenization of input into words. Urdu is

amongst the Asian languages that face word segmenta-

tion challenge. However, unlike other Asian languages,

word segmentation in Urdu not only has space omission

errors but also space insertion errors. This paper dis-

cusses how orthographic and linguistic features in Urdu

trigger these two problems. It also discusses the work

that has been done to tokenize input text. We employ a

hybrid solution that performs an n-gram ranking on top

of rule based maximum matching heuristic. Our best

technique gives an error detection of 85.8% and over-

all accuracy of 95.8%. Further issues and possible fu-

ture directions are also discussed.

1 Introduction

All language processing applications require input

text to be tokenized into words for further

processing. Languages like English normally use

white spaces or punctuation marks to identify word

boundaries, though with some complications, e.g.

the word “e.g.” uses a period in between and thus

the period does not indicate a word boundary.

However, many Asian languages like Thai, Khmer,

Lao and Dzongkha do not have word boundaries

and thus do not use white space to consistently

mark word endings. This makes the process of

tokenization of input into words for such languages

very challenging.

Urdu is spoken by more than 100 million people,

mostly in Pakistan and India
1
. It is an Indo-Aryan

language, written using Arabic script from right to

left, and Nastalique writing style (Hussain, 2003).

1 Ethnologue.com

http://www.ethnologue.com/14/show_language.asp?code=UR

D

Nastalique is a cursive writing system, which also

does not have a concept of space. Thus, though

space is used in typing the language, it serves other

purposes, as discussed later in this paper. This en-

tails that space cannot be used as a reliable delimi-

ter for words. Therefore, Urdu shares the word

segmentation challenge for language processing,

like other Asian languages.

This paper explains the problem of word segmen-

tation in Urdu. It gives details of work done to

investigate linguistic typology of words and moti-

vation of using space in Urdu. The paper then

presents an algorithm developed to automatically

process the input to produce consistent word seg-

mentation, and finally discusses the results and

future directions.

2 Urdu Writing System

Urdu is written in cursive Arabic script. Characters

in general join with the neighbors within a word

and in doing so acquire different shapes. Logically,

a character can acquire up to four shapes, i.e. ini-

tial, medial, final position in a connected sequence

or an isolated form. The characters having this

four-way shaping are known as joiners. However,

another set of characters only join with characters

before them but do not join with character after

them, and are termed as non-joiners. The non-

joiners only have final and isolated forms. For

example Arabic Letter Farsi Yeh ی is a joiner and

has four shapes ی ,ي ,ی and ی respectively and

Arabic letter Dal د is a non-joiner and has two

forms د and د only. The shape that these characters

acquire depends upon the context.

Table 1 lists the orthographic rules that Urdu cha-

racters follow. For example, the table shows that in

the middle of a word, if the character is a non-

joiner, it acquires final shape when following a

528

joiner and isolated shape when following a non-

joiner. This joining behavior results in formation

of multiple connected portions within a word, each

called a ligature.

Table 1: Orthographic Rules for Urdu

The concept of space as a word boundary marker is

not present in Urdu writing. As an Urdu learner, a

person is not taught to leave a space between

words, but only to generate correct shaping while

writing. Thus, the concept of space is only learnt

later on when the person learns how to use a com-

puter. However, space is introduced as a tool to

control the correct letter shaping and not to consis-

tently separate words. For example, the native

speaker learns to insert a space within the word

 to generate the correct shape (”needy“) ضرورت مند

of ت. Without space it appears as ضرورتمند which

is visually incorrect. On contrary, the user finds it

unnecessary to insert a space between the two

words اردومرکز (“Urdu Center”), because the cor-

rect shaping is produced automatically as the first

word ends with a non-joiner. Therefore اردومرکز
and اردو مرکز look identical.

Though space character is not present in Urdu,

with increasing usage of computer it is now being

used, both to generate correct shaping (as dis-

cussed above) and also to separate words (a habit

being carried over to Urdu from English literate

computer users). This makes space an unreliable

cue for word boundary. The problem is further ob-

fuscated by the lack of a clear definition of a work

in Urdu in some contexts. The next section dis-

cusses these issues.

3 Segmentation Issues in Urdu Text

The segmentation challenges can be divided into

two categories, challenges caused due to joiner and

non-joiner characters.

3.1 Space Omission

As discussed, for words ending with non-joiners

correct shaping is generated even when space is

not typed and thus, many times a user omits the

space. Though there is no visible implication,

from the perspective of computational processing

not typing a space merges current word with the

next word. Figure 1 below illustrates an example,

where the phrase has eight words (or tokens) each

ending with a non-joiner and thus the whole

phrase can be written without a space and is still

visibly same and equally readable.

 قافلے کے صدر احمد شير ڈوگر نے کہا

(a)
 قافلےکےصدراحمدشيرڈوگرنےکہا

(b)

Figure 1: All Words Ending with Non-Joiners (a)

with Spaces, (b) without Spaces between Words

(“Troop Leader Ahmed Sher Dogar Said”)

Another frequent set of space omissions are caused

due to variation in the definition of a word in Urdu.

There are certain function words in Urdu which

may be combined with other function words and

content words by some writers but may be written

separately by others. Shape variation may also

occur in some of these cases, but is overlooked by

the writers. Table 2 gives some examples of such

cases. Though the merged form is not considered

correct diction, it is still frequently used and thus

has to be handled. It is not considered spelling

error but a writing variation.

POS Combined Separated Translation

Pn+CM آپ کا آپکا Yours

D+ NN اس وقت اسوقت at that time

CM+ NN کی طرف کيطرف Towards

V+TA کرے گی کریگی will do

CM + P کے ليے کيليے For

Pn = Pronoun, D = Demonstrative, NN = Noun, CM

= Case Marker, V=Verb, P = Particle

Table 2: Multiple Words Written in Connected

Form Causing Shaping Changes

Due to reasonable frequency of such cases, these

may be considered as acceptable alternatives, and

thus Urdu word segmentation system would need

to deal with both forms and consider them equiva-

lent. This process is productively applicable and

Word J-Shape Example NJ-Shape Example

Start I مسجد Is دجال

Middle

M after J نمره F after J بندر
I after NJ دمبا Is after J نادر

End

F after J عجم F after J بند
Is after NJ کام Is after NJ رد

J = Joiners, NJ = Non-Joiners

I = Initial, Is = Isolated, M = Medial, F = Final

Underlined = Shape in Consideration

529

not limited to a few pre-determined cases. Addi-

tional complication in the process arises from the

fact that in some cases (last two cases in Table 2)

the spellings also change when two words are writ-

ten in combined form, due to the way these charac-

ters are encoded. Urdu considers ی and ے both

logically same characters at a certain level, though

with different shapes to indicated different vowels

(Hussain, 2004). In combined form they render the

same shape. However, Unicode terms ے as a non-

joiner with no medial shape. Thus, the Urdu writ-

ers use ی to generate the medial position of ے in

combined form.

3.2 Space Insertion

When multiple morphemes are juxtaposed within a

word, many of them tend to retain their shaping as

separate ligatures. If ending characters are joiners,

space is usually inserted by writers to prevent them

from joining and thus to retain the separate ligature

identity. This causes an extra space within a word.

Though this creates the visually acceptable form, it

creates two tokens from a single word in the con-

text of its processing. If the writers do not type a

space between these two morphemes within a word

they would join and create a visually incorrect

shape. Such examples are common in Urdu
2
. Few

of these cases are given in Table 3.

Class A B Translation

i شادیشده شادی شده Married

ii مومبتی موم بتی Candle

iii خواہمخواه خواه مخواه Unnecessarily

iv ٹيليفون ٹيلی فون Telephone

v پيایچڈی پی ایچ ڈی PhD

i= Affixation, ii = Compounding ,

iii = Reduplication, iv = Foreign Word,

v = Abbreviations

Table 3: (A) Separated Form (Correct Shaping, but

Two Tokens), (B) Combined Form (Erroneous

Shaping, with one Token)

As categorized in Table 3, the space insertion

problem is caused due to multiple reasons. Data

analyzed shows that space is inserted (i) to keep

affixes separate from the stem, (ii) in some cases,

2 Though Unicode recommends using Zero Width Non-Joiner

character in these context, this is not generally known by Urdu

typists and thus not practiced; Further, this character is not

available on most Urdu keyboards.

to keep two words compounded together from vi-

sually merging, (iii) to keep reduplicated words

from combining, (iv) to enhance readability of

some foreign words written in Urdu, and (v) to

keep English letters separate and readable when

English abbreviations are transliterated.

3.3 Extent of Segmentation Issues in Urdu

In an earlier work on Urdu spell checking (Naseem

and Hussain, 2007) report that a significant number

of spelling errors
3
 are due to irregular use of space,

as discussed above. The study does a spelling

check of an Urdu corpus. The errors reported by

the spelling checker are manually analyzed. A to-

tal of 975 errors are found and of which 736 errors

were due to irregular use of space (75.5%) and 239

errors are non-space-related errors (24.5%). Of the

space related errors, majority of errors (672 or 70%

of total errors) are due to space omission and 53

errors (5%) were due to space insertion. Thus irre-

gular use of space causes an extremely high per-

centage of all errors and has to be addressed for all

language processing applications for Urdu.

A study of Urdu words was also conducted as part

of the current work. Text was used from popular

Urdu online news sites (www.bbc.co.uk/urdu and

http://search.jang.com.pk/). A data of 5,000 words

from both corpora was observed and space inser-

tion and omission cases were counted. These

counts are given in Table 4. Counts for Space In-

sertion are sub-divided into the four categories

identified earlier.

Problem BBC Jang Total

Space Omission 373 563 936

Space Insertion

 Affixation 298 467 765

 Reduplication 52 76 128

 Compounding 133 218 351

 Abbreviation 263 199 462

Total 1119 1523 2642

Table 4: Space Omission and Insertion Counts

from Online BBC and Jang Urdu News Websites

The data shows that a significantly high percentage

of errors related to space, with significant errors

3 Errors based on tokenization on space and punctuation mark-

ers

530

related to both omission and insertion. Within in-

sertion errors, affixation, compounding and ab-

breviation related errors are more significant

(because reduplication is a less frequent phenome-

non).

In summary, the space related errors are significant

and must be addressed as a precursor to any signif-

icant language and speech processing of the lan-

guage

3.4 Ambiguity in Defining Urdu Word

Another confounding factor in this context it that

there is no clear agreement on word boundaries of

Urdu in some cases.

Compound words are hard to categorize as single

or multiple words. Urdu forms compounds in

three ways: (i) by placing two words together, e.g.

 (ii) ,(”parents”, literally “father mother“) ماں باپ

by putting a combining mark between them
4
, e.g.

 and (iii) by putting ,(”prime minister“) وزیر اعظم

the conjunction و between two words, e.g. نظم و
 .(”Discipline“) ضبط

Similarly certain cases of reduplication are also

considered a single word by a native speaker, e.g.

 while others ,(”equal“) برابر and (”fluently“) فرفر

are not, e.g. آہستہ آہستہ (“slowly”). There are also

cases which are ambiguous, as there is no agree-

ment even within native speakers.

Moreover, certain function words, normally case

markers, postpositions and auxiliaries, may be

written joined with other words in context or sepa-

rately. The words like ليے کے may also be written

in joined form کيليے, and the different forms may

be perceived as multiple or single words respec-

tively.

This is demonstrated by the results of a study done

with 30 native speakers of Urdu (including univer-

sity students, language researchers and language

teachers). The subjects were asked to mark wheth-

er they considered some text a single word or a

sequence of two words. Some relevant results are

given in Table 5. The table indicates that for the

types of phenomena in Table 4, the native speakers

4 The diacritics (called zer-e-izafat or hamza-e-izafat) are op-

tional, and are not written in the example given.

do not always agree on the word boundary, that

certain cases are very ambiguous, and that writing

with or without space also changes the perception

of where the word boundary should lie.

Word(s) # of Words Category

1 2

 Compounding with 6 24 وزیرمملکت

conjunctive diacritic

 -do- 13 17 حکومتِ پاکستان

 -do- 2 28 صورتِ حال

 -do- 2 28 صورتحال

 Compounding with 5 25 امن وامان

conjunctive character و
 -do- 1 29 نشو ونما

 Suffixation 0 30 عقيدت مندی

 -do- 8 22 جرائم پيشہ

 Reduplication 27 3 جگہ جگہ

 -do- 27 3 ساتھ ساتھ

 Space omission between 15 15 ہوگی

two auxiliaries

 Space omission between 12 18 جائيگا

verb and auxiliary

 Same as above but 25 5 جائے گا

without space omission

Table 5: Survey on Word Definition

As the word boundary is ambiguously perceived, it

is not always clear when to mark it. To develop a

more consistent solution, the current work tags the

different levels of boundaries, and it is left up to

the application provider using the output to decide

which tags to translate to word level boundaries.

Free morphemes are placed and identified at first

level. At second level we identify strings that are

clearly lexicalized as a single word. Compounds,

reduplication and abbreviations are dealt at third

level.

4 Summary of Existing Techniques

Rule based techniques have been extensively used

for word segmentation. Techniques including

longest matching (Poowarawan, 1986; Rarunrom,

1991) try to match longest possible dictionary

look-up. If a match is found at n
th
 letter next look-

up is performed starting from n+1 index. Longest

matching with word binding force is used for Chi-

nese word segmentation (Wong and Chang, 1997).

However, the problem with this technique is that it

consistently segments a letter sequence the same

way, and does not take the context into account.

531

Thus, shorter word sequences are never generated,

even where they are intended.

Maximum matching is another rule based tech-

nique that was proposed to solve the shortcomings

of longest matching. It generates all possible seg-

mentations out of a given sequence of characters

using dynamic programming. It then selects the

best segmentation based on some heuristics. Most

popularly used heuristic selects the segmentation

with minimum number of words. This heuristic

fails when alternatives have same number of

words. Some additional heuristics are then often

applied, including longest match (Sornlertlamva-

nich, 1995). Many variants of maximum matching

have been applied (Liang, 1986; Li et al., 1991; Gu

and Mao, 1994; Nie et al., 1994).

There is a third category of rule based techniques,

which also use additional linguistic information for

generating intermediate solutions which are then

eventually mapped onto words. For example, rule

based techniques have also been applied to lan-

guages like Thai and Lao to determine syllables,

before syllables are eventually mapped onto words,

e.g. see (Phissamy et al., 2007).

There has been an increasing application of statis-

tical methods, including n-grams, to solve word

segmentation. These techniques are based at let-

ters, syllables and words, and use contextual in-

formation to resolve segmentation ambiguities, e.g.

(Aroonmanakul, 2002; Krawtrakul et al., 1997).

The limitation of statistical methods is that they

only use immediate context and long distance de-

pendencies cannot be directly handled. Also the

performance is based on training corpus. Neverthe-

less, statistical methods are considered to be very

effective to solve segmentation ambiguities.

Finally, another class of segmentation techniques

applies several types of features, e.g. Winnow and

RIPPER algorithms (Meknavin et al., 1997; Blum

1997). The idea is to learn several sources of fea-

tures that characterize the context in which each

word tends to occur. Then these features are com-

bined to remove the segmentation ambiguities

(Charoenpornsawat and Kijsirikul 1998).

5 Segmentation Model for Urdu

Although many other languages share the same

problem of word boundary identification for lan-

guage processing, Urdu problem is unique due to

its cursive script and its irregular use of space to

create proper shaping. Though other languages

only have space omission challenge, Urdu has both

omission and insertion problems further confound-

ing the issue.

We employ a combination of techniques to inves-

tigate an effective algorithm to achieve Urdu seg-

mentation. These techniques are incorporated

based on knowledge of Urdu linguistic and writing

system specific information for effective segmen-

tation. For space omission problem a rule based

maximum matching technique is used to generate

all the possible segmentations. The resulting possi-

bilities are ranked using three different heuristics,

namely min-word, unigram and bigram techniques.

For space insertion, we first sub-classify the prob-

lem based on linguistic information, and then use

different techniques for the different cases. Space

insertion between affixes is done by extracting all

possible affixes from Urdu corpus. Some affixes in

Urdu are also free morphemes so it is important to

identify in segmentation process whether or not

they are part of preceding or following word. For

example ناک is also a free morpheme (“nose”) and

a suffix that makes adjective from noun, e.g. in

word خطر ناک (“dangerous”). This is done based

on the part of speech information of the words in

the context.

Reduplication is handled using edit distance algo-

rithm. In Urdu the reduplicated morpheme is either

the same or a single edit-distance from the base

morpheme, e.g. فرفر has same string repeated, برابر
has one insertion, and ٹھيک ٹھاک has one substitu-

tion. Thus, if a string is less than two edits from its

neighbor it is an instance of reduplication
5
. As the

examples suggest, the reduplication may not only

be limited to word initial position and may also

occur word medially. However, if the length of

base word is less than four, it is further to avoid

function words (case markers, postpositions, aux-

5 Insertion, deletion and substitution are all considered contri-

buting a single edit distance here.

532

iliaries, etc.) from being mistakenly identified as a

case of reduplication, e.g. کيا گيا (“was done”) has

two words with a single edit distance but is not a

reduplicated sequence.

Urdu does not abbreviate strings, but abbreviations

from English are frequently transliterated into Ur-

du. This sequence can be effectively recognized by

developing a simple finite automaton. The automa-

ton treats marks all such co-occurring morphemes

because they are likely to be an English abbrevia-

tion transliterated into Urdu, e.g. پی ایچ ڈی
(“PhD”). If such morphemes are preceding proper

names then these are not combined as they are

more likely to be the initials of an abbreviated

name, e.g. ڈی شاکر این (“N. D. Shakir”). This ap-

proach confuses the morpheme کے (genitive case

marker) of Urdu with the transliteration of English

letter “k”. If we write ڈی کے بعد پی ایچ (“after

PhD”), it is interpreted as “P H D K after”. This

has to be explicitly handled.

As classification of compounds into one or two

word sequences is unclear, unambiguous cases are

explicitly handled via lexical look-up. An initial

lexicon of 1850 compound words has been devel-

oped for the system based on a corpus of Urdu.

Common foreign words are also included in this

list.

5.1 Algorithm

The segmentation process starts with pre-

processing, which involves removing diacritics (as

they are optionally used in Urdu and not consi-

dered in the current algorithm because they are

frequently incorrectly marked by users
6
) and nor-

malizing the input text to remove encoding ambi-

guities
7
. Input is then tokenized based on space

and punctuation characters in the input stream. As

has been discussed, space does not necessarily in-

dicate word boundary. However presence of space

does imply word or morpheme boundary in many

6 The word ٰاعلی is written with the super-script Alef placed

on Lam and Yay characters. The latter variation is correct but

the former incorrect variation is also common in the corpus.
7 Unicode provides multiple codes for a few letters, and both

composed and decomposed forms for others. These have to be

mapped onto same underlying encoding sequence for further

processing. See

http://www.crulp.org/software/langproc/urdunormalization.ht

m for details.

cases, which can still be useful. The tokenization

process gives what we call an Orthographic Word

(OW). OW is used instead of “word” because one

OW may eventually give multiple words and mul-

tiple OWs may combine to give a single word.

Keeping space related information also keeps the

extent of problem to be solved within a reasonable

computational complexity. For example input

string نادر خان درانی (the name of the first author)

with spaces giving three OWs, creates 2 x 1 x 7 =

14 possible segmentations when sent separately to

the maximum matching module (space omission

error removal - see Figure 2). However, if we re-

move the spaces from the input and send input as a

single OW نادرخاندرانی to maximum matching

process, we get 77 possible segmentations. This

number grows exponentially with the length of

input sentence. Throwing away space character

means we are losing important information so we

keep that intact to our use.

After pre-processing a series of modules further

process the input string and convert the OWs into a

sequence of words. This is summarized in Figure

2 and explained below.

Each OW is sent to a module which deals with

space omission errors. This module extracts all

possible morpheme segmentations out of an OW.

Ten best segmentations of these are selected based

on minimum-word heuristic. This heuristic prefers

segmentations with minimum number of mor-

phemes. Such a heuristic is important to prevent

the search space to explode. We observed that us-

ing 10-best segmentations proved to be sufficient

in most cases as OW normally encapsulates two or

three Urdu words but as a heuristic we also added a

feature which increases this number of 10-best

segmentations to 15, 20, 25-best and so on depend-

ing upon number of characters in an OW. Ten best

segmentations for each OW are merged with the

extracted segmentations of other OWs. Up till here

we have successfully resolved all space omission

errors and the input sentence has been segmented

into morphemes. The 10
n (

where ‘n’ is No. of

OWs) segmentations are then passed on to space

insertion error removal module. This module has

several sub-modules that handle different linguistic

phenomena like reduplication, affixation, abbrevia-

tions and compounding.

533

The reduplication identification module employs

single edit distance algorithm to see if adjacent

morphemes are at single edit-distance of each oth-

er. If the edit distance is less than two, then the

reduplication is identified and marked.

Diacritic Removal / Tokenization

Space Omission Error Removal

Check for Reduplication within an OW

Lexical Look-ups for Spelling Variations

Maximum Matching Module

Ranking-based on Min-Word Heuristic

Space Insertion Error Removal

Reduplication Handling

English Abbreviation Handling

Affixation Handling

Compound Word Tagging

N-Gram Based Ranking

Figure 2: Urdu Word Segmentation Process

 For example the module will correctly recognize

consecutively occurring OWs Rبھو and Rبھا as a

case of reduplication. Reduplication is also ap-

plied earlier in space omission error module as

there may also be a case of reduplication within a

single OW. This module handles such cases, by

dividing words in halves and identifying possible

reduplications. Thus, if the words are written

without space, e.g. RبھاRبھو (innocent) they are

still identified and tagged as reduplicated words

Rبھو and Rبھا.

This list of words is then fed into an automaton

which recognizes the sequence of abbreviations

generated by transliterating English letters.

A complete affix list is compiled, and in the next

stage the short listed word sequences are processed

through a process which looks through this list to

determine if any of the OWs may be combined.

Part of speech information of stem is also used to

confirm if OWs can be merged.

Urdu compounds are finally identified. This is

done by using a compound list generated through

the corpus. As compounding is arbitrary, where

speakers are not certain in many cases that a se-

quence of morphemes form a single compound or

not, the segmentation process leaves this level to

the discretion of the user. Whichever compounds

are listed in a compound lexicon are treated as a

single compound word. Those not listed are not

tagged as compounds. User may enhance this list

arbitrarily. The lexicon is initialized with a list of

non-controversial compound, as verified from pub-

lished dictionaries.

Eventually, all the segmentations are re-ranked.

We used three different re-ranking methods name-

ly minimum-word heuristic, unigram and bi-gram

based sequence probabilities, comparative analysis.

Based on the segmentation process, the output se-

quence contains the following tagging. As dis-

cussed earlier, the word segmentation may be

defined based on this tagging by the individual

application using this process.

Phenomenon Tags Examples

Word <W></W> <W>نSاع</W>

Root <R></R> <W><R>ضرورت</R>

<S>مند</S></W>

Suffix <S></S> <W><R>حيرت</R>

<S>انگيز</S></W>

Prefix <P></P> <W><P>بد</P>

<R>تہذیبی</R></W>

XY Com-

pounds

<C1></C1> <C1><W>انشاء</W>

<W>الله</W></C1>

X-e-Y Com-

pounds

<C2></C2> <C2><W>وزیر</W>

<W> لیاع </W></C2>

X-o-Y Com-

pounds

<C3></C3> <C3><W>گرد</W>

<W>و</W>

<W>نواح</W></C3>

Reduplication <Rd></Rd> <Rd><W>ٹھيک</W>

<W>ٹھاک</W></Rd>

Abbreviations <A> <A><W>پی</W>

<W>سی</W>

Figure 3: Urdu Word Segmentation Tag Set

A regular word is tagged using <w> …</w> pair.

Roots, suffixes and prefixes are also tagged within

a word. Reduplication, compounding and abbrevia-

tions are all considered to be multi-word tags and

relevant words are grouped within these tags.

Three different kind of compounding is separately

tagged.

534

6 Results

The algorithm was tested on a very small, manual-

ly segmented corpus of 2367 words. The corpus

we selected contained 404 segmentation errors

with 221 cases of space omissions and 183 cases of

space insertions. In space insertion category there

were 66 cases of affixation, 63 cases of compound-

ing, 32 cases of reduplication and 22 cases of ab-

breviations. The results for all three techniques are

shown below:

 Categories Errors %ages

 Affixation 59/66 89.39
 Reduplication 27/32 84.37

Abbreviations 19/22 86.36

Compounds 28/63 44.44

Total 133/183 72.67

Table 6: Percentages of Number of Errors Detected

in Different Categories of Space Insertion Error

There were 221 cases of space omission errors

where multiple words were written in a continuum.

Given below is a table that shows how many of

these were correctly identified by each of the used

techniques. Clearly, statistical techniques outper-

form a simple minimum number of words heuris-

tic. Bigrams are likely to produce better results if

the training corpus is improved. Our training cor-

pus contained manually segmented 70K words.

The bigram probabilities are obtained using

SRILM-Toolkit (Stolcke, 2002).

 Categories Errors %ages

Maximum Matching 186/221 84.16

Unigram 214/221 96.83

Bigram 209/221 94.5

Table 7: %age of No. of Errors Detected in Space

Omission with Different Ranking Techniques

Following table gives cumulative results for cor-

rectly identified space omission and insertion er-

rors.

 Categories Errors %ages

Maximum Matching 323/404 79.95

Unigram 347/404 85.8

Bigram 339/404 83.9

Table 8: %age of No. of Errors Detected Cumula-

tively

Final table counts total number of words (redupli-

cation, compounds and abbreviations cases are in-

clusive) in test corpus and total number of

correctly identified words after running the entire

segmentation process.

 Categories Detected %ages

Maximum Matching 2209/2367 93.3

Unigram 2269/2367 95.8

Bigram 2266/2367 95.7

Table 9: Percentage of Correctly Detected Words

7 Future Work

This work presents a preliminary effort on word

segmentation problem in Urdu. It is a multi-

dimensional problem. Each dimension requires a

deeper study and analysis. Each sub-problem has

been touched in this work and a basic solution for

all has been devised. However to improve on re-

sults each of these modules require a separate

analysis and study. Statistics is only used in rank-

ing of segmentations. In future work bi-gram sta-

tistics can be used to merge morphemes. More data

can be tagged to find out joining probabilities for

the affixes that occur as free morpheme. Such

analysis will reveal whether an affix is more in-

clined towards joining or occurs freely more fre-

quently. Similarly a corpus can be tagged on

compounds. For each morpheme its probability to

occur in compound can be calculated. If two or

more morphemes with higher compounding proba-

bilities co-occur they can be joined together. Simi-

larly corpus can be tagged for abbreviations.

Ranking of segmentations and affix merging can

be improved if POS tags are also involved with

bigram probabilities. Use of POS tags with n-gram

technique is proven to be very helpful in solving

unknown word problems. Our model does not ex-

plicitly handle unknown words. Currently the max-

imum matching module splits an unknown OW

into smaller Urdu morphemes. For example

 is erroneously split into (Kolesnikov) کوليسينکوف

 More serious problems occur in .کولی،سين،کو،ف

cases when OW is a mixture of known and un-

known words. For example in case فریزرکوجاناہے
(“Fraser must go”). All these are to be addressed in

future work.

535

References

Andreas, S. 2002. SRILM - an extensible language

modeling toolkit. In Intl. Conf. Spoken Language

Processing, Denver, Colorado.

Aroonmanakul, W. 2002. Collocation and Thai

Word Segmentation. In proceeding of SNLPOrien-

tal COCOSDA.

Blum, A. 1997. Empirical Support for Winnow and

Weighted-Majority Algorithm: Results on a Ca-

lendar Scheduling Domain, Machine Learning,

26:5-23.

Charoenpornsawat, P., Kijsirikul, B. 1998. Fea-

ture-Based Thai Unknown Word Boundary Identi-

fication Using Winnow. In Proceedings of the

1998 IEEE Asia-Pacific Conference on Circuits

and Systems (APCCAS’98).

Gu, P. and Mao, Y. 1994. The adjacent matching

algorithm of Chinese automatic word segmentation

and its implementation in the QHFY Chinese-

English system. In International Conference on

Chinese Computing, Singapore.

Hussain, S. 2003. www. LICT4D . asia / Fonts /

Nafees_Nastalique. In the Proceedings of 12th

AMIC Annual Conference on E-Worlds: Govern-

ments, Business and Civil Society, Asian Media

Information Center, Singapore. Also available at

http://www.crulp.org/Publication/papers/2003/ww

w.LICT4D.asia.pdf.

Hussain, S. 2004. Letter to Sound Rules for Urdu

Text to Speech System. In the Proceedings of

Workshop on Computational Approaches to Arabic

Script-based Languages, COLING 2004, Geneva,

Switzerland, 2004.

Krawtrakul, A., Thumkanon. C., Poovorawan. Y.

and Suktarachan. M. 1997. Automatic Thai Un-

known Word Recognition. In Proceedings of the

natural language Processing Pacific Rim Sympo-

sium.

Li, B.Y., S. Lin, C.F. Sun, and M.S. Sun. 1991. A

maximum-matching word segmentation algorithm

using corpus tags for disambiguation. In

ROCLING IV, pages: 135-146, Taipei. ROCLING

Liang, N. 1986. A written Chinese automatic seg-

mentation system-CDWS. In Journal of Chinese

Information Processing, 1(1):44-52.

Meknavin. S., Charenpornsawat. P. and Kijsirikul.

B. 1997. Feature-based Thai Words Segmentation.

NLPRS, Incorporating SNLP.

Naseem, T., Hussain, S. 2007. Spelling Error

Trends in Urdu. In the Proceedings of Conference

on Language Technology (CLT07), University of

Peshawar, Pakistan.

Nie, J., Jin W., and Hannan, M. 1994. A hybrid

approach to unknown word detection and segmen-

tation of Chinese. In International Conference on

Chinese Computing, Singapore.

Phissamay, P., Dalolay,V., Chanhsililath, C., Sili-

masak, O. Hussain, S., and Durrani, N. 2007. Syl-

labification of Lao Script for Line Breaking. In

PAN Localization Working Papers 2004-2007. .

Poowarawan, Y., 1986. Dictionary-based Thai Syl-

lable Separation. In Proceedings of the Ninth Elec-

tronics Engineering Conference

Rarunrom, S., 1991. Dictionary-based Thai Word

Separation. Senior Project Report.

Sornlertlamvanich, V. 1995. Word Segmentation

for Thai in a Machine Translation System (in

Thai), Papers on Natural Language Processing,

NECTEC, Thailand

Wong, P., Chan, C. 1996. Chinese Word Segmen-

tation based on Maximum Matching and Word

Binding Force. In Proceedings of COLING 96, pp.

200-203.

536

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 537–545,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Enabling Monolingual Translators: Post-Editing vs. Options

Philipp Koehn
University of Edinburgh

10 Crichton Street
Edinburgh, EH8 9AB

Scotland, United Kingdom
pkoehn@inf.ed.ac.uk

Abstract

We carried out a study on monolingual trans-
lators with no knowledge of the source lan-
guage, but aided by post-editing and the dis-
play of translation options. On Arabic-English
and Chinese-English, using standard test data
and current statistical machine translation sys-
tems, 10 monolingual translators were able to
translate 35% of Arabic and 28% of Chinese
sentences correctly on average, with some of
the participants coming close to professional
bilingual performance on some of the docu-
ments.

While machine translation systems have advanced
greatly over the last decade, nobody seriously ex-
pects human-level performance any time soon, ex-
cept for very constraint settings. But are todays
systems good enough to enable monolingual speak-
ers of the target language without knowledge of
the source language to generate correct translations?
And what type of assistance from machine transla-
tion is most helpful for such translators?

We carried out a study that involved monolin-
gual translators who had no knowledge of Chinese
and Arabic to translate documents from the NIST
20081 test sets, being assisted by statistical machine
translation systems trained on data created under the
GALE2 research program.

Our study shows that monolingual translators
were able to translate 35% of Arabic and 28% of
Chinese sentences, under a strict standard of correct-
ness that scored professional bilingual translations
as 61% and 66% correct for Arabic and Chinese, re-
spectively. We found also large variability among
the participants and between the documents in the

1http://www.itl.nist.gov/iad/mig/tests/mt/
2http://www.darpa.mil/ipto/programs/gale/gale.asp

study, indicating the importance of general language
skills and domain knowledge. The results suggest
that a skilled monolingual translator can compete
with a bilingual translator, when using todays ma-
chine translation systems.

1 Related Work

The use of human translators in combination with
machine translation is as old as the emergence of
the first effective machine translation systems. Typi-
cally, this takes the form of a human translator post-
editing machine translation output, and rarely of a
human translator guiding the decisions of a machine
translation system. Recent examples of using post-
editing of machine translation in tools for transla-
tion tools are the Google Translator Toolkit (Galvez
and Bhansali, 2009) and the WikiBabel project (Ku-
maran et al., 2008).

A recent seminal effort on building interactive
machine translation systems (Langlais et al., 2000;
Barrachina et al., 2009) looked at a tighter integra-
tion of machine translation and human translation
by developing a prediction model that interactively
suggests translations to the human translator, taking
her prior translation decisions into account. This ap-
proach was recently re-implemented and extended
by Koehn (2009).

Our study uses both post-editing and the extended
interactive machine translation approach as types of
assistance for translations. In our case, however, we
look at monolingual translators, while prior work
has focused on bilingual translators.

Another effort to enable monolingual translators
looked at a more linguistically motivated tool using
syntactic analysis to inform their translation deci-
sions (Albrecht et al., 2009).

The quality of the translations produced by

537

monolingual translators was previously explored by
Callison-Burch (2005) in a submission to the NIST
2005 evaluation campaign, but not properly evalu-
ated. The idea of using post-editing by monolingual
speakers without access to the source as a metric to
evaluate machine translation quality of different sys-
tems was explored by Callison-Burch et al. (2009) in
the WMT 2009 shared task.

2 Human Translation

Except for constraint settings with a very limited
domain, translation quality by trained humans is
much higher than automatic translation methods.
Especially for the commercially most relevant field
of publication-quality translation of official reports,
product manuals, promotion material, web sites, and
so on, machine translation currently plays at most a
supportive role.

2.1 Translation Tools

The main draw-back of relying on professional hu-
man translators is their high cost. A number of tech-
nological advances in the industry have increased
the productivity of translators, and thus lowered
their cost, over the last two decades. The pervasive
use of computers and the Internet has reduced the
cost of management, and helped a industry where
translation is outsources many times over: from
the original customer to a translation agency, from
a translation agency to freelance translators, and
maybe some additional levels in between.

The use of computers has also led to the adoption
of tools such as translation memories3 (databases
of translated material that are queried for fuzzy
matches, i.e. translated sentences similar to the one
to be processed), monolingual and bilingual concor-
dances (showing words used in context, and their
translations), terminology databases, online dictio-
naries and thesauri, and basic editing tools such as
word processors and spell checkers (Desilets, 2009).

The use of machine translation has not yet made
great inroads into the toolbox of professional trans-
lators. Being reduced to mere post-editors of
badly machine translated texts is not an appealing
prospect, and machine translation is generally con-
sidered (rightly or wrongly) not yet good enough to

3for instance: Trados, http://www.trados.com/

increase productivity. More innovative use of ma-
chine translations such as interactive machine trans-
lation (Langlais et al., 2000) has not advanced much
beyond the research stage. There is rich potential for
improvements and entirely new tools.

2.2 Translation Skills

A fully qualified professional translator has to have
two sets of skills when translating a text. On the one
hand the language skills to generally understand the
source language and to write well in the target lan-
guage, and on the other hand the domain knowledge
to understand the content of a possibly very special-
ized technical document. Both skill sets may be hard
to find, especially in combination.

In fact, it is common practice in the translation
industry to differentiate translators according to their
qualifications. For instance, junior translators may
produce the first draft, and senior translators edit it
— which they will be able to do much faster than a
translation from scratch by themselves.

Human translation is also performed in a non-
professional environment by generally less quali-
fied volunteer translators. To give just a few ex-
ample: there are vibrant communities that concern
themselves with the translation of Wikipedia arti-
cles4 (Kumaran et al., 2008), open source software
documentation,5 movie subtitles,6 and even material
such as the TED conference talks.7

Research has shown that less qualified transla-
tors are able to increase their productivity and qual-
ity disproportionally when given automatic assis-
tance (Koehn and Haddow, 2009). Assistance may
be as limited as offering machine translation in a
post-editing environment, as for instance provided
by Google Translator Toolkit8 (Galvez and Bhansali,
2009) which provides a special function to translate
Wikipedia articles.

In this context, our work looks at one extreme of
the skill range: translators that have no knowledge
of the source language. While we would not expect
them to compete with professional translators that
have this knowledge, their inferior performance may

4http://en.wikipedia.org/wiki/Wikipedia:Translation
5http://l10n.kde.org/
6http://www.opensubtitles.org/
7http://www.ted.com/translate/
8http://translate.google.com/toolkit/

538

Figure 1: Translation Options shown to the monolingual translator. The machine translation of the Arabic input
sentence is: The us house of representatives adopted thursday a law calls for the withdrawal of us combat troops from
iraq by the first of april 2008, defying once again president george bush who opposed to setting any date.

be remedied as suggested above: their texts may be
edited by a more qualified translator, or their do-
main knowledge may augment the language skills
of a collaborating translator.

From the view of human translation, the main
question that this paper is trying to answer is: how
well can monolingual translators perform, given the
current quality of machine translation, and what
types of assistance offered by a machine translation
system is most helpful?

3 Machine Translation

Statistical machine translation has made great
progress over the last two decades, with chang-
ing models, learning methods, decoding algorithms,
decision rules, etc. While there is increasing ef-
fort to build grammar-based translation models that
take into account the recursive nature of language,
currently the most popular models are still phrase-
based.

3.1 Phrase-Based Models
In phrase based models, the input is segmented into
text chunks (that do not have to correspond to lin-
guistic phrases), each is translated and may be re-
ordered, and the output is assembled with the help
of a language model. The translations for individual
phrases are called translation options. Typically, up
to 20 translation options for each input phrase are
considered during decoding.

The large number of translation options and their

even larger combinatorial arrangement creates a
search space that is too large to exhaustively explore,
creating the need for a heuristic search algorithm.
During the heuristic search a search graph is con-
structed. This search graph can be converted into a
word lattice, which is useful for n-best list genera-
tion, or in our case interactive machine translation.

3.2 Interactive Machine Translation

The by-products of phrase-based models have been
used in a type of computer aided translation tool
called interactive machine translation. In these se-
tups, the human translator is creating the translation,
but receives suggestions how to complete the sen-
tence or is offered alternative translation options for
the input words and phrases.

The translation options that the decoder is us-
ing are ranked based on their probability and pre-
sented to the human translator, as done by Koehn
(2009). Sentence completion prediction is based on
the search graph (Barrachina et al., 2009). If the
human translator starts a translation that diverges
from the suggestion, the interactive translation tool
quickly computes a approximate match in the search
graph and uses this as a starting point for further pre-
dictions.

In our experiments, we offer both translation op-
tions and interactive sentence completion predic-
tions to the user. See Figure 1 for an example.

539

3.3 Arabic and Chinese

This paper is using machine translation systems for
Arabic–English and Chinese–English that were de-
veloped in the context of the recent GALE research
program funded by DARPA.

The choice of these two languages pairs has two
motivations: first, a lot of resources have gone
into improving translation quality for these language
pairs. An important question is how the improve-
ments in translation quality can be utilized.

The second motivation for choosing Arabic–
English and Chinese–English is that they are undeci-
pherably foreign for a typical European or American
speaker of English. The fact that both languages are
written in a different script already makes it impossi-
ble to spot cognates, except for the occasional num-
ber. In our study, the test subjects had to practically
exclusively rely on the given sentence translations or
phrase translations options.

3.4 Evaluation of Machine Translation

Chinese–English is considered significantly harder
than Arabic–English, as measured by automatic
metrics (which measure similarity to a human refer-
ence translation), human evaluation metrics such as
HTER (which measures the number of editing steps
necessary to correct the output into an acceptable
translation), or human judgment on the correctness
of the translation, its fluency or adequacy (which is
typically measured on a scale from 1 to 5).

All these metrics have been criticized in the past
as too simple, biased towards statistical systems,
non-repeatable, having low intra and inter-annotator
agreement, or plainly too expensive to use. How to
properly evaluate machine translation quality is still
an open problem.

From the view of machine translation evaluation,
this paper explores the question if current machine
translation systems have reached the goal to bring
across the meaning of a foreign text. The ability of
a monolingual target language speaker to produce
correct translations (based on her understanding of
the machine translation output) is a test for this goal.
It sets aside the problems of clumsy wordings and
grammatical errors. To relate this to traditional er-
ror metrics in machine translation: we focus on the
adequacy opposed to the fluency of translation.

Language Sentences Words
Arabic 9,320,356 228,712,189
Chinese 2,039,399 49,564,193

Table 1: Training data: number of sentences and English
words in the parallel training data

4 Experiment

We trained translation models using Moses (Koehn
et al., 2007) on the bilingual data provided by the
LDC, with additional monolingual data from the En-
glish Gigaword corpus for an interpolated 5-gram
language model. Basic statistics about the corpus
are given in Table 1. The systems are close to the
state of the art.

We used four news stories for each of the two lan-
guages for the monolingual translators. The news
stories were selected from the evaluation sets of the
2008 machine translation evaluation campaign orga-
nized by NIST. See Table 2 for details. The news
stories are rather short (around 10 sentences each),
since we opted for a variety of stories rather than
long stories.

The evaluation set comes with four reference
translations. This allowed us to use one of the refer-
ence translation as gold standard for the evaluation,
and the other three reference translations as competi-
tors for the monolingual translations.

We recruited 10 monolingual translators, students
at the University of Edinburgh for the study. None
of the students had knowledge of either Chinese or
Arabic. Each translator was given all eight stories
to translate, half of the stories with only the ma-
chine translation output (Post-editing task) and half
of the stories with interactive assistance as described
in Section 3.2: prediction of sentence completion
and translation options (Options).

In both cases, we also displayed the Arabic or
Chinese source sentence to the translator, which may
show some clues regarding punctuation, numbers, or
the length of source words. The translators had no
knowledge of the source script.

After all the translations were completed, we as-
sessed the translation quality. Since we did not have
access to bilingual speakers for this, we resorted to
the standard manual setup, where human judges are
asked to assess the quality of each sentence transla-

540

Story Headline Sent. Words
1: Chinese White House Pushes for Nuclear Inspectors to Be Sent as Soon as Possible to Mon-

itor North Korea’s Closure of Its Nuclear Reactors
6 207

2: Chinese Torrential Rains Hit Western India, 43 People Dead 10 204
3: Chinese Research Shows a Link between Arrhythmia and Two Forms of Genetic Variation 7 247
4: Chinese Veteran US Goalkeeper Keller May Retire after America’s Cup 10 367
5: Arabic Britain: Arrests in Several Cities and Explosion of Suspicious Car 7 224
6: Arabic Ban Ki-Moon Withdraws His Report on the Sahara after Controversy Surrounding

Its Content
8 310

7: Arabic Pakistani Opposition Leaders Call on Musharraf to Resign. 11 312
8: Arabic Al-Maliki: Iraqi Forces Are Capable of Taking Over the Security Dossier Any Time

They Want
8 255

Table 2: News stories used in the experiment with headlines from the reference translation

Assistance Arabic Chinese
Bilingual 61±6% 66±6%
Postediting 35±4% 26±4%
Options 34±4% 30±4%

Table 3: Correctness of translations (with 95% confi-
dence interval) under the two types of assistance, com-
pared against professional reference translations

tion compared to a reference translation in context
— the first reference translation in the NIST evalua-
tion set which was produced by a professional trans-
lation agency.

We used a strict evaluation metric: a binary judg-
ment, if the translation is correct. Correct was de-
fined as a fluent translation that contains the same
meaning in the document context. The reference
translation was shown with its document context
(two sentences before and after). We used a variant
of the web-based evaluation tool of the 2009 Work-
shop on Statistical Machine Translation.

5 Results

The headline results are displayed in Table 3. The
bilingual translations which were taken from the
other three reference sets score surprisingly low:
only about two thirds of the sentences were deemed
to be correct by our judges. This is a better result
than the monolingual translators performance, who
translate around one third of the sentences correctly,
except for a statistically significant worse showing
for post-editing Chinese–English.

Translator Arabic Chinese
bi1 67±10% 65±11%
bi2 49±10% 67±10%
bi3 67±10% 67±9%
mono1 48±11% 31±11%
mono2 29±10% 21±8%
mono3 26±10% 12±7%
mono4 50±11% 26±11%
mono5 25±10% 25±10%
mono6 26±9% 18±9%
mono7 23±10% 29±10%
mono8 50±11% 50±10%
mono9 42±10% 37±11%
mono10 25±9% 32±10%

Table 4: Correctness by translator (note: different bilin-
gual translators for Arabic and Chinese)

Translation speed of the monolingual translators
varied, but it was mostly around 500 words per hour
(7 seconds per word), which is roughly comparable
to the lower end of professional translation speed.

Table 4 shows the performance of the individual
translators. The 95% confidence intervals are very
wide, due to the few sentences that were translated
by each translator, but some monolingual transla-
tors are significantly better than others. Some of
the monolingual translators seem to compete head-
to-head with the professional bilingual translators:
three monolingual translators perform as well as one
of the bilingual translators for Arabic–English, al-
beit one has to be cautioned by the wide confidence
intervals. See also Figure 2 for a graphical display.

541

Story BLEU Bilingual Post-ed. Options
1: Chinese 42.8 76±16% 32±13% 40±13%
2: Chinese 24.8 70±10% 39±8% 33±9%
3: Chinese 35.1 61±12% 19±8% 17±7%
4: Chinese 26.7 64±11% 12±6% 36±9%
5: Arabic 43.6 60±14% 10±6% 13±7%
6: Arabic 48.5 57±13% 34±9% 43±9%
7: Arabic 60.5 72±10% 45±8% 36±9%
8: Arabic 55.7 50±13% 45±10% 39±10%

Table 5: Correctness by story and BLEU score of MT

Length Bilingual Post-ed. Options
Arabic ≤15 words 81±16% 56±15% 48±16%
Arabic 16–30 words 54±10% 41±8% 37±7%
Arabic >30 words 62±8% 27±6% 29±6%
Chinese ≤15 words 60±12% 48±10% 21±9%
Chinese 16–30 words 73±13% 25±9% 32±10%
Chinese >30 words 68±8% 17±5% 33±6%

Table 6: Correctness by sentence length

Similarly, performance on the different stories
varies (Table 5, Figure 3): For instance, the monolin-
gual translators struggled with the Chinese medical
and sports stories (no. 3 and 4) and the Arabic car
explosion story (no. 5), while even on average, they
are close to bilingual translation quality on the Ara-
bic stories 6 and 8. Note that correctness correlates
mildly with BLEU.

Surprisingly, we did not find a consistent effect
of sentence length on the quality of the translations
(see Table 6). We expected to find worse translations
among the longer sentences, but this is not the case
for the all conditions.

6 Analysis

Our results have shown that monolingual translators
are often able to produce correct translation when
post-editing output from current Arabic–English and
Chinese–English machine translation systems. For
Chinese–English, they are better when given addi-
tional assistance in form of translation options and
interactive machine translation.

We give in Figure 4 examples for translations
by machine translation, as well as monolingual and
bilingual translators.

One puzzle is the low score for the professional
human translators, as only two thirds of their trans-

(a) Critical judges

REF: Torrential Rains Hit Western India, 43 People Dead

BI: Heavy Rains Plague Western India Leaving 43 Dead

(b) Mistakes by the professional translators

REF: Over just two days on the 29th and 30th, rainfall in
Mumbai reached 243 mm.

BI: The rainfall in Mumbai had reached 243 cm over the
two days of the 29th and 30th alone.

(c) Bad English by monolingual translators

MONO: The western region of india heavy rain killed 43
people.

(d) Mistranslated / untranslated name

REF: Johndroe said that the two leaders ...

MT: Strong zhuo, pointing out that the two presidents ...

MONO: Qiang Zhuo pointed out that the two presidents ...

(e) Wrong relationship between entities

REF: The next match against Colombia will probably
be the US team’s and Keller’s last performance in this
America’s Cup competition.

MT: The colombian team for the match, and it is very
likely that the united states and kai in the americas cup
final performance.

MONO6: The Colombian team and the United States are
very likely to end up in the Americas Cup as the final
performance.

MONO8: The next match against Colombia is likely to
be the United States’ and Keller’s final performance in
the current Copa America.

(f) Badly muddled machine translation

REF: In the current America’s cup, he has, just as before,
been given an important job to do by head coach Bradley,
but he clearly cannot win the match singlehanded. The
US team, made up of ”young guards,”...

MT: He is still being head coach bradley appointed to
important, it’s even a fist ”, four young guards at the be-
ginning of the ”, the united states is...

MONO: He is still being considered important by head
coach Bradley who appointed him. It is a fight with ”four
young guards at the beginning of their careers”, but the
United States...

Figure 4: Examples of translations

542

bi1 bi2 bi3 mono1 mono2 mono3 mono4 mono5 mono6 mono7 mono8 mono9 mono10
0

10

20

30

40

50

60

70

80
Arabic
Chinese

Figure 2: Quality of different bilingual and monolingual translators: For Arabic, three monolingual translators are as
good as the worst bilingual translator (around 50% of sentences judged as correct). For detailed numbers, see Table 4.

Chinese Politics
Chinese Weather

Chinese Science
Chinese Sports

Arabic Terror
Arabic Diplomacy

Arabic Politics
Arabic Politics

0

10

20

30

40

50

60

70

80 Bilingual
Mono Post-Edit
Mono Options

Figure 3: Translation quality of monolingual translators differs significantly between stories: For the last Ararbic
politics stories average performance is close to bilingual quality, while it is bad for the Chinese science and sports as
well as the Arabic terror story. For detailed numbers, please see Table 5.

543

lations were deemed to be correct. The example (a)
shows such a translation, and it is hard to tell why it
was deemed wrong by all three judges who looked at
it. There are real mistakes in the professional trans-
lations, as example (b) shows, which mistakes the
rain fall amount as 243cm instead of 243mm.

Some monolingual translators, by the way, also
had problems with that number. The machine trans-
lation system is not very well in translating numbers,
which could be relatively easily addressed.

Sometimes monolingual translators are just not
thorough enough in their efforts, as example (c)
shows, where the output does have the correct mean-
ing elements, but it is just not correct English. These
type of examples explain the big difference between
the different monolingual translators.

A severe problem for monolingual translators are
untranslated or mistranslated names. In example (d)
Johndroe was referred to by monolingual transla-
tors as Qiang Zhuo or Strong Zhuo. The statistical
machine translation system we used has no special
name transliteration component, so often a name re-
mains untranslated. Without given the right transla-
tion as a choice, the monolingual is in no position of
completing a correct translation.

The monolingual translators’ world and domain
knowledge helps them a great deal to piece together
translations, but sometimes it is not enough, as ex-
ample (e) shows. There is some connection between
final performance, United States and Columbia, but
it is not the final performance for both teams as
MONO6 renders it. Translator MONO8 got it right,
but other translators made different mistakes.

Finally, there are some cases, as example (f)
shows, where the machine translation is just so bad,
that monolingual translators have no chance to ren-
der a proper translation of the sentence, especially
when only post-editing.

7 Conclusion

We approached this study from two directions: the
motivation to enable monolingual translators and the
need for a way to assess the quality of todays ma-
chine translation systems.

Coming from a human translator’s perspective,
we asked what type of assistance machine trans-
lation can provide for a human translator. We

compared the use of interactive machine translation
against post-editing, and found no significant differ-
ence for Arabic (34% vs. 35%), but better perfor-
mance with richer assistance for Chinese (30% vs.
26%). We believe that there is ample opportunity
to provide additional assistance and we will explore
this in future work.

Coming from a machine translation perspective,
we asked if current systems are good enough to
bring across the meaning of documents, even if gen-
erating output language with grammatical and id-
iomatic mistakes. Given the harsh metric we use to
assess translation quality (complete correctness of a
sentence), we showed that monolingual translators
were able to produce translations that were on aver-
age 35% (Arabic) and 28% (Chinese) correct, com-
pared to 61% (Arabic) and 66% (Chinese) correct-
ness for professional bilingual translations.

Arguable, the method we use to assess the preser-
vation of meaning in machine translation is superior
to subjective adequacy judgments: it separates the
task of defining the meaning of a machine transla-
tion from the assessment of its correctness.

We identified name and number translation as im-
portant aspects to improve performance on this task.

We also learned that there are significant differ-
ence between human translators, which indicates
that general language skills and effort are very im-
portant. We also learned that the performance varies
significantly for different documents in a way that
hints at the importance of domain knowledge. In
conclusion, a good monolingual translator has good
language skills in the target language and under-
stands the domain. In this case, this study suggests,
she may be as good as a professional bilingual trans-
lator.

Acknowledgement

This work was supported in part by the GALE pro-
gram of the Defense Advanced Research Projects
Agency, Contract No. HR0011-06-C-0022, and
in part by the EuroMatrixPlus project funded by
the European Commission (7th Framework Pro-
gramme). This study was made possible by the work
of the monolingual translators.

544

References

Albrecht, J., Hwa, R., and Marai, G. E. (2009).
Correcting automatic translations through collab-
orations between MT and monolingual target-lan-
guage users. In Proceedings of the 12th Confer-
ence of the European Chapter of the ACL (EACL
2009), pages 60–68, Athens, Greece. Association
for Computational Linguistics.

Barrachina, S., Bender, O., Casacuberta, F., Civera,
J., Cubel, E., Khadivi, S., Lagarda, A., Ney, H.,
Tomás, J., Vidal, E., and Vilar, J.-M. (2009). Sta-
tistical approaches to computer-assisted transla-
tion. Computational Linguistics, 35(1):3–28.

Callison-Burch, C. (2005). Linear B system descrip-
tion for the 2005 NIST MT evaluation exercise. In
Proceedings of Machine Translation Evaluation
Workshop.

Callison-Burch, C., Koehn, P., Monz, C., and
Schroeder, J. (2009). Findings of the 2009
Workshop on Statistical Machine Translation. In
Proceedings of the Fourth Workshop on Statis-
tical Machine Translation, pages 1–28, Athens,
Greece. Association for Computational Linguis-
tics.

Desilets, A. (2009). Up close and personal with a
translator - how translators really work. In Ma-
chine Translation Summit XII. Tutorial.

Galvez, M. and Bhansali, S. (2009). Translating
the world’s information with google translator
toolkit.

Koehn, P. (2009). A web-based interactive computer
aided translation tool. In Proceedings of the ACL
Interactive Poster and Demonstration Sessions.

Koehn, P. and Haddow, B. (2009). Interactive as-
sistance to human translators using statistical ma-
chine translation methods. In Machine Transla-
tion Summit XII.

Koehn, P., Hoang, H., Birch, A., Callison-Burch,
C., Federico, M., Bertoldi, N., Cowan, B., Shen,
W., Moran, C., Zens, R., Dyer, C. J., Bojar, O.,
Constantin, A., and Herbst, E. (2007). Moses:
Open source toolkit for statistical machine trans-
lation. In Proceedings of the 45th Annual Meet-
ing of the Association for Computational Linguis-
tics Companion Volume Proceedings of the Demo

and Poster Sessions, pages 177–180, Prague,
Czech Republic. Association for Computational
Linguistics.

Kumaran, A., Saravanan, K., and Maurice, S.
(2008). wikiBABEL; community creation of mul-
tilingual data. In Babel Wiki Workshop 2008:
Cross-Language Communication.

Langlais, P., Foster, G., and Lapalme, G. (2000).
Transtype: a computer-aided translation typing
system. In Proceedings of the ANLP-NAACL
2000 Workshop on Embedded Machine Transla-
tion Systems.

545

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 546–554,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Online Learning for Interactive Statistical Machine Translation

Daniel Ortiz-Martı́nez

Dpto. de Sist. Inf. y Comp.

Univ. Politéc. de Valencia

46071 Valencia, Spain

dortiz@dsic.upv.es

Ismael Garcı́a-Varea

Dpto. de Informática

Univ. de Castilla-La Mancha

02071 Albacete, Spain

ivarea@info-ab.uclm.es

Francisco Casacuberta

Dpto. de Sist. Inf. y Comp.

Univ. Politéc. de Valencia

46071 Valencia, Spain

fcn@dsic.upv.es

Abstract

State-of-the-art Machine Translation (MT)

systems are still far from being perfect. An al-

ternative is the so-called Interactive Machine

Translation (IMT) framework. In this frame-

work, the knowledge of a human translator is

combined with a MT system. The vast ma-

jority of the existing work on IMT makes use

of the well-known batch learning paradigm.

In the batch learning paradigm, the training of

the IMT system and the interactive translation

process are carried out in separate stages. This

paradigm is not able to take advantage of the

new knowledge produced by the user of the

IMT system. In this paper, we present an ap-

plication of the online learning paradigm to

the IMT framework. In the online learning

paradigm, the training and prediction stages

are no longer separated. This feature is par-

ticularly useful in IMT since it allows the user

feedback to be taken into account. The online

learning techniques proposed here incremen-

tally update the statistical models involved in

the translation process. Empirical results show

the great potential of online learning in the

IMT framework.

1 Introduction

Information technology advances have led to the

need for more efficient translation methods. Current

MT systems are not able to produce ready-to-use

texts. Indeed, MT systems usually require human

post-editing to achieve high-quality translations.

One way of taking advantage of MT systems is to

combine them with the knowledge of a human trans-

lator in the IMT paradigm, which is a special type of

the computer-assisted translation paradigm (Isabelle

and Church, 1997). An important contribution to

IMT technology was pioneered by the TransType

project (Foster et al., 1997; Langlais et al., 2002)

where data driven MT techniques were adapted for

their use in an interactive translation environment.

Following the TransType ideas, Barrachina et

al. (2009) proposed a new approach to IMT, in which

fully-fledged statistical MT (SMT) systems are used

to produce full target sentence hypotheses, or por-

tions thereof, which can be partially or completely

accepted and amended by a human translator. Each

partial, correct text segment is then used by the

SMT system as additional information to achieve

improved suggestions. Figure 1 illustrates a typical

IMT session.

source(f): Para ver la lista de recursos

reference(ê): To view a listing of resources

inter.-0
ep

es To view the resources list

inter.-1

ep To view

k a

es list of resources

inter.-2

ep To view a list

k list i

es list i ng resources

inter.-3

ep To view a listing

k o

es o f resources

accept ep To view a listing of resources

Figure 1: IMT session to translate a Spanish sen-

tence into English. In interaction-0, the system sug-

gests a translation (es). In interaction-1, the user

moves the mouse to accept the first eight characters

”To view ” and presses the a key (k), then the sys-

tem suggests completing the sentence with ”list of

resources” (a new es). Interactions 2 and 3 are sim-

ilar. In the final interaction, the user accepts the cur-

rent suggestion.

In this paper, we also focus on the IMT frame-

work. Specifically, we present an IMT system that is

able to learn from user feedback. For this purpose,

we apply the online learning paradigm to the IMT

framework. The online learning techniques that we

propose here allow the statistical models involved in

the translation process to be incrementally updated.

546

Figure 2 (inspired from (Vidal et al., 2007)) shows

a schematic view of these ideas. Here, f is the in-

put sentence and e is the output derived by the IMT

system from f . By observing f and e, the user inter-

acts with the IMT system until the desired output ê is

produced. The input sentence f and its desired trans-

lation ê can be used to refine the models used by the

system. In general, the model is initially obtained

through a classical batch training process from a pre-

viously given training sequence of pairs (fi,ei) from

the task being considered. Now, the models can be

extended with the use of valuable user feedback.

e

f

e

k

f

 Interactive

 SMT System

 Batch

Learning

 Online

Learning

 . . .

 f , e
 2 2

 f , e
 1 1

feedback/interactions

e

f ^

^

Incremental

Models

Figure 2: An Online Interactive SMT system

2 Interactive machine translation

IMT can be seen as an evolution of the SMT frame-

work. Given a sentence f from a source lan-

guage F to be translated into a target sentence e

of a target language E , the fundamental equation of
SMT (Brown et al., 1993) is the following:

ê = argmax
e

{Pr(e | f)} (1)

= argmax
e

{Pr(f | e)Pr(e)} (2)

where Pr(f | e) is approximated by a translation

model that represents the correlation between the

source and the target sentence and where Pr(e) is
approximated by a language model representing the

well-formedness of the candidate translation e.

State-of-the-art statistical machine translation

systems follow a loglinear approach (Och and Ney,

2002), where direct modelling of the posterior prob-

ability Pr(e | f) of Equation (1) is used. In this case,
the decision rule is given by the expression:

ê = argmax
e

{

M
∑

m=1

λmhm(e, f)

}

(3)

where each hm(e, f) is a feature function represent-
ing a statistical model and λm its weight.

Current MT systems are based on the use of

phrase-based models (Koehn et al., 2003) as transla-

tion models. The basic idea of Phrase-based Trans-

lation (PBT) is to segment the source sentence into

phrases, then to translate each source phrase into a

target phrase, and finally to reorder the translated

target phrases in order to compose the target sen-

tence. If we summarize all the decisions made dur-

ing the phrase-based translation process by means of

the hidden variable ãK
1 , we obtain the expression:

Pr(f |e) =
∑

K,ãK
1

Pr(f̃K
1 , ãK

1 | ẽ
K
1) (4)

where each ãk ∈ {1 . . .K} denotes the index of the
target phrase ẽ that is aligned with the k-th source

phrase f̃k, assuming a segmentation of length K.

According to Equation (4), and following a max-

imum approximation, the problem stated in Equa-

tion (2) can be reframed as:

ê ≈ arg max
e,a

{

p(e) · p(f ,a | e)
}

(5)

In the IMT scenario, we have to find an extension

es for a given prefix ep. To do this we reformulate

Equation (5) as follows:

ês ≈ arg max
es,a

{

p(es | ep) · p(f ,a | ep, es)
}

(6)

where the term p(ep) has been dropped since it does
depend neither on es nor on a.

Thus, the search is restricted to those sentences e

which contain ep as prefix. It is also worth mention-

ing that the similarities between Equation (6) and

Equation (5) (note that epes ≡ e) allow us to use

the same models whenever the search procedures are

adequately modified (Barrachina et al., 2009).

Following the loglinear approach stated in Equa-

tion (3), Equation (6) can be rewriten as:

ês = argmax
es,a

{

M
∑

m=1

λmhm(e,a, f)

}

(7)

547

which is the approach that we follow in this work.

A common problem in IMT arises when the user

sets a prefix (ep) which cannot be found in the

phrase-based statistical translation model. Differ-

ent solutions have been proposed to deal with this

problem. The use of word translation graphs, as a

compact representation of all possible translations

of a source sentence, is proposed in (Barrachina

et al., 2009). In (Ortiz-Martı́nez et al., 2009), a

technique based on the generation of partial phrase-

based alignments is described. This last proposal has

also been adopted in this work.

3 Related work

In this paper we present an application of the online

learning paradigm to the IMT framework. In the on-

line learning setting, models are trained sample by

sample. Our work is also related to model adapta-

tion, although model adaptation and online learning

are not exactly the same thing.

The online learning paradigm has been previ-

ously applied to train discriminative models in

SMT (Liang et al., 2006; Arun and Koehn, 2007;

Watanabe et al., 2007; Chiang et al., 2008). These

works differ from the one presented here in that we

apply online learning techniques to train generative

models instead of discriminative models.

In (Nepveu et al., 2004), dynamic adaptation of

an IMT system via cache-based model extensions to

language and translation models is proposed. The

work by Nepveu et al. (2004) constitutes a domain

adaptation technique and not an online learning

technique, since the proposed cache components re-

quire pre-existent models estimated in batch mode.

In addition to this, their IMT system does not use

state-of-the-art models.

To our knowledge, the only previous work on on-

line learning for IMT is (Cesa-Bianchi et al., 2008),

where a very constrained version of online learn-

ing is presented. This constrained version of online

learning is not able to extend the translation models

due to technical problems with the efficiency of the

learning process. In this paper, we present a purely

statistical IMT systemwhich is able to incrementally

update the parameters of all of the different models

that are used in the system, including the transla-

tion model, breaking with the above mentioned con-

straints. What is more, our system is able to learn

from scratch, that is, without any preexisting model

stored in the system. This is demonstrated empiri-

cally in section 5.

4 Online IMT

In this section we propose an online IMT system.

First, we describe the basic IMT system involved

in the interactive translation process. Then we in-

troduce the required techniques to incrementally up-

date the statistical models used by the system.

4.1 Basic IMT system

The basic IMT system that we propose uses a log-

linear model to generate its translations. According

to Equation (7), we introduce a set of seven feature

functions (from h1 to h7):

• n-gram language model (h1)

h1(e) = log(
∏|e|+1

i=1 p(ei|e
i−1
i−n+1)),

1 where

p(ei|e
i−1
i−n+1) is defined as follows:

p(ei|e
i−1
i−n+1) =

max{cX(ei
i−n+1)−Dn, 0}

cX(ei−1
i−n+1)

+

Dn

cX(ei−1
i−n+1)

N1+(ei−1
i−n+1•) · p(ei|e

i−1
i−n+2) (8)

where Dn =
cn,1

cn,1+2cn,2
is a fixed discount (cn,1

and cn,2 are the number of n-grams with one

and two counts respectively),N1+(ei−1
i−n+1•) is the

number of unique words that follows the history

ei−1
i−n+1 and cX(ei

i−n+1) is the count of the n-gram
ei
i−n+1, where cX(·) can represent true counts

cT (·) or modified counts cM (·). True counts are
used for the higher order n-grams and modified

counts for the lower order n-grams. Given a cer-
tain n-gram, its modified count consists in the

number of different words that precede this n-
gram in the training corpus.

Equation (8) corresponds to the probability given

by an n-gram language model with an interpolated

version of the Kneser-Ney smoothing (Chen and

Goodman, 1996).

1|e| is the length of e, e0 denotes the begin-of-sentence sym-

bol, e|e|+1 denotes the end-of-sentence symbol, e
j
i ≡ ei...ej

548

• target sentence-length model (h2)

h2(e, f) = log(p(|f | | |e|)) = log(φ|e|(|f |+0.5)−
φ|e|(|f | − 0.5)), where φ|e|(·) denotes the cumula-
tive distribution function (cdf) for the normal dis-

tribution (the cdf is used here to integrate the nor-

mal density function over an interval of length 1).
We use a specific normal distribution with mean

µ|e| and standard deviation σ|e| for each possible
target sentence length |e|.

• inverse and direct phrase-based models (h3, h4)

h3(e,a, f) = log(
∏K

k=1 p(f̃k|ẽãk
)), where

p(f̃k|ẽãk
) is defined as follows:

p(f̃k|ẽãk
) = β · pphr(f̃k|ẽãk

) +

(1− β).phmm(f̃k|ẽãk
) (9)

In Equation (9), pphr(f̃k|ẽãk
) denotes the proba-

bility given by a statistical phrase-based dictionary

used in regular phrase-based models (see (Koehn

et al., 2003) for more details). phmm(f̃k|ẽãk
) is

the probability given by an HMM-based (intra-

phrase) alignment model (see (Vogel et al., 1996)):

phmm(f̃ |ẽ) = ǫ
∑

a
|f̃ |
1

|f̃ |
∏

j=1

p(f̃j |ẽaj
) · p(aj |aj−1, |ẽ|)

(10)

The HMM-based alignment model probability is

used here for smoothing purposes as described

in (Ortiz-Martı́nez et al., 2009).

Analogously h4 is defined as:

h4(e,a, f) = log(
∏K

k=1 p(ẽãk
|f̃k))

• target phrase-length model (h5)

h5(e,a, f) = log(
∏K

k=1 p(|ẽk|)), where p(|ẽk|) =
δ(1− δ)|ẽk|. h5 implements a target phrase-length

model by means of a geometric distribution with

probability of success on each trial δ. The use of a
geometric distribution penalizes the length of tar-

get phrases.

• source phrase-length model (h6)

h6(e,a, f) = log(
∏K

k=1 p(|f̃k| | |ẽãk
|)),

where p(|f̃k| | |ẽãk
|) = δ(1− δ)abs(|f̃k|−|ẽãk

|) and

abs(·) is the absolute value function. A geometric

distribution is used to model this feature (it penal-

izes the difference between the source and target

phrase lengths).

• distortion model (h7)

h7(a) = log(
∏K

k=1 p(ãk|ãk−1)), where

p(ãk|ãk−1) = δ(1 − δ)abs(bãk
−lãk−1

)
, bãk

denotes the beginning position of the source

phrase covered by ãk and lãk−1
denotes the last

position of the source phrase covered by ãk−1.

A geometric distribution is used to model this

feature (it penalizes the reorderings).

The log-linear model, which includes the above

described feature functions, is used to generate the

suffix es given the user-validated prefix ep. Specif-

ically, the IMT system generates a partial phrase-

based alignment between the user prefix ep and a

portion of the source sentence f , and returns the suf-

fix es as the translation of the remaining portion of

f (see (Ortiz-Martı́nez et al., 2009)).

4.2 Extending the IMT system from user

feedback

After translating a source sentence f , a new sen-

tence pair (f , e) is available to feed the IMT system

(see Figure 1). In this section we describe how the

log-linear model described in section 4.1 is updated

given the new sentence pair. To do this, a set of suf-

ficient statistics that can be incrementally updated is

maintained for each feature function hi(·). A suffi-

cient statistic for a statistical model is a statistic that

captures all the information that is relevant to esti-

mate this model.

Regarding feature function h1 and according to

equation (8), we need to maintain the following data:

ck,1 and ck,2 given any order k, N1+(·), and cX(·)
(see section 4.1 for the meaning of each symbol).

Given a new sentence e, and for each k-gram ei
i−k+1

of e where 1 ≤ k ≤ n and 1 ≤ i ≤ |e|+1, we mod-
ify the set of sufficient statistics as it is shown in Al-

gorithm 1. The algorithm checks the changes in the

counts of the k-grams to update the set of sufficient
statistics. Sufficient statistics forDk are updated fol-

lowing the auxiliar procedure shown in Algorithm 2.

Feature function h2 requires the incremental cal-

culation of the mean µ|e| and the standard deviation
σ|e| of the normal distribution associated to a target
sentence length |e|. For this purpose the procedure
described in (Knuth, 1981) can be used. In this pro-

cedure, two quantities are maintained for each nor-

mal distribution: µ|e| and S|e|. Given a new sentence

549

input : n (higher order), ei
i−k+1

(k-gram),
S = {∀j(cj,1, cj,2), N1+(·), cX(·)}
(current set of sufficient statistics)

output : S (updated set of sufficient statistics)

begin

if cT (ei
i−k+1

) = 0 then

if k − 1 ≥ 1 then

updD(S,k-1,cM (ei−1

i−k+2
),cM (ei−1

i−k+2
)+1)

if cM (ei−1

i−k+2
) = 0 then

N1+(ei−1

i−k+2
) = N1+(ei−1

i−k+2
) + 1

cM (ei−1

i−k+2
) = cM (ei−1

i−k+2
) + 1

cM (ei
i−k+2

) = cM (ei
i−k+2

) + 1

if k = n then

N1+(ei−1

i−k+1
) = N1+(ei−1

i−k+1
) + 1

if k = n then

updD(S,k,cT (ei
i−k+1

),cT (ei
i−k+1

) + 1)

cT (ei−1

i−k+1
)=cT (ei−1

i−k+1
) + 1

cT (ei
i−k+1

)=cT (ei
i−k+1

) + 1

end

Algorithm 1: Pseudocode for updating the suf-

ficient statistics of a given k-gram

input : S (current set of sufficient statistics),k
(order), c (current count), c′ (new count)

output : (ck,1, ck,2) (updated sufficient statistics)
begin

if c = 0 then
if c′ = 1 then ck,1 = ck,1 + 1
if c′ = 2 then ck,2 = ck,2 + 1

if c = 1 then
ck,1 = ck,1 − 1
if c′ = 2 then ck,2 = ck,2 + 1

if c = 2 then ck,2 = ck,2 − 1
end

Algorithm 2: Pseudocode for the updD proce-

dure

pair (f , e), the two quantities are updated using a re-
currence relation:

µ|e| = µ
′

|e| + (|f | − µ
′

|e|)/c(|e|) (11)

S|e| = S
′

|e| + (|f | − µ
′

|e|)(|f | − µ|e|) (12)

where c(|e|) is the count of the number of sentences
of length |e| that have been seen so far, and µ

′

|e| and

S
′

|e| are the quantities previously stored (µ|e| is ini-
tialized to the source sentence length of the first sam-

ple and S|e| is initialized to zero). Finally, the stan-

dard deviation can be obtained from S as follows:

σ|e| =
√

S|e|/(c(|e|)− 1).

Feature functions h3 and h4 implement inverse

and direct smoothed phrase-based models respec-

tively. Since phrase-based models are symmetric

models, only an inverse phrase-based model is main-

tained (direct probabilities can be efficiently ob-

tained using appropriate data structures, see (Ortiz-

Martı́nez et al., 2008)). The inverse phrase model

probabilities are estimated from the phrase counts:

p(f̃ |ẽ) =
c(f̃ , ẽ)

∑

f̃ ′
c(f̃ ′, ẽ)

(13)

According to Equation (13), the set of suffi-

cient statistics to be stored for the inverse phrase

model consists of a set of phrase counts (c(f̃ , ẽ) and
∑

f̃ ′
c(f̃ ′, ẽ) must be stored separately). Given a

new sentence pair (f , e), the standard phrase-based
model estimation method uses a word alignment ma-

trix between f and e to extract the set of phrase pairs

that are consistent with the word alignment ma-

trix (see (Koehn et al., 2003) for more details). Once

the consistent phrase pairs have been extracted, the

phrase counts are updated. The word alignment ma-

trices required for the extraction of phrase pairs are

generated by means of the HMM-based models used

in the feature functions h3 and h4.

Inverse and direct HMM-based models are used

here for two purposes: to smooth the phrase-based

models via linear interpolation and to generate word

alignment matrices. The weights of the interpola-

tion can be estimated from a development corpus.

Equation (10) shows the expression of the probabil-

ity given by an inverse HMM-based model. The

probability includes lexical probabilities p(fj |ei)
and alignment probabilities p(aj |aj−1, l). Since the
alignment in the HMM-based model is determined

by a hidden variable, the EM algorithm is required

to estimate the parameters of the model (see (Och

and Ney, 2003)). However, the standard EM algo-

rithm is not appropriate to incrementally extend our

HMM-based models because it is designed to work

in batch training scenarios. To solve this problem,

we apply the incremental view of the EM algorithm

described in (Neal and Hinton, 1998). According

to (Och and Ney, 2003), the lexical probability for a

550

pair of words is given by the expression:

p(f |e) =
c(f |e)

∑

f ′ c(f
′|e)

(14)

where c(f |e) is the expected number of times that

the word e is aligned to the word f . The alignment
probability is defined in a similar way:

p(aj |aj−1, l) =
c(aj |aj−1, l)

∑

a′j
c(a′j |aj−1, l)

(15)

where c(aj |aj−1, l) denotes the expected number of
times that the alignment aj has been seen after the

previous alignment aj−1 given a source sentence

composed of l words.
Given the equations (14) and (15), the set of suf-

ficient statistics for the inverse HMM-based model

consists of a set of expected counts (numerator and

denominator values are stored separately). Given a

new sentence pair (f , e), we execute a new iteration

of the incremental EM algorithm on the new sample

and collect the contributions to the expected counts.

The parameters of the direct HMM-based model

are estimated analogously to those of the inverse

HMM-based model. Once the direct and the inverse

HMM-based model parameters have been modified

due to the presentation of a new sentence pair to the

IMT system, both models are used to obtain word

alignments for the new sentence pair. The resulting

direct and inverse word alignment matrices are com-

bined by means of the symmetrization alignment op-

eration (Och and Ney, 2003) before extracting the

set of consistent phrase pairs.

HMM-based alignment models are used here

because, according to (Och and Ney, 2003)

and (Toutanova et al., 2002), they outperform IBM 1

to IBM 4 alignment models while still allowing the

exact calculation of the likelihood for a given sen-

tence pair.

The δ parameters of the geometric distributions

associated to the feature functions h5, h6 and h7 are

left fixed. Because of this, there are no sufficient

statistics to store for these feature functions.

Finally, the weights of the log-linear combination

are not modified due to the presentation of a new

sentence pair to the system. These weights can be

adjusted off-line by means of a development corpus

and well-known optimization techniques.

5 Experiments

This section describes the experiments that we car-

ried out to test our online IMT system.

5.1 Experimental setup

The experiments were performed using the XE-

ROX XRCE corpus (SchlumbergerSema S.A. et

al., 2001), which consists of translations of Xe-

rox printer manuals involving three different pairs

of languages: French-English, Spanish-English, and

German-English. The main features of these cor-

pora are shown in Table 1. Partitions into training,

development and test were performed. This corpus

is used here because it has been extensively used in

the literature on IMT to report results.

IMT experiments were carried out from English

to the other three languages.

5.2 Assessment criteria

The evaluation of the techniques presented in this

paper were carried out using the Key-stroke and

mouse-action ratio (KSMR) measure (Barrachina

et al., 2009). This is calculated as the number of

keystrokes plus the number of mouse movements

plus one more count per sentence (aimed at simulat-

ing the user action needed to accept the final transla-

tion), the sum of which is divided by the total num-

ber of reference characters. In addition to this, we

also used the well-known BLEU score (Papineni et

al., 2001) to measure the translation quality of the

first translation hypothesis produced by the IMT sys-

tem for each source sentence (which is automatically

generated without user intervention).

5.3 Online IMT results

To test the techniques proposed in this work, we

carried out experiments in two different scenarios.

In the first one, the first 10 000 sentences extracted

from the training corpora were interactively trans-

lated by means of an IMT system without any pre-

existent model stored in memory. Each time a new

sentence pair was validated, it was used to incremen-

tally train the system. Figures 3a, 3b and 3c show the

evolution of the KSMR with respect to the number

of sentence pairs processed by the IMT system; the

results correspond to the translation from English to

Spanish, French and German, respectively. In addi-

551

En Sp En Fr En Ge

Train

Sent. pairs 55761 52844 49376

Running words 571960 657172 542762 573170 506877 440682

Vocabulary 25627 29565 24958 27399 24899 37338

Dev.

Sent. pairs 1012 994 964

Running words 12111 13808 9480 9801 9162 8283

Perplexity (3-grams) 46.2 34.0 96.2 74.1 68.4 124.3

Sent. pairs 1125 984 996

Test

Running words 7634 9358 9572 9805 10792 9823

Perplexity (3-grams) 107.0 59.6 192.6 135.4 92.8 169.2

Table 1: XEROX corpus statistics for three different language pairs (from English (En) to Spanish (Sp),

French (Fr) and German (Ge))

tion, for each language pair we interactively trans-

lated the original portion of the training corpus and

the same portion of the original corpus after being

randomly shuffled.

As these figures show, the results clearly demon-

strate that the IMT system is able to learn from

scratch. The results were similar for the three lan-

guages. It is also worthy of note that the obtained

results were better in all cases for the original cor-

pora than for the shuffled ones. This is because,

in the original corpora, similar sentences appear

more or less contiguosly (due to the organization of

the contents of the printer manuals). This circum-

stance increases the accuracy of the online learning,

since with the original corpora the number of lat-

eral effects ocurred between the translation of sim-

ilar sentences is decreased. The online learning of

a new sentence pair produces a lateral effect when

the changes in the probability given by the models

not only affect the newly trained sentence pair but

also other sentence pairs. A lateral effect can cause

that the system generates a wrong translation for a

given source sentence due to undesired changes in

the statistical models.

The accuracy were worse for shuffled corpora,

since shuffling increases the number of lateral ef-

fects that may occur between the translation of sim-

ilar sentences (because they no longer appear con-

tiguously). A good way to compare the quality of

different online IMT systems is to determine their

robustness in relation to sentence ordering. How-

ever, it can generally be expected that the sentences

to be translated in an interactive translation session

will be in a non-random order.

Alternatively, we carried out experiments in a dif-

ferent learning scenario. Specifically, the XEROX

 30

 40

 50

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
K
S
M
R

#Sentences

original
shuffled

(a) English-Spanish

 40

 50

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

K
S
M
R

#Sentences

original
shuffled

(b) English-French

 40

 50

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

K
S
M
R

#Sentences

original
shuffled

(c) English-German

Figure 3: KSMR evolution translating a portion of

the training corpora

test corpora were interactively translated from the

English language to the other three languages, com-

paring the performance of a batch IMT system with

552

that of an online IMT system. The batch IMT sys-

tem is a conventional IMT system which is not able

to take advantage of user feedback after each transla-

tion while the online IMT system uses the new sen-

tence pairs provided by the user to revise the sta-

tistical models. Both systems were initialized with

a log-linear model trained in batch mode by means

of the XEROX training corpora. The weights of the

log-linear combination were adjusted for the devel-

opment corpora by means of the downhill-simplex

algorithm. Table 2 shows the obtained results. The

table shows the BLEU score and the KSMR for the

batch and the online IMT systems (95% confidence

intervals are shown). The BLEU score was calcu-

lated from the first translation hypothesis produced

by the IMT system for each source sentence. The ta-

ble also shows the average online learning time (LT)

for each new sample presented to the system2. All

the improvements obtained with the online IMT sys-

tem were statistically significant. Also, the average

learning times clearly allow the system to be used in

a real-time scenario.

IMT system BLEU KSMR LT (s)

En-Sp
batch 55.1± 2.3 18.2± 1.1 -

online 60.6± 2.3 15.8± 1.0 0.04

En-Fr
batch 33.7± 2.0 33.9± 1.3 -

online 42.2± 2.2 27.9± 1.3 0.09

En-Ge
batch 20.4± 1.8 40.3± 1.2 -

online 28.0± 2.0 35.0± 1.3 0.07

Table 2: BLEU and KSMR results for the XEROX

test corpora using the batch and the online IMT sys-

tems. The average online learning time (LT) in sec-

onds is shown for the online system

Finally, in Table 3 a comparison of the KSMR re-

sults obtained by the online IMT system with state-

of-the-art IMT systems is reported (95% confidence

intervals are shown). We compared our system with

those presented in (Barrachina et al., 2009): the

alignment templates (AT), the stochastic finite-state

transducer (SFST), and the phrase-based (PB) ap-

proaches to IMT. The results were obtained using

the same Xerox training and test sets (see Table 1)

for the four different IMT systems. Our system out-

performed the results obtained by these systems.

2All the experiments were executed on a PC with a 2.40 Ghz

Intel Xeon processor with 1GB of memory.

AT PB SFST Online

En-Sp 23.2±1.3 16.7±1.2 21.8±1.4 15.8± 1.0

En-Fr 40.4±1.4 35.8±1.3 43.8±1.6 27.9± 1.3

En-Ge 44.7±1.2 40.1±1.2 45.7±1.4 35.0± 1.3

Table 3: KSMR results comparison of our system

and three different state-of-the-art batch systems

6 Conclusions

We have presented an online IMT system. The pro-

posed system is able to incrementally extend the sta-

tistical models involved in the translation process,

breaking technical limitations encountered in other

works. Empirical results show that our techniques

allow the IMT system to learn from scratch or from

previously estimated models.

One key aspect of the proposed system is the use

of HMM-based alignment models trained by means

of the incremental EM algorithm.

The incremental adjustment of the weights of the

log-linear models and other parameters have not

been tackled here. For the future we plan to incor-

porate this functionality into our IMT system.

The incremental techniques proposed here can

also be exploited to extend SMT systems (in fact,

our proposed IMT system is based on an incremen-

tally updateable SMT system). For the near future

we plan to study possible aplications of our tech-

niques in a fully automatic translation scenario.

Finally, it is worthy of note that the main ideas

presented here can be used in other interactive ap-

plications such as Computer Assisted Speech Tran-

scription, Interactive Image Retrieval, etc (see (Vi-

dal et al., 2007) for more information). In conclu-

sion, we think that the online learning techniques

proposed here can be the starting point for a new

generation of interactive pattern recognition systems

that are able to take advantage of user feedback.

Acknowledgments

Work supported by the EC (FEDER/FSE), the

Spanish Government (MEC, MICINN, MITyC,

MAEC, ”Plan E”, under grants MIPRCV ”Con-

solider Ingenio 2010” CSD2007-00018, iTrans2

TIN2009-14511, erudito.com TSI-020110-2009-

439), the Generalitat Valenciana (grant Prome-

teo/2009/014), the Univ. Politécnica de Valencia

(grant 20091027) and the Spanish JCCM (grant

PBI08-0210-7127).

553

References

A. Arun and P. Koehn. 2007. Online learning methods

for discriminative training of phrase based statistical

machine translation. In Proc. of the MT Summit XI,

pages 15–20, Copenhagen, Denmark, September.

S. Barrachina, O. Bender, F. Casacuberta, J. Civera,

E. Cubel, S. Khadivi, A. Lagarda, H. Ney, J. Tomás,

and E. Vidal. 2009. Statistical approaches to

computer-assisted translation. Computational Lin-

guistics, 35(1):3–28.

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della

Pietra, and R. L. Mercer. 1993. The mathematics of

statistical machine translation: Parameter estimation.

Computational Linguistics, 19(2):263–311.

N. Cesa-Bianchi, G. Reverberi, and S. Szedmak. 2008.

Online learning algorithms for computer-assisted

translation. Deliverable D4.2, SMART: Stat. Multi-

lingual Analysis for Retrieval and Translation, Mar.

S.F. Chen and J. Goodman. 1996. An empirical study of

smoothing techniques for language modeling. In Proc.

of the ACL, pages 310–318, San Francisco.

D. Chiang, Y. Marton, and P. Resnik. 2008. Online large-

margin training of syntactic and structural translation

features. In Proc. of EMNLP.

George Foster, Pierre Isabelle, and Pierre Plamondon.

1997. Target-text mediated interactive machine trans-

lation. Machine Translation, 12(1):175–194.

P. Isabelle and K. Church. 1997. Special issue on

new tools for human translators. Machine Translation,

12(1–2).

D.E. Knuth. 1981. Seminumerical Algorithms, volume 2

of The Art of Computer Programming. Addison-

Wesley, Massachusetts, 2nd edition.

P. Koehn, F. J. Och, and D. Marcu. 2003. Statistical

phrase-based translation. In Proc. of the HLT/NAACL,

pages 48–54, Edmonton, Canada, May.

P. Langlais, G. Lapalme, and M. Loranger. 2002.

Transtype: Development-evaluation cycles to boost

translator’s productivity. Machine Translation,

15(4):77–98.

P. Liang, A. Bouchard-Côté, D. Klein, and B. Taskar.

2006. An end-to-end discriminative approach to ma-

chine translation. In Proc. of the 44th ACL, pages 761–

768, Morristown, NJ, USA.

R.M. Neal and G.E. Hinton. 1998. A view of the EM

algorithm that justifies incremental, sparse, and other

variants. In Proceedings of the NATO-ASI on Learning

in graphical models, pages 355–368, Norwell, MA,

USA.

L. Nepveu, G. Lapalme, P. Langlais, and G. Foster. 2004.

Adaptive language and translation models for interac-

tive machine translation. In Proc. of EMNLP, pages

190–197, Barcelona, Spain, July.

Franz Josef Och and Hermann Ney. 2002. Discrimina-

tive Training and Maximum Entropy Models for Sta-

tistical Machine Translation. In Proc. of the 40th ACL,

pages 295–302, Philadelphia, PA, July.

Franz Josef Och and Hermann Ney. 2003. A system-

atic comparison of various statistical alignment mod-

els. Computational Linguistics, 29(1):19–51, March.

D. Ortiz-Martı́nez, I. Garcı́a-Varea, and Casacuberta F.

2008. The scaling problem in the pattern recognition

approach to machine translation. Pattern Recognition

Letters, 29:1145–1153.

Daniel Ortiz-Martı́nez, Ismael Garcı́a-Varea, and Fran-

cisco Casacuberta. 2009. Interactive machine trans-

lation based on partial statistical phrase-based align-

ments. In Proc. of RANLP, Borovets, Bulgaria, sep.

Kishore A. Papineni, Salim Roukos, Todd Ward, and

Wei-Jing Zhu. 2001. Bleu: a method for auto-

matic evaluation of machine translation. Technical

Report RC22176 (W0109-022), IBM Research Divi-

sion, Thomas J. Watson Research Center, Yorktown

Heights, NY, September.

SchlumbergerSema S.A., ITI Valencia, RWTH Aachen,

RALI Montreal, Celer Soluciones, Société Gamma,

and XRCE. 2001. TT2. TransType2 - computer as-

sisted translation. Project Tech. Rep.

Kristina Toutanova, H. Tolga Ilhan, and Christopher

Manning. 2002. Extensions to hmm-based statistical

word alignment models. In Proc. of EMNLP.

E. Vidal, L. Rodrı́guez, F. Casacuberta, and I. Garcı́a-

Varea. 2007. Interactive pattern recognition. In Proc.

of the 4th MLMI, pages 60–71. Brno, Czech Republic,

28-30 June.

Stephan Vogel, Hermann Ney, and Christoph Tillmann.

1996. HMM-based word alignment in statistical trans-

lation. In Proc. of COLING, pages 836–841, Copen-

hagen, Denmark, August.

T. Watanabe, J. Suzuki, H. Tsukada, and H. Isozaki.

2007. Online large-margin training for statistical ma-

chine translation. In Proc. of EMNLP and CoNLL,

pages 764–733, Prage, Czeck Republic.

554

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 555–563,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

The Best Lexical Metric for
Phrase-Based Statistical MT System Optimization

Daniel Cer, Christopher D. Manning and Daniel Jurafsky
Stanford University

Stanford, CA 94305, USA

Abstract

Translation systems are generally trained to
optimize BLEU, but many alternative metrics
are available. We explore how optimizing
toward various automatic evaluation metrics
(BLEU, METEOR, NIST, TER) affects the re-
sulting model. We train a state-of-the-art MT
system using MERT on many parameteriza-
tions of each metric and evaluate the result-
ing models on the other metrics and also us-
ing human judges. In accordance with popular
wisdom, we find that it’s important to train on
the same metric used in testing. However, we
also find that training to a newer metric is only
useful to the extent that the MT model’s struc-
ture and features allow it to take advantage of
the metric. Contrasting with TER’s good cor-
relation with human judgments, we show that
people tend to prefer BLEU and NIST trained
models to those trained on edit distance based
metrics like TER or WER. Human prefer-
ences for METEOR trained models varies de-
pending on the source language. Since using
BLEU or NIST produces models that are more
robust to evaluation by other metrics and per-
form well in human judgments, we conclude
they are still the best choice for training.

1 Introduction

Since their introduction, automated measures of ma-
chine translation quality have played a critical role
in the development and evolution of SMT systems.
While such metrics were initially intended for eval-
uation, popular training methods such as minimum
error rate training (MERT) (Och, 2003) and mar-
gin infused relaxed algorithm (MIRA) (Crammer

and Singer, 2003; Watanabe et al., 2007; Chiang et
al., 2008) train translation models toward a specific
evaluation metric. This makes the quality of the re-
sulting model dependent on how accurately the au-
tomatic metric actually reflects human preferences.

The most popular metric for both comparing sys-
tems and tuning MT models has been BLEU. While
BLEU (Papineni et al., 2002) is relatively simple,
scoring translations according to their n-gram over-
lap with reference translations, it still achieves a rea-
sonable correlation with human judgments of trans-
lation quality. It is also robust enough to use for au-
tomatic optimization. However, BLEU does have a
number of shortcomings. It doesn’t penalize n-gram
scrambling (Callison-Burch et al., 2006), and since
it isn’t aware of synonymous words or phrases, it can
inappropriately penalize translations that use them.

Recently, there have been efforts to develop bet-
ter evaluation metrics. Metrics such as Translation
Edit Rate (TER) (Snover et al., 2006; Snover et al.,
2009) and METEOR1 (Lavie and Denkowski, 2009)
perform a more sophisticated analysis of the trans-
lations being evaluated and the scores they produce
tend to achieve a better correlation with human judg-
ments than those produced by BLEU (Snover et al.,
2009; Lavie and Denkowski, 2009; Przybocki et al.,
2008; Snover et al., 2006).

Their better correlations suggest that we might
obtain higher quality translations by making use of
these new metrics when training our models. We ex-
pect that training on a specific metric will produce
the best performing model according to that met-

1METEOR: Metric for Evaluation of Translation with Ex-
plicit ORdering.

555

ric. Doing better on metrics that better reflect human
judgments seems to imply the translations produced
by the model would be preferred by human judges.

However, there are four potential problems. First,
some metrics could be susceptible to systematic ex-
ploitation by the training algorithm and result in
model translations that have a high score according
to the evaluation metric but that are of low qual-
ity.2 Second, other metrics may result in objective
functions that are harder to optimize. Third, some
may result in better generalization performance at
test time by not encouraging overfitting of the train-
ing data. Finally, as a practical concern, metrics used
for training cannot be too slow.

In this paper, we systematically explore these four
issues for the most popular metrics available to the
MT community. We examine how well models per-
form both on the metrics on which they were trained
and on the other alternative metrics. Multiple mod-
els are trained using each metric in order to deter-
mine the stability of the resulting models. Select
models are scored by human judges in order to deter-
mine how performance differences obtained by tun-
ing to different automated metrics relates to actual
human preferences.

The next sections introduce the metrics and our
training procedure. We follow with two sets of core
results, machine evaluation in section 5, and human
evaluation in section 6.

2 Evaluation Metrics

Designing good automated metrics for evaluating
machine translations is challenging due to the vari-
ety of acceptable translations for each foreign sen-
tence. Popular metrics produce scores primarily
based on matching sequences of words in the system
translation to those in one or more reference trans-
lations. The metrics primarily differ in how they ac-
count for reorderings and synonyms.

2.1 BLEU

BLEU (Papineni et al., 2002) uses the percentage
of n-grams found in machine translations that also
occur in the reference translations. These n-gram
precisions are calculated separately for different n-

2For example, BLEU computed without the brevity penalty
would likely result in models that have a strong preference for
generating pathologically short translations.

gram lengths and then combined using a geometric
mean. The score is then scaled by a brevity penalty
if the candidate translations are shorter than the ref-
erences, BP = min(1.0, e1−len(R)/len(T)). Equa-
tion 1 gives BLEU using n-grams up to length N for
a corpus of candidate translations T and reference
translations R. A variant of BLEU called the NIST
metric (Doddington, 2002) weights n-gram matches
by how informative they are.

BLEU:N =

(
N∏

n=1

n-grams(T
⋂

R)
n-grams(T)

) 1
N

BP (1)

While easy to compute, BLEU has a number of
shortcomings. Since the order of matching n-grams
is ignored, n-grams in a translation can be randomly
rearranged around non-matching material or other
n-gram breaks without harming the score. BLEU
also does not explicitly check whether information
is missing from the candidate translations, as it only
examines what fraction of candidate translation n-
grams are in the references and not what fraction
of references n-grams are in the candidates (i.e.,
BLEU ignores n-gram recall). Finally, the metric
does not account for words and phrases that have
similar meanings.

2.2 METEOR

METEOR (Lavie and Denkowski, 2009) computes
a one-to-one alignment between matching words in
a candidate translation and a reference. If a word
matches multiple other words, preference is given to
the alignment that reorders the words the least, with
the amount of reordering measured by the number of
crossing alignments. Alignments are first generated
for exact matches between words. Additional align-
ments are created by repeatedly running the align-
ment procedure over unaligned words, first allowing
for matches between word stems, and then allow-
ing matches between words listed as synonyms in
WordNet. From the final alignment, the candidate
translation’s unigram precision and recall is calcu-
lated, P = matches

length trans and R = matches
length ref . These two

are then combined into a weighted harmonic mean
(2). To penalize reorderings, this value is then scaled
by a fragmentation penalty based on the number of
chunks the two sentences would need to be broken

556

into to allow them to be rearranged with no crossing
alignments, Pβ,γ = 1 − γ

(
chunks
matches

)β
.

Fα =
PR

αP + (1 − α)R
(2)

METEORα,β,γ = Fα · Pβ,γ (3)

Equation 3 gives the final METEOR score as the
product of the unigram harmonic mean, Fα, and the
fragmentation penalty, Pβ,γ . The free parameters α,
β, and γ can be used to tune the metric to human
judgments on a specific language and variation of
the evaluation task (e.g., ranking candidate transla-
tions vs. reproducing judgments of translations ade-
quacy and fluency).

2.3 Translation Edit Rate

TER (Snover et al., 2006) searches for the shortest
sequence of edit operations needed to turn a can-
didate translation into one of the reference transla-
tions. The allowable edits are the insertion, dele-
tion, and substitution of individual words and swaps
of adjacent sequences of words. The swap opera-
tion differentiates TER from the simpler word error
rate (WER) metric (Nießen et al., 2000), which only
makes use of insertions, deletions, and substitutions.
Swaps prevent phrase reorderings from being exces-
sively penalized. Once the shortest sequence of op-
erations is found,3 TER is calculated simply as the
number of required edits divided by the reference
translation length, or average reference translation
length when multiple are available (4).

TER =
min edits

avg ref length
(4)

TER-Plus (TERp) (Snover et al., 2009) extends
TER by allowing the cost of edit operations to be
tuned in order to maximize the metric’s agreement
with human judgments. TERp also introduces three
new edit opertions: word stem matches, WordNet
synonym matches, and multiword matches using a
table of scored paraphrases.

3Since swaps prevent TER from being calculated exactly us-
ing dynamic programming, a beam search is used and this can
overestimate the number of required edits.

3 MERT

MERT is the standard technique for obtaining a ma-
chine translation model fit to a specific evaluation
metric (Och, 2003). Learning such a model cannot
be done using gradient methods since the value of
the objective function only depends on the transla-
tion model’s argmax for each sentence in the tun-
ing set. Typically, this optimization is performed as
a series of line searches that examines the value of
the evaluation metric at critical points where a new
translation argmax becomes preferred by the model.
Since the model score assigned to each candidate
translation varies linearly with changes to the model
parameters, it is possible to efficiently find the global
minimum along any given search direction with only
O(n2) operations when n-best lists are used.

Using our implementation of MERT that allows
for pluggable optimization metrics, we tune mod-
els to BLEU:N for N = 1 . . . 5, TER, two con-
figurations of TERp, WER, several configurations
of METEOR, as well as additive combinations of
these metrics. The TERp configurations include
the default configuration of TERp and TERpA:
the configuration of TERp that was trained to
match human judgments for NIST Metrics MATR
(Matthew Snover and Schwartz, 2008; Przybocki et
al., 2008). For METEOR, we used the standard ME-
TEOR English parameters (α = 0.8, β = 2.5, γ =
0.4), and the English parameters for the ranking ME-
TEOR (α = 0.95, β = 0.5, γ = 0.5),4 which
was tuned to maximize the metric’s correlation with
WMT-07 human ranking judgements (Agarwal and
Lavie, 2008). The default METEOR parameters fa-
vor longer translations than the other metrics, since
high α values place much more weight on unigram
recall than precision. Since this may put models
tuned to METEOR at a disadvantage when being
evaluated by the other metrics, we also use a variant
of the standard English model and of ranking ME-
TEOR with α set to 0.5, as this weights both recall
and precision equally.

For each iteration of MERT, 20 random restarts
were used in addition to the best performing point
discovered during earlier iterations of training.5

4Agarwal and Lavie (2008) report γ = 0.45, however the
0.8.2 release of METEOR uses γ = 0.5 for ranking English.

5This is not necessarily identical with the point returned by
the most recent MERT iteration, but rather can be any point

557

Since MERT is known to be sensitive to what restart
points are provided, we use the same series of ran-
dom restart points for each model. During each it-
eration of MERT, the random seed is based on the
MERT iteration number. Thus, while a different set
of random points is selected during each MERT iter-
ation, on any given iteration all models use the same
set of points. This prevents models from doing better
or worse just because they received different starting
points. However, it is still possible that certain ran-
dom starting points are better for some evaluation
metrics than others.

4 Experiments

Experiments were run using Phrasal (Cer et al.,
2010), a left-to-right beam search decoder that
achieves a matching BLEU score to Moses (Koehn
et al., 2007) on a variety of data sets. During de-
coding we made use of a stack size of 100, set the
distortion limit to 6, and retrieved 20 translation op-
tions for each unique source phrase.

Using the selected metrics, we train both Chi-
nese to English and Arabic to English models.6 The
Chinese to English models are trained using NIST
MT02 and evaluated on NIST MT03. The Arabic
to English experiments use NIST MT06 for train-
ing and GALE dev07 for evaluation. The resulting
models are scored using all of the standalone metrics
used during training.

4.1 Arabic to English

Our Arabic to English system was based on a well
ranking 2009 NIST submission (Galley et al., 2009).
The phrase table was extracted using all of the al-
lowed resources for the constrained Arabic to En-
glish track. Word alignment was performed using
the Berkeley cross-EM aligner (Liang et al., 2006).
Phrases were extracted using the grow heuristic
(Koehn et al., 2003). However, we threw away all
phrases that have a P (e|f) < 0.0001 in order to re-
duce the size of the phrase table. From the aligned
data, we also extracted a hierarchical reordering
model that is similar to popular lexical reordering
models (Koehn et al., 2007) but that models swaps
containing more than just one phrase (Galley and

returned during an earlier iteration of MERT.
6Given the amount of time required to train a TERpA model,

we only present TERpA results for Chinese to English.

Manning, 2008). A 5-gram language model was cre-
ated with the SRI language modeling toolkit (Stol-
cke, 2002) using all of the English material from
the parallel data employed to train the phrase table
as well as Xinhua Chinese English Parallel News
(LDC2002E18).7 The resulting decoding model has
16 features that are optimized during MERT.

4.2 Chinese to English

For our Chinese to English system, our phrase ta-
ble was built using 1,140,693 sentence pairs sam-
pled from the GALE Y2 training data. The Chinese
sentences were word segmented using the 2008 ver-
sion of Stanford Chinese Word Segmenter (Chang et
al., 2008; Tseng et al., 2005). Phrases were extracted
by running GIZA++ (Och and Ney, 2003) in both
directions and then merging the alignments using
the grow-diag-final heuristic (Koehn et al., 2003).
From the merged alignments we also extracted a
bidirectional lexical reordering model conditioned
on the source and the target phrases (Koehn et al.,
2007). A 5-gram language model was created with
the SRI language modeling toolkit (Stolcke, 2002)
and trained using the Gigaword corpus and English
sentences from the parallel data. The resulting de-
coding model has 14 features to be trained.

5 Results

As seen in tables 1 and 2, the evaluation metric we
use during training has a substantial impact on per-
formance as measured by the various other metrics.
There is a clear block structure where the best class
of metrics to train on is the same class that is used
during evaluation. Within this block structure, we
make three primary observations. First, the best
performing model according to any specific metric
configuration is usually not the model we trained to
that configuration. In the Chinese results, the model
trained on BLEU:3 scores 0.74 points higher on
BLEU:4 than the model actually trained to BLEU:4.
In fact, the BLEU:3 trained model outperforms all
other models on BLEU:N metrics. For the Arabic
results, training on NIST scores 0.27 points higher

7In order to run multiple experiments in parallel on the com-
puters available to us, the system we use for this work differs
from our NIST submission in that we remove the Google n-
gram language model. This results in a performance drop of
less than 1.0 BLEU point on our dev data.

558

Train\Eval BLEU:1 BLEU:2 BLEU:3 BLEU:4 BLEU:5 NIST TER TERp WER TERpA METR METR-r METR METR-r
α = 0.5 α = 0.5

BLEU:1 75.98 55.39 40.41 29.64 21.60 11.94 78.07 78.71 68.28 73.63 41.98 59.63 42.46 60.02
BLEU:2 76.58 57.24 42.84 32.21 24.09 12.20 77.09 77.63 67.16 72.54 43.20 60.91 43.59 61.56
BLEU:3 76.74 57.46 43.13 32.52 24.44 12.22 76.53 77.07 66.81 72.01 42.94 60.57 43.40 60.88
BLEU:4 76.24 56.86 42.43 31.80 23.77 12.14 76.75 77.25 66.78 72.01 43.29 60.94 43.10 61.27
BLEU:5 76.39 57.14 42.93 32.38 24.33 12.40 75.42 75.77 65.86 70.29 43.02 61.22 43.57 61.43
NIST 76.41 56.86 42.34 31.67 23.57 12.38 75.20 75.72 65.78 70.11 43.11 61.04 43.78 61.84
TER 73.23 53.39 39.09 28.81 21.18 12.73 71.33 71.70 63.92 66.58 38.65 55.49 41.76 59.07
TERp 72.78 52.90 38.57 28.32 20.76 12.68 71.76 72.16 64.26 66.96 38.51 56.13 41.48 58.73
TERpA 71.79 51.58 37.36 27.23 19.80 12.54 72.26 72.56 64.58 67.30 37.86 55.10 41.16 58.04
WER 74.49 54.59 40.30 29.88 22.14 12.64 71.85 72.34 63.82 67.11 39.76 57.29 42.37 59.97
METR 73.33 54.35 40.28 30.04 22.39 11.53 84.74 85.30 71.49 79.47 44.68 62.14 42.99 60.73
METR-r 74.20 54.99 40.91 30.66 22.98 11.74 82.69 83.23 70.49 77.77 44.64 62.25 43.44 61.32
METR:0.5 76.36 56.75 42.48 31.98 24.00 12.44 74.94 75.32 66.09 70.14 42.75 60.98 43.86 61.38
METR-r:0.5 76.49 56.93 42.36 31.70 23.68 12.21 77.04 77.58 67.12 72.23 43.26 61.03 43.63 61.67

Combined Models
BLEU:4-TER 75.32 55.98 41.87 31.42 23.50 12.62 72.97 73.38 64.46 67.95 41.50 59.11 43.50 60.82
BLEU:4-2TERp 75.22 55.76 41.57 31.11 23.25 12.64 72.48 72.89 64.17 67.43 41.12 58.82 42.73 60.86
BLEU:4+2MTR 75.77 56.45 42.04 31.47 23.48 11.98 79.96 80.65 68.85 74.84 44.06 61.78 43.70 61.48

Table 1: Chinese to English test set performance on MT03 using models trained using MERT on MT02. In each column,
cells shaded blue are better than average and those shaded red are below average. The intensity of the shading indicates
the degree of deviation from average. For BLEU, NIST, and METEOR, higher is better. For edit distance metrics like
TER and WER, lower is better.

Train\Eval BLEU:1 BLEU:2 BLEU:3 BLEU:4 BLEU:5 NIST TER TERp WER METR METR-r METR METR-r
α = 0.5 α = 0.5

BLEU:1 79.90 65.35 54.08 45.14 37.81 10.68 46.19 61.04 49.98 49.74 67.79 49.19 68.12
BLEU:2 80.03 65.84 54.70 45.80 38.47 10.75 45.74 60.63 49.24 50.02 68.00 49.71 68.27
BLEU:3 79.87 65.71 54.59 45.67 38.34 10.72 45.86 60.80 49.18 49.87 68.32 49.61 67.67
BLEU:4 80.39 66.14 54.99 46.05 38.70 10.82 45.25 59.83 48.69 49.65 68.13 49.66 67.92
BLEU:5 79.97 65.77 54.64 45.76 38.44 10.75 45.66 60.55 49.11 49.89 68.33 49.64 68.19
NIST 80.41 66.27 55.22 46.32 38.98 10.96 44.11 57.92 47.74 48.88 67.85 49.88 68.52
TER 79.69 65.52 54.44 45.55 38.23 10.75 43.36 56.12 47.11 47.90 66.49 49.55 68.12
TERp 79.27 65.11 54.13 45.35 38.12 10.75 43.36 55.92 47.14 47.83 66.34 49.43 67.94
WER 79.42 65.28 54.30 45.51 38.27 10.78 43.44 56.13 47.13 47.82 66.33 49.38 67.88
METR 75.52 60.94 49.84 41.17 34.12 9.93 52.81 70.08 55.72 50.92 68.55 48.47 66.89
METR-r 77.42 62.91 51.67 42.81 35.61 10.24 49.87 66.26 53.17 50.95 69.29 49.29 67.89
METR:0.5 79.69 65.14 53.94 45.03 37.72 10.72 45.80 60.44 49.34 49.78 68.31 49.23 67.72
METR-r:0.5 79.76 65.12 53.82 44.88 37.57 10.67 46.53 61.55 50.17 49.66 68.57 49.58 68.25

Combined Models
BLEU:4-TER 80.37 66.31 55.27 46.36 39.00 10.96 43.94 57.46 47.46 49.00 67.10 49.85 68.41
BLEU:4-2TERp 79.65 65.53 54.54 45.75 38.48 10.80 43.42 56.16 47.15 47.90 65.93 49.09 67.90
BLEU:4+2METR 79.43 64.97 53.75 44.87 37.58 10.63 46.74 62.03 50.35 50.42 68.92 49.70 68.37

Table 2: Arabic to English test set performance on dev07 using models trained using MERT on MT06. As above, in each
column, cells shaded blue are better than average and those shaded red are below average. The intensity of the shading
indicates the degree of deviation from average.

on BLEU:4 than training on BLEU:4, and outper-
forms all other models on BLEU:N metrics.

Second, the edit distance based metrics (WER,
TER, TERp, TERpA)8 seem to be nearly inter-
changeable. While the introduction of swaps al-
lows the scores produced by the TER metrics to
achieve better correlation with human judgments,
our models are apparently unable to exploit this dur-
ing training. This maybe due to the monotone na-

8In our implementation of multi-reference WER, we use the
length of the references that result in the lowest sentence level
WER to divide the edit costs. In contrast, TER divides by the
average reference length. This difference can sometimes result
in WER being lower than the corresponding TER. Also, as can
be seen in the Arabic to English results, TERp scores sometimes
differ dramatically from TER scores due to normalization and
tokenization differences (e.g., TERp removes punctuation prior
to scoring, while TER does not).

ture of the reference translations and the fact that
having multiple references reduces the need for re-
orderings. However, it is possible that differences
between training to WER and TER would become
more apparent using models that allow for longer
distance reorderings or that do a better job of cap-
turing what reorderings are acceptable.

Third, with the exception of BLEU:1, the perfor-
mance of the BLEU, NIST, and the METEOR α=.5
models appears to be more robust across the other
evaluation metrics than the standard METEOR, ME-
TEOR ranking, and edit distance based models
(WER, TER, TERp, an TERpA). The latter mod-
els tend to do quite well on metrics similar to what
they were trained on, while performing particularly
poorly on the other metrics. For example, on Chi-
nese, the TER and WER models perform very well

559

on other edit distance based metrics, while perform-
ing poorly on all the other metrics except NIST.
While less pronounced, the same trend is also seen
in the Arabic data. Interestingly enough, while the
TER, TERp and standard METEOR metrics achieve
good correlations with human judgments, models
trained to them are particularly mismatched in our
results. The edit distance models do terribly on ME-
TEOR and METEOR ranking, while METEOR and
METEOR ranking models do poorly on TER, TERp,
and TERpA.

Training Itr MERT Training Itr MERT
Metric Time Metric Time
BLEU:1 13 21:57 NIST 15 78:15
BLEU:2 15 32:40 TER 7 21:00
BLEU:3 19 45:08 TERp 9 19:19
BLEU:4 10 24:13 TERpA 8 393:16
BLEU:5 16 46:12 WER 13 33:53
BL:4-TR 9 21:07 BL:4-2TRp 8 22:03
METR 12 39:16 METR 0.5 18 42:04
METR R 12 47:19 METR R:0.5 13 25:44

Table 3: Chinese to English MERT iterations and training
times, given in hours:mins and excluding decoder time.

5.1 Other Results

On the training data, we see a similar block struc-
ture within the results, but there is a different pattern
among the top performers. The tables are omitted,
but we observe that, for Chinese, the BLEU:5 model
performs best on the training data according to all
higher order BLEU metrics (4-7). On Arabic, the
BLEU:6 model does best on the same higher order
BLEU metrics (4-7). By rewarding higher order n-
gram matches, these objectives actually find minima
that result in more 4-gram matches than the mod-
els optimized directly to BLEU:4. However, the fact
that this performance advantage disappears on the
evaluation data suggests these higher order models
also promote overfitting.

Models trained on additive metric blends tend
to smooth out performance differences between
the classes of metrics they contain. As expected,
weighting the metrics used in the additive blends re-
sults in models that perform slightly better on the
type of metric with the highest weight.

Table 3 reports training times for select Chinese
to English models. Training to TERpA is very com-
putationally expensive due to the implementation of

the paraphrase table. The TER family of metrics
tends to converge in fewer MERT iterations than
those trained on other metrics such as BLEU, ME-
TEOR or even WER. This suggests that the learning
objective provided by these metrics is either easier to
optimize or they more easily trap the search in local
minima.

5.2 Model Variance

One potential problem with interpreting the results
above is that learning with MERT is generally as-
sumed to be noisy, with different runs of the al-
gorithm possibly producing very different models.
We explore to what extent the results just presented
were affected by noise in the training procedure. We
perform multiple training runs using select evalua-
tion metrics and examining how consistent the re-
sulting models are. This also allows us to deter-
mine whether the metric used as a learning criteria
influences the stability of learning. For these experi-
ments, Chinese to English models are trained 5 times
using a different series of random starting points. As
before, 20 random restarts were used during each
MERT iteration.

In table 4, models trained to BLEU and METEOR
are relatively stable, with the METEOR:0.5 trained
models being the most stable. The edit distance
models, WER and TERp, vary more across train-
ing runs, but still do not exceed the interesting cross
metric differences seen in table 1. The instability of
WER and TERp, with TERp models having a stan-
dard deviation of 1.3 in TERp and 2.5 in BLEU:4,
make them risky metrics to use for training.

6 Human Evaluation

The best evaluation metric to use during training is
the one that ultimately leads to the best translations
according to human judges. We perform a human
evaluation of select models using Amazon Mechan-
ical Turk, an online service for cheaply performing
simple tasks that require human intelligence. To use
the service, tasks are broken down into individual
units of work known as human intelligence tasks
(HITs). HITs are assigned a small amount of money
that is paid out to the workers that complete them.
For many natural language annotation tasks, includ-
ing machine translation evaluation, it is possible to
obtain annotations that are as good as those pro-

560

Train\Eval σ BLEU:1 BLEU:3 BLEU:4 BLEU:5 TERp WER METEOR METEOR:0.5
BLEU:1 0.17 0.56 0.59 0.59 0.36 0.58 0.42 0.24
BLEU:3 0.38 0.41 0.38 0.32 0.70 0.49 0.44 0.33
BLEU:4 0.27 0.29 0.29 0.27 0.67 0.50 0.41 0.29
BLEU:5 0.17 0.14 0.19 0.21 0.67 0.75 0.34 0.17
TERp 1.38 2.66 2.53 2.20 1.31 1.39 1.95 1.82
WER 0.62 1.37 1.37 1.25 1.31 1.21 1.10 1.01
METEOR 0.80 0.56 0.48 0.44 3.71 2.69 0.69 1.10
METEOR:0.5 0.32 0.11 0.09 0.11 0.23 0.12 0.07 0.11

Table 4: MERT model variation for Chinese to English. We train five models to each metric listed above. The
collection of models trained to a given metric is then evaluated using the other metrics. We report the resulting
standard devation for the collection on each of the metrics. The collection with the lowest varience is bolded.

Model Pair % Preferred p-value
Chinese

METR R vs. TERp 60.0 0.0028
BLEU:4 vs. TERp 57.5 0.02
NIST vs. TERp 55.0 0.089
NIST vs. TERpA 55.0 0.089
BLEU:4 vs. TERpA 54.5 0.11
BLEU:4 vs. METR R 54.5 0.11
METR:0.5 vs. METR 54.5 0.11
METR:0.5 vs. METR R 53.0 0.22
METR vs. BLEU:4 52.5 0.26
BLEU:4 vs. METR:0.5 52.5 0.26
METR vs. TERp 52.0 0.31
NIST vs. BLEU:4 52.0 0.31
BLEU:4 vs. METR R:0.5 51.5 0.36
WER vs. TERp 51.5 0.36
TERpA vs. TERp 50.5 0.47

Arabic
BLEU:4 vs. METR R 62.0 < 0.001
NIST vs. TERp 56.0 0.052
BLEU:4 vs. METR:0.5 55.5 0.069
BLEU:4 vs. METR 54.5 0.11
METR R:0.5 vs METR R 54.0 0.14
NIST vs. BLEU:4 51.5 0.36
WER vs. TERp 51.5 0.36
METR:0.5 vs METR 51.5 0.36
TERp vs. BLEU:4 51.0 0.42
BLEU:4 vs. METR R:0.5 50.5 0.47

Table 5: Select pairwise preference for models trained to
different evaluation metrics. For A vs. B, preferred indi-
cates how often A was preferred to B. We bold the better
training metric for statistically significant differences.

duced by experts by having multiple workers com-
plete each HIT and then combining their answers
(Snow et al., 2008; Callison-Burch, 2009).

We perform a pairwise comparison of the trans-
lations produced for the first 200 sentences of our
Chinese to English test data (MT03) and our Arabic
to English test data (dev07). The HITs consist of a
pair of machine translated sentences and a single hu-
man generated reference translation. The reference
is chosen at random from those available for each
sentence. Capitalization of the translated sentences
is restored using an HMM based truecaser (Lita et
al., 2003). Turkers are instructed to “. . . select the
machine translation generated sentence that is eas-
iest to read and best conveys what is stated in the
reference”. Differences between the two machine
translations are emphasized by being underlined and
bold faced.9 The resulting HITs are made available
only to workers in the United States, as pilot experi-
ments indicated this results in more consistent pref-
erence judgments. Three preference judgments are
obtained for each pair of translations and are com-
bined using weighted majority vote.

As shown in table 5, in many cases the quality of
the translations produced by models trained to dif-
ferent metrics is remarkably similar. Training to the
simpler edit distance metric WER produces transla-
tions that are as good as those from models tuned to
the similar but more advanced TERp metric that al-
lows for swaps. Similarly, training to TERpA, which
makes use of both a paraphrase table and edit costs

9We emphasize relative differences between the two trans-
lations rather than the difference between each translation and
the reference in order to avoid biasing evaluations toward edit
distance metrics.

561

tuned to human judgments, is no better than TERp.
For the Chinese to English results, there is a sta-

tistically significant human preference for transla-
tions that are produced by training to BLEU:4 and
a marginally significant preferences for training to
NIST over the default configuration of TERp. This
contrasts sharply with earlier work showing that
TER and TERp correlate better with human judge-
ments than BLEU (Snover et al., 2009; Przybocki
et al., 2008; Snover et al., 2006). While it is as-
sumed that, by using MERT, “improved evaluation
measures lead directly to improved machine trans-
lation quality” (Och, 2003), these results show im-
proved correlations with human judgments are not
always sufficient to establish that tuning to a metric
will result in higher quality translations. In the Ara-
bic results, we see a similar pattern where NIST is
preferred to TERp, again with marginal signficance.
Strangely, however, there is no real difference be-
tween TERp vs. BLEU:4.

For Arabic, training to ranking METEOR is worse
than BLEU:4, with the differences being very sig-
nificant. The Arabic results also trend toward sug-
gesting that BLEU:4 is better than either standard
METEOR and METEOR α 0.5. However, for the
Chinese models, training to standard METEOR and
METEOR α 0.5 is about as good as training to
BLEU:4. In both the Chinese and Arabic results, the
METEOR α 0.5 models are at least as good as those
trained to standard METEOR and METEOR rank-
ing. In contrast to the cross evaluation metric results,
where the differences between the α 0.5 models and
the standard METEOR models were always fairly
dramatic, the human preferences suggest there is of-
ten not much of a difference in the true quality of the
translations produced by these models.

7 Conclusion

Training to different evaluation metrics follows the
expected pattern whereby models perform best on
the same type of metric used to train them. How-
ever, models trained using the n-gram based metrics,
BLEU and NIST, are more robust to being evaluated
using the other metrics.

Edit distance models tend to do poorly when eval-
uated on other metrics, as do models trained using
METEOR. However, training models to METEOR
can be made more robust by setting α to 0.5, which

balances the importance the metric assigns to preci-
sion and recall.

The fact that the WER, TER and TERp models
perform very similarly suggests that current phrase-
based translation systems lack either the features or
the model structure to take advantage of swap edit
operations. The situation might be improved by us-
ing a model that does a better job of both captur-
ing the structure of the source and target sentences
and their allowable reorderings, such as a syntac-
tic tree-to-string system that uses contextually rich
rewrite rules (Galley et al., 2006), or by making use
of larger more fine grained feature sets (Chiang et
al., 2009) that allow for better discrimination be-
tween hypotheses.

Human results indicate that edit distance trained
models such as WER and TERp tend to pro-
duce lower quality translations than BLEU or NIST
trained models. Tuning to METEOR works reason-
ably well for Chinese, but is not a good choice for
Arabic. We suspect that the newer RYPT metric
(Zaidan and Callison-Burch, 2009), which directly
makes use of human adequacy judgements of sub-
strings, would obtain better human results than the
automated metrics presented here. However, like
other metrics, we expect performance gains still will
be sensitive to how the mechanics of the metric inter-
act with the structure and feature set of the decoding
model being used.

BLEU and NIST’s strong showing in both the ma-
chine and human evaluation results indicates that
they are still the best general choice for training
model parameters. We emphasize that improved
metric correlations with human judgments do not
imply that models trained to a metric will result in
higher quality translations. We hope future work
on developing new evaluation metrics will explicitly
explore the translation quality of models trained to
them.

Acknowledgements

The authors thank Alon Lavie for suggesting set-
ting α to 0.5 when training to METEOR. This work
was supported by the Defense Advanced Research
Projects Agency through IBM. The content does
not necessarily reflect the views of the U.S. Gov-
ernment, and no official endorsement should be in-
ferred.

562

References

Abhaya Agarwal and Alon Lavie. 2008. METEOR,
M-BLEU and M-TER: Evaluation metrics for high-
correlation with human rankings of machine transla-
tion output. In StatMT workshop at ACL.

Chris Callison-Burch, Miles Osborne, and Philipp
Koehn. 2006. Re-evaluating the role of BLEU in ma-
chine translation research. In EACL.

Chris Callison-Burch. 2009. Fast, cheap, and creative:
Evaluating translation quality using Amazon’s Me-
chanical Turk. In EMNLP.

Daniel Cer, Michel Galley, Christopher D. Manning, and
Dan Jurafsky. 2010. Phrasal: A statistical machine
translation toolkit for exploring new model features.
In NAACL.

Pi-Chuan Chang, Michel Galley, and Christopher D.
Manning. 2008. Optimizing chinese word segmen-
tation for machine translation performance. In StatMT
workshop at ACL.

David Chiang, Yuval Marton, and Philip Resnik. 2008.
Online large-margin training of syntactic and struc-
tural translation features. In EMNLP.

David Chiang, Kevin Knight, and Wei Wang. 2009.
11,001 new features for statistical machine translation.
In NAACL.

Koby Crammer and Yoram Singer. 2003. Ultraconserva-
tive online algorithms for multiclass problems. JMLR,
3:951–991.

George Doddington. 2002. Automatic evaluation of ma-
chine translation quality using n-gram co-occurrence
statistics. In HLT.

Michel Galley and Christopher D. Manning. 2008. A
simple and effective hierarchical phrase reordering
model. In EMNLP.

Michel Galley, Jonathan Graehl, Kevin Knight, Daniel
Marcu, Steve DeNeefe, Wei Wang, and Ignacio
Thayer. 2006. Scalable inference and training of
context-rich syntactic translation models. In ACL.

Michel Galley, Spence Green, Daniel Cer, Pi-Chuan
Chang, and Christopher D. Manning. 2009. Stanford
university’s arabic-to-english statistical machine trans-
lation system for the 2009 NIST evaluation. In NIST
Open Machine Translation Evaluation Meeting.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In NAACL.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondrej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: Open source
toolkit for statistical machine translation. In ACL.

Alon Lavie and Michael J. Denkowski. 2009. The
METEOR metric for automatic evaluation of machine
translation. Machine Translation, 23.

Percy Liang, Ben Taskar, and Dan Klein. 2006. Align-
ment by agreement. In NAACL.

Lucian Vlad Lita, Abe Ittycheriah, Salim Roukos, and
Nanda Kambhatla. 2003. tRuEcasIng. In ACL.

Bonnie Dorr Matthew Snover, Nitin Madnani and
Richard Schwartz. 2008. TERp system description.
In MetricsMATR workshop at AMTA.

Sonja Nießen, Franz Josef Och, and Hermann Ney. 2000.
An evaluation tool for machine translation: Fast eval-
uation for MT research. In LREC.

Franz Josef Och and Hermann Ney. 2003. A system-
atic comparison of various statistical alignment mod-
els. Computational Linguistics, 29(1):19–51.

Franz Josef Och. 2003. Minimum error rate training in
statistical machine translation. In ACL.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In ACL.

M. Przybocki, K. Peterson, and S. Bronsart. 2008.
Official results of the “Metrics for MAchine TRans-
lation” Challenge (MetricsMATR08). Techni-
cal report, NIST, http://nist.gov/speech/
tests/metricsmatr/2008/results/.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In AMTA.

Matthew Snover, Nitin Madnani, Bonnie J. Dorr, and
Richard Schwartz. 2009. Fluency, adequacy, or
HTER?: exploring different human judgments with a
tunable MT metric. In StatMT workshop at EACL).

Rion Snow, Brendan O’Connor, Daniel Jurafsky, and An-
drew Ng. 2008. Cheap and fast – but is it good? Eval-
uating non-expert annotations for natural language
tasks. In EMNLP.

Andreas Stolcke. 2002. SRILM – an extensible language
modeling toolkit. In ICSLP.

Huihsin Tseng, Pichuan Chang, Galen Andrew, Daniel
Jurafsky, and Christopher D. Manning. 2005. A con-
ditional random field word segmenter. In SIGHAN.

Taro Watanabe, Jun Suzuki, Hajime Tsukada, and Hideki
Isozaki. 2007. Online large-margin training for statis-
tical machine translation. In EMNLP-CoNLL.

Omar F. Zaidan and Chris Callison-Burch. 2009. Feasi-
bility of human-in-the-loop minimum error rate train-
ing. In EMNLP, pages 52–61, August.

563

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 564–572,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Variational Inference for Adaptor Grammars
Shay B. Cohen

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA
scohen@cs.cmu.edu

David M. Blei
Computer Science Department

Princeton University
Princeton, NJ 08540, USA

blei@cs.princeton.edu

Noah A. Smith
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA
nasmith@cs.cmu.edu

Abstract
Adaptor grammars extend probabilistic
context-free grammars to define prior dis-
tributions over trees with “rich get richer”
dynamics. Inference for adaptor grammars
seeks to find parse trees for raw text. This
paper describes a variational inference al-
gorithm for adaptor grammars, providing
an alternative to Markov chain Monte Carlo
methods. To derive this method, we develop
a stick-breaking representation of adaptor
grammars, a representation that enables us
to define adaptor grammars with recursion.
We report experimental results on a word
segmentation task, showing that variational
inference performs comparably to MCMC.
Further, we show a significant speed-up when
parallelizing the algorithm. Finally, we report
promising results for a new application for
adaptor grammars, dependency grammar
induction.

1 Introduction

Recent research in unsupervised learning for NLP
focuses on Bayesian methods for probabilistic gram-
mars (Goldwater and Griffiths, 2007; Toutanova and
Johnson, 2007; Johnson et al., 2007). Such meth-
ods have been made more flexible with nonparamet-
ric Bayesian (NP Bayes) methods, such as Dirichlet
process mixture models (Antoniak, 1974; Pitman,
2002). One line of research uses NP Bayes meth-
ods on whole tree structures, in the form of adaptor
grammars (Johnson et al., 2006; Johnson, 2008b;
Johnson, 2008a; Johnson and Goldwater, 2009), in
order to identify recurrent subtree patterns.

Adaptor grammars provide a flexible distribu-
tion over parse trees that has more structure than
a traditional context-free grammar. Adaptor gram-
mars are used via posterior inference, the compu-
tational problem of determining the posterior distri-
bution of parse trees given a set of observed sen-
tences. Current posterior inference algorithms for

adaptor grammars are based on MCMC sampling
methods (Robert and Casella, 2005). MCMC meth-
ods are theoretically guaranteed to converge to the
true posterior, but come at great expense: they are
notoriously slow to converge, especially with com-
plex hidden structures such as syntactic trees. John-
son (2008b) comments on this, and suggests the use
of variational inference as a possible remedy.

Variational inference provides a deterministic al-
ternative to sampling. It was introduced for Dirich-
let process mixtures by Blei and Jordan (2005) and
applied to infinite grammars by Liang et al. (2007).
With NP Bayes models, variational methods are
based on the stick-breaking representation (Sethu-
raman, 1994). Devising a stick-breaking represen-
tation is a central challenge to using variational in-
ference in this setting.

The rest of this paper is organized as follows. In
§2 we describe a stick-breaking representation of
adaptor grammars, which enables variational infer-
ence (§3) and a well-defined incorporation of recur-
sion into adaptor grammars. In §4 we give an em-
pirical comparison of the algorithm to MCMC in-
ference and describe a novel application of adaptor
grammars to unsupervised dependency parsing.

2 Adaptor Grammars

We review adaptor grammars and develop a stick-
breaking representation of the tree distribution.

2.1 Definition of Adaptor Grammars

Adaptor grammars capture syntactic regularities in
sentences by placing a nonparametric prior over the
distribution of syntactic trees that underlie them.
The model exhibits “rich get richer” dynamics: once
a tree is generated, it is more likely to reappear.

Adaptor grammars were developed by Johnson et
al. (2006). An adaptor grammar is a tuple A =
〈G,M,a, b,α〉, which contains: (i) a context-free
grammar G = 〈W,N,R, S〉 where W is the set of

564

terminals, N is the set of nonterminals, R is a set of
production rules, and S ∈ N is the start symbol—we
denote byRA the subset ofR with left-hand sideA;
(ii) a set of adapted nonterminals, M ⊆ N; and (iii)
parameters a, b and α, which are described below.

An adaptor grammar assumes the following gen-
erative process of trees. First, the multinomial dis-
tributions θ for a PCFG based on G are drawn
from Dirichlet distributions. Specifically, multino-
mial θA ∼ Dir(αA) whereα is collection of Dirich-
let parameters, indexed by A ∈ N.

Trees are then generated top-down starting with
S. Any non-adapted nonterminal A ∈ N \ M is
expanded by drawing a rule from RA. There are
two ways to expand A ∈M:

1. With probability (nz − bA)/(nA + aA) we ex-
pand A to subtree z (a tree rooted at A with a
yield in W∗), where nz is the number of times
the tree z was previously generated and nA is the
total number of subtrees (tokens) previously gen-
erated root being A. We denote by a the concen-
tration parameters and b the discount parameters,
both indexed by A ∈ M. We have aA ≥ 0 and
bA ∈ [0, 1].

2. With probability (aA + kAbA)/(nA + aA), A is
expanded as in a PCFG by a draw from θA over
RA, where kA is the number of subtrees (types)
previously generated with root A.

For the expansion of adapted nonterminals, this
process can be explained using the Chinese restau-
rant process (CRP) metaphor: a “customer” (cor-
responding to a partially generated tree) enters a
“restaurant” (corresponding to a nonterminal) and
selects a “table” (corresponding to a subtree) to at-
tach to the partially generated tree. If she is the first
customer at the table, the PCFG 〈G,θ〉 produces the
new table’s associated “dish” (a subtree).1

When adaptor grammars are defined using the
CRP, the PCFG G has to be non-recursive with re-

1We note that our construction deviates from the strict def-
inition of adaptor grammars (Johnson et al., 2006): (i) in our
construction, we assume (as prior work does in practice) that
the adaptors in A = 〈G, M,a, b,α〉 follow the Pitman-Yor
(PY) process (Pitman and Yor, 1997), though in general other
stochastic processes might be used; and (ii) we place a sym-
metric Dirichlet over the parameters of the PCFG, θ, whereas
Johnson et al. used a fixed PCFG for the definition (though they
experimented with a Dirichlet prior).

spect to the adapted nonterminals. More precisely,
for A ∈ N, denote by Reachable(G, A) all the non-
terminals that can be reached from A using a partial
derivation from G. Then we restrict G such that
for all A ∈ M, we have A /∈ Reachable(G, A).
Without this restriction, we might end up in a sit-
uation where the generative process is ill-defined:
in the CRP terminology, a customer could enter a
restaurant and select a table whose dish is still in
the process of being selected.2 In the more general
form of adaptor grammars with arbitrary adaptors,
the problem amounts to mutually dependent defini-
tions of distributions which rely on the others to be
defined. We return to this problem in §3.1.

Inference The inference problem is to compute
the posterior distribution of parse trees given ob-
served sentences x = 〈x1, . . . , xn〉. Typically, in-
ference with adaptor grammars is done with Gibbs
sampling. Johnson et al. (2006) use an embedded
Metropolis-Hastings sampler (Robert and Casella,
2005) inside a Gibbs sampler. The proposal distribu-
tion is a PCFG, resembling a tree substitution gram-
mar (TSG; Joshi, 2003). The sampler of Johnson et
al. is based on the representation of the PY process
as a distribution over partitions of integers. This rep-
resentation is not amenable to variational inference.

2.2 Stick-Breaking Representation

To develop a variational inference algorithm for
adaptor grammars, we require an alternative repre-
sentation of the model in §2.1. The CRP-based def-
inition implicitly marginalizes out a random distri-
bution over trees. For variational inference, we con-
struct that distribution.

We first review the Dirichlet process and its stick-
breaking representation. The Dirichlet process de-
fines a distribution over distributions. Samples from
the Dirichlet process tend to deviate from a base
distribution depending on a concentration parame-
ter. Let G ∼ DP(G0, a) be a distribution sampled
from the Dirichlet process with base distribution G0

2Consider the simple grammar with rules { S → S S, S → a
}. Assume that a customer enters the restaurant for S. She sits
at a table, and selects a dish, a subtree, which starts with the rule
S → S S. Perhaps the first child S is expanded by S → a. For
the second child S, it is possible to re-enter the “S restaurant”
and choose the first table, where the “dish” subtree is still being
generated.

565

and concentration parameter a. The distribution G
is discrete, which means it puts positive mass on a
countable number of atoms drawn from G0. Re-
peated draws from G exhibit the “clustering prop-
erty,” which means that they will be assigned to the
same value with positive probability. Thus, they ex-
hibit a partition structure. Marginalizing out G, the
distribution of that partition structure is given by a
CRP with parameter a (Pitman, 2002).

The stick-breaking process gives a constructive
definition of G (Sethuraman, 1994). With the stick-
breaking process (for the PY process), we first sam-
ple “stick lengths” π ∼ GEM(a, b) (in the case of
Dirichlet process, we have b = 0). The GEM par-
titions the interval [0, 1] into countably many seg-
ments. First, draw vi ∼ Beta(1 − b, a + ib) for
i ∈ {1, . . .}. Then, define πi , vi

∏i−1
j=1(1 − vj).

In addition, we also sample infinitely many “atoms”
independently zi ∼ G0. Define G as:

G(z) =
∑∞

i=1 πiδ(zi, z) (1)

where δ(zi, z) is 1 if zi = z and 0 otherwise. This
random variable is drawn from a Pitman-Yor pro-
cess. Notice the discreteness of G is laid bare in the
stick-breaking construction.

With the stick-breaking representation in hand,
we turn to a constructive definition of the distri-
bution over trees given by an adaptor grammar.
Let A1, . . . , AK be an enumeration of the nonter-
minals in M which satisfies: i ≤ j ⇒ Aj /∈
Reachable(G, Ai). (That this exists follows from
the assumption about the lack of recursiveness of
adapted nonterminals.) Let Yield(z) be the yield of
a tree derivation z. The process that generates ob-
served sentences x = 〈x1, . . . , xn〉 from the adaptor
grammarA = 〈G,M,a, b,α〉 is as follows:

1. For each A ∈ N, draw θA ∼ Dir(αA).
2. For A from A1 to AK , define GA as follows:

(a) Draw πA | aA, bA ∼ GEM(aA, bA).
(b) For i ∈ {1, . . .}, grow a tree zA,i as follows:

i. Draw A→ B1 . . . Bn fromRA.
ii. zA,i = A

HHH
���

B1 · · · Bn
iii. While Yield(zA,i) has nonterminals:

A. Choose an unexpanded nonterminal B
from yield of zA,i.

B. If B ∈ M, expand B according to GB

(defined on previous iterations of step 2).
C. If B ∈ N \M, expand B with a rule from
RB according to Mult(θB).

(c) For i ∈ {1, . . .}, define GA(zA,i) = πA,i

3. For i ∈ {1, . . . , n} draw zi as follows:

(a) If S ∈M, draw zi | GS ∼ GS .
(b) If S /∈ M, draw zi as in 2(b) (omitted for

space).

4. Set xi = Yield(zi) for i ∈ {1, . . . , n}.
Here, there are four collections of hidden variables:
the PCFG multinomials θ = {θA | A ∈ N}, the
stick length proportions v = {vA | A ∈ M} where
vA = 〈vA,1, vA,2, . . .〉, the adapted nonterminals’
subtrees zA = {zA,i | A ∈ M; i ∈ {1, . . .}} and
the derivations z1:n = z1, . . . , zn. The symbol z
refers to the collection of {zA | A ∈ M}, and z1:n

refers to the derivations of the data x.
Note that the distribution in 2(c) is defined with

the GEM distribution, as mentioned earlier. It is a
sample from the Pitman-Yor process (or the Dirich-
let process), which is later used in 3(a) to sample
trees for an adapted non-terminal.

3 Variational Inference

Variational inference is a deterministic alternative
to MCMC, which casts posterior inference as an
optimization problem (Jordan et al., 1999; Wain-
wright and Jordan, 2008). The optimized function
is a bound on the marginal likelihood of the obser-
vations, which is expressed in terms of a so-called
“variational distribution” over the hidden variables.
When the bound is tightened, that distribution is
close to the posterior of interest. Variational meth-
ods tend to converge faster than MCMC, and can be
more easily parallelized over multiple processors in
a framework such as MapReduce (Dean and Ghe-
mawat, 2004).

The variational bound on the likelihood of the
data is:

log p(x | a,α) ≥ H(q) +
∑
A∈M

Eq[log p(vA | aA)]

+
∑
A∈M

Eq[log p(θA | αA)]

+
∑
A∈M

Eq[log p(zA | v,θ)] + Eq[log p(z | vA)]

566

Expectations are taken with respect to the variational
distribution q(v,θ, z) and H(q) is its entropy.

Before tightening the bound, we define the func-
tional form of the variational distribution. We use
the mean-field distribution in which all of the hid-
den variables are independent and governed by in-
dividual variational parameters. (Note that in the
true posterior, the hidden variables are highly cou-
pled.) To account for the infinite collection of ran-
dom variables, for which we cannot define a varia-
tional distribution, we use the truncated stick distri-
bution (Blei and Jordan, 2005). Hence, we assume
that, for all A ∈ M, there is some value NA such
that q(vA,NA

= 1) = 1. The assigned probability to
parse trees in the stick will be 0 for i > NA, so we
can ignore zA,i for i > NA. This leads to a factor-
ized variational distribution:

q(v,θ, z) = (2)∏
A∈M

(
q(θA)

NA∏
i=1

q(vA,i)× q(zA,i)

)
×

n∏
i=1

q(zi)

It is natural to define the variational distributions
over θ and v to be Dirichlet distributions with pa-
rameters τA and Beta distributions with parameters
γA,i, respectively. The two distributions over trees,
q(zA,i) and q(zi), are more problematic. For ex-
ample, with q(zi | φ), we need to take into ac-
count different subtrees that could be generated by
the model and use them with the proper probabilities
in the variational distribution q(zi | φ). We follow
and extend the idea from Johnson et al. (2006) and
use grammatons for these distributions. Gramma-
tons are “mini-grammars,” inspired by the grammar
G.

For two strings in s, t ∈ W∗, we use “t ⊆ s”
to mean that t is a substring of s. In that case, a
grammaton is defined as follows:

Definition 1. LetA = 〈G,M,a, b,α〉 be an adap-
tor grammar with G = 〈W,N,R, S〉. Let s be a fi-
nite string over the alphabet ofG andA ∈ N. Let U

be the set of nonterminals U , Reachable(G, A) ∩
(N \M). The grammaton G(A, s) is the context-
free grammar with the start symbol A and the rules

RA∪

(⋃
B∈U

RB

)
∪

⋃
A→B1...Bn∈RA

⋃
i∈{i|Bi∈M}

{Bi →

t | t ⊆ s}.

Using a grammaton, we define the distributions
q(zA,i | φA) and q(zi | φ). This requires a pre-
processing step (described in detail in §3.3) that de-
fines, for each A ∈ M, a list of strings sA =
〈sA,1, . . . , sA,NA

〉. Then, for q(zA,i | φA) we use
the grammaton G(A, sA,i) and for q(zi | φ) we
use the grammaton G(A, xi) where xi is the ith
observed sentence. We parametrize the grammaton
with weights φA (or φ) for each rule in the gramma-
ton. This makes the variational distributions over the
trees for strings s (and trees for x) globally normal-
ized weighted grammars. Choosing such distribu-
tions is motivated by their ability to make the varia-
tional bound tight (similar to Cohen et al., 2008, and
Cohen and Smith, 2009). In practice we do not have
to use rewrite rules for all strings t ⊆ s in the gram-
maton. It suffices to add rewrite rules only for the
strings t = sA,i that have some grammaton attached
to them,G(A, sA,i).

The variational distribution above yields a vari-
ational inference algorithm for approximating the
posterior by estimating γA,i, τA, φA and φ it-
eratively, given a fixed set of hyperparameters
a, b and α. Let r be a PCFG rule. Let
f̃(r, sB,k) = Eq(zk|φB,k)[f(r; zk)], where f(r; zk)
counts the number of times that rule r is applied in
the derivation zk. Let A → β denote a rule from
G. The quantity f̃(r, sB,k) is computed using the
inside-outside (IO) algorithm. Fig. 1 gives the vari-
ational inference updates.

Variational EM We use variational EM to fit the
hyperparameters. Variational EM is an EM algo-
rithm where the E step is replaced by variational in-
ference (Fig. 1). The M-step optimizes the hyperpa-
rameters (a, b and α) with respect to expected suffi-
cient statistics under the variational distribution. We
use Newton-Raphson for each (Boyd and Vanden-
berghe, 2004); Fig. 2 gives the objectives.

3.1 Note about Recursive Grammars

With recursive grammars, the stick-breaking pro-
cess representation gives probability mass to events
which are ill-defined. In step 2(iii)(c) of the stick-
breaking representation, we assign nonzero proba-
bility to an event in which we choose to expand the
current tree using a subtree with the same index that
we are currently still expanding (see footnote 2). In

567

short, with recursive grammars, we can get “loops”
inside the trees.

We would still like to use recursion in the cases
which are not ill-defined. In the case of recur-
sive grammars, there is no problem with the stick-
breaking representation and the order by which we
enumerate the nonterminals. This is true because the
stick-breaking process separates allocating the prob-
abilities for each index in the stick and allocating the
atoms for each index in the stick.

Our variational distributions give probability 0 to
any event which is ill-defined in the sense men-
tioned above. Optimizing the variational bound in
this case is equivalent to optimizing the same vari-
ational bound with a model p′ that (i) starts with p,
(ii) assigns probability 0 to ill-defined events, and
(iii) renormalizes:

Proposition 2. Let p(x, z) be a probability distri-
bution, where z ∈ Z, and let S ⊂ Z. Let Q = {q |
q(z) = 0, ∀z ∈ S}, a set of distributions. Then:

argmax
q∈Q

Eq[log p(x, z)] = argmax
q

Eq[log p′(x, z)]

where p′(x, z) is a probability distribution defined
as p′(x, z) = p(x, z)/

∑
z∈S p(x, z) for z ∈ S and

0 otherwise.

For this reason, our variational approximation al-
lows the use of recursive grammars. The use of re-
cursive grammars with MCMC methods is problem-
atic, since it has no corresponding probabilistic in-
terpretation, enabled by zeroing events that are ill-
defined in the variational distribution. There is no
underlying model such as p′, and thus the inference
algorithm is invalid.

3.2 Time Complexity

The algorithm in Johnson et al. (2006) works by
sampling from a PCFG containing rewrite rules that
rewrite to a whole tree fragment. This requires
a procedure that uses the inside-outside algorithm.
Despite the grammar being bigger (because of the
rewrite rules to a string), the asymptotic complexity
of the IO algorithm stays O(|N|2|xi|3 + |N|3|xi|2)
where |xi| is the length of the ith sentence.3

3This analysis is true for CNF grammars augmented with
rules rewriting to a whole string, like those used in our study.

γ1
A,i = 1− bA +

∑
B∈M

∑NB

k=1 f̃(A→ sA,i, sB,k)

γ2
A,i = aA + ibA

+
∑i−1
j=1

∑
B∈M

∑NB

k=1 f̃(A→ sA,j , sB,k)

τA,A→β =
∑
B∈M

∑NB

k=1 f̃(A→ β, sB,k)

φA,A→sA,i
= Ψ(γ1

A,i)−Ψ(γ1
A,i + γ2

A,i)

+
∑i−1
j=1

(
Ψ(γ2

A,i)−Ψ(γ1
A,i + γ2

A,i)
)

φA,A→β = Ψ(τA,A→β)−Ψ
(∑

β τA,A→β

)
Figure 1: Updates for variational inference with adaptor
grammars. Ψ is the digamma function.

Our algorithm requires running the IO algorithm
for each yield in the variational distribution, for each
nonterminal, and for each sentence. However, IO
runs with much smaller grammars coming from the
grammatons. The cost of running the IO algorithm
on the yields in the sticks for A ∈ M can be taken
into account parsing a string that appears in the cor-
pus with the full grammars. This leads to an asymp-
totic complexity of O(|N|2|xi|3 + |N|3|xi|2) for the
ith sentence in the corpus each iteration.

Asymptotically, both sampling and variational
EM behave the same. However, there are different
constants that hide in these asymptotic runtimes: the
number of iterations that the algorithm takes to con-
verge (for which variational EM generally has an ad-
vantage over sampling) and the number of additional
rewrite rules that rewrite to a string representing a
tree (for which MCMC has a relative advantage, be-
cause it does not use a fixed set of strings; instead,
the size of the grammars it uses grow as sampling
proceeds). In §4, we see that variational EM and
sampling methods are similar in the time it takes to
complete because of a trade-off between these two
constants. Simple parallelization, however, which
is possible only with variational inference, provides
significant speed-ups.4

3.3 Heuristics for Variational Inference
For the variational approximation from §3, we need
to decide on a set of strings, sA,i (for A ∈ M and
i ∈ {1, . . . , NA}) to define the grammatons in the

4Newman et al. (2009) show how to parallelize sampling al-
gorithms, but in general, parallelizing these algorithms is more
complicated than parallelizing variational algorithms and re-
quires further approximation.

568

maxαA
log Γ(|RA|αA)− |RA| log Γ(αA) + (αA − 1)

(∑
A→β∈RA

Ψ(τA→β)−Ψ
(∑

A→β∈RA
τA→β

))
maxaA

∑NA

i=1 aA
(
Ψ(γ2

A,i)−Ψ(γ1
A,i + γ2

A,i)
)

+ log Γ(aA + 1 + ibA)− log Γ(ibA + aA)

maxbA

∑NA

i=1 ibA
(
Ψ(γ2

A,i)−Ψ(γ1
A,i + γ2

A,i)
)

+ log Γ(aA + 1 + ibA)− log Γ(1− bA)− log Γ(ibA + aA)

Figure 2: Variational M-step updates. Γ is the gamma function.

nonparametric stick. Any set of strings will give
a valid approximation, but to make the variational
approximation as accurate as possible, we require
that: (i) the strings in the set must be likely to be
generated using the adaptor grammar as constituents
headed by the relevant nonterminal, and (ii) strings
that are more likely to be generated should be asso-
ciated with a lower index in the stick. The reason for
the second requirement is the exponential decay of
coefficients as the index increases.

We show that a simple heuristic leads to an order
over the strings generated by the adaptor grammars
that yields an accurate variational estimation. We
begin with a weighted context-free grammar Gheur

that has the same rules as in G, only the weight for
all of its rules is 1. We then compute the quantity:

c(A, s) =
1
n

(
n∑

i=1

EGheur
[fi(z;A, s)]

)
− ρ log |s|

(3)
where fi(z;A, s) is a function computing the count
of constituents headed by A with yield s in the tree
z for the sentence xi. This quantity can be com-
puted by using the IO algorithm onGheur. The term
ρ log |s| is subtracted to avoid preference for shorter
constituents, similar to Mochihashi et al. (2009).

While computing c(A, s) using the IO algorithm,
we sort the set of all substrings of s according to
their expected counts (aggregated over all strings s).
Then, we use the top NA strings in the sorted list for
the grammatons of A.5

3.4 Decoding
The variational inference algorithm gives a distribu-
tions over parameters and hidden structures (through
the grammatons). We experiment with two com-
monly used decoding methods: Viterbi decoding

5The requirement to select NA in advance is strict. We ex-
perimented with dynamic expansions of the stick, in the spirit
of Kurihara et al. (2006) and Wang and Blei (2009), but we did
not achieve better performance and it had an adverse effect on
runtime. For completeness, we give these results in §4.

and minimum Bayes risk decoding (MBR; Good-
man, 1996).

To parse a string with Viterbi (or MBR) decoding,
we find the tree with highest score for the gramma-
ton which is attached to that string. For all rules
which rewrite to strings in the resulting tree, we
again perform Viterbi (or MBR) decoding recur-
sively using other grammatons.

4 Experiments

We describe experiments with variational inference
for adaptor grammars for word segmentation and de-
pendency grammar induction.

4.1 Word Segmentation
We follow the experimental setting of Johnson and
Goldwater (2009), who present state-of-the-art re-
sults for inference with adaptor grammars using
Gibbs sampling on a segmentation problem. We
use the standard Brent corpus (Brent and Cartwright,
1996), which includes 9,790 unsegmented phone-
mic representations of utterances of child-directed
speech from the Bernstein-Ratner (1987) corpus.

Johnson and Goldwater (2009) test three gram-
mars for this segmentation task. The first grammar
is a character unigram grammar (GUnigram). The
second grammar is a grammar that takes into con-
sideration collocations (GColloc) which includes the
rules { Sentence→ Colloc, Sentence→ Colloc Sen-
tence, Colloc → Word+, Word → Char+ }. The
third grammar incorporates more prior knowledge
about the syllabic structure of English (GSyllable).
GUnigram and GSyllable can be found in Johnson
and Goldwater (2009). Once an utterance is parsed,
Word constituents denote segments.

The value of ρ (penalty term for string length) had
little effect on our results and was fixed at ρ = −0.2.
When NA (number of strings used in the variational
distributions) is fixed, we use NA = 15,000. We re-
port results using Viterbi and MBR decoding. John-
son and Goldwater (2009) experimented with two

569

this paper J&G 2009
grammar model Vit. MBR SA MM

G
U
ni
gr
am

Dir 0.49 0.84 0.57 0.54
PY 0.49 0.84 0.81 0.75

PY+inc 0.42 0.59 - -

G
C
ol
lo
c Dir 0.40 0.86 0.75 0.72

PY 0.40 0.86 0.83 0.86
PY+inc 0.43 0.60 - -

G
Sy

lla
bl
e Dir 0.77 0.83 0.84 0.84

PY 0.77 0.83 0.89 0.88
PY+inc 0.75 0.76 - -

Table 1: F1 performance for word segmentation on the
Brent corpus. Dir. stands for Dirichlet Process adaptor
(b = 0), PY stands for Pitman-Yor adaptor (b optimized),
and PY+inc. stands for Pitman-Yor with iteratively in-
creasing NA for A ∈ M (see footnote 5). J&G 2009 are
the results adapted from Johnson and Goldwater (2009);
SA is sample average decoding, and MM is maximum
marginal decoding.

Truncated stick length

F
1

sc
or

e

65

70

75

80

●

●

●

●

●

● ●

●
●

●
● ● ●

●
●

●

●

●

●

●

● ●

●
●

●
● ● ●

●
●

2000 4000 6000 8000 10000 12000 14000

Figure 3: F1 performance of GUnigram as influenced by
the length of the stick, NWord.

decoding methods, sample average (SA) and maxi-
mal marginal decoding (MM), which are closely re-
lated to Viterbi and MBR, respectively. With MM,
we marginalize the tree structure, rather than the
word segmentation induced, similar to MBR decod-
ing. With SA, we compute the probability of a whole
tree, by averaging its count in the samples, an ap-
proximation to finding the tree with highest proba-
bility, like Viterbi.

Table 1 gives the results for our experiments. No-
tice that the results for the Pitman-Yor process and
the Dirichlet process are similar. When inspecting
the learned parameters, we noticed that the discount
parameters (b) learned by the variational inference
algorithm for the Pitman-Yor process are very close

to 0. In this case, the Pitman-Yor process is reduced
to the Dirichlet process.

Similar to Johnson and Goldwater’s comparisons,
we see superior performance when using minimum
Bayes risk over Viterbi decoding. Further notice that
the variational inference algorithm obtains signifi-
cantly superior performance for simpler grammars
than Johnson et al., while performance using the syl-
lable grammar is lower. The results also suggest that
it is better to decide ahead on the set of strings avail-
able in the sticks, instead of working gradually and
increase the size of the sticks as described in foot-
note 5. We believe that the reason is that the varia-
tional inference algorithm settles in a trajectory that
uses fewer strings, then fails to exploit the strings
that are added to the stick later. Given that select-
ing NA in advance is advantageous, we may inquire
if choosing NA to be too large can lead to degraded
performance, because of fragmention of the gram-
mar. Fig. 3 suggests it is not the case, and per-
formance stays steady after NA reaches a certain
value.

One of the advantages of variational approxima-
tion over sampling methods is the ability to run
for fewer iterations. For example, with GUnigram

convergence typically takes 40 iterations with vari-
ational inference, while Johnson and Goldwater
(2009) ran their sampler for 2,000 iterations, for
which 1,000 were for burning in. The inside-outside
algorithm dominates the iteration’s runtime, both
for sampling and variational EM. Each iteration
with sampling, however, takes less time, despite the
asymptotic analysis in §3.2, because of different im-
plementations and the different number of rules that
rewrite to a string. We now give a comparison of
clock time for GUnigram for variational inference
and sampling as described in Johnson and Goldwa-
ter (2009).6 Replicating the experiment in Johnson
and Goldwater (first row in Table 1) took 2 hours
and 11 minutes. With the variational approximation,
we had the following: (i) the preprocessing (§3.3)
step took 114 seconds; (ii) each iteration took ap-
proximately 204 seconds, with convergence after 40
iterations, leading to 8,160 seconds of pure varia-

6We used the code and data available at http://www.
cog.brown.edu/˜mj/Software.htm. The machine
used for this comparison is a 64-bit machine with 2.6GHz CPU,
4MB of cache memory and 8GB of RAM.

570

tional EM processing; (iii) parsing took another 952
seconds. The total time is 2 hours and 34 minutes.

At first glance it seems that variational inference
is slower than MCMC sampling. However, note that
the cost of the grammar preprocessing step is amor-
tized over all experiments with the specific gram-
mar, and the E-step with variational inference can be
parallelized, while sampling requires an update of a
global set of parameters after each tree update. We
ran our algorithm on a cluster of 20 1.86GHz CPUs
and achieved a significant speed-up: preprocessing
took 34 seconds, each variational EM iteration took
43 seconds and parsing took 208 seconds. The total
time was 47 minutes, which is 2.8 times faster than
sampling.

4.2 Dependency Grammar Induction
We conclude our experiments with preliminary re-
sults for unsupervised syntax learning. This is a new
application of adaptor grammars, which have so far
been used in segmentation (Johnson and Goldwater,
2009) and named entity recognition (Elsner et al.,
2009).

The grammar we use is the dependency model
with valence (DMV Klein and Manning, 2004) rep-
resented as a probabilistic context-free grammar,
GDMV (Smith, 2006). We note that GDMV is re-
cursive; this is not a problem (§3.1).

We used part-of-speech sequences from the Wall
Street Journal Penn Treebank (Marcus et al., 1993),
stripped of words and punctuation. We follow stan-
dard parsing conventions and train on sections 2–
21 and test on section 23 (while using sentences of
length 10 or less). Because of the unsupervised na-
ture of the problem, we report results on the training
set, in addition to the test set.

The nonterminals that we adapted correspond to
nonterminals that define noun constituents. We then
use the preprocessing step defined in §3.3 with a uni-
form grammar and take the top 3,000 strings for each
nonterminal of a noun constituent.

The results are in Table 4.2. We report attach-
ment accuracy, the fraction of parent-child relation-
ships that the algorithm classified correctly. Notice
that the results are not very different for Viterbi and
MBR decoding, unlike the case with word segmen-
tation. It seems like the DMV grammar, applied
to this task, is more robust to changes in decod-

model Vit. MBR

tr
ai

n

non-Bayesian 48.2 48.3
Dirichlet prior 48.3 48.6

Adaptor grammar 54.0 †53.7

te
st

non-Bayesian 45.8 46.1
Dirichlet prior 45.9 46.1

Adaptor grammar 48.3 50.2

Table 2: Attachment accuracy for different models for
dependency grammar induction. Bold marks best overall
accuracy per evaluation set, and † marks figures that are
not significantly worse (binomial sign test, p < 0.05).

ing mechanism. Adaptor grammars improve perfor-
mance over classic EM and variational EM with a
Dirichlet prior significantly.

We note that adaptor grammars are not limited to
a selection of a Dirichlet distribution as a prior for
the grammar rules. Our variational inference algo-
rithm, for example, can be extended to use the lo-
gistic normal prior instead of the Dirichlet, shown
successful by Cohen and Smith (2009).7

5 Conclusion

We described a variational inference algorithm for
adaptor grammars based on a stick-breaking process
representation, which solves a problem with adaptor
grammars and recursive PCFGs. We tested it for a
segmentation task, and showed results which are ei-
ther comparable or an imporvement of state of the
art. We showed that significant speed-ups can be
obtained using parallelization of the algorithm. We
also tested the algorithm on a novel task for adap-
tor grammars, dependency grammar induction. We
showed that an improvement can be obtained using
adaptor grammars over non-Bayesian and paramet-
ric baselines.

Acknowledgments

The authors would like to thank the anonymous review-
ers, Jordan Boyd-Graber, Reza Haffari, Mark Johnson,
and Chong Wang for their useful feedback and com-
ments. This work was supported by the following grants:
ONR 175-6343 and NSF CAREER 0745520 to Blei; NSF
IIS-0836431 and IIS-0915187 to Smith.

7The performance of Cohen and Smith (2009), like the per-
formance of Headden et al. (2009), is greater than what we re-
port, but those developments are orthogonal to the contributions
of this paper.

571

References
C. Antoniak. 1974. Mixtures of Dirichlet processes with

applications to Bayesian nonparametric problems. The
Annals of Statistics, 2(6):1152–1174.

N. Bernstein-Ratner. 1987. The phonology of parent
child speech. Children’s Language, 6.

D. Blei and M. Jordan. 2005. Variational inference for
Dirichlet process mixtures. Journal of Bayesian Anal-
ysis, 1(1):121–144.

S. Boyd and L. Vandenberghe. 2004. Convex Optimiza-
tion. Cambridge Press.

M. Brent and T. Cartwright. 1996. Distributional reg-
ularity and phonotactic constraints are useful for seg-
mentation. Cognition, 6:93–125.

S. B. Cohen and N. A. Smith. 2009. Shared logistic
normal distributions for soft parameter tying in unsu-
pervised grammar induction. In Proc. of NAACL-HLT.

S. B. Cohen, K. Gimpel, and N. A. Smith. 2008. Logistic
normal priors for unsupervised probabilistic grammar
induction. In NIPS.

J. Dean and S. Ghemawat. 2004. MapReduce: Sim-
plified data processing on large clusters. In Proc. of
OSDI.

M. Elsner, E. Charniak, and M. Johnson. 2009. Struc-
tured generative models for unsupervised named-
entity clustering. In Proc. of NAACL-HLT.

S. Goldwater and T. L. Griffiths. 2007. A fully Bayesian
approach to unsupervised part-of-speech tagging. In
Proc. of ACL.

J. Goodman. 1996. Parsing algorithms and metrics. In
Proc. of ACL.

W. P. Headden, M. Johnson, and D. McClosky. 2009.
Improving unsupervised dependency parsing with
richer contexts and smoothing. In Proc. of NAACL-
HLT.

M. Johnson and S. Goldwater. 2009. Improving nonpa-
rameteric Bayesian inference experiments on unsuper-
vised word segmentation with adaptor grammars. In
Proc. of NAACL-HLT.

M. Johnson, T. L. Griffiths, and S. Goldwater. 2006.
Adaptor grammars: A framework for specifying com-
positional nonparameteric Bayesian models. In NIPS.

M. Johnson, T. L. Griffiths, and S. Goldwater. 2007.
Bayesian inference for PCFGs via Markov chain
Monte Carlo. In Proc. of NAACL.

M. Johnson. 2008a. Unsupervised word segmentation
for Sesotho using adaptor grammars. In Proceedings
of the Tenth Meeting of ACL Special Interest Group on
Computational Morphology and Phonology.

M. Johnson. 2008b. Using adaptor grammars to identify
synergies in the unsupervised acquisition of linguistic
structure. In Proc. of ACL.

M. I. Jordan, Z. Ghahramani, T. S. Jaakola, and L. K.
Saul. 1999. An introduction to variational methods
for graphical models. Machine Learning, 37(2):183–
233.

A. Joshi. 2003. Tree adjoining grammars. In R. Mitkov,
editor, The Oxford Handbook of Computational Lin-
guistics, pages 483–501. Oxford University Press.

D. Klein and C. D. Manning. 2004. Corpus-based induc-
tion of syntactic structure: Models of dependency and
constituency. In Proc. of ACL.

K. Kurihara, M. Welling, and N. A. Vlassis. 2006. Ac-
celerated variational Dirichlet process mixtures. In
NIPS.

P. Liang, S. Petrov, M. Jordan, and D. Klein. 2007. The
infinite PCFG using hierarchical Dirichlet processes.
In Proc. of EMNLP.

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz.
1993. Building a large annotated corpus of En-
glish: The Penn treebank. Computational Linguistics,
19:313–330.

D. Mochihashi, T. Yamada, and N. Ueda. 2009.
Bayesian unsupervised word segmentation with nested
Pitman-Yor language modeling. In Proc. of ACL.

D. Newman, A. Asuncion, P. Smyth, and M. Welling.
2009. Distributed algorithms for topic models. Jour-
nal of Machine Learning Research, 10:1801–1828.

J. Pitman and M. Yor. 1997. The two-parameter Poisson-
Dirichlet distribution derived from a stable subordina-
tor. Annals of Probability, 25(2):855–900.

J. Pitman. 2002. Combinatorial Stochastic Processes.
Lecture Notes for St. Flour Summer School. Springer-
Verlag, New York, NY.

C. P. Robert and G. Casella. 2005. Monte Carlo Statisti-
cal Methods. Springer.

J. Sethuraman. 1994. A constructive definition of Dirich-
let priors. Statistica Sinica, 4:639–650.

N. A. Smith. 2006. Novel Estimation Methods for Unsu-
pervised Discovery of Latent Structure in Natural Lan-
guage Text. Ph.D. thesis, Johns Hopkins University.

K. Toutanova and M. Johnson. 2007. A Bayesian LDA-
based model for semi-supervised part-of-speech tag-
ging. In Proc. of NIPS.

M. J. Wainwright and M. I. Jordan. 2008. Graphi-
cal models, exponential families, and variational infer-
ence. Foundations and Trends in Machine Learning,
1:1–305.

C. Wang and D. M. Blei. 2009. Variational inference for
the nested Chinese restaurant process. In NIPS.

572

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 573–581,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Type-Based MCMC

Percy Liang
UC Berkeley

pliang@cs.berkeley.edu

Michael I. Jordan
UC Berkeley

jordan@cs.berkeley.edu

Dan Klein
UC Berkeley

klein@cs.berkeley.edu

Abstract

Most existing algorithms for learning latent-
variable models—such as EM and existing
Gibbs samplers—are token-based, meaning
that they update the variables associated with
one sentence at a time. The incremental na-
ture of these methods makes them suscepti-
ble to local optima/slow mixing. In this paper,
we introduce a type-based sampler, which up-
dates a block of variables, identified by a type,
which spans multiple sentences. We show im-
provements on part-of-speech induction, word
segmentation, and learning tree-substitution
grammars.

1 Introduction

A long-standing challenge in NLP is the unsu-
pervised induction of linguistic structures, for ex-
ample, grammars from raw sentences or lexicons
from phoneme sequences. A fundamental property
of these unsupervised learning problems is multi-
modality. In grammar induction, for example, we
could analyze subject-verb-object sequences as ei-
ther ((subject verb) object) (mode 1) or (subject
(verb object)) (mode 2).

Multimodality causes problems for token-based
procedures that update variables for one example at
a time. In EM, for example, if the parameters al-
ready assign high probability to the ((subject verb)
object) analysis, re-analyzing the sentences in E-step
only reinforces the analysis, resulting in EM getting
stuck in a local optimum. In (collapsed) Gibbs sam-
pling, if all sentences are already analyzed as ((sub-
ject verb) object), sampling a sentence conditioned

2 1 2 2 1

2 2 2 1 2

1 2 1 2 2

2 1 2 2 1

2 2 2 1 2

1 2 1 2 2

2 1 2 2 1

2 2 2 1 2

1 2 1 2 2

(a) token-based (b) sentence-based (c) type-based

Figure 1: Consider a dataset of 3 sentences, each of
length 5. Each variable is labeled with a type (1 or 2). The
unshaded variables are the ones that are updated jointly
by a sampler. The token-based sampler updates the vari-
able for one token at a time (a). The sentence-based sam-
pler updates all variables in a sentence, thus dealing with
intra-sentential dependencies (b). The type-based sam-
pler updates all variables of a particular type (1 in this ex-
ample), thus dealing with dependencies due to common
parameters (c).

on all others will most likely not change its analysis,
resulting in slow mixing.

To combat the problems associated with token-
based algorithms, we propose a new sampling algo-
rithm that operates on types. Our sampler would, for
example, be able to change all occurrences of ((sub-
ject verb) object) to (subject (verb object)) in one
step. These type-based operations are reminiscent of
the type-based grammar operations of early chunk-
merge systems (Wolff, 1988; Stolcke and Omohun-
dro, 1994), but we work within a sampling frame-
work for increased robustness.

In NLP, perhaps the the most simple and popu-
lar sampler is the token-based Gibbs sampler,1 used
in Goldwater et al. (2006), Goldwater and Griffiths
(2007), and many others. By sampling only one

1In NLP, this is sometimes referred to as simply the col-
lapsed Gibbs sampler.

573

variable at a time, this sampler is prone to slow mix-
ing due to the strong coupling between variables.
A general remedy is to sample blocks of coupled
variables. For example, the sentence-based sampler
samples all the variables associated with a sentence
at once (e.g., the entire tag sequence). However, this
blocking does not deal with the strong type-based
coupling (e.g., all instances of a word should be
tagged similarly). The type-based sampler we will
present is designed exactly to tackle this coupling,
which we argue is stronger and more important to
deal with in unsupervised learning. Figure 1 depicts
the updates made by each of the three samplers.

We tested our sampler on three models: a
Bayesian HMM for part-of-speech induction (Gold-
water and Griffiths, 2007), a nonparametric
Bayesian model for word segmentation (Goldwater
et al., 2006), and a nonparametric Bayesian model of
tree substitution grammars (Cohn et al., 2009; Post
and Gildea, 2009). Empirically, we find that type-
based sampling improves performance and is less
sensitive to initialization (Section 5).

2 Basic Idea via a Motivating Example

The key technical problem we solve in this paper is
finding a block of variables which are both highly
coupled and yet tractable to sample jointly. This
section illustrates the main idea behind type-based
sampling on a small word segmentation example.

Suppose our dataset x consists of n occurrences
of the sequence a b. Our goal is infer z =
(z1, . . . , zn), where zi = 0 if the sequence is one
word ab, and zi = 1 if the sequence is two, a
and b. We can model this situation with a simple
generative model: for each i = 1, . . . , n, gener-
ate one or two words with equal probability. Each
word is drawn independently based on probabilities
θ = (θa, θb, θab) which we endow with a uniform
prior θ ∼ Dirichlet(1, 1, 1).

We marginalize out θ to get the following standard
expression (Goldwater et al., 2009):

p(z | x) ∝ 1(m)1(m)1(n−m)

3(n+m)

def= g(m), (1)

where m =
∑n

i=1 zi is the number of two-word se-
quences and a(k) = a(a + 1) · · · (a + k − 1) is the

200 400 600 8001000
m

-1411.4

-1060.3

-709.1

-358.0

-6.8

lo
g

g
(m

)

2 4 6 8 10
iteration

200

400

600

800

1000

m

Token
Type

(a) bimodal posterior (b) sampling run

Figure 2: (a) The posterior (1) is sharply bimodal (note
the log-scale). (b) A run of the token-based and type-
based samplers. We initialize both samplers with m = n
(n = 1000). The type-based sampler mixes instantly
(in fact, it makes independent draws from the posterior)
whereas the token-based sampler requires five passes
through the data before finding the high probability re-
gion m u 0.

ascending factorial.2 Figure 2(a) depicts the result-
ing bimodal posterior.

A token-based sampler chooses one zi to update
according to the posterior p(zi | z−i,x). To illus-
trate the mixing problem, consider the case where
m = n, i.e., all sequences are analyzed as two
words. From (1), we can verify that p(zi = 0 |
z−i,x) = O(1

n). When n = 1000, this means that
there is only a 0.002 probability of setting zi = 0,
a very unlikely but necessary first step to take to es-
cape this local optimum. Indeed, Figure 2(b) shows
how the token-based sampler requires five passes
over the data to finally escape.

Type-based sampling completely eradicates the
local optimum problem in this example. Let us take
a closer look at (1). Note that p(z | x) only depends
on a single integer m, which only takes one of n+ 1
values, not on the particular z. This shows that the
zis are exchangeable. There are

(
n
m

)
possible val-

ues of z satisfying m =
∑

i zi, each with the same
probability g(m). Summing, we get:

p(m | x) ∝
∑

z:m=
P

i zi

p(x, z) =
(
n

m

)
g(m). (2)

A sampling strategy falls out naturally: First, sample
the number m via (2). Conditioned on m, choose

2The ascending factorial function arises from marginaliz-
ing Dirichlet distributions and is responsible the rich-gets-richer
phenomenon: the larger n is, more we gain by increasing it.

574

the particular z uniformly out of the
(
n
m

)
possibili-

ties. Figure 2(b) shows the effectiveness of this type-
based sampler.

This simple example exposes the fundamental
challenge of multimodality in unsupervised learn-
ing. Both m = 0 and m = n are modes due to the
rich-gets-richer property which arises by virtue of
all n examples sharing the same parameters θ. This
sharing is a double-edged sword: It provides us with
clustering structure but also makes inference hard.
Even though m = n is much worse (by a factor ex-
ponential in n) than m = 0, a naı̈ve algorithm can
easily have trouble escaping m = n.

3 Setup

We will now present the type-based sampler in full
generality. Our sampler is applicable to any model
which is built out of local multinomial choices,
where each multinomial has a Dirichlet process prior
(a Dirichlet prior if the number of choices is finite).
This includes most probabilistic models in NLP (ex-
cluding ones built from log-linear features).

As we develop the sampler, we will pro-
vide concrete examples for the Bayesian hidden
Markov model (HMM), the Dirichlet process uni-
gram segmentation model (USM) (Goldwater et al.,
2006), and the probabilistic tree-substitution gram-
mar (PTSG) (Cohn et al., 2009; Post and Gildea,
2009).

3.1 Model parameters

A model is specified by a collection of multino-
mial parameters θ = {θr}r∈R, where R is an in-
dex set. Each vector θr specifies a distribution over
outcomes: outcome o has probability θro.

• HMM: Let K is the number of states. The set
R = {(q, k) : q ∈ {T,E}, k = 1, . . . ,K}
indexes the K transition distributions {θ(T,k)}
(each over outcomes {1, . . . ,K}) and K emis-
sion distributions {θ(E,k)} (each over the set of
words).

• USM: R = {0}, and θ0 is a distribution over (an
infinite number of) words.

• PTSG: R is the set of grammar symbols, and
each θr is a distribution over labeled tree frag-
ments with root label r.

R index set for parameters
θ = {θr}r∈R multinomial parameters
µ = {µr}r∈R base distributions (fixed)
S set of sites
b = {bs}s∈S binary variables (to be sampled)
z latent structure (set of choices)
z−s choices not depending on site s
zs:b choices after setting bs = b
∆zs:b zs:b\z−s: new choices from bs = b
S ⊂ S sites selected for sampling
m # sites in S assigned bs = 1
n = {nro} counts (sufficient statistics of z)

Table 1: Notation used in this paper. Note that there is a
one-to-one mapping between z and (b,x). The informa-
tion relevant for evaluating the likelihood is n. We use
the following parallel notation: n−s = n(z−s),ns:b =
n(zs:b),∆ns = n(∆zs).

3.2 Choice representation of latent structure z

We represent the latent structure z as a set of local
choices:3

• HMM: z contains elements of the form
(T, i, a, b), denoting a transition from state
a at position i to state b at position i + 1; and
(E, i, a, w), denoting an emission of word w
from state a at position i.

• USM: z contains elements of the form (i, w), de-
noting the generation of word w at character po-
sition i extending to position i+ |w| − 1.

• PTSG: z contains elements of the form (x, t), de-
noting the generation of tree fragment t rooted at
node x.

The choices z are connected to the parameters θ
as follows: p(z | θ) =

∏
z∈z θz.r,z.o. Each choice

z ∈ z is identified with some z.r ∈ R and out-
come z.o. Intuitively, choice z was made by drawing
drawing z.o from the multinomial distribution θz.r.

3.3 Prior

We place a Dirichlet process prior on θr (Dirichlet
prior for finite outcome spaces): θr ∼ DP(αr, µr),
where αr is a concentration parameter and µr is a
fixed base distribution.

3We assume that z contains both a latent part and the ob-
served input x, i.e., x is a deterministic function of z.

575

Let nro(z) = |{z ∈ z : z.r = r, z.o = o}| be the
number of draws from θr resulting in outcome o, and
nr· =

∑
o nro be the number of times θr was drawn

from. Let n(z) = {nro(z)} denote the vector of
sufficient statistics associated with choices z. When
it is clear from context, we simply write n for n(z).
Using these sufficient statistics, we can write p(z |
θ) =

∏
r,o θ

nro(z)
ro .

We now marginalize out θ using Dirichlet-
multinomial conjugacy, producing the following ex-
pression for the likelihood:

p(z) =
∏
r∈R

∏
o (αroµro)

(nro(z))

αr(nr·(z))
, (3)

where a(k) = a(a+1) · · · (a+k−1) is the ascending
factorial. (3) is the distribution that we will use for
sampling.

4 Type-Based Sampling

Having described the setup of the model, we now
turn to posterior inference of p(z | x).

4.1 Binary Representation

We first define a new representation of the latent
structure based on binary variables b so that there is
a bijection between z and (b,x); z was used to de-
fine the model, b will be used for inference. We will
use b to exploit the ideas from Section 2. Specifi-
cally, let b = {bs}s∈S be a collection of binary vari-
ables indexed by a set of sites S.

• HMM: If the HMM hasK = 2 states, S is the set
of positions in the sequence. For each s ∈ S , bs
is the hidden state at s. The extension to general
K is considered at the end of Section 4.4.

• USM: S is the set of non-final positions in the
sequence. For each s ∈ S , bs denotes whether
a word boundary exists between positions s and
s+ 1.

• PTSG: S is the set of internal nodes in the parse
tree. For s ∈ S, bs denotes whether a tree frag-
ment is rooted at node s.

For each site s ∈ S, let zs:0 and zs:1 denote the
choices associated with the structures obtained by
setting the binary variable bs = 0 and bs = 1, re-
spectively. Define z−s def= zs:0 ∩ zs:1 to be the set

of choices that do not depend on the value of bs, and
n−s def= n(z−s) be the corresponding counts.

• HMM: z−s includes all but the transitions into
and out of the state at s plus the emission at s.

• USM: z−s includes all except the word ending at
s and the one starting at s+ 1 if there is a bound-
ary (bs = 1); except the word covering s if no
boundary exists (bs = 0).

• PTSG: z−s includes all except the tree fragment
rooted at node s and the one with leaf s if bs = 1;
except the single fragment containing s if bs = 0.

4.2 Sampling One Site

A token-based sampler considers one site s at a time.
Specifically, we evaluate the likelihoods of zs:0 and
zs:1 according to (3) and sample bs with probability
proportional to the likelihoods. Intuitively, this can
be accomplished by removing choices that depend
on bs (resulting in z−s), evaluating the likelihood re-
sulting from setting bs to 0 or 1, and then adding the
appropriate choices back in.

More formally, let ∆zs:b def= zs:b\z−s be the new
choices that would be added if we set bs = b ∈
{0, 1}, and let ∆ns:b def= n(∆zs:b) be the corre-
sponding counts. With this notation, we can write
the posterior as follows:

p(bs = b | b\bs) ∝ (4)∏
r∈R

∏
o (αroµro + n−sro)(∆ns:b

ro)

(αr + n−sr·)(∆ns:b
r·)

.

The form of the conditional (4) follows from the
joint (3) via two properties: additivity of counts
(ns:b = n−s + ∆ns:b) and a simple property of as-
cending factorials (a(k+δ) = a(k)(a+ k)(δ)).

In practice, most of the entries of ∆ns:b are zero.
For the HMM, ns:bro would be nonzero only for
the transitions into the new state (b) at position s
(zs−1 → b), transitions out of that state (b→ zs+1),
and emissions from that state (b→ xs).

4.3 Sampling Multiple Sites

We would like to sample multiple sites jointly as in
Section 2, but we cannot choose any arbitrary subset
S ⊂ S, as the likelihood will in general depend on
the exact assignment of bS

def= {bs}s∈S , of which

576

a b c a a b c a b c b

(a) USM

1 1 2 2 1 1 2 2
a b a b c b b e

(b) HMM

a

b

a a

b c

d e

c

d

b c

e

a b

(c) PTSG

Figure 3: The type-based sampler jointly samples all vari-
ables at a set of sites S (in green boxes). Sites in S are
chosen based on types (denoted in red). (a) HMM: two
sites have the same type if they have the same previous
and next states and emit the same word; they conflict un-
less separated by at least one position. (b) USM: two sites
have the same type if they are both of the form ab|c or
abc; note that occurrences of the same letters with other
segmentations do not match the type. (c) PTSG: analo-
gous to the USM, only for tree rather than sequences.

there are an exponential number. To exploit the ex-
changeability property in Section 2, we need to find
sites which look “the same” from the model’s point
of view, that is, the likelihood only depends on bS
via m def=

∑
s∈S bs.

To do this, we need to define two notions, type and
conflict. We say sites s and s′ have the same type if
the counts added by setting either bs or bs′ are the
same, that is, ∆ns:b = ∆ns

′:b for b ∈ {0, 1}. This
motivates the following definition of the type of site
s with respect to z:

t(z, s) def= (∆ns:0,∆ns:1), (5)

We say that s and s′ have the same type if t(z, s) =
t(z, s′). Note that the actual choices added (∆zs:b

and ∆zs
′:b) are in general different as s and s′ cor-

respond to different parts of the latent structure, but
the model only depends on counts and is indifferent
to this. Figure 3 shows examples of same-type sites
for our three models.

However, even if all sites in S have the same
type, we still cannot sample bS jointly, since chang-
ing one bs might change the type of another site s′;
indeed, this dependence is reflected in (5), which

shows that types depend on z. For example, s, s′ ∈
S conflict when s′ = s + 1 in the HMM or when
s and s′ are boundaries of one segment (USM) or
one tree fragment (PTSG). Therefore, one additional
concept is necessary: We say two sites s and s′ con-
flict if there is some choice that depends on both bs
and bs′ ; formally, (z\z−s) ∩ (z\z−s′) 6= ∅.

Our key mathematical result is as follows:

Proposition 1 For any set S ⊂ S of non-conflicting
sites with the same type,

p(bS | b\bS) ∝ g(m) (6)

p(m | b\bS) ∝
(
|S|
m

)
g(m), (7)

for some easily computable g(m), where m =∑
s∈S bs.

We will derive g(m) shortly, but first note from
(6) that the likelihood for a particular setting of bS
depends on bS only via m as desired. (7) sums
over all

(|S|
m

)
settings of bS with m =

∑
s∈S bs.

The algorithmic consequences of this result is that
to sample bS , we can first compute (7) for each
m ∈ {0, . . . , |S|}, sample m according to the nor-
malized distribution, and then choose the actual bS
uniformly subject to m.

Let us now derive g(m) by generalizing (4).
Imagine removing all sites S and their dependent
choices and adding in choices corresponding to
some assignment bS . Since all sites in S are non-
conflicting and of the same type, the count contribu-
tion ∆ns:b is the same for every s ∈ S (i.e., sites
in S are exchangeable). Therefore, the likelihood
of the new assignment bS depends only on the new
counts:

∆nS:m def= m∆ns:1 + (|S| −m)∆ns:0. (8)

Using these new counts in place of the ones in (4),
we get the following expression:

g(m) =
∏
r∈R

∏
o (αroµro + nro(z−S))(∆nS:m

ro)

αr + nr·(z−S)(∆nS:m
r·)

. (9)

4.4 Full Algorithm
Thus far, we have shown how to sample bS given
a set S ⊂ S of non-conflicting sites with the same
type. To complete the description of the type-based

577

Type-Based Sampler

for each iteration t = 1, . . . , T :
−for each pivot site s0 ∈ S:
−−S ← TB(z, s0) (S is the type block centered at s0)
−−decrement n and remove from z based on bS

−−sample m according to (7)
−−sample M ⊂ S with |M | = m uniformly at random
−−set bs = I[s ∈M] for each s ∈ S
−−increment n and add to z accordingly

Figure 4: Pseudocode for the general type-based sampler.
We operate in the binary variable representation b of z.
Each step, we jointly sample |S| variables (of the same
type).

sampler, we need to specify how to choose S. Our
general strategy is to first choose a pivot site s0 ∈ S
uniformly at random and then set S = TB(z, s0) for
some function TB. Call S the type block centered at
s0. The following two criteria on TB are sufficient
for a valid sampler: (A) s0 ∈ S, and (B) the type
blocks are stable, which means that if we change bS
to any b′S (resulting in a new z′), the type block cen-
tered at s0 with respect to z′ does not change (that
is, TB(z′, s0) = S). (A) ensures ergodicity; (B),
reversibility.

Now we define TB as follows: First set S = {s0}.
Next, loop through all sites s ∈ S with the same type
as s0 in some fixed order, adding s to S if it does
not conflict with any sites already in S. Figure 4
provides the pseudocode for the full algorithm.

Formally, this sampler cycles over |S| transition
kernels, one for each pivot site. Each kernel (in-
dexed by s0 ∈ S) defines a blocked Gibbs move,
i.e. sampling from p(bTB(z,s0) | · · ·).

Efficient Implementation There are two oper-
ations we must perform efficiently: (A) looping
through sites with the same type as the pivot site s0,
and (B) checking whether such a site s conflicts with
any site in S. We can perform (B) in O(1) time by
checking if any element of ∆zs:bs has already been
removed; if so, there is a conflict and we skip s. To
do (A) efficiently, we maintain a hash table mapping
type t to a doubly-linked list of sites with type t.
There is anO(1) cost for maintaining this data struc-
ture: When we add or remove a site s, we just need
to add or remove neighboring sites s′ from their re-
spective linked lists, since their types depend on bs.

For example, in the HMM, when we remove site s,
we also remove sites s−1 and s+1.

For the USM, we use a simpler solution: main-
tain a hash table mapping each word w to a list of
positions where w occurs. Suppose site (position) s
straddles words a and b. Then, to perform (A), we
retrieve the list of positions where a, b, and ab occur,
intersecting the a and b lists to obtain a list of posi-
tions where a b occurs. While this intersection is
often much smaller than the pre-intersected lists, we
found in practice that the smaller amount of book-
keeping balanced out the extra time spent intersect-
ing. We used a similar strategy for the PTSG, which
significantly reduces the amount of bookkeeping.

Skip Approximation Large type blocks mean
larger moves. However, such a block S is also sam-
pled more frequently—once for every choice of a
pivot site s0 ∈ S. However, we found that empir-
ically, bS changes very infrequently. To eliminate
this apparent waste, we use the following approxi-
mation of our sampler: do not consider s0 ∈ S as
a pivot site if s0 belongs to some block which was
already sampled in the current iteration. This way,
each site is considered roughly once per iteration.4

Sampling Non-Binary Representations We can
sample in models without a natural binary represen-
tation (e.g., HMMs with with more than two states)
by considering random binary slices. Specifically,
suppose bs ∈ {1, . . . ,K} for each site s ∈ S .
We modify Figure 4 as follows: After choosing a
pivot site s0 ∈ S , let k = bs0 and choose k′ uni-
formly from {1, . . . ,K}. Only include sites in one
of these two states by re-defining the type block to
be S = {s ∈ TB(z, s0) : bs ∈ {k, k′}}, and sam-
ple bS restricted to these two states by drawing from
p(bS | bS ∈ {k, k′}|S|, · · ·). By choosing a random
k′ each time, we allow b to reach any point in the
space, thus achieving ergodicity just by using these
binary restrictions.

5 Experiments

We now compare our proposed type-based sampler
to various alternatives, evaluating on marginal like-

4A site could be sampled more than once if it belonged to
more than one type block during the iteration (recall that types
depend on z and thus could change during sampling).

578

lihood (3) and accuracy for our three models:

• HMM: We learned a K = 45 state HMM on
the Wall Street Journal (WSJ) portion of the Penn
Treebank (49208 sentences, 45 tags) for part-of-
speech induction. We fixed αr to 0.1 and µr to
uniform for all r.

For accuracy, we used the standard metric based
on greedy mapping, where each state is mapped
to the POS tag that maximizes the number of cor-
rect matches (Haghighi and Klein, 2006). We did
not use a tagging dictionary.

• USM: We learned a USM model on the
Bernstein-Ratner corpus from the CHILDES
database used in Goldwater et al. (2006) (9790
sentences) for word segmentation. We fixed α0 to
0.1. The base distribution µ0 penalizes the length
of words (see Goldwater et al. (2009) for details).
For accuracy, we used word token F1.

• PTSG: We learned a PTSG model on sections 2–
21 of the WSJ treebank.5 For accuracy, we used
EVALB parsing F1 on section 22.6 Note this is a
supervised task with latent-variables, whereas the
other two are purely unsupervised.

5.1 Basic Comparison

Figure 5(a)–(c) compares the likelihood and accu-
racy (we use the term accuracy loosely to also in-
clude F1). The initial observation is that the type-
based sampler (TYPE) outperforms the token-based
sampler (TOKEN) across all three models on both
metrics.

We further evaluated the PTSG on parsing. Our
standard treebank PCFG estimated using maximum
likelihood obtained 79% F1. TOKEN obtained an F1

of 82.2%, and TYPE obtained a comparable F1 of
83.2%. Running the PTSG for longer continued to

5Following Petrov et al. (2006), we performed an initial pre-
processing step on the trees involving Markovization, binariza-
tion, and collapsing of unary chains; words occurring once are
replaced with one of 50 “unknown word” tokens, using base
distributions {µr} that penalize the size of trees, and sampling
the hyperparameters (see Cohn et al. (2009) for details).

6To evaluate, we created a grammar where the rule proba-
bilities are the mean values under the PTSG distribution: this
involves taking a weighted combination (based on the concen-
tration parameters) of the rule counts from the PTSG samples
and the PCFG-derived base distribution. We used the decoder
of DeNero et al. (2009) to parse.

improve the likelihood but actually hurt parsing ac-
curacy, suggesting that the PTSG model is overfit-
ting.

To better understand the gains from TYPE

over TOKEN, we consider three other alterna-
tive samplers. First, annealing (TOKENanneal) is
a commonly-used technique to improve mixing,
where (3) is raised to some inverse temperature.7

In Figure 5(a)–(c), we see that unlike TYPE,
TOKENanneal does not improve over TOKEN uni-
formly: it hurts for the HMM, improves slightly for
the USM, and makes no difference for the PTSG. Al-
though annealing does increase mobility of the sam-
pler, this mobility is undirected, whereas type-based
sampling increases mobility in purely model-driven
directions.

Unlike past work that operated on types (Wolff,
1988; Brown et al., 1992; Stolcke and Omohun-
dro, 1994), type-based sampling makes stochastic
choices, and moreover, these choices are reversible.
Is this stochasticity important? To answer this, we
consider a variant of TYPE, TYPEgreedy: instead
of sampling from (7), TYPEgreedy considers a type
block S and sets bs to 0 for all s ∈ S if p(bS =
(0, . . . , 0) | · · ·) > p(bS = (1, . . . , 1) | · · ·); else
it sets bs to 1 for all s ∈ S. From Figure 5(a)–(c),
we see that greediness is disastrous for the HMM,
hurts a little for USM, and makes no difference on
the PTSG. These results show that stochasticity can
indeed be important.

We consider another block sampler, SENTENCE,
which uses dynamic programming to sample all
variables in a sentence (using Metropolis-Hastings
to correct for intra-sentential type-level coupling).
For USM, we see that SENTENCE performs worse
than TYPE and is comparable to TOKEN, suggesting
that type-based dependencies are stronger and more
important to deal with than intra-sentential depen-
dencies.

5.2 Initialization
We initialized all samplers as follows: For the USM
and PTSG, for each site s, we place a boundary (set
bs = 1) with probability η. For the HMM, we set bs
to state 1 with probability η and a random state with

7We started with a temperature of 10 and gradually de-
creased it to 1 during the first half of the run, and kept it at 1
thereafter.

579

3 6 9 12

time (hr.)

-1.1e7

-0.9e7

-9.1e6

-7.9e6

-6.7e6
lo

g-
lik

el
ih

oo
d

3 6 9 12

time (hr.)

0.1

0.2

0.4

0.5

0.6

ac
cu

ra
cy

2 4 6 8

time (min.)

-3.7e5

-3.2e5

-2.8e5

-2.4e5

-1.9e5

lo
g-

lik
el

ih
oo

d

Token

Tokenanneal

Typegreedy

Type

Sentence

2 4 6 8

time (min.)

0.1

0.2

0.4

0.5

0.6

F
1

3 6 9 12

time (hr.)

-6.2e6

-6.0e6

-5.8e6

-5.7e6

-5.5e6

lo
g-

lik
el

ih
oo

d

(a) HMM (b) USM (c) PTSG

0.2 0.4 0.6 0.8 1.0
η

-7.1e6

-7.0e6

-6.9e6

-6.8e6

-6.7e6

lo
g-

lik
el

ih
oo

d

0.2 0.4 0.6 0.8 1.0
η

0.2

0.3

0.4

0.5

0.6

ac
cu

ra
cy

0.2 0.4 0.6 0.8 1.0
η

-3.5e5

-3.1e5

-2.7e5

-2.3e5

-1.9e5

lo
g-

lik
el

ih
oo

d
0.2 0.4 0.6 0.8 1.0

η

0.2

0.3

0.4

0.5

0.6

F
1

0.2 0.4 0.6 0.8 1.0
η

-5.7e6

-5.6e6

-5.6e6

-5.5e6

-5.5e6

lo
g-

lik
el

ih
oo

d

(d) HMM (e) USM (f) PTSG

Figure 5: (a)–(c): Log-likelihood and accuracy over time. TYPE performs the best. Relative to TYPE, TYPEgreedy
tends to hurt performance. TOKEN generally works worse. Relative to TOKEN, TOKENanneal produces mixed results.
SENTENCE behaves like TOKEN. (d)–(f): Effect of initialization. The metrics were applied to the current sample after
15 hours for the HMM and PTSG and 10 minutes for the USM. TYPE generally prefers larger η and outperform the
other samplers.

probability 1 − η. Results in Figure 5(a)–(c) were
obtained by setting η to maximize likelihood.

Since samplers tend to be sensitive to initializa-
tion, it is important to explore the effect of initial-
ization (parametrized by η ∈ [0, 1]). Figure 5(d)–(f)
shows that TYPE is consistently the best, whereas
other samplers can underperform TYPE by a large
margin. Note that TYPE favors η = 1 in general.
This setting maximizes the number of initial types,
and thus creates larger type blocks and thus enables
larger moves. Larger type blocks also mean more
dependencies that TOKEN is unable to deal with.

6 Related Work and Discussion

Block sampling, on which our work is built, is a clas-
sical idea, but is used restrictively since sampling
large blocks is computationally expensive. Past
work for clustering models maintained tractabil-
ity by using Metropolis-Hastings proposals (Dahl,
2003) or introducing auxiliary variables (Swendsen
and Wang, 1987; Liang et al., 2007). In contrast,
our type-based sampler simply identifies tractable

blocks based on exchangeability.
Other methods for learning latent-variable models

include EM, variational approximations, and uncol-
lapsed samplers. All of these methods maintain dis-
tributions over (or settings of) the latent variables of
the model and update the representation iteratively
(see Gao and Johnson (2008) for an overview in the
context of POS induction). However, these methods
are at the core all token-based, since they only up-
date variables in a single example at a time.8

Blocking variables by type—the key idea of
this paper—is a fundamental departure from token-
based methods. Though type-based changes have
also been proposed (Brown et al., 1992; Stolcke and
Omohundro, 1994), these methods operated greed-
ily, and in Section 5.1, we saw that being greedy led
to more brittle results. By working in a sampling
framework, we were able bring type-based changes
to fruition.

8While EM technically updates all distributions over latent
variables in the E-step, this update is performed conditioned on
model parameters; it is this coupling (made more explicit in
collapsed samplers) that makes EM susceptible to local optima.

580

References
P. F. Brown, V. J. D. Pietra, P. V. deSouza, J. C. Lai, and

R. L. Mercer. 1992. Class-based n-gram models of
natural language. Computational Linguistics, 18:467–
479.

T. Cohn, S. Goldwater, and P. Blunsom. 2009. Inducing
compact but accurate tree-substitution grammars. In
North American Association for Computational Lin-
guistics (NAACL), pages 548–556.

D. B. Dahl. 2003. An improved merge-split sampler for
conjugate Dirichlet process mixture models. Techni-
cal report, Department of Statistics, University of Wis-
consin.

J. DeNero, M. Bansal, A. Pauls, and D. Klein. 2009.
Efficient parsing for transducer grammars. In North
American Association for Computational Linguistics
(NAACL), pages 227–235.

J. Gao and M. Johnson. 2008. A comparison of
Bayesian estimators for unsupervised hidden Markov
model POS taggers. In Empirical Methods in Natural
Language Processing (EMNLP), pages 344–352.

S. Goldwater and T. Griffiths. 2007. A fully Bayesian
approach to unsupervised part-of-speech tagging. In
Association for Computational Linguistics (ACL).

S. Goldwater, T. Griffiths, and M. Johnson. 2006. Con-
textual dependencies in unsupervised word segmenta-
tion. In International Conference on Computational
Linguistics and Association for Computational Lin-
guistics (COLING/ACL).

S. Goldwater, T. Griffiths, and M. Johnson. 2009. A
Bayesian framework for word segmentation: Explor-
ing the effects of context. Cognition, 112:21–54.

A. Haghighi and D. Klein. 2006. Prototype-driven learn-
ing for sequence models. In North American Associ-
ation for Computational Linguistics (NAACL), pages
320–327.

P. Liang, M. I. Jordan, and B. Taskar. 2007. A
permutation-augmented sampler for Dirichlet process
mixture models. In International Conference on Ma-
chine Learning (ICML).

S. Petrov, L. Barrett, R. Thibaux, and D. Klein. 2006.
Learning accurate, compact, and interpretable tree an-
notation. In International Conference on Computa-
tional Linguistics and Association for Computational
Linguistics (COLING/ACL), pages 433–440.

M. Post and D. Gildea. 2009. Bayesian learning of a
tree substitution grammar. In Association for Com-
putational Linguistics and International Joint Confer-
ence on Natural Language Processing (ACL-IJCNLP).

A. Stolcke and S. Omohundro. 1994. Inducing prob-
abilistic grammars by Bayesian model merging. In
International Colloquium on Grammatical Inference
and Applications, pages 106–118.

R. H. Swendsen and J. S. Wang. 1987. Nonuniversal
critical dynamics in MC simulations. Physics Review
Letters, 58:86–88.

J. G. Wolff. 1988. Learning syntax and meanings
through optimization and distributional analysis. In
Categories and processes in language acquisition,
pages 179–215.

581

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 582–590,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Painless Unsupervised Learning with Features

Taylor Berg-Kirkpatrick Alexandre Bouchard-Côté John DeNero Dan Klein

Computer Science Division

University of California at Berkeley

{tberg, bouchard, denero, klein}@cs.berkeley.edu

Abstract

We show how features can easily be added

to standard generative models for unsuper-

vised learning, without requiring complex

new training methods. In particular, each

component multinomial of a generative model

can be turned into a miniature logistic regres-

sion model if feature locality permits. The in-

tuitive EM algorithm still applies, but with a

gradient-based M-step familiar from discrim-

inative training of logistic regression mod-

els. We apply this technique to part-of-speech

induction, grammar induction, word align-

ment, and word segmentation, incorporating

a few linguistically-motivated features into

the standard generative model for each task.

These feature-enhanced models each outper-

form their basic counterparts by a substantial

margin, and even compete with and surpass

more complex state-of-the-art models.

1 Introduction

Unsupervised learning methods have been increas-

ingly successful in recent NLP research. The rea-

sons are varied: increased supplies of unlabeled

data, improved understanding of modeling methods,

additional choices of optimization algorithms, and,

perhaps most importantly for the present work, in-

corporation of richer domain knowledge into struc-

tured models. Unfortunately, that knowledge has

generally been encoded in the form of conditional

independence structure, which means that injecting

it is both tricky (because the connection between

independence and knowledge is subtle) and time-

consuming (because new structure often necessitates

new inference algorithms).

In this paper, we present a range of experiments

wherein we improve existing unsupervised models

by declaratively adding richer features. In particu-

lar, we parameterize the local multinomials of exist-

ing generative models using features, in a way which

does not require complex new machinery but which

still provides substantial flexibility. In the feature-

engineering paradigm, one can worry less about the

backbone structure and instead use hand-designed

features to declaratively inject domain knowledge

into a model. While feature engineering has his-

torically been associated with discriminative, super-

vised learning settings, we argue that it can and

should be applied more broadly to the unsupervised

setting.

The idea of using features in unsupervised learn-

ing is neither new nor even controversial. Many

top unsupervised results use feature-based mod-

els (Smith and Eisner, 2005; Haghighi and Klein,

2006). However, such approaches have presented

their own barriers, from challenging normalization

problems, to neighborhood design, to the need for

complex optimization procedures. As a result, most

work still focuses on the stable and intuitive ap-

proach of using the EM algorithm to optimize data

likelihood in locally normalized, generative models.

The primary contribution of this paper is to

demonstrate the clear empirical success of a sim-

ple and accessible approach to unsupervised learn-

ing with features, which can be optimized by us-

ing standard NLP building blocks. We consider

the same generative, locally-normalized models that

dominate past work on a range of tasks. However,

we follow Chen (2003), Bisani and Ney (2008), and

Bouchard-Côté et al. (2008), and allow each com-

ponent multinomial of the model to be a miniature

multi-class logistic regression model. In this case,

the EM algorithm still applies with the E-step un-

changed. The M-step involves gradient-based train-

ing familiar from standard supervised logistic re-

gression (i.e., maximum entropy models). By inte-

grating these two familiar learning techniques, we

add features to unsupervised models without any

582

specialized learning or inference.

A second contribution of this work is to show that

further gains can be achieved by directly optimiz-

ing data likelihood with LBFGS (Liu et al., 1989).

This alternative optimization procedure requires no

additional machinery beyond what EM uses. This

approach is still very simple to implement, and we

found that it empirically outperforms EM.

This paper is largely empirical; the underlying op-

timization techniques are known, even if the overall

approach will be novel to many readers. As an em-

pirical demonstration, our results span an array of

unsupervised learning tasks: part-of-speech induc-

tion, grammar induction, word alignment, and word

segmentation. In each task, we show that declaring a

few linguistically motivated feature templates yields

state-of-the-art results.

2 Models

We start by explaining our feature-enhanced model

for part-of-speech (POS) induction. This particular

example illustrates our approach to adding features

to unsupervised models in a well-known NLP task.

We then explain how the technique applies more

generally.

2.1 Example: Part-of-Speech Induction

POS induction consists of labeling words in text

with POS tags. A hidden Markov model (HMM) is a

standard model for this task, used in both a frequen-

tist setting (Merialdo, 1994; Elworthy, 1994) and in

a Bayesian setting (Goldwater and Griffiths, 2007;

Johnson, 2007).

A POS HMM generates a sequence of words in

order. In each generation step, an observed word

emission yi and a hidden successor POS tag zi+1 are

generated independently, conditioned on the current

POS tag zi . This process continues until an absorb-

ing stop state is generated by the transition model.
There are two types of conditional distributions in

the model—emission and transition probabilities—
that are both multinomial probability distributions.
The joint likelihood factors into these distributions:

Pθ(Y = y,Z = z) = Pθ(Z1 = z1) ·

|z|
∏

i=1

Pθ(Yi = yi|Zi = zi) · Pθ(Zi+1 = zi+1|Zi = zi)

The emission distribution Pθ(Yi = yi|Zi = zi) is

parameterized by conditional probabilities θy,z,EMIT

for each word y given tag z. Alternatively, we can

express this emission distribution as the output of a

logistic regression model, replacing the explicit con-

ditional probability table by a logistic function pa-

rameterized by weights and features:

θy,z,EMIT(w) =
exp 〈w, f(y, z, EMIT)〉

∑

y′ exp 〈w, f(y′, z, EMIT)〉

This feature-based logistic expression is equivalent

to the flat multinomial in the case that the feature

function f(y, z, EMIT) consists of all indicator fea-

tures on tuples (y, z, EMIT), which we call BASIC

features. The equivalence follows by setting weight

wy,z,EMIT = log(θy,z,EMIT).
1 This formulation is

known as the natural parameterization of the multi-

nomial distribution.

In order to enhance this emission distribution, we

include coarse features in f(y, z, EMIT), in addi-

tion to the BASIC features. Crucially, these features

can be active across multiple (y, z) values. In this

way, the model can abstract general patterns, such

as a POS tag co-occurring with an inflectional mor-

pheme. We discuss specific POS features in Sec-

tion 4.

2.2 General Directed Models

Like the HMM, all of the models we propose are
based on locally normalized generative decisions
that condition on some context. In general, let X =
(Z,Y) denote the sequence of generation steps (ran-
dom variables) where Z contains all hidden random
variables and Y contains all observed random vari-
ables. The joint probability of this directed model
factors as:

Pw(X = x) =
∏

i∈I

Pw

(

Xi = xi

∣

∣Xπ(i) = xπ(i)

)

,

where Xπ(i) denotes the parents of Xi and I is the

index set of the variables in X.
In the models that we use, each factor in the above

expression is the output of a local logistic regression

1As long as no transition or emission probabilities are equal

to zero. When zeros are present, for instance to model that an

absorbing stop state can only transition to itself, it is often possi-

ble to absorb these zeros into a base measure. All the arguments

in this paper carry with a structured base measure; we drop it for

simplicity.

583

model parameterized by w:

Pw

`

Xi = d
˛

˛Xπ(i) = c
´

=
exp〈w, f(d, c, t)〉

P

d′ exp〈w, f(d′, c, t)〉

Above, d is the generative decision value for Xi

picked by the model, c is the conditioning context

tuple of values for the parents of Xi, and t is the

type of decision being made. For instance, the POS

HMM has two types of decisions: transitions and

emissions. In the emission model, the type t is EMIT,

the decision d is a word and the context c is a tag.

The denominator normalizes the factor to be a prob-

ability distribution over decisions.
The objective function we derive from this model

is the marginal likelihood of the observations y,
along with a regularization term:

L(w) = log Pw(Y = y)− κ||w||22 (1)

This model has two advantages over the more preva-

lent form of a feature-rich unsupervised model, the

globally normalized Markov random field.2 First,

as we explain in Section 3, optimizing our objec-

tive does not require computing expectations over

the joint distribution. In the case of the POS HMM,

for example, we do not need to enumerate an in-

finite sum of products of potentials when optimiz-

ing, in contrast to Haghighi and Klein (2006). Sec-

ond, we found that locally normalized models em-

pirically outperform their globally normalized coun-

terparts, despite their efficiency and simplicity.

3 Optimization

3.1 Optimizing with Expectation Maximization

In this section, we describe the EM algorithm ap-
plied to our feature-rich, locally normalized models.
For models parameterized by standard multinomi-
als, EM optimizes L(θ) = log Pθ(Y = y) (Demp-
ster et al., 1977). The E-step computes expected
counts for each tuple of decision d, context c, and
multinomial type t:

ed,c,t←Eθ

[

∑

i∈I

 (Xi =d, Xπ(i) =c, t)

∣

∣

∣

∣

Y = y

]

(2)

2The locally normalized model class is actually equivalent

to its globally normalized counterpart when the former meets

the following three conditions: (1) The graphical model is a

directed tree. (2) The BASIC features are included in f . (3) We

do not include regularization in the model (κ = 0). This follows

from Smith and Johnson (2007).

These expected counts are then normalized in the

M-step to re-estimate θ:

θd,c,t ←
ed,c,t

∑

d′ ed′,c,t

Normalizing expected counts in this way maximizes

the expected complete log likelihood with respect to

the current model parameters.
EM can likewise optimize L(w) for our locally

normalized models with logistic parameterizations.
The E-step first precomputes multinomial parame-
ters from w for each decision, context, and type:

θd,c,t(w) ←
exp〈w, f(d, c, t)〉

∑

d′ exp〈w, f(d′, c, t)〉

Then, expected counts e are computed accord-

ing to Equation 2. In the case of POS induction,

expected counts are computed with the forward-

backward algorithm in both the standard and logistic

parameterizations. The only change is that the con-

ditional probabilities θ are now functions of w.

The M-step changes more substantially, but still

relies on canonical NLP learning methods. We wish

to choose w to optimize the regularized expected

complete log likelihood:

ℓ(w, e) =
∑

d,c,t

ed,c,t log θd,c,t(w)− κ||w||22 (3)

We optimize this objective via a gradient-based
search algorithm like LBFGS. The gradient with re-
spect to w takes the form

∇ℓ(w, e) =
∑

d,c,t

ed,c,t ·∆d,c,t(w)− 2κ ·w (4)

∆d,c,t(w) = f(d, c, t)−
∑

d′

θd′,c,t(w)f(d′, c, t)

This gradient matches that of regularized logis-

tic regression in a supervised model: the differ-

ence ∆ between the observed and expected features,

summed over every decision and context. In the su-

pervised case, we would observe the count of occur-

rences of (d, c, t), but in the unsupervised M-step,

we instead substitute expected counts ed,c,t.

This gradient-based M-step is an iterative proce-

dure. For each different value of w considered dur-

ing the search, we must recompute θ(w), which re-

quires computation in proportion to the size of the

584

parameter space. However, e stays fixed throughout

the M-step. Algorithm 1 outlines EM in its entirety.

The subroutine climb(·, ·, ·) represents a generic op-

timization step such as an LBFGS iteration.

Algorithm 1 Feature-enhanced EM

repeat

Compute expected counts e � Eq. 2

repeat

Compute ℓ(w, e) � Eq. 3

Compute∇ℓ(w, e) � Eq. 4
w ← climb(w, ℓ(w, e),∇ℓ(w, e))

until convergence

until convergence

3.2 Direct Marginal Likelihood Optimization

Another approach to optimizing Equation 1 is to

compute the gradient of the log marginal likelihood

directly (Salakhutdinov et al., 2003). The gradient

turns out to have the same form as Equation 4, with

the key difference that ed,c,t is recomputed for every

different value of w. Algorithm 2 outlines the proce-

dure. Justification for this algorithm appears in the

Appendix.

Algorithm 2 Feature-enhanced direct gradient

repeat

Compute expected counts e � Eq. 2

Compute L(w) � Eq. 1

Compute ∇ℓ(w, e) � Eq. 4
w ← climb(w, L(w),∇ℓ(w, e))

until convergence

In practice, we find that this optimization ap-

proach leads to higher task accuracy for several

models. However, in cases where computing ed,c,t

is expensive, EM can be a more efficient alternative.

4 Part-of-Speech Induction

We now describe experiments that demonstrate the

effectiveness of locally normalized logistic models.

We first use the bigram HMM described in Sec-

tion 2.1 for POS induction, which has two types of

multinomials. For type EMIT, the decisions d are

words and contexts c are tags. For type TRANS, the

decisions and contexts are both tags.

4.1 POS Induction Features

We use the same set of features used by Haghighi

and Klein (2006) in their baseline globally normal-

ized Markov random field (MRF) model. These are

all coarse features on emission contexts that activate

for words with certain orthographic properties. We

use only the BASIC features for transitions. For

an emission with word y and tag z, we use the

following feature templates:

BASIC: (y = ·, z = ·)
CONTAINS-DIGIT: Check if y contains digit and conjoin

with z:

 (containsDigit(y) = ·, z = ·)
CONTAINS-HYPHEN: (containsHyphen(x) = ·, z = ·)
INITIAL-CAP: Check if the first letter of y is

capitalized: (isCap(y) = ·, z = ·)
N-GRAM: Indicator functions for character n-

grams of up to length 3 present in y.

4.2 POS Induction Data and Evaluation

We train and test on the entire WSJ tag corpus (Mar-

cus et al., 1993). We attempt the most difficult ver-

sion of this task where the only information our sys-

tem can make use of is the unlabeled text itself. In

particular, we do not make use of a tagging dictio-

nary. We use 45 tag clusters, the number of POS tags

that appear in the WSJ corpus. There is an identifi-

ability issue when evaluating inferred tags. In or-

der to measure accuracy on the hand-labeled corpus,

we map each cluster to the tag that gives the highest

accuracy, the many-1 evaluation approach (Johnson,

2007). We run all POS induction models for 1000

iterations, with 10 random initializations. The mean

and standard deviation of many-1 accuracy appears

in Table 1.

4.3 POS Induction Results

We compare our model to the basic HMM and a bi-

gram version of the feature-enhanced MRF model of

Haghighi and Klein (2006). Using EM, we achieve

a many-1 accuracy of 68.1. This outperforms the

basic HMM baseline by a 5.0 margin. The same

model, trained using the direct gradient approach,

achieves a many-1 accuracy of 75.5, outperforming

the basic HMM baseline by a margin of 12.4. These

results show that the direct gradient approach can of-

fer additional boosts in performance when used with

a feature-enhanced model. We also outperform the

585

globally normalized MRF, which uses the same set

of features and which we train using a direct gradi-

ent approach.

To the best of our knowledge, our system achieves

the best performance to date on the WSJ corpus for

totally unsupervised POS tagging.3

5 Grammar Induction

We next apply our technique to a grammar induction

task: the unsupervised learning of dependency parse

trees via the dependency model with valence (DMV)

(Klein and Manning, 2004). A dependency parse is

a directed tree over tokens in a sentence. Each edge

of the tree specifies a directed dependency from a

head token to a dependent, or argument token. Thus,

the number of dependencies in a parse is exactly the

number of tokens in the sentence, not counting the

artificial root token.

5.1 Dependency Model with Valence

The DMV defines a probability distribution over de-

pendency parse trees. In this head-outward attach-

ment model, a parse and the word tokens are derived

together through a recursive generative process. For

each token generated so far, starting with the root, a

set of left dependents is generated, followed by a set

of right dependents.

There are two types of multinomial distributions

in this model. The Bernoulli STOP probabilities

θd,c,STOP capture the valence of a particular head. For

this type, the decision d is whether or not to stop

generating arguments, and the context c contains the

current head h, direction δ and adjacency adj. If

a head’s stop probability is high, it will be encour-

aged to accept few arguments. The ATTACH multi-

nomial probability distributions θd,c,ATTACH capture

attachment preferences of heads. For this type, a de-

cision d is an argument token a, and the context c

consists of a head h and a direction δ.

We take the same approach as previous work

(Klein and Manning, 2004; Cohen and Smith, 2009)

and use gold POS tags in place of words.

3Haghighi and Klein (2006) achieve higher accuracies by

making use of labeled prototypes. We do not use any external

information.

5.2 Grammar Induction Features

One way to inject knowledge into a dependency

model is to encode the similarity between the vari-

ous morphological variants of nouns and verbs. We

encode this similarity by incorporating features into

both the STOP and the ATTACH probabilities. The

attachment features appear below; the stop feature

templates are similar and are therefore omitted.

BASIC: (a = ·, h = ·, δ = ·)
NOUN: Generalize the morphological variants of

nouns by using isNoun(·):

 (a = ·, isNoun(h) = ·, δ = ·)
 (isNoun(a) = ·, h = ·, δ = ·)
 (isNoun(a) = ·, isNoun(h) = ·, δ = ·)

VERB: Same as above, generalizing verbs instead

of nouns by using isVerb(·)
NOUN-VERB: Same as above, generalizing with

isVerbOrNoun(·) = isVerb(·)∨ isNoun(·)
BACK-OFF: We add versions of all other features that

ignore direction or adjacency.

While the model has the expressive power to al-

low specific morphological variants to have their

own behaviors, the existence of coarse features en-

courages uniform analyses, which in turn gives bet-

ter accuracies.

Cohen and Smith’s (2009) method has similar

characteristics. They add a shared logistic-normal

prior (SLN) to the DMV in order to tie multinomial

parameters across related derivation events. They

achieve their best results by only tying parame-

ters between different multinomials when the cor-

responding contexts are headed by nouns and verbs.

This observation motivates the features we choose to

incorporate into the DMV.

5.3 Grammar Induction Data and Evaluation

For our English experiments we train and report di-

rected attachment accuracy on portions of the WSJ

corpus. We work with a standard, reduced version of

WSJ, WSJ10, that contains only sentences of length

10 or less after punctuation has been removed. We

train on sections 2-21, and use section 22 as a de-

velopment set. We report accuracy on section 23.

These are the same training, development, and test

sets used by Cohen and Smith (2009). The regular-

ization parameter (κ) is tuned on the development

set to maximize accuracy.

For our Chinese experiments, we use the same

corpus and training/test split as Cohen and Smith

586

(2009). We train on sections 1-270 of the Penn Chi-

nese Treebank (Xue et al., 2002), similarly reduced

(CTB10). We test on sections 271-300 of CTB10,

and use sections 400-454 as a development set.

The DMV is known to be sensitive to initializa-

tion. We use the deterministic harmonic initializer

from Klein and Manning (2004). We ran each op-

timization procedure for 100 iterations. The results

are reported in Table 1.

5.4 Grammar Induction Results

We are able to outperform Cohen and Smith’s (2009)

best system, which requires a more complicated

variational inference method, on both English and

Chinese data sets. Their system achieves an accu-

racy of 61.3 for English and an accuracy of 51.9 for

Chinese.4 Our feature-enhanced model, trained us-

ing the direct gradient approach, achieves an accu-

racy of 63.0 for English, and an accuracy of 53.6 for

Chinese. To our knowledge, our method for feature-

based dependency parse induction outperforms all

existing methods that make the same set of condi-

tional independence assumptions as the DMV.

6 Word Alignment

Word alignment is a core machine learning com-

ponent of statistical machine translation systems,

and one of the few NLP tasks that is dominantly

solved using unsupervised techniques. The pur-

pose of word alignment models is to induce a cor-

respondence between the words of a sentence and

the words of its translation.

6.1 Word Alignment Models

We consider two classic generative alignment mod-

els that are both used heavily today, IBM Model 1

(Brown et al., 1994) and the HMM alignment model

(Ney and Vogel, 1996). These models generate a

hidden alignment vector z and an observed foreign

sentence y, all conditioned on an observed English

sentence e. The likelihood of both models takes the

form:

P (y, z|e) =
∏

j

p(zj = i|zj−1) · θyj ,ei,ALIGN

4Using additional bilingual data, Cohen and Smith (2009)

achieve an accuracy of 62.0 for English, and an accuracy of

52.0 for Chinese, still below our results.

Model Inference Reg Eval

POS Induction κ Many-1

W
S

J

Basic-HMM EM – 63.1 (1.3)

Feature-MRF LBFGS 0.1 59.6 (6.9)

Feature-HMM EM 1.0 68.1 (1.7)

LBFGS 1.0 75.5 (1.1)

Grammar Induction κ Dir

W
S

J1
0

Basic-DMV EM – 47.8

Feature-DMV EM 0.05 48.3

LBFGS 10.0 63.0

(Cohen and Smith, 2009) 61.3

C
T

B
1

0

Basic-DMV EM – 42.5

Feature-DMV EM 1.0 49.9

LBFGS 5.0 53.6

(Cohen and Smith, 2009) 51.9

Word Alignment κ AER

N
IS

T
C

h
E

n Basic-Model 1 EM – 38.0

Feature-Model 1 EM – 35.6

Basic-HMM EM – 33.8

Feature-HMM EM – 30.0

Word Segmentation κ F1

B
R

Basic-Unigram EM – 76.9 (0.1)

Feature-Unigram EM 0.2 84.5 (0.5)

LBFGS 0.2 88.0 (0.1)

(Johnson and Goldwater, 2009) 87

Table 1: Locally normalized feature-based models outperform

all proposed baselines for all four tasks. LBFGS outperformed

EM in all cases where the algorithm was sufficiently fast to run.

Details of each experiment appear in the main text.

The distortion term p(zj = i|zj−1) is uniform in

Model 1, and Markovian in the HMM. See Liang et

al. (2006) for details on the specific variant of the

distortion model of the HMM that we used. We use

these standard distortion models in both the baseline

and feature-enhanced word alignment systems.

The bilexical emission model θy,e,ALIGN differen-

tiates our feature-enhanced system from the base-

line system. In the former, the emission model is a

standard conditional multinomial that represents the

probability that decision word y is generated from

context word e, while in our system, the emission

model is re-parameterized as a logistic regression

model and feature-enhanced.

Many supervised feature-based alignment models

have been developed. In fact, this logistic parame-

terization of the HMM has been proposed before and

yielded alignment improvements, but was trained

using supervised estimation techniques (Varea et al.,

2002).5 However, most full translation systems to-

5Varea et al. (2002) describes unsupervised EM optimiza-

tion with logistic regression models at a high level—their dy-

namic training approach—but provides no experiments.

587

day rely on unsupervised learning so that the models

may be applied easily to many language pairs. Our

approach provides efficient and consistent unsuper-

vised estimation for feature-rich alignment models.

6.2 Word Alignment Features

The BASIC features on pairs of lexical items

provide strong baseline performance. We add

coarse features to the model in order to inject

prior knowledge and tie together lexical items with

similar characteristics.

BASIC: (e = ·, y = ·)
EDIT-DISTANCE: (dist(y, e) = ·)
DICTIONARY: ((y, e) ∈ D) for dictionary D.

STEM: (stem(e) = ·, y = ·) for Porter stemmer.

PREFIX: (prefix(e) = ·, y = ·) for prefixes of

length 4.

CHARACTER: (e = ·, charAt(y, i) = ·) for index i in

the Chinese word.

These features correspond to several common

augmentations of word alignment models, such as

adding dictionary priors and truncating long words,

but here we integrate them all coherently into a sin-

gle model.

6.3 Word Alignment Data and Evaluation

We evaluate on the standard hand-aligned portion

of the NIST 2002 Chinese-English development set

(Ayan et al., 2005). The set is annotated with sure S

and possible P alignments. We measure alignment

quality using alignment error rate (AER) (Och and

Ney, 2000).

We train the models on 10,000 sentences of FBIS

Chinese-English newswire. This is not a large-scale

experiment, but large enough to be relevant for low-

resource languages. LBFGS experiments are not

provided because computing expectations in these

models is too computationally intensive to run for

many iterations. Hence, EM training is a more ap-

propriate optimization approach: computing the M-

step gradient requires only summing over word type

pairs, while the marginal likelihood gradient needed

for LBFGS requires summing over training sentence

alignments. The final alignments, in both the base-

line and the feature-enhanced models, are computed

by training the generative models in both directions,

combining the result with hard union competitive

thresholding (DeNero and Klein, 2007), and us-

ing agreement training for the HMM (Liang et al.,

2006). The combination of these techniques yields

a state-of-the-art unsupervised baseline for Chinese-

English.

6.4 Word Alignment Results

For both IBM Model 1 and the HMM alignment

model, EM training with feature-enhanced models

outperforms the standard multinomial models, by

2.4 and 3.8 AER respectively.6 As expected, large

positive weights are assigned to both the dictionary

and edit distance features. Stem and character fea-

tures also contribute to the performance gain.

7 Word Segmentation

Finally, we show that it is possible to improve upon

the simple and effective word segmentation model

presented in Liang and Klein (2009) by adding

phonological features. Unsupervised word segmen-

tation is the task of identifying word boundaries in

sentences where spaces have been removed. For a

sequence of characters y = (y1, ..., yn), a segmen-

tation is a sequence of segments z = (z1, ..., z|z|)
such that z is a partition of y and each zi is a con-

tiguous subsequence of y. Unsupervised models for

this task infer word boundaries from corpora of sen-

tences of characters without ever seeing examples of

well-formed words.

7.1 Unigram Double-Exponential Model

Liang and Klein’s (2009) unigram double-

exponential model corresponds to a simple

derivational process where sentences of characters

x are generated a word at a time, drawn from a

multinomial over all possible strings θz,SEGMENT.

For this type, there is no context and the decision is

the particular string generated. In order to avoid the

degenerate MLE that assigns mass only to single

segment sentences it is helpful to independently

generate a length for each segment from a fixed

distribution. Liang and Klein (2009) constrain in-

dividual segments to have maximum length 10 and

generate lengths from the following distribution:

θl,LENGTH = exp(−l1.6) when 1 ≤ l ≤ 10. Their

model is deficient since it is possible to generate

6The best published results for this dataset are supervised,

and trained on 17 times more data (Haghighi et al., 2009).

588

lengths that are inconsistent with the actual lengths

of the generated segments. The likelihood equation

is given by:

P (Y = y,Z = z) =

θSTOP

|z|
∏

i=1

[

(1− θSTOP) θzi,SEGMENT exp(−|zi|
1.6)

]

7.2 Segmentation Data and Evaluation

We train and test on the phonetic version of the

Bernstein-Ratner corpus (1987). This is the same

set-up used by Liang and Klein (2009), Goldwater

et al. (2006), and Johnson and Goldwater (2009).

This corpus consists of 9790 child-directed utter-

ances transcribed using a phonetic representation.

We measure segment F1 score on the entire corpus.

We run all word segmentation models for 300 iter-

ations with 10 random initializations and report the

mean and standard deviation of F1 in Table 1.

7.3 Segmentation Features

The SEGMENT multinomial is the important distri-

bution in this model. We use the following features:

BASIC: (z = ·)
LENGTH: (length(z) = ·)
NUMBER-VOWELS: (numVowels(z) = ·)
PHONO-CLASS-PREF: (prefix(coarsePhonemes(z)) = ·)
PHONO-CLASS-PREF: (suffix(coarsePhonemes(z)) = ·)

The phonological class prefix and suffix features

project each phoneme of a string to a coarser class

and then take prefix and suffix indicators on the

string of projected characters. We include two ver-

sions of these features that use projections with dif-

ferent levels of coarseness. The goal of these fea-

tures is to help the model learn general phonetic

shapes that correspond to well-formed word bound-

aries.

As is the case in general for our method, the

feature-enhanced unigram model still respects the

conditional independence assumptions that the stan-

dard unigram model makes, and inference is still

performed using a simple dynamic program to com-

pute expected sufficient statistics, which are just seg-

ment counts.

7.4 Segmentation Results

To our knowledge our system achieves the best per-

formance to date on the Bernstein-Ratner corpus,

with an F1 of 88.0. It is substantially simpler than

the non-parametric Bayesian models proposed by

Johnson et al. (2007), which require sampling pro-

cedures to perform inference and achieve an F1 of

87 (Johnson and Goldwater, 2009). Similar to our

other results, the direct gradient approach outper-

forms EM for feature-enhanced models, and both

approaches outperform the baseline, which achieves

an F1 of 76.9.

8 Conclusion

We have shown that simple, locally normalized

models can effectively incorporate features into un-

supervised models. These enriched models can

be easily optimized using standard NLP build-

ing blocks. Beyond the four tasks explored in

this paper—POS tagging, DMV grammar induc-

tion, word alignment, and word segmentation—the

method can be applied to many other tasks, for ex-

ample grounded semantics, unsupervised PCFG in-

duction, document clustering, and anaphora resolu-

tion.

Acknowledgements

We thank Percy Liang for making his word segmen-

tation code available to us, and the anonymous re-

viewers for their comments.

Appendix: Optimization

In this section, we derive the gradient of the log marginal likeli-

hood needed for the direct gradient approach. Let w0 be the cur-

rent weights in Algorithm 2 and e = e(w0) be the expectations

under these weights as computed in Equation 2. In order to jus-

tify Algorithm 2, we need to prove that ∇L(w0) = ∇ℓ(w0, e).

We use the following simple lemma: if φ, ψ are real-valued

functions such that: (1) φ(w0) = ψ(w0) for some w0; (2)

φ(w) ≤ ψ(w) on an open set containing w0; and (3), φ and ψ

are differentiable at w0; then ∇ψ(w0) = ∇φ(w0).

We set ψ(w) = L(w) and φ(w) = ℓ(w, e)−
P

z
Pw0

(Z =
z|Y = y) log Pw0

(Z = z|Y = y). If we can show that ψ, φ

satisfy the conditions of the lemma we are done since the second

term of φ depends on w0, but not on w.

Property (3) can be easily checked, and property (2) follows

from Jensen’s inequality. Finally, property (1) follows from

Lemma 2 of Neal and Hinton (1998).

589

References

N. F. Ayan, B. Dorr, and C. Monz. 2005. Combining

word alignments using neural networks. In Empirical

Methods in Natural Language Processing.

N. Bernstein-Ratner. 1987. The phonology of parent-

child speech. K. Nelson and A. van Kleeck.

M. Bisani and H. Ney. 2008. Joint-sequence models for

grapheme-to-phoneme conversion.

A. Bouchard-Côté, P. Liang, D. Klein, and T. L. Griffiths.

2008. A probabilistic approach to language change.

In Neural Information Processing Systems.

P. F. Brown, S. A. Della Pietra, V. J. Della Pietra, and

R. L. Mercer. 1994. The mathematics of statistical

machine translation: Parameter estimation. Computa-

tional Linguistics.

S. F. Chen. 2003. Conditional and joint models for

grapheme-to-phoneme conversion. In Eurospeech.

S. B. Cohen and N. A. Smith. 2009. Shared logistic nor-

mal distributions for soft parameter tying in unsuper-

vised grammar induction. In North American Chapter

of the Association for Computational Linguistics.

A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977.

Maximum likelihood from incomplete data via the EM

algorithm. Journal of the Royal Statistical Society. Se-

ries B (Methodological).

J. DeNero and D. Klein. 2007. Tailoring word align-

ments to syntactic machine translation. In Association

for Computational Linguistics.

D. Elworthy. 1994. Does Baum-Welch re-estimation

help taggers? In Association for Computational Lin-

guistics.

S. Goldwater and T. L. Griffiths. 2007. A fully Bayesian

approach to unsupervised part-of-speech tagging. In

Association for Computational Linguistics.

S. Goldwater, T. L. Griffiths, and M. Johnson. 2006.

Contextual dependencies in unsupervised word seg-

mentation. In International Conference on Computa-

tional Linguistics/Association for Computational Lin-

guistics.

A. Haghighi and D. Klein. 2006. Prototype-driven learn-

ing for sequence models. In Association for Computa-

tional Linguistics.

A. Haghighi, J. Blitzer, J. DeNero, and D. Klein. 2009.

Better word alignments with supervised ITG models.

In Association for Computational Linguistics.

M. Johnson and S. Goldwater. 2009. Improving non-

parametric Bayesian inference: Experiments on unsu-

pervised word segmentation with adaptor grammars.

In North American Chapter of the Association for

Computational Linguistics.

M. Johnson, T. L. Griffiths, and S. Goldwater. 2007.

Adaptor grammars: a framework for specifying com-

positional nonparametric Bayesian models. In Neural

Information Processing Systems.

M. Johnson. 2007. Why doesnt EM find good HMM

POS-taggers? In Empirical Methods in Natural Lan-

guage Processing/Computational Natural Language

Learning.

D. Klein and C. D. Manning. 2004. Corpus-based in-

duction of syntactic structure: Models of dependency

and constituency. In Association for Computational

Linguistics.

P. Liang and D. Klein. 2009. Online EM for unsuper-

vised models. In North American Chapter of the As-

sociation for Computational Linguistics.

P. Liang, B. Taskar, and D. Klein. 2006. Alignment by

agreement. In North American Chapter of the Associ-

ation for Computational Linguistics.

D. C. Liu, J. Nocedal, and C. Dong. 1989. On the limited

memory BFGS method for large scale optimization.

Mathematical Programming.

M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini.

1993. Building a large annotated corpus of English:

the penn treebank. Computational Linguistics.

B. Merialdo. 1994. Tagging English text with a proba-

bilistic model. Computational Linguistics.

R. Neal and G. E. Hinton. 1998. A view of the EM

algorithm that justifies incremental, sparse, and other

variants. In Learning in Graphical Models. Kluwer

Academic Publishers.

H. Ney and S. Vogel. 1996. HMM-based word alignment

in statistical translation. In International Conference

on Computational Linguistics.

F. J. Och and H. Ney. 2000. Improved statistical align-

ment models. In Association for Computational Lin-

guistics.

R. Salakhutdinov, S. Roweis, and Z. Ghahramani. 2003.

Optimization with EM and expectation-conjugate-

gradient. In International Conference on Machine

Learning.

N. A. Smith and J. Eisner. 2005. Contrastive estimation:

Training log-linear models on unlabeled data. In As-

sociation for Computational Linguistics.

N. A. Smith and M. Johnson. 2007. Weighted and prob-

abilistic context-free grammars are equally expressive.

Computational Linguistics.

I. G. Varea, F. J. Och, H. Ney, and F. Casacuberta. 2002.

Refined lexicon models for statistical machine transla-

tion using a maximum entropy approach. In Associa-

tion for Computational Linguistics.

N. Xue, F-D Chiou, and M. Palmer. 2002. Building a

large-scale annotated Chinese corpus. In International

Conference on Computational Linguistics.

590

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 591–599,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Linguistic Steganography Using Automatically Generated Paraphrases

Ching-Yun Chang
University of Cambridge

Computer Laboratory
Ching-Yun.Chang@cl.cam.ac.uk

Stephen Clark
University of Cambridge

Computer Laboratory
Stephen.Clark@cl.cam.ac.uk

Abstract

This paper describes a method for checking
the acceptability of paraphrases in context.
We use the Google n-gram data and a CCG
parser to certify the paraphrasing grammati-
cality and fluency. We collect a corpus of hu-
man judgements to evaluate our system. The
ultimate goal of our work is to integrate text
paraphrasing into a Linguistic Steganography
system, by using paraphrases to hide informa-
tion in a cover text. We propose automati-
cally generated paraphrases as a new and use-
ful source of transformations for Linguistic
Steganography, and show that our method for
checking paraphrases is effective at maintain-
ing a high level of imperceptibility, which is
crucial for effective steganography.

1 Introduction

Steganography is concerned with hiding informa-
tion in some cover medium, by manipulating prop-
erties of the medium in such a way that the hidden
information is not easily detectable by an observer
(Fridrich, 2009). The covert communication is such
that the very act of communication is to be kept se-
cret from outside observers. A related area is Wa-
termarking, in which modifications are made to a
cover medium in order to identify it, for example for
the purposes of copyright. Here the changes may
be known to an observer, and the task is to make
the changes in such a way that the watermark cannot
easily be removed.

There is a large literature on image steganogra-
phy and watermarking, in which images are mod-
ified to encode a hidden message or watermark.
Image stegosystems exploit the redundancy in an

image representation together with limitations of
the human visual system. For example, a stan-
dard image stegosystem uses the least-significant-bit
(LSB) substitution technique. Since the difference
between 11111111 and 11111110 in the value for
red/green/blue intensity is likely to be undetectable
by the human eye, the LSB can be used to hide infor-
mation other than colour, without being perceptable
by a human observer.1

A key question for any steganography system is
the choice of cover medium. Given the ubiqui-
tous nature of natural languages and electronic text,
text is an obvious medium to consider. However,
the literature on Linguistic Steganography, in which
linguistic properties of a text are modified to hide
information, is small compared with other media
(Bergmair, 2007). The likely reason is that it is
easier to make changes to images and other non-
linguistic media which are undetectable by an ob-
server. Language has the property that even small
local changes to a text, e.g. replacing a word by a
word with similar meaning, may result in text which
is anomalous at the document level, or anomalous
with respect to the state of the world. Hence find-
ing linguistic transformations which can be applied
reliably and often is a challenging problem for Lin-
guistic Steganography.

In this paper we focus on steganography rather
than watermarking, since we are interested in the re-
quirement that any changes to a text be impercep-
tible to an observer. Figure 1 shows the Linguistic
Steganography framework. First, some secret mes-
sage, represented as a sequence of bits, is hidden in a

1The observer may also be a computer program, designed to
detect statistical anomalies in the image representation which
may indicate the presence of hidden information.

591

Figure 1: The Linguistic Steganography framework

cover text using the embedding algorithm, resulting
in the stego text.2 Next, the stego text passes the hu-
man observer, who is happy for innocuous messages
to pass between the sender and receiver, but will ex-
amine the text for any suspicious looking content.
Once the stego text reaches the receiver, the hidden
message is recovered using the extracting algorithm.

There is a fundamental tradeoff in all steganogra-
phy systems, and one that is especially apparent in
the Linguistic Steganography framework: the trade-
off between imperceptibility and payload. Payload
is the number of bits that can be encoded per unit
of cover medium, for example per sentence in the
linguistic case. The tradeoff arises because any at-
tempt to hide additional information in the cover
text, through the application of more linguistic trans-
formations, is likely to increase the chances of rais-
ing the suspicions of the observer, by introducing
anomalies into the text.

The key elements of a Linguistic Steganography
system are the linguistic transformation and the em-
bedding method. In this paper we focus on the lin-
guistic transformation. Section 5 describes a pos-
sible embedding method for our framework, and
for readers unfamiliar with linguistic steganography
shows how linguistic transformations can be used to
embed hidden bits in text.

Section 2 describes some of the previous transfor-
mations used in Linguistic Steganography. Note that
we are concerned with transformations which are

2The message may have been encrypted initially also, as in
the figure, but this is not important in this paper; the key point
is that the hidden message is a sequence of bits.

linguistic in nature, rather than dealing with superfi-
cial properties of the text, e.g. the amount of white
space between words (Por et al., 2008). Our pro-
posed method is based on the automatically acquired
paraphrase dictionary described in Callison-Burch
(2008), in which the application of paraphrases from
the dictionary encodes secret bits. One advantage
of the dictionary is that it has wide coverage, be-
ing automatically extracted; however, a disadvan-
tage is that it contains many paraphrases which are
either inappropriate, or only appropriate in certain
contexts. Since we require any changes to be im-
perceptible to a human observer, it is crucial to our
system that any uses of paraphrasing are grammati-
cal and retain the meaning of the original cover text.

In order to test the grammaticality and meaning
preserving nature of a paraphrase, we employ a sim-
ple technique based on checking whether the con-
texts containing the paraphrase are in the Google n-
gram corpus. This technique is based on the sim-
ple hypothesis that, if the paraphrase in context has
been used many times before on the web, then it is
an appropriate use. We test our n-gram-based sys-
tem against some human judgements of the gram-
maticality of paraphrases in context. We find that
using larger contexts leads to a high precision sys-
tem (100% when using 5-grams), but at the cost of
a reduced recall. This precision-recall tradeoff re-
flects the inherent tradeoff between imperceptibility
and payload in a Linguistic Steganography system.
We also experiment with a CCG parser (Clark and
Curran, 2007), requiring that the contexts surround-
ing the original phrase and paraphrase are assigned

592

the same CCG lexical categories by the parser. This
method increases the precision of the Google n-gram
check with a slight loss in recall.

A contribution of this paper is to advertise the Lin-
guistic Steganography problem to the ACL commu-
nity. The requirement that any linguistic transfor-
mation maintain the grammaticality and meaning of
the cover text makes the problem a strong test for
existing NLP technology.

2 Previous Work

2.1 Synonym Substitution

The simplest and most straightforward subliminal
modification of text is to substitute selected words
with their synonyms. The first lexical substitu-
tion method was proposed by Chapman and Davida
(1997). Later works, such as Atallah et al. (2001a),
Bolshakov (2004), Taskiran et al. (2006) and Top-
kara et al. (2006b), further made use of part-of-
speech taggers and electronic dictionaries, such as
WordNet and VerbNet, to increase the robustness of
the method. Taskiran et al. (2006) attempt to use
context by prioritizing the alternatives using an n-
gram language model; that is, rather than randomly
choose an option from the synonym set, the system
relies on the language model to select the synonym.
Topkara et al. (2005) and Topkara et al. (2006b) re-
port an average embedding capacity of 0.67 bits per
sentence for the synonym substitution method.

2.2 Syntactic Transformations

The second and the most widely used manipulations
for linguistic steganography are syntactic transfor-
mations. This method is based on the fact that a sen-
tence can be transformed into more than one seman-
tically equivalent syntactic structure, using trans-
formations such as passivization, topicalization and
clefting. The first syntactic transformation method is
presented by Atallah et al. (2001a). Later, Atallah et
al. (2001b) embedded information in the tree struc-
ture of the text by adjusting the structural proper-
ties of intermediate representations of sentences. In
other words, instead of performing lexical substitu-
tion directly to the text, the secret message is embed-
ded into syntactic parse trees of the sentences. Liu
et al. (2005), Meral et al. (2007), Murphy (2001),
Murphy and Vogel (2007) and Topkara et al. (2006a)

all belong to the syntactic transformation category.
After embedding the secret message, modified deep
structure forms are converted into the surface struc-
ture format via language generation tools. Atallah et
al. (2001b) and Topkara et al. (2006a) attained the
embedding capacity of 0.5 bits per sentence with the
syntactic transformation method.

2.3 Semantic Transformations

The semantic transformation method is the most so-
phisticated approach for linguistic steganography,
and perhaps impractical given the current state-of-
the-art for NLP technology. It requires some sophis-
ticated tools and knowledge to model natural lan-
guage semantics. Atallah et al. (2002) used seman-
tic transformations and embed information in text-
meaning representation (TMR) trees of the text by
either pruning, grafting or substituting the tree struc-
ture with information available from ontological se-
mantic resources. Vybornova and Macq (2007)
aimed to embed information by exploiting the lin-
guistic phenomenon of presupposition, with the idea
that some presuppositional information can be re-
moved without changing the meaning of a sentence.

3 Data Resources

3.1 Paraphrase Dictionary

The cover text used for our experiments consists of
newspaper sentences from Section 00 of the Penn
Treebank (Marcus et al., 1993). Hence we require
possible paraphrases for phrases that occur in Sec-
tion 00. The paraphrase dictionary that we use
was generated for us by Chris Callison-Burch, using
the technique described in Callison-Burch (2008),
which exploits a parallel corpus and methods devel-
oped for statistical machine translation.

Table 1 gives summary statistics of the paraphrase
dictionary and its coverage on Section 00 of the
Penn Treebank. The length of the extracted n-gram
phrases ranges from unigrams to five-grams. The
coverage figure gives the percentage of sentences
which have at least one phrase in the dictionary. The
coverage is important for us because it determines
the payload capacity of the embedding method de-
scribed in Section 5.

Table 2 lists some examples 5-gram phrases and
paraphrases from the dictionary. The format of the

593

N-gram Number of Coverage on
phrases section 00 (%)

Unigrams 5,856 99
Bigrams 13,473 96
Trigrams 6,574 65
Four-grams 1,604 40
Five-grams 295 10

Table 1: Statistics for the paraphrase dictionary

Original phrase Paraphrases
the end of this year later this year

the end of the year
year end

a number of people some of my colleagues
differences
the European peoples party
the PPE group

Table 2: Example phrases and paraphrases from the dic-
tionary

dictionary is a mapping from phrases to sets of pos-
sible paraphrases. Each paraphrase also has a prob-
ability, based on a statistical machine translation
model, but we do not use that feature here. The ex-
amples show that, while some of the paraphrases are
of a high quality, some are not. For example, dif-
ferences is unlikely to be a suitable paraphrase for
a number of people in any context. Moreover, there
are some 〈phrase, paraphrase〉 pairs which are only
suitable in particular contexts. For example, year
end is an unsuitable paraphrase for the end of this
year in the sentence The chart compares the gold
price at the end of last year with the end of this year.
Barzilay and McKeown (2001) also note that the ap-
plicability of paraphrases is strongly influenced by
context. Section 4 describes our method for deter-
mining if a paraphrase is suitable in a given context.

3.2 Google N-gram Data

The Google n-gram data was collected by Google
Research for statistical language modelling, and has
been used for many tasks such as lexical disam-
biguation (Bergsma et al., 2009), and contains En-
glish n-grams and their observed frequency counts,
for counts of at least 40. The striking feature of

Figure 2: The web-based annotation system

the n-gram corpus is the large number of n-grams
and the size of the counts, since the counts were ex-
tracted from over 1 trillion word tokens of English
text on publicly accessible Web pages collected in
January 2006. For example, the 5-gram phrase the
part that you were has a count of 103. The com-
pressed data is around 24 GB on disk.

3.3 Paraphrase Judgement Corpus

The focus of the paper is to develop an automatic
system for checking the grammaticality and flu-
ency of paraphrases in context. In order to evaluate
the system, we collected some human judgements,
based on 70 sentences from Section 00 of the Penn
Treebank. For each sentence, we took every phrase
in the sentence which is in the dictionary, and for
each paraphrase of that phrase, replaced the phrase
with the paraphrase to create an instance. This pro-
cedure resulted in 500 cases of paraphrases in con-
text.

Each case was then evaluated by a human judge,
using a web-based annotation system that we devel-
oped. The judges were asked to judge each case on
two dimensions: a) whether the paraphrase is gram-
matical in context; and b) whether the paraphrase
retains the meaning of the original phrase given the
context. Figure 2 gives a screen shot of the annota-
tion system.

50 of the 500 cases were judged by two judges, in
order to obtain some indication of whether the gram-
maticality and meaning retention judgements are vi-
able; the rest were judged by one annotator. (The
500 instances were randomly distributed among 10
native speakers, each being given 55 instances to
judge.) For the meaning retention check, only 34 out
of the 50 cases received the same judgement. One
reason for the low agreement may be that, for 11 of
the 16 disagreement cases, we were asking annota-

594

tors to judge the meaning retention of paraphrases
which had been judged to be ungrammatical in con-
text, which may not be a meaningful task. For the
grammatical check, 42 out of the 50 cases received
the same judgement, a much higher level of agree-
ment.

Since the meaning retention judgements were un-
reliable, we used only the grammatical judgements
to evaluate our system. Hence we are interested
in evaluating whether our n-gram and parser-based
systems can determine if a paraphrase is grammat-
ical in context. Meaning retention is important for
the imperceptibility requirement, but grammatical-
ity is even more so, since ungrammatical sentences
will be easy for an observer to spot. However, we
recognise that only testing for grammaticality does
not fully test the imperceptibility properties of the
system, only part of it.

For the 8 cases which received different judge-
ments on grammaticality, the second author of this
paper made the definitive judgement, which resulted
in a test set of 308 paraphrases judged as grammat-
ical in context, and 192 paraphrases judged as un-
grammatical in context.

4 Proposed Method and Experiments

4.1 Google N-gram Method

The main idea for testing the use of paraphrases is
to check if the various contextual n-grams appear
in the Google n-gram data, or were already in the
original sentence (before paraphrasing). Let us first
define some notation to be used in describing the
method. The leftmost and rightmost <m> words in
the phrase/paraphrase are represented as <m>INLeft

and <m>INRight, respectively. Words at the left and
right side of the substituted phrase are defined as
<c>OUTLeft and <c>OUTRight, where <c> is an
integer which indicates the number of words rep-
resented. Also, we define a context window pair
W<c>

<n> = (WL
<c>
<n>, WR

<c>
<n>), where WL

<c>
<n> is

composed by <c>OUTLeft concatenated with <n-
c>INLeft, and WR

<c>
<n> is composed by <n-c>INRight

concatenated with <c>OUTRight. Figure 3 gives an
example of the context window pairs W 1

3 and W 2
3 in

the sentence Soviets said that it is too early to say
whether that will happen where the phrase too early
to is being considered in context.

Figure 3: An example of the context window pair

INPUT: S, P, P ′, n,maxC
OUTPUT: the acceptability of paraphrase P ′

checked by (n, maxC)

FOR each context size C from 1 to maxC
GET a context window pair WC

n

IF O(WC
n) is zero THEN

OUTPUT paraphrase P ′ fails
END FOR
OUTPUT paraphrase P ′ passes

Figure 4: Procedure for checking acceptability

We define a google-count function G(). This func-
tion takes a context window pair W<c>

<n> as input and
outputs a frequency count pair of W<c>

<n> recorded in
the Google n-gram data. If a context window cannot
be found in the Google n-gram data, the frequency
count of that window is zero. Also, we define a bi-
nary occurrence function O(). It is used to deter-
mine whether a context window pair can be passed
as acceptable. The input of this function is W<c>

<n>.
The function outputs one if either both WL

<c>
<n> and

WR
<c>
<n> already occurred in the original sentence

(before paraphrasing) or if the frequency counts out-
put by G(W<c>

<n>) are both greater than zero.
The two major components in our method are the

paraphrase dictionary and the Google n-gram data.
Once a phrase P in the cover sentence S is matched
with that in the paraphrase dictionary, we test the use
of its paraphrase P ′ by the following method. This
method takes into account maximum C contextual
words at both sides of the target phrase, and uses
Google n-gram data as a check, where n = 2, 3, 4 or
5, and maxC = 1 to n− 1. Each pair of (n, maxC)
provides a separate check, by considering both left
and right contexts for these values.

Figure 4 describes the procedure for checking the

595

acceptability of paraphrasing phrase P with P ′ in
a given sentence S, given the n-gram size and the
maximum considered context size maxC. For ex-
ample, we want to check the acceptability of the
paraphrase in context shown in Figure 3 by using
google tri-gram data (n = 3) and taking maximum
context size equal to two into consideration (maxC
= 2). The procedure starts from taking context size
C equal to one into account, namely checking the
occurrence of W 1

3 . If the paraphrase P ′ passes the
current test, in the next iteration it will be tested by
taking one more context word into account, namely
W 2

3 . However, If the paraphrase P ′ fails the current
(n, C) check the checking procedure will terminate
and report that the paraphrase fails. In contrast, if
the paraphrase passes all the (n, C) checks where
C = 1 to maxC, the procedure determines the para-
phrase as acceptable. What is happening is that an n-
gram window is effectively being shifted across the
paraphrase boundary to include different amounts of
context and paraphrase.

4.2 Syntactic Filter

In order to improve the grammaticality checking, we
use a parser as an addition to the basic Google n-
gram method. We use the Clark and Curran (2007)
CCG parser to analyse the sentence before and af-
ter paraphrasing. Combinatory Categorial Grammar
(CCG) is a lexicalised grammar formalism, in which
CCG lexical categories — typically expressing sub-
categorisation information — are assigned to each
word in a sentence. The grammatical check works
by checking if the words in the sentence outside of
the phrase and paraphrase receive the same lexical
categories before and after paraphrasing. If there is
any change in lexical category assignment to these
words then the paraphrase is judged ungrammati-
cal. Hence the grammar check is at the word, rather
than derivation, level; however, CCG lexical cate-
gories contain a large amount of syntactic informa-
tion which this method is able to exploit.

4.3 Results

The test corpus described in Section 3.3 was split
into development and test data: 100 instances for
development and 400 for testing. The development
data was used for preliminary experiments. For the
test data, 246 of the examples (61.5%) had been

Acc% P% R% F%
baseline 61.5 61.5 100.0 76.2
parser 68.3 67.4 93.9 78.4

Table 3: Grammar check using CCG parser

judged as grammatical, and 154 (38.5%) had been
judged as ungrammatical by the annotators.

The performance of the system is evaluated us-
ing accuracy, precision, recall and balanced F-
measure. Accuracy is the percentage of correct
judgements over all grammatical and ungrammati-
cal paraphrases. Precision is the percentage of para-
phrases judged grammatical by the system which are
judged grammatical by the human judges, and recall
is the percentage of paraphrases judged grammatical
by human judges which are also judged grammatical
by the system. Precision and recall are relevant in
our setting because high precision implies high im-
perceptibility, since grammatical phrases in context
are less likely to be viewed as suspicious by the ob-
server; whereas high recall maximises the payload
(given the dictionary), since high recall implies that
phrases are being paraphrased where possible (and
hence embedding as much information as possible).

An accuracy baseline is obtained by always re-
turning the majority class, in this case always judg-
ing the paraphrase grammatical, which gives an ac-
curacy of 61.5%. Table 3 gives the performance
when only the CCG parser is used for checking gram-
maticality. As far as steganography is concerned, the
precision is low, since over 30% of the paraphrases
used are ungrammatical, which is likely to raise the
suspicions of the observer.

Table 4 gives the results for the Google n-gram
method, for various n-gram and context sizes. As the
n-gram size increases — meaning that a larger part
of the context is used — the accuracy falls below
that of the baseline. However, from a steganogra-
phy aspect, accuracy is not useful, since the trade-
off between precision and recall is more relevant.
As expected, with larger n-grams checking the left
and right contexts, the precision increases, reaching
100% for the 5-grams. Hence, as far as grammati-
cality judgements are concerned, the imperceptibil-
ity requirement is completely satisified. However,
the large drop in recall means that the imperceptibil-

596

N-

gram

Context Accuracy Precision Recall F-measure

Size (%) (%) (%) (%)

2-

gram

1 62.0 62.1 98.0 76.0

3-

gram

1 62.5 65.1 84.2 73.4

2 67.3 72.9 74.4 73.6
4-

gram

1 58.5 71.3 54.5 61.8

2 53.2 84.7 29.3 43.5
3 51.8 89.6 24.4 38.3

5-

gram

1 54.8 85.0 32.1 46.6

2 43.5 95.5 8.5 15.7
3 41.0 100.0 4.1 7.8
4 41.0 100.0 4.1 7.8

Table 4: Performance of google n-gram method

ity is achieved at the cost of a reduced payload, since
many of the grammatical paraphrases that could be
used to embed information are being discarded.

Table 5 shows the results for the Google n-gram
method followed by the parser check; that is, if the
Google n-gram method judges the paraphrase to be
grammatical, then it is passed to the CCG parser for
an additional check. Adding the parser generally
increases the precision with a slight loss in recall.
Which settings are best to use in practice would de-
pend on how the steganography user wished to trade
off imperceptibility for payload.

5 Possible embedding method

In this section, we propose a linguistic hiding
method which can be integrated with an automatic
paraphrasing system. It needs a large paraphrase
dictionary to determine modifiable phrases and pro-
vide available paraphrases. The embedding capacity
of the proposed linguistic stegosystem relies on the
number of paraphrasable sentences in the cover text.
If every sentence in the cover text is paraphrasable,
the system can have the maximum embedding ca-
pacity equal to 1 bit per sentence which is compara-
ble to other linguistic steganography methods using
syntactic transformations and synonym substitution.

N-

gram

Context Accuracy Precision Recall F-measure

Size (%) (%) (%) (%)

2-

gram

1 68.0 67.7 91.9 78.0

3-

gram

1 67.3 70.9 79.3 74.9

2 69.5 77.7 70.7 74.0
4-

gram

1 59.5 75.6 50.4 60.5

2 53.8 88.6 28.5 43.1
3 52.0 92.2 24.0 38.1

5-

gram

1 53.8 86.8 29.3 43.8

2 43.3 95.2 8.1 15.0
3 41.0 100.0 4.1 7.8
4 41.0 100.0 4.1 7.8

Table 5: Performance of google n-gram method with the
CCG parser filter

5.1 Data Embedding Procedure

First the sentences in a cover text T are identi-
fied using a sentence segmentation algorithm, giv-
ing N sentences s1, s2,. . . , sN . The paraphrasabil-
ity of each sentence is then checked using our au-
tomatic method. If a sentence contains at least one
paraphrasable phrase, we call the sentence a para-
phrasable sentence or a non-paraphrasable sen-
tence otherwise. Let D be the maximum number of
sentence boundaries between two subsequent para-
phrasable sentences in T. Thus, for every D sen-
tences within a cover text T, there will be at least
one paraphrasable sentence. Let every unit of D sen-
tences serve as one embedding unit in which a single
secret bit can be embedded. If we want to embed
0 in an embedding unit, we transform all the para-
phrasable sentences in this embedding unit to non-
paraphrasable sentences (assuming certain proper-
ties of the dictionary; see end of this section for dis-
cussion). If we want to embed 1, we leave the em-
bedding unit without any modifications.

Figure 5 demonstrates the embedding of the se-
cret bitstring 101 in a cover text containing nine sen-
tences t1, t2,. . . , t9 defined by a sentence segmenta-
tion algorithm. First, t1, t3, t4, t7 and t9 are de-
termined as paraphrasable sentences and thus D, the

597

Figure 5: Embedding secret bits in a cover text using sen-
tence segmentation method

size of an embedding unit, is 3. Next, we segment
the cover text into three embedding units u1, u2 and
u3, each of which contains three sentences. Since
we want to embed secret bits 101 in u1, u2 and u3 re-
spectively, the embedding unit u2 should contain no
paraphrasable sentence. That is, the paraphrasable
phrase in t4 should be replaced by its paraphrase.
Finally, the stego text is output and sent along with
the private key D to the other party. A private key is
known only to the parties that exchange messages.

In order for this method to work, we require cer-
tain properties of the paraphrase dictionary. For ex-
ample, it is crucial that, once a phrase has been para-
phrased, it does not produce another phrase that can
be paraphrased. This can be achieved by simply
requiring that any paraphrase ‘on the RHS’ of the
dictionary does not also appear as a phrase on the
LHS. In fact, this is not so unnatural for the Callison-
Burch dictionary, which consists of phrases mapped
to sets of paraphrases, many of which only appear
on one side.

5.2 Data Extracting Procedure
For extracting the secret data, first, the stego text
T ′ undergoes sentence segmentation, and N defined
sentences s′

1, s′
2,. . . , s′

N are obtained. According
to the private key D, every D sentences are treated
as an information unit, and in each unit we check

the occurrence of paraphrasable sentences making
use of our paraphrasing method. If an information
unit contains at least one paraphrasable sentence,
this information unit implies the embedding of 1.
In contrast, if none of the sentences in the informa-
tion unit are paraphrasable, it implies the embedding
of 0. Hence, in order to recover the hidden mes-
sage, the receiver requires the sentence segmentation
algorithm, the paraphrase dictionary, the automatic
program determining grammaticality of paraphrases
in context, and the secret key D. The extraction pro-
cess essentially reverses the embedding method.

6 Conclusions

The contributions of this paper are to develop an
automatic system for checking the grammaticality
and fluency of paraphrases in context, and the pro-
posal of using paraphrases as a suitable transfor-
mation for Linguistic Steganography. An advan-
tage of our proposed method is that it is somewhat
language and domain independent, requiring only a
paraphrase dictionary and a Google n-gram corpus,
both of which are likely to be available for a range
of languages in the future.

There are various practical issues in the applica-
tion of Linguistic Steganography systems that we
have chosen to ignore. For example, we have not
discussed the choice of cover text. If a newspaper ar-
ticle were chosen as the cover text, then any changes
could be easily found in practice by comparing the
stego text with the original article, which is likely
to be readily available. Another interesting ques-
tion that we have not addressed is whether some lan-
guages are better suited to Linguistic Steganography
than others, or whether some languages are better
suited to particular linguistic transformations than
others. Finally, we have only evaluated our gram-
matical checker and not the steganography system
itself (other than giving an indication of the likely
payload). How best to evaluate the imperceptibility
of such a system we leave to future work.

Acknowledgements
We would like to thank Chris Callison-Burch for pro-
viding the paraphrase dictionary, Katja Markert, Stephen
Pulman, Laura Rimell, and the anonymous reviewers for
useful comments. Ching-Yun Chang was funded by an
Oxford University Clarendon scholarship.

598

References
Mikhail J. Atallah, Craig J. McDonough, Victor Raskin,

and Sergei Nirenburg. 2001a. Natural language pro-
cessing for information assurance and security: an
overview and implementations. In Proceedings of the
2000 workshop on New security paradigms, pages 51–
65, Ballycotton, County Cork, Ireland.

Mikhail J. Atallah, Victor Raskin, Michael C. Crogan,
Christian Hempelmann, Florian Kerschbaum, Dina
Mohamed, and Sanket Naik. 2001b. Natural lan-
guage watermarking: design, analysis, and a proof-
of-concept implementation. In Proceedings of the 4th
International Information Hiding Workshop, volume
2137, pages 185–199, Pittsburgh, Pennsylvania.

Mikhail J. Atallah, Victor Raskin, Christian F. Hempel-
mann, Mercan Karahan, Umut Topkara, Katrina E.
Triezenberg, and Radu Sion. 2002. Natural language
watermarking and tamperproofing. In Proceedings of
the 5th International Information Hiding Workshop,
pages 196–212, Noordwijkerhout, The Netherlands.

Regina Barzilay and Kathleen R. McKeown. 2001. Ex-
tracting paraphrases from a parallel corpus. In Pro-
ceedings of the 39th ACL, pages 50–57, Toulouse.

Richard Bergmair. 2007. A comprehensive bibliogra-
phy of linguistic steganography. In Proceedings of the
SPIE Conference on Security, Steganography, and Wa-
termarking of Multimedia Contents, volume 6505.

Shane Bergsma, Dekang Lin, and Randy Goebel. 2009.
Web-scale n-gram models for lexical disambiguation.
In Proceedings of the 21st International Joint Con-
ference on Artifical Intelligence, pages 1507–1512,
Pasadena, CA.

Igor A. Bolshakov. 2004. A method of linguistic
steganography based on coladdressally-verified syn-
onym. In Information Hiding: 6th International Work-
shop, volume 3200, pages 180–191, Toronto, Canada.

Chris Callison-Burch. 2008. Syntactic constraints on
paraphrases extracted from parallel corpora. In Pro-
ceedings of the EMNLP Conference, pages 196–205,
Honolulu, Hawaii.

Mark Chapman and George I. Davida. 1997. Hiding the
hidden: A software system for concealing ciphertext
as innocuous text. In Proceedings of the First Interna-
tional Conference on Information and Communication
Security, volume 1334, pages 335–345, Beijing.

Stephen Clark and James R. Curran. 2007. Wide-
coverage efficient statistical parsing with CCG and
log-linear models. Comp. Ling., 33(4):493–552.

Jessica Fridrich. 2009. Steganography in Digital Media:
Principles, Algorithms, and Applications. Cambridge
University Press, first edition.

Yuling Liu, Xingming Sun, and Yong Wu. 2005. A nat-
ural language watermarking based on Chinese syntax.

In Advances in Natural Computation, volume 3612,
pages 958–961, Changsha, China.

Mitchell P. Marcus, Beatrice Santorini, and Mary A.
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: the Penn Treebank. Computational
Linguistics, 19:313–330.

Hasan M. Meral, Emre Sevinc, Ersin Unkar, Bulent
Sankur, A. Sumru Ozsoy, and Tunga Gungor. 2007.
Syntactic tools for text watermarking. In Proceed-
ings of the SPIE Conference on Security, Steganogra-
phy, and Watermarking of Multimedia Contents, vol-
ume 6505, San Jose, CA.

Brian Murphy and Carl Vogel. 2007. The syntax of con-
cealment: reliable methods for plain text information
hiding. In Proceedings of the SPIE Conference on Se-
curity, Steganography, and Watermarking of Multime-
dia Contents, volume 6505, San Jose, CA.

Brian Murphy. 2001. Syntactic information hiding in
plain text. Masters Thesis. Trinity College Dublin.

Lip Y. Por, Ang T. Fong, and B. Delina. 2008.
Whitesteg: a new scheme in information hiding using
text steganography. WSEAS Transactions on Comput-
ers, 7:735–745.

Cuneyt M. Taskiran, Mercan Topkara, and Edward J.
Delp. 2006. Attacks on linguistic steganography sys-
tems using text analysis. In Proceedings of the SPIE
Conference on Security, Steganography, and Water-
marking of Multimedia Contents, volume 6072, pages
97–105, San Jose, CA.

Mercan Topkara, Cuneyt M. Taskiran, and Edward J.
Delp. 2005. Natural language watermarking.
In Proceedings of the SPIE Conference on Secu-
rity, Steganography, and Watermarking of Multimedia
Contents, volume 5681, pages 441–452, San Jose, CA.

Mercan Topkara, Umut Topkara, and Mikhail J. Atallah.
2006a. Words are not enough: sentence level natural
language watermarking. In Proceedings of the ACM
Workshop on Content Protection and Security, pages
37–46, Santa Barbara, CA.

Umut Topkara, Mercan Topkara, and Mikhail J. Atal-
lah. 2006b. The hiding virtues of ambiguity: quan-
tifiably resilient watermarking of natural language text
through synonym substitutions. In Proceedings of the
8th Workshop on Multimedia and Security, pages 164–
174, Geneva, Switzerland.

M. Olga Vybornova and Benoit Macq. 2007. A
method of text watermarking using presuppositions.
In Proceedings of the SPIE Conference on Secu-
rity, Steganography, and Watermarking of Multimedia
Contents, volume 6505, San Jose, CA.

599

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 600–608,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Prenominal Modifier Ordering via Multiple Sequence Alignment

Aaron Dunlop
Oregon Health & Science University

Portland, OR

dunlopa@cslu.ogi.edu

Margaret Mitchell
University of Aberdeen

Aberdeen, Scotland, U.K.

m.mitchell@abdn.ac.uk

Brian Roark
Oregon Health & Science University

Portland, OR

roark@cslu.ogi.edu

Abstract

Producing a fluent ordering for a set of
prenominal modifiers in a noun phrase
(NP) is a problematic task for natural lan-
guage generation and machine translation
systems. We present a novel approach
to this issue, adapting multiple sequence
alignment techniques used in computa-
tional biology to the alignment of modi-
fiers. We describe two training techniques
to create such alignments based on raw
text, and demonstrate ordering accuracies
superior to earlier reported approaches.

1 Introduction

Natural language generation and machine trans-
lation systems must produce text which not only
conforms to a reasonable grammatical model,
but which also sounds smooth and natural to
a human consumer. Ordering prenominal mod-
ifiers in noun phrases is particularly difficult
in these applications, as the rules underlying
these orderings are subtle and not well under-
stood. For example, the phrase “big red ball”
seems natural, while “red big ball” seems more
marked, suitable only in specific contexts. There
is some consensus that the order of prenom-
inal modifiers in noun phrases is governed in
part by semantic constraints, but there is no
agreement on the exact constraints necessary to
specify consistent orderings for any given set of
modifiers. General principles of modifier order-
ing based on semantic constraints also fall short
on larger domains, where it is not always clear
how to map prenominal modifiers to proposed
semantic groups.

With the recent advantages of large corpora
and powerful computational resources, work
on automatically ordering prenominal modifiers

has moved away from approaches based on gen-
eral principles, and towards learning ordering
preferences empirically from existing corpora.
Such approaches have several advantages: (1)
The predicted orderings are based on prior evi-
dence from ‘real-world’ texts, ensuring that they
are therefore reasonably natural. (2) Many (if
not all) prenominal modifiers can be ordered.
(3) Expanding the training data with more and
larger corpora often improves the system with-
out requiring significant manual labor.

In this paper, we introduce a novel approach
to prenominal modifier ordering adapted from
multiple sequence alignment (MSA) techniques
used in computational biology. MSA is generally
applied to DNA, RNA, and protein sequences,
aligning three or more biological sequences in or-
der to determine, for example, common ancestry
(Durbin et al., 1999; Gusfield, 1997; Carrillo and
Lipman, 1988). MSA techniques have not been
widely applied in NLP, but have produced some
promising results for building a generation map-
ping dictionary (Barzilay and Lee, 2002), para-
phrasing (Barzilay and Lee, 2003), and phone
recognition (White et al., 2006).

We believe that multiple sequence alignment
is well-suited for aligning linguistic sequences,
and that these alignments can be used to predict
prenominal modifier ordering for any given set
of modifiers. Our technique utilizes simple fea-
tures within the raw text, and does not require
any semantic information. We achieve good per-
formance using this approach, with results com-
petitive with earlier work (Shaw and Hatzivas-
siloglou, 1999; Malouf, 2000; Mitchell, 2009) and
higher recall and F-measure than that reported
in Mitchell (2009) when tested on the same cor-
pus.

600

2 Related work

In one of the first attempts at automatically or-
dering prenominal modifiers, Shaw and Hatzi-
vassiloglou (1999) present three empirical meth-
ods to order a variety of prenominal modifier
types. Their approach provides ordering deci-
sions for adjectives, gerunds (such as “running”
in “running man”), and past participles (such
as “heated” in “heated debate”), as well as for
modifying nouns (such as “baseball” in “base-
ball field”). A morphology module transforms
plural nouns and comparative/superlative forms
into their base forms, increasing the frequency
counts for each modifier. We will briefly re-
cap their three methods, which are categorized
as the direct evidence method, the transitivity
method, and the clustering method.

Given prenominal modifiers a and b in a train-
ing corpus, the direct evidence method com-
pares frequency counts of the ordered sequences
<a,b> and <b,a>. This approach works well,
but is limited by data sparsity; groups of two or
more modifiers before a noun are relatively in-
frequent in traditional corpora, and finding the
same pair of modifiers together more than once
is particularly rare.

To overcome this issue, Shaw and Hatzi-
vassiloglou’s transitivity and clustering meth-
ods make inferences about unseen orderings
among prenominal modifiers. In the transitiv-
ity method, given three modifiers a,b,c, where a
precedes b and b precedes c, the model concludes
that a precedes c. The clustering method calcu-
lates a similarity score between modifiers based
on where the modifiers occur in relation to the
other modifiers in the corpus. Those modifiers
that are most similar are clustered together, and
ordering decisions can be made between modi-
fiers in separate clusters. All three approaches
are designed to order pairs of modifiers; it is un-
clear how to extend these approaches to order
groups larger than a pair.

Shaw and Hatzivassiloglou find that NPs with
only adjectives as modifiers (including gerunds
and past participles) are considerably easier to
order than those which contain both adjectives
and nouns. They also find large differences in

accuracy across domains; their systems achieve
much lower overall accuracy on financial text
(the Wall Street Journal (WSJ) corpus (Marcus
et al., 1999)) than on medical discharge sum-
maries.

Looking at all modifier pairs, the authors
achieve their highest prediction accuracy of
90.7% using the transitivity technique on a med-
ical corpus. We do not have access to this cor-
pus, but we do have access to the WSJ corpus,
which provides a way to compare our methods.
On this corpus, their model produces predic-
tions for 62.5% of all modifier pairs and achieves
83.6% accuracy when it is able to make a predic-
tion. Random guessing on the remainder yields
an overall accuracy of 71.0%.

Malouf (2000) also examines the problem of
prenominal modifier ordering. He too proposes
several statistical techniques, achieving results
ranging from 78.3% to 91.9% accuracy. He
achieves his best results by combining memory-
based learning and positional probability to
modifiers from the first 100 million tokens of
the BNC. However, this evaluation is limited to
the ordering of prenominal adjectives, which is a
considerably simpler task than ordering all types
of prenominal modifiers. Malouf’s approaches
are also limited to ordering pairs of modifiers.

Mitchell (2009) proposes another approach,
grouping modifiers into classes and ordering
based on those classes. A modifier’s class is as-
signed based on its placement before a noun,
relative to the other modifiers it appears with.
Classes are composed of those modifiers that
tend to be placed closer to the head noun, those
modifiers that tend to be placed farther from the
head noun, etc., with each class corresponding
to a general positional preference. Unlike earlier
work, these classes allow more than one ordering
to be proposed for some pairs of modifiers.

Combining corpora of various genres,
Mitchell’s system achieves a token precision
of 89.6% (see Section 4 for discussion and
comparison of various evaluation metrics).
However, the model only makes predictions for
74.1% of all modifier pairs in the test data, so
recall is quite low (see Tables 4 and 6).

Overall, previous work in noun-phrase order-

601

ing has produced impressive accuracies in some
domains, but currently available systems tend
to adapt poorly to unseen modifiers and do not
generalize well to unseen domains.

3 Methods

3.1 Multiple Sequence Alignment

Multiple sequence alignment algorithms align
sequences of discrete tokens into a series of
columns. They attempt to align identical or
easily-substitutable tokens within a column, in-
serting gaps when such gaps will result in a bet-
ter alignment (more homogeneous token assign-
ments within each column). For example, con-
sider the simple alignment shown in Table 1.
The two sequences ‘GAACTGAT’ and ‘AAGT-
GTAT’ are aligned to maximize the number of
identical items that appear in the same column,
substituting tokens (column 3), and inserting
gaps (columns 1 and 6)1.

A full MSA is generally constructed by itera-
tively aligning each new sequence with an identi-
cal or similar sequence already in the MSA (so-
called “progressive alignment”). The costs of
token substitution are often taken from a hand-
tuned substitution matrix. A cost may also be
associated with inserting a gap into the exist-
ing MSA (a “gap penalty”). Once the full MSA
has been constructed, a Position Specific Score
Matrix (PSSM) can be induced, in which each
token (including a special gap token) is assigned
a separate alignment cost for each column. An
unseen sequence can then be aligned with the
full MSA by Viterbi search.

Predicting sequence ordering within a noun
phrase is a natural application for MSA tech-
niques, and it seems reasonable to propose that
aligning an unseen set of modifiers with such an
MSA model will yield acceptable orderings. Ta-
ble 2 illustrates how MSA may be applied to
modifiers before a noun. Given an NP preceded
by modifiers hungry, big, and Grizzly, alignment
of the modifiers with NPs seen in the training
corpus determines the prenominal ordering big
hungry Grizzly. We then align every permuta-

1See Durbin et al. (1999) for details on standard align-
ment techniques.

G A C T G - A T

- A G T G T A T

1 2 3 4 5 6 7 8

Table 1: Alignment of the two DNA sequences
‘GAACTGAT’ and ‘AAGTGTAT’.

small clumsy black bear
big - black cow

two-story - brown house
big clumsy - bull

small fuzzy brown duck
large - green house
big hungry Grizzly bear

Table 2: Example noun-phrase alignment.

tion of the NP and choose the best-scoring align-
ment.

The vocabulary for a linguistic alignment is
large enough to render a hand-tuned substitu-
tion matrix impractical, so we instead construct
a cost function based on features of the token
under consideration and those of the other to-
kens already aligned in a column.

We know of no prior work on methods for
training such an alignment. We present and
compare two training methods, each of which
produces competitive ordering accuracies. Both
training methods share the feature-set described
in Table 3. In each case, we train an MSA by
aligning each instance in the training data.

3.2 Maximum Likelihood Training

In our alignment approach, the features listed in
Table 3 are grouped into several classes. All ob-
served words are a class, all observed stems are
a class (Porter, 1980), and so on. We treat each
indicator feature as a separate class, and make
the assumption that classes are independent of
one another. This assumption is clearly false,
but serves as a reasonable first approximation,
similar to the independence assumption in Näıve
Bayesian analysis. After aligning each instance,
we estimate the probability of a feature appear-
ing in a column as the simple maximum like-
lihood estimate given the observed occurrences

602

Identity Features

Word Token
Stem Word stem, derived by the Porter Stemmer
Length ‘Binned’ length indicators: 1, 2, 3, 4, 5-6, 7-8, 9-12, 13-18, >18 characters

Indicator Features

Capitalized Token begins with a capital
All-caps Entire token is capitalized
Hyphenated Token contains a hyphen
Numeric Entire token is numeric (e.g. 234)
Initial Numeric Token begins with a numeral (e.g. 123, 2-sided)
Endings Token ends with -al, -ble, -ed, -er, -est, -ic, -ing, -ive, -ly

Table 3: Description of the feature-set.

within its class.2 This produces a new PSSM
with which to align the next instance.

Our problem differs from alignment of biolog-
ical sequences in that we have little prior knowl-
edge of the similarity between sequences. ‘Sim-
ilarity’ can be defined in many ways; for bio-
logical sequences, a simple Levenshtein distance
is effective, using a matrix of substitution costs
or simple token identity (equivalent to a ma-
trix with cost 0 on the diagonal and 1 every-
where else). These matrices are constructed and
tuned by domain experts, and are used both in
choosing alignment order (i.e., which sequence
to align next) and during the actual alignment.
When aligning biological sequences, it is cus-
tomary to first calculate the pairwise distance
between each two sequences and then introduce
new sequences into the MSA in order of simi-
larity. In this way, identical sequences may be
aligned first, followed by less similar sequences
(Durbin et al., 1999).

However, we have no principled method of de-
termining the ‘similarity’ of two words in an NP.
We have no a priori notion of what the cost
of substituting ‘two-story’ for ‘red’ should be.
Lacking this prior knowledge, we have no opti-
mal alignment order and we must in effect learn
the substitution costs as we construct the MSA.
Therefore, we choose to add instances in the or-
der they occur in the corpus, and to iterate over
the entire MSA, re-introducing each sequence.

2We treat two special symbols for gaps and unknown
words as members of the word class.

This allows a word to ‘move’ from its original
column to a column which became more likely
as more sequences were aligned. Each iteration
is similar to a step in the EM algorithm: create a
model (build up an MSA and PSSM), apply the
model to the data (re-align all sequences), and
repeat. Randomly permuting the training cor-
pus did not change our results significantly, so
we believe our results are not greatly dependent
on the initial sequence order.

Instead of assigning substitution costs, we
compute the cost of aligning a word into a par-
ticular column, as follows:

C = The set of i feature classes, Ci ∈ C

j = Features 1 . . . |Ci| from class Ci

cnt(i, j, k) = The count of instances of

feature j from class

i in column k

λi = Laplace smoothing count

for feature class Ci

A = The number of aligned instances

f(w, i, j) =

1 if word w has feature j from

Ci,

0 otherwise

These help define feature positional probabilities
for column k:

p(i, j, k) =
cnt(i, j, k) + λi

A+ λi · |Ci|
(1)

603

That is, the probability of feature j from class
i occurring in column k is a simple maximum-
likelihood estimate — count the number of times
we have already aligned that feature in the col-
umn and divide by the number of sequences
aligned. We smooth that probability with sim-
ple Laplace smoothing.

We can now calculate the probability of align-
ing a word w into column k by multiplying the
product of the probabilities of aligning each of
the word’s features. Taking the negative log to
convert that probability into a cost function:

c(w, k) = −
|C|∑
i=1

|Ci|∑
j=1

log (p(i, j, k) · f(w, i, j)) (2)

Finally, we define the cost of inserting a new
column into the alignment to be equal to the
number of columns in the existing alignment,
thereby increasingly penalizing each inserted
column until additional columns become pro-
hibitively expensive.

i(j) = I · Length of existing alignment (3)

The longest NPs aligned were 7 words, and
most ML MSAs ended with 12-14 columns.
We experimented with various column insertion
costs and values for the smoothing λ and found
no significant differences in overall performance.

3.3 Discriminative Training

We also trained a discriminative model, us-
ing the same feature-set. Discriminative train-
ing does not require division of the features
into classes or the independence assumption dis-
cussed in Section 3.2. We again produced a cost
vector for each column. We fixed the alignment
length at 8 columns, allowing alignment of the
longest instances in our test corpus.

Our training data consists of ordered se-
quences, but the model we are attempting to
learn is a set of column probabilities. Since we
have no gold-standard MSAs, we instead align
the ordered NPs with the current model and
treat the least cost alignment of the correct or-
dering as the reference for training.

We trained this model using the averaged per-
ceptron algorithm (Collins, 2002). A percep-
tron learns from classifier errors, i.e., when it
misorders an NP. At each training instance, we
align all possible permutations of the modifiers
with the MSA. If the least cost alignment does
not correspond to the correct ordering of the
modifiers, we update the perceptron to penal-
ize features occurring in that alignment and to
reward features occurring in the least cost align-
ment corresponding to the correct ordering, us-
ing standard perceptron updates.

Examining every permutation of the NP in-
volves a non-polynomial cost, but the sequences
under consideration are quite short (less than
1% of the NPs in our corpus have more than 3
modifiers, and the longest has 6; see Table 7). So
exhaustive search is practical for our problem; if
we were to apply MSA to longer sequences, we
would need to prune heavily.3

4 Evaluation

We trained and tested on the same corpus used
by Mitchell (2009), including identical 10-fold
cross-validation splits. The corpus consists of
all NPs extracted from the Penn Treebank,
the Brown corpus, and the Switchboard corpus
(Marcus et al., 1999; Kucera and Francis, 1967;
Godfrey et al., 1992). The corpus is heavily
biased toward WSJ text (74%), with approxi-
mately 13% of the NPs from each of the other
corpora.

We evaluated our system using several related
but distinct metrics, and on both modifier pairs
and full NPs.

We define:

T = The set of unique orderings found in the

test corpus

P = The set of unique orderings predicted by

the system

Type Precision (|P ∩ T|/|P|) measures the
probability that a predicted ordering is ‘reason-
able’ (where ‘reasonable’ is defined as orderings
which are found in the test corpus).

3The same issue arises when evaluating candidate or-
derings; see Section 4.

604

Token Accuracy Type Precision Type Recall Type F-measure

Mitchell N/A 90.3% (2.2) 67.2% (3.4) 77.1%
ML MSA 85.5% (1.0) 84.6% (1.1) 84.7% (1.1) 84.7%
Perceptron MSA 88.9% (0.7) 88.2% (0.8) 88.1% (0.8) 88.2%

Table 4: Results on the combined WSJ, Switchboard, and Brown corpus; averages and standard deviations
over a 10-fold cross validation. Winning scores are in bold.

Type Recall (|P∩T|/|T|) measures the per-
centage of ‘reasonable’ orderings which the sys-
tem recreates.

Note that these two metrics differ only in no-
tation from those used by Mitchell (2009).

We also define a third metric, Token Accu-
racy, which measures accuracy on each individ-
ual ordering in the test corpus, rather than on
unique orderings. This penalizes producing or-
derings which are legal, but uncommon. For ex-
ample, if {a,b} occurs eight times in the test cor-
pus as <a,b> and two times as <b,a>, we will
be limited to a maximum accuracy of 80% (pre-
suming our system correctly predicts the more
common ordering). However, even though sug-
gesting <b,a> is not strictly incorrect, we gen-
erally prefer to reward a system that produces
more common orderings, an attribute not em-
phasized by type-based metrics. Our test cor-
pus does not contain many ambiguous pairings,
so our theoretical maximum token accuracy is
99.8%.

We define:

o1..N = All modifier orderings in the

test data

pred(oi) = The predicted ordering for

modifiers in oi

ai =

{
1 if pred(oi) = oi,

0 otherwise

Token Accuracy =
N∑

i=0

ai

N

4.1 Pairwise Ordering

Most earlier work has focused on ordering pairs
of modifiers. The results in Table 4 are di-
rectly comparable to those found in Mitchell

(2009). Mitchell’s earlier approach does not gen-
erate a prediction when the system has insuffi-
cient evidence, and allows generation of multiple
predictions given conflicting evidence. In the-
ory, generating multiple predictions could im-
prove recall, but in practice her system appears
biased toward under-predicting, favoring preci-
sion. Our approach, in contrast, forces predic-
tion of a single ordering for each test instance,
occasionally costing some precision (in particu-
lar in cross-domain trials; see Table 5), but con-
sistently balancing recall and precision.

Our measurement of Token Accuracy is com-
parable to the accuracy measure reported in
Shaw and Hatzivassiloglou (1999) and Malouf
(2000) (although we evaluate on a different cor-
pus). Their approaches produce a single order-
ing for each test instance evaluated, so for each
incorrectly ordered modifier pair, there is a cor-
responding modifier pair in the test data that
was not predicted.

Shaw and Hatzivassiloglou found financial
text particularly difficult to order, and reported
that their performance dropped by 19% when
they included nouns as well as adjectives. Mal-
ouf’s system surpasses theirs, achieving an accu-
racy of 91.9%. However, his corpus was derived
from the BNC — he did not attempt to order fi-
nancial text — and he ordered only adjectives as
modifiers. In contrast, our test corpus consists
mainly of WSJ text, and we test on all forms
of prenominal modifiers. We believe this to be
a considerably more difficult task, so our peak
performance of 88.9% would appear to be — at
worst — quite competitive.

Table 5 presents an evaluation of cross-
domain generalization, splitting the same cor-
pus by genre — Brown, Switchboard, and WSJ.
In each trial, we train on two genres and test on

605

Training Testing Token Type Type Type
Corpora Corpus Accuracy Precision Recall F-measure

Mitchell
Brown+WSJ Swbd N/A 94.2% 58.2% 72.0%
Swbd+WSJ Brown N/A 87.0% 51.2% 64.5%
Swbd+Brown WSJ N/A 82.4% 27.2% 40.9%

ML MSA
Brown+WSJ Swbd 74.6% 74.7% 75.3% 75.0%
Swbd+WSJ Brown 75.3% 74.7% 74.9% 74.8%
Swbd+Brown WSJ 70.2% 71.6% 71.8% 71.7%

Perceptron MSA
Brown+WSJ Swbd 77.2% 78.2% 77.6% 77.9%
Swbd+WSJ Brown 76.4% 76.7% 76.4% 76.5%
Swbd+Brown WSJ 77.9% 77.5% 77.3% 77.4%

Table 5: Cross-domain generalization.

Token Accuracy Token Precision Token Recall Token F-measure

Mitchell N/A 94.4% 78.6% (1.2) 85.7%
ML MSA 76.9% (1.6) 76.5% (1.4) 76.5% (1.4) 76.50%
Perceptron MSA 86.7% (0.9) 86.7% (0.9) 86.7% (0.9) 86.7%

Table 6: Full NP ordering accuracies; averages and standard deviations over a 10-fold cross validation. To
compare directly with Mitchell (2009), we report token precision and recall instead of type. Our system
always proposes one and only one ordering, so token accuracy, precision, and recall are identical.

the third.4 Our results mirror those in the previ-
ous trials — forcing a prediction costs some pre-
cision (vis-a-vis Mitchell’s 2009 system), but our
recall is dramatically higher, resulting in more
balanced performance overall.

4.2 Full NP Ordering

We now extend our analysis to ordering en-
tire NPs, a task we feel the MSA approach
should be particularly suited to, since (unlike
pairwise models) it can model positional prob-
abilities over an entire NP. To our knowledge,
the only previously reported work on this task
is Mitchell’s (2009). We train this model on
the full NP instead of on modifier pairs; this
makes little difference in pairwise accuracy, but
improves full-NP ordering considerably.

As seen in Table 6, both MSA models perform
quite well, the perceptron-trained MSA again
outperforming the maximum likelihood model.
However, we were somewhat disappointed in the
performance on longer sequences. We expected
the MSA to encode enough global information

4Note that the WSJ corpus is much larger than the
other two, comprising approximately 84% of the total.

Modifiers Frequency Token Pairwise
Accuracy Accuracy

2 89.1% 89.7% 89.7%
3 10.0% 64.5% 84.4%
4 0.9% 37.2% 80.7%

Table 7: Descriminative model performance on NPs
of various lengths, including pairwise measures.

to perform accurate full sequence ordering, but
found the accuracy drops off dramatically on
NPs with more modifiers. In fact, the accu-
racy on longer sequences is worse than we would
expect by simply extending a pairwise model.
For instance, ordering three modifiers requires
three pairwise decisions. We predict pairwise
orderings with 88% accuracy, so we would ex-
pect no worse than (.88)3, or 68% accuracy on
such sequences. However, the pairwise accu-
racy declines on longer NPs, so it underperforms
even that theoretical minimum. Sparse training
data for longer NPs biases the model strongly
toward short sequences and transitivity (which
our model does not encode) may become impor-
tant when ordering several modifiers.

606

5 Ablation Tests

We performed limited ablation testing on the
discriminative model, removing features individ-
ually and comparing token accuracy (see Table
8). We found that few of the features provided
great benefit individually; the overall system
performance remains dominated by the word.
The word and stem features appear to cap-
ture essentially the same information; note that
performance does not decline when the word
or stem features are ablated, but drops dras-
tically when both are omitted. Performance de-
clines slightly more when ending features are ab-
lated as well as words and stems, so it appears
that — as expected — the information captured
by ending features overlaps somewhat with lex-
ical identity. The effects of individual features
are all small and none are statistically signifi-
cant.

Feature(s) Gain/Loss
Word 0.0
Stem 0.0

Capitalization -0.1
All-Caps 0.0
Numeric -0.2

Initial-numeral 0.0
Length -0.1
Hyphen 0.0

-al 0.0
-ble -0.4
-ed -0.4
-er 0.0
-est -0.1
-ic +0.1
-ing 0.0
-ive -0.1
-ly 0.0

Word and stem -22.9
Word, stem, and endings -24.2

Table 8: Ablation test results on the discriminative
model.

6 Summary and Future Directions

We adapted MSA approaches commonly used
in computational biology to linguistic problems
and presented two novel methods for training
such alignments. We applied these techniques

to the problem of ordering prenominal modi-
fiers in noun phrases, and achieved performance
competitive with — and in many cases, superior
to — the best results previously reported.

In our current work, we have focused on rel-
atively simple features, which should be adapt-
able to other languages without expensive re-
sources or much linguistic insight. We are inter-
ested in exploring richer sources of features for
ordering information. We found simple morpho-
logical features provided discriminative clues for
otherwise ambiguous instances, and believe that
richer morphological features might be helpful
even in a language as morphologically impover-
ished as English. Boleda et al. (2005) achieved
promising preliminary results using morphology
for classifying adjectives in Catalan.

Further, we might be able to capture some
of the semantic relationships noted by psycho-
logical analyses (Ziff, 1960; Martin, 1969) by
labeling words which belong to known seman-
tic classes (e.g., colors, size denominators, etc.).
We intend to explore deriving such labels from
resources such as WordNet or OntoNotes.

We also plan to continue exploration of MSA
training methods. We see considerable room
for refinement in generative MSA models; our
maximum likelihood training provides a strong
starting point for EM optimization, conditional
likelihood, or gradient descent methods. We are
also considering applying maximum entropy ap-
proaches to improving the discriminative model.

Finally (and perhaps most importantly), we
expect that our model would benefit from ad-
ditional training data, and plan to train on a
larger, automatically-parsed corpus.

Even in its current form, our approach im-
proves the state-of-the-art, and we believe MSA
techniques can be a useful tool for ordering
prenominal modifiers in NLP tasks.

7 Acknowledgements

This research was supported in part by NSF
Grant #IIS-0811745. Any opinions, findings,
conclusions or recommendations expressed in
this publication are those of the authors and do
not necessarily reflect the views of the NSF.

607

References

Regina Barzilay and Lillian Lee. 2002. Bootstrap-
ping lexical choice via multiple-sequence align-
ment. In Proceedings of the ACL-02 conference on
Empirical methods in natural language processing
- Volume 10, pages 164–171, Philadelphia. Asso-
ciation for Computational Linguistics.

Regina Barzilay and Lillian Lee. 2003. Learning
to paraphrase: An unsupervised approach using
multiple-sequence alignment. In Proceedings of
the Human Language Technology Conference of
the North American Chapter of the Association for
Computational Linguistics (HLT-NAACL), vol-
ume 15, pages 201–31, Edmonton, Canada. As-
sociation for Computational Linguistics.

Gemma Boleda, Toni Badia, and Sabine Schulte
im Walde. 2005. Morphology vs. syntax in adjec-
tive class acquisition. In Proceedings of the ACL-
SIGLEX Workshop on Deep Lexical Acquisition,
pages 77–86, Ann Arbor, Michigan, June. Associ-
ation for Computational Linguistics.

Humberto Carrillo and David Lipman. 1988. The
multiple sequence alignment problem in biol-
ogy. SIAM Journal on Applied Mathematics,
48(5):1073–1082, October.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: theory and experi-
ments with perceptron algorithms. In Proceedings
of the ACL-02 conference on Empirical methods in
natural language processing, volume 10, pages 1–8,
Philadelphia, July. Association for Computational
Linguistics.

Richard Durbin, Sean R. Eddy, Anders Krogh, and
Graeme Mitchison. 1999. Biological Sequence
Analysis: Probabilistic Models of Proteins and Nu-
cleic Acids. Cambridge University Press, West
Nyack, NY, July.

John J. Godfrey, Edward C. Holliman, and Jane
McDaniel. 1992. SWITCHBOARD: telephone
speech corpus for research and development. In
Acoustics, Speech, and Signal Processing, IEEE
International Conference on, volume 1, pages 517–
520, Los Alamitos, CA, USA. IEEE Computer So-
ciety.

Dan Gusfield. 1997. Algorithms on Strings, Trees
and Sequences: Computer Science and Computa-
tional Biology. Cambridge University Press, West
Nyack, NY, May.

H. Kucera and W. N Francis. 1967. Computational
analysis of present-day American English. Brown
University Press, Providence, RI.

Robert Malouf. 2000. The order of prenominal ad-
jectives in natural language generation. In Pro-

ceedings of the 38th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 85–92,
Hong Kong, October. Association for Computa-
tional Linguistics.

Mitchell P Marcus, Beatrice Santorini, Mary Ann
Marcinkiewicz, and Ann Taylor. 1999. Treebank-
3. Linguistic Data Consortium, Philadelphia.

J. E. Martin. 1969. Semantic determinants of pre-
ferred adjective order. Journal of Verbal Learning
& Verbal Behavior. Vol, 8(6):697–704.

Margaret Mitchell. 2009. Class-Based ordering of
prenominal modifiers. In Proceedings of the 12th
European Workshop on Natural Language Gener-
ation (ENLG 2009), pages 50–57, Athens, Greece,
March. Association for Computational Linguis-
tics.

M.F. Porter. 1980. An algorithm for suffix stripping.
Program, 14(3):130—137.

James Shaw and Vasileios Hatzivassiloglou. 1999.
Ordering among premodifiers. In Proceedings of
the 37th Annual Meeting of the Association for
Computational Linguistics, pages 135–143, Col-
lege Park, Maryland, USA, June. Association for
Computational Linguistics.

Christopher White, Izhak Shafran, and Jean luc
Gauvain. 2006. Discriminative classifiers for
language recognition. In Proceedings of the
2006 IEEE International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP),
pages 213–216, Toulouse, France. IEEE.

Paul Ziff. 1960. Semantic Analysis. Cornell Univer-
sity Press, Ithaca, New York.

608

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 609–617,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Good Question! Statistical Ranking for Question Generation

Michael Heilman Noah A. Smith
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA

{mheilman,nasmith}@cs.cmu.edu

Abstract

We address the challenge of automatically
generating questions from reading materials
for educational practice and assessment. Our
approach is to overgenerate questions, then
rank them. We use manually written rules to
perform a sequence of general purpose syn-
tactic transformations (e.g., subject-auxiliary
inversion) to turn declarative sentences into
questions. These questions are then ranked by
a logistic regression model trained on a small,
tailored dataset consisting of labeled output
from our system. Experimental results show
that ranking nearly doubles the percentage of
questions rated as acceptable by annotators,
from 27% of all questions to 52% of the top
ranked 20% of questions.

1 Introduction

In this paper, we focus on question generation (QG)
for the creation of educational materials for read-
ing practice and assessment. Our goal is to gener-
ate fact-based questions about the content of a given
article. The top-ranked questions could be filtered
and revised by educators, or given directly to stu-
dents for practice. Here we restrict our investigation
to questions about factual information in texts.

We begin with a motivating example. Consider
the following sentence from the Wikipedia article on
the history of Los Angeles:1 During the Gold Rush
years in northern California, Los Angeles became
known as the “Queen of the Cow Counties” for its
role in supplying beef and other foodstuffs to hungry
miners in the north.

Consider generating the following question from
that sentence: What did Los Angeles become known

1“History of Los Angeles.” Wikipedia. 2009. Wikimedia
Foundation, Inc. Retrieved Nov. 17, 2009 from: http://en.
wikipedia.org/wiki/History_of_Los_Angeles.

as the “Queen of the Cow Counties” for?
We observe that the QG process can be viewed

as a two-step process that essentially “factors” the
problem into simpler components.2 Rather than si-
multaneously trying to remove extraneous informa-
tion and transform a declarative sentence into an in-
terrogative one, we first transform the input sentence
into a simpler sentence such as Los Angeles become
known as the “Queen of the Cow Counties” for its
role in supplying beef and other foodstuffs to hungry
miners in the north, which we then can then trans-
form into a more succinct question.

Question transformation involves complex long
distance dependencies. For example, in the ques-
tion about Los Angeles, the word what at the begin-
ning of the sentence is a semantic argument of the
verb phrase known as . . . at the end of the ques-
tion. The characteristics of such phenomena are (ar-
guably) difficult to learn from corpora, but they have
been studied extensively in linguistics (Ross, 1967;
Chomsky, 1973). We take a rule-based approach in
order to leverage this linguistic knowledge.

However, since many phenomena pertaining to
question generation are not so easily encoded with
rules, we include statistical ranking as an integral
component. Thus, we employ an overgenerate-and-
rank approach, which has been applied successfully
in areas such as generation (Walker et al., 2001;
Langkilde and Knight, 1998) and syntactic parsing
(Collins, 2000). Since large datasets of the appro-
priate domain, style, and form of questions are not
available to train our ranking model, we learn to rank
from a relatively small, tailored dataset of human-
labeled output from our rule-based system.

The remainder of the paper is organized as fol-
2The motivating example does not exhibit lexical semantic

variations such as synonymy. In this work, we do not model
complex paraphrasing, but believe that paraphrase generation
techniques could be incorporated into our approach.

609

lows. §2 clarifies connections to prior work and enu-
merates our contributions. §3 discusses particular
terms and conventions we will employ. §4 discusses
rule-based question transformation. §5 describes the
data used to learn and to evaluate our question rank-
ing model, and §6 then follows with details on the
ranking approach itself. We then present and dis-
cuss results from an evaluation of ranked question
output in §7 and conclude in §8.

2 Connections with Prior Work

The generation of questions by humans has long mo-
tivated theoretical work in linguistics (e.g., Ross,
1967), particularly work that portrays questions as
transformations of canonical declarative sentences
(Chomsky, 1973).

Questions have also been a major topic of study
in computational linguistics, but primarily with the
goal of answering questions (Dang et al., 2008).
While much of the question answering research has
focused on retrieval or extraction (e.g., Ravichan-
dran and Hovy, 2001; Hovy et al., 2001), mod-
els of the transformation from answers to questions
have also been developed (Echihabi and Marcu,
2003) with the goal of finding correct answers given
a question (e.g., in a source-channel framework).
Also, Harabagiu et al. (2005) present a system that
automatically generates questions from texts to pre-
dict which user-generated questions the text might
answer. In such work on question answering, ques-
tion generation models are typically not evaluated
for their intrinsic quality, but rather with respect to
their utility as an intermediate step in the question
answering process.

QG is very different from many natural language
generation problems because the input is natural lan-
guage rather than a formal representation (cf. Reiter
and Dale, 1997). It is also different from some other
tasks related to generation: unlike machine transla-
tion (e.g., Brown et al., 1990), the input and output
for QG are in the same language, and their length
ratio is often far from one to one; and unlike sen-
tence compression (e.g., Knight and Marcu, 2000),
QG may involve substantial changes to words and
their ordering, beyond simple removal of words.

Some previous research has directly approached
the topic of generating questions for educational

purposes (Mitkov and Ha, 2003; Kunichika et al.,
2004; Gates, 2008; Rus and Graessar, 2009; Rus and
Lester, 2009), but to our knowledge, none has in-
volved statistical models for choosing among output
candidates. Mitkov et al. (2006) demonstrated that
automatic generation and manual correction of ques-
tions can be more time-efficient than manual author-
ing alone. Much of the prior QG research has evalu-
ated systems in specific domains (e.g., introductory
linguistics, English as a Second Language), and thus
we do not attempt empirical comparisons. Exist-
ing QG systems model their transformations from
source text to questions with many complex rules
for specific question types (e.g., a rule for creating
a question Who did the Subject Verb? from a
sentence with SVO word order and an object refer-
ring to a person), rather than with sets of general
rules.

This paper’s contributions are as follows:

• We apply statistical ranking to the task of gen-
erating natural language questions. In doing so,
we show that question rankings are improved by
considering features beyond surface characteris-
tics such as sentence lengths.

• We model QG as a two-step process of first
simplifying declarative input sentences and then
transforming them into questions, the latter step
being achieved by a sequence of general rules.

• We incorporate linguistic knowledge to explic-
itly model well-studied phenomena related to long
distance dependencies in WH questions, such as
noun phrase island constraints.

• We develop a QG evaluation methodology, in-
cluding the use of broad-domain corpora.

3 Definitions and Conventions

The term “source sentence” refers to a sentence
taken directly from the input document, from which
a question will be generated (e.g., Kenya is located
in Africa.). The term “answer phrase” refers to
phrases in declarative sentences which may serve
as targets for WH-movement, and therefore as possi-
ble answers to generated questions (e.g., in Africa).
The term “question phrase” refers to the phrase con-
taining the WH word that replaces an answer phrase
(e.g., Where in Where is Kenya located?).

610

To represent the syntactic structure of sentences,
we use simplified Penn Treebank-style phrase struc-
ture trees, including POS and category labels, as
produced by the Stanford Parser (Klein and Man-
ning, 2003). Noun phrase heads are selected using
Collins’ rules (Collins, 1999).

To implement the rules for transforming source
sentences into questions, we use Tregex, a tree
query language, and Tsurgeon, a tree manipula-
tion language built on top of Tregex (Levy and An-
drew, 2006). The Tregex language includes vari-
ous relational operators based on the primitive re-
lations of immediate dominance (denoted “<”) and
immediate precedence (denoted “.”). Tsurgeon
adds the ability to modify trees by relabeling, delet-
ing, moving, and inserting nodes.

4 Rule-based Overgeneration

Many useful questions can be viewed as lexical, syn-
tactic, or semantic transformations of the declarative
sentences in a text. We describe how to model this
process in two steps, as proposed in §1.3

4.1 Sentence Simplification

In the first step for transforming sentences into ques-
tions, each of the sentences from the source text is
expanded into a set of derived declarative sentences
(which also includes the original sentence) by al-
tering lexical items, syntactic structure, and seman-
tics. Many existing NLP transformations could po-
tentially be exploited in this step, including sentence
compression, paraphrase generation, or lexical se-
mantics for word substitution.

In our implementation, a set of transformations
derive a simpler form of the source sentence by
removing phrase types such as leading conjunc-
tions, sentence-level modifying phrases, and apposi-
tives. Tregex expressions identify the constituents
to move, alter, or delete. Similar transformations
have been utilized in previous work on headline gen-
eration (Dorr and Zajic, 2003) and summarization
(Toutanova et al., 2007).

To enable questions about syntactically embedded
content, our implementation also extracts a set of
declarative sentences from any finite clauses, rela-

3See Heilman and Smith (2009) for details on the rule-based
component.

tive clauses, appositives, and participial phrases that
appear in the source sentence. For example, it trans-
forms the sentence Selling snowballed because of
waves of automatic stop-loss orders, which are trig-
gered by computer when prices fall to certain lev-
els into Automatic stop-loss orders are triggered by
computer when prices fall to certain levels, from
which the next step will produce What are triggered
by computer when prices fall to certain levels?.

4.2 Question Transformation

In the second step, the declarative sentences de-
rived in step 1 are transformed into sets of ques-
tions by a sequence of well-defined syntactic and
lexical transformations (subject-auxiliary inversion,
WH-movement, etc.). It identifies the answer phrases
which may be targets for WH-movement and con-
verts them into question phrases.4

In the current implementation, answer phrases can
be noun phrases or prepositional phrases, which en-
ables who, what, where, when, and how much ques-
tions. The system could be extended to transform
other types of phrases into other types of questions
(e.g., how, why, and what kind of). It should be
noted that the transformation from answer to ques-
tion is achieved by applying a series of general-
purpose rules. This would allow, for example, the
addition of a rule to generate why questions that
builds off of the existing rules for subject-auxiliary
inversion, verb decomposition, etc. In contrast, pre-
vious QG approaches have employed separate rules
for specific sentence types (e.g., Mitkov and Ha,
2003; Gates, 2008).

For each sentence, many questions may be pro-
duced: there are often multiple possible answer
phrases, and multiple question phrases for each an-
swer phrase. Hence many candidates may result
from the transformations.

These rules encode a substantial amount of lin-
guistic knowledge about the long distance depen-
dencies prevalent in questions, which would be chal-
lenging to learn from existing corpora of questions
and answers consisting typically of only thousands
of examples (e.g., Voorhees, 2003).

Specifically, the following sequence of transfor-

4We leave the generation of correct answers and distractors
to future work.

611

During the Gold Rush years in northern California,
Los Angeles became known as the "Queen of the
Cow Counties" for its role in supplying beef and
other foodstuffs to hungry miners in the north.

Los Angeles became known as the "Queen of the
Cow Counties" for its role in supplying beef and
other foodstuffs to hungry miners in the north.

Los Angeles became known as the "QotCC" for

Los Angeles did become known as the "QotCC" for

did Los Angeles become known as the "QotCC" for

What did Los Angeles become known as the "QotCC" for?

Source Sentence

Answer Phrase: its role...

(other possibilities)

(other possibilities)

(other possibilities)

Sentence Simplification

Answer Phrase Selection

Subject-Auxiliary
Inversion

Main Verb Decomposition

Movement and Insertion of Question Phrase

Statistical Ranking

(other possibilities)

1. What became known as ...?
2. What did Los Angeles become known...for?
3. What did Los Angeles become known...as?
4. During the Gold Rush years... ?
5. Whose role in supplying beef...?
...

NP

S

VBD

VP

PP

INVBN

VP

PP

IN NP

VB

VP

PP

INVBN

VP

PP

IN NPNPVBDWP

WHNP

SQ

SBARQ

Figure 1: An illustration of the sequence of steps for generating questions. For clarity, trees are not shown for all steps.
Also, while many questions may be generated from a single source sentence, only one path is shown.

mations is performed, as illustrated in Figure 1:
mark phrases that cannot be answer phrases due to
constraints on WH movement (§4.2.1, not in figure);
select an answer phrase, remove it, and generate pos-
sible question phrases for it (§4.2.2); decompose the
main verb; invert the subject and auxiliary verb; and
insert one of the possible question phrases.

Some of these steps do not apply in all cases. For
example, no answer phrases are removed when gen-
erating yes-no questions.

4.2.1 Marking Unmovable Phrases
In English, various constraints determine whether

phrases can be involved in WH-movement and other
phenomena involving long distance dependencies.
In a seminal dissertation, Ross (1967) described
many of these phenomena. Goldberg (2006) pro-
vides a concise summary of them.

For example, noun phrases are “islands” to
movement, meaning that constituents dominated
by a noun phrase typically cannot undergo WH-
movement. Thus, from John liked the book that I
gave him, we generate What did John like? but not
*Who did John like the book that gave him?.

We operationalize this linguistic knowledge to ap-
propriately restrict the set of questions produced.
Eight Tregex expressions mark phrases that cannot

be answer phrases due to WH-movement constraints.
For example, the following expression encodes
the noun phrase island constraint described above,
where unmv indicates unmovable noun phrases:
NP << NP=unmv.

4.2.2 Generating Possible Question Phrases
After marking unmovable phrases, we iteratively

remove each possible answer phrase and generate
possible question phrases from it. The system an-
notates the source sentence with a set of entity types
taken from the BBN Identifinder Text Suite (Bikel
et al., 1999) and then uses these entity labels along
with the syntactic structure of a given answer phrase
to generate zero or more question phrases, each of
which is used to generate a final question. (This step
is skipped for yes-no questions.)

5 Rating Questions for Evaluation and
Learning to Rank

Since different sentences from the input text, as well
as different transformations of those sentences, may
be more or less likely to lead to high-quality ques-
tions, each question is scored according to features
of the source sentence, the input sentence, the ques-
tion, and the transformations used in its generation.
The scores are used to rank the questions. This is

612

an example of an “overgenerate-and-rank” strategy
(Walker et al., 2001; Langkilde and Knight, 1998).

This section describes the acquisition of a set
of rated questions produced by the steps described
above. Separate portions of these labeled data will
be used to develop a discriminative question ranker
(§6), and to evaluate ranked lists of questions (§7).

Fifteen native English-speaking university stu-
dents rated a set of questions produced from steps
1 and 2, indicating whether each question exhibited
any of the deficiencies listed in Table 1.5 If a ques-
tion exhibited no deficiencies, raters were asked to
label it “acceptable.” Annotators were asked to read
the text of a newswire or encyclopedia article (§5.1
describes the corpora used), and then rate approxi-
mately 100 questions generated from that text. They
were asked to consider each question independently,
such that similar questions about the same informa-
tion would receive similar ratings.

For a predefined training set, each question was
rated by a single annotator (not the same for each
question), leading to a large number of diverse ex-
amples. For the test set, each question was rated by
three people (again, not the same for each question)
to provide a more reliable gold standard. To assign
final labels to the test data, a question was labeled as
acceptable only if a majority of the three raters rated
it as acceptable (i.e., without deficiencies).6

An inter-rater agreement of Fleiss’s κ = 0.42
was computed from the test set’s acceptability rat-
ings. This value corresponds to “moderate agree-
ment” (Landis and Koch, 1977) and is somewhat
lower than for other rating schemes.7

5.1 Corpora

The training and test datasets consisted of 2,807
and 428 questions, respectively. The questions were

5The ratings from one person were excluded due to an ex-
tremely high rate of accepting questions as error-free and other
irregularities.

6The percentages in Table 1 do not add up to 100% for two
reasons: first, questions are labeled acceptable in the test set
only if the majority of raters labeled them as having no defi-
ciencies, rather than the less strict criterion of requiring no de-
ficiencies to be identified by a majority of raters; second, the
categories are not mutually exclusive.

7E.g., Dolan and Brockett (2005) and Glickman et al. (2005)
report κ values around 0.6 for paraphrase identification and tex-
tual entailment, respectively.

generated from three corpora.
The first corpus was a random sample from the

featured articles in the English Wikipedia8 with be-
tween 250 and 2,000 word tokens. This English
Wikipedia corpus provides expository texts written
at an adult reading level from a variety of domains,
which roughly approximates the prose that a sec-
ondary or post-secondary student would encounter.
By choosing from the featured articles, we intended
to select well-edited articles on topics of general in-
terest. The training set included 1,328 questions
about 12 articles, and the test set included 120 ques-
tions about 2 articles from this corpus.

The second corpus was a random sample from the
articles in the Simple English Wikipedia of simi-
lar length. This corpus provides similar text but at
a reading level corresponding to elementary educa-
tion or intermediate second language learning.9 The
training set included 1,195 questions about 16 arti-
cles, and the test set included 118 questions about 2
articles from this corpus.

The third corpus was Section 23 of the Wall Street
Journal data in the Penn Treebank (Marcus et al.,
1993).10 The training set included 284 questions
about 8 articles, and the test set included 190 ques-
tions about 2 articles from this corpus.

6 Ranking

We use a discriminative ranker to rank questions,
similar to the approach described by Collins (2000)
for ranking syntactic parses. Questions are ranked
by the predictions of a logistic regression model of
question acceptability. Given the question q and
source text t, the model defines a binomial distribu-
tion p(R | q, t), with binary random variableR rang-
ing over a (“acceptable”) and u (“unacceptable”).

We estimate the parameters by optimizing the reg-
ularized log-likelihood of the training data (cf. §5.1)
with a variant of Newton’s method (le Cessie and

8The English and Simple English Wikipedia data were
downloaded on December 16, 2008 from http://en.
wikipedia.org and http://simple.wikipedia.
org, respectively.

9The subject matter of the articles in the two Wikipedia cor-
pora was not matched.

10In separate experiments with the Penn Treebank, gold-
standard parses led to an absolute increase of 15% in the per-
centage of acceptable questions (Heilman and Smith, 2009).

613

Question Deficiency Description %
Ungrammatical The question is not a valid English sentence. (e.g., In what were nests excavated exposed to the

sun? from . . . eggs are usually laid . . . , in nests excavated in pockets of earth exposed to the
sun.. This error results from the incorrect attachment by the parser of exposed to the sun to the
verb phrase headed by excavated)

14.0

Does not make sense The question is grammatical but indecipherable. (e.g., Who was the investment?) 20.6
Vague The question is too vague to know exactly what it is asking about, even after reading the article

(e.g., What do modern cities also have? from . . . , but modern cities also have many problems).
19.6

Obvious answer The correct answer would be obvious even to someone who has not read the article (e.g., a
question where the answer is obviously the subject of the article).

0.9

Missing answer The answer to the question is not in the article. 1.4
Wrong WH word The question would be acceptable if the WH phrase were different (e.g., a what question with a

person’s name as the answer).
4.9

Formatting There are minor formatting errors (e.g., with respect to capitalization, punctuation). 8.9
Other The question was unacceptable for other reasons. 1.2
None The question exhibits none of the above deficiencies and is thus acceptable. 27.3

Table 1: Deficiencies a question may exhibit, and the percentages of test set questions labeled with them.

van Houwelingen, 1997). In our experiments, the
regularization constant was selected through cross-
validation on the training data.

The features used by the ranker can be organized
into several groups described in this section. This
feature set was developed by an analysis of ques-
tions generated from the training set. The num-
bers of distinct features for each type are denoted in
parentheses, with the second number, after the ad-
dition symbol, indicating the number of histogram
features (explained below) for that type.

Length Features (3 + 24) The set includes integer
features for the numbers of tokens in the question,
the source sentence, and the answer phrase from
which the WH phrase was generated. These num-
bers of tokens will also be used for computing the
histogram features discussed below.

WH Words (9 + 0) The set includes boolean fea-
tures for the presence of each possible WH word in
the question.

Negation (1 + 0) This is a boolean feature for the
presence of not, never, or no in the question.

N -Gram Language Model Features (6 + 0) The
set includes real valued features for the log like-
lihoods and length-normalized log likelihoods of
the question, the source sentence, and the answer
phrase. Separate likelihood features are included for
unigram and trigram language models. These lan-
guage models were estimated from the written por-

tion of the American National Corpus Second Re-
lease (Ide and Suderman, 2004), which consists of
approximately 20 million tokens, using Kneser and
Ney (1995) smoothing.

Grammatical Features (23 + 95) The set includes
integer features for the numbers of proper nouns,
pronouns, adjectives, adverbs, conjunctions, num-
bers, noun phrases, prepositional phrases, and sub-
ordinate clauses in the phrase structure parse trees
for the question and answer phrase. It also includes
one integer feature for the number of modifying
phrases at the start of the question (e.g., as in At
the end of the Civil War, who led the Union Army?);
three boolean features for whether the main verb is
in past, present, or future tense; and one boolean fea-
ture for whether the main verb is a form of be.

Transformations (8 + 0) The set includes bi-
nary features for the possible syntactic transforma-
tions (e.g., removal of appositives and parentheti-
cals, choosing the subject of source sentence as the
answer phrase).

Vagueness (3 + 15) The set includes integer fea-
tures for the numbers of noun phrases in the ques-
tion, source sentence, and answer phrase that are
potentially vague. We define this set to include pro-
nouns as well as common nouns that are not speci-
fied by a subordinate clause, prepositional phrase, or
possessive. In the training data, we observed many
vague questions resulting from such noun phrases
(e.g., What is the bridge named for?).

614

Histograms In addition to the integer features for
lengths, counts of grammatical types, and counts of
vague noun phrases, the set includes binary “his-
togram” features for each length or count. These
features indicate whether a count or length exceeds
various thresholds: 0, 1, 2, 3, and 4 for counts; 0,
4, 8, 12, 16, 20, 24, and 28 for lengths. We aim to
account for potentially non-linear relationships be-
tween question quality and these values (e.g., most
good questions are neither very long nor very short).

7 Evaluation and Discussion

This section describes the results of experiments to
evaluate the quality of generated questions before
and after ranking. Results are aggregated across the
3 corpora (§5.1). The evaluation metric we employ
is the percentage of test set questions labeled as ac-
ceptable. For rankings, our metric is the percentage
of the top N% labeled as acceptable, for various N .

7.1 Results for Unranked Questions

First, we present results for the unranked questions
produced by the rule-based overgenerator. As shown
in Table 1, 27.3% of test set questions were labeled
acceptable (i.e., having no deficiencies) by a major-
ity of raters.11

The most frequent deficiencies were ungrammati-
cality (14.0%), vagueness (19.6%), and semantic er-
rors labeled with the “Does not make sense” cate-
gory (20.6%). Formatting errors (8.9%) were due
to both straightforward issues with pre-processing
and more challenging issues such as failing to iden-
tifying named entities (e.g., Who was nixon’s second
vice president?).

While Table 1 provides data on how often bad
questions were generated, a measure of how often
good questions were not generated would require
knowing the number of possible valid questions. In-
stead, we provide a measure of productivity: the sys-
tem produced an average of 6.0 acceptable questions
per 250 words (i.e., the approximate average number
of words on a single page in a printed book).

7.2 Configurations and Baselines

For ranking experiments, we present results for the
following configurations of features:

1112.1% of test set questions were unanimously acceptable.

All This configuration includes the entire set of
features described in §6.

Surface Features This configuration includes
only features that can be computed from the sur-
face form of the question, source sentence, and
answer phrase—that is, without hidden linguistic
structures such as parts of speech or syntactic struc-
tures. Specifically, it includes features for lengths,
length histograms, WH words, negation, and lan-
guage model likelihoods.

Question Only This configuration includes all
features of questions, but no features involving the
source sentence or answer phrase (e.g., it does not
include source sentence part of speech counts). It
does not include transformation features.

We also present two baselines for comparison:

Random The expectation of the performance if
questions were ranked randomly.

Oracle The expected performance if all questions
that were labeled acceptable were ranked higher
than all questions that were labeled unacceptable.

7.3 Ranking Results

Figure 2 shows that the percentage of questions
rated as acceptable generally increases as the set
of questions is restricted from the full 428 ques-
tions in the test set to only the top ranked questions.
While 27.3% of all test set questions were accept-
able, 52.3% of the top 20% of ranked questions were
acceptable. Thus, the quality of the top fifth was
nearly doubled by ranking with all the features.

Ranking with surface features also improved
question quality, but to a lesser extent. Thus, unob-
served linguistic features such as parts of speech and
syntax appear to add value for ranking questions.12

The ranker seems to have focused on the “Does
not make sense” and “Vague” categories. The
percentage of nonsensical questions dropped from
20.6% to 4.7%, and vagueness dropped from 19.6%

12Ranking with all features was statistically significantly bet-
ter (p < .05) in terms of the percentage of acceptable questions
in the top ranked 20% than ranking with the “question only”
or “surface” configurations, or the random baseline, as verified
by computing 95% confidence intervals with the BCa Bootstrap
(Efron and Tibshirani, 1993).

615

50%

60%

70%
P

ct
. R

at
ed

 A
cc

ep
ta

bl
e

Oracle
All Features
Question Only
Surface Features
Random

20%

30%

40%

50%

60%

70%

0 100 200 300 400

P
ct

. R
at

ed
 A

cc
ep

ta
bl

e

Number of Top-Ranked Questions

Oracle
All Features
Question Only
Surface Features
Random

20%

30%

40%

50%

60%

70%

0 100 200 300 400

P
ct

. R
at

ed
 A

cc
ep

ta
bl

e

Number of Top-Ranked Questions

Oracle
All Features
Question Only
Surface Features
Random

Figure 2: A graph of the percentage of acceptable ques-
tions in the top-N questions in the test set, using various
rankings, for N varying from 0 to the size of the test set.
The percentages become increasingly unstable when re-
stricted to very few questions (e.g., < 50).

to 7.0%, while ungrammaticality dropped from
14.0% to 10.5%, and the other, less prevalent, cat-
egories changed very little.13

7.4 Ablation Study
Ablation experiments were also conducted to study
the effects of removing each of the different types of
features. Table 2 presents the percentages of accept-
able test set questions in the top 20% and top 40%
when they are scored by rankers trained with vari-
ous feature sets that are defined by removing various
feature types from the set of all possible features.

Grammatical features appear to be the most im-
portant: removing them from the feature set resulted
in a 9.0% absolute drop in acceptability in the top
20% of questions, from 52.3% to 43.3%.

Some of the features did not appear to be partic-
ularly helpful, notably the N -gram language model
features. We speculate that they might improve re-
sults when used with a larger, less noisy training set.

Performance did not drop precipitously upon the
removal of any particular feature type, indicating a
high amount of shared variance among the features.
However, removing several types of features at once
led to somewhat larger drops in performance. For
example, using only surface features led to a 12.8%

13We speculate that improvements in syntactic parsing and
entity recognition would reduce the proportion of ungrammati-
cal questions and incorrect WH words, respectively.

Features # Top 20% Top 40%
All 187 52.3 40.8
All – Length 160 52.3 42.1
All – WH 178 50.6 39.8
All – Negation 186 51.7 39.3
All – Lang. Model 181 51.2 39.9
All – Grammatical 69 43.2 38.7
All – Transforms 179 46.5 39.0
All – Vagueness 169 48.3 41.5
All – Histograms 53 49.4 39.8
Surface 43 39.5 37.6
Question Only 91 41.9 39.5
Random - 27.3 27.3
Oracle - 100.0 87.3

Table 2: The total numbers of features (#) and the per-
centages of the top 20% and 40% of ranked test set ques-
tions labeled acceptable, for rankers built from variations
of the complete set of features (“All”). E.g., “All – WH”
is the set of all features except WH word features.

drop in acceptability in the top 20%, and using only
features of questions led to a 10.4% drop.

8 Conclusion

By ranking the output of rule-based natural lan-
guage generation system, existing knowledge about
WH-movement from linguistics can be leveraged to
model the complex transformations and long dis-
tance dependencies present in questions. Also, in
this overgenerate-and-rank framework, a statistical
ranker trained from a small set of annotated ques-
tions can capture trends related to question quality
that are not easily encoded with rules. In our exper-
iments, we found that ranking approximately dou-
bled the acceptability of the top-ranked questions
generated by our approach.

Acknowledgments

We acknowledge partial support from the Institute
of Education Sciences, U.S. Department of Educa-
tion, through Grant R305B040063 to Carnegie Mel-
lon University; and from the National Science Foun-
dation through a Graduate Research Fellowship for
the first author and grant IIS-0915187 to the second
author. We thank the anonymous reviewers for their
comments.

616

References
D. M. Bikel, R. Schwartz, and R. M. Weischedel. 1999.

An algorithm that learns what’s in a name. Machine
Learning, 34(1-3).

P. F. Brown, J. Cocke, S. A. Della Pietra, V. J. Della
Pietra, F. Jelinek, J. D. Lafferty, R. L. Mercer, and
P. S. Roossin. 1990. A statistical approach to machine
translation. Computational Linguistics, 16(2).

N. Chomsky. 1973. Conditions on transformations. A
Festschrift for Morris Halle.

M. Collins. 1999. Head-Driven Statistical Models for
Natural Language Parsing. Ph.D. thesis, University
of Pennsylvania.

M. Collins. 2000. Discriminative reranking for natural
language parsing. In Proc. of ICML.

H. T. Dang, D. Kelly, and J. Lin. 2008. Overview of
the TREC 2007 question answering track. In Proc. of
TREC.

W. B. Dolan and C. Brockett. 2005. Automatically con-
structing a corpus of sentential paraphrases. In Proc.
of IWP.

B. Dorr and D. Zajic. 2003. Hedge Trimmer: A parse-
and-trim approach to headline generation. In Proc. of
Workshop on Automatic Summarization.

A. Echihabi and D. Marcu. 2003. A noisy-channel ap-
proach to question answering. In Proc. of ACL.

B. Efron and R. Tibshirani. 1993. An Introduction to the
Bootstrap. Chapman & Hall/CRC.

D. M. Gates. 2008. Generating reading comprehension
look-back strategy questions from expository texts.
Master’s thesis, Carnegie Mellon University.

O. Glickman, I. Dagan, and M. Koppel. 2005. A prob-
abilistic classification approach for lexical textual en-
tailment. In Proc. of AAAI.

A. Goldberg. 2006. Constructions at Work: The Na-
ture of Generalization in Language. Oxford Univer-
sity Press, New York.

S. Harabagiu, A. Hickl, J. Lehmann, and D. Moldovan.
2005. Experiments with interactive question-
answering. In Proc. of ACL.

Michael Heilman and Noah A. Smith. 2009. Ques-
tion generation via overgenerating transformations and
ranking. Technical Report CMU-LTI-09-013, Lan-
guage Technologies Institute, Carnegie Mellon Uni-
versity.

E. Hovy, U. Hermjakob, and C. Lin. 2001. The use of
external knowledge in factoid QA. In Proc. of TREC.

N. Ide and K. Suderman. 2004. The american national
corpus first release. In Proc. of LREC.

D. Klein and C. D. Manning. 2003. Fast exact inference
with a factored model for natural language parsing. In
Advances in NIPS 15.

R. Kneser and H. Ney. 1995. Improved backing-off for
m-gram language modeling. In Proc. of IEEE Int.
Conf. Acoustics, Speech and Signal Processing.

K. Knight and D. Marcu. 2000. Statistics-based summa-
rization - step one: Sentence compression. In Proc. of
the Seventeenth National Conference on Artificial In-
telligence and Twelfth Conference on Innovative Ap-
plications of Artificial Intelligence.

H. Kunichika, T. Katayama, T. Hirashima, and
A. Takeuchi. 2004. Automated question generation
methods for intelligent English learning systems and
its evaluation. In Proc. of ICCE.

J. R. Landis and G. G. Koch. 1977. The measurement of
observer agreement for categorical data. Biometrics,
33.

I. Langkilde and Kevin Knight. 1998. Generation that
exploits corpus-based statistical knowledge. In Proc.
of ACL.

S. le Cessie and J. C. van Houwelingen. 1997. Ridge es-
timators in logistic regression. Applied Statistics, 41.

R. Levy and G. Andrew. 2006. Tregex and Tsurgeon:
tools for querying and manipulating tree data struc-
tures. In Proc. of LREC.

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz.
1993. Building a large annotated corpus of English:
The Penn Treebank. Computational Linguistics, 19.

R. Mitkov and L. A. Ha. 2003. Computer-aided gen-
eration of multiple-choice tests. In Proc. of the HLT-
NAACL 03 workshop on Building educational appli-
cations using natural language processing.

R. Mitkov, L. A. Ha, and N. Karamanis. 2006. A
computer-aided environment for generating multiple-
choice test items. Natural Language Engineering,
12(2).

D. Ravichandran and E. Hovy. 2001. Learning surface
text patterns for a question answering system. In Proc.
of ACL.

E. Reiter and R. Dale. 1997. Building applied natural
language generation systems. Nat. Lang. Eng., 3(1).

J. R. Ross. 1967. Constraints on Variables in Syntax.
Phd dissertation, MIT, Cambridge, MA.

V. Rus and A. Graessar, editors. 2009. The Question
Generation Shared Task and Evaluation Challenge.
http://www.questiongeneration.org.

V. Rus and J. Lester, editors. 2009. Proc. of the 2nd
Workshop on Question Generation. IOS Press.

K. Toutanova, C. Brockett, M. Gamon, J. Jagarlamudi,
H. Suzuki, and L. Vanderwende. 2007. The PYTHY
summarization system: Microsoft research at duc
2007. In Proc. of DUC.

E. M. Voorhees. 2004. Overview of the TREC 2003
question answering track. In Proc. of TREC 2003.

M. A. Walker, O. Rambow, and M. Rogati. 2001. Spot:
a trainable sentence planner. In Proc. of NAACL.

617

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 618–626,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Not All Seeds Are Equal: Measuring the Quality of Text Mining Seeds

Zornitsa Kozareva and Eduard Hovy
USC Information Sciences Institute

4676 Admiralty Way
Marina del Rey, CA 90292-6695
{kozareva,hovy}@isi.edu

Abstract

Open-class semantic lexicon induction is of
great interest for current knowledge harvest-
ing algorithms. We propose a general frame-
work that uses patterns in bootstrapping fash-
ion to learn open-class semantic lexicons for
different kinds of relations. These patterns re-
quire seeds. To estimate thegoodness(the po-
tential yield) of new seeds, we introduce a re-
gression model that considers the connectiv-
ity behavior of the seed during bootstrapping.
The generalized regression model is evaluated
on six different kinds of relations with over
10000 different seeds for English and Span-
ish patterns. Our approach reaches robust per-
formance of 90% correlation coefficient with
15% error rate for any of the patterns when
predicting thegoodnessof seeds.

1 Introduction: What is a Good Seed?

The automated construction of semantically typed
lexicons (terms classified into their appropriate se-
mantic class) from unstructured text is of great im-
portance for various kinds of information extraction
(Grishman and Sundheim, 1996), question answer-
ing (Moldovan et al., 1999), and ontology popu-
lation (Suchanek et al., 2007). Maintaining large
semantic lexicons is a time-consuming and tedious
task, because open classes (such as: all singers, all
types of insects) are hard to cover completely, and
even closed classes (such as: all countries, all large
software companies) change over time. Since it is
practically impossible for a human to collect such
knowledge adequately, many supervised, unsuper-

vised, and semi-supervised techniques have been de-
veloped.

All these techniques employ some sort of context
to specify the appearance in text of the desired in-
formation. This approach is based on the general
intuition, dating back at least to the distributional
similarity idea of (Harris, 1954), that certain con-
texts are specific enough to constrain terms or ex-
pressions within them to be specific classes or types.
Often, the context is a string of words with an empty
slot for the desired term(s); sometimes, it is a regu-
lar expression-like pattern that includes word classes
(syntactic or semantic); sometimes, it is a more ab-
stract set of features, including orthographic fea-
tures like capitalization, words, syntactic relations,
semantic types, and other characteristics, which is
the more complete version of the distributional sim-
ilarity approach.

In early information extraction work, these con-
texts were constructed manually, and resembled reg-
ular expressions (Appelt et al., 1995). More re-
cently, researchers have focused on learning them
automatically. Since unsupervised algorithms re-
quire large training data and may or may not produce
the types and granularities of the semantic class de-
sired by the user, and supervised algorithms may re-
quire a lot of manual oversight, semi-supervised al-
gorithms have become more popular. They require
only a couple of seeds (examples filling the desired
semantic context) to enable the learning mechanism
to learn patterns that extract from unlabeled texts
additional instances of the same class (Riloff and
Jones, 1999; Etzioni et al., 2005; Pasca, 2004).

Sometimes, the pattern(s) learned are satisfactory

618

enough to need no further elaboration. They are
applied to harvest as many additional terms of the
desired type as possible (for example, the instance-
learning pattern ‘<type> such as ?’ introduced in
(Hearst, 1992)). More often, the method is applied
recursively: once some pattern(s) have been learned,
they are used to find additional terms, which are then
used as new seeds in the patterns to search for addi-
tional new patterns, etc., until no further patterns are
found. At that point, the satisfactory patterns are se-
lected and large-scale harvesting proceeds as usual.
In an interesting variation of this method, (Kozareva
et al., 2008) describe the ‘doubly-anchored pat-
tern’ (DAP) that includes a seed term in conjunc-
tion with the open slot for the desired terms to be
learned, making the pattern itself recursive by al-
lowing learned terms to replace the initial seed terms
directly: ‘<type> such as<seed> and ?’.

Context-based information harvesting is well un-
derstood and has been the focus of extensive re-
search. The core unsolved problem is the selec-
tion of seeds. In current knowledge harvesting al-
gorithms, seeds are chosen either at random (Davi-
dov et al., 2007; Kozareva et al., 2008), by picking
the topN most frequent terms of the desired class
(Riloff and Jones, 1999; Igo and Riloff, 2009), or by
asking experts (Pantel et al., 2009). None of these
methods is quite satisfactory. (Etzioni et al., 2005)
report on the impact of seed set noise on the final
performance of semantic class learning, and Pan-
tel et al. observe a tremendous variation in the en-
tity set expansion depending on the initial seed set
composition. These studies show that the selection
of ‘good’ seeds is very important. Recently, (Vyas
et al., 2009) proposed an automatic system for im-
proving the seeds generated by editors (Pantel et al.,
2009). The results show 34% improvement in final
performance using the appropriate seed set. How-
ever, using editors to select seeds or to guide their
seed selection process is expensive and therefore not
always possible. Because of this, we address in this
paper two questions: “What is a good seed?” and
“How can the goodness of seeds be automatically
measured without human intervention?”.

The contributions of this paper are as follows:
• First, we use recursive patterns to automatically

learn seeds for open-class semantic lexicons.
• Second, we define what the ‘goodness’ of a

seed term is. Then we introduce a regression
model of seed quality measurement that, after
a certain amount of training, automatically es-
timates the goodness of new seeds with above
90% accuracy for bootstrapping with the given
relation.

• Next, importantly, we discover that training a
regression model on certain relations enables
one to predict the goodness of a seed even for
other relations that have never been seen be-
fore, with an accuracy rate of over 80%.

• We conduct experiments with six kinds of
relations and more than10000 automatically
harvested seed examples in both English and
Spanish.

The rest of the paper is organized as follows.
In the next section, we review related work. Sec-
tion 3 describes the recursive pattern bootstrap-
ping (Kozareva et al., 2008). Section 4 presents our
seed quality measurement regression model. Sec-
tion 5 discusses experiments and results. Finally, we
conclude in Section 6.

2 Related Work

Seeds are used in automatic pattern extraction from
text corpora (Riloff and Jones, 1999) and from the
Web (Banko, 2009). Seeds are used to harvest in-
stances (Pasca, 2004; Etzioni et al., 2005; Kozareva
et al., 2008) or attributes of a given class (Paşca and
Van Durme, 2008), or to learn concept-specific re-
lations (Davidov et al., 2007), or to expand already
existing entity sets (Pantel et al., 2009). As men-
tioned above, (Etzioni et al., 2005) report that seed
set composition affects the correctness of the har-
vested instances, and (Pantel et al., 2009) observe an
increment of 42% precision and 39% recall between
the best and worst performing seed sets for the task
of entity set expansion.

Because of the large diversity of the usage of
seeds, there has been no general agreement regard-
ing exactly how many seeds are necessary for a
given task. According to (Pantel et al., 2009) 10 to
20 seeds are a sufficient starting set in a distribu-
tional similarity model to discover as many new cor-
rect instances as may ever be found. This observa-
tion differs from the claim of (Paşca and Van Durme,
2008) that 1 or 2 instances are sufficient to dis-
cover thousands of instance attributes. For some

619

pattern-based algorithms one to two seeds are suf-
ficient (Davidov et al., 2007; Kozareva et al., 2008),
some require ten seeds (Riloff and Jones, 1999; Igo
and Riloff, 2009), and others use a variation of 1, 5,
10 to 25 seeds (Talukdar et al., 2008).

As mentioned, seed selection is not yet well un-
derstood. Seeds may be chosen at random (Davi-
dov et al., 2007; Kozareva et al., 2008), by picking
the most frequent terms of the desired class (Riloff
and Jones, 1999; Igo and Riloff, 2009), or by ask-
ing humans (Pantel et al., 2009). The intuitions for
seed selection that experts develop over time seem
to prefer instances that are neither ambiguous nor
too frequent, but that at the same time are prolific
and quickly lead to the discovery of a diverse set of
instances. These criteria are vague and do not al-
ways lead to the discovery of good seeds. For some
approaches, infrequent and ambiguous seeds are ac-
ceptable while for others they lead to deterioration
in performance. For instance, the DAP (Kozareva et
al., 2008) performance is not affected by the ambi-
guity of the seed, because the class and the seed in
the pattern mutually disambiguate each other, while
for the distributional similarity model of (Pantel et
al., 2009), starting with an ambiguous seed leads
to ‘leakage’ and the harvesting of non-true class in-
stances. (Kozareva et al., 2008) show that for the
closed classcountry, both high-frequency seeds like
USA and low-frequency seeds likeBurkina Faso
can equally well yield all remaining instances. An
open question to which no-one provides an answer
is whether and which high/low frequency seeds can
yield all instances of large, open classes like people
or singers.

3 Bootstrapping Recursive Patterns

There are many algorithms for harvesting informa-
tion from the Web. The main objective of our work
is not the creation of a new algorithm, but rather de-
termining the effect of seed selection on the gen-
eral class of recursive bootstrapping harvesting al-
gorithms for the acquisition of semantic lexicons for
open class relations. For our experiments, since it
is time-consuming and difficult for humans to pro-
vide large sets of seeds to start the bootstrapping
process, we employ the recursive DAP mechanism
introduced by (Kozareva et al., 2008) that produces

seeds on its own.
The algorithm starts with aseedof type class

which is fed into the doubly-anchored pattern
‘<class> such as<seed> and *’ and learns in the
* position new instances of typeclass. The newly
learned instances are then systematically placed into
the position of theseedin the DAP pattern, and the
harvesting process is repeated until no new instances
are found. The general framework is as follows:

1. Given:
a language L={English, Spanish}
a patternPi={e.g., [verb prep, noun, verb]}
a seedseed for Pi

2. Build a query in DAP-like fashion forPi using
templateTi of the type ‘class such asseed and
’, ‘ and seed verb prep’, ‘* andseed noun’,
‘* and seed verb’

3. submitTi to Yahoo! or another search engine
4. extract instances occupying the * position
5. take instances from 4. and go to 2.
6. repeat steps 2–5 until no new instances are

found

At the end of bootstrapping, the harvested in-
stances can be considered to be seeds with which
the bootstrapping procedure could have been initi-
ated. We can now compare any of them to study
their relative ‘goodness’ as bootstrapping seeds.

4 Seed Quality Measurement

4.1 Problem Formulation

We define our task as:

Task Definition: Given a seed and a pattern in a
language (say English or Spanish), (1) use the boot-
strapping procedure to learn instances from the Web;
(2) build a predictive model to estimate the ‘good-
ness’ of seeds (whether generated by a human or
learned) .

Given a desired semantic class, a recursive harvest-
ing pattern expressing its context, and a seed term
for use in this pattern, we define the ‘goodness’ of
the seed as consisting of two measures:

• theyield: the total number of instances learned,
not counting duplicates, until the bootstrapping
procedure has run to exhaustion;

• thedistance: the number of iterations required
by the process to reach exhaustion.

620

Our approach is to build a model of the behavior of
many seeds for the given pattern. Any new seed can
then be compared against this model, once its basic
characteristics have been determined, and its yield
and distance estimates produced. In order to deter-
mine the characteristics of the new seed, it first has
to be employed in the pattern for a small number of
iterations. The next subsection describes the regres-
sion model we employ in our approach.

4.2 Regression Model

Given a seeds, we seek to predict the yieldg of s as
defined above. We do this via a parametrized func-
tion f :ĝ = f(s;w), wherew ∈ Rd are the weights.
Our approach is to learnw from a collection ofN
training examples{< si, gi >}N

i=1, where eachsi is
a seed and eachgi ∈ R.

Support vector regression (Drucker et al., 1996)
is a well-known method for training a regression
model by solving the following optimization prob-
lem:

min
w∈Rs

1

2
||w||2 +

C

N

N∑

i=1

max(0, |gi − f(si; w)| − ǫ)
︸ ︷︷ ︸

ǫ-insensitive loss function
where C is a regularization constant andǫ con-
trols the training error. The training algorithm finds
weightsw that define a functionf minimizing the
empirical risk.

Let h be a function from seeds into some vector-
space representation⊆ Rd, then the functionf takes
the form: f(s;w) = h(s)T w =

∑N
i=1 αiK(s, si),

wheref is re-parameterized in terms of a polyno-
mial kernel functionK with dual weightsαi. K

measures the similarity between two seeds. Full de-
tails of the regression model and its implementation
are beyond the scope of this paper; for more de-
tails see (Schölkopf and Smola, 2001; Smola et al.,
2003). In our experimental study, we use the freely
available implementation of SVM in Weka (Witten
and Frank, 2005).

To evaluate the quality of our prediction model,
we compare the actual yield of a seed with the pre-
dicted value obtained, and compute the correlation
coefficient and the relative absolute error.

5 Experiments and Results

5.1 Data Collection

We conducted an exhaustive evaluation study with
the open semantic classespeopleandcity, initiated

with the seedsJohnandLondon. For each class, we
submitted the DAP patterns as web queries to Ya-
hoo!Boss and retrieved the top 1000 web snippets
for each query, keeping only unique instances. In
total, we collected 1.5GB of snippets for people and
1.9GB of snippets for cities. The algorithm ran un-
til complete exhaustion, requiring 19 iterations for
people and 12 for cities. The total number of unique
harvested instances was3798 for people and5090
for cities. We used all instances as seeds and instan-
tiated for each seed the bootstrapping process from
the very beginning. This resulted in3798 and5090
separate bootstrapping runs for people and cities re-
spectively. For each seed, we recorded the total
number of instances learned at the end of bootstrap-
ping, the number of iterations, and the number of
unique instances extracted on each iteration. After
the harvesting part terminated, we analyzed the con-
nectivity / bootstrapping behavior of the seeds, and
produced the regression model.

5.2 Seed Characteristics

For many knowledge harvesting algorithms, the se-
lection of a non-ambiguous seeds is of great impor-
tance. In the DAP bootstrapping framework, the am-
biguity of the seed is eliminated as theclassand the
seedmutually disambiguate each other. Of great im-
portance to the bootstrapping algorithm is the selec-
tion of a seed that can yield a large number of in-
stances and can keep the bootstrapping process en-
ergized.

Figure 1: Seed Connectivity

Figure 1 shows the different kinds of seeds we
found on analyzing the results of the bootstrapping
process. Based on the yield learned on each iter-
ation, we identify four major kinds of seeds:her-
mit , one-step, mid, and high connectors. In the
figure, seed (a) is a hermit because it does not dis-
cover other instances. Seed (b) is a one-step connec-
tor as it discovers instances on the first iteration but

621

then becomes inactive. Seeds (d) and (e) are high
connectors because they find a rich population of in-
stances. Seed (c) is a mid connector because it has
lower yield than (d) and (e), but higher than (a) and
(b).

Table 1 shows the results of classifying the3798
people and5090 city seeds into the four kinds of
seed. The majority of the seeds for both patterns are
hermits, from 23 to 41% are high connectors, and
the rest are one-step and mid connectors. For each
kind of seed, we also show three examples.

people such as X and * examples
#hermit 2271 (60%) Leila, Anne Boleyn, Sophocles

#one-step 329 (9%) Helene, Frida Kahlo, Cornelius
#mid 315 (8%) Brent, Ferdinand, Olivia
#high 883 (23%) Diana, Donald Trump, Christopher

cities such as X and * examples
#hermit 2393 (47%) Belfast, Najafabad, El Mirador

#one-step 406 (8%) Durnstein, Wexford, Al-Qaim
#mid 207 (4%) Bialystok, Gori, New Albany
#high 2084 (41%) Vienna, Chicago, Marrakesh

Table 1: Connectivity-based Seed Classification.

This study shows that humans are very likely to
choose non-productive seeds for bootstrapping: it is
difficult for a human to know a priori that a name
like Diana will be more productive than Leila, He-
lene, or Olivia.

Another interesting characteristic of a seed is the
speed of learning. Some seeds, such as (e), ex-
tract large quantity of instances from the very be-
ginning, resulting in fewer bootstrapping iterations,
while others, such as (d), spike much later, resulting
in more. In our analysis, we found that some high
connector seeds of the people pattern can learn the
whole population in12 iterations, while others re-
quire from15 to 20 iterations. Figure 2 shows the
speed of learning of ten high connector seeds for
the peoplepattern. They axis shows the number
of unique instances harvested on each iteration. In-
tuitively, a good seed is the one that produces a large
yield of instances in shortdistance. Thus the ‘good-
ness’ of seed (e) is better than that of seed (d).

As shown in Figure 2, for each seed, we observe
a single hump that corresponds to the point in which
a seed generates the maximum number of instances.
The peak occurs on different iterations because it is
dependent both on the yield learned with each iter-
ation and the total distance, for each seed. The oc-

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Y
ie

ld

Iteration

s1
s2
s3
s4
s5
s6
s7
s8
s9

s10

Figure 2: Seed Learning Speed

currence of a single hump reveals regularity in the
connectivity behavior of seeds, and is discussed in
the Conclusion. We model this behavior as features
in our regression model and use it to measure the
quality of new seeds. The next subsection explains
the features of the regression model and the experi-
mental results obtained.

5.3 Predicting the Goodness of Seeds

Building a pattern specific model: For each pat-
tern, we buildN different regression models, where
N corresponds to the total number of bootstrapping
iterations of the pattern. For regression modelRi,
we use the yield of a seed from iterations1 to i as
features. This information is used to model the ac-
tivity of the seed in the bootstrapping process and
later on to predict the extraction power of new seeds.
For example, in Figure 1 on the first iteration seeds
(b), (c), and (d) have the same low connectivity com-
pared to seed (e). As bootstrapping progresses, seed
(d) reaches productive neighbors that discover more
instances, while seeds (b) and (c) become inactive.
This example shows that the yield in the initial stage
of bootstrapping is not sufficient to accurately pre-
dict the quality of the seeds. Since we do not know
exactly how many iterations are necessary to accu-
rately determine the ‘goodness’ of seeds, we model
the yield learned on each iteration by each seed and
subsequently include this information in the regres-
sion models.

The yield of a seedsk at iterationi is computed as
yield(sk)i =

∑n
m=1(sm), wheren is the total num-

ber of unique instancessm harvested on iterationi.
Y ield(sk)i is high whensk discovers a large number
of instances (new seeds), and small otherwise. For
hermit seeds,yield=0 at any iteration, because the
seeds are totally isolated and do not discover other

622

instances (seeds). For example, when building the
second regression modelR2 using seeds (d) and (e)
from Figure 1, the feature values corresponding to
each seed inR2 are:yield(sd)1=1 andyield(sd)2=2
for seed (d), andyield(se)1=3 andyield(se)2=5 for
seed (e).
Results: Figure 3 shows the correlation coefficients
(cc) and the relative absolute errors of each regres-
sion modelRi for thepeopleandcity patterns. The
results are computed over ten-fold cross validation
of the3798 people and5090 city seeds. Thex axis
shows the regression modelRi,. They axis in the
two upper graphs shows the correlation coefficient
of the predicted and the actual total yield of the seeds
using Ri, and in the two lower graphs, they axis
shows the error rate of eachRi.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

Regression Model Ri

People
cut_off, t

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

Regression Model Ri

Cities
cut_off, t

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

R
el

at
iv

e
A

bs
ol

ut
e

E
rr

or
 (

%
)

Regression Model Ri

People

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
el

at
iv

e
A

bs
ol

ut
e

E
rr

or
 (

%
)

Regression Model Ri

Cities

Figure 3: Regression for People and City.

We consider as a baseline model the regression
R1 which uses only the yield of the seeds on first
iteration. The prediction ofR1 has cc=0.6 with
50% error for people and cc=0.4 with 70% error
for cities. These results confirm our previous obser-
vation that the quality of the seeds cannot be accu-
rately measured in the very beginning of bootstrap-
ping. However, by the ninth iteration, the regres-
sion models for people and cities reach cc=1.0 with
5% error rate. To make such an accurate prediction,
the model uses around one half of all bootstrapping
iterations—generally, just past the hump in Figure 2,
once the yield starts dropping.

Often in real applications or when under limited

resources (e.g., a fixed amount of Web queries per
day), running half the bootstrapping iterations is not
feasible. This problem can be resolved by employ-
ing different stopping criteria, at the cost of lower
cc and greater error. For example, one cut-off point
can be the (averaged) iteration number of the hump
for the given pattern. For people, the average hump
occurs at the seventh iteration, and for the city at
the fifth iteration. At this point, both patterns have a
cc=0.9 with 15% error rate. An alternative stopping
point can be the fourth iteration, where cc=0.7–0.8
with 35% error.

Overall, our study shows that it is possible to
model the behavior of seeds and use it to accurately
predict the ‘goodness’ of previously unseen seeds.
The results obtained for bothpeopleand city pat-
terns are very promising. However, a disadvantage
of this regression is that it requires training over the
whole extent of the given pattern. Also, each regres-
sion model is specific to the particular pattern it is
trained over. Next, we propose a generalized regres-
sion model which surmounts the problem of training
pattern-specific regression models.

5.4 Generalized Model for Goodness of Seeds

We built a generalized regression model (RG) com-
bining evidence from the people and city patterns.
We generated the features of each model as previ-
ously described in Section 5.3. From each pattern,
we randomly picked1000 examples which resulted
in 30% of the people and 20% of the city seeds. We
used these seed examples to train theRGi models.
In total, we built 15 RGi, which is the maximum
number of overlapping iterations between the two
patterns. We tested ourRG model with the remain-
ing 2798 people and 4090 city seeds.

Figure 4 shows the results of theRGi models for
the people and city patterns. In the first two itera-
tions, the predictions of theRG model are poorer
compared to the pattern-specific regression. On the
fourth iteration, both models have cc=0.7 and 0.8 for
the people and city patterns respectively. The error
rates of the generalized model are 41% and 35% for
people and city, while for the pattern-specific model
the errors are 37% and 32%. The early iterations
show a difference of around 4% in the error rate of
the two models, but around the ninth iteration both
models have comparable results.

623

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

Generalized Regression Model RGi

Cities
People

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
el

at
iv

e
A

bs
ol

ut
e

E
rr

or
 (

%
)

Generalized Regression Model RGi

Cities
People

Figure 4: Generalized Regression for People and City.

This study shows that it is possible to combine
evidence from two patterns harvesting different se-
mantic information to predict accurately the behav-
ior of unseen seed examples for either of the two
patterns.

5.5 Evaluating the Generalized Model on
Different Languages and Kinds of Patterns

So far, we have studied the performance of the gen-
eralized seed quality prediction method for specific
patterns in English. However, the connectivity be-
havior of the seeds might change for other languages
and kinds of patterns, making the generalized model
impractical to use in such cases. To verify this,
we evaluated the generalized model (RG) from Sec-
tion 5.4 with the people and city patterns in Spanish
(‘ gente como X y *’ and ‘ ciudades como X y *’), as
well as with two new kinds of patterns (‘* and X fly
to’ and ‘ * and X work for’1). For each pattern, we
ran the bootstrapping process from Section 3 until
exhaustion and collected all seeds.

First, for each pattern we studied the connectivity
behavior of the seeds. Table 2 shows the obtained
results. The distribution is similar to the seed distri-
bution for the English people and cities patterns. Al-
though the total number of harvested instances (i.e.,
seeds) is different for each pattern, the proportion of
hermits to other seeds remains larger. From 20%
to 37% of the seeds are high connectors, and the
rest are one-step and mid connectors. This analysis
shows that the connectivity behavior of seeds across
different languages and patterns is similar, at least
for the examples studied. In addition to the seed
analysis, we show in the table the total number of
bootstrapping iterations for each pattern. The ‘work

1The X indicates the position of the seed and (*) corresponds
to the instances learned during bootstrapping.

for’ and ‘fly to’ patterns run for a longer distance
compared to the other patterns. While for the ma-
jority of the patterns the hump is observed on the
fifth or seventh iteration, for these two patterns the
average peak is observed on the fifteenth.

gente como X y ciudades como X y

#hermit 318 (56%) 1061 (51%)
#one-step 58 (10%) 150 (8%)

#mid 79 (14%) 79 (4%)
#high 117 (20%) 795 (38%)

tot#iter 20 16

and X fly to and X work for

#hermit 389 (45%) 1262 (48%)
#one-step 87 (9%) 238 (9%)

#mid 75 (8%) 214 (8%)
#high 322 (37%) 922 (35%)

tot#iter 26 33

Table 2: Seed Classification for Spanish and Verb-Prep
Patterns.

Second, we test theRGi models from Section 5.4,
which were trained on people and cities, to predict
the total yield of the seeds in the new patterns. Fig-
ure 5 shows the correlation coefficient and the rela-
tive absolute error results of each pattern forRGi.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

Generalized Regression Model RGi

Work For
Fly To

Ciudades
Gente

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
el

at
iv

e
A

bs
ol

ut
e

E
rr

or
 (

%
)

Generalized Regression Model RGi

Work For
Fly To

Ciudades
Gente

Figure 5: Generalized Regression for Different Lan-
guages and Patterns.

Interestingly, we found that our generalized
method has consistent performance across the dif-
ferent languages and patterns. On the twelfth iter-
ation, the model is able to predict the ‘goodness’
of seeds with cc=1.0 and from 0.4% to 8.0% error
rate. Around the fifth and sixth iterations, all pat-
terns reach cc=0.8 with error of 5% to 15%. The
higher error bound is for patterns like ‘work for’ and
‘fly to’ which run for a longer distance. This experi-
mental study confirms the robustness of our general-
ized model which is trained on the behavior of seeds
from one kind of pattern and tested with seeds in dif-
ferent languages and on completely different kinds
of patterns.

624

6 Conclusions and Future Work

It would, a fortiori, seem impossible to estimate the
goodness of a seed term used in a recursive boot-
strapping pattern for harvesting information from
the web. After all, its eventual total yield and dis-
tance depend on the cumulation of the terms pro-
duced in each iteration of the bootstrapping, and
there are no external constraints or known web lan-
guage structure to be exploited.

We have shown that it is possible to create, using
regression, a model of the grown behavior of seeds
for a given pattern, and fitting it with an indication of
a new seed’s growth (considering its grown behavior
in a limited number of bootstrapping iterations) in
order to obtain a quite reliable estimate of the new
seed’s eventual yield and distance.

Going further, we are delighted to observe that
the regularity of the single-hump harvesting behav-
ior makes it possible to learn a regression model that
enables one to predict, with some accuracy, both the
yield and the distance of a new seed, even when the
pattern being considered is not yet seen. All that is
required is the indication of the seed’s growth be-
havior, obtained through a number of iterations us-
ing the pattern of interest.

Our ongoing analysis takes the following ap-
proach. LetTi be the set of all new terms (terms
not yet found) harvested during iterationi. Then
T0 = {t0,1}, just the initial seed term. LetNY (ti,j)
be the novel yield of termti,j, that is, the number
of as yet undiscovered terms produced by a single
application of the pattern using the termti,j. Notice
that bootstrapping ceases when for somei = d (the
distance),

∑

j NY (td,j) = 0. Since the total number

of terms that can be learned,
∑d

i=0

∑

j NY (ti,j) =
N , is finite and fixed, there are exactly three al-
ternatives for the growth of the NY curve when
it is shown summed over each iteration: (i) either
∑

j NY (ti,j) =
∑

j NY (ti+1,j) and there is no
larger NY sum for any iteration; or (ii)

∑

j NY (ti,j)
grows to a maximal value for some iterationi =
m and then decreases again; or (iii)

∑

j NY (ti,j)
reaches more than one locally maximal value at dif-
ferent iterations. The first case, in which exactly
the same number of new terms is harvested every
iteration for several or all iterations, would require
that each new term once learned yields precisely and

only one subsequent new term, or that the number
of hermits is exactly balanced by the NY of one or
more of the other terms in that iteration. This situa-
tion is so unlikely as to be dismissed outright. Case
(ii), in which there is a single hump, appears to be
how text is written on the web, as shown in Fig-
ure 2. Case (iii), the multi-hump case, would re-
quire that the terms be linked in semi-disconnected
‘islands’, with a relatively much smaller inter-island
connectivity than intra-island one. Given our stud-
ies, it appears that language on the web is not orga-
nized this way, at least not for the patterns we stud-
ied. However, it is not impossible: this two-hump
case would have to have occurred in (Kozareva et
al., 2008) when the ambiguous seed termGeorgia
was used in the DAP ‘states such as Georgia and *’,
where initially the US states were harvested but, at
some point, the learned term Georgia also initiated
harvesting of the ex-USSR states. Such ‘leakage’
into a new semantic domain requires not only ambi-
guity of the seed but also parallel ambiguity of the
class term, which is highly unlikely as well.

Accepting case (ii), therefore, we postulate that
for any (or all regular) patterns there is some iter-
ation m in which

∑

j NY (tm,j) is maximal. The
question is how rapidly the summed NY curve ap-
proaches it and then abates again. This depends on
the out-degree connectivity of terms overall. In the
population ofN terms for a given semantic pattern,
is the distribution of out-degrees Poisson (or Zip-
fian), or is it normal (Gaussian)? In the former case,
there will be a few high-degree connector terms and
a large number (the long tail) of one-step and hermit
terms; in the latter, there will be a small but equal
number of low-end and high-end connector terms,
with the bulk of terms falling in the mid-connector
range. One direction of our ongoing work is to deter-
mine this distribution, and to empirically derive its
parameters. It might be possible to discover some in-
teresting regularities about the (preferential) uses of
terms within semantic domains, as reflected in term
network connectivity.

Although not all seeds are equal, it appears to
be possible to treat them with a single regression
model, regardless of pattern, to predict their ‘good-
ness’.
Acknowledgments: This research was supported by
NSF grant IIS-0705091.

625

References

Douglas E. Appelt, Jerry R. Hobbs, John Bear, David Is-
rael, Megumi Kameyama, Andy Kehler, David Martin,
Karen Myers, and Mabry Tyson. 1995. SRI Interna-
tional FASTUS system MUC-6 test results and analy-
sis. InProceedings of the Sixth Message Understand-
ing Conference (MUC-6), pages 237–248.

Michele Banko. 2009. Open information extraction from
the web. InPh.D. Dissertation from University of
Washington.

Dmitry Davidov, Ari Rappoport, and Moshel Koppel.
2007. Fully unsupervised discovery of concept-
specific relationships by web mining. InProc. of the
45th Annual Meeting of the Association of Computa-
tional Linguistics, pages 232–239, June.

Harris Drucker, Chris J.C. Burges, Linda Kaufman, Alex
Smola, and Vladimir Vapnik. 1996. Support vector re-
gression machines. InAdvances in NIPS, pages 155–
161.

Oren Etzioni, Michael Cafarella, Doug Downey, Ana-
Maria Popescu, Tal Shaked, Stephen Soderland,
Daniel S. Weld, and Alexander Yates. 2005. Unsuper-
vised named-entity extraction from the web: an exper-
imental study.Artificial Intelligence, 165(1):91–134,
June.

Ralph Grishman and Beth Sundheim. 1996. Message
understanding conference-6: a brief history. InPro-
ceedings of the 16th conference on Computational lin-
guistics, pages 466–471.

Zellig S. Harris. 1954. Distributional structure.Word,
10:140–162.

Marti Hearst. 1992. Automatic acquisition of hyponyms
from large text corpora. InProc. of the 14th confer-
ence on Computational linguistics, pages 539–545.

Sean Igo and Ellen Riloff. 2009. Corpus-based seman-
tic lexicon induction with web-based corroboration.
In Proceedings of the Workshop on Unsupervised and
Minimally Supervised Learning of Lexical Semantics.

Zornitsa Kozareva, Ellen Riloff, and Eduard Hovy. 2008.
Semantic class learning from the web with hyponym
pattern linkage graphs. InProceedings of ACL-08:
HLT, pages 1048–1056.

Dan I. Moldovan, Sanda M. Harabagiu, Marius Pasca,
Rada Mihalcea, Richard Goodrum, Roxana Girju, and
Vasile Rus. 1999. Lasso: A tool for surfing the answer
net. InTREC.

Marius Paşca and Benjamin Van Durme. 2008. Weakly-
supervised acquisition of open-domain classes and
class attributes from web documents and query logs.
In Proceedings of ACL-08: HLT.

Patrick Pantel, Eric Crestan, Arkady Borkovsky, Ana-
Maria Popescu, and Vishnu Vyas. 2009. Web-scale
distributional similarity and entity set expansion. In
Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing, pages 938–
947, August.

Marius Pasca. 2004. Acquisition of categorized named
entities for web search. InProc. of the thirteenth ACM
international conference on Information and knowl-
edge management, pages 137–145.

Ellen Riloff and Rosie Jones. 1999. Learning dictio-
naries for information extraction by multi-level boot-
strapping. InAAAI ’99/IAAI ’99: Proceedings of the
sixteenth national conference on Artificial intelligence
and the eleventh Innovative applications of artificial
intelligence conference innovative applications of ar-
tificial intelligence.

Bernhard Schölkopf and Alexander J. Smola. 2001.
Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond (Adaptive
Computation and Machine Learning). The MIT Press.

Alex J. Smola, Bernhard Schlkopf, and Bernhard Sch
Olkopf. 2003. A tutorial on support vector regression.
Technical report, Statistics and Computing.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowledge.
In WWW ’07: Proceedings of the 16th international
conference on World Wide Web, pages 697–706.

Partha Pratim Talukdar, Joseph Reisinger, Marius Pasca,
Deepak Ravichandran, Rahul Bhagat, and Fernando
Pereira. 2008. Weakly-supervised acquisition of la-
beled class instances using graph random walks. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing, EMNLP 2008, pages
582–590.

Vishnu Vyas, Patrick Pantel, and Eric Crestan. 2009.
Helping editors choose better seed sets for entity set
expansion. InProceedings of the 18th ACM Con-
ference on Information and Knowledge Management,
CIKM, pages 225–234.

Ian H. Witten and Eibe Frank. 2005.Data Mining: Prac-
tical Machine Learning Tools and Techniques. Mor-
gan Kaufmann, second edition.

626

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 627–635,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Extracting Glosses to Disambiguate Word Senses

Weisi Duan
Carnegie Mellon University

Language Technologies Institute
5000 Forbes Ave.

Gates Hillman Complex 5407
Pittsburgh, PA 15213
wduan@cs.cmu.edu

Alexander Yates
Temple University

Computer and Information Sciences
1805 N. Broad St.

Wachman Hall 303A
Philadelphia, PA 19122
yates@temple.edu

Abstract

Like most natural language disambiguation
tasks, word sense disambiguation (WSD) re-
quires world knowledge for accurate predic-
tions. Several proxies for this knowledge
have been investigated, including labeled cor-
pora, user-contributed knowledge, and ma-
chine readable dictionaries, but each of these
proxies requires significant manual effort to
create, and they do not cover all of the ambigu-
ous terms in a language. We investigate the
task of automatically extracting world knowl-
edge, in the form of glosses, from an unlabeled
corpus. We demonstrate how to use these
glosses to automatically label a training cor-
pus to build a statistical WSD system that uses
no manually-labeled data, with experimental
results approaching that of a supervised SVM-
based classifier.

1 Introduction

For many semantic natural language processing
tasks, systems require world knowledge to disam-
biguate language utterances. Word sense disam-
biguation (WSD) is no exception — systems for
WSD require world knowledge to figure out which
aspects of a word’s context indicate one sense over
another. A fundamental problem for WSD is that the
required knowledge is open-ended. That is, for ev-
ery ambiguous term, new kinds of information about
the world become important, and the knowledge that
a system may have acquired for previously-studied
ambiguous terms may have little or no impact on the
next ambiguous term. Thus open-ended knowledge
acquisition is a fundamental obstacle to strong per-
formance for this disambiguation task.

Researchers have investigated a variety of tech-
niques that address this knowledge acquisition bot-

tleneck in different ways. Supervised WSD tech-
niques, for instance, can learn to associate features
in the context of a word with a particular sense of
that word. Knowledge-based techniques rely on
machine-readable dictionaries or lexical resources
like WordNet (Fellbaum, 1998) to provide the nec-
essary knowledge. And most recently, systems
have used resources like Wikipedia, which contain
user-contributed knowledge in the form of sense-
disambiguated links, to acquire world knowledge for
WSD. Yet each of these approaches is limited by the
amount of manual effort that is needed to build the
necessary resources, and as a result the techniques
are limited to a subset of English words for which
the manually-constructed resources are available.

In this work we investigate an alternative ap-
proach that attacks the problem of knowledge acqui-
sition head-on. We use information extraction (IE)
techniques to extractglosses, or short textual char-
acterizations of the meaning of one sense of a word.
In the ideal case, we would extract full logical forms
to define word senses, but here we instead focus on
a more feasible, but still very useful, sub-task: for a
given word sense, extract a collection of terms that
are highly correlated with that sense and no other
sense of the ambiguous word. Our system requires
as input only an unlabeled corpus of documents that
each contain the ambiguous term of interest.

In experiments, we demonstrate that our gloss
extraction system can often determine key aspects
of a word’s senses. In one experiment our sys-
tem was able to extract glosses with 60% precision
for 20 ambiguous biomedical terms, while discov-
ering 7 senses of those terms that never appeared
in a widely-used dictionary of biomedical terminol-
ogy. In addition, we demonstrate that our extracted
glosses are useful for real WSD problems: our sys-

627

tem outperforms a state-of-the-art unsupervised sys-
tem, and it comes close to the performance of a su-
pervised WSD system on a challenging dataset.

In the next section, we describe previous work. In
Section 3, we formally define the gloss extraction
task and refine it into a sub-task that is feasible for
an IE approach, and Section 5 presents our technique
for using extracted glosses in a WSD task. Section
6 discusses our experiments and results.

2 Previous Work

Many previous systems (Cui et al., 2007; Androut-
sopoulos and Galanis, 2005) have studied the re-
lated task of answering definitional questions on the
Web, such as “What does cold mean?”. Such sys-
tems are focused on information retrieval for human
consumption, and especially on recall of definitional
information (Velardi et al., 2008). They generally
do not consider the problem of how to merge the
large number of similar extracted definitions into a
single item (Fujii and Ishikawa, 2000), so that the
overall result contains one definition per sense of
the word. A separate approach (Pasca, 2005) relies
on the WordNet lexical database to supply the set of
senses, and extracts alternate glosses for the senses
that have already been defined. When glosses are to
be used by computational methods, as in a WSD sys-
tem in our case, it becomes critical that the system
extract one coherent gloss per sense. As far as we
are aware, no previous system has extracted glosses
for word sense disambiguation.

Gloss extraction is related to the task of ontol-
ogy extraction, in which systems extract hierarchies
of word classes (Snow et al., 2006; Popescu et al.,
2004). Gloss extraction differs from ontology ex-
traction in that it extracts definitional information
characterizing senses of a single word, rather than
trying to place a word in a hierarchy of other words.

Most WSD systems have relied on hand-labeled
training examples (Leroy and Rindflesch, 2004;
Joshi et al., 2005; Mohammad and Pedersen, 2004)
or on dictionary glosses (Lesk, 1986; Stevenson
and Wilks, 2001) or the WordNet hierarchy (Boyd-
Graber et al., 2007) to help make disambiguation
choices. In recent coarse-grained evaluations, such
systems have achieved accuracies of close to 90%
(Pradhan et al., 2007; Agirre and Soroa, 2007; Schi-
jvenaars et al., 2005). However, by some estimates,
English contains over a million word types, and new
words and new senses are added to the language ev-

ery day. It is unreasonable to expect that any system
will have access to hand-labeled training examples
or useful dictionary glosses for each of them.

More recent techniques based on user-contributed
knowledge (Mihalcea, 2007; Chklovski and Mihal-
cea, 2002; Milne and Witten, 2008), such as that
found in Wikipedia, suffer from similar problems –
Wikipedia contains many articles on well known en-
tities, categories, and events, but very few articles
that disambiguate verbs, adjectives, adverbs, and
certain kinds of nouns which are poorly represented
in an encyclopedia.

On the other hand, word usages in large corpora
like the Web reflect nearly all of the word senses
in use in English today, albeit without manually-
supplied labels. Unsupervised approaches to WSD
use clustering techniques to group instances of
words into clusters that correspond to different
senses (Pantel and Lin, 2002). While such systems
are more general than supervised and dictionary-
based approaches in that they can handle any word
type and word sense, they have lagged behind other
approaches in terms of accuracy thus far – for ex-
ample, the best system in the recent word sense in-
duction task of Semeval 2007 (Agirre and Soroa,
2007) achieved an F1 score of 78.7, slightly below
the baseline (78.9) in which all instances of a word
are part of a single cluster. Part of the problem
is that the clustering techniques operate in a bag-
of-words-like representation. This is an extremely
high-dimensional space, and it is difficult in such
a space to determine which dimensions are noise
and which ones correlate with different senses. Our
gloss extraction technique helps to address this curse
of dimensionality by reducing the large vocabulary
of a corpus to a much smaller set of terms that are
highly relevant for WSD. Others (Kulkarni and Ped-
ersen, 2005) have used feature selection techniques
like mutual information to reduce dimensionality,
but so far these techniques have only been able to
find features that correlate with an ambiguous term.
With gloss extraction, we are able to find features
that correlate with individual senses of a term.

3 Overview: The Gloss Extraction Task

Given an input corpusC of documents where each
document contains at least one instance of akeyword
k, a Gloss Extraction system should produce a set of
glossesG = {gi}, where eachgi is a logical expres-
sion defining the meaning of a particular sensesi of

628

Glosses:
1. cold(a) ≡ isA(a, b) ∧ disease(b) ∧ symptom(a, c) ∧ possibly-includes(c, d) ∧ fever(d)
2. cold(a) ≡ isA(a, b) ∧ physical-entity(b) ∧ temperature(a, c) ∧ less-than(c, 25C)

Sense Indicators:
1. common cold, virus, symptom, fever
2. hot, ice cold, lukewarm, cold room, room temperature

Figure 1:Example glosses and sense indicators for two senses of the word cold.

k, to the exclusion of all other senses ofk. Note that
the system must discover the appropriate number of
senses in addition to the gloss for each sense.

While extraction technology has made impressive
advancements, it is not yet at a stage where it can
produce full logical forms for sense glosses. As a
first step towards this goal, we introduce the task of
Sense Indicator Extraction, in which each glossgi

consists of a set of features that, when present in the
context of an instance ofk, strongly indicate that the
instance has sensesi, and no other sense. Exam-
ples of both tasks are given in Figure 1. The Sense
Indicator Extraction task represents a nontrivial ex-
traction challenge, but it is much more feasible than
full Gloss Extraction. And the task preserves key
properties of Gloss Extraction: the results are quite
useful for word sense disambiguation. The results
are also readily interpreted upon inspection, making
it easy to monitor a system’s accuracy.

4 Extracting Word Sense Glosses

We present the GLOSSYsystem, an unsupervised in-
formation extraction system for Sense Indicator Ex-
traction. GLOSSY proceeds in two phases: acol-
location detectionphase, in which the system de-
tects components of the glosses, and anarrangement
phase, in which the system decides how many dis-
tinct senses there are, and puts together the compo-
nents of the glosses.

4.1 Collocation Detection

The first major challenge to a Gloss Extraction sys-
tem is that the space of possible features is enor-
mous, and almost all of them are irrelevant to the
task at hand. Supervised techniques can use la-
beled examples to provide clues, but in an unsu-
pervised setting the curse of dimensionality can be
overwhelming. Indeed, unsupervised WSD tech-
niques suffer from exactly this problem.

GLOSSY’s answer to this problem is based on the
following observation: pairs of potential features
which rarely or never co-occur in the same docu-
ment in a large corpus are likely to represent fea-
tures for two distinct senses. The well-known obser-
vation that words rarely exhibit more than one sense
per discourse (Yarowsky, 1995) implies that features
closely associated with a particular sense have a low
probability of appearing in the same document as
features associated with another sense. Features that
are independent of any particular sense of the key-
word, on the other hand, have no such restriction,
and are just as likely to appear in the context of one
sense as any other. As a consequence, a low count
for the co-occurrence of two potential features over
a large corpus of documents for keywordk is a re-
liable indicator that the two features are part of the
glosses of two distinct senses ofk.

GLOSSY’s collocation detector begins by index-
ing the corpus and counting the frequency of each
vocabulary word. Using the index, the collocation
detector determines all pairs of potential features
such that each feature appears at leastT times, and
the pair of features never co-occurs in the same doc-
ument. We call the pairs that this step finds the “non-
overlapping” features. Finally, we rank the feature
pairs according to the total number of documents
they appear in, and choose the most frequentN

pairs. This excludes non-overlapping pairs that have
not been seen often enough to provide reliable evi-
dence that they are features of different senses, and
it cuts down on processing time for the next phase of
the algorithm. The collocation detector outputs the
set of featuresF = {f |∃f ′(f, f ′) or (f ′, f) is one
of the topN non-overlapping pairs}. The GLOSSY

system uses stems, words, and bigrams as potential
features. We useN = 100 andT = 50 in our ex-
periments. Figure 2 shows an example corpus and
the set of features that the collocation detector would
output.

629

Corpus of documents for termcold:
DOCUMENT 1: “Symptoms of the common cold may include fever, headache, sore throat, and coughing.”
DOCUMENT 2: “Hibernation is a common response to the cold winter weather of temperate climates.”

Non-overlapping feature pairs:
(symptoms,temperate) (headache, climate) (cold winter, common cold) (response, headache)

Detected collocations:
symptoms, temperate, headache, climate, cold winter, common cold,response

Arranged glosses:
cold 1: symptoms, common cold, headache
cold 2: temperate, climate, cold winter

Figure 2: Example operation of theGLOSSY extraction system. The collocation detector finds potential features
using its non-overlapping pair heuristic. The arranger selects a subset of the potential features (in this example, it
drops the featureresponse) and clusters them to produces glosses containing sense indicators.

4.2 Arranging Glosses

Given the corpusC for keywordk and the featuresF
that GLOSSY’s collocation detector has discovered,
the arrangement phase groups these features into co-
herent sense glosses. Figure 2 shows an example of
how the features found during collocation detection
may be arranged to form coherent glosses for two
senses of the word “cold.”

GLOSSY’s Arranger component uses a combina-
tion of a small set of statistics to determine whether
a particular arrangement of the features into glosses
is warranted, based on the given corpus. LetA ⊂ 2F

be an arrangement of the features into clusters rep-
resenting glosses. We require that clusters inA be
disjoint, but we do not require every feature inF to
be included in a cluster inA — in other words,A
is a partition of a subset ofF . We define a scoring
function S that is a linear interpolation of several
statistics of the arrangementA and the corpusC:

S(A|C,w) =
∑

i

wifi(A, C) (1)

After experimenting with a number of options, we
settled on the following for our statisticsfi:

NUMCLUSTERS: the number of clusters inA. We
use a negative weight for this statistic to favor fewer
senses and encourage clustering.

DOCSCOVERED: the total number of documents in
C in which at least one feature fromA appears. We
use this statistic to encourage the Arranger to find an
arrangement that explains the sense of as many ex-

amples of the keyword as possible.

BADOVERLAPS: the number of pairs of features
that co-occur in at least one document inC, and that
belong to different clusters ofA. A negative weight
for this statistic encourages overlapping feature pairs
to be placed in the same cluster.

BADNONOVERLAPS: the number of pairs of fea-
tures that never co-occur inC, and that belong to the
same cluster inA. A negative weight for this statis-
tic encourages non-overlapping feature pairs to be
placed in different clusters.

Given such an optimization function, the Ar-
ranger attempts to maximize its value by search-
ing for an optimalA. Note that this is a struc-
tured prediction task in which the choice for some
sub-component ofA can greatly affect the choice of
other clusters and features. GLOSSY addresses this
optimization problem with a greedy hill-climbing
search with random restarts. Each round of hill-
climbing is initialized with a randomly chosen sub-
set of features, which are then all assigned to a sin-
gle cluster. Using a randomly chosen search opera-
tor from a pre-defined set, the search procedure at-
tempts to move to a new arrangementA′. It accepts
the move toA′ if the optimization function gives a
higher value than at the previous state; otherwise, it
continues from the previous state. Our set of search
operators include a move that splits a cluster; a move
that joins two clusters; a move that swaps a feature
from one cluster to another; a move that removes a
feature from the arrangement altogether; and a move

630

that adds a feature from the pool of unused features.
We used 100 rounds of hill-climbing, and found that
each round converged in fewer than 1000 moves.

To estimate the weightswi for each of the four
features of the Arranger, we use a development cor-
pus consisting of 185 documents each containing the
same ambiguous term, and each labeled with sense
information. Because of the small number of pa-
rameters, we performed a grid search on the devel-
opment data for the optimal values of the weights.

5 A Bootstrapping WSD System

Yarowsky (1995) first recognized that it is possi-
ble to use a small number of features for different
senses to bootstrap an unsupervised word sense dis-
ambiguation system. In Yarowsky’s work, his sys-
tem requires an initial, manually-supplied colloca-
tion as a feature for each sense of a keyword. In con-
trast, we can use GLOSSY’s extracted glosses to sup-
ply starter features fully automatically, using only an
unlabeled corpus. Thus GLOSSY complements the
efforts of Yarowsky and other bootstrapping tech-
niques for WSD (Diab, 2004; Mihalcea, 2002).

Building on their efforts, we design a boot-
strapping WSD system using GLOSSY’s extracted
glosses as follows. LetA be the arranged features
representing glosses for a keyword. We first retrieve
all the documents from our unlabeled corpus which
contain features inA. We then label appearances
of the target word according to the cluster of the
features that appear in that document. If features
for more than one cluster appear in the same docu-
ment, we discard it. The result is an automatically
labeled corpus containing examples of all the ex-
tracted senses.

We use this automatically labeled “bootstrap cor-
pus” to perform supervised WSD. This allows our
system a great deal of flexibility once the bootstrap
corpus is created: we can use any features of the
corpus, plus the labels, in our classifier. Importantly,
this means we do not need to rely on just the features
in the extracted glosses. We use a multi-class SVM
classifier with a linear kernel and default parameter
settings. We use LibSVM (Chang and Lin, 2001) for
all of our experiments. We use standard features for
supervised WSD (Liu et al., 2004): all stems, words,
bigrams, and trigrams within a context window of 20
words surrounding the ambiguous term.

6 Experiments

We ran two types of experiments, one to measure
the accuracy of our sense gloss extractor, and one to
measure the usefulness of the extracted knowledge
for word sense disambiguation.

6.1 Data

We use a dataset of biomedical literature abstracts
from Duanet al.(2009). The data contains a set of
documents for 21 ambiguous terms. We reserved
one of these terms (“MCP”) for setting parameters,
and ran our algorithms on the remaining keywords.
The ambiguous terms vary from acronyms (7 terms),
which are common and important in biomedical lit-
erature, to ambiguous biomedical terminology (3
terms), to terms like “culture” and “mole” that have
some biomedical senses and some senses that are
part of the general lexicon (11 terms). There were on
average 271 labeled documents per term; the small-
est number of documents for a term is 125, and
the largest is 503. For every ambiguous term, we
added on average 9625 (minimum of 1544, maxi-
mum of 15711) unlabeled documents to our collec-
tion by searching for the term on PubMed Central
and downloading additional PubMed abstracts.

6.2 Extracting Glosses

We measured the performance of GLOSSY’s gloss
extraction by comparing the extracted glosses with
definitions contained in the Unified Medical Lan-
guage System (UMLS) Metathesaurus. First, for
each ambiguous term, we looked up the set of ex-
act matches for that term in the Metathesaurus, and
downloaded definitions for all of the different senses
listed under that term. Wherever possible, we used
the MeSH definition of a sense; when that was un-
available, we used the definition from the NCI The-
saurus; and when both were unavailable, we used the
definition from the resource listed first. 34 senses
(40%) had no available definitions at all, but in all
cases, the Metathesaurus lists a short (usually 1-3
word) gloss of the sense, which we used instead.

We manually aligned extracted glosses with
UMLS senses in a way that maximizes the number
of matched senses for every ambiguous term. We
consider an extracted gloss to match a UMLS sense
when the extracted gloss unambiguously refers to
a single sense of the ambiguous term, and that
sense matches the definition in UMLS. Typically,
this means that the extracted features in the gloss

631

overlap content words in the UMLS definition (e.g.,
the extracted feature “symptoms” for the “common
cold” sense of the term “cold”). In some cases, how-
ever, there was no strict overlap in content words
between the extracted gloss and the UMLS defini-
tion, but the sense of the extracted gloss still unam-
biguously matched a unique UMLS sense:e.g., for
the term “transport,” the extracted gloss “intracel-
lular transport” was matched with the UMLS sense
of “Molecular Transport,” which the NCI Thesaurus
defines as, “Any subcellular or molecular process in-
volved in translocation of a biological entity, such
as a macromolecule, from one site or compartment
to another.” In the end, such matchings were deter-
mined by hand. Table 1 shows extracted glosses and
UMLS definitions for the term “mole.”

For each ambiguous term, we measure the num-
ber of extracted glosses, the number of UMLS
senses, and the number of matches between the
two. We report on the precision (number of matches
/ number of extracted glosses), recall (number of
matches / number of UMLS senses), and F1 score
(harmonic mean of precision and recall). Table 2
shows the average of the precision and recall num-
bers over all terms. Since these terms have different
numbers of senses, we can compute this average in
two different ways: a Macro average, in which each
term has equal weight in the average; and a Micro
average, in which each term’s weight in the average
is proportional to the number of senses (extracted
senses for the precision, and UMLS senses for the
recall). We report on both.

A strict matching between GLOSSY’s glosses and
UMLS senses is potentially unfair to GLOSSY in
several ways: GLOSSY may discover valid senses
that happen not to appear in UMLS; UMLS senses
may overlap one another, and so multiple UMLS
senses may match a single GLOSSY gloss; and the
two sets of senses may differ in granularity. For the
sake of repeatable experiments, in this evaluation we
make no attempt to change existing UMLS senses.

However, to highlight one particular strength of
the Gloss Extraction paradigm, we do consider a
separate evaluation that allows for new senses that
GLOSSY discovers, but do not appear in UMLS.
For instance, “biliopancreatic diversion” and “bipo-
lar disorder” are both valid senses for the acronym
“BPD.” GLOSSY discovers both, but UMLS does
not contain entries for either, so in our original eval-
uation both senses would count against GLOSSY’s

precision. To correct for this, our second evalua-
tion adds senses to the list of UMLS senses when-
ever GLOSSY discovers valid entries missing from
the Metathesaurus. The last five columns of Table 2
show our results under these conditions.

Despite the difficulty of the task, GLOSSY is able
to find glosses with 53% precision and 47% re-
call (Macro average, no discovered senses) using
only unlabeled corpora as input, and it is extract-
ing roughly the right number of senses for each am-
biguous term. In addition, GLOSSY is able to iden-
tify 7 valid senses missing from UMLS for the 20
terms in our evaluation. Including these senses in
the evaluation increases GLOSSY’s F1 by 6.2 points
Micro (4.7 Macro). We are quite encouraged by
the results, especially because they hold promise for
WSD. Note that in order to improve upon a WSD
baseline which tags all instances of a word as the
same sense, GLOSSY only needs to be able to sep-
arate one sense from the rest. GLOSSY is finding
between 1.85 and 2.2 correct glosses per term, more
than enough to help with WSD.

6.3 WSD with Extracted Glosses

While extracting glosses is an important application
in its own right, we also aim to show that this ex-
tracted knowledge is useful for an established ap-
plication: namely, word sense disambiguation. Our
next experiment compares the performance of our
WSD system with an established unsupervised al-
gorithm, and with a supervised technique — support
vector machines (SVMs).

Using the same dataset as above, we trained
GLOSSY on the ambiguous term “MCP”, and tested
it on the remaining ones. For comparison, we also
report the state-of-the-art results of Duanet al.’s
(2009) SENSATIONAL system, and the results of a
BASELINE system that lumps all documents into
a single cluster. SENSATIONAL is a fast cluster-
ing system based on minimum spanning trees and
a pruning mechanism that eliminates noisy points
from consideration during clustering. Since SEN-
SATIONAL uses both “MCP” and “white” to train a
small set of parameters, we leave “white” out of our
comparison as well. We measure accuracy by align-
ing each system’s clusters with the gold standard
clusters in such a way as to maximize the number
of elements that belong to aligned clusters. We use
an implementation of the MaxFlow algorithm to de-
termine this alignment. We then compute accuracy

632

GLOSSY UMLS

1. choriocarcinoma,
invasive, complete,
hydatidiform mole,
hydatidiform

1. Hydatidiform Mole – Trophoblastic hyperplasia associatedwith normal gestation,
or molar pregnancy. . . . Hydatidiform moles or molar pregnancy may be catego-
rized as complete or partial based on their gross morphology, histopathology, and
karyotype.

2. grams per mole 2. Mole, unit of measurement – A unit of amount of substance, oneof the seven
base units of the International System of Units. It is the amount of substance that
contains as many elementary units as there are atoms in 0.012kg of carbon-12.

3. mole fractions -
- 3. Nevus – A circumscribed stable malformation of the skin
- 4. Talpidae – Any of numerous burrowing mammals found in temperate regions . . .

Table 1: GLOSSY’s extracted glosses and UMLS dictionary entries for the example term “mole”.

Without Discovered Senses With Discovered Senses
GLOSSY UMLS UMLS
Senses Senses Matches P R F1 Senses Matches P R F1

Macro Avg 4.35 4.25 1.85 53.1 47.1 49.9 4.6 2.2 60.6 49.7 54.6
Micro Avg N/A N/A N/A 42.5 43.5 43.0 N/A N/A 50.6 47.8 49.2

Table 2: GLOSSY can automatically discover glosses that match definitions in an online dictionary. “Without
Discovered Senses” counts only the senses that are listed inthe UMLS Metathesaurus; “With Discovered Senses”
enhances the Metathesaurus with 7 new senses that GLOSSY has automatically discovered.

as the percentage of elements that belong to aligned
clusters. This metric is very similar to the so-called
“supervised” evaluation of Agirreet al. (2006).

The first four columns of Table 3 show our results.
Clearly, both SENSATIONAL and GLOSSY outper-
form the BASELINE significantly, and traditionally
this is a difficult baseline for unsupervised WSD sys-
tems to beat. SENSATIONAL outperforms GLOSSY

by approximately 6%. There appear to be two rea-
sons for this. In other experiments, SENSATIONAL

has been shown to be competitive with supervised
systems, but only when the corpus consists mostly
of two, fairly well-balanced senses, as is true for
this particular dataset, where the two most common
senses always covered at least 70% of the examples
for every ambiguous term.

A more serious problem for GLOSSY is that the
unlabeled corpus that it extracts glosses from may
not match well with the labeled test data. If the rela-
tive frequency of senses in the unlabeled documents
does not match the relative frequency of senses in
the labeled test set, GLOSSY may not extract the
right set of glosses. Manual inspection of the ex-
tracted glosses shows that this is indeed a problem:
for example, the labeled data contains two senses of

the word “mole”: a discolored area of skin (78%),
and a burrowing mammal (22%); our unlabeled data
contains both of these senses, but the additional
sense of “mole” as a unit of measurement is by far
predominant. GLOSSY manages to extract glosses
for “skin” and “unit of measurement,” but misses out
on “mammal” as a result of the skew in the data.

Note that this problem, though serious for our ex-
periments, is largely artificial from the point of view
of applications. In a typical usage of a WSD system,
there is a supply of data that the system needs to dis-
ambiguate, and accuracy is measured on a labeled
sample of this data. Here, we started from a sample
of labeled data, constructed a larger corpus that does
not necessarily match it, and then ran our algorithm.

To correct for the artificial bias in our experiment,
we ran a second test in which we manually labeled a
random sample of 100 documents for each ambigu-
ous term from the larger unlabeled corpus. We used
a subset of 14 of the 21 keywords in the original
dataset. As before, we compared our system against
SENSATIONAL and the most-frequent-sense BASE-
LINE. We also compare against an SVM system us-
ing 3-fold cross-validation. We use a linear kernel
SVM, with the same set of features that are available

633

Duanet al.(2009) Data Sampled Data
Num. BASE- SENSE- Num. BASE- SENSE-

Keyword senses LINE GLOSSY ATIONAL senses LINE ATIONAL GLOSSY SVM

ANA 2 63.1 87.9 100 13 75 79 74 75.8
BPD 3 39.8 71.6 52.9 7 33 48 85 66.7
BSA 2 50.1 77.9 94.7 5 97 53 89 87.9
CML 2 55.0 99.2 89.5 4 81 75 84 75.8
MAS 2 50.0 100 100 35 46 90 67 66.7
VCR 2 79.2 79.2 64.0 8 72 32 72 75.8
cold 3 37.1 73.3 66.8 3 87 81 44 90.9
culture 2 52.0 67.1 81.7 3 74 39 62 66.7
discharge 2 66.3 82.4 95.1 5 57 41 84 54.5
fat 2 50.6 50.1 53.2 2 97 60 97 97.0
mole 2 78.3 71.3 95.8 7 78 47 57 84.8
pressure 2 52.1 69.8 86.4 5 47 60 65 75.8
single 2 50.0 59.7 99.5 4 53 63 37 45.4
white - - - - 7 32 33 58 51.5
fluid 2 64.3 83.5 99.6 - - - - -
glucose 2 50.5 64.5 50.5 - - - - -
inflammation 3 35.5 52.8 50.4 - - - - -
inhibition 2 50.4 50.4 54.2 - - - - -
nutrition 3 38.8 53.8 54.9 - - - - -
transport 2 50.6 41.1 56.8 - - - - -

AVERAGE 2.16 53.4 70.3 76.1 7.71 66.3 57.2 69.6 72.5
Diff from BL - 0.0 +16.9 +22.7 - 0.0 -9.1 +3.3 +6.2

Table 3: GLOSSY’s extracted glosses can be used to create an unsupervised WSDsystem that achieves an accu-
racy within 3% of a supervised system.Our WSD system outperforms our BASELINE system, widely recognized
as a difficult baseline for unsupervised WSD, by 16.9% and 3.3%on two different datasets.

to the SVM in the GLOSSY system. We run our un-
supervised systems on all of the unlabeled data, and
then intersect the resulting clusters with the docu-
ment set that we randomly sampled.

The last four columns of Table 3 show our results.
The sampled data set appears to be a significantly
harder test, since even the supervised SVM achieves
only a 6% gain over the BASELINE. The SEN-
SATIONAL system does significantly worse on this
data, where there is a wider variation in the distri-
bution of senses. The GLOSSY system outperforms
both the SENSATIONAL system and the BASELINE.

7 Conclusion and Future Work

Gloss Extraction is an important, and difficult task of
extracting definitions of words from unlabeled text.
The GLOSSY system succeeds at a more feasible re-
finement of this task, the Sense Indicator Extrac-
tion task. GLOSSY’s extractions have proven use-

ful as seed definitions in an unsupervised WSD task.
There is a great deal of room for future work in ex-
panding the ability of Gloss Extraction systems to
extract sense glosses that more closely match the
meanings of a word. An important first step in this
direction is to extract relations, rather than ngrams,
that make up the definition a word’s senses.

Acknowledgments

Presentation of this work was supported by the Insti-
tute of Education Sciences, U.S. Department of Ed-
ucation, through Grant R305A080157 to Carnegie
Mellon University. The opinions expressed are those
of the authors and do not necessarily represent the
views of the Institute or the U.S. Department of Edu-
cation. The authors thank the anonymous reviewers
for their helpful suggestions and comments.

634

References

Eneko Agirre and Aitor Soroa. 2007. Semeval 2007 task
02: Evaluating word sense induction and discrimina-
tion systems. InProceedings of the Fourth Interna-
tional Workshop on Semantic Evaluations (SemEval),
pages 7–12.

E. Agirre, O. Lopez de Lacalle, D. Martinez, and
A. Soroa. 2006. Evaluating and optimizing the param-
eters of an unsupervised graph-based WSD algorithm.
In Proceedings of the NAACL Textgraphs Workshop.

I. Androutsopoulos and D. Galanis. 2005. A practi-
cally unsupervised learning method to identify single-
snippet answers to definition questions on the web. In
Proceedings of HLT-EMNLP, pages 323–330.

Jordan Boyd-Graber, David M. Blei, and Xiaojin Zhu.
2007. A topic model for word sense disambiguation.
In Empirical Methods in Natural Language Process-
ing.

Chih-Chung Chang and Chih-Jen Lin, 2001.LIBSVM: a
library for support vector machines.

T. Chklovski and R. Mihalcea. 2002. Building a sense
tagged corpus with Open Mind Word Expert. InPro-
ceedings of the Workshop on Word Sense Disambigua-
tion: Recent Successes and Future Directions.

H. Cui, M.K. Kan, and T.S. Chua. 2007. Soft pattern
matching models for definitional question answering.
ACM Trans. Information Systems, 25(2):1–30.

Mona Diab. 2004. Relieving the data acquisition bottle-
neck in word sense disambiguation. InProceedings of
the ACL.

Weisi Duan, Min Song, and Alexander Yates. 2009. Fast
max-margin clustering for unsupervised word sense
disambiguation in biomedical texts.BMC Bioinfor-
matics, 10(S3)(S4).

Christiane Fellbaum, editor. 1998.WordNet: An Elec-
tronic Lexical Database. Bradford Books.

A. Fujii and T. Ishikawa. 2000. Utilizing the world wide
web as an encyclopedia: Extracting term descriptions
from semi-structured texts. InProceedings of ACL,
pages 488–495.

M. Joshi, T. Pedersen, and R. Maclin. 2005. A compar-
ative study of support vector machines applied to the
supervised word sense disambiguation problem in the
medical domain. InProceedings of the Second Indian
International Conference on Artificial Intelligence.

Anagha Kulkarni and Ted Pedersen. 2005. Name dis-
crimination and email clustering using unsupervised
clustering and labeling of similar contexts. InPro-
ceedings of the Second Indian International Confer-
ence on Artificial Intelligence, pages 703–722.

Gondy Leroy and Thomas C. Rindflesch. 2004. Us-
ing symbolic knowledge in the umls to disambiguate

words in small datasets with a naive bayes classifier.
In MEDINFO.

M.E. Lesk. 1986. Automatic sense disambiguation us-
ing machine readable dictionaries: How to tell a pine
cone from an ice cream cone. InProceedings of the
SIGDOC Conference.

Hongfang Liu, Virginia Teller, and Carol Friedman.
2004. A multi-aspect comparison study of supervised
word sense disambiguation.Journal of the American
Medical Informatics Association, 11:320–331.

Rada Mihalcea. 2002. Bootstrapping large sense-tagged
corpora. InInternational Conference on Languages
Resources and Evaluations (LREC).

Rada Mihalcea. 2007. Using wikipedia for automatic
word sense disambiguation. InProceedings of the
NAACL.

David Milne and Ian H. Witten. 2008. Learning to link
with wikipedia. InProceedings of the 17th Conference
on Information and Knowledge Management (CIKM).

S. Mohammad and Ted Pedersen. 2004. Combining lex-
ical and syntactic features for supervised word sense
disambiguation. InProceedings of CoNLL.

P. Pantel and D. Lin. 2002. Discovering word senses
from text. In Procs. of ACM Conference on Knowl-
edge Discovery and Data Mining (KDD-02).

Marius Pasca. 2005. Finding instance names and alterna-
tive glosses on the web: WordNet reloaded. InCom-
putational Linguistics and Intelligent Text Processing,
pages 280–292. Springer Berlin / Heidelberg.

Ana-Maria Popescu, Alexander Yates, and Oren Etzioni.
2004. Class extraction from the world wide web. In
AAAI-04 ATEM Workshop, pages 65–70.

Sameer Pradhan, Edward Loper, Dmitriy Dligach, and
Martha Palmer. 2007. Semeval-2007 task-17: English
lexical sample, srl and all words. InProceedings of
the Fourth International Workshop on Semantic Eval-
uations (SemEval).

B.J. Schijvenaars, B. Mons, M. Weeber, M.J. Schuemie,
E.M. van Mulligen, H.M. Wain, and J.A. Kors. 2005.
Thesaurus-based disambiguation of gene symbols.
BMC Bioinformatics, 6.

R. Snow, D. Jurafsky, and A. Y. Ng. 2006. Semantic
taxonomy induction from heterogenous evidence. In
COLING/ACL.

M. Stevenson and Yorick Wilks. 2001. The interaction
of knowledge sources in word sense disambiguation.
Computational Linguistics, 27(3):321–349.

Paola Velardi, Roberto Navigli, and Pierluigi D’Amadio.
2008. Mining the web to create specialized glossaries.
IEEE Intelligent Systems, 23(5):18–25.

David Yarowsky. 1995. Unsupervised word sense dis-
ambiguation rivaling supervised methods. InProceed-
ings of the ACL.

635

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 636–644,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Can Recognising Multiword Expressions Improve Shallow Parsing?

Ioannis Korkontzelos, Suresh Manandhar
Department of Computer Science

The University of York
Heslington, York, YO10 5NG, UK

{johnkork, suresh}@cs.york.ac.uk

Abstract

There is significant evidence in the literature
that integrating knowledge about multiword
expressions can improve shallow parsing ac-
curacy. We present an experimental study to
quantify this improvement, focusing on com-
pound nominals, proper names and adjective-
noun constructions. The evaluation set of
multiword expressions is derived from Word-
Net and the textual data are downloaded from
the web. We use a classification method to
aid human annotation of output parses. This
method allows us to conduct experiments on
a large dataset of unannotated data. Experi-
ments show that knowledge about multiword
expressions leads to an increase of between
7.5% and 9.5% in accuracy of shallow pars-
ing in sentences containing these multiword
expressions.

1 Introduction

Multiword expressions are sequences of words that
tend to co-occur more frequently than chance and
are characterised by various levels of idiosyncracy
(Baldwin et al., 2003; Baldwin, 2006). There is ex-
tended literature on various issues relevant to mul-
tiword expression; recognition, classification, lexi-
cography, etc. (see Section 6). The vast majority of
these publications identifies as motivation for mul-
tiword expression research its potential contribution
to deep or shallow parsing. On the other side of this
issue, the state-of-the-art parsing systems seem to
ignore the fact that treating multiword expressions
as syntactic units would potentially increase parser’s
accuracy.

In this paper, we present an experimental study
attempting to estimate the contribution of integrat-
ing multiword expressions into shallow parsing. We
focus on multiword expressions that consist of two
successive tokens; in particular, compound nominals
proper names and adjective-noun constructions. We
also present a detailed classification method to aid
human annotation during the procedure of deciding
if a parse is correct or wrong. We present experi-
mental results about the different classes of changes
that occur in the parser output while unifying multi-
word expression components.

We conclude that treating known multiwords ex-
pressions as singletons leads to an increase of be-
tween 7.5% and 9.5% in accuracy of shallow pars-
ing of sentences containing these multiword expres-
sions. Increase percentages are higher for multiword
expressions that consist of an adjective followed by
a noun (12% to 15%); and even higher for non-
compositional multiword expressions1 that consist
of an adjective and a noun (15.5% to 19.5%).

The rest of the paper is structured as follows: In
Section 2 we present how multiword expressions can
be annotated in text and used by a shallow parser. In
Section 3 we present an overview of our experimen-
tal process. Section 4 explains how the set of target
multiword expressions and textual corpora were cre-
ated. In Section 5 we present and discuss the results
of the experimental process. In Section 6 we present
parts of the related literature. Section 7 concludes
the paper and proposes some future work.

1Compositionality is defined as the degree to which the
meaning of a multiword expression can be predicted by com-
bining the meanings of its components (Nunberg et al., 1994).

636

2 Annotating Multiword expressions

In this paper, we present a study to inspect the ex-
tent to which knowledge of multiword expressions
improves shallow parsing. Our approach focuses
on English multiword expressions that appear as se-
quences in text. In particular, we focus on com-
pound nominals (e.g. lemon tree), proper names
(e.g. prince Albert) and adjective-noun construc-
tions (e.g. red carpet).

Shallow or deep parsing should treat multiword
expression as units that cannot be divided in any
way. We replace the multiword expression tokens
with a special made up token, i.e. the multiword ex-
pression constituents joined with an underscore. For
example, we replace all occurrences of “lemon tree”
with “lemon tree”.

We choose to replace the multiword expression
words with a token that does not exist in the dictio-
nary of the part of speech tagger. This is quite an
important decision. Usually, a part of sheech tagger
assigns to an unknown words the part of speech that
best fits to it with respect to the parts of speech of
the words around it and the training data. This is a
desirable behaviour for our purposes.

The experimental results of our study quantify the
difference between the shallow parser output of a big
number of sentences after the replacement and the
shallow parser output of the same sentences before
the replacement. The comparison is done ignoring
changes of parts of speech, assigned by the part of
speech tagger.

3 Evaluation

The target of our experiment is to evaluate whether
replacing the multiword expression tokens with a
single token, unknown to the part of speech tagger,
improves shallow parsing accuracy. The ideal way
to perform this evaluation would be to use a cor-
pus with manual annotation about parsing and mul-
tiword expressions. Given this corpus we would be
able to measure the accuracy of a shallow (or deep)
parser before and after replacing multiword expres-
sions. However, to the best of our knowledge there
is no corpus available to include this type of annota-
tions in English.

Instead, there are two options: Firstly, we can
use treebank data, where manual parsing annotation

Figure 1: Evaluation process

is readily available, and manually annotate multi-
word expressions. The advantage of this approach
is that results are directly comparable with other re-
sults of the literature, due to the use of benchmark
data. Manual annotation of multiword expressions
is a very time- and effort-consuming process due to
the large size of most treebanks. Alternatively, mul-
tiword expression annotation could be done using a
method of recognition. Annotating the multiword
expressions that appear in WordNet could be a safe
decision, in terms of correctness, however, WordNet
is reported to have limited coverage of multiword
expressions (Baldwin, 2006; Laporte and Voyatzi,
2008). WordNet covers only 9.1 % and 16.1 % of the
datasets of Nicholson and Baldwin (2008) (484 noun
compounds) and Kim and Baldwin (2008) (2169
noun compounds), respectively.

Secondly, we can use a set of multiword expres-
sions as a starting point and then create corpora that
contain instances of these multiword expressions. In
succession, these sentences need to be manually an-
notated in terms of parsing, and this requires huge
human effort. Alternatively, we can parse the cor-
pora before and after replacing the multiword ex-
pression and then compare the parser output. This
is the evaluation procedure that we chose to follow,
and is shown in Figure 1.

The above procedure is only able to retrieve in-
stances where the replacement of the multiword ex-
pression leads to a different parsing, a different allo-
cation of tokens to phrases. It is not able to spot in-
stances where the parser output remains unchanged
after the replacement, no matter if they are correct.
Since we are interested in measuring if replacing

637

Example A - Replacement causes no change
Before: [NP they] [VP jumped] [PP over] [NP a

bonfire] and [VP rolled] [NP a fire wheel] .
After: [NP they] [VP jumped] [PP over] [NP a

bonfire] and [VP rolled] [NP a fire wheel] .
Example B - Replacement corrects an error

Before: [NP the blades] [VP ignited] and [NP he]
[VP threw] [NP the fire] wheel up
[PP into] [NP the air] .

After: [NP the blades] [VP ignited] and [NP he]
[VP threw] [NP the fire wheel] [PRT up]
[PP into] [NP the air] .

Table 1: 2 shallow parsing examples. Multiword expres-
sion: “fire wheel”

multiword expressions with a single token improves
parsing accuracy, we are not interested in instances
that remain unchanged. We focus on instances that
changed; either they were corrected or they were
made wrong or they remain erroneous. For example,
the shallow parser output for example A in Table 1
did not change after the replacement. Example B in
Table 1 shows a sentence which was corrected after
the replacement.

Instead of manually annotating the sentences
whose parser output changed after the replacement
as corrected or not, we identify a number of change
classes under which we classify all these sentences.
In the following section, we present the change
classes. For each we thoroughly discuss whether
its form guarantees that its sentences are wrongly
parsed before the change and correctly parsed after
the change. In this case, the sentences of the corre-
sponding class should be counted as false positives.
We also discuss the opposite; if the form of each
change class guarantees that its sentences are cor-
rectly parsed before the change and wrongly parsed
after the change. In this case, the sentences of the
corresponding class should be counted as true nega-
tives. For this discussion we hypothesize that among
the possible output shallow parses for a given sen-
tence the correct one has (a) the smallest number
phrases, and (b) the smallest number of tokens not
assigned to any phrase.

3.1 Shallow parsing change classes
In this section, we present a classification of cases
where the shallow parser output of the sentence is

Figure 2: Change classes (following the notation of Bille
(2005)). Triangles denote phrases and uppercase bold let-
ters V...Z denote phrase labels. Lowercase letters k...n
denote parsing leaves. For change classes P2LMw and
L2PMw, X includes the multiword expression tokens.
For change classes P2L and L2P it does not. For change
class MwA, the multiword expression tokens are not as-
signed to the same phrase Y or Z.

different from the parser output of the same sen-
tence after replacing the multiword expression with
a single token. The secondary focus of this discus-
sion is to estimate whether the specific form of each
change class can lead to a safe conclusion about if
the parser output of the sentence under discussion:
(a) was wrong before the replacement and was then
corrected, (b) was correct before the replacement
and was then made wrong, or (c) was wrong before
the replacement and remained wrong. For this dis-
cussion, we refer to words that are not assigned to
any phase in the shallow parser output as “leaves”.

Hypothesis: We base our analysis on the hypoth-
esis that among the possible output shallow parses
for a given sentence the correct one has (a) the small-
est number phrases, and (b) the smallest number of
leaves. The theoretical intuitions behind the hypoth-
esis are: (a) parse trees with just leaves are par-
tial parse trees and hence should not be preferred
over complete parse trees. (b) when mistaken parse

638

trees are generally larger (with more phrases). We
checked the hypothesis by manually annotating 80
randomly chosen instances; 10 for each change class
that is counted as correct or wrong (see Table 2). 74
instances validated the hypothesis (92.5%).

Table 2 shows one example for each change class.
Figure 2 presents the classes as transformations be-
tween trees, following the notation of Bille (2005).
Change class P2LMw (Phrase to Leaves includ-
ing the Multiword expression) Before replacing the
multiword expression sequence with a single to-
ken, the multiword expression is assigned to some
phrase, possibly together with other words. After
the replacement, the components of that phrase are
not assigned to any phrase, but instead as leaves.
Change class P2L (Phrase to Leaves excluding
the multiword expression) Similarly to change class
P2LMw, before the replacement, some successive
tokens excluding the multiword expression itself are
assigned to some phrase. After the replacement, the
components of that phrase appear as leaves.
Change class L2PMw (Leaves to Phrase includ-
ing the Multiword expression) The changes covered
by this class are the opposite changes of change class
P2LMw. Before the replacing the multiword expres-
sion sequence with a single token, the multiword ex-
pression sequence is not assign to any phrase possi-
bly among other words. After the replacement, the
multiword expression is assigned to a phrase.
Change class L2P (Leaves to Phrase excluding
the multiword expression) Similarly to change class
L2PMw, before the replacement, one or more suc-
cessive tokens excluding the multiword expression
itself appear as leaves. After the replacement, these
tokens are assigned to a phrase.
Change class PL2P (Phrases or Leaves to Phrase)
After the replacement, the tokens of more than one
phrases or leaves are assigned to a single phrase.
Change class P2PL (Phrase to Phrases or Leaves)
In contrast to change class PL2P, after the replace-
ment, the tokens of one phrase either are assigned to
more than one phrases or appear as leaves.
Change class PN (Phrase label Name) After re-
placing the multiword expression sequence with a
single token, one phrase appears with a different
phrase label, although it retains exactly the same
component tokens.

Change class PoS (Part of Speech) After replac-
ing the multiword expression sequence with a single
token, one or more tokens appears with a different
part of speech. This class of changes comes from the
part of speech tagger, and are out of the scope of this
study. Thus, in the results section we show a size es-
timate of this class, and then we present results about
change classes, ignoring change class PoS.
Change class P2P (Phrases to less Phrases) After
replacing the multiword expression sequence with a
single token, the component tokens of more than one
successive phrasesα are assigned to a different set of
successive phrases β. However, it is always the case
that phrases α are less than phrases β (|α| < |β|).
Change class MwA (Multiword expression
Allocation) Before replacing the multiword ex-
pression sequence, the multiword expression
constituents are assigned to different phrases.

The instances of change classes where the parser
output after the replacement has more parsing leaves
or phrases than before are counted towards sen-
tences that were parsed wrongly after the replace-
ment. For these classes, change classes P2LMw,
P2L and P2PL, most probably the parser output after
the replacement is wrong.

In contrast, the instances of change classes where
a sequence of tokens is assigned to a phrase, or many
phrases are merged are counted towards sentences
that were parsed wrongly before the replacement
and correctly after the replacement. These changes,
that are described by classes L2PMw, L2P, PL2P
and P2P, most probably describe improvements in
shallow parsing. The instances of change class MwA
are counted as correct after the replacement because
by definition all tokens of a multiword expression
are expected to be assigned to the same phrase.

The instances of change class PN can be either
correct or wrong after the replacement. For this rea-
son, we present our results as ranges (see Table 4).
The minimum value is computed when the instances
of class PN are counted as wrong after the replace-
ment. In contrast, the maximum value is computed
when the instances of this class are counted as cor-
rect after the replacement.

3.2 Shallow parsing complex change classes
During the inspection of instances where the shal-
low parser output before the replacement is dif-

639

P2
LM

w B [NP the(DT) action(NN) officer(NN)] [NP logistic(JJ) course(NN)] [VP is(VBZ) designed(VBN)]
7

[VP to(TO) educate(VB)] and(CC) [VP train(VB)] [NP military(JJ) personnel(NNS)] ...
A the(DT) action officer(NN) [NP logistic(JJ) course(NN)] [VP is(VBZ) designed(VBN)]

[VP to(TO) educate(VB)] and(CC) [VP train(VB)] [NP military(JJ) personnel(NNS)] ...

P2
L B ... [NP the(DT) action(NN) officer(NN)] [PP in(IN)] [NP armenia(NN)] [VP signed(VBN)] ...

7A ... [NP the(DT) action officer(NN)] in(IN) [NP armenia(NN)] [VP signed(VBN)] ...

L2
PM

w B “(“) affirmative(JJ) action(NN) officer(NN) “(“) [NP aao(NN)] [VP refers(VBZ)] [PP to(TO)]

X
[NP the(DT) regional(JJ) affirmative(JJ) action(NN) officer(NN)] or(CC) [NP director(NN)] ...

A “(“) [NP affirmative(JJ) action officer(NN)] “(“) [NP aao(NN)] [VP refers(VBZ)] [PP to(TO)]
[NP the(DT) regional(JJ) affirmative(JJ) action officer(NN)] or(CC) [NP director(NN)] ...

L2
P B [NP the(DT) action(NN) officer(NN)] usually(RB) [VP delivers(VBZ)] ...

XA [NP the(DT) action officer(NN)] [ADVP usually(RB)] [VP delivers(VBZ)] ...

PL
2P

B ... [VP to(TO) immediately(RB) report(VB)] [NP the(DT) incident(NN)] [PP to(TO)] [NP the(DT)

X
equal(JJ) opportunity(NN)] and(CC) [NP affirmative(JJ) action(NN) officer(NN)] .(.)

A ... [VP to(TO) immediately(RB) report(VB)] [NP the(DT) incident(NN)] [PP to(TO)] [NP the(DT)
equal(JJ) opportunity(NN) and(CC) affirmative(JJ) action officer(NN)] .(.)

P2
PL B ... [NP action(NN) officer(NN)] [VP shall(MD) prepare(VB) and(CC) transmit(VB)] ...

7A ... [NP action officer(NN)] [VP shall(MD) prepare(VB)] and(CC) [VP transmit(VB)] ...

PN

B ... [NP an(DT) action(NN) officer(NN)] [SBAR for(IN)] [NP communications(NNS)] ...
?A ... [NP an(DT) action officer(NN)] [PP for(IN)] [NP communications(NNS)] ...

Po
S B ... [NP security(NN) officer(NN)] or(CC) “(“) [NP youth(JJ) action(NN) officer(NN)] .(.) “(“)

?A ... [NP security(NN) officer(NN)] or(CC) “(“) [NP youth(NN) action officer(NN)] .(.) “(“)

P2
P

B ... ,(,) [PP as(IN)] [NP a(DT) past(JJ) action(NN) officer(NN)] and(CC) command(NN) and(CC)

X
control(NN) and(CC) [NP intelligence(NN) communications(NNS) inspector(NN)] ...

A ... ,(,) [PP as(IN)] [NP a(DT) past(JJ) action officer(NN) and(CC) command(NN) and(CC)
(control(NN)] and(CC) [NP intelligence(NN) communications(NNS) inspector(NN)] ...

M
w

A B the(DT) campus(NN) affirmative(JJ) action(NN) [NP officer(NN)] [VP serves(VBZ)] ...
XA [NP the(DT) campus(NN) affirmative(JJ) action officer(NN)] [VP serves(VBZ)]...

Table 2: Examples for change classes. Multiword expression: “action officer”. Parts of speech appear within paren-
theses. “B” stands for “before” and “A” for “after” (multiword expression replacement). Xor 7 denote change classes
that count positively or negatively towards improving shallow parsing. ? denotes classes that are treated specially.

ferent from the shallow parser output after the re-
placement, we came across a number of instances
that were classified in more than one class of the
previous subsection. In other words, two or more
classes of change happened. For example, in a num-
ber of instances, before the replacement, the multi-
word expression constituents are assigned to differ-
ent phrases (change class MwA). After the replace-
ment, the tokens of more than one phrases are as-
signed to a single phrase (change class PL2P). These
instances consist new complex change classes and
are named as the sum of names of the participating
classes. The instances of the example above consist
the complex change class PL2P+MwA.

4 Target multiword expressions and
corpora collection

We created our set of target multiword expres-
sions using WordNet 3.0 (Miller, 1995). Out of its
52, 217 multiword expressions we randomly chose
120. Keeping the ones that consist of two tokens
resulted in the 118 expressions of Table 3. Manu-
ally inspecting these multiword expressions proved
that they are all compound nominals, proper names
or adjective-noun constructions. Each multiword
expression was manually tagged as compositional
or non-compositional, following the procedure de-
scribed in Korkontzelos and Manandhar (2009). Ta-
ble 3 shows the chosen multiword expressions to-
gether with information about their compositionality
and the parts of speech of their components.

640

Compositional Multiword expressions (Noun - Noun sequences)
action officer (3119) bile duct (21649) cartridge brass (479) field mushroom (789) fire wheel (480)
key word (3131) king snake (2002) labor camp (3275) life form (5301) oyster bed (1728)
pack rat (3443) palm reading (4428) paper chase (1115) paper gold (1297) paper tiger (1694)
picture palace (2231) pill pusher (924) pine knot (1026) potato bean (265) powder monkey (1438)
prison guard (4801) rat race (2556) road agent (1281) sea lion (9113) spin doctor (1267)
tea table (62) telephone service (9771) upland cotton (3235) vegetable sponge (806) winter sweet (460)

Non-Compositional Multiword expressions (Noun - Noun sequences)
agony aunt (751) air conditioner (24202) band aid (773) beach towel (1937) car battery (3726)
checker board (1280) corn whiskey (1862) corner kick (2882) cream sauce (1569) fire brigade (5005)
fish finger (1423) flight simulator (5955) honey cake (843) jazz band (6845) jet plane (1466)
laser beam (16716) lemon tree (3805) lip service (3388) love letter (3265) luggage van (964)
memory device (4230) monkey puzzle (1780) motor pool (3184) power cord (5553) prince Albert (2019)
sausage pizza (598) savoy cabbage (1320) surface fire (2607) torrey tree (10) touch screen (9654)
water snake (2649) water tank (5158) wood aster (456)

Compositional Multiword expressions (Adjective - Noun sequences)
basic color (2453) cardiac muscle (6472) closed chain (1422) common iguana (668) cubic meter (4746)
eastern pipistrel (128) graphic designer (8228) hard candy (2357) ill health (2055) kinetic theory (2934)
male parent (1729) medical report (3178) musical harmony (1109) mythical monster (770) red fox (10587)
relational adjective (279) parking brake (7199) petit juror (991) taxonomic category (1277) thick skin (1338)
toxic waste (7220) universal donor (1454) parenthesis-free notation (113)

Non-Compositional Multiword expressions (Adjective - Noun sequences)
black maria (930) dead end (5256) dutch oven (4582) golden trumpet (607) green light (5960)
high jump (4455) holding pattern (3622) joint chiefs (2865) living rock (985) magnetic head (2457)
missing link (5314) personal equation (873) personal magnetism (2869) petit four (1506) pink lady (1707)
pink shower (351) poor devil (1594) public eye (3231) quick time (2323) red devil (2043)
red dwarf (6526) red tape (2024) round window (1380) silent butler (332) small beer (2302)
small voice (4313) stocking stuffer (7486) sweet bay (1367) teddy boy (2413) think tank (4586)

Table 3: 118 multiword expressions randomly chosen from WordNet. The size of the respective corpus in sentences
appears within parentheses.

For each multiword expression we created a dif-
ferent corpus. Each consists of webtext snippets of
length 15 to 200 tokens in which the multiword ex-
pression appears. Snippets were collected follow-
ing Korkontzelos and Manandhar (2009). Given a
multiword expression, a set of queries is created:
All synonyms of the multiword expression extracted
from WordNet are collected2. The multiword ex-
pression is paired with each synonym to create a set
of queries. For each query, snippets are collected
by parsing the web-pages returned by Yahoo!. The
union of all snippets produces the multiword expres-
sion corpus.

In Table 3, the number of collected corpus sen-
tences for each multiword expression are shown
within parentheses. GENIA tagger (Tsuruoka et al.,
2005) was used as part of speech tagger. SNoW-
based Shallow Parser (Munoz et al., 1999) was used
for shallow parsing.

2e.g. for “red carpet”, corpora are collected for “red carpet”
and “carpet”. The synonyms of “red carpet” are “rug”, “carpet”
and “carpeting”.

5 Experimental results and discussion

The corpora collecting procedure of Section 4 re-
sulted in a corpus of 376, 007 sentences, each one
containing one or more multiword expressions. In
85, 527 sentences (22.75%), the shallow parser out-
put before the replacement is different than the shal-
low parser output after the replacement. 7.20% of
these change instances are due to one or more parts
of speech changes, and are classified to change class
PoS. In other words, in 7.20% of cases where there
is a difference between the shallow parses before
and after replacing the multiword expression tokens
there is one or more tokens that were assigned a dif-
ferent part of speech. However, excluding parts of
speech from the comparison, there is no other dif-
ference between the two parses.

The focus of this study is to quantify the effect
of unifying multiword expressions in shallow pars-
ing. Part of speech tagging is a component of our ap-
proach and parts of speech are not necessarily parts
of the parser output. For this reason, we chose to
ignore part of speech changes, the changes of class
PoS. Below, we discuss results for all other classes.

641

Multiword Shallow Parsing
expressions improvement

class PS sentences min. max.
On average - 376,007 7.47% 9.49%
Comp. N N 93,166 5.54% 7.19%
Non-Comp. N N 127,875 3.66% 4.44%
Comp. J N 68,707 7.34% 9.21%
Non-Comp. J N 86,259 15.32% 19.67%
- N N 221,041 4.45% 5.60%

J N 154,966 11.78% 15.03%
Comp. - 161,873 6.30% 8.05%
Non-Comp. - 214,134 8.36% 10.57%

Table 4: Summary of results. PS: parts of speech, Comp:
compositional, N: noun, J: adjective, min.: minimum,
max.: maximum.

Table 4 shows a summary of our results. The first
two columns describe classes of multiword expres-
sion with respect to compositionality and the parts
of speech of the component words. The first line ac-
counts for the average of all multiword expressions,
the second one for compositional multiword expres-
sions made of nouns, etc. The third column shows
the number of corpus sentences of each class.

For each one of the classes of Table 4, the fourth
and fifth columns show the minimum and maxi-
mum improvement in shallow parsing, respectively,
caused by unifying multiword expression tokens.
Let ‖X‖ be the function that returns the number of
instances assigned to change class X . With respect
to the discussion of Subsection 3.1 about how the in-
stances of each class should be counted towards the
final results, the minimum and maximum improve-
ments in shallow parsing are:

min = −‖P2LMw‖−‖P2L‖+‖L2PMw‖+‖L2P‖+
+‖PL2P‖−‖P2PL‖+‖PL2P+MwA‖+
+‖P2P‖+‖P2P+MwA‖−‖PN‖ (1)

max = −‖P2LMw‖−‖P2L‖+‖L2PMw‖+‖L2P‖+
+‖PL2P‖−‖P2PL‖+‖PL2P+MwA‖+
+‖P2P‖+‖P2P+MwA‖+‖PN‖ (2)

On average of all multiword expressions, unify-
ing multiword expression tokens contributes from
7.47% to 9.49% in shallow parsing accuracy. It
should be noted that this improvement is reported
on sentences which contain at least one known mul-
tiword expression. To project this improvement on
any general text, one needs to know the percentage
of sentences that contain known multiword expres-

Figure 3: Average change percentages per change class.

sions. Then the projected improvement can be com-
puted by multiplying these two percentages.

Table 4 shows that the increase in shallow pars-
ing accuracy is lower for expressions that consist of
nouns than for those that consist of an adjective and
a noun. Moreover, the improvement is higher for
non-compositional expressions than compositional
ones. This is expected, due to the idiosyncratic na-
ture of non-compositional multiword expressions.
The highest improvement, 15.32% to 19.67%, oc-
curs for non-compositional multiword expressions
that consist of an adjective followed by a noun.

Figure 3 shows the percentage of each class over
the sum of sentences whose parse before unify-
ing multiword expression tokens is different for the
parse after the replacement. The most common
change class is PL2P. It contains sentences in the
shallow parser output of which many phrases or
leaves were all assigned to a single phrase. 34.03%
of the changes are classified in this class. The least
common classes are change classes P2L, L2PMw
and L2P. Each of these accounts for less than 3%
of the overall changes.

6 Related Work

There have been proposed several ways to clas-
sify multiword expressions according to various
properties such as compositionality and institution-
alisation3 (Moon, 1998; Sag et al., 2002; Bald-
win, 2006). There is a large variety of meth-
ods in the literature that address recognising mul-
tiword expressions or some subcategory. Mc-
Carthy (2006) divides multiword expression detect-

3Institutionalisation is the degree that a multiword expres-
sion is accepted as lexical item through consistent use over time.

642

ing methods into statistical (e.g. pointwise mutual
information (PMI)), translation-based, dictionary-
based, substitution-based, and distributional. Sta-
tistical methods score multiword expression candi-
dates based on co-occurrence counts (Manning and
Schutze, 1999; Dunning, 1993; Lin, 1999; Frantzi et
al., 2000). Translation-based methods usually take
advantage of alignment to discover potential multi-
word expressions (Venkatapathy and Joshi, 2005).

Other methods use dictionaries to reveal semantic
relationships between the components of potential
multiword expressions and their context (Baldwin
et al., 2003; Hashimoto et al., 2006). Substitution-
based methods decide for multiword expressions
by substituting their components with other similar
words and measuring their frequency of occurrence
(Lin, 1999; Fazly and Stevenson, 2006). These tech-
niques can be enriched with selectional preference
information (Van de Cruys and Moirón, 2007; Katz
and Giesbrecht, 2006). Fazly and Stevenson (2007)
propose measures for institutionalisation, syntactic
fixedness and compositionality based on the selec-
tional preferences of verbs. There are several studies
relevant to detecting compositionality of noun-noun,
verb-particle and light verb constructions and verb-
noun pairs (e.g. Katz and Giesbrecht (2006)).

To the best of our knowledge there are no ap-
proaches integrating multiword expression knowl-
edge in deep or shallow parsing. However, there
are several attempts to integrate other forms of lex-
ical semantics into parsing. Bikel (2000) merged
the Brown portion of the Penn Treebank with Sem-
Cor, and used it to evaluate a generative bilexical
model for joint word sense disambiguation and pars-
ing. Similarly, Agirre et al. (Agirre et al., 2008)
integrated semantic information in the form of se-
mantic classes and observed significant improve-
ment in parsing and PP attachment tasks. Xiong et
al. (2005) integrated first-sense and hypernym fea-
tures in a generative parse model applied to the Chi-
nese Penn Treebank and achieved significant im-
provement over their baseline model. Fujita et
al. (2007) extended this work by implementing a
discriminative parse selection model, incorporating
word sense information and achieved great improve-
ments as well. Examples of integrating selectional
preference information into parsing are Dowding et
al. (1994) and Hektoen (1997).

7 Conlusion and future work

In this paper, we presented an experimental study
attempting to estimate the contribution of unify-
ing multiword expression components into shallow
parsing. The evaluation is done based on 118 multi-
word expressions extracted from WordNet 3.0. They
consist of two successive components and are in
particular, compound nominals, proper names or
adjective-noun constructions.

Instead of using pre-annotated text, we collected
sentences that contain the above multiword expres-
sions from the web. We applied shallow parsing be-
fore and after unifying multiword expression tokens
and compared the outputs. We presented a detailed
classification of changes in the shallow parser out-
put to aid human annotation during the procedure of
deciding if a parser output is correct or wrong.

We presented experimental results about change
classes and about the overall improvement of uni-
fying multiword expression tokens with respect to
compositionality and the parts of speech of their
components. We conclude that unifying the tokens
of known multiwords expressions leads to an in-
crease of between 7.5% and 9.5% in accuracy of
shallow parsing of sentences that contain these mul-
tiword expressions. Increase percentages are higher
on adjective-noun constructions (12% to 15%); and
even higher on non-compositional adjective-noun
constructions (15.5% to 19.5%).

Future work will focus in conducting similar ex-
periments for multiword expressions longer than
two words. One would expect that due to their
size, a wrong interpretation of their structure would
affect the shallow parser output more than it does
for multiword expressions consisting of two words.
Thus, unifying multiword expressions longer than
two words would potentially contribute more to
shallow parsing accuracy.

Furthermore, the evaluation results presented in
this paper could be strengthened by adding man-
ual multiword expression annotation to some tree-
bank. This would provide a way to avoid the change
class analysis presented in Subsection 3.1 and com-
pute statistics more accurately. Finally, the results of
this paper suggest that implementing a parser able
to recognise multiword expressions would be very
helpful towards high accuracy parsing.

643

References
E. Agirre, T. Baldwin, and D. Martinez. 2008. Improv-

ing parsing and PP attachment performance with sense
information. In Proceedings of ACL, pages 317–325,
USA. ACL.

T. Baldwin, C. Bannard, T. Tanaka, and D. Widdows.
2003. An empirical model of multiword expression
decomposability. In proceedings of the ACL workshop
on MWEs, pages 89–96, USA. ACL.

T. Baldwin. 2006. Compositionality and multiword ex-
pressions: Six of one, half a dozen of the other? In
proceedings of the ACL workshop on MWEs, Aus-
tralia. ACL.

D. Bikel. 2000. A statistical model for parsing and word-
sense disambiguation. In proceedings of the 2000
Joint SIGDAT conference: EMNLP/VLC, pages 155–
163, USA. ACL.

P. Bille. 2005. A survey on tree edit distance and re-
lated problems. Theoretical Computer Science, 337(1-
3):217–239.

J. Dowding, R. Moore, F. Andryt, and D. Moran.
1994. Interleaving syntax and semantics in an efficient
bottom-up parser. In proceedings of ACL, pages 110–
116, USA. ACL.

T. Dunning. 1993. Accurate methods for the statistics of
surprise and coincidence. Computational Linguistics,
19(1):61–74.

A. Fazly and S. Stevenson. 2006. Automatically con-
structing a lexicon of verb phrase idiomatic combina-
tions. In Proceedings of EACL, pages 337–344, Italy.

A. Fazly and S. Stevenson. 2007. Distinguishing sub-
types of multiword expressions using linguistically-
motivated statistical measures. In proceedings of the
ACL workshop on MWEs, pages 9–16, Czech Repub-
lic. ACL.

K. Frantzi, S. Ananiadou, and H. Mima. 2000. Auto-
matic recognition of multi-word terms: the c-value/nc-
value method. International Journal on Digital Li-
braries, 3(2):115–130.

S. Fujita, F. Bond, S. Oepen, and T. Tanaka. 2007. Ex-
ploiting semantic information for hpsg parse selection.
In proceedings of DeepLP, pages 25–32, USA. ACL.

C. Hashimoto, S. Sato, and T. Utsuro. 2006. Detecting
japanese idioms with a linguistically rich dictionary.
Language Resources and Evaluation, 40(3):243–252.

E. Hektoen. 1997. Probabilistic parse selection based
on semantic cooccurrences. In proceedings of IWPT,
pages 113–122, USA.

G. Katz and E. Giesbrecht. 2006. Automatic identi-
fication of non-compositional multi-word expressions
using latent semantic analysis. In proceedings of the
ACL workshop on MWEs, pages 12–19, Australia.
ACL.

S. Kim and T. Baldwin. 2008. Standardised evaluation
of english noun compound interpretation. In proceed-
ings of the LREC workshop on MWEs, pages 39–42,
Morocco.

I. Korkontzelos and S. Manandhar. 2009. Detecting
compositionality in multi-word expressions. In pro-
ceedings of ACL-IJCNLP, Singapore.

E. Laporte and S. Voyatzi. 2008. An Electronic Dictio-
nary of French Multiword Adverbs. In proceedings of
the LREC workshop on MWEs, pages 31–34, Marocco.

D. Lin. 1999. Automatic identification of non-
compositional phrases. In proceedings of ACL, pages
317–324, USA. ACL.

C. Manning and H. Schutze, 1999. Foundations of Sta-
tistical NLP, Collocations, chapter 5. MIT Press.

D. McCarthy. 2006. Automatic methods to detect
the compositionality of MWEs. presentation slides.
url: www.sunum.org/myfiles/B2/McCarthyCollocId-
ioms06.ppt last accessed: 28/11/2009.

G. Miller. 1995. Wordnet: a lexical database for english.
Communications of the ACM, 38(11):39–41.

R. Moon. 1998. Fixed Expressions and Idioms in En-
glish. A Corpus-based Approach. Oxford: Clarendon
Press.

M. Munoz, V. Punyakanok, D. Roth, and D. Zimak.
1999. A learning approach to shallow parsing. In pro-
ceedings of EMNLP/VLC, pages 168–178, USA.

J. Nicholson and T. Baldwin. 2008. Interpreting com-
pound nominalisations. In proceedings of the LREC
workshop on MWEs, pages 43–45, Morocco.

G. Nunberg, T. Wasow, and I. Sag. 1994. Idioms. Lan-
guage, 70(3):491–539.

I. Sag, T. Baldwin, F. Bond, A. Copestake, and
D. Flickinger. 2002. Multiword expressions: A pain
in the neck for nlp. In proceedings of CICLing, pages
1–15, Mexico.

Y. Tsuruoka, Y. Tateishi, J. Kim, T. Ohta, J. McNaught,
S. Ananiadou, and J. Tsujii. 2005. Developing a ro-
bust part-of-speech tagger for biomedical text. Ad-
vances in Informatics, pages 382–392.

T. Van de Cruys and B. Moirón. 2007. Semantics-based
multiword expression extraction. In proceedings of the
ACL workshop on MWEs, pages 25–32, Czech Repub-
lic. ACL.

S. Venkatapathy and A. Joshi. 2005. Measuring the rela-
tive compositionality of verb-noun (V-N) collocations
by integrating features. In proceedings of HLT, pages
899–906, USA. ACL.

D. Xiong, S. Li, Q. Liu, S. Lin, and Y. Qian. 2005. Pars-
ing the penn chinese treebank with semantic knowl-
edge. In proceedings of IJCNLP, pages 70–81, Korea.

644

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 645–648,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

A Simple Approach for HPSG Supertagging Using Dependency Information
Yao-zhong Zhang † Takuya Matsuzaki †

† Department of Computer Science, University of Tokyo
‡ School of Computer Science, University of Manchester

§National Centre for Text Mining, UK
{yaozhong.zhang, matuzaki, tsujii}@is.s.u-tokyo.ac.jp

Jun’ichi Tsujii†‡§

Abstract

In a supertagging task, sequence labeling
models are commonly used. But their lim-
ited ability to model long-distance informa-
tion presents a bottleneck to make further im-
provements. In this paper, we modeled this
long-distance information in dependency for-
malism and integrated it into the process of
HPSG supertagging. The experiments showed
that the dependency information is very in-
formative for supertag disambiguation. We
also evaluated the improved supertagger in the
HPSG parser.

1 Introduction

Supertagging is a widely used speed-up technique
for lexicalized grammar parsing. It was first
proposed for lexicalized tree adjoining grammar
(LTAG) (Bangalore and Joshi, 1999), then extended
to combinatory categorial grammar (CCG) (Clark,
2002) and head-driven phrase structure grammar
(HPSG) (Ninomiya et al., 2006). For deep parsing,
supertagging is an important preprocessor: an ac-
curate supertagger greatly reduces search space of
a parser. Not limited to parsing, supertags can be
used for NP chunking (Shen and Joshi, 2003), se-
mantic role labeling (Chen and Rambow, 2003) and
machine translation (Birch et al., 2007; Hassan et
al., 2007) to explore rich syntactic information con-
tained in them.
Generally speaking, supertags are lexical tem-

plates extracted from a grammar. These templates
encode possible syntactic behavior of a word. Al-
though the number of supertags is far larger than the
45 POS tags defined in Penn Treebank, sequence la-
beling techniques are still effective for supertagging.
Previous research (Clark, 2002) showed that a POS
sequence is very informative for supertagging, and

some extent of local syntactic information can be
captured by the context of surrounding words and
POS tags. However, since the context window
length is limited for the computational cost reasons,
there are still long-range dependencies which are not
easily captured in sequential models (Zhang et al.,
2009). In practice, the multi-tagging technique pro-
posed by Clark (2002) assigned more than one su-
pertag to each word and let the ambiguous supertags
be selected by the parser. As for other NLP applica-
tions which use supertags, resolving more supertag
ambiguities in supertagging stage is preferred. With
this consideration, we focus on supertagging and
aim to make it as accurate as possible.
In this paper, we incorporated long-distance in-

formation into supertagging. First, we used depen-
dency parser formalism to model long-distance re-
lationships between the input words, which is hard
to model in sequence labeling models. Then, we
combined the dependency information with local
context in a simple point-wise model. The experi-
ments showed that dependency information is very
informative for supertagging and we got a compet-
itive 93.70% on supertagging accuracy (fed golden
POS). In addition, we also evaluated the improved
supertagger in the HPSG parser.

2 HPSG Supertagging and Dependency

2.1 HPSG Supertags
HPSG (Pollard and Sag, 1994) is a lexicalist gram-
mar framework. In HPSG, a large number of
lexical entries is used to describe word-specific
syntactic characteristics, while only a small num-
ber of schemas is used to explain general con-
struction rules. These lexical entries are called
“HPSG supertags”. For example, one possi-
ble supertag for the word “like” is written like
“[NP.nom<V.bse>NP.acc] lxm”, which indicates

645

the head syntactic category of “like” is verb in base
form. It has a NP subject and a NP complement.
With such fine-grained grammatical type distinc-
tions, the number of supertags is much larger than
the number of tags used in other sequence labeling
tasks. The HPSG grammar used in our experiment
includes 2,308 supertags. This increases computa-
tional cost of sequence labeling models.

2.2 Why Use Dependency in Supertagging
By analyzing the internal structure of the supertags,
we found that subject and complements are two im-
portant syntactic properties for each supertag. If
we could predict subject and complements of the
word well, supertagging would be an easier job to
do. However, current widely used sequence labeling
models have the limited ability to catch these long-
distance syntactic relations. In supertagging stage,
tree structures are still not constructed. Dependency
formalism is an alternative way to describe these two
syntactic properties. Based on this observation, we
think dependency information could assist supertag
prediction.

Figure 1: Model structure of incorporating dependency
information into the supertagging stage. Dotted arrows
describe the augmented long distance dependency infor-
mation provided for supertag prediction.

3 Our Method

3.1 Modeling Dependency for Supertags
First of all, we need to characterize the dependency
between words for supertagging. Since exact de-
pendency locations are not encoded in supertags, to
make use of state-of-the-art dependency parser, we
recover HPSG supertag dependencies with the aid
of HPSG treebanks. The dependencies are extracted
from each branch in the HPSG trees by regarding
the non-head daughter as the modifier of the head-
daughter. HPSG schemas are expressed in depen-
dency arcs.

To model the dependency, we follow mainstream
dependency parsing formalism. Two representa-
tive methods for dependency parsing are transition-
based model like MaltParser (Nivre, 2003) and
graph-based model like MSTParser1 (McDonald et
al., 2005). Previous research (Nivre and McDon-
ald, 2008) showed that MSTParser is more accurate
than MaltParser for long dependencies. Since our
motivation is to capture long-distance dependency
as a complement for local supertagging models, we
use the projective MSTParser formalism to model
dependencies.

{(pi ⇐ pj)&sj |(j, i) ∈ E}
MOD-IN {(pi ⇐ wj)&sj|(j, i) ∈ E}

{(wi ⇐ pj)&sj|(j, i) ∈ E}
{(wi ⇐ wj)&sj |(j, i) ∈ E}
{(pi ⇒ pj)&si|(i, j) ∈ E}

MOD-OUT {(pi ⇒ wj)&si|(i, j) ∈ E}
{(wi ⇒ pj)&si|(i, j) ∈ E}
{(wi ⇒ wj)&si|(i, j) ∈ E}

Table 1: Non-local feature templates used for super-
tagging. Here, p, w and s represent POS, word
and schema respectively. Direction (Left/Right) from
MODIN/MODOUTword to the current word is also con-
sidered in the feature templates.

3.2 Integrating Dependency into Supertagging

There are several ways to combine long-distance
dependency into supertagging. Integrating depen-
dency information into training process would be
more intuitive. Here, we use feature-based integra-
tion. The base model is a point-wise averaged per-
ceptron (PW-AP) which has been shown very ef-
fective (Zhang et al., 2009). The improved model
structure is described in Figure 1. The long-distance
information is formalized as first-order dependency.
For the word being predicted, we extract its modi-
fiers (MODIN) and its head (MODOUT) (Table 1)
based on first-order dependency arcs. Then MODIN
and MODOUT relations are combined as features
with local context for supertag prediction. To com-
pare with previous work, the basic local context fea-
tures are the same as in Matsuzaki et al. (2007).

1http://sourceforge.net/projects/mstparser/

646

4 Experiments
We evaluated dependency-informed supertagger
(PW-DEP) both by supertag accuracy 2 and by a
HPSG parser. The experiments were conducted on
WSJ-HPSG treebank (Miyao, 2006). Sections 02-
21 were used to train the dependency parser, the
dependency-informed supertagger and the HPSG
parser. Section 23 was used as the testing set. The
evaluation metric for HPSG parser is the accuracy
of predicate-argument relations in the parser’s out-
put, as in previous work (Sagae et al., 2007).

Model Dep Acc%† Acc%
PW-AP / 91.14
PW-DEP 90.98 92.18
PW-AP (gold POS) / 92.48
PW-DEP (gold POS) 92.05 93.70

100 97.43

Table 2: Supertagging accuracy on section 23. (†)
Dependencies are given by MSTParser evaluated with
labeled accuracy. PW-AP is the baseline point-wise
averaged perceptron model. PW-DEP is point-wise
dependency-informed model. The automatically tagged
POS tags were given by a maximum entropy tagger with
97.39% accuracy.

4.1 Results on Supertagging
We first evaluated the upper-bound of dependency-
informed supertagging model, given gold standard
first-order dependencies. As shown in Table 2,
with such long-distance information supertagging
accuracy can reach 97.43%. Comparing to point-
wise model (PW-AP) which only used local con-
text (92.48%), this absolute 4.95% gain indicated
that dependency information is really informative
for supertagging. When automatically predicted de-
pendency relations were given, there still were ab-
solute 1.04% (auto POS) and 1.22% (gold POS) im-
provements from baseline PW-AP model.
We also compared supertagging results with pre-

vious works (reported on section 22). Here we
mainly compared the dependency-informed point-
wise models with perceptron-based Bayes point ma-
chine (BPM) plus CFG-filter (Zhang et al., 2009).
To the best of our knowledge, these are the state-of-
the-art results on the same dataset with gold POS

2“UNK” supertags are ignored in evaluation as previous.

Figure 2: HPSG Parser F-score on section 23, given au-
tomatically tagged POS.

tags. CFG-filtering can be considered as an al-
ternative way of incorporating long-distance con-
straints on supertagging results. Although our base-
line system was slightly behind (PW-AP: 92.16%
vs. BPM:92.53%), the final accuracies of grammati-
cally constrained models were very close (PW-DEP:
93.53% vs. BPM-CFG: 93.60%); They were not sta-
tistically significantly different (P-value is 0.26). As
the result of oracle PW-DEP indicated, supertagging
accuracy can be further improved with better depen-
dency modeling (e.g., with a semi-supervised de-
pendency parser), which makes it more extensible
and attractive than using CFG-filter after the super-
tagging process.

4.2 HPSG parsing results
We also evaluated the dependency-informed su-
pertagger in a HPSG parser. Considering the effi-
ciency, we use the HPSG parser3 described by Ma-
tsuzaki et al. (2007).
In practice, several supertag candidates are re-

served for each word to avoid parsing failure. To
evaluate the quality of the two supertaggers, we re-
stricted the number of each word’s supertag candi-
dates fed to the HPSG parser. As shown in Figure 2,
for the case when only one supertag was predicted
for each word, F-score of the HPSG parser using
dependency-informed supertagger is 5.06% higher
than the parser using the baseline supertagger mod-
ule. As the candidate number increased, the gap nar-
rowed: when all candidates were given, the gains
gradually came down to 0.2%. This indicated that

3Enju v2.3.1, http://www-tsujii.is.s.u-tokyo.ac.jp/enju.

647

improved supertagger can optimize the search space
of the deep parser, which may contribute to more ac-
curate and fast deep parsing. From another aspect,
supertagging can be viewed as an interface to com-
bine different types of parsers.
As for the overall parsing time, we didn’t opti-

mize for speed in current setting. The parsing time4
saved by using the improved supertagger (around
6.0 ms/sen, 21.5% time reduction) can not compen-
sate for the extra cost of MSTParser (around 73.8
ms/sen) now. But there is much room to improve the
final speed (e.g., optimizing the dependency parser
for speed or reusing acquired dependencies for ef-
fective pruning). In addition, small beam-size can be
“safely” used with improved supertagger for speed.
Using shallow dependencies in deep HPSG pars-

ing has been previously explored by Sagae et al.
(2007), who used dependency constraints in schema
application stage to guide HPSG tree construction
(F-score was improved from 87.2% to 87.9% with
a single shift-reduce dependency parser). Since the
baseline parser is different, we didn’t make a direct
comparison here. However, it would be interesting
to compare these two different ways of incorporat-
ing the dependency parser into HPSG parsing. We
left it as further work.

5 Conclusions

In this paper, focusing on improving the accu-
racy of supertagging, we proposed a simple but
effective way to incorporate long-distance depen-
dency relations into supertagging. The experiments
mainly showed that these long-distance dependen-
cies, which are not easy to model in traditional se-
quence labeling models, are very informative for su-
pertag predictions. Although these were preliminary
results, the method shows its potential strength for
related applications. Not limited to HPSG, it can be
extended to other lexicalized grammar supertaggers.

Acknowledgments

Thanks to the anonymous reviewers for valuable
comments. We also thank Goran Topic for his self-
less help. The first author was supported by The
University of Tokyo Fellowship (UT-Fellowship).

4Tested on section 23 (2291 sentences) using an AMD
Opteron 2.4GHz server, given all supertag candidates.

This work was partially supported by Grant-in-Aid
for Specially Promoted Research (MEXT, Japan).

References
Srinivas Bangalore and Aravind K. Joshi. 1999. Super-
tagging: An approach to almost parsing. Computa-
tional Linguistics, 25:237–265.

Alexandra Birch, Miles Osborne, and Philipp Koehn.
2007. CCG supertags in factored statistical machine
translation. In Proceedings of the Second Workshop
on Statistical Machine Translation.

John Chen and Owen Rambow. 2003. Use of deep lin-
guistic features for the recognition and labeling of se-
mantic arguments. In Proceedings of EMNLP-2003.

Stephen Clark. 2002. Supertagging for combinatory cat-
egorial grammar. In Proceedings of the 6th Interna-
tional Workshop on Tree Adjoining Grammars and Re-
lated Frameworks (TAG+ 6), pages 19–24.

Hany Hassan, Mary Hearne, and Andy Way. 2007. Su-
pertagged phrase-based statistical machine translation.
In Proceedings of ACL 2007, pages 288–295.

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii.
2007. Efficient hpsg parsing with supertagging and
cfg-filtering. In Proceedings of IJCAI-07.

Ryan McDonald, Koby Crammer, and Fernando Pereira.
2005. Online large-margin training of dependency
parsers. In Proceedings of ACL-05.

Yusuke Miyao. 2006. From Linguistic Theory to Syn-
tactic Analysis: Corpus-Oriented Grammar Develop-
ment and Feature Forest Model. Ph.D. Dissertation,
The University of Tokyo.

Takashi Ninomiya, Yoshimasa Tsuruoka, Takuya Matsu-
zaki, and Yusuke Miyao. 2006. Extremely lexicalized
models for accurate and fast hpsg parsing. In Proceed-
ings of EMNLP-2006, pages 155–163.

Joakim Nivre and Ryan McDonald. 2008. Integrating
graph-based and transition-based dependency parsers.
In Proceedings of ACL-08: HLT.

J. Nivre. 2003. An efficient algorithm for projective de-
pendency parsing. In Proceedings of IWPT-03, pages
149–160. Citeseer.

Carl Pollard and Ivan A. Sag. 1994. Head-driven Phrase
Structure Grammar. University of Chicago / CSLI.

Kenji Sagae, Yusuke Miyao, and Jun’ichi Tsujii. 2007.
Hpsg parsing with shallow dependency constraints. In
Proceedings of ACL-07.

Libin Shen and Aravind K. Joshi. 2003. A snow based
supertagger with application to np chunking. In Pro-
ceedings of ACL 2003, pages 505–512.

Yao-zhong Zhang, Takuya Matsuzaki, and Jun’ichi Tsu-
jii. 2009. Hpsg supertagging: A sequence labeling
view. In Proceedings of IWPT-09, Paris, France.

648

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 649–652,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Ensemble Models for Dependency Parsing:
Cheap and Good?

Mihai Surdeanu and Christopher D. Manning
Computer Science Department

Stanford University, Stanford, CA 94305
{mihais,manning}@stanford.edu

Abstract
Previous work on dependency parsing used
various kinds of combination models but a
systematic analysis and comparison of these
approaches is lacking. In this paper we imple-
mented such a study for English dependency
parsing and find several non-obvious facts: (a)
the diversity of base parsers is more important
than complex models for learning (e.g., stack-
ing, supervised meta-classification), (b) ap-
proximate, linear-time re-parsing algorithms
guarantee well-formed dependency trees with-
out significant performance loss, and (c) the
simplest scoring model for re-parsing (un-
weighted voting) performs essentially as well
as other more complex models. This study
proves that fast and accurate ensemble parsers
can be built with minimal effort.

1 Introduction
Several ensemble models have been proposed for
the parsing of syntactic dependencies. These ap-
proaches can generally be classified in two cate-
gories: models that integrate base parsers at learn-
ing time, e.g., using stacking (Nivre and McDon-
ald, 2008; Attardi and Dell’Orletta, 2009), and ap-
proaches that combine independently-trained mod-
els only at parsing time (Sagae and Lavie, 2006; Hall
et al., 2007; Attardi and Dell’Orletta, 2009). In the
latter case, the correctness of the final dependency
tree is ensured by: (a) selecting entire trees proposed
by the base parsers (Henderson and Brill, 1999); or
(b) re-parsing the pool of dependencies proposed by
the base models (Sagae and Lavie, 2006). The lat-
ter approach was shown to perform better for con-
stituent parsing (Henderson and Brill, 1999).

While all these models achieved good perfor-
mance, the previous work has left several questions

Devel In domain Out of domain
LAS LAS UAS LAS UAS

MST 85.36 87.07 89.95 80.48 86.08
Malt→AE 84.24 85.96 88.64 78.74 84.18
Malt→CN 83.75 85.61 88.14 78.55 83.68
Malt→AS 83.74 85.36 88.06 77.23 82.39
Malt←AS 82.43 83.90 86.70 76.69 82.57
Malt←CN 81.75 83.53 86.17 77.29 83.02
Malt←AE 80.76 82.51 85.35 76.18 82.02

Table 1: Labeled attachment scores (LAS) and unlabeled at-
tachment scores (UAS) for the base models. The parsers are
listed in descending order of LAS in the development partition.

unanswered. Here we answer the following ques-
tions, in the context of English dependency parsing:

1. When combining models at parsing time, what
is the best scoring model for candidate depen-
dencies during re-parsing? Can a meta classi-
fier improve over unsupervised voting?

2. Are (potentially-expensive) re-parsing strate-
gies justified for English? What percentage of
trees are not well-formed if one switches to a
light word-by-word voting scheme?

3. How important is the integration of base parsers
at learning time?

4. How do ensemble models compare against
state-of-the-art supervised parsers?

2 Setup
In our experiments we used the syntactic dependen-
cies from the CoNLL 2008 shared task corpus (Sur-
deanu et al., 2008).

We used seven base parsing models in this paper:
six are variants of the Malt parser1 and the seventh
is the projective version of MSTParser that uses only
first-order features2 (or MST for short). The six Malt

1http://maltparser.org/
2http://sourceforge.net/projects/

mstparser/

649

Unweighted Weighted by Weighted by Weighted by Weighted by
POS of modifier label of dependency dependency length sentence length

of parsers LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS
3 86.03 89.44 86.02 89.43 85.53 88.97 85.85 89.23 86.03 89.45
4 86.79 90.14 86.68 90.07 86.38 89.78 86.46 89.79 86.84 90.18
5 86.98 90.33 86.95 90.30 86.60 90.06 86.87 90.22 86.86 90.22
6 87.14 90.51 87.17 90.50 86.74 90.22 86.91 90.23 87.04 90.37
7 86.81 90.21 86.82 90.21 86.50 90.01 86.71 90.08 86.80 90.19

Table 2: Scores of unsupervised combination models using different voting strategies. The combined trees are assembled using a
word-by-word voting scheme.

parser variants are built by varying the parsing algo-
rithm (we used three parsing models: Nivre’s arc-
eager (AE), Nivre’s arc-standard (AS), and Coving-
ton’s non-projective model (CN)), and the parsing
direction (left to right (→) or right to left (←)), sim-
ilar to (Hall et al., 2007). The parameters of the Malt
models were set to the values reported in (Hall et
al., 2007). The MST parser was used with the de-
fault configuration. Table 1 shows the performance
of these models in the development and test parti-
tions.

3 Experiments
3.1 On scoring models for parser combination
The most common approach for combining
independently-trained models at parsing time is to
assign each candidate dependency a score based
on the number of votes it received from the base
parsers. Considering that parsers specialize in
different phenomena, these votes can be weighted
by different criteria. To understand the importance
of such weighting strategies we compare several
voting approaches in Table 2: in the “unweighted”
strategy all votes have the same weight; in all other
strategies each vote is assigned a value equal to
the accuracy of the given parser in the particular
instance of the context considered, e.g., in the
“weighted by POS of modifier” model we use the
accuracies of the base models for each possible
part-of-speech (POS) tag of a modifier token. In
the table we show results as more base parsers are
added to the ensemble (we add parsers in the order
given by Table 1). The results in Table 2 indicate
that weighting strategies do not have an important
contribution to overall performance. The only
approach that outperforms the LAS score of the
unweighted voting model is the model that weighs
parsers by their accuracy for a given modifier POS
tag, but the improvement is marginal. On the other

POS(m) POS(m) × POS(h) length(s)
MST 38 56 26

Malt→AE 0 6 6
Malt→CN 0 14 7
Malt→AS 0 61 0
Malt←AS 0 0 3
Malt←CN 0 9 0
Malt←AE 0 0 0

Table 3: Total number of minority dependencies with precision
larger than 50%, for different base parsers and most represen-
tative features (m - modifier, h - head, s - sentence). These
are counts of tokens, computed in the development corpus of
33,368 dependencies.

hand, the number of base parsers in the ensemble
pool is crucial: performance generally continues to
improve as more base parsers are considered. The
best ensemble uses 6 out of the 7 base parsers.3

It is often argued that the best way to re-score
candidate dependencies is not through voting but
rather through a meta-classifier that selects candi-
date dependencies based on their likelihood of be-
longing to the correct tree. Unlike voting, a meta-
classifier can combine evidence from multiple con-
texts (such as the ones listed in Table 2). However,
in our experiments such a meta-classifier4 did not
offer any gains over the much simpler unweighted
voting strategy. We explain these results as follows:
the meta-classifier can potentially help only when it
proposes dependencies that disagree with the major-
ity vote. We call such dependencies minority depen-
dencies.5 For a given parser and context instance
(e.g., a modifier POS), we define precision of mi-
nority dependencies as the ratio of minority depen-
dencies in this group that are correct. Obviously, a

3We drew similar conclusions when we replaced voting with
the re-parsing algorithms from the next sub-section.

4We implemented a L2-regularized logistic regression clas-
sifier using as features: identifiers of the base models, POS tags
of head and modifier, labels of dependencies, length of depen-
dencies, length of sentence, and combinations of the above.

5(Henderson and Brill, 1999) used a similar framework in
the context of constituent parsing and only three base parsers.

650

group of minority dependencies provides beneficial
signal only if its precision is larger than 50%. Ta-
ble 3 lists the total number of minority dependencies
in groups with precision larger than 50% for all our
base parsers and the most representative features.
The table shows that the number of minority depen-
dencies with useful signal is extremely low. All in
all, it accounts for less than 0.7% of all dependen-
cies in the development corpus.

3.2 On re-parsing algorithms
To guarantee that the resulting dependency tree is
well-formed, most previous work used the dynamic
programming algorithm of Eisner (1996) for re-
parsing (Sagae and Lavie, 2006; Hall et al., 2007).6

However, it is not clear that this step is necessary.
In other words, how many sentences are not well-
formed if one uses a simple word-by-word voting
scheme? To answer this, we analyzed the output
of our best word-by-word voting scheme (six base
parsers weighted by the POS of the modifier). The
results for both in-domain and out-of-domain test-
ing corpora are listed in Table 4. The table shows
that the percentage of badly-formed trees is rela-
tively large: almost 10% out of domain. This in-
dicates that the focus on algorithms that guarantee
well-formed trees is justified.

However, it is not clear how the Eisner algo-
rithm, which has runtime complexity of O(n3) (n
– number of tokens per sentence), compares against
approximate re-parsing algorithms that have lower
runtime complexity. One such algorithm was pro-
posed by Attardi and Dell’Orletta (2009). The al-
gorithm, which has a runtime complexity of O(n),
builds dependency trees using a greedy top-down
strategy, i.e., it starts by selecting the highest-scoring
root node, then the highest-scoring children, etc. We
compare these algorithms against the word-by-word
voting scheme in Table 5.7 The results show that
both algorithms pay a small penalty for guaranteeing
well-formed trees. This performance drop is statis-
tically significant out of domain. On the other hand,
the difference between the Eisner and Attardi algo-
rithms is not statistically significant out of domain.

6We focus on projective parsing algorithms because 99.6%
of dependencies in our data are projective (Surdeanu et al.,
2008).

7Statistical significance was performed using Dan Bikel ran-
domized parsing evaluation comparator at 95% confidence.

In domain Out of domain
Zero roots 0.83% 0.70%
Multiple roots 3.37% 6.11%
Cycles 4.29% 4.23%
Total 7.46% 9.64%

Table 4: Percentage of badly-formed dependency trees when
base parsers are combined using a word-by-word voting
scheme. The different error classes do not sum up to the listed
total because the errors are not mutually exclusive.

In domain Out of domain
LAS UAS LAS UAS

Word by word 88.89 91.52 82.13∗ 87.51∗

Eisner 88.83∗ 91.47∗ 81.99 87.32
Attardi 88.70 91.34 81.82 87.29

Table 5: Scores of different combination schemes. ∗ indicates
that a model is significantly different than the next lower ranked
model.

This experiment proves that approximate re-parsing
algorithms are a better choice for practical purposes,
i.e., ensemble parsing in domains different from the
training material of the base models.

3.3 On parser integration at learning time
Recent work has shown that the combination of
base parsers at learning time, e.g., through stacking,
yields considerable benefits (Nivre and McDonald,
2008; Attardi and Dell’Orletta, 2009). However, it
is unclear how these approaches compare against the
simpler ensemble models, which combine parsers
only at runtime. To enable such a comparison, we
reimplemented the best stacking model from (Nivre
and McDonald, 2008) – MSTMalt – which trains a
variant of the MSTParser that uses additional fea-
tures extracted from the output of a Malt parser.

In Table 6, we compare this stacking approach
against four variants of our ensemble models. The
superscript in the ensemble name indicates the run-
time complexity of the model (O(n3) or O(n)). The
cubic-time models use all base parsers from Table 1
and the Eisner algorithm for re-parsing. The linear-
time models use only Malt-based parsers and the
Attardi algorithm for re-parsing. The subscript in
the model names indicates the percentage of avail-
able base parsers used, e.g., ensemble3

50% uses only
the first three parsers from Table 1. These re-
sults show that MSTMalt is statistically equivalent
to an ensemble that uses MST and two Malt vari-
ants, and both our ensemble100% models are signifi-
cantly better than MSTMalt. While this comparison
is somewhat unfair (MSTMalt uses two base models,
whereas our ensemble models use at least three) it

651

In domain Out of domain
LAS UAS LAS UAS

ensemble3
100%

88.83∗ 91.47∗ 81.99∗ 87.32∗

ensemble1
100%

88.01∗ 90.76∗ 80.78 86.55
ensemble3

50%
87.45 90.17 81.12 86.62

MSTMalt 87.45∗ 90.22∗ 80.25∗ 85.90∗

ensemble1
50%

86.74 89.62 79.44 85.54

Table 6: Comparison of different combination strategies.

In domain Out of domain
LAS UAS LAS UAS

CoNLL 2008, #1 90.13∗ 92.45∗ 82.81∗ 88.19∗

ensemble3
100%

88.83∗ 91.47∗ 81.99∗ 87.32∗

CoNLL 2008, #2 88.14 90.78 80.80 86.12
ensemble1

100%
88.01 90.76 80.78 86.55

Table 7: Comparison with state of the art parsers.

does illustrate that the advantages gained from com-
bining parsers at learning time can be easily sur-
passed by runtime combination models that have ac-
cess to more base parsers. Considering that variants
of shift-reduce parsers can be generated with min-
imal effort (e.g., by varying the parsing direction,
learning algorithms, etc.) and combining models at
runtime is simpler than combining them at learning
time, we argue that runtime parser combination is a
more attractive approach.

3.4 Comparison with the state of the art
In Table 7 we compare our best ensemble models
against the top two systems of the CoNLL-2008
shared task evaluation. The table indicates that our
best ensemble model ranks second, outperforming
significantly 19 other systems. The only model per-
forming better than our ensemble is a parser that
uses higher-order features and has a higher runtime
complexity (O(n4)) (Johansson and Nugues, 2008).
While this is certainly proof of the importance of
higher-order features, it also highlights a pragmatic
conclusion: in out-of-domain corpora, an ensemble
of models that use only first-order features achieves
performance that is within 1% LAS of much more
complex models.

4 Conclusions
This study unearthed several non-intuitive yet im-
portant observations about ensemble models for de-
pendency parsing. First, we showed that the diver-
sity of base parsers is more important than complex
learning models for parser combination, i.e., (a) en-
semble models that combine several base parsers at
runtime performs significantly better than a state-of-
the-art model that combines two parsers at learning

time, and (b) meta-classification does not outper-
form unsupervised voting schemes for the re-parsing
of candidate dependencies when six base models are
available. Second, we showed that well-formed de-
pendency trees can be guaranteed without signifi-
cant performance loss by linear-time approximate
re-parsing algorithms. And lastly, our analysis in-
dicates that unweighted voting performs as well as
weighted voting for the re-parsing of candidate de-
pendencies. Considering that different base models
are easy to generate, this work proves that ensemble
parsers that are both accurate and fast can be rapidly
developed with minimal effort.

Acknowledgments
This material is based upon work supported by the Air
Force Research Laboratory (AFRL) under prime contract
no. FA8750-09-C-0181. Any opinions, findings, and
conclusion or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect
the view of the Air Force Research Laboratory (AFRL).

We thank Johan Hall, Joakim Nivre, Ryan McDonald,
and Giuseppe Attardi for their help in understanding de-
tails of their models.

References
G. Attardi and F. Dell’Orletta. 2009. Reverse revision

and linear tree combination for dependency parsing.
In Proc. of NAACL-HLT.

J. Eisner. 1996. Three new probabilistic models for de-
pendency parsing: An exploration. In Proc. of COL-
ING.

J. Hall, J. Nilsson, J. Nivre, G. Eryigit, B. Megyesi,
M. Nilsson, and M. Saers. 2007. Single malt or
blended? A study in multilingual parser optimization.
In Proc. of CoNLL Shared Task.

J. C. Henderson and E. Brill. 1999. Exploiting diversity
in natural language processing: Combining parsers. In
Proc. of EMNLP.

R. Johansson and P. Nugues. 2008. Dependency-based
syntactic semantic analysis with PropBank and Nom-
Bank. In Proc. of CoNLL Shared Task.

J. Nivre and R. McDonald. 2008. Integrating graph-
based and transition-based dependency parsers. In
Proc. of ACL.

K. Sagae and A. Lavie. 2006. Parser combination by
reparsing. In Proc. of NAACL-HLT.

M. Surdeanu, R. Johansson, A. Meyers, L. Marquez, and
J. Nivre. 2008. The CoNLL-2008 shared task on joint
parsing of syntactic and semantic dependencies. In
Proc. of CoNLL.

652

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 653–656,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Enlarged Search Space for SITG Parsing

Guillem Gascó, Joan-Andreu Sánchez, José-Miguel Benedí
Institut Tecnològic d’Informàtica, Universitat Politècnica de València

Camí de Vera s/n, València, 46022, Spain
ggasco@iti.upv.es , {jandreu,jbenedi}@dsic.upv.es

Abstract

Stochastic Inversion Transduction Grammars
constitute a powerful formalism in Machine
Translation for which an efficient Dynamic
Programming parsing algorithm exists. In this
work, we review this parsing algorithm and
propose important modifications that enlarge
the search space. These modifications allow
the parsing algorithm to search for more and
better solutions.

1 Introduction

Syntax Machine Translation has received great at-
tention in the last few years, especially for pairs of
languages that are sufficiently non-monotonic. Sev-
eral works have explored the use of syntax for Ma-
chine Translation (Wu, 1997; Chiang, 2007). In
(Wu, 1997), Stochastic Inverse Transduction Gram-
mars (SITGs) were introduced for describing struc-
turally correlated pairs of languages. SITGs can be
used to simultaneously analyze two strings from dif-
ferent languages and to correlate them. An efficient
Dynamic Programming parsing algorithm for SITGs
was presented in (Wu, 1997). This algorithm is sim-
ilar to the CKY algorithm for Probabilistic Context
Free Grammars. The parsing algorithm does not al-
low the association of two items that have the empty
string in one of their sides. This limitation restricts
the search space and prevents the algorithm from ex-
ploring some valid parse trees.

In this paper, we review Wu’s parsing algorithm
for SITGs (referred to as the original algorithm) and
propose some modifications to increase the search
space in order to make it possible to find these valid
parse trees.

2 SITG Parsing

SITGs (Wu, 1997) can be viewed as a restricted
subset of Stochastic Syntax-Directed Transduction
Grammars (Maryanski and Thomason, 1979). For-
mally, a SITG in Chomsky Normal Form can be
defined as a set of lexical rules that are noted as
A → x/ǫ, A → ǫ/y, A → x/y; direct syntac-
tic rules that are noted asA → [BC]; and inverse
syntactic rules that are noted asA → 〈BC〉, where
A,B,C are non-terminal symbols,x, y are terminal
symbols,ǫ is the empty string, and each rule has a
probability valuep attached. The sum of the proba-
bilities of the rules with the same non-terminal in the
left side must be equal to 1. When a direct syntactic
rule is used in parsing, both strings are parsed with
the syntactic ruleA → BC. When an inverse rule is
used in parsing, one string is parsed with the syntac-
tic ruleA → BC, and the other string is parsed with
the syntactic ruleA → CB.

An efficient Viterbi-like parsing algorithm that is
based on a Dynamic Programming Scheme was pro-
posed in (Wu, 1997). It allows us to obtain the most
probable parse tree that simultaneously analyzes two
strings,X = x1...x|X| andY = y1...x|Y |, i.e. the
bilingual stringX/Y . It has a time complexity of
O(|X|3|Y |3|R|), where|R| is the number of rules
of the grammar.

The parsing algorithm is based on the definition
of:

δijkl(A) = P̂r(A
∗
⇒ xi+1 · · · xj/yk+1 · · · yl)

as the maximum probability of any parsing tree that
simultaneously generates the substringsxi+1 · · · xj

andyk+1 · · · yl from the non-terminal symbolA .
In (Wu, 1997), the parsing algorithm was defined

as follows:

653

1. Initialization

δi−1,i,k−1,k(A) = p(A → xi/yk)

1 ≤ i ≤ |X|, 1 ≤ k ≤ |Y |,

δi−1,i,k,k(A) = p(A → xi/ǫ)

1 ≤ i ≤ |X|, 0 ≤ k ≤ |Y |,

δi,i,k−1,k(A) = p(A → ǫ/yk)

0 ≤ i ≤ |X|, 1 ≤ k ≤ |Y |,

2. Recursion

For all A ∈ N and
i, j, k, l such that

0 ≤ i < j ≤ |X|,
0 ≤ k < l ≤ |Y |,
j − i + l − k > 2,

(1)

δijkl(A) = max(δ
[]
ijkl(A), δ

〈〉
ijkl(A))

where
δ
[]
ijkl(A)

= max
B,C∈N

i≤I≤j,k≤K≤l

(I−i)(j−I)+(K−k)(l−K)>0

p(A → [BC])δiIkK(B)δIjKl(C) (2)

δ
〈〉
ijkl(A)

= max
B,C∈N

i≤I≤j,k≤K≤l

(I−i)(j−I)+(K−k)(l−K)>0

p(A → 〈BC〉)δiIKl(B)δIjkK(C) (3)

This algorithm cannot provide the correct parsing
tree in some situations. For example, consider the
SITG shown in Fig. 1. If the input pair isa/b,

p S → [SS] p S → 〈SS〉
q S → ǫ/b q S → a/ǫ

1− 2p− 2q S → a/b

Figure 1: Example SITG.

this SITG provides the parse tree (a) that is shown in
Fig. 2 with probability1 − 2p − 2q. However, the
parse tree (b) is more likely if1 − 2p − 2q < 2pq.
The above parsing algorithm is not able to obtain
this parse tree due to the restrictionj− i+ l−k > 2
in (1). This restriction does not allow the algo-
rithm to consider two subproblems in which each
substring has length1 which have not been previ-
ously considered in the initialization step. Chang-
ing this restriction toj − i + l − k ≥ 2 is not
enough to tackle this situation since the restriction

(b)(a)

SS

SS

a/b

a/ǫ ǫ/b

Figure 2: Parse tree (a) can be obtained with Wu’s algo-
rithm for a/b, but parse tree (b) cannot be obtained.

(I−i)(j−I)+(K−k)(l−K) 6= 0 in expression (2)
is not accomplished given thatI = i or I = j, and
K = k or l = K (similarly in expression (3)).

From now on, we will use the termnon-explored
trees to denote the set of trees that are possible when
rules of the grammar are applied but cannot be ex-
plored with Wu’s algorithm. In fact, this situation
appears for other paired strings (see Fig. 3) in which
a string in one side is associated with the empty
string in the other side through rules that are not lexi-
cal rules. For example, in Fig. 3b, substringaa could
be associated withǫ. However,this parse tree cannot
be obtained with the algorithm due to the search re-
strictions described above.

(b)(a)

SS

S

S

S

SS

S

a/ba/ǫ

a/ǫa/ǫ

ǫ/b

Figure 3: Parse tree (a) can be obtained with Wu’s algo-
rithm for aa/b, but parse tree (b) would be more probable
if pq2 > 1− 2p− 2q.

The changes needed in the algorithm to be able to
find the sort of parsing trees described above are the
following:

• Changing restrictionj − i + l− k > 2 in (1) to
j− i+ l−k ≥ 2. Note that this new restriction
is redundant and could be removed.

• Changing restriction(I− i)(j−I)+(K−k)(l−

K) 6= 0 to ((j−I)+(l−K))∗((I−i)+(K−k)) 6=

0 in (2) and to((j − I) + (K − k)) ∗ ((I − i) +

(l − K)) 6= 0 in (3) in order to guarantee the
algorithm’s termination.

3 Search under SITG Constraints

The modifications that have been introduced in Sec-
tion 2 enlarge the search space and allow the parsing

654

algorithm to explore a greater number of possible so-
lutions. We illustrate this situation with an example.
Consider the SITG introduced in Figure 1. Fig. 4
shows the possible complete matched trees for the
input paira/b that are considered in the search pro-
cess with the modifications introduced.

(b)(a) (c) (d) (e)

S

S

SS

S

SS

S

S

S

S

S

Sa/b

aaaa

bbbb

ǫ

ǫ

ǫ

ǫǫ

ǫǫ

ǫ

Figure 4: Parse trees for input paira/b that are taken into
account in the search process with the modifications.

Without these modifications, the parsing algo-
rithm only takes into account tree (a) of Fig. 4. For
this grammar, we have computed the growth in num-
ber of complete matched trees. Table 1 shows how
the search space grows notably with the modifica-
tions introduced.

n Wu’s alg. Modified alg. ratio
1 1 5 0.200
2 34 290 0.117
3 1,928 34,088 0.057
4 131,880 5,152,040 0.026
5 10,071,264 890,510,432 0.011
6 827,969,856 167,399,588,160 0.005

Table 1: Growth in number of explored trees for the orig-
inal and modified parsing algorithms (n is the length of
the input pair strings and the last column represents the
ratio between columns two and three).

As a preliminary experiment and in order to eval-
uate empirically the Wu’s parsing algorithm versus
the modified algorithm, we parsed first 100K sen-
tence of German-English Europarl corpus. The lex-
ical rules in the Bracketing SITG used for pars-
ing were obtained from a probabilistic dictionary
by aligning with IBM3 model (NULL aligments
were also included). In this experiment, the modi-
fied algorithm obtained a more probable parse tree
for 6% of the sentences. If we added brackets to
the sentences separately with monolingual parsers,
we could use a parsing algorithm similar to the al-
gorithm that is described in (Sánchez and Benedí,
2006). The monolingual brackets restricted the
parse tree to those that were compatible with the

brackets. In that case the modified algorithm ob-
tained a more probable parse tree for 14% of the
sentences.

4 Inside Probability

The parsing algorithm described above computes
the most likely parse tree for a given paired string
X/Y . However, in some cases (Wu, 1995; Huang
and Zhou, 2009), we need the inside probability
(β0,|X|,0,|Y |(S)), i.e., the probability that the gram-
mar assigns to the whole set of parse trees that yield
X/Y . If the maximizations are replaced by sums,
the algorithm can be used to compute the inside
probability. However, as stated above, the origi-
nal algorithm cannot find the whole set of trees for
a given paired string in some cases. These non-
explored trees have a probability greater than 0.

As an example, we computed the amount of prob-
ability lost in the inside computation using the origi-
nal algorithm with the grammar shown in Fig. 1. Let
Γ be the amount of probability of the non-explored
trees (the lost probability). It must be noted that
since height 1 trees are all reachable, we must accu-
mulate lost probability for trees of height 2 or more.
Hence, letγ be the amount of lost probability for
trees of height 2 or more. Note that all such trees
must have initially used the productionS → SS in-
versely or directly. Thus,Γ = 2p · γ. Fig. 5 shows
the kinds of non-explored trees. Thenγ is:

γ = 4·q2+2·2p·(1−2p)·γ+(2p)2 ·(2γ(1−γ)+γ2)

The first addend is the probability of the non-
explored trees of height 2 (Fig. 5a). The second ad-
dend is the probability that one of the subtrees uses
a syntactic production, this new subtree produces
a non-explored tree (2p · γ) and the other subtree

(a) (b) (c)

S

S

SS

S

SS

S

S

Figure 5: Partial representation of non-explored parse
trees from the non-terminal stringSS introduced after
the first derivation step: (a) both non-terminals yield a
terminal in one side and the empty string in the other;
(b) one of the non-terminals uses a lexical production
and the other non-terminal yields a non-explored tree; (c)
both non-terminals use a syntactic production and one (or
both) yields a non-explored tree.

655

Figure 6: Amount of lost probability for values of p and q.

rewrites itself using a lexical production (1 − 2p).
Note that the non-explored tree can be yielded from
either the left or the right non-terminal, (Fig. 5b).
The third addend is the probability that both non-
terminals use a syntactic production(2p)2 and ei-
ther one (2(γ)(1−γ)) or both (γ2) subtrees are non-
explored trees (Fig. 5c). If we isolateΓ, we get

Γ = 2p ·
1− 4p ±

√
16p2 − 8p + 1 + 64p2q2

4p2

Since the solution with the positive square root
takes values greater than 1, we can discard it.

Fig. 6 shows the probability accumulated in the
non-explored trees for values ofp and q between
0 and0.25 (higher values ofp produce inconsistent
SITGs). That is the amount of probability lost in the
inside parsing for the whole language generated by
the grammar shown in Fig. 1.

In order to prove the loss of probability produced
by the original algorithm, we use the grammar in
Fig. 1 with p = q = 0.2. We parse all the paired
stringsX/Y such that|X| + |Y | ≤ l, wherel is a
fixed maximum length. We repeat the same exper-
iment using the modified algorithm. Fig. 7 shows
the accumulated inside probabilities for both origi-
nal and modified algorithms and the theoretical max-
imums (1−Γ for the original algorithm and 1 for the
modified algorithm). Note that the computed results
approach the theoretical maximums and the modi-
fied algorithm covers the whole search space.

5 Conclusions

SITGs have proven to be a powerful tool in Syntax
Machine Translation. However, the algorithms have
been proposed do not explore all the possible parse
trees. This work proposes modifications of the algo-
rithms to be able to explore the whole search space.

Figure 7: Accumulated inside probability for the original
and modified algorithms.

Using an example, we have shown that the modifi-
cations allow a complete search. As future work, we
plan to proove the correctness of the modified algo-
rithm and to study the impact of these modifications
on the use of SITGs for Machine Translation, and
the estimation of SITGs.

Acknowledgments

Work supported by the EC (FSE), the Spanish Gov-
ernment (MICINN, "Plan E") under grants MIPRCV
"Consolider Ingenio 2010" CSD2007-00018, iTrans2
TIN2009-14511 and the Generalitat Valenciana grant
Prometeo/2009/014 and BFPI/2007/117.

References

D. Chiang. 2007. Hierarchical phrase-based translation.
Computational Linguistics, 33(2):201–228.

S. Huang and B. Zhou. 2009. An em algorithm for scfg
in formal syntax-based translation. InICASSP, pages
4813–4816, Taiwan, China, April.

F.J. Maryanski and M.T. Thomason. 1979. Properties of
stochastic syntax-directed tranlation schemata.Jour-
nal of Computer and Information Sciences, 8(2):89–
110.

J.A. Sánchez and J.M. Benedí. 2006. Stochastic in-
version transduction grammars for obtaining word
phrases for phrase-based statistical machine transla-
tion. In Proc. of Workshop on Statistical Machine
Translation. HLT-NAACL 06, pages 130–133.

D. Wu. 1995. Trainable coarse bilingual grammars for
parallel text bracketing. InProceedings of the Third
Annual Workshop on Very Large Corpora, pages 69–
81.

D. Wu. 1997. Stochastic inversion transduction gram-
mars and bilingual parsing of parallel corpora.Com-
putational Linguistics, 23(3):377–404.

656

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 657–660,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Improving Data Driven Dependency Parsing using Clausal Information

Phani Gadde, Karan Jindal, Samar Husain, Dipti Misra Sharma, Rajeev Sangal
Language Technologies Research Centre, IIIT-Hyderabad, India.

phani.gadde@research.iiit.ac.in, karan_jindal@students.iiit.ac.in,
{samar,dipti,sangal}@mail.iiit.ac.in

Abstract

The paper describes a data driven dependency

parsing approach which uses clausal informa-

tion of a sentence to improve the parser per-

formance. The clausal information is added

automatically during the parsing process. We

demonstrate the experiments on Hindi, a lan-

guage with relatively rich case marking sys-
tem and free-word-order. All the experiments

are done using a modified version of

MSTParser. We did all the experiments on the

ICON 2009 parsing contest data. We achieved

an improvement of 0.87% and 0.77% in unla-

beled attachment and labeled attachment accu-

racies respectively over the baseline parsing

accuracies.

1 Introduction

Linguistic analysis of morphologically rich free-

word-order languages (MoRFWO) using depen-

dency framework have been argued to be more
effective (Shieber, 1985; Mel’čuk, 1988, Bharati et

al., 1993). Not surprisingly, most parsers for such

languages are dependency based (Nivre et al.,
2007a; Bharati et al., 2008a; Hall et al., 2007). In

spite of availability of annotated treebanks, state-

of-the-art parsers for MoRFWO have not reached
the performance obtained for English. Some of the

reasons stated for the low performance are small

treebank size, complex linguistic phenomenon,
long-distance dependencies, and non-projective

structures (Nivre et al., 2007a, 2007b; Bharati et

al., 2008a).
Several approaches have been tried to handle these

difficulties in such languages. For Hindi, Bharati et

al. (2008a) and Ambati et al. (2009) used semantic

features in parsing to reduce the negative impact of
unavailable syntactic features and showed that use

of minimal semantics can help in identifying cer-

tain core dependency labels. Various attempts have
proved to simplify the structure by dividing the

sentence into suitable linguistic units (Attardi and

Dell’Orletta 2008; Bharati et al., 1993, 2008b,
2009; Husain et al., 2009). These approaches han-

dle complex structures by breaking the parsing

process into several steps. Attardi and Dell'Orletta
(2008) used chunk information as a feature to

MaltParser (Nivre et al., 2007a) for parsing Eng-

lish. Bharati et al., 1993 used the notion of local
word groups, while Bharati et al., 2009 and Husain

et al., 2009 used clauses.
In this paper, we describe a data driven depen-

dency parsing approach which uses clausal infor-

mation of a sentence to improve the parser
performance. Previous attempts at data driven

parsing for Hindi have failed to exploit this feature

explicitly. The clausal information is added auto-
matically during the parsing process. We demon-

strate the experiments on Hindi
1
. All the

experiments are done using a modified version of
MSTParser (McDonald et al., 2005a and the refer-

ences therein) (henceforth MST) on the ICON

2009 parsing contest
2
 (Husain, 2009) data. We

achieved an improvement of 0.87% and 0.77% in

unlabeled attachment and labeled attachment accu-

racies respectively over the baseline parsing accu-
racies.

1 Hindi is a verb final language with free word order and a rich
case marking system. It is an official language of India and is
spoken by ~800 million people.
2 http://www.icon2009.in/contests.html

657

2 Why Clausal Information?

Traditionally, a clause is defined as a group of

words having a subject and a predicate. Clause
boundary identification is the process of dividing

the given sentence into a set of clauses. It can be

seen as a partial parsing step after chunking, in
which one tries to divide the sentence into mea-

ningful units. It is evident that most of the depen-

dents of words in a clause appear inside the same
clause; in other words the dependencies of the

words in a clause are mostly localized within the

clause boundary.
In the dependency parsing task, a parser has to

disambiguate between several words in the sen-

tence to find the parent/child of a particular word.
This work is to see whether the clause boundary

information can help the parser to reduce the

search space when it is trying to find the correct
parent/child for a word. The search space of the

parser can be reduced by a large extent if we solve

a relatively small problem of identifying the claus-
es. Interestingly, it has been shown recently that

most of the non-projective cases in Hindi are inter-

clausal (Mannem et al., 2009). Identifying clausal
boundaries, therefore, should prove to be helpful in

parsing non-projective structures. The same holds

true for many long-distance dependencies.

3 Experimental Setup

3.1 Dataset

The experiments reported in this paper have been

done on Hindi; the data was released as part of the
ICON 2009 parsing contest (Husain, 2009). The

sentences used for this contest are subset of the

Hyderabad Dependency Treebank (HyDT) devel-
oped for Hindi (Begum et al., 2008). The depen-

dency relations in the treebank are syntactico-

semantic. The dependency tagset in the annotation
scheme has around 28 relations. The dependency

trees in the treebank show relations between chunk

heads. Note, therefore, that the experiments and
results described in this paper are based on parse

trees that have chunk head as nodes.

The data provided in the task contained morpho-
logical features along with the lemma, POS tag,

and coarse POS tag, for each word. These are six

morphological features namely category, gender,

number, person, vibhakti
3
 or TAM

4
 markers of the

node

3.2 Clause Boundary Identifier

We used the Stage1
5
 parser of Husain et al. (2009),

to provide the clause boundary information that is

then incorporated as features during the actual
parsing process. The Stage1 parser uses MST to

identify just the intra-clausal relations. To achieve

this, Husain et al., introduce a special dummy node
named _ROOT_ which becomes the head of the

sentence. All the clauses are connected to this

dummy node with a dummy relation. In effect the
Stage1 parser gives only intra-clausal relations. In

the current work, we used MaltParser
6
 (Nivre et al.,

2007b) (henceforth Malt) to do this task. This is
because Malt performs better than MST in case of

intra-clausal relations, which are mostly short dis-

tance dependencies. We use the same algorithm
and feature setting of Bharati et al., (2008a) to train

the Stage1 parser.

Since the above tool parses clauses, therefore
along with the clause boundary information we

also know the root of the clausal sub-tree. Several

experiments were done to identify the most optim-
al set of clausal features available from the partial

parse. The best results are obtained when the

clause boundary information, along with the head
information i.e. head node of a clause, is given as a

feature to each node.

We trained the Stage1 parser by converting the
treebank data into the stage1 format, following the

steps that were given in Husain et al. (2009). This

conversion depends on the definition of the clause.
We experimented with different definitions of

clause in order to tune the tool to give the optimal

clause boundary and head information required for
parsing. For the results reported in this paper, a

clause is a sequence of words, with a single verb,
unless the verb is a child of another verb.

3 Vibhakti is a generic term for preposition, post-position and

suffix.
4
TAM: Tense, Aspect and Modality.

5
Stage1 handles intra-clausal dependency relations. These

relations generally correspond to the argument structure of the
verb, noun-noun genitive relation, infinitive-noun relation,
adjective-noun, adverb-verb relations, etc.
6 Malt version 1.2

658

 Precision Recall

Clause Boundary 84.83% 91.23%

Head Information 92.42% 99.40%

Table 1. Accuracies of the features being used

Table 1 gives the accuracy of the clausal informa-

tion being used as features in parsing. It is clear
from Table1 that the tool being used doesn’t have

very high clause boundary identification perfor-

mance; nevertheless, the performance is sufficient
enough to make an improvement in parsing expe-

riments. On the other hand, the head of the clause

(or, the root head in the clausal sub-tree) is identi-
fied efficiently. All the above experiments for pa-

rameter tuning were done on the development data

of the ICON 2009 parsing contest.

3.3 Parser

We used MSTParser
7
 for the actual parsing step.

MST uses Chu-Liu-Edmonds Maximum Spanning

Tree Algorithm for non-projective parsing and
Eisner's algorithm for projective parsing (Eisner,

1996). It uses online large margin learning as the

learning algorithm (McDonald et al., 2005b).
We modified MST so that it uses the clause

boundary. Unlike the normal features that MST

uses, the clause boundary features span across
many words.

.

4 Experiments and Results

We experimented with different combinations of

the information provided in the data (as mentioned

in 3.1). Vibhakti and TAM fields gave better re-
sults than others. This is consistent with the best

previous settings for Hindi parsing (Bharati et al.,

2008a, Ambati et al., 2009). We used the results
obtained using this setting as our baseline (F1).

We first experimented by giving only the clause

inclusion (boundary) information to each node
(F2). This feature should help the parser reduce its

search space during parsing decisions. Then, we

provided only the head and non-head information
(whether that node is the head of the clause or not)

(F3). The head or non-head information helps in

handling complex sentences that have more than

7 MST version 0.4b

one clause and each verb in the sentence has its

own argument structure. We achieved the best per-
formance by using both as features (F4) during the

parsing process.

 LA (%) UA (%) L (%)

F1 73.62 91.00 76.04

F2 72.66 91.00 74.74

F3 73.88 91.35 75.78

F4 74.39 91.87 76.21

Table 2. Parsing accuracies with different features

Table 2 gives the results for all the settings. It is

interesting to note that the boundary information

(F1) alone does not cross the baseline; however
this feature is reliable enough to give the best per-

formance when combined with F3.

5 Observations

We see from the above results (F4 in Table 2) that

there is a rise of 0.87% in UA (unlabeled

attachment) and 0.77% in LA (labeled attachment)
over previous best (F1). This shows the positive

effect of using the clausal information during the

parsing process.

We analyzed the performance of both the pars-
ers in handling the long distance dependencies and

non-projective dependencies. We found that the

non-projective arcs handled by F4 have a precision
and recall of 41.1% and 50% respectively for UA,

compared to 30.5% and 39.2% for the same arcs

during F1.

Figure 1. Distance stats

Figure 1 compares the accuracies of the depen-

dencies at various distances. It is clear that the ef-

fect of clausal information become more

659

pronounced as the distance increases. This means

F4 does help the parser in effectively handling long
distance dependencies as well.

6 Conclusion and Future Work

The results show that there is a significant
improvement in the parsing accuracy when the

clausal information is being used.

The clausal information is presently being used

only as attachment features in MST. Experiments
can be done in future, to find out if there is a label

bias to the clause boundary, which also helps in

reducing the search space for specific labels. Im-
proving the feature set for the labeled parse also

improves the unlabeled attachment accuracy, as

MST does attachments and labels in a single step,
and the labels of processed nodes will also be tak-

en in features.

We can see from Table1 that the precision of the
clause boundary is 84.83%. Using a tool, targeted

at getting just the clausal information, instead of
using a parser can improve the accuracy of the

clausal information, which helps improving pars-

ing.

References

B. R. Ambati, P. Gadde, and K. Jindal. 2009. Experi-

ments in Indian Language Dependency Parsing. In

Proceedings of the ICON09 NLP Tools Contest: In-
dian Language Dependency Parsing, pp 32-37.

B. R. Ambati, P. Gade and C. GSK. 2009. Effect ofMi-

nimal Semantics on Dependency Parsing. In the Pro-
ceedings of RANLP 2009 Student Research
Workshop.

G. Attardi and F. Dell’Orletta. Chunking and Depen-

dency Parsing. LREC Workshop on Partial Parsing:

Between Chunking and Deep Parsing. Marrakech,

Morocco. 2008.

R. Begum, S. Husain, A. Dhwaj, D. Sharma, L. Bai, and

R. Sangal. 2008. Dependency annotation scheme for

Indian languages. In Proceedings of IJCNLP-2008.

A. Bharati and R. Sangal. 1993. Parsing Free Word Or-

der Languages in the Paninian Framework. Proceed-
ings of ACL:93.

A. Bharati, S. Husain, B. Ambati, S. Jain, D. Sharma

and R. Sangal. 2008a. Two Semantic features make
all the difference in Parsing accuracy. In Proceed-
ings. of International Conference on Natural Lan-
guage Processing-2008.

A. Bharati, S. Husain, D. Sharma, and R. Sangal. 2008b.

A two stage constraint based dependency parser for

free word order languages. In Proceedings. of
COLIPS International Conference on Asian Lan-
guage Processing. Thailand. 2008.

A. Bharati, S. Husain, D. M. Sharma and R. Sangal.

Two stage constraint based hybrid approach to free

word order language dependency parsing. In the Pro-
ceedings of the 11th International Conference on
Parsing Technologies (IWPT09). Paris. 2009.

J. Hall, J. Nilsson, J. Nivre, G. Eryigit, B. Megyesi, M.

Nilsson,M. Saers.2007. Single Malt or Blended? A
Study in Multilingual Parser Optimization.

In Proceedings of the CoNLL Shared Task Session of
EMNLP-CoNLL 2007.

S. Husain. 2009. Dependency Parsers for Indian Lan-

guages. In Proceedings of ICON09 NLP Tools Con-

test:Indian Language Dependency Parsing.
Hyderabad, India. 2009.

S. Husain, P. Gadde, B. Ambati, D. M. Sharma and Ra-
jeev Sangal. 2009. A modular cascaded approach to

complete parsing. In the Proceedings of COLIPS In-
ternational Conference on Asian Language
Processing. Singapore. 2009.

P. Mannem and H. Chaudhry.2009. Insights into Non-

projectivity in Hindi. In ACL-IJCNLP Student paper
workshop. 2009.

R. McDonald, F. Pereira, K. Ribarov, and J. Hajic.
2005a. Non-projective dependency parsing using

spanning tree algorithms. In the Proceedings of
HLT/EMNLP, pp. 523–530.

R. McDonald, K. Crammer, and F. Pereira. 2005b. On-

line large-margin training of dependency parsers. In

the Proceedings of ACL 2005. pp. 91–98.

I. A. Mel'Cuk. 1988. Dependency Syntax: Theory and
Practice, State University Press of New York.

J. Nivre, J. Hall, S. Kubler, R. McDonald, J. Nilsson, S.

Riedel and D. Yuret. 2007a. The CoNLL 2007

Shared Task on Dependency Parsing. In Proceedings
of the CoNLL Shared Task Session of EMNLP-
CoNLL 2007.

J. Nivre, J. Hall, J. Nilsson, A. Chanev, G. Eryigit, S.

Kübler, S. Marinov and E Marsi. 2007b. MaltParser:

A language-independent system for data-driven de-
pendency parsing. Natural Language Engineering,

13(2), 95-135.

S. M. Shieber. 1985. Evidence against the context-

freeness of natural language. In Linguistics and Phi-
losophy, p. 8, 334–343.

660

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 661–664,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

A Treebank Query System Based on an Extracted Tree Grammar

Seth Kulick and Ann Bies
Linguistic Data Consortium
University of Pennsylvania
3600 Market St., Suite 810

Philadelphia, PA 19104
{skulick,bies}@ldc.upenn.edu

Abstract

Recent work has proposed the use of an ex-
tracted tree grammar as the basis for treebank
analysis and search queries, in which queries
are stated over the elementary trees, which are
small chunks of syntactic structure. However,
this work was lacking in two crucial ways.
First, it did not allow for including lexical
properties of tokens in the search. Second,
it did not allow for using the derivation tree
in the search, describing how the elementary
trees are connected together. In this work we
describe an implementation that overcomes
these problems.

1 Introduction

(Kulick and Bies, 2009) describe the need for tree-
bank search that compares two sets of trees over the
same tokens. Their motivation is the problem of
comparing different annotations of the same data,
such as with inter-annotator agreement evaluation
during corpus construction. The typical need is to
recognize which annotation decisions the annotators
are disagreeing on. This is similar to the problem of
determining where the gold trees and parser output
differ, which can also be viewed as two annotations
of the same data.

As they point out, for this purpose it would be use-
ful to be able to state queries in a way that relates to
the decisions that annotators actually make, or that
a parser mimics. They provide examples suggesting
that (parent, head, sister) relations as in e.g. (Collins,
2003) are not sufficient, and that what is needed is

the ability to state queries in terms of small chunks
of syntactic structure.

Their solution is to use an extracted tree gram-
mar, inspired by Tree Adjoining Grammar (Joshi
and Schabes, 1997). The “elementary trees” of the
TAG-like grammar become the objects on which
queries can be stated. They demonstrate how the
“lexicalization” property of the grammar, in which
each elementary tree is associated with one or more
token, allows for the the queries to be carried out in
parallel across the two sets of trees.

However, the work was lacking in two crucial
ways. First, it did not allow for including lexical
properties of a token, such as its Part-of-Speech tag,
together with the elementary tree search. This made
it impossible to formulate such queries as “find all
ADVP elementary trees for which the head of the
tree is a NOUN NUM”. Even more seriously, there
was no way to search over the “derivation tree”,
which encodes how the extracted elementary trees
combine together to create the original tree. This
made it impossible to carry out searches such as
“find all verb frames with a PP-LOC modifying it”,
and in general to search for the crucial question of
where annotators disagree on attachment decisions.

In this paper we describe how we have solved
these two problems.

2 Tree Extraction

Following (Kulick and Bies, 2009), we draw our ex-
amples from the Arabic Treebank1 For our gram-

1Part 3, v3.1 - Linguistic Data Consortium LDC2008E22.
Also, we use the Buckwalter Arabic transliteration scheme
http://www.qamus.org/transliteration.htm.

661

S

VP

PV

tHTmt
crashed
�

I
�
Ò

��
¢

�
m�

��
'

NP-SBJ

NP

NOUN

TA}rp
airplane

�
èQ

K� A

�
£

NP

NOUN

tdryb
training
I. K
P

�
Y

��
K

ADJP

ADJ

Eskryp
military
�
é
��
K
Q

�

�
º�

�
«

PP-LOC

PREP

fiy
in
ú

	
¯
�

NP

...

Figure 1: Sample tree
#1

S

VP

PV

tHTmt
crashed

NP[t]-SBJˆ<1.1.2>

#2
NP< 1 >

NOUN

TA}rp
airplane

NP

NOUN

tdryb
training

#3 ADJP

ADJ

Eskryp
military

#4 PP[b]-LOC

PREP

fiy
in

NPˆ

Figure 2: Extracted trees from Figure 1

mar we use a TAG variant with tree-substitution,
sister-adjunction, and Chomsky-adjunction (Chiang,
2003), using head rules to decompose the full trees
and extract the elementary trees. Sister adjunction
attaches a tree (or single node) as a sister to an-
other node, and Chomsky-adjunction forms a recur-
sive structure as well, duplicating a node. As one
example, the full tree is shown in Figure 1, and the
extracted elementary trees2 are shown in Figure 2.
We briefly mention two unusual features of this ex-
traction, and refer the reader to (Kulick and Bies,
2009) for detail and justification.

(1)The function tags are included in the tree ex-
traction, with the syntactic tags such as SBJ treated

2We will use ”etree” as shorthand for ”elementary tree”.

#1

#2,S,<1.1.2>

#3,M,<1>

#4,A,<1.1.2>

Figure 3: Derivation Tree for Figures 1 and 2

as a top feature value, and semantic tags such as LOC
treated as a bottom feature value, extending the tra-
ditional TAG feature system to handle function tags.

(2) Etree #2 consists of two anchors, rather than
splitting up the tree decomposition further. This is
because this is an instance of the ”construct state”
construction in Arabic, in which two or more words
are grouped tightly together.

The nodes in the elementary trees are numbered
with their Gorn address, and we make two such ad-
dresses explicit, in trees #1 and #2. These addresses
appear in the derivation tree in Figure 3. Each node
in the derivation tree refers to one etree in Figure 2,
and each node (except the root) is labelled with the
address in the parent etree to which it attaches, and
the attachment type (M for Chomsky-adjunction, A
for sister-adjunction, and S for substitution).3 The ˆ
symbol at the node NP[t]-SBJ in tree #1 indicates
that it is a substitution node. Etree #3 Chomsky-
adjoins at the root of etree #2, thus forming a a new
NP node. Etree #4 sister-adjoins at the NP[t]-SBJ
node in etree #1, thus becoming a sister to that node.

It is often the case that the same elementary tree
structure will be repeated in different elementary
trees extracted from a corpus. We call each such
structure an ”etree template”, and a particular in-
stance of that template, together with the ”anchors”
(tokens) used in that instance of the template, is
called an ”etree instance”.

The extracted tokens, etree templates, etree in-
stances, and derivation trees are stored in a MySQL
database for later search. The derivation tree is im-
plemented with a simple ”adjacency list” represen-
tation as is often done in database representations of
hierarchical structure. The database schema is orga-
nized with appropriate indexing so that a full tree is
represented by a derivation tree, with integers point-

3This derivation tree is slightly simplified, since with sister-
adjunction it includes more information to indicate the direction
and order of attachment.

662

LEX : (L1) text="fiy"
ETREE: (E1) (S (VP A$

NP[t]-SBJˆ{dta:1}))
(E2) (PP A${lex:L1} NPˆ)

DTREE: (D1) E2
(D2) (E1 E2{dta:1})

Figure 4: Examples of one lexical restriction, two etree
queries, and two dtree queries

ing to the etree instances, which in turn use integers
to represent the etree template in that etree instance
and also point to the anchors of that etree instance.

The section of ATB we are working with has
402,246 tokens, resulting in 319,981 etree instances
and only 2804 etree templates, which gives an indi-
cation of the huge amount of duplication of structure
in a typical treebank representation. From the per-
spective of database organization, the representation
of the etree templates can be perhaps be viewed as a
type of database “normalization”, in which duplicate
information is placed in a separate table.

3 Query Processing

We now describe the algorithm used for searching
on the database with the extracted tree grammar, fo-
cusing on how the algorithm now allows searching
based on the derivation tree and lexical information.

Queries are specified as ”etree queries” and
”dtree queries”. Sample queries are shown in Figure
4. The query processing is as follows:

Step 1:
The etree templates are searched to determine which
match a given etree query.4 This is a simple tree
matching between each template and query, all of
which are small small trees. It is within this tree
matching that several of the typical relations can be
specified, such as precedence and dominance. A ta-
ble stores the information on which templates match
which queries.

In addition, the Etree queries can now include two
new properties. First, they can include a specifica-

4Each etree query has a ”distinguished” anchor marked A$
that indicates the anchor (word) of an etree template that is as-
sociated with that query. The reason for that is that if an etree
template has more than one anchor, we only want one to trigger
that query, so that the etree is not counted twice.

tion for a lexical restriction, such as lex:L1 in E2
in Figure 4. However, step 1 of the query processing
does not actually check this, since it is simply go-
ing through each template, without examining any
anchors, to determine which have the appropriate
structure to match a query. Therefore, we store in
another table the information that for a (template,
query) to match it must be the case that an anchor
at a particular address in that template satisfies a
particular lexical restriction. It in effect produces
specialized information for the given template as to
what additional restrictions apply for that (template,
query) pair to succeed as a match, in each etree in-
stance that uses that etree template. For example,
in this case the stored information specifies that an
etree instance with template (PP A NPˆ) matches
the query E2 if the instance has an anchor with the
text fiy at address 1.1 (the anchor A).

Similarly, the etree query can include a specifica-
tion dta (as in E1), for ”derivation tree address”,
indicating that the corresponding address in each
matching template needs to be stored for later ref-
erence in derivation tree searching. In this case, the
template for etree instance #1 will match etree query
E1, with the additional information stored that the
address 1.1.2 will be used for later processing.

An important point here is that this additional in-
formation is not necessarily the same for the differ-
ent templates that otherwise match a query. For ex-
ample, the two templates

(1) (S (VP A NP[t]-SBJ<1.1.2>)
(2) (SBAR (S (VP A NP[t]-SBJ<1.1.1.2>))

both match query E1, but for (1) the stored
address dta:1 is 1.1.2, while for (2) the stored
address is is 1.1.1.2. The same point holds for
the address of the anchor with a lexical restriction.

Step 2:
For a given query, the matching etree instances are
found. First it finds all etree instances such that the
(template, query) is a match for the instance’s etree
template. It then filters this list by checking the lexi-
cal restriction, if any, for the anchor at the appropri-
ate address in the etree instance, using the informa-
tion stored from step 1. In the above example, this
will select etree instance #4 as satisfying query E2,
since the template for instance #4 was determined in
step 1 to match E2, and the particular instance #4

663

also satisfies the lexical restriction in query E2.
Step 3:
The final results are reported using the dtree queries.
Some dtree queries are singletons naming an etree
query, such as D1, indicating that the dtree query is
simply that etree query. In this example, any etree
instance that satisfies the etree query E2 is reported
as satisfying the dtree query D1.

The dtree query can also specify nodes in a deriva-
tion tree that must satisfy specified etree queries and
also be in a certain relationship in the derivation tree.
For example, dtree query D2 in Figure 4 specifies
that the query is for two nodes in a parent-child re-
lationship in the derivation tree, such that the parent
node is for an etree instance that satisfies etree query
E1, and the child is an instance that satisfies etree
query E2. Furthermore, the address in the deriva-
tion tree is the same as the address dta:1 that was
identified during Step 1. Note that the address is lo-
cated on the parent tree during Step 1, but appears in
the derivation tree on the child node.

Steps 1 and 2 identify etree instance #1 as satis-
fiying etree query E1, with dta:1 stored as address
<1.1.2> for the template used by instance #1.
These steps also identifed etree instance #4 as sat-
isfying etree query E2. Step 3 now determines that
etree instances #1 and #4 are in a derivation tree re-
lationship that satisfies dtree query D2, by checking
for a parent-child relationship between them with
the address <1.1.2>.5 So dtree query D1 is finding
all PP etrees headed by ”fiy”, and dtree query D2 is
finding all clauses with a subject after the verb, with
a PP attaching next to the subject, where the PP is
headed by ”fiy”.

We consider the distinguished anchor (see foot-
note 4) for a dtree query to be the distinguished an-
chor of the parent node. The earlier work on com-
paring two sets of trees (Kulick and Bies, 2009) can
then use this to report such searches as ”the annota-
tors agree on the same verbal structure, but one has
a PP modification and the other does not”.

4 Conclusion and Future Work

Our immediate concern for future work is to work
closely with the ATB team to ensure that the de-
sired queries are possible and are integrated into the

5It is also possible to specify the nature of that relationship
by the attachment type, substitution or modification.

work on comparing two sets of trees. We expect that
this will involve further specification of how queries
select etree templates (Step 1), in interesting ways
that can take advantage of the localized search space,
such as searching for valency of verbs.

We are also working on an evaluation of the speed
of this system, in comparison to systems such as
(Ghodke and Bird, 2008) and Corpus Search6. The
search algorithm described above for derivation tree
searches can be made more efficient by only looking
for relevant etree instances in the context of walking
down the derivation tree. In general, while searching
for etree instances is very efficient, even with lex-
ical restrictions, complex searches over the deriva-
tion tree will be less so. However, our hope, and ex-
pectation, is that the vast majority of real-life dtree
queries will be local (parent,child,sister) searches on
the derivation tree, since each node of the derivation
tree already encodes small chunks of structure.
Acknowledgements

We thank Aravind Joshi, Anthony Kroch, Mitch
Marcus, and Mohamed Maamouri for useful discus-
sions. This work was supported in part by the De-
fense Advanced Research Projects Agency, GALE
Program Grant No. HR0011-06-1-0003 (both au-
thors) and by the GALE program, DARPA/CMO
Contract No. HR0011-06-C-0022 (first author). The
content of this paper does not necessarily reflect the
position or the policy of the Government, and no of-
ficial endorsement should be inferred.

References
David Chiang. 2003. Statistical parsing with an automat-

ically extracted tree adjoining gramar. In Data Ori-
ented Parsing. CSLI.

Michael Collins. 2003. Head-driven statistical models
for natural language parsing. Computational Linguis-
tics, 29:589–637.

Sumukh Ghodke and Steven Bird. 2008. Querying lin-
guistic annotations. In Proceedings of the Thirteenth
Australasian Document Computing Symposium.

A.K. Joshi and Y. Schabes. 1997. Tree-adjoining gram-
mars. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, Volume 3.

Seth Kulick and Ann Bies. 2009. Treebank analysis and
search using an extracted tree grammar. In Proceed-
ings of The Eigth International Workshiop on Tree-
banks and Linguistic Theories.
6http://corpussearch.sourceforge.net.

664

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 665–668,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Reranking the Berkeley and Brown Parsers∗

Mark Johnson
Department of Computing

Macquarie University
Sydney, Australia

mjohnson@science.mq.edu.au

Ahmet Engin Ural
Cognitive and Linguistic Sciences

Brown University
Providence, RI, USA
aeural@gmail.com

Abstract

The Brown and the Berkeley parsers are two
state-of-the-art generative parsers. Since both
parsers produce n-best lists, it is possible to
apply reranking techniques to the output of
both of these parsers, and to their union. We
note that the standard reranker feature set dis-
tributed with the Brown parser does not do
well with the Berkeley parser, and propose an
extended set that does better. An ablation ex-
periment shows that different parsers benefit
from different reranker features.

1 Introduction

Syntactic parsing is the task of identifying the
phrases and clauses in natural language sentences.
It has been intensively studied primarily because it
is generally believed that identifying syntactic struc-
ture is a first step towards semantic interpretation.
This paper focuses on parsing the Wall Street Jour-
nal (WSJ) section of the University of Pennsylva-
nia treebank corpus (Marcus et al., 1993). There
are a large number of different approaches to this
task. For simplicity we focus on two popular gener-
ative statistical parsing models: Charniak’s “Maxi-
mum Entropy Inspired” parser (Charniak and John-
son, 2005) and Petrov’s “split-merge” parser (Petrov
et al., 2006). We follow conventional informal usage
and refer to these as the “Brown” and the “Berkeley”
parsers respectively.

∗ We would like to thank Eugene Charniak and the other
members of BLLIP for their helpful advice on this work. Natu-
rally all errors remain our own.

Briefly, the Berkeley parser is a smoothed PCFG
whose non-terminals are refinements of the original
treebank grammar obtained by an automatic split-
merge procedure, while the Brown parser is effec-
tively a smoothed PCFG whose non-terminals en-
code a wide variety of manually chosen condition-
ing information, such as heads, governors, etc. The
Berkeley parser is usually viewed as unlexicalized
(although the preterminals may be split so finely
that they may be viewed as identifying lexical clus-
ters), while essentially every distribution used in
the Brown parser conditions on lexical information.
Even from this cursory description it is clear that
these parsers parsers extract generalizations from the
training data in different ways.

This paper applies reranking (Collins and Koo,
2005) to the n-best output of both parsers individ-
ually, as well as to an n-best list consisting of the
union of the outputs of both parsers. We are inter-
ested to see whether the same kinds of features im-
prove the performance of both the Berkeley and the
Brown parsers, or whether successful reranking re-
quires features that are specially tuned to the parser
it is applied to. Finally, we are interested in the
performance of the reranker trained on the union n-
best lists. Combining the output of multiple parsers
in other more complex ways has been previously
demonstrated to improve overall accuracy, so it is in-
teresting to see if the relatively simple method used
here improves parsing accuracy as well.

The approach of Zhang et al. (2009) is closest to
the work described here. They combine n-best lists
produced by the same parsers as we do, but use only
a relatively small set of features (the log probabil-

665

Trees Reranker features
standard extended

Berkeley 91.6 91.7
Brown 91.8 91.6
Combined 91.8 91.9

Table 1: The f-scores on section 22 of rerankers trained
on folds 1–18 by minimizing a regularized “MaxEnt” ob-
jective (negative log likelihood with a Gaussian regular-
izer) using L-BFGS. The weight of the regularizer was
tuned to optimize f-score on folds 19–20.

ity of the parses plus a constituent overlap feature),
while we investigate models with millions of fea-
tures here. They report a higher f-score than we do
when they replace the generative Brown parser with
the the self-trained discriminatively-reranked parser
of McClosky et al. (2006), but with inputs provided
by the generative Berkeley and Brown n-best parsers
they report an f-score of 91.43 on section 23, which
is consistent with the results reported here.

2 Experimental setup

We ran both parsers in 50-best mode, and con-
structed 20-fold cross-validated training data as de-
scribed in Collins and Koo (2005) and Charniak
and Johnson (2005), i.e., the trees in sections 2–21
of the WSJ treebank were divided into 20 equal-
sized folds, and the parses for each fold were gen-
erated by a parser trained on the trees in the other
folds. Then sections 22, 23 and 24 were parsed us-
ing the standard “out-of-the-box” parser. Follow-
ing the suggestion in Collins and Koo (2005), in or-
der to avoid over-training on section 23 all rerank-
ing experiments reported here (except the final one)
used folds 1–18 as training data, used folds 19–20
as development data and used section 22 as test data.
(The averaged perceptron algorithm does not require
development data, so the experiments using that al-
gorithm report averages over folds 19–20 and sec-
tion 22).

The Berkeley parser can be run in many modes;
in order to produce the 20-fold training data we ran
the Berkeley trainer with 6 splits, and ran the re-
sulting parsers in “accurate” mode. It failed to pro-
duce any parses for 12 sentences in sections 2–21
and one sentence in section 24. The Brown parser

was trained using the “out-of-the-box” settings, and
produced parses for all sentences.

Using the reranker features distributed with the
Brown reranker (Charniak and Johnson, 2005),
which we call the “standard” set below, we ob-
tained no overall improvement in f-score when ei-
ther reranking the Berkeley parser n-best lists alone,
or when the Berkeley parses were combined with the
Brown parses.

However, it is possible that these results reflect
the fact that the features used by the reranker were
chosen because they improve the Brown parser, i.e.,
they are the result of feature selection based on
reranking the Brown parser’s n-best lists. In order
to determine if this is the case, we developed an “ex-
tended” feature set that incorporates a wider set of
features, specifically including features that capture
global properties of the tree that might be harder for
the Berkeley parser to learn.

Our extended feature set consists of
4,256,553 features, which are instances of
162 feature classes, which in turn are grouped
into 20 feature “super-classes”. By contrast, the
standard feature set contains 1,333,950 features in
90 feature classes, grouped into 14 super-classes.
A brief description of the extended feature set
super-classes follows:

Parser: an indicator feature indicating which parsers
generated this parse,

RelLogP: the log probability of this parse according to
each parser,

InterpLogCondP: an indicator feature based on the
binned log conditional probability according to
each parser,

RightBranch: an indicator function of each node that
lies on the right-most branch of the parse tree,

Heavy: an indicator function based on the size and lo-
cation of each nonterminal (designed to identify the
locations of “heavy” phrases),

LeftBranchLength: an indicator function of the binned
length of each left-branching chain,

RightBranchLength: an indicator function of the
binned length of each right-branching chain,

Rule: an indicator function of parent and children cate-
gories, optionally with head POS annotations,

NNGram: and indicator function of parent and n-gram
sequences of children categories, optionally head

666

 P
ar

se
r

 R
el

L
og

P

 I
nt

er
pL

og
C

on
d

P

 R
ig

ht
B

ra
nc

h

 H
ea

vy

 L
ef

tB
ra

nc
hL

en
gt

h

 R
ig

ht
B

ra
nc

hL
en

gt
h

 R
ul

e

 N
N

G
ra

m

 H
ea

d
s

 S
yn

S
em

H
ea

d
s

 R
B

C
on

te
xt

 S
ub

jV
er

bA
gr

 C
oP

ar

 C
oL

en
Pa

r

 W
or

d

 W
Pr

oj

 W
E

d
ge

s

 N
G

ra
m

T
re

e

 H
ea

d
T

re
e

-0.3

-0.2

-0.1

0.0

0.1

Berkeley
Brown
Combined

Figure 1: The average change in f-score on folds 19–20 and section 22 caused by removing a feature superclass
from the extended feature set and retraining. Difference in scores less that 0.1% are probably not significant. In this
experiment all rerankers were trained using the averaged perceptron algorithm. With the full extended feature set,
rerankers trained with the averaged perceptron algorithm achieve f-scores of 91.2% on both the Berkeley and Brown
parses, and 91.6% on the combined parses.

annotated, inspired by the n-gram rule features de-
scribed in Collins and Koo (2005),

Heads: an indicator function of “head-to-head” depen-
dencies,

SynSemHeads: an indicator function of the pair of syn-
tactic (i.e., functional) and semantic (i.e., lexical)
heads of each non-terminal,

RBContext: an indicator function of how much each
subtree deviates from from right-branching,

SubjVerbAgr: an indicator function of whether subject-
verb agreement is violated,

CoPar: an indicator function that fires when conjoined
phrases in a coordinate structure have approxi-
mately parallel syntactic structure,

CoLenPar: an indicator function that fires when con-
joined phrases in a coordinate structure have ap-
proximately the same length,

Word: an indicator function that identifies words and
their preterminals,

WProj: an indicator function that identifies words and
their phrasal projections up to their maximal pro-
jection,

WEdges: an indicator function that identifies the words
and POS tags appearing at the edges of each nonter-
minal,

NGramTree: an indicator function of the subtree con-
sisting of nodes connecting each pair of adjacent
words in the parse tree, and

HeadTree: a tree fragment consisting of a head word
and its projection up to its maximal projection, plus
all of the siblings of each node in this sequence (this
is like an auxiliary tree in a TAG).

The InterpLogCondP features were designed to
capture non-linearities in the way that the Berke-
ley and Brown parsers assign probabilities to trees.
We deliberately added features that incorporated lin-
guistic notions such as head, governor and maximal
projection, as the Berkeley parser does not explic-
itly condition on such information (in contrast to the
Brown parser, which does).

In fact, as the reader can verify the differences in
f-scores between rerankers containing the extended
features and the standard features is minimal. In
order to better study the importance of the various
features we conducted an ablation study, in which
we trained rerankers which were missing one feature
superclass from the 20 superclasses of the extended
feature set. In order to speed training time we used
the averaged perceptron algorithm (Collins, 2002)
(it converges an order of magnitude faster than the L-
BFGS algorithm we used in the other experiments,
but the f-score of the model estimated with the av-
eraged perceptron is approximately 0.1% lower than
when using L-BFGS). The results from this experi-
ment are shown in Figure 1. The averaged percep-
tron algorithm does not rely on the development data

667

(folds 19–20), so the results we report are average f-
scores on the development data and on section 22
(we did this because the differences are small, so
a larger evaluation set may be able to detect differ-
ences more reliably).

It is interesting that linguistically-informed fea-
tures (such as Heads, SynSemHeads and HeadTree)
seem to be much more important when reranking
the combined n-best lists than when reranking the
output of either parser alone. This suggests that the
log probability scores from both parsers are inter-
nally consistent, but need to be recalibrated when
the parses are combined. The log probability scores
from the parsers themselves (in the form of the In-
terpLogCondP feature) are also supplying useful in-
formation that the reranker features on their own are
not providing. Finally, the WEdges feature, which
identifies the words and POS at the left and right
boundaries of each nonterminal, also provides ex-
tremely useful information, especially for reranking
the Berkeley parser.

3 Conclusion

Reranking is a straight-forward method for improv-
ing the accuracy of n-best parsers. While one
might have hoped that reranking the n-best output
of the Berkeley parser, or the union of the outputs
of the Berkeley and Brown parsers, would dramat-
ically improve overall f-score, this seems not to be
the case. It’s possible that the features of current
rerankers have been implicitly designed to work well
with parsers like the Brown parser, but a reranker
with a dramatically enlarged feature set performs
only marginally better. This result was confirmed
by training a reranker with the extended features on
the union of the output of the Berkeley and Brown
parsers on sections 2–21 and testing on section 23
(i.e., the standard WSJ parsing evaluation), which
achieved an f-score of 91.49%; approximately 0.1%
higher than a reranker with the standard feature set
trained on the output of the Brown parser alone.

Acknowledgments

This research was funded by NSF awards 0530118,
0544127 and 0631667.

References
Eugene Charniak and Mark Johnson. 2005. Coarse-to-

fine n-best parsing and MaxEnt discriminative rerank-
ing. In Proceedings of the 43rd Annual Meeting of
the Association for Computational Linguistics, pages
173–180, Ann Arbor, Michigan, June. Association for
Computational Linguistics.

Michael Collins and Terry Koo. 2005. Discrimina-
tive reranking for natural language parsing. Compu-
tational Linguistics, 31(1):25–70.

Michael Collins. 2002. Discriminative training meth-
ods for hidden Markov models: Theory and experi-
ments with perceptron algorithms. In Proceedings of
the 2002 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1–8. Association for
Computational Linguistics.

Michell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

David McClosky, Eugene Charniak, and Mark Johnson.
2006. Effective self-training for parsing. In Proceed-
ings of the Human Language Technology Conference
of the NAACL, Main Conference, pages 152–159, New
York City, USA, June. Association for Computational
Linguistics.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and inter-
pretable tree annotation. In Proceedings of the 21st In-
ternational Conference on Computational Linguistics
and 44th Annual Meeting of the Association for Com-
putational Linguistics, pages 433–440, Sydney, Aus-
tralia. Association for Computational Linguistics.

Hui Zhang, Min Zhang, Chew Lim Tan, and Haizhou
Li. 2009. K-best combination of syntactic parsers.
In Proceedings of the 2009 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1552–1560, Singapore. Association for Computational
Linguistics.

668

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 669–672,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

An Exploration of Off Topic Conversation

Whitney L. Cade
University of Memphis
365 Innovation Drive

Memphis, TN 38152-3115
wlcade@memphis.edu

Blair A. Lehman
University of Memphis
365 Innovation Drive

Memphis, TN 38152-3115
baleh-

man@memphis.edu

Andrew Olney
University of Memphis
365 Innovation Drive

Memphis, TN 38152-3115
aolney@memphis.edu

Abstract

In a corpus of expert tutoring dialogue, con-
versation that is considered to be “off topic”
(non-pedagogical) according to a previous
coding scheme is explored for its value in tu-
toring dynamics. Using the Linguistic Inquiry
and Word Count (LIWC) tool, phases of tutor-
ing categorized as “off topic” were compared
with interactive problem solving phases to ex-
plore how the two differ on the emotional,
psychological, and topical dimensions ana-
lyzed by LIWC. The results suggest that con-
versation classified as “off topic” serves as
motivation and broad pedagogy in tutoring.
These findings can be used to orient future re-
search on “off topic” conversation, and help to
make sense of both previous coding schemes
and noisy data sets.

1 Introduction

Methods of investigating a large and noisy data set
are of paramount importance in computational lin-
guistics. Quite often, qualitative coding schemes
are used to capture snapshots of the data set, but
these may gloss over finer details or miss the larger
picture. Add to that the messy and unpredictable
nature of naturalistic data, and analysis becomes
even more complicated. Therefore, a multi-method
approach to understanding pre-existing coding
schemes and orienting future in-depth analyses of
those schemes proves to be a useful means of ex-
ploring one’s data.

Dialogue, particularly tutorial dialogue, is one
area where large, noisy data sets are common.
Computer and human tutoring data have been

parsed, coded, and tested by a number of research-
ers, and much effort has been put into making
sense of the variability in the task-oriented dialo-
gue (e.g. Chi, Roy, and Hausmann, 2008; Graesser,
Person, and Magliano, 1995; Person, Lehman, and
Ozbun, 2007). This work has all been in pursuit of
a deep understanding of the complex interaction
between the human tutor and student, which, if
understood, could be used to boost the efficacy of
artificially intelligent computer tutors. Expert hu-
man tutoring has been found to increase learning
gains by as much as 2 sigmas (Bloom, 1984),
which makes understanding their methods and mo-
tives the goal of any tutor research.

The corpus under examination here was col-
lected with the express purpose of understanding
how truly expert tutors manage a tutoring session,
with an emphasis on creating a corpus of naturalis-
tic dialogue data. The corpus has been investigated
at two different grain sizes, a dialogue move level
and a sustained phases level. Our study investi-
gates in detail an “other” category that these cod-
ing schemes, which emphasize the pedagogy of the
tutors and the students reactions, classify as “off
topic” conversation. Off topic conversation, by
virtue of its name, does not address the tutoring
task in which the tutor and student are engaged.
However, given the prevalence of off topic conver-
sation in the corpus, it is perhaps more likely that
the function or utility of off topic conversation in
expert tutoring is indirect rather than non-existent,
suggesting that the noisiest part of the tutoring di-
alogue corpus, off topic conversation, should be
further explored.

Because any topic not pertaining to the topic at
hand may be broached in off topic conversation
and because the dialogue itself is full of false

669

starts, interruptions, and fragmented sentences, it is
reasonable to explore off topic conversation using
a bag of words method that is applicable to a varie-
ty of formal and informal texts. One such method
is the Linguistic Inquiry and Word Count (LIWC)
tool developed by Pennebaker et al., (2001), which
looks for words that fall into specific, predeter-
mined categories such as COGNITIVE MECHANISMS

and POSITIVE EMOTIONS, then reports the percent
of words in the document that fall into that catego-
ry. LIWC provides over 70 possible categories,
and can help sketch a rough picture of the verbal
dynamics of a text (Mairesse and Walker, 2006;
Mihalcea and Strapparava, 2009). Using a readily
available tool like LIWC allows an examination of
the variability within off topic conversation based
on predetermined LIWC features. We can also
compare these results to a prominent pedagogical
category, such as scaffolding, that a current coding
scheme particularly emphasizes, and examine the
differences between the two.

In this analysis, the task-orientation and utility
of “off topic” conversation are investigated by
comparing its outcome scores in certain dimen-
sions of LIWC to a classic pedagogical and inter-
active phase of tutoring: scaffolding (Rogoff and
Gardner, 1984). Scaffolding, previously identified
in a tutorial dialogue coding scheme (Cade, Copel-
and, Person, and D’Mello, 2008), involves much of
the conversational give-and-take expected in ca-
sual off topic conversation, but is considered to be
a very focused, on task phase of tutoring. Knowing
how off topic conversation differs from scaffolding
may help further exploration of this forgotten
phase of tutoring. Likewise, it would give us direc-
tion in how to structure future coding schemes that
would help bring clarity to the data set.

2 Methods

In this study, pedagogical and non-pedagogical
phases of expert tutoring sessions were compared
on linguistic dimensions to get at the diverse nature
of off topic conversation within a naturalistic ex-
pert tutoring session.

The corpus under examination was collected in
a previous study on expert human tutors. There-
fore, what follows is a brief synopsis of how this
corpus was collected.

Ten expert math and science tutors (4 male and
6 female) were recruited through local tutoring

agencies and schools. Tutors were considered “ex-
pert” when they met the following criteria: they
had to be licensed to teach at the secondary level,
have five or more years of tutoring experience, be
employed by a professional tutoring agency, and
come highly recommended by school personnel
who specialize in providing support to students
who are struggling academically. Student partici-
pants were in grades 7 to 12, except for one who
was obtaining a GED. All of the students were in
academic trouble and actively sought out tutoring.

All sessions were unobtrusively videotaped at
the location decided upon by the tutor and student.
The researcher turned on the camera and left the
room when the session began. Each student parti-
cipated in a maximum of two tutorial sessions,
while each tutor participated in between two and
eight tutoring sessions. These 50 1-hour tutoring
sessions were then transcribed.

Two previously identified phases of tutoring (or
“modes”), Off Topic and Scaffolding, were com-
pared to investigate their psychological, emotional,
and topical differences. To do this, instances of
each mode were extracted from 30 sessions (all
sessions that contained at least one Off Topic and
one Scaffolding mode). If a session had multiple
occurrences of a single mode, those modes were
compiled into a single document. Documents were
capped at 1000 words each to prevent differences
in word count between the modes from affecting
the outcomes. These documents were also sepa-
rated by speaker (tutor or student); speakers may
be differentially motivated to broach certain topics,
and so separating out these effects leads to more
specific identification of conversational dynamics.
Each session’s Scaffolding and Off Topic docu-
ment was then analyzed using LIWClite 7, which
calculates the percentage of each document’s
words that fall into specific, predefined categories.
Though this version of LIWC offers over 70 lin-
guistic categories, only 15 were of interest in de-
termining the nature of off topic conversation:
SOCIAL PROCESSES (ex: mate, talk, they), FAMILY

(daughter, husband, aunt), FRIENDS (buddy, neigh-
bor), AFFECTIVE PROCESSES (happy, cried),
POSITIVE EMOTION (nice, sweet), NEGATIVE

EMOTIONN (hurt, ugly, nasty) ANXIETY (worried,
nervous), TENTATIVENESS (maybe, perhaps),
CERTAINTY (always, never), WORK (majors, class),
ACHIEVEMENT (earn, win), LEISURE (chat, movie),
HOME (kitchen, family), NONFLUENCIES (umm,

670

hm), and FUTURE (will, gonna).
These categories are the most relevant in illu-

strating the emotional, topical, and psychological
picture of conversation in tutoring when compared
with the more on-task behavior of problem solving.

3 Discussion of Results

LIWC
Category

T
/S

Off
Top
M

Scaff

M

Wil-
coxon
p-val

Paired
t-test
t-val

Co-
hen’s
d

Social
Process

T 11.15 7.75 <0.01 <0.01 1.37
S 8.25 4.87 <0.01 <0.01 0.90

Positive
Emotion

T 5.41 4.83 0.27 0.29
S 6.54 4.54 0.09 0.05 0.47

Tentative T 3.10 1.91 <0.01 <0.01 1.08
S 2.68 1.60 0.02 0.02 0.65

Work T 2.90 1.10 <0.01 <0.01 0.86
S 2.70 2.09 0.54 0.43

Achieve T 1.02 0.95 0.67 0.76
S 0.52 1.89 <0.01 <0.01 -0.92

Leisure T 0.78 0.23 0.60 0.27
S 0.50 0.15 0.05 0.07 0.50

Home T 0.30 0.04 0.02 0.05 0.53
S 0.24 0.01 0.03 0.17 0.37

Nonfluen. T 1.51 1.11 0.04 0.08 0.44
S 3.89 4.14 0.17 0.82

Future T 1.13 1.23 0.80 0.66
S 0.74 1.35 0.01 0.04 -0.49

Table 1. LIWC Dimensions with Significant Results

Since a normal distribution of scores cannot be
assumed in this analysis, comparisons between Off
Topic conversation and Scaffolding dialogue were
made by comparing the LIWC scores of the modes
using both Wilcoxon’s signed-rank test and a
paired t-test, with similar outcomes. Effect sizes
were also analyzed by calculating Cohen’s d. Table
1 illustrates the significant results that emerged. In
total, each category investigated occurs more in
Off Topic than in Scaffolding, with the exception
of a student’s discussion of ACHIEVEMENT and
FUTURE.

From this analysis, an interesting pattern of re-
sults emerges. The Off Topic mode had previously
been characterized as a conversation that had noth-
ing to do with the lesson at hand, which connoted
that it is fairly irrelevant. However, Off Topic does
not seem to be so wholly “off topic.” Tutors and
students in the Off Topic mode talk about work
more often than they do in the Scaffolding mode,
which is a mode where nothing but work is done.
WORK words, according to the authors of LIWC,
are mostly school-related. Off Topic may be a
mode that allows the tutor to discuss test-taking
skills, study strategies, and remind students what

tasks need to be completed before the next tutoring
session. For instance, one tutor divided up a study
guide into manageable portions that needed to be
completed every night so that the student would be
prepared for an upcoming test. Previous to now,
these conversations have only been qualitatively
observed, but this supports a more in-depth analy-
sis of what type of work tutors are talking about
when they are supposedly discussing non-
pedagogical topics.

This hypothesis is supported by the significant
amount of conversation that takes place in Off
Topic about the home; if FAMILY and FRIENDS

(which may crop up in casual conversation about
HOME-related topics) are not discussed significant-
ly more in Off Topic, but HOME is, it may be that
tutors are informing students of what sort of work
needs to be done at home, and strategies to get
work completed when on their own.

This may also explain why both students and
tutors use more TENTATIVE words in Off Topic.
Although it would seem that students should be
more tentative and nonfluent when discussing dif-
ficult problem solving, they may be tentative in
Off Topic when the tutor makes suggestions about
studying and working. These suggestions of the
tutor’s may be framed using language like “may-
be” and “perhaps” to make them more polite, and
the student echoes this language in return. Thus,
tentativeness may not come from uncertainty, but
from suggestions couched in polite language.

It also appears that Off Topic conversation may
not serve as a “pep talk” time; although it does
contain more POSITIVE EMOTION words than Scaf-
folding, it does not expound upon the student’s
achievements. ACHIEVEMENT words are more
common in Scaffolding, where students are receiv-
ing praise for their problem solving efforts. Off
Topic conversation may seek to motivate the stu-
dent in more subtle ways. By using more words
that refer to SOCIAL PROCESSES (such as the third
person plural and words like “talked”), the tutor
and student may be building rapport with one
another. This rapport may become important later
on when the tutor gives the student blatantly nega-
tive feedback (Person et al., 2007), which can be
motivationally damaging. Rapport may protect
against flagging motivation in the student when the
tutor uses “us” language and connects with the stu-
dent in a more casual conversation.

671

4 Conclusions and Future Work

Our goal in this work was to use a simple linguistic
analysis tool to uncover the hidden depths of an
existing dialogue coding scheme. The use of such
tools can paint a rich picture of the psychological,
emotional, and topical content of a corpus, and can
be used in two ways: first, it may help determine if
a deeper inquiry into a hypothesis is warranted,
and second, it can immediately orient future re-
search towards key issues in a corpus without the
less rigorous speculation and qualitative observa-
tions. The nature of broader coding schemes can
come to be understood in a multifaceted manner
using linguistic analysis, which may also inform
future work.

Here, we have observed that off topic conversa-
tion in an expert tutoring dialogue corpus operates
in a multidimensional way that is not irrelevant
when studying the dynamics of an expert tutoring
session. By using the LIWC tool developed by
Pennebaker et al. (2001), themes concerning inter-
personal rapport and global pedagogy emerge. The
purpose of “off topic” conversation in tutoring may
therefore be linked more to building a relationship
between the tutor and the student, which is neces-
sary for the trials of problem solving, and for the
dispensation of “study strategies” that are more
globally task-oriented, but are, nonetheless, impor-
tant in understanding the pedagogical strategies of
expert tutors. Off topic conversation was also hy-
pothesized to function similarly in other tutorial
work (Rosé, Kumar, Aleven, Robinson, and Wu,
2006).

One way of adding validity to these claims
would be to investigate the topics broached in Off
Topic through a topics model. In this way, recur-
ring themes in off topic conversation can be re-
vealed, and these themes can be aligned with the
LIWC findings to see if a pattern emerges. From
there, a new coding scheme may be devised to cap-
ture the multiple types of off topic conversation,
which, for now, seem to be divided between inter-
personal, rapport building and global pedagogy.
This method of exploring a corpus has proven to
be a useful approach when investigating possible
avenues of improvement to coding schemes.

Acknowledgements
The research reported here was supported by the
Institute of Education Sciences, U.S. Department

of Education, through Grant R305A080594 to the
University of Memphis. The opinions expressed
are those of the authors and do not represent views
of the Institute or the U.S. Department of Educa-
tion.

References
Benjamin Bloom. 1984. The 2 sigma problem: The

search for methods of group instruction as effective
as one-to-one tutoring. Educational Researcher,
13:4-16.

Whitney Cade, Jessica Copeland, Natalie Person, and
Sidney D’Mello. 2008. Dialogue modes in expert tu-
toring. Proceedings of the 9th International Confe-
rence on Intelligent Tutoring Systems, 470-479.
Springer-Verlag, Berlin, Germany.

Michelene Chi, Marguerite Roy, and Robert Hausmann.
2008. Observing tutorial dialogues collaboratively:
Insights about human tutoring effectiveness from vi-
carious learning. Cognitive Science, 32(2):301-341.

Art Graesser, Natalie Person, and Joseph Magliano.
1995. Collaborative dialogue patterns in naturalistic
one-on-one tutoring. Applied Cognitive Psychology,
9:359-387.

François Mairesse and Marilyn Walker. 2006. Automat-
ic Recognition of Personality in Conversation. In
Proceedings of the Human Language Technology
Conference of the North American Chapter of the
ACL, 85–88. Association for Computational Linguis-
tics, New York.

Rada Mihalcea and Carlo Strapparava. 2009. The Lie
Detector: Explorations in the Automatic Recognition
of Deceptive Language. In Proceedings of the ACL-
IJCNLP 2009 Conference Short Papers, 309-312.
Association for Computational Linguistics, Suntec,
Singapore.

James Pennebaker, Martha Francis, and Roger Booth.
2001. Linguistic Inquiry and Word Count (LIWC):
LIWC2001. Lawrence Erlbaum Associates, Mahwah,
NJ.

Natalie Person, Blair Lehman, and Rachel Ozbun. 2007.
Pedagogical and motivational dialogue moves used
by expert tutors. Presented at the 17th Annual Meet-
ing of the Society for Text and Discourse. Glasgow,
Scotland.

Barbara Rogoff and William Gardner. 1984. Adult
guidance of cognitive development. Everyday cogni-
tion: Its development in social context, 95-116. Har-
vard University Press, Cambridge, MA.

Carolyn Rosé, Rohit Kumar, Vincent Aleven, Allen
Robinson, & Chih Wu. 2006. CycleTalk: Data dri-
ven design of support for simulation based learning.
International Journal of Artificial Intelligence in
Education, 16:195-223.

672

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 673–676,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Making Conversational Structure Explicit:

Identification of Initiation-response Pairs within Online Discussions

Yi-Chia Wang Carolyn P. Rosé
Language Technologies Institute Language Technologies Institute

Carnegie Mellon University Carnegie Mellon University

Pittsburgh, PA 15213, USA Pittsburgh, PA 15213, USA
yichiaw@cs.cmu.edu cprose@cs.cmu.edu

Abstract

In this paper we investigate how to identify

initiation-response pairs in asynchronous,

multi-threaded, multi-party conversations.

We formulate the task of identifying initia-

tion-response pairs as a pairwise ranking

problem. A novel variant of Latent Semantic

Analysis (LSA) is proposed to overcome a li-

mitation of standard LSA models, namely that

uncommon words, which are critical for sig-

naling initiation-response links, tend to be

deemphasized as it is the more frequent terms

that end up closer to the latent factors selected

through singular value decomposition. We

present experimental results demonstrating

significantly better performance of the novel

variant of LSA over standard LSA.

1 Introduction

In recent years, research in the analysis of social

media (e.g., weblogs, discussion boards, and mes-

sengers) has grown in popularity. Unlike exposito-

ry text, the data produced through use of social

media is often conversational, multi-threaded, and

more complex because of the involvement of nu-

merous participants who are distributed both across

time and across space. Recovering the multi-

threaded structure is an active area of research.

In this paper, we form the foundation for a

broader study of this type of data by investigating

the basic unit of interaction, referred to as an initi-
ation-response pair (Schegloff, 2007). Initiation-

response pairs are pairs of utterances that are typi-

cally contributed by different participants, and

where the first pair part sets up an expectation for

the second pair part. Types of common initiation-

response pairs include question-answer, assess-

ment-agreement, blame-denial, etc. Note that al-

though sometimes discussion forum interfaces

make the thread structure of the interaction expli-

cit, these affordances are not always present. And

even in forums that have these affordances, the

apparent structure of the discourse as represented

through the interface may not capture all of the

contingencies between contributions in the unfold-

ing conversation. Thus, the goal of this investiga-

tion is to investigate approaches for automatically

identifying initiation-response pairs in conversa-

tions.

One of the challenges in identifying initiation-

response pairs is that the related messages are not

necessarily adjacent to each other in the stream of

contributed messages, especially within the asyn-

chronous environment of social media. Further-

more, individual differences related to writing style

or creative expression of self may also complicate

the identification of the intended connections be-

tween contributions. Identification of initiation-

response pairs is an important step towards auto-

matic processing of conversational data. One po-

tential application of this work is conversation

summarization. A summary should include both

the initiation and response as a coherent unit or it

may fail to capture the intended meaning.

We formulate the task of identifying initiation-

response pairs as a pairwise ranking problem. The

goal is to distinguish message pairs that constitute

an initiation-response pair from those that do not.

We believe a ranking approach, where the degree

of relatedness between a message pair can be con-

sidered in light of the relatedness between each of

them and the surrounding messages within the

same thread, is a more suitable paradigm for this

task than a discrete classification-based paradigm.

 Previous work on recovering conversational

structure has relied on simple lexical cohesion

673

measures (i.e., cosine similarity), temporal infor-

mation (Lewis and Knowles, 1997; Wang et al.,

2008), and meta-data (Minkov et al., 2006). How-

ever, relatively little work has investigated the im-

portance of specifically in-focus connections

between initiation-response pairs and utilized them

as clues for the task. Consider, for example, the

following excerpt discussing whether congress

should pass a bill requiring the use of smaller cars

to save the environment:
a) Regressing to smaller vehicles would discourage

business from producing more pollution.

b) If CO2 emissions are lowered, wouldn't tax revenues

be lowered as well? Are the democrats going to wil-

lingly give up Medicaid and social security?

Although segment (b) is a reply to segment (a), the

amount of word overlap is minimal. Nonetheless,

we can determine that (b) is a response to (a) by

recognizing the in-focus connections, such as "ve-

hicles-CO2" and "pollution-CO2." To properly

account for connections between initiations and

responses, we introduce a novel variant of Latent

Semantic Analysis (LSA) into our ranking model.

In section 2, we describe the Usenet data and

how we extract a large corpus of initiation-

response pairs from it. Section 3 explains our rank-

ing model as well as the proposed novel LSA vari-

ation. The experimental results and discussion are

detailed in Section 4 and Section 5, respectively.

2 Usenet and Generation of Data

The experiment for this paper was conducted using

data crawled from the alt.politics.usa Usenet (User

Network) discussion forum, including all posts

from the period between June 2003 and June 2008.

The resulting set contains 784,708 posts. The posts

in this dataset also contain meta-data that makes

parent-child relationships explicit (i.e., through the

References field). Thus, we know 625,116 of the

posts are explicit responses to others posts. The

messages are organized into a total of 77,985 dis-

cussion threads, each of which has 2 or more posts.

In order to evaluate the quality of using the ex-

plicit reply structure as our gold standard for initia-

tion-response links, we asked human judges to

annotate the response structure of a random-

selected medium-length discussion (19 posts)

where we had removed the meta-data that indi-

cated the initiation-reply structure. The result

shows the accuracy of our gold standard is 0.89.

To set up the data as a pairwise ranking prob-

lem, we arranged the posts in the corpus into in-

stances containing three messages each, one of

which is a response message, one of which is the

actual initiating message, and the other of which is

a foil selected from the same thread. The idea is

that the ranking model will be trained to prefer the

actual initiating message in contrast to the foil.

The grain size of our examples is finer than

whole messages. More specifically, positive exam-

ples are pairs of spans of text that have an initia-

tion-reply relationship. We began the process with

pairs of messages where the meta-data indicates

that an initiation-reply relationship exits, but we

didn’t stop there. For our task it is important to

narrow down to the specific spans of text that have

the initiation-response relation. For this, we used

the indication of quoted material within a message.

We observed that when users explicitly quote a

portion of a previously posted message, the portion

of text immediately following the quoted material

tends to have an explicit discourse connection with

it. Consider the following example:
>> Why is the quality of life of the child, mother,
>> and society at large, more important than the
>> sanctity of life?
> Because in the case of anencephaly at least,
> the life is ended before it begins.
We disagree on this point. Why do you refuse to
provide your very own positive definition of life?
Do you believe life begins before birth? At birth?
After birth? Never?

In this thread, the reply expresses an opinion

against the first level quote, but not the second lev-

el quote. Thus, we used segments of text with sin-

gle quotes as an initiation and the immediately

following non-quoted text as the response. We ex-

tracted positive examples by scanning each post to

locate the first level quote that is immediately fol-

lowed by unquoted content. If such quoted material

was found, the quoted material and the unquoted

response were both extracted to form a positive

example. Otherwise, the message was discarded.

For each post P where we extracted a positive

example, we also extracted a negative example by

picking a random post R from the same thread as

P. We selected the negative example in such a way

to make the task difficult in a realistic way. Choos-

ing R from other threads would make the task too

easy because the topics of P and R would most

likely be different. We also stipulated that R cannot

be the parent, grandparent, sibling, or child of P.

674

Together the non-quoted text of P and R forms a

negative instance. Thus, the final dataset consists

of pairs of message pairs ((pi, pj), (pi, pk)), where

they have the same reply message pi, and pj is the

correct quote message of pi, but pk is not. In other

words, (pi, pj) is considered as a positive example;

(pi, pk) is a negative example. We constructed a

total of 100,028 instances for our dataset, 10,000

(~10%) of which were used for testing, and 90,028

(~90%) of which were the learning set used to con-

struct the LSA space described in the next section.

3 Ranking Models for Identification of

Initiation-Response Pairs

Our pairwise ranking model
1
 takes as input an or-

dered pair of message pairs ((pi, pj), (pi, pk)) and

computes their relatedness using a similarity func-

tion sim. Specifically,

(xij, xik) = (sim (pi, pj), sim (pi, pk))

where xij is the similarity value between post pi and

pj; xik is the similarity value between post pi and pk.

To determine which of the two message pairs ranks

higher regarding initiation-response relatedness,

we use the following scoring function to compare

their corresponding similarity values:

score (xij, xik) = xij – xik

If the score is positive, the model ranks (pi, pj)

higher than (pi, pk) and vice versa. A message pair

ranked higher means it has more evidence of being

an initiation-reply link, compared to the other pair.

3.1 Alternative Similarity Functions

We introduce and motivate 3 alternative similarity

functions, where the first two are considered as

baseline approaches and the third one is a novel

variation of LSA. We argue that the proposed LSA

variation is an appropriate semantic similarity

measurement for identifying topic continuation and

initiation-reply pairs in online discussions.

Cosine Similarity (cossim). We choose an ap-

proach that uses only lexical cohesion as our base-

line. Previous work (Lewis and Knowles, 1997;

Wang et al., 2008) has verified its usefulness for

the thread identification task. In this case,

1 We cast the problem as a pairwise ranking problem in order

to focus specifically on the issue of characterizing how initia-

tion-response links are encoded in language through lexical

choice. Note that once trained, pairwise ranking models can

be used to rank multiple instances.

sim(pi,pj) = cossim(pi,pj)

where cossim(pi,pj) computes the cosine of the an-

gle between two posts pi and pj while they are

represented as term vectors.

LSA Average Similarity (lsaavg). LSA is a well-

known method for grouping semantically related

words (Landauer et al., 1998). It represents word

meanings in a concept space with dimensionality k.

Before we describe how to compute average simi-

larity given an LSA space, we explain how the

LSA space was constructed in our work. First, we

construct a term-by-document matrix, where we

use the 90,028 message learning set mentioned at

the end of Section 2. Next, LSA applies singular

value decomposition to the matrix, and reduces the

dimensionality of the feature space to a k dimen-

sional concept space. This generated LSA space is

used by both lsaavg and lsacart later.

For lsaavg, we follow Foltz et al. (1998):

The meaning of each post is represented as a vec-

tor in the LSA space by averaging across the LSA

representations for each of its words. The similari-

ty between the two posts is then determined by

computing the cosine value of their LSA vectors.

This is the typical method for using LSA in text

similarity comparisons. However, note that not all

words carry equal weight within the vector that

results from this averaging process. Words that are

closer to the "semantic prototypes" represented by

each of the k dimensions of the reduced vector

space will have vectors with longer lengths than

words that are less prototypical. Thus, those words

that are closer to those prototypes will have a larg-

er effect on the direction of the resulting vector and

therefore on the comparison with other texts. An

important consideration is whether this is a desira-

ble effect. It would lead to deemphasizing those

unusual types of information that might be being

discussed as part of a post. However, one might

expect that those things that are unusual types of

information might actually be more likely to be the

in-focus information within an initiation that res-

ponses may be likely to refer to. In that case, for

our purposes, we would not expect this typical me-

thod for applying LSA to work well.

LSA Cartesian Similarity (lsacart). To properly

account for connections between initiations and

() ()

==

∑∑
∈∈

j

pt

b

i

pt

a

jiji
p

t

p

t

pplsaavgppsim jbia ,cos,,

675

responses that include unusual words, we introduce

the following similarity function:

where we take the mean of the cosine values for all

the word pairs in the Cartesian product of posts pi

and pj. Note that in this formulation, all words have

an equal chance to affect the overall similarity be-

tween vectors since it is the angle represented by

each word in a pair that comes to play when cosine

distance is applied to a word pair. Length is no

longer a factor. Moreover, the averaging is across

cosine similarity scores rather than LSA vectors.

4 Experimental Results

The results are found in Table 1. For comparison,

we also report the random baseline (0.50).

 Random

Baseline

Cos-

Similarity

LSA-

Average

LSA-

Cart

Accuracy 0.50 0.66 0.60 0.71

Table 1. Overview of results

Besides the random baseline, LSA-Average per-

forms the worst (0.60), with simple Cosine similar-

ity (0.66) in the middle, and LSA-Cart (0.71) the

best, with each of the pairwise contrasts being sta-

tistically significant. We believe the reason why

LSA-Average performs so poorly on this task is

precisely because, as discussed in last section, it

deemphasizes those words that contribute the most

unusual content. LSA-Cart addresses this issue.

To further understand this effect, we conducted

an error analysis. We divided the instances into 4

sets based on the lexical cohesion between the re-

sponse and the true initiation and between the re-

sponse and the foil, by taking the median split on

the distributions of these two cohesion scores. Our

finding is that model performances vary by subset.

In particular, we find that it is only in cases where

the positive example has low lexical cohesion (e.g.

our "vehicles-CO2" and "pollution-CO2" example

from the earlier section), that we see the benefit of

the LSA-Cart approach. In other cases, where the

cohesion between the reply and the true initiation

is high, Cos-Similarity performs best.

5 Discussion and Conclusion

We have argued why the task of detecting initia-

tion-response pairs in multi-party discussions is

important and challenging. We proposed a method

for acquiring a large corpus for use to identify init-

iation-response pairs. In our experiments, we have

shown that the ranking model using a variant of

LSA performs best, which affirms our hypothesis

that unusual information and uncommon words

tends to be the focus of ongoing discussions and

therefore to be the key in identifying initiation-

response links.

In future work, we plan to further investigate the

connection between an initiation-response pairs

from multiple dimensions, such as topical cohe-

rence, semantic relatedness, conversation acts, etc.

One important current direction is to develop a

richer operationalization of the interaction that ac-

counts for the way posts sometimes respond to a

user, a collection of users, or a user’s posting histo-

ry, rather than specific posts per se.

Acknowledgments

We thank Mary McGlohon for sharing her data

with us. This research was funded through NSF

grant DRL-0835426.

References

David D. Lewis and Kimberly A. Knowles. 1997.

Threading electronic mail: A preliminary study. In-

formation Processing and Management, 33(2), 209–

217.

Einat Minkov, William W. Cohen, Andrew Y. Ng.

2006. Contextual Search and Name Disambiguation

in Email using Graphs. In Proceedings of the Inter-

national ACM Conference on Research and Devel-

opment in Information Retrieval (SIGIR), pages 35–

42. ACM Press, 2006.

Peter W. Foltz, Walter Kintsch, Thomas K. Landauer.

1998. Textual coherence using latent semantic analy-

sis. Discourse Processes, 25, 285–307.

Thomas K. Landauer, Peter W. Foltz, and Darrell La-

ham. 1998. Introduction to latent semantic analysis.

Discourse Processes, 25, 259-284.

Schegloff, E. 2007. Sequence Organization in Interac-

tion: A Primer in Conversation Analysis, Cambridge

University Press.

Yi-Chia Wang, Mahesh Joshi, William W. Cohen, Ca-

rolyn P. Rosé. 2008. Recovering Implicit Thread

Structure in Newsgroup Style Conversations. In Pro-

ceedings of the 2nd International Conference on

Weblogs and Social Media (ICWSM II), Seattle,

USA.

() ()
()

ji

pptt

ba

jiji
pp

tt

pplsacartppsim
jiba

,cos

,,
),(

∑
×∈

==

676

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 677–680,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Engaging learning groups using Social Interaction Strategies

Rohit Kumar Carolyn P. Rosé
Language Technologies Institute

Carnegie Mellon University, Pittsburgh, PA, 15213
rohitk@cs.cmu.edu cprose@cs.cmu.edu

Abstract

Conversational Agents have been shown to be
effective tutors in a wide range of educational
domains. However, these agents are often ig-
nored and abused in collaborative learning
scenarios involving multiple students. In our
work presented here, we design and evaluate
interaction strategies motivated from prior re-
search in small group communication. We
will discuss how such strategies can be im-
plemented in agents. As a first step towards
evaluating agents that can interact socially, we
report results showing that human tutors em-
ploying these strategies are able to cover more
concepts with the students besides being rated
as better integrated, likeable and friendlier.

1 Introduction

Conversational Agents (CAs) are autonomous in-
terfaces that interact with users via spoken or writ-
ten conversation. One of the applications of CAs is
tutoring. Various research groups have developed
tutoring agents in domains like reading, algebra,
geometry, calculus, physics, computer literacy,
programming, foreign languages, research methods
and thermodynamics. Many of the evaluations
show that CAs can be effective tutors (Arnott et.
al., 2008; Kumar et. al., 2007; Graesser et. al.,
2005).

Most systems that use CAs as tutors have been
built for learning scenarios involving one student.
Evaluation of learning technologies involving stu-
dents working in groups with interactive agents has
shown that learners are helped both by learning as
a group and receiving tutorials from agents (Kumar
et. al., 2007). However, some previous studies
have reported that students learning in groups ig-

nore the tutor’s messages, unlike the case where
students are individually tutored. Groups are more
likely to abuse tutors than individual students.

We reason that the presence of other students in
collaborative learning scenarios causes the agents
to compete for the attention of the students. Since
the agents are not adept at performing social inter-
active behavior, which makes up the bulk of for-
mative communication in a group, they are quickly
pushed to the periphery of the group.

Research on small group communication has
identified twelve interaction categories that are
commonly observed in small groups (Bales, 1950).
These categories are broadly classified into task
and social-emotional categories. Content presented
by most current CAs mostly classifies under the
task categories. In section 2, we will list the con-
versational strategies motivated from the three pos-
itive social-emotional interaction categories.
Thereafter, the implementation and evaluation of a
CA that interleaves these social interaction strate-
gies while executing a task plan will be described.

2 Social Interaction Strategies

Balesian methodology (Bales, 1950) identifies
three positive social-emotional interaction catego-
ries: showing solidarity, showing tension release
and agreeing. Participants contribute turns of these
categories to address the problems of re-
integration, tension release and decision respec-
tively. We have mapped these categories to practi-
cally implementable conversational strategies. This
mapping is shown in table 1 ahead.

Each strategy is implemented as an instantiation
of a conversational behavior. Most of the strategies
listed in Table 1 are realized as prompts, triggered
by rules based on agent plan, discourse and context
features. For example, strategy 1e is triggered

677

when one or more students in the group are found
to be inactive for over 5 minutes. In this event, the
tutor chooses to raise the status of the inactive stu-
dents by eliciting contributions from them through
a prompt like: Do you have any suggestions Mike?
More implementation details of these strategies
and triggers are discussed in the following section.

1. Showing Solidarity
Raises other's status, gives help, reward
1a. Do Introductions
Introduce and ask names of all participants
1b. Be Protective & Nurturing
Discourage teasing
1c. Give Re-assurance
When student is discontent, asking for help
1d. Complement / Praise
To acknowledge student contributions
1e. Encourage
When group or members are inactive
1f. Conclude Socially
2. Showing Tension Release
Jokes, laughs, shows satisfaction
2a. Expression of feeling better
After periods of tension, work pressure
2b. Be cheerful
2c. Express enthusiasm, elation, satisfaction
On completing significant steps of the task
3. Agreeing
Shows passive acceptance, understands,
concurs, complies
3a. Show attention
To student ideas as encouragement
3b. Show comprehension / approval
To student opinions and orientations

Table 1. Social Interaction Strategies for three
social-emotional interaction categories

3 WrenchTalker: Implementation

WrenchTalker is a CA we have built to employ the
social interaction strategies listed in section 2. It
helps teams of engineering students learn and ap-
ply basic concepts of mechanical stress while they
participate in a freshmen lab project to design an
aluminum wrench. Students can interact with this
agent using a text-based chat environment.

The agent is built using the Basilica architecture
(Kumar and Rosé, 2009). Under this architecture,
CAs are modeled as a network of behavioral
components. There are three types of components:

actors (actuators / performers), filters (perceptors /
annotators / cordinators) and memories. Figure 1
below shows a simplified depiction of the
WrenchTalker component network.

Figure 1. Component Network of WrenchTalker

Three of the actor and filter components
correspond to three observable behaviors of the
tutor, i.e., Introducing (ai, fi), Prompting (ap, fp) and
Tutoring (at, ft). Most of the other filter
components form a sub-network that annotates
turns with applicable semantic categories,
accumulates them to identify inactive students and
generates events that regulate the controllers.

The plan controller (fplan) is responsible for
executing the agent’s interaction plan, which is
comprised of 37 steps. The plan is executed largely
sequentially; however the plan controller can
choose to skip some steps in the interest of time. In
the experiment described in section 5, the same
plan controller is used in all three conditions. The
social controller (fsocial) implements the 12
strategies listed earlier. The strategies are triggered
by rules based on combinations of three
conditions: the last executed plan step, semantic
categories associated with the most recent student
turns and the ratio of tutor turns generated by fsocial
to fplan. The first two conditions attempt to ensure
that social behavior is suitable in the current
conversational context and the third condition
regulates the amount of social behavior by the CA.

The plan and social controllers are connected so
that they regulate each other. For instance, when
the plan controller is working, it blocks fsocial. Upon
completion of the blocking step, fsocial is given
control, which can then choose to perform a
strategy by blocking fplan before it progresses to the
next step. Reflex strategies like 1b are not blocked.

Once the controllers determine a step or a strat-
egy that is to be generated, the actors generate their
turns. For example, strategy 1a is generated by ac-
tor ai after it is triggered by the social controller.

We note that Basilica provides the flexibility to
build complicated pipelines, as demonstrated in
this case by the use of two controllers.

678

4 Related Work

To contextualize our research with other work on
CAs, we classify agents with the social interaction
strategies listed in Table 1 as social interfaces fol-
lowing the taxonomy proposed by Isbister (2002).
Within this class of CAs, researchers have investi-
gated the technical challenges and effects of con-
versational behavior that are similar in motivation
to the ones we are exploring. Bickmore et. al.
(2009) report that users found agents with autobio-
graphies, i.e., back stories in first person more en-
joyable and they completed more conversations
with such agents. Dybala et. al. (2009) found that
agents equipped with humor were evaluated as
more human-like, funny and likeable. In a multi-
party conversational scenario, Dohsaka et. al.
(2009) found that an agent’s use of emphatic ex-
pressions improved user satisfaction and user rat-
ing of the agent. We note that use of CAs as social
interfaces has been found to have effects on both
performance and perception metrics.

5 Experimental Design

In order to evaluate the effect of social interaction
strategies listed in Table 1, we designed an expe-
riment with three conditions. In the experimental
condition (Social), students interacted with an
agent that was equipped with our social interaction
strategies, unlike the control condition (Task). In
the third condition, a human tutor was allowed to
intervene while the students interacted with a Task
agent. In all three conditions, students go through
the same task plan. However, the degree of social
performance is varied from minimal (Task) to ideal
(Human). We hypothesize that the human and so-
cial agents will be rated better than the Task agent.

We conducted a between subjects experiment
during a freshmen computer aided engineering lab.
98 students participated in the experiment, which
was held over six sessions spread evenly between
two days. The two days of the experiment were
separated by two weeks. Students were grouped
into teams of three to four individuals. Students
were grouped so that no two members of the same
team sat next to each other during the lab, to en-
sure all communication was recorded. The teams
were distributed between the three conditions.

Each session started with a follow-along tutori-
al of computer-aided analysis where the students

analyzed a wrench they had designed earlier. The
experimental manipulation happened during a col-
laborative design competition after the tutorial.
Students were asked to work as a team to design a
better wrench considering three aspects: ease of
use, cost and safety. Students were instructed to
make three new designs and calculate success
measures of each of the three considerations. They
were also told that a tutor will help them with two
designs so that they are well-prepared to do the
final design. No additional details about the tutor
were given. The students communicated with each
other and with the tutors using ConcertChat, an on-
line environment that provides text-based instant
messaging and workspace sharing facilities.

After spending 30-35 minutes on the design
competition, each student filled out a question-
naire. It was comprised of eighteen questions on a
seven point Likert-scale ranging from Strongly
Disagree (1) to Strongly Agree (7). The questions
were designed to elicit four types of ratings.

 Ratings about the tutor
 Ratings about the other team members
 Ratings about the design task
 Ratings about the team functioning

The questions in the first two classes elicited
perceived liking and integration and checked
whether the students noticed the tutor’s display of
the social interaction strategies. Task related ques-
tions asked about satisfaction, perceived legitimacy
and discussion quality.

6 Results

Table 2 below shows the mean values for ques-
tionnaire categories apart from ratings about team
members, since there were no significant effects
related to those questions.

 D1 D2 T S H
Integration 3.85 3.94 3.03 3.94 4.77

Liking 3.68 3.63 2.78 3.53 4.73
Friendly 5.13 5.43 4.47 5.56 5.83

T.Releasing 4.49 4.63 3.84 4.61 5.27
Agreeing 4.30 4.45 3.97 4.44 4.73

Satisfaction 4.66 5.77 5.09 4.75 5.97
Table 2. Mean outcomes per condition ((T)ask,(S)ocial,

(H)uman) and per day (Day1, and Day2)

The means are highlighted appropriately
(p<0.001, p<0.05, p<0.08) to indicate significant

679

differences from Day1 to Day2 and between the
Task condition and each of the other two using a
pairwise Tukey comparison.

First of all, we note that there is a significant
difference in task satisfaction between the two
days. We fine-tuned the timing parameters of the
plan controller after day 1 so that the students had
sufficient time to follow along with each of the
steps. This was particularly useful for the task con-
dition where the steps would be executed rapidly
due to lack of regulation by the social controller.

On the right side of Table 2, we notice that the
human tutors (H) were rated higher on being part
of the team (Integration), being more liked, being
friendlier and keeping the group more socially
comfortable (T.Releasing). On the other hand, the
social tutors (S) were rated to be friendlier and
were only marginally better at being seen as part of
the team.

 Strategy Social Human
Introducing 1a 2.67 3.80

Friendly 1b-1e 5.61 8.10
Concluding 1f 0.97 1.80
T.Releasing 2a-2c 5.81 1.77

Agreeing 3a-3b 1.78 4.90
Sum 16.83 22.17

Table 3. Mean counts of social turns by tutor

Note that human tutors were restricted to exhi-
bit only social behaviors, which were displayed in
addition to the same task related content given to
students in the other two conditions. Clearly, the
human tutors were better at employing the social
interaction strategies. To further investigate this,
we compare the number of turns corresponding to
the broad categories of strategies in Table 3. Hu-
man tutors performed significantly more (p<0.001)
social turns than the automated tutors in all strate-
gies except showing tension release.

7 Conclusions

In order to make CAs that can participate in multi-
party conversational scenarios, the agents must be
able to employ Social Interaction Strategies. Here
we have shown that the human tutors that use these
strategies are better integrated into the group, and
are considered more likeable and friendlier. These
tutors also cover more steps and concepts and take
less time to tutor the concepts, suggesting that the

students are more engaged and responsive to them.
On the other hand, automated tutors that employ
these strategies in our current implementation do
not show significant differences compared to task
tutor.

We note a contrast between the performance of
the human and the automated tutors with respect to
the frequency with which they employ these strat-
egies. Besides the frequent use of these strategies,
we believe human tutors were better at identifying
opportunities for employing these strategies, and
they are able to customize the prompt to better suit
the discourse context.

Acknowledgments

The research was supported by NSF grant number
DUE 837661

References

Elizabeth Arnott, Peter Hastings and David Allbritton,
2008, Research Methods Tutor: Evaluation of a di-
alogue-based tutoring system in the classroom, Beha-
vior Research Methods, 40 (3), 694-698

Robert F. Bales, 1950, Interaction process analysis: A
method for the study of small groups, Addison-
Wesley, Cambridge, MA

Timothy Bickmore, Daniel Schulman and Langxuan
Yin, Engagement vs. Deceit: Virtual Humans with
Human Autobiographies, 2009, IVA, Amsterdam

Kohji Dohsaka, Ryoto Asai, Ryichiro Higashinaka, Ya-
suhiro Minami and Eisaku Maeda, Effects of Con-
versational Agents on Human Communication in
Though Evoking Multi-Party dialogues, 2009, 10th
Annual SigDial, London, UK

Pawel Dybala, Michal Ptaszynski, Rafal Rzepka and
Kenji Araki, Humoroids: Conversational Agents that
induce positive emotions with humor, 2009, AAMAS,
Budapest, Hungary

Arthur C. Graesser, Patrick Chipman, Brian C. Haynes,
and Andrew Olney, 2005, AutoTutor: An Intelligent
Tutoring System with Mixed-initiative Dialogue,
IEEE Transactions in Education, 48, 612-618

Katherine Isbister and Patrick Doyle, Design and Evalu-
ation of Embodied Conversational Agents: A Pro-
posed Taxonomy, 2002, AAMAS Workshop:
Embodied Conversational Agents, Bologna, Italy

Rohit Kumar, Carolyn Rosé, Mahesh Joshi, Yi-Chia
Wang, Yue Cui and Allen Robinson, Tutorial Dialo-
gue as Adaptive Collaborative Learning Support,
13th AIED 2007, Los Angeles, California

Rohit Kumar, Carolyn Rosé, Building Conversational
Agents with Basilica, 2009, NAACL, Boulder, CO

680

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 681–684,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Using Entity-Based Features to Model Coherence in Student Essays

Jill Burstein
Educational Testing Service

Princeton, NJ 08541

Joel Tetreault
Educational Testing Service

Princeton, NJ 08541

Slava Andreyev
Educational Testing Service

Princeton, NJ 08541
jburstein@ets.org jtetreault@ets.org sandreyev@ets.org

Abstract

We show how the Barzilay and Lapata entity-

based coherence algorithm (2008) can be

applied to a new, noisy data domain – student

essays. We demonstrate that by combining

Barzilay and Lapata’s entity-based features

with novel features related to grammar errors

and word usage, one can greatly improve the

performance of automated coherence prediction

for student essays for different populations.

1 Introduction

There is a small body of work that has investigated

using NLP for the problem of identifying

coherence in student essays. For example, Foltz,

Kintsch & Landauer (1998), and Higgins, Burstein,

Marcu & Gentile (2004) have developed systems

that examine coherence in student writing. Foltz,

et al. (1998) systems measure lexical relatedness

between text segments by using vector-based

similarity between adjacent sentences; Higgins et

al’s (2004) system computes similarity across text

segments. Foltz et al.’s (1998) approach is in line

with the earlier TextTiling method that identifies

subtopic structure in text (Hearst, 1997).

Miltsakaki and Kukich (2000) addressed essay

coherence using Centering Theory (Grosz, Joshi &

Weinstein, 1995). More recently, Barzilay and

Lapata’s (2008) approach (henceforth, BL08) used

an entity-based representation to evaluate

coherence. In BL08, entities (nouns and pronouns)

are represented by their sentence roles in a text.

The algorithm keeps track of the distribution of

entity transitions between adjacent sentences, and

computes a value for all transition types based on

their proportion of occurrence in a text. BL08

apply their algorithm to three tasks, using well-

formed newspaper corpora: text ordering, summary

coherence evaluation, and readability assessment.

For each task, their system outperforms a Latent

Semantic Analysis baseline. In addition, best

performance on each task is achieved using

different system and feature configurations. Pitler

& Nenkova (2008) applied BL08 to detect text

coherence in well-formed texts.

 Coherence quality is typically present in scoring

criteria for evaluating a student’s essay. This paper

focuses on the development of models to predict

low-and high-coherence ratings for essays.

Student essay data, unlike newspaper text, is

typically noisy, especially when students are non-

native English speakers (NNES). Here, we

evaluate how BL08 algorithm features can be used

to model coherence in a new, noisy data domain --

student essays. We found that coherence can be

best modeled by combining BL08 entity-based

features with novel writing quality features.

Further, our use of data sets from three different

test-taker populations also shows that coherence

models will differ across populations. Different

populations might use language differently which

could affect how coherence is presented. We

expect to incorporate coherence ratings into e-

rater
®
, ETS’s automated essay scoring system

(Attali & Burstein, 2006).

2 Corpus and Annotation

We collected approximately 800 essays (in total)

across three data sets
1
: 1) adult, NNES test essays

(TOEFL); 2) adult, native and NNES test essays;

(GRE) 3) U.S. middle- and high-school native and

NNES student essay submissions to Criterion
®
,

ETS’s instructional writing application.

Two annotators were trained to rate coherence
quality based on how easily they could read an

essay without stumbling on a coherence barrier

(i.e., a confusing sentence(s)). Annotators rated

1
 TOEFL

®
 is the Test of English as a Foreign Language,

and GRE
®
 is the Graduate Record Admissions Test.

681

essays on a 3-point scale: 1) low coherence, 2)
somewhat coherent, and 3) high coherence. They

were instructed to ignore grammar and spelling

errors, unless they affected essay comprehension.

During training, Kappa agreement statistics

indicated that annotators had difficulty agreeing on

the middle, somewhat coherent category. The

annotation scale was therefore collapsed into a 2-

point scale: somewhat coherent and high

coherence categories were collapsed into the high
coherence class (H), and low-coherence (L)

remained unchanged. Two annotators labeled an

overlapping set of about 100 essays to calculate

inter-rater agreement; weighted Kappa was 0.677.

3 System

3.1 BL08 Algorithm

We implemented BL08’s entity-based algorithm to

build and evaluate coherence models for the essay

data. In short, the algorithm generates a vector of

entity transition probabilities for documents

(essays, here). Vectors are used to build coherence

models. The first step in the algorithm is to

construct an entity grid in which all entities (nouns
and pronouns) are represented by their roles (i.e.,

Subject (S), Object (O), Other (X)). Entity roles

are then used to generate entity transitions – the

role transitions across adjacent sentences (e.g.,

Subject-to-Object, Object-to-Object). Entity
transition probabilities are the proportions of

different entity transition types within a text. The

probability values are used then used as features to

build a coherence model.

Entity roles can be represented in the following

ways. In this study, consistent with BL08, different

combinations are applied and reported (see Tables

2-4). Entities can be represented in grids with

specified roles (Syntax+) (S,O,X). Alternatively,

roles can be reduced to show only the presence and

absence of an entity (Syntax-) (i.e., Entity Present

(P) or Not (N). Co-referential entities can be

resolved (Coreference+) or not (Coreference-).

Finally, the Salience option reflects the frequency

with which an entity appears in the discourse: if

the entity is mentioned two or more times, it is

salient (Salient+), otherwise, not (Salient-).

Consistent with BL08, we systematically

completed runs using various configurations of

entity representations (see Section 4).

Given the combination, the entity transition

probabilities were computed for all labeled essays

in each data set. We used n-fold cross-validation

for evaluation. Feature vectors were input to C5.0,

a decision-tree machine learning application.

3.2 Additional Features

In BL08, augmenting the core coherence features

with additional features improved the power of the

algorithm. We extended the feature set with

writing quality features (Table 1). GUMS features

describe the technical quality of the essay. The

motivation for type/token features (*_TT) is to

measure word variety. For example, a high

probability for a “Subject-to-Subject” transition

indicates that the writer is repeating an entity in

Subject position across adjacent sentences.

However, this does not take into account whether

the same word is repeated or a variety of words are

used. The {S,O,X,SOX}_TT (type/token) features

uncover the actual words collapsed into the entity

transition probabilities. Shell nouns (Atkas &

Cortes, 2008), common in essay writing, might

also affect coherence.

NNES essays can contain many spelling errors.

We evaluated the impact of a context-sensitive

spell checker (SPCR+), as spelling variation will

affect the transition probabilities in the entity grid.

Finally, we experimented with a majority vote
method that combined the best performing feature

combinations.

4 Evaluation

For all experiments, we used a series of n-fold
cross-validation runs with C5.0 to evaluate

performance for numerous feature configurations.

In Tables 2, 3 and 4, we report: baselines, results

on our data with BL08’s best system configuration

from the summary coherence evaluation task

(closest to our task), and our best systems. In the

Tables, “best systems” combined feature sets and

outperformed baselines. Rows in bold indicate

final independent best systems that contribute to

best performance in the majority vote method.

Agreement is reported as Weighted Kappa (WK),

Precision (P), Recall (R) and F-measure (F).

Baselines. We implemented three non-trivial

baseline systems. E-rater indicates use of the full

682

feature set from e-rater. The GUMS (GUMS+)

feature baseline, uses the Grammar (G+), Usage

Feature Descriptor Feature Description

GUMS Grammar, usage, and

mechanics errors, and style

features from an AES system

S_TT

O_TT

X_TT

SOX_TT
2

P_TT

Type/token ratios for actual

words recovered from the

entity grid, using the entity

roles.

S_TT_Shellnouns

O_TT_Shellnouns

X_TT_Shellnouns

Type/token ratio of non-topic

content, shell nouns (e.g.,

approach, aspect, challenge)

Table 1: New feature category description

 (U+), Mechanics (M+), and Style (ST+) flags

(subset of e-rater features) to evaluate a coherence

model. The third baseline represents the best run

using type/token features ({S,O,X,SOX}_TT), and

{S,O,X}_TT_Shellnouns feature sets (Table 1).

The baseline majority voting system includes e-

rater, GUMS, and the best performing type/token

baseline (see Tables 2-4).

Extended System. We combined our writing

quality features with the core BL08 feature set.

The combination improved performance over the

three baselines, and over the best performing BL08

feature. Type/token features added to BL08 entity

transitions probabilities improved performance of

all single systems. This supports the need to

recover actual word use. In Table 2, for TOEFL

data, spell correction improved performance with

the Mechanics error feature (where Spelling is

evaluated). This would suggest that annotators
were trying to ignore spelling errors when labeling

coherence. In Table 3, for GRE data, spell

correction improved performance with the

Grammar error feature. Spell correction did
change grammar errors detected: annotators may
have self-corrected for grammar. Finally, the

majority vote outperformed all systems. In Tables

3 and 4, Kappa was comparable to human

agreement (K=0.677).

5 Conclusions and Future Work
We have evaluated how the BL08 algorithm

features can be used to model coherence for

2
 Indicates an aggregate feature that computes the type/token

ratio for entities that appear in any of S,O,X role.

student essays across three different populations.

We found that the best coherence models for

essays are built by combining BL08 entity-based

features with writing quality features. BL08’s

outcomes showed that optimal performance was

obtained by using different feature sets for

different tasks. Our task was most similar to

BL08’s summary coherence task, but we used

noisy essay data. The difference in the data types

might also explain the need for our systems to

include additional writing quality features.

Our majority vote method outperformed three

baselines (and a baseline majority vote). For two of

the populations, Weighted Kappa between system

and human agreement was comparable. These

results show promise toward development of an

entity-based method that produces reliable

coherence ratings for noisy essay data. We plan to

evaluate this method on additional data sets, and in

the context of automated essay scoring.

References

Aktas, R. N., & Cortes, V. (2008). Shell nouns as

cohesive devices in published and ESL student

writing. Journal of English for Academic Purposes,

7(1), 3–14.

Attali, Y., & Burstein, J. (2006). Automated essay

scoring with e-rater v.2.0 . Journal of Technology,

Learning, and Assessment, 4(3).

Barzilay, R. and Lapata, M. (2008). Modeling local

coherence: An entity-based approach.

Computational Linguistics, 34(1), 1-34.

Foltz, P., Kintsch, W., and Landauer, T. K. (1998). The

measurement of textual coherence with Latent

Semantic Analysis. Discourse Processes,

25(2&3):285–307.

Higgins, D., Burstein, J., Marcu, D., & Gentile, C.

(2004). Evaluating multiple aspects of coherence in

student essays . In Proceedings of HLT-NAACL

2004, Boston, MA.

Grosz, B., Joshi, A., and Weinstein, S. 1995, Centering:

A framework for modeling the local coherence of

discourse. Computational Linguistics, 21(2): 203-

226.

Hearst, M. A. (1997). TextTiling: Segmenting text into

multi-paragraph subtopic passages. Computational

Linguistics, 23(1):33–6

Miltsakaki, E. and Kukich, K. (2000). Automated

evaluation of coherence in student essays. In

Proceedings of LREC 2000, Athens, Greece

Pitler, E.,and Nenkova, A (2008). Revisiting

Readability: A Unified Framework for Predicting

683

Text Quality. In Proceedings of EMNLP 2008,

Honolulu, Hawaii.

 L (n=64) H (n=196) L+H (n=260)

BASELINES: NO BL08 FEATURES WK P R F P R F P R F

(a) E-rater 0.472 56 69 62 89 82 86 79 79 79

(b) GUMS 0.455 55 66 60 88 83 85 79 79 79

(c) SOX_TT
3
 0.484 66 55 60 86 91 88 82 82 82

SYSTEMS: Includes BL08 FEATURES

Coreference-Syntax+Salient+ (B&L08

summary task configuration)

0.253 49 34 40 81 88 84 75 75 75

(d) Coreference-Syntax-Salient-SPCR+M+ 0.472 76 45 57 84 95 90 83 83 83

(e) Coreference+Syntax+Salient-GUMS+ 0.590 68 70 69 90 89 90 85 85 85

(f) Coreference+Syntax+Salient-

GUMS+O_TT_Shellnouns+

0.595 68 72 70 91 89 90 85 85 85

Baseline Majority vote: (a),(b), (c) 0.450 55 64 59 88 83 85 79 79 79

Majority vote: (d), (e), (f) 0.598 69 70 70 90 90 90 85 85 85

Table 2: Non-native English Speaker Test-taker Data (TOEFL): Annotator/System Agreement

 L (n=48) H (n=210) L+H (n=258)

BASELINES: NO BL08 FEATURES WK P R F P R F P R F

(a) E-rater 0.383 79 31 45 86 98 92 86 86 86

(b) GUMS 0.316 68 27 39 85 97 91 84 84 84

(c) e-rater+SOX_TT
4
 0.359 78 29 42 86 98 92 85 85 85

SYSTEMS: INCLUDES BL08 FEATURES

Coreference-Syntax+Salient+ (BL08 summary

task configuration)

0.120 35 17 23 83 93 88 79 79 79

(d) Coreference+Syntax+Salient-SPCR+G+ 0.547 1.0 43 60 89 1.0 94 90 90 90

(e) Coreference+Syntax-Salient-P_TT+ 0.462 70 44 54 88 96 92 86 86 86

(f) Coreference+Syntax+Salient+GUMS+

SOX_TT+

0.580 71 60 65 91 94 93 88 88 88

Baseline Majority vote: (a),(b), (c) 0.383 79 31 45 86 98 92 86 86 86

Majority vote: (d), (e), (f) 0.610 1.0 49 66 90 1.0 95 91 91 91

Table 3: Native and Non-Native English Speaker Test-taker Data (GRE): Annotator/System Agreement

 L (n=37) H (n=226) L+H (n=263)

BASELINES: NO BL08 FEATURES WK P R F P R F P R F

(a) E-rater 0.315 39 46 42 91 88 89 82 82 82

(b) GUMS 0.350 47 41 43 90 92 91 85 85 85

(c) SOX_TT 0.263 78 19 30 88 99 93 88 88 88

SYSTEMS: INCLUDES BL08 FEATURES

(d) Coreference-Syntax+Salient+ (BL08

summary task configuration)

0.383 79 30 43 90 99 94 89 89 89

(e) Coreference-Syntax-Salient-SPCR+ 0.424 67 38 48 90 97 94 89 89 89

(f) Coreference+Syntax+Salient+S_TT+ 0.439 65 41 50 91 96 94 89 89 89

Baseline Majority vote: (a),(b), (c) 0.324 43 41 42 90 91 91 84 84 84

Majority vote: (d), (e), (f) 0.471 82 38 52 91 99 94 90 90 90

Table 4: Criterion Essay Data: Annotator/System Agreement

3
 Type/token ratios from all roles using a Coreference+Syntax+Salient+ grid.

4 Type/token ratios from all roles using Coreference+Syntax+Salient- grid.

684

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 685–688,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Summarizing Microblogs Automatically

Beaux Sharifi, Mark-Anthony Hutton, and Jugal Kalita

University of Colorado at Colorado Springs
1420 Austin Bluffs Parkway

Colorado Springs, CO 80918, USA
{bsharifi, mhutton, jkalita}@uccs.edu

Abstract

In this paper, we focus on a recent Web trend
called microblogging, and in particular a site
called Twitter. The content of such a site is an
extraordinarily large number of small textual
messages, posted by millions of users, at ran-
dom or in response to perceived events or sit-
uations. We have developed an algorithm that
takes a trending phrase or any phrase specified
by a user, collects a large number of posts
containing the phrase, and provides an auto-
matically created summary of the posts related
to the term. We present examples of summa-
ries we produce along with initial evaluation.

1 Introduction

Since Twitter’s inception in 2006, it has grown at
an unprecedented rate. In just four years, the ser-
vice has grown to approximately 20 million unique
visitors each month with users sending short 140-
character messages (known as “tweets”) approx-
imately 40 million times a day. While the majority
of these tweets are pointless babble or conversa-
tional, approximately 3.6% of these posts are top-
ics of mainstream news (Pear Analytics, 2009).
For example, Twitter has been cited as breaking
many important events before traditional media,
such as the attacks in Mumbai and the crash of the
US Airways flight into the Hudson River.

In order to help users sort through the vast num-
ber of tweets that occur each day, Twitter.com has
added a number of tools. For instance, Twitter’s
homepage displays important topics for three dif-
ferent ranges of time in order to see what topics are
popular. For most topics, users are forced to read
through related posts in order to try and understand
why a topic is trending. In order to help users fur-

ther, Twitter has partnered with the third-party
website WhatTheTrend1 in order to provide defini-
tions of trending topics. WhatTheTrend allows
users to manually enter descriptions of why a topic
is trending. Unfortunately, WhatTheTrend suffers
with spam and rants as well as lag time before a
new trending topic is defined by a user.

While WhatTheTrend is a step in the right direc-
tion, a better approach is to automatically summar-
ize important events as they occur in real time. We
have developed such a method. Our method can
automatically summarize a collection of micro-
blogging posts that are all related to a topic into a
short, one-line summary. Our results show that our
automated summarizer produces summaries that
are close to human-generated summaries for the
same set of posts. For example, Table 1 below
contains a sample of automatically produced sum-
maries for some recently trending topics on Twit-
ter.

2 Related Work

Some early work focused on summarizing results
of database queries for presentation during natural
language interactions (e.g., Kalita et al., 1986).
Most summaries are generated for the purposes of
providing a “gist” of a document or a set of docu-
ments to human readers (e.g., Luhn, 1958; Bran-
dow et al., 1995). Summaries are sometimes also
used as inputs to machine learning approaches, say
for categorization. Kolcz et al. (2001) summarize
textual documents in order to classify them, using
the summaries as a feature to be input to a classifi-
er. Most early studies used a news corpus like the
Reuters dataset. As the Web started growing in
size, the focus moved to Web pages.

1 http://www.whatthetrend.com

685

Table 1. Example Summaries Produced by the Phrase Reinforcement Algorithm.

For example, Mahesh (1997) examines the effec-
tiveness of Web document summarization by sen-
tence extraction. Recently, there has been work on
summarizing blogs (e.g. Zhou and Hovy, 2006; Hu
et al., 2007). Most techniques focus on extraction:
the selecting of salient pieces of documents in or-
der to generate a summary. Applying extraction
on microblogs at first appears irrelevant since a
microblog post is already shorter than most sum-
maries. However, extraction is possible when one
considers extracting from multiple microblogs
posts that are all related to a central theme.

3 Approach

3.1 Twitter API

Through an entirely HTTP-based API provided by
Twitter, users can programmatically perform al-
most any task that can be performed via Twitter’s
web interface. For non-whitelisted users, Twitter
restricts a user to 150 requests/hour. Furthermore,
searches are limited to returning 1500 posts for a
given request. Our summarizer has been shown to
produce comparable automated summaries to hu-
man summaries with as few as 100 posts.

3.2 Phrase Reinforcement Algorithm

Given a trending topic, one can query Twitter.com
for posts that contain the topic phrase. Presently,
users would have to read these posts in order to
comprehend and manually summarize their con-
tent. Instead, we automate this process using our
Phrase Reinforcement Algorithm.

The central idea of the Phrase Reinforcement
(PR) algorithm is to find the most commonly used

phrase that encompasses the topic phrase. This
phrase is then used as a summary. The algorithm
was inspired from two simple observations: (1)
users will often use the same word or sets of words
adjacent to the topic phrase when describing a key
idea and (2) users will often “re-tweet” (a Twitter
form of quoting) the most relevant content for a
trending topic. These two patterns create highly
overlapping sequences of words when considering
a large number of posts for a single topic. The PR
algorithm capitalizes on these behaviors in order to
generate a summary.

The Phrase Reinforcement algorithm begins
with a starting phrase. This is typically a trending
topic, but can be non-trending as well. Given the
starting phrase, the PR algorithm submits a query
to Twitter.com for a list of posts that each contains
the phrase. Once the posts are retrieved, the algo-
rithm filters the posts to remove any spam or other
sources of irrelevant data (e.g. hyperlinks). Filter-
ing is an important step in order to focus the algo-
rithm on the most relevant content. We filter any
spam by using a Naïve Bayes classifier which we
trained using previously gathered spam content
from Twitter.com. Next, non-English posts as well
as duplicate posts are removed since we are con-
cerned with English summaries only and want to
prevent a single user from dominating a topic. Fi-
nally, given a set of relevant posts, we isolate the
longest sentence from each post that contains the
topic phrase. These sentences form the input into
the PR algorithm.

Once we have the set of input sentences, the PR
algorithm formally begins. The algorithm starts by
building a graph representing the common se-
quences of words (i.e. phrases) that occur both be-

Topic Automated Summary Date

Ice Dancing Canadians Tessa Virtue and Scott Moir clinch the gold in Olympic ice
dancing; U.S. pair Davis and White win silver

2/22/2010

Dodgers Phillies defeat Dodgers to take the National League Championship series. 10/21/2009

Limbaugh Limbaugh dropped from group bidding for St. Louis Rams 10/14/2009
Dow Jones The Dow Jones Industrial Average passes 10,000 for the first time since

October 7th, 2008.
10/14/2009

Captain Lou Wrestler, personality Captain Lou Albano dies at 76 10/14/2009

Bloomberg Bloomberg Acquires Businessweek for Less Than $5 million 10/13/2009

G20 Trouble breaks out at G20 summit: Protesters and riot police have clashed
ahead of the G20 summit in Pittsburgh

09/24/2009

AT&T AT&T plans for iPhone MMS to arrive Friday 09/23/2009

686

fore and after the topic phrase. The graph is gen-
erated such that it centers about a common root
node representing the topic phrase. Adjacent to the
root node are chains of common sequences of
words found within the input sentences. In par-
ticular, each word is represented by a node and an
associated count that indicates how many times the
node’s phrase occurs within the set of input sen-
tences. The phrase of a node is simply the se-
quence of words generated by following the path
from the node to the root node. To illustrate, con-
sider the following set of input sentences for the
topic “Ted Kennedy”.

1. A tragedy: Ted Kennedy died today of

cancer
2. Ted Kennedy died today
3. Ted Kennedy was a leader
4. Ted Kennedy died at age 77

Using these sentences, the PR algorithm would

generate a graph similar to the one shown below in
Figure 1.

Figure 1. Example Phrase Reinforcement Graph.

In Figure 1, we see the node “today” has a count
of two. This indicates that the phrase “Ted Kenne-
dy died today” occurs exactly two times within the
set of input sentences (in sentences 1 and 2).
Likewise, the node “tradegy” has a count of one
indicating the phrase “tragedy Ted Kennedy” only
occurs one time (in sentence 1). In actuality, the
PR algorithm would only add nodes to the graph
with a count of at least two since it is looking for
the most common phrase. These are shown as the
black nodes in Figure 1. However, Figure 1 also
includes unique nodes (shown in white) for helping
illustrate the graph’s structure.

After the graph is constructed, the PR algorithm
assigns a weight to every node in order to prevent
longer phrases from dominating the output. In par-
ticular, stop words are given a weight of zero while
remaining words are given weights that are both

proportional to their count and penalized the farth-
er they are from the root node:

��������	
�� � 	�����	
��

� ��		�����������	
��

∗ log� 	�����	
���

In the above equation, the RootDistance of a node
is simply the number of hops to get from the node
to the root node and the logarithm base, b, is a pa-
rameter to the algorithm. Smaller values of b (e.g.
2) can be used for preferring shorter summaries
over longer summaries.

Finally, once the graph is constructed and
weighted, the PR algorithm is ready to generate a
partial summary. To do so, the PR algorithm
searches for the path with the most total weight by
searching all paths that begin with the root node
and end with a non-root node. This path is denoted
as the best partial path since it only represents one
half of the summary (i.e. the most common phrase
occurring either before or after the topic phrase).
In order to generate the remaining half of the
summary, the PR algorithm is essentially repeated
by initializing the root node with the partial sum-
mary and rebuilding the graph. The most heavily
weighted path from this new graph is the final
summary produced by the PR algorithm.

Using our example above and assuming that
node weights are equal to their counts, the path
with the most total weight is the path “Ted Kenne-
dy died today of cancer” with a total weight of 11.
This phrase would then be used as the root node of
a new graph and the PR algorithm would be re-
peated. For this new graph, the only input sen-
tence that contains this root phrase would be
sentence 1. Therefore, the final summary for our
example (assuming we allow unique phrases)
would be sentence 1: “A tragedy: Ted Kennedy
died today of cancer”. However, if we only allow
non-unique phrases in our graph (the black nodes),
then our final summary would be “Ted Kennedy
died today”.

4 Results

In order to evaluate the PR algorithm, we gathered
a set of testing data by collecting the top ten cur-
rently trending topics from Twitter’s home page
every day for five consecutive days. For each of
the 50 trending topics, we retrieved the maximum

687

number of posts from Twitter using its own API
and then filtered the number of posts to 100 posts
per topic. These posts were then given to two vo-
lunteers. The volunteers were instructed to simply
generate the best summary possible using only the
information contained within the posts and in 140
characters or less. Furthermore, automated sum-
maries for each topic were also produced using the
same 100 posts per topic. These summaries were
then compared.

For comparing the manual and automated sum-
maries, we adopted two of the metrics used by the
Document Understanding Conference (DUC) of
2002 and 2004 (Lin and Hovy, 2003). First, we
used their Content metric which asks a human
judge to measure how completely an automated
summary expresses the meaning of the manual
summaries on a five point scale where 1 represents
no meaning overlap and 5 represents complete
meaning overlap. Next, we also used the auto-
mated evaluation metric ROUGE-1 developed by
Lin (2004) which measures co-occurring unigram
overlap between a set of manual and automated
summaries. We restricted our automated evalua-
tion to ROUGE-1 as opposed to the other ROUGE
metrics since Lin indicates that this metric corre-
lates highly with human judgments for very short
summary tasks similar to the one we are perform-
ing (Lin, 2004).

For the 50 trending topics we used as our evalu-
ation corpus, the PR algorithm produced an aver-
age Content score of 3.72 using � � 100 for our
weighting measure. This result indicates our au-
tomated summaries express slightly less than most
of the meaning of the manual summary content.
To compare, we also used this same metric on our
two sets of manual summaries which produced an
average content score of 4.25. For the ROUGE-1
metric, the PR algorithm produced an average pre-
cision score of 0.31 and an average recall score of
0.30. Combining these scores using F1-Measure,
the PR algorithm produced a combined F1 score of
0.30. Comparing the manual summaries against
one another using ROUGE-1, they produced the
same average precision, recall, and F1 score of
0.34.

5 Future Work

Presently, we are working on extending our PR
algorithm to providing real-time summaries within

specific topics. We are experimenting with using a
front-end classifier for producing trending topics
within distinct categories and then summarizing
around these topics in order to generate an auto-
mated real-time newspaper.

Acknowledgments

The work reported in this paper is partially sup-
ported by the NSF Grant ARRA: : CNS 0851783.

References

Brandow, R., Mitze K., and Rau, L.F. Automatic Con-
densation of Electronic Publications by Sentence Se-
lection, Information Processing and Management,
Vol 31, No 5, pp. 675-685, 1995.

Hu, M. and Sun, A. and Lim, E.P. Comments-oriented
blog summarization by sentence extraction, ACM
CIKM, pp. 901-904, 2007.

Kalita, J.K., Jones, M.L., and McCalla, G.I., Summariz-
ing Natural Language Database Responses, Compu-
tational Linguistics, Volume 12, No. 2, pp. 107-124,
1986.

Kolcz, A., Prabhakarmurthi, V, and Kalita, J. Summa-
rizing as Feature Selection for Text Categorization,
CIKM ’01, pp. 365-370, 2001.

Lin, C.Y. ROUGE: a Package for Automatic Evaluation
of Summaries, Proceedings of Workshop on Text
Summarization, 2004.

Lin, C.Y. and Hovy, E. Automatic evaluation of sum-
maries using n-gram co-occurrence statistics,
NAACL, pp. 71-78, 2003.

Luhn, P. The Automatic Creation of Literature Ab-
stracts, in IRE National Convention, pp. 60-68, 1958.

Mahesh, K. Hypertext Summary Extraction for Fast
Document Browsing, Working Notes of the AAAI
Spring Symposium for the WWW, pp. 95-103, 1997.

Pear Analytics. Twitter Study, Retrieved 03 31, 2010,
from http://www.scribd.com/doc/18548460/Pear-
Analytics-Twitter-Study-August-2009, 2009.

Zhou, L. and Hovy, E. On the summarization of dynam-
ically introduced information: Online discussions and
blogs, AAAI-2006 Spring Symposium on Computa-
tional Approaches to Analyzing Weblogs, 2006.

688

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 689–692,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Automatic Generation of Personalized Annotation Tags for Twitter Users

Wei Wu, Bin Zhang, Mari Ostendorf
Electrical Engineering

University of Washington, Seattle, WA
{weiwu, binz, ostendor}@uw.edu

Abstract

This paper introduces a system designed for
automatically generating personalized annota-
tion tags to label Twitter user’s interests and
concerns. We applied TFIDF ranking and
TextRank to extract keywords from Twitter
messages to tag the user. The user tagging pre-
cision we obtained is comparable to the preci-
sion of keyword extraction from web pages for
content-targeted advertising.

1 Introduction

Twitter is a communication platform which com-
bines SMS, instant messages and social networks. It
enables users to share information with their friends
or the public by updating their Twitter messages.
A large majority of the Twitter users are individ-
ual subscribers, who use Twitter to share informa-
tion on “what am I doing” or “what’s happening
right now”. Most of them update their Twitter mes-
sages very frequently, in which case the Twitter mes-
sages compose a detailed log of the user’s everyday
life. These Twitter messages contain rich informa-
tion about an individual user, including what s/he is
interested in and concerned about. Identifying an
individual user’s interests and concerns can help po-
tential commercial applications. For instance, this
information can be employed to produce “follow-
ing” suggestions, either a person who shares simi-
lar interests (for expanding their social network) or
a company providing products or services the user is
interested in (for personalized advertisement).

In this work, we focus on automatically gener-
ating personalized annotation tags to label Twitter
user’s interests and concerns. We formulate this
problem as a keyword extraction task, by selecting
words from each individual user’s Twitter messages
as his/her tags. Due to the lack of human generated
annotations, we employ an unsupervised strategy.

Specifically, we apply TFIDF ranking and TextRank
(Mihalcea and Tarau, 2004) keyword extraction on
Twitter messages after a series of text preprocess-
ing steps. Experiments on randomly selected users
showed good results with TextRank, but high vari-
ability among users.

2 Related Work

Research work related to Twitter message analysis
includes a user sentiment study (Jansen et al., 2009)
and information retrieval indexing. To our knowl-
edge, no previously published research has yet ad-
dressed problems on tagging user’s personal inter-
ests from Twitter messages via keyword extraction,
though several studies have looked at keyword ex-
traction using other genres.

For supervised keyword extraction, (Turney,
2000; Turney, 2003; Hulth, 2003; Yih et al., 2006;
Liu et al., 2008) employed TFIDF or its variants
with Part-of-Speech (POS), capitalization, phrase
and sentence length, etc., as features to train key-
word extraction models, and discriminative training
is usually adopted. Yih et al. (2006) use logis-
tic regression to extract keywords from web pages
for content-targeted advertising, which has the most
similar application to our work. However, due to the
lack of human annotation on Twitter messages, we
have to adopt an unsupervised strategy.

For unsupervised keyword extraction, TFIDF
ranking is a popular method, and its effective-
ness has been shown in (Hulth, 2003; Yih et al.,
2006). TextRank and its variants (Mihalcea and Ta-
rau, 2004; Wan et al., 2007; Liu et al., 2009) are
graph-based text ranking models, which are derived
from Google’s PageRank algorithm (Brin and Page,
1998). It outperforms TFIDF ranking on traditional
keyword extraction tasks. However, previous work
on both TFIDF ranking and TextRank has been done
mainly on academic papers, spoken documents or

689

web pages, whose language style is more formal (or,
less “conversational”) than that of Twitter messages.
Twitter messages contain large amounts of “noise”
like emoticons, internet slang words, abbreviations,
and misspelled words. In addition, Twitter messages
are a casual log of a user’s everyday life, which often
lacks of a coherent topic sequence compared to aca-
demic papers and most spoken documents. Hence,
it remains to see whether TFIDF ranking and Tex-
tRank are effective for identifying user’s interests
from Twitter messages.

3 System Architecture

Figure 1 shows the framework of our system for
tagging Twitter user’s interests. A preprocessing
pipeline is designed to deal with various types of
“noise” in Twitter messages and produce candidate
words for user tags. Then the TFIDF ranking or Tex-
tRank algorithm is applied to select user tags from
the candidate words.

Removing replying messages

Removing emoticons

Substituting/removing internet

slang words and abbreviations

Part-of-Speech tagging and

filtering

TFIDF ranking / TextRank

Personalized annotation tags for

the Twitter user

Messages from

one Twitter user

Preprocessing

Stemming and stopword removing

Figure 1: Framework of the personalized annotation tag
generation system for Twitter users

3.1 Preprocessing

In addition to messages describing “What am I do-
ing” or “what’s happening right now”, Twitter users
also write replying messages to comment on other
users’ messages. This kind of message generally
contains more information about the users they re-
ply to than about themselves, and therefore they are
removed in the preprocessing pipeline.

Emoticons frequently appear in Twitter messages.
Although some of them help express user’s senti-
ment on certain topics, they are not directly helpful
for keyword analysis and may interfere with POS
tagging in the preprocessing pipeline. Therefore, we
designed a set of regular expressions to detect and
remove them.

Internet slang words and abbreviations are widely
used in Twitter messages. Most of them are out-of-
vocabulary words in the POS tagging model used
in the next step, and thus will deteriorate the POS
tagging accuracy. Hence, we build a lookup table
based on the list of abbreviations in the NoSlang on-
line dictionary,1 which we divide by hand into three
sets for different processing. The first set includes
422 content words and phrases, such as “bff” (best
friend forever) and “fone” (phone), with valid can-
didate words for user tags. The second set includes
67 abbreviations of function words that usually form
grammatical parts in a sentence, such as “im” (i’m),
“abt” (about). Simply removing them will affect the
POS tagging. Thus, the abbreviations in both these
sets are replaced with the corresponding complete
words or phrases. The third set includes 4576 phrase
abbreviations that are usually separable parts of a
sentence that do not directly indicate discussion top-
ics, such as “lol” (laugh out loud), “clm” (cool like
me), which are removed in this step.

We apply the Stanford POS tagger (Toutanova
and Manning, 2000) on Twitter messages, and only
select nouns and adjectives as valid candidates for
user tags. At the end of the preprocessing pipeline,
the candidate words are processed with the rule-
based Porter stemmer2 and stopwords are filtered us-
ing a publicly available list.3

1www.noslang.com/dictionary
2tartarus.org/ martin/PorterStemmer/
3armandbrahaj.blog.al/2009/04/14/

list-of-english-stop-words/

690

3.2 User Tag Extraction
3.2.1 TFIDF ranking

In the TFIDF ranking algorithm, messages from
user u are put together as one document. The TFIDF
value of word i from this user’s messages is com-
puted as

tfidfi,u =
ni,u∑
j nj,u

log(
U

Ui
)

where ni,u is the count of word i in user u’s mes-
sages, Ui is the number of users whose messages
contain word i, and U is the total number of users in
the Twitter corpus. For each user, words with top N
TFIDF values are selected as his/her tags.

3.2.2 TextRank
According to the TextRank algorithm (Mihalcea

and Tarau, 2004), each candidate word is repre-
sented by a vertex in the graph; edges are added
between two candidate words according to their co-
occurrence. In the context of user tag extraction, we
build a TextRank graph with undirected edges for
each Twitter user. One edge is added between two
candidate words if they co-exist within at least one
message; the edge weight is set to be the total count
of within-message co-occurrence of the two words
throughout all messages of this user.

Starting with an arbitrarily assigned value (e.g.
1.0), the rank value R(Vi) of the candidate word at
vertex Vi is updated iteratively according to the fol-
lowing equation,

R(Vi) = (1− d)+ d
∑

Vj∈E(Vi)

wji∑
Vk∈E(Vj) wjk

R(Vj)

where wji is the weight of the edge that links Vj

and Vi, E(Vi) is the set of vertices which Vi is con-
nected to, and d is a damping factor that is usually
set to 0.85 (Brin and Page, 1998). The rank update
iteration continues until convergence. The candidate
words are then sorted according to their rank values.
Words with top-N rank values are selected as tags
for this user.

4 Experiment

4.1 Experimental Setup
We employed the Twitter API to download Twitter
messages. A unigram English language model was

Precision (%) TFIDF TextRank
top-1 59.6 67.3
top-3 61.5 66.0
top-5 61.2 63.0
top-10 59.0 58.3

Table 1: Tagging precision on all users in the test set

used to filter out non-English users. We obtained
messages from 11,376 Twitter users, each of them
had 180 to 200 messages. The word IDF for TFIDF
ranking was computed over these users.

We adopted an evaluation measure similar to the
one proposed in (Yih et al., 2006) for identifying
advertising keywords on web pages, which empha-
sizes precision. We randomly selected 156 Twit-
ter users to evaluate the top-N precision of TFIDF
ranking and TextRank. After we obtained the top-
N outputs from the system, three human evaluators
were asked to judge whether the output tags from the
two systems (unidentified) reflected the correspond-
ing Twitter user’s interests or concerns according to
the full set of his/her messages.4 We adopted a con-
servative standard in the evaluation: when a person’s
name is extracted as a user tag, which is frequent
among Twitter users, we judge it as a correct tag
only when it is a name of a famous person (pop star,
football player, etc). The percentage of the correct
tags among the top-N selected tags corresponds to
the top-N precision of the system.

4.2 Experimental Results

Table 1 gives the top-N precision for TFIDF and
TextRank for different values of N, showing that
TextRank leads to higher precision for small N. Al-
though Twitter messages are much “noisier” than
regular web pages, the top-N precision we obtained
for Twitter user tagging is comparable to the web
page advertising keyword extraction result reported
in (Yih et al., 2006).

Figure 2 shows an example of the candidate word
ranking result of a Twitter user by TextRank (the
font size is set to be proportional to each word’s
TextRank value). By examining the Twitter mes-
sages, we found that this user is an information tech-

4The pairwise Kappa value for inter-evaluator agreement
ranged from 0.77-0.83, showing good agreement.

691

Figure 2: Example of a Twitter user’s word ranks (the
font size is proportional to each word’s TextRank value)

Precision (%)
top-N σ >0.6 σ ≤0.6 H>5.4 H≤5.4
top-1 71.6 60.7 78.5 50.8
top-3 71.9 56.8 74.2 54.0
top-5 69.3 53.1 69.2 53.7
top-10 65.1 47.7 63.8 50.2

Table 2: TextRank tagging precision on users with dif-
ferent Top-10 TextRank value standard deviation (σ) and
user message text entropy (H).

nology “geek”, who is very interested in writing Ap-
ple’s iPhone applications, and also a user of Google
Wave. In this work, we use only isolated words as
user tags, however, “google”, “wave”, and “palo”,
“alto” extracted in this example indicate that phrase
level tagging can bring us more information about
the user, which is typical of many users.

Although most Twitter users express their inter-
ests to some extent in their messages, there are some
users whose message content is not rich enough to
extract reliable information. We investigated two
measures for identifying such users: standard devi-
ation of the top-10 TextRank values and the user’s
message text entropy. Table 2 shows a compari-
son of tagging precision where the users are divided
into two groups with a threshold on each of the two
measures. It is shown that users with larger Tex-
tRank value standard deviation or message text en-
tropy tend to have higher tagging precision, and the
message text entropy has better correlation with the
top-10 tagging precision than TextRank value stan-
dard deviation (0.33 v.s. 0.20 absolute).

5 Summary

In this paper, we designed a system to automat-
ically extract keywords from Twitter messages to

tag user interests and concerns. We evaluated two
tagging algorithms, finding that TextRank outper-
formed TFIDF ranking, but both gave a tagging pre-
cision that was comparable to that reported for web
page advertizing keyword extraction. We noticed
substantial variation in performance across users,
with low entropy indicative of users with fewer key-
words, and a need for extracting key phrases (in ad-
dition to words). Other follow-on work might con-
sider temporal characteristics of messages in terms
of the amount of data needed for reliable tags vs.
their time-varying nature, as well as sentiment asso-
ciated with the identified tags.

References
S. Brin and L. Page. 1998. The anatomy of a large-scale

hypertextual web search engine. Computer Networks
and ISDN Systems, 30(1-7):107–117.

A. Hulth. 2003. Improved automatic keyword extraction
given more linguistic knowledge. In Proc. EMNLP,
pages 216–223.

B. J. Jansen, M. Zhang, K. Sobel, and A. Chowdury.
2009. Twitter power: Tweets as electronic word of
mouth. Journal of the American Society for Informa-
tion Science and Technology, 60(11):2169–2188.

F. Liu, F. Liu, and Y. Liu. 2008. Automatic keyword
extraction for the meeting corpus using supervised ap-
proach and bigram expansion. In Proc. IEEE SLT,
pages 181–184.

F. Liu, D. Pennell, F. Liu, and Y. Liu. 2009. Unsuper-
vised approaches for automatic keyword extraction us-
ing meeting transcripts. In Proc. HLT/NAACL, pages
620–628.

R. Mihalcea and P. Tarau. 2004. Textrank: Bringing
order into texts. In Proc. EMNLP.

K. Toutanova and C. D. Manning. 2000. Enriching the
knowledge sources used in a maximum entropy part-
of-speech tagger. In Proc. EMNLP, pages 63–77.

P. D. Turney. 2000. Learning algorithms for keyphrase.
Information Retrieval, 2(4):303–336.

P. D. Turney. 2003. Coherent keyphrase extraction via
web mining. In Proc. IJCAI, pages 434–439.

X. Wan, J. Yang, and J. Xiao. 2007. Towards an iter-
ative reinforcement approach for simultaneous docu-
ment summarization and keyword extraction. In Proc.
ACL, pages 552–559.

W.-T. Yih, J. Goodman, and V. R. Carvalho. 2006. Find-
ing advertising keywords on web pages. In Proc. 15th
International Conference on World Wide Web, pages
213–222.

692

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 693–696,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Language identification of names with SVMs

Aditya Bhargava and Grzegorz Kondrak
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada, T6G 2E8

{abhargava,kondrak}@cs.ualberta.ca

Abstract

The task of identifying the language of text
or utterances has a number of applications in
natural language processing. Language iden-
tification has traditionally been approached
with character-level language models. How-
ever, the language model approach crucially
depends on the length of the text in ques-
tion. In this paper, we consider the problem
of language identification of names. We show
that an approach based on SVMs with n-gram
counts as features performs much better than
language models. We also experiment with
applying the method to pre-process transliter-
ation data for the training of separate models.

1 Introduction

The task of identifying the language of text or utter-
ances has a number of applications in natural lan-
guage processing. Font Llitjós and Black (2001)
show that language identification can improve the
accuracy of letter-to-phoneme conversion. Li et
al. (2007) use language identification in a translit-
eration system to account for different semantic
transliteration rules between languages when the tar-
get language is Chinese. Huang (2005) improves the
accuracy of machine transliteration by clustering his
training data according to the source language.

Language identification has traditionally been
approached using character-level n-gram language
models. In this paper, we propose the use of sup-
port vector machines (SVMs) for the language iden-
tification of very short texts such as proper nouns.
We show that SVMs outperform language models
on two different data sets consisting of personal

names. Furthermore, we test the hypothesis that lan-
guage identification can improve transliteration by
pre-processing the source data and training separate
models using a state-of-the-art transliteration sys-
tem.

2 Previous work

N -gram approaches have proven very popular for
language identification in general. Cavnar and Tren-
kle (1994) apply n-gram language models to general
text categorization. They construct character-level
language models using n-grams up to a certain max-
imum length from each class in their training cor-
pora. To classify new text, they generate an n-gram
frequency profile from the text and then assign it to
the class having the most similar language model,
which is determined by summing the differences in
n-gram ranks. Given 14 languages, text of 300 char-
acters or more, and retaining the 400 most common
n-grams up to length 5, they achieve an overall accu-
racy of 99.8%. However, the accuracy of the n-gram
approach strongly depends on the length of the texts.
Kruengkrai et al. (2005) report that, on a language
identification task of 17 languages with average text
length 50 bytes, the accuracy drops to 90.2%. When
SVMs were used for the same task, they achieved
99.7% accuracy.

Konstantopoulos (2007) looks particularly at the
task of identifying the language of proper nouns. He
focuses on a data set of soccer player names coming
from 13 possible national languages. He finds that
using general n-gram language models yields an av-
erage F1 score of only 27%, but training the models
specifically to these smaller data gives significantly
better results: 50% average F1 score for last names

693

only, and 60% for full names.
On the other hand, Li et al. (2007) report some

good results for single-name language identification
using n-gram language models. For the task of sepa-
rating single Chinese, English, and Japanese names,
they achieve an overall accuracy of 94.8%. One rea-
son that they do better is because of the smaller num-
ber of classes. We can further see that the languages
in question are very dissimilar, making the problem
easier; for example, the character “x” appears only
in the list of Chinese names, and the bigram “kl” ap-
pears only in the list of English names.

3 Language identification with SVMs

Rather than using language models to determine the
language of a name, we propose to count charac-
ter n-gram occurrences in the given name, for n up
to some maximum length, and use these counts as
the features in an SVM. We choose SVMs because
they can take a large number of features and learn to
weigh them appropriately. When counting n-grams,
we include space characters at the beginning and
end of each word, so that prefixes and suffixes are
counted appropriately. In addition to n-gram counts,
we also include word length as a feature.

In our initial experiments, we tested several dif-
ferent kernels. The kernels that performed the best
were the linear, sigmoid, and radial basis function
(RBF) kernels. We tested various maximum n-gram
lengths; Figure 1 shows the accuracy of the linear
kernel as a function of maximum n-gram length.
Polynomial kernels, a substring match–count string
kernel, and a string kernel based on the edit distance
all performed poorly in comparison. We also exper-
imented with other modifications such as normaliz-
ing the feature vectors, and decreasing the weights
of frequent n-gram counts to avoid larger counts
dominating smaller counts. Since the effects were
negligible, we exclude these results from this paper.

In our experiments, we used the LIBLINEAR
(Fan et al., 2008) package for the linear kernel and
the LIBSVM (Chang and Lin, 2001) package for the
RBF and sigmoid kernels. We discarded any peri-
ods and parentheses, but kept apostrophes and hy-
phens, and we converted all letters to lower case.
We removed very short names of length less than
two. For all data sets, we held out 10% of the data

 40

 50

 60

 70

 80

 1 2 3 4 5 6

A
cc

ur
ac

y
(%

)

Maximum n-gram length

Figure 1: Cross-validation accuracy of the linear kernel
on the Transfermarkt full names corpus.

as the test set. We then found optimal parameters
for each kernel type using 10-fold cross-validation
on the remaining training set. This yielded optimum
maximum n-gram lengths of four for single names
and five for full names. Using the optimal parame-
ters, we constructed models from the entire training
data and then tested the models on the held-out test
set.

4 Intrinsic evaluation

We used two corpora to test our SVM-based ap-
proach: the Transfermarkt corpus of soccer player
names, and the Chinese-English-Japanese (CEJ)
corpus of first names and surnames. These corpora
are described in further detail below.

4.1 Transfermarkt corpus

The Transfermarkt corpus (Konstantopoulos, 2007)
consists of European soccer player names annotated
with one of 13 possible national languages, with sep-
arate lists provided for last names and full names.
Diacritics were removed in order to avoid trivializ-
ing the task. There are 14914 full names, with aver-
age length 14.8, and 12051 last names, with average
length 7.8. It should be noted that these data are
noisy; the fact that a player plays for a certain na-
tion’s team does not necessarily indicate that his or
her name is of that nation’s language. For example,
Dario Dakovic was born in Bosnia but plays for the
Austrian national team; his name is therefore anno-
tated as German.

Table 1 shows our results on the Transfermarkt
corpus. Because Konstantopoulos (2007) provides
only F1 scores, we used his scripts to generate new
results using language models and calculate the ac-
curacy instead, which allows us to be consistent with
our tests on other data sets. Our results show that us-

694

Method Last names Full names
Language models 44.7 54.2
Linear SVM 56.4 79.9
RBF SVM 55.7 78.9
Sigmoid SVM 56.2 78.7

Table 1: Language identification accuracy on the Trans-
fermarkt corpus. Language models have n = 5.

ing SVMs clearly outperforms using language mod-
els on the Transfermarkt corpus; in fact, SVMs yield
better accuracy on last names than language models
on full names. Differences between kernels are not
statistically significant.

4.2 CEJ corpus

The CEJ corpus (Li et al., 2007) provides a com-
bined list of first names and surnames, each classi-
fied as Chinese, English, or Japanese. There are a
total of 97115 names with an average length of 7.6
characters. This corpus was used for the semantic
transliteration of personal names into Chinese.

We found that the RBF and sigmoid kernels were
very slow—presumably due to the large size of the
corpus—so we tested only the linear kernel. Table 2
shows our results in comparison to those of language
models reported in (Li et al., 2007); we reduce the
error rate by over 50%.

5 Application to machine transliteration

Machine transliteration is one of the primary poten-
tial applications of language identification because
the language of a word often determines its pronun-
ciation. We therefore tested language identification
to see if results could indeed be improved by using
language identification as a pre-processing step.

5.1 Data

The English-Hindi corpus of names (Li et al., 2009;
MSRI, 2009) contains a test set of 1000 names rep-
resented in both the Latin and Devanagari scripts.
We manually classified these names as being of ei-
ther Indian or non-Indian origin, occasionally resort-
ing to web searches to help disambiguate them.1 We
discarded those names that fell into both categories

1Our tagged data are available online at http://www.
cs.ualberta.ca/˜ab31/langid/.

Method Ch. Eng. Jap. All
Lang. model 96.4 89.9 96.5 94.8
Linear SVM 99.0 94.8 97.6 97.6

Table 2: Language identification accuracy on the CEJ
corpus. Language models have n = 4.

(e.g. “Maya”) as well as those that we could not
confidently classify. In total, we discarded 95 of
these names, and randomly selected 95 names from
the training set that we could confidently classify to
complete our corpus of 1000 names. Of the 1000
names, 546 were classified as being of Indian origin
and the remaining 454 were classified as being of
non-Indian origin; the names have an average length
of 7.0 characters.

We trained our language identification approach
on 900 names, with the remaining 100 names serv-
ing as the test set. The resulting accuracy was 80%
with the linear kernel, 84% with the RBF kernel,
and 83% with the sigmoid kernel. In this case, the
performance of the RBF kernel was found to be sig-
nificantly better than that of the linear kernel accord-
ing to the McNemar test with p < 0.05.

5.2 Experimental setup

We tested a simple method of combining language
identification with transliteration. We use a lan-
guage identification model to split the training, de-
velopment, and test sets into disjoint classes. We
train a transliteration model on each separate class,
and then combine the results.

Our transliteration system was DIRECTL (Ji-
ampojamarn et al., 2009). We trained the language
identification model over the entire set of 1000
tagged names using the parameters from above. Be-
cause these names comprised most of the test set
and were now being used as the training set for the
language identification model, we swapped various
names between sets such that none of the words used
for training the language identification model were
in the final transliteration test set.

Using this language identification model, we split
the data. After splitting, the “Indian” training, de-
velopment, and testing sets had 5032, 575, and 483
words respectively while the “non-Indian” sets had
11081, 993, and 517 words respectively.

695

5.3 Results

Splitting the data and training two separate mod-
els yielded a combined top-1 accuracy of 46.0%, as
compared to 47.0% achieved by a single translitera-
tion model trained over the full data; this difference
is not statistically significant. Somewhat counter-
intuitively, using language identification as a pre-
processing step for machine transliteration yields no
improvement in performance for our particular data
and transliteration system.

While it could be argued that our language identi-
fication accuracy of 84% is too low to be useful here,
we believe that the principal reason for this perfor-
mance decrease is the reduction in the amount of
data available for the training of the separate mod-
els. We performed an experiment to confirm this
hypothesis: we randomly split the full data into two
sets, matching the sizes of the Indian and non-Indian
sets. We then trained two separate models and com-
bined the results; this yielded a top-1 accuracy of
41.5%. The difference between this and the 46.0%
result above is statistically significant with p < 0.01.
From this we conclude that the reduction in data size
was a significant factor in the previously described
null result, and that language identification does pro-
vide useful information to the transliteration system.
In addition, we believe that the transliteration system
may implicitly leverage the language origin infor-
mation. Whether a closer coupling of the two mod-
ules could produce an increase in accuracy remains
an open question.

6 Conclusion

We have proposed a novel approach to the task of
language identification of names. We have shown
that applying SVMs with n-gram counts as fea-
tures outperforms the predominant approach based
on language models. We also tested language identi-
fication in one of its potential applications, machine
transliteration, and found that a simple method of
splitting the data by language yields no significant
change in accuracy, although there is an improve-
ment in comparison to a random split.

In the future, we plan to investigate other methods
of incorporating language identification in machine
transliteration. Options to explore include the use
of language identification probabilities as features in

the transliteration system (Li et al., 2007), as well as
splitting the data into sets that are not necessarily
disjoint, allowing separate transliteration models to
learn from potentially useful common information.

Acknowledgements

We thank Sittichai Jiampojamarn for his assistance
with the DIRECTL transliteration system, Shane
Bergsma for his advice, and Stasinos Konstantopou-
los for providing us with his scripts and data. This
research was supported by the Natural Sciences and
Engineering Research Council of Canada.

References
W. B. Cavnar and J. M. Trenkle. 1994. N-gram-based

text categorization. In Proc. of the Third Annual Sym-
posium on Document Analysis and Information Re-
trieval, pages 161–175.

C.-C. Chang and C.-J. Lin, 2001. LIBSVM: a li-
brary for support vector machines. Software available
at http://www.csie.ntu.edu.tw/˜cjlin/
libsvm.

R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and
C.-J. Lin. 2008. LIBLINEAR: A library for large lin-
ear classification. Journal of Machine Learning Re-
search, 9:1871–1874.

A. Font Llitjós and A. W. Black. 2001. Knowledge of
language origin improves pronunciation accuracy of
proper names. In Proc. of Eurospeech, pages 1919–
1922.

F. Huang. 2005. Cluster-specific named entity transliter-
ation. In Proc. of HLT-EMNLP, pages 435–442.

S. Jiampojamarn, A. Bhargava, Q. Dou, K. Dwyer, and
G. Kondrak. 2009. DirecTL: a language independent
approach to transliteration. In Proc. of ACL-IJCNLP
Named Entities Workshop, pages 28–31.

S. Konstantopoulos. 2007. What’s in a name? In Proc.
of RANLP Computational Phonology Workshop.

C. Kruengkrai, P. Srichaivattana, V. Sornlertlamvanich,
and H. Isahara. 2005. Language identification based
on string kernels. In Proc. of International Symposium
on Communications and Information Technologies.

H. Li, K. C. Sim, J.-S. Kuo, and M. Dong. 2007. Seman-
tic transliteration of personal names. In Proc. of ACL,
pages 120–127.

H. Li, A. Kumaran, V. Pervouchine, and M. Zhang. 2009.
Report of NEWS 2009 machine transliteration shared
task. In Proc. of Named Entities Workshop: Shared
Task on Transliteration, pages 1–18.

MSRI, 2009. Microsoft Research India. http://
research.microsoft.com/india.

696

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 697–700,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Integrating Joint n-gram Features
into a Discriminative Training Framework

Sittichai Jiampojamarn† and Colin Cherry‡ and Grzegorz Kondrak†

†Department of Computing Science ‡National Research Council Canada
University of Alberta 1200 Montreal Road

Edmonton, AB, T6G 2E8, Canada Ottawa, ON, K1A 0R6, Canada
{sj,kondrak}@cs.ualberta.ca Colin.Cherry@nrc-cnrc.gc.ca

Abstract

Phonetic string transduction problems, such
as letter-to-phoneme conversion and name
transliteration, have recently received much
attention in the NLP community. In the past
few years, two methods have come to dom-
inate as solutions to supervised string trans-
duction: generative jointn-gram models, and
discriminative sequence models. Both ap-
proaches benefit from their ability to consider
large, flexible spans of source context when
making transduction decisions. However, they
encode this context in different ways, provid-
ing their respective models with different in-
formation. To combine the strengths of these
two systems, we include jointn-gram fea-
tures inside a state-of-the-art discriminative
sequence model. We evaluate our approach
on several letter-to-phoneme and translitera-
tion data sets. Our results indicate an improve-
ment in overall performance with respect to
both the jointn-gram approach and traditional
feature sets for discriminative models.

1 Introduction

Phonetic string transduction transforms a source
string into a target representation according to its
pronunciation. Two important examples of this task
are letter-to-phoneme conversion and name translit-
eration. In general, the problem is challenging be-
cause source orthography does not unambiguously
specify the target representation. When consider-
ing letter-to-phoneme, ambiguities and exceptions
in the pronunciation of orthography complicate con-
version. Transliteration suffers from the same ambi-
guities, but the transformation is further complicated

by restrictions in the target orthography that may not
exist in the source.

Joint n-gram models (Bisani and Ney, 2002;
Chen, 2003; Bisani and Ney, 2008) have been
widely applied to string transduction problems (Li et
al., 2004; Demberg et al., 2007; Jansche and Sproat,
2009). The power of the approach lies in building
a language model over the operations used in the
conversion from source to target. Crucially, this al-
lows the inclusion of source context in the generative
story. Smoothing techniques play an important role
in joint n-gram models, greatly affecting their per-
formance. Although jointn-gram models are capa-
ble of capturing context information in both source
and target, they cannot selectively use only source
or target information, nor can they consider arbitrary
sequences within their context window, as they are
limited by their back-off schedule.

Discriminative sequence models have also been
shown to perform extremely well on string transduc-
tion problems. These begin with a Hidden Markov
Model architecture, augmented with substring op-
erations and discriminative training. The primary
strength of these systems is their ability to include
rich indicator features representing long sequences
of source context. We will assume a specific in-
stance of discriminative sequence modeling, DI-
RECTL (Jiampojamarn et al., 2009), which achieved
the best results on several language pairs in the
NEWS Machine Transliteration Shared Task (Li et
al., 2009). The same system matches or exceeds the
performance of the jointn-gram approach on letter-
to-phoneme conversion (Jiampojamarn et al., 2008).
Its features are optimized by an online, margin-

697

based learning algorithm, specifically, the Margin
Infused Relaxed Algorithm, MIRA (Crammer and
Singer, 2003).

In this paper, we propose an approach that com-
bines these two different paradigms by formulating
the jointn-gram model as a new set of features in the
discriminative model. This leverages an advantage
of discriminative training, in that it can easily and
effectively incorporate arbitrary features. We eval-
uate our approach on several letter-to-phoneme and
transliteration data sets. Our results demonstrate an
improvement in overall performance with respect to
both the generative jointn-gram approach and the
original DIRECTL system.

2 Background

String transduction transforms an input stringx into
the desired output stringy. The input and output are
different representations of the same entity; for ex-
ample, the spelling and the pronunciation of a word,
or the orthographic forms of a word in two different
writing scripts.

One approach to string transduction is to view
it as a tagging problem where the input charac-
ters are tagged with the output characters. How-
ever, since sounds are often represented by multi-
character units, the relationship between the input
and output characters is often complex. This pre-
vents the straightforward application of standard
tagging techniques, but can be addressed by sub-
string decoders or semi-Markov models.

Because the relationship betweenx andy is hid-
den, alignments between the input and output char-
acters (or substrings) are often provided in a pre-
processing step. These are usually generated in an
unsupervised fashion using a variant of the EM al-
gorithm. Our system employs the many-to-many
alignment described in (Jiampojamarn et al., 2007).
We trained our system on these aligned examples by
using the online discriminative training of (Jiampo-
jamarn et al., 2009). At each step, the parameter
update is provided by MIRA.

3 Features

Jiampojamarn et al. (2009) describe a set of indica-
tor feature templates that include (1) context features
(2) transition features and (3) linear-chain features.

context xi−c yi

. . .
xi+c yi

xi−cxi−c+1 yi

. . .
xi+c−1xi+c yi

.
xi−c . . . xi+c yi

transition yi−1 yi

linear-chain xi−c yi−1 yi

. . .
xi+c yi−1 yi

xi−cxi−c+1 yi−1 yi

. . .
xi+c−1xi+c yi−1 yi

.
xi−c . . . xi+c, yi−1 yi

joint n-gram xi+1−nyi+1−nxiyi

. . .
xi−1yi−1xiyi

xi+1−nyi+1−nxi+2−nyi+2−nxiyi

. . .
xi−2yi−2xi−1yi−1xiyi

.
xi+1−nyi+1−n . . . xi−1yi−1xiyi

Table 1: Feature template

Table 1 summarizes these features and introduces
the new set ofjoint n-gram features.

The context features represent the source side ev-
idence that surrounds an input substringxi as it gen-
erates the target outputyi. These features include
all possiblen-grams that fit inside a source-side con-
text windows of sizeC, each conjoined withyi. The
transition features enforce the cohesion of the gen-
erated output with target-side bigrams. The linear-
chain features conjoin context and transition fea-
tures.

The set of feature templates described above
has been demonstrated to achieve excellent perfor-
mance. The context features express rich informa-
tion on the source side, but no feature template al-
lows target context beyondyi−1,yi. Target and
source context are considered jointly, but only in a
very limited fashion, as provided by the linear chain
features. Jiampojamarn et al. (2008) report that con-
text features contribute the most to system perfor-
mance. They also report that increasing the Markov
order in the transition features from bigram to tri-

698

Figure 1: System accuracy as a function of the beam size

gram results in no significant improvement. Intu-
itively, the joint information of both source and tar-
get sides is important in string transduction prob-
lems. By integrating the jointn-gram features into
the online discriminative training framework, we en-
able the system to not only enjoy rich context fea-
tures and long-range dependency linear-chain fea-
tures, but we also take advantage of joint informa-
tion between source and target substring pairs, as
encoded by the jointn-gram template shown in the
bottom of Table 1.

An alternative method to incorporate a jointn-
gram feature would compute the generative jointn-
gram scores, and supply them as a real-valued fea-
ture to the model. As all of the other features in
the DIRECTL framework are indicators, the training
algorithm may have trouble scaling an informative
real-valued feature. Therefore, we represent these
joint n-gram features as binary features that indi-
cate whether the model has seen particular strings
of joint evidence in the previousn− 1 operations
when generatingyi from xi. In this case, the sys-
tem learns a distinct weight for each substring of the
joint n-gram.

In order to accommodate higher-order jointn-
grams, we replace the exact search algorithm of Ji-
ampojamarn et al. (2008) with a beam search. Dur-
ing our development experiments, we observed no
significant decrease in accuracy after introducing
this approximation. Figure 1 shows the system per-
formance in terms of the word accuracy as a function
of the beam size on a development set. The perfor-
mance starts to converge quickly and shows no fur-
ther improvement for values grater than20. In the
remaining experiments we set the beam size to 50.

We also performed development experiments

Figure 2: System accuracy as a function ofn-gram size

with a version of the system that includes only joint
n-gram indicators. Figure 2 shows the word ac-
curacy with different values ofn. The accuracy
reaches its maximum forn = 4, and actually falls
off for larger values ofn. This anomaly is likely
caused by the model using its expanded expressive
power to memorize sequences of operations, overfit-
ting to its training data. Such overfitting is less likely
to happen in the generative jointn-gram model,
which smooths high-order estimates very carefully.

4 Experiments and Results

We evaluate our new approach on two string trans-
duction applications: (1) letter-to-phoneme conver-
sion and (2) name transliteration. For the letter-to-
phoneme conversion, we employ the English Celex,
NETtalk, OALD, CMUdict, and the French Brulex
data sets. In order to perform direct comparison with
the joint n-gram approach, we follow exactly the
same data splits as Bisani and Ney (2008). The train-
ing sizes range from 19K to 106K words. For the
transliteration task, we use three data sets provided
by the NEWS 2009 Machine Transliteration Shared
Task (Li et al., 2009): English-Russian (EnRu),
English-Chinese (EnCh), and English-Hindi (EnHi).
The training sizes range from 10K to 30K words.
We setn = 6 for the jointn-gram features; other pa-
rameters are set on the respective development sets.

Tables 2 and 3 show the performance of our new
system in comparison with the jointn-gram ap-
proach and DIRECTL. The results in the rightmost
column of Table 2 are taken directly from (Bisani
and Ney, 2008), where they were evaluated on the
same data splits. The results in the rightmost col-
umn of Table 3 are from (Jansche and Sproat, 2009),
which was the best performing system based on joint

699

Data set this work DIRECTL joint n-gram
Celex 89.23 88.54 88.58
CMUdict 76.41 75.41 75.47
OALD 85.54 82.43 82.51
NETtalk 73.52 70.18 69.00
Brulex 95.21 95.03 93.75

Table 2: Letter-to-phoneme conversion accuracy

Data set this work DIRECTL joint n-gram

EnRu 61.80 61.30 59.70
EnCh 74.17 73.34 64.60
EnHi 50.30 49.80 41.50

Table 3: Name transliteration accuracy

n-grams at NEWS 2009. We report all results in
terms of the word accuracy, which awards the sys-
tem only for complete matches between system out-
puts and the references.

Our full system outperforms both DIRECTL and
the joint n-gram approach in all data sets. This
shows the utility of adding jointn-gram features to
the DIRECTL system, and confirms an advantage of
discriminative approaches: strong competitors can
simply be folded into the model.

Comparing across tables, one can see that the gap
between the generative jointn-gram and the DI-
RECTL methods is much larger for the transliter-
ation tasks. This could be because jointn-grams
are a poor fit for transliteration, or the gap could
stem from differences between the jointn-gram im-
plementations used for the two tasks. Looking at
the improvements to DIRECTL from joint n-gram
features, we see further evidence that jointn-grams
are better suited to letter-to-phoneme than they are
to transliteration: letter-to-phoneme improvements
range from relative error reductions of 3.6 to 17.3,
while in transliteration, the largest reduction is 3.1.

5 Conclusion

We have presented a new set of jointn-gram features
for the DIRECTL discriminative sequence model.
The resulting system combines two successful ap-
proaches for string transduction — DIRECTL and
the jointn-gram model. Jointn-gram indicator fea-
tures are efficiently trained using a large margin
method. We have shown that the resulting system
consistently outperforms both DIRECTL and strong

joint n-gram implementations in letter-to-phoneme
conversion and name transliteration, establishing a
new state-of-the-art for these tasks.

Acknowledgements

This research was supported by the Alberta Ingenu-
ity Fund and the Natural Sciences and Engineering
Research Council of Canada.

References

Maximilian Bisani and Hermann Ney. 2002. Investi-
gations on joint-multigram models for grapheme-to-
phoneme conversion. InProc. ICSLP, pages 105–108.

Maximilian Bisani and Hermann Ney. 2008. Joint-
sequence models for grapheme-to-phoneme conver-
sion. Speech Communication, 50(5):434–451.

Stanley F. Chen. 2003. Conditional and joint mod-
els for grapheme-to-phoneme conversion. InProc.
Eurospeech-2003.

Koby Crammer and Yoram Singer. 2003. Ultraconserva-
tive online algorithms for multiclass problems.Jour-
nal of Machine Learning Research, 3:951–991.

Vera Demberg, Helmut Schmid, and Gregor Möhler.
2007. Phonological constraints and morphological
preprocessing for grapheme-to-phoneme conversion.
In Proc. ACL, pages 96–103.

Martin Jansche and Richard Sproat. 2009. Named entity
transcription with pair n-gram models. InProc. ACL-
IJCNLP Named Entities Workshop, pages 32–35.

Sittichai Jiampojamarn, Grzegorz Kondrak, and Tarek
Sherif. 2007. Applying many-to-many alignments
and Hidden Markov Models to letter-to-phoneme con-
version. InProc. HLT-NAACL, pages 372–379.

Sittichai Jiampojamarn, Colin Cherry, and Grzegorz
Kondrak. 2008. Joint processing and discriminative
training for letter-to-phoneme conversion. InProc.
ACL, pages 905–913.

Sittichai Jiampojamarn, Aditya Bhargava, Qing Dou,
Kenneth Dwyer, and Grzegorz Kondrak. 2009. Di-
recTL: a language independent approach to translitera-
tion. InProc. ACL-IJCNLP Named Entities Workshop,
pages 28–31.

Haizhou Li, Min Zhang, and Jian Su. 2004. A joint
source channel model for machine transliteration. In
Proc. ACL, pages 159–166.

Haizhou Li, A Kumaran, Vladimir Pervouchine, and Min
Zhang. 2009. Report of NEWS 2009 machine translit-
eration shared task. InProc. ACL-IJCNLP Named En-
tities Workshop, pages 1–18.

700

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 701–704,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

A Hybrid Morphologically Decomposed Factored Language Models for
Arabic LVCSR

Amr El-Desoky, Ralf Schlüter, Hermann Ney
Lehrstuhl für Informatik 6 – Computer Science Department

RWTH Aachen University, D-52056 Aachen, Germany
{desoky,schluter,ney}@cs.rwth-aachen.de

Abstract

In this work, we try a hybrid methodology for
language modeling where both morphological
decomposition and factored language model-
ing (FLM) are exploited to deal with the com-
plex morphology of Arabic language. At the
end, we are able to obtain from 3.5% to 7.0%
relative reduction in word error rate (WER)
with respect to a traditional full-words sys-
tem, and from 1.0% to 2.0% relative WER re-
duction with respect to a non-factored decom-
posed system.

1 Introduction

Arabic language is characterized by a complex mor-
phological structure where different kinds of pre-
fixes and suffixes are appended to the word stems
producing a very large number of inflectional forms.
This leads to poor language model (LM) probabil-
ity estimates, and thus high LM perplexities (PPLs)
causing problems in large vocabulary continuous
speech recognition (LVCSR). One successful ap-
proach to deal with this problem is to consider LMs
including morphologically decomposed words. An-
other approach is to use the factored language mod-
els (FLMs) which are powerful models that com-
bine multiple sources of information and efficiently
integrate them via a complex backoff mechanism
(Bilmes and Kirchhoff, 2003).

Morphological decomposition is successfully
used for Arabic LMs in several previous works.
Some are based on linguistic knowledge, and oth-
ers are based on unsupervised methods. Some of the

linguistic methods are based on the Buckwalter Ara-
bic Morphological Analyzer (BAMA) like in (Lamel
et al., 2008). Alternatively, in our previous work
(El-Desoky et al., 2009), we use the Morphological
Analyzer and Disambiguator for Arabic (MADA)
(Habash and Rambow, 2007). On the other side,
most of the unsupervised methods are based on the
minimum description length principle (MDL) like in
(Creutz et al., 2007).

Another type of models is the FLM, in which
words are viewed as vectors of K factors, so that
wt := {f1:K

t }. A factor could be any feature of the
word such as morphological class, stem, root or even
a semantic feature. An FLM is a model over factors,
i.e., p(f1:K

t |f1:K
t−1 , f1:K

t−2 , ..., f1:K
t−n+1), which could be

reformed as a product of probabilities of the form
p(f |f1, f2, ..., fN). The main idea of the model is to
backoff to other factors when some word n-gram is
not observed in the training data, thus improving the
probability estimates.

In this work we try to combine the strengths
of morphological decomposition and factored lan-
guage modeling. Therefore, language models with
factored morphemes are used. For this purpose, the
LM training data are processed such that full-words
are decomposed into prefix-stem-suffix format with
different added features. We compare our approach
with the standard full-word, decomposed word, and
factored full-word n-gram approaches.

2 Factorization and Decomposition

We use MADA 2.0 in order to perform morphologi-
cal analysis and attach a complete set of morpholog-
ical tags to Arabic words in context. From those tags

701

we derive three different features. Moreover, we de-
rive a fourth feature based on the root of the word
generated by ”Sebawai” (Darwish, 2002). The list
of features is:

• ”W” (Word): word surface form.

• ”L” (Lexeme): word lexeme.

• ”M” (Morph): morphological description.

• ”P” (Pattern): word after subtracting root.

The LM training corpora are processed so that
words are replaced by the factored representation as
required by SRILM-FLM extensions (Kirchhoff et
al., 2008). Then, word decomposition is performed
based on MADA as described in our previous publi-
cation (El-Desoky et al., 2009).

3 FLM topologies

In order to obtain a good performance via FLMs, we
need to optimize the FLM parameters: the combi-
nation of the conditioning factors, backoff path, and
smoothing options. For this purpose, we use a Ge-
netic Algorithm based FLM optimization tool (GA-
FLM) developed by Kirchhoff (2006) which seeks to
minimize the PPL over some held-out text. Further-
more, we apply some manual optimization to fine
tune the FLM parameters. For memory limitations,
we only use factors up to 2 previous time slots (tri-
gram like models). Finally, we come up with a set
of competing FLMs with rather close PPLs. In Ta-
ble 1, we record the PPLs measured for some held-
out text. The first column gives the combination of
the parent factors. So that, FLM1 corresponds to
the model P (Wt|Wt−1, Wt−2), which is the FLM
equivalent of the standard tri-gram LM (our base-
line model), while FLM2 & FLM3 correspond to
the model P (Wt|Wt−1, Mt−1, Lt−1, Pt−1, Wt−2),
however FLM4 & FLM5 correspond to the model
P (Wt|Wt−1, Mt−1, Lt−1, Wt−2, Mt−2, Lt−2). The
”gtmin” refers to the count threshold that is suffi-
cient to have a language model hit at some node of
the the backoff graph (for exact topologies, contact
the first author). From Table 1, comparing PPLs
(non-normalized) across factored and non-factored
LMs, we see that using more factors other than the
normal word could help decreasing the PPL. This is
true for all the used types of vocabulary units.

vocabulary
FLMx parent factors FW PD FD
1: W1 W2 (baseline) 302.6 284.1 82.7
W1 M1 L1 P1 W2

2: gtmin = 1 306.2 296.9 83.2
3: gtmin = 2-4 290.9 279.1 79.8

W1 M1 L1 W2 M2 L2
4: gtmin = 1 300.2 291.1 83.6
5: gtmin = 2-4 294.5 283.7 81.1

Table 1: perplexities of the FLMs using vocabularies:
(FW: 70k full-words; PD: partially decomposed with 20k
ful-words + 50k morphemes; FD: 70k fully decomposed).

FLMx parent factors WER [%]
1: W1 W2 (baseline) 20.4
W1 M1 L1 P1 W2

2: gtmin = 1 20.2
3: gtmin = 2-4 20.4

W1 M1 L1 W2 M2 L2
4: gtmin = 1 19.9
5: gtmin = 2-4 20.3

Table 2: WERs using FLMs based on 70k full-words.

In order to select the best FLM topology, we run
a simple one pass recognition for a small internal
dev corpus derived from GALE data sets, consists
of 40 minutes of audio data recorded during January
to March 2007. The acoustic models are within-
word tri-phone models trained using 1100h of au-
dio material. The basic acoustic models are trained
based on Maximum Likelihood (ML) method. Then,
a discriminative training based on Minimum Phone
Error (MPE) criterion is performed to enhance the
models. A 70k full-words lexicon is used. The
FLM training data consists of 206 Million running
full-words. A standard bi-gram LM based on full-
words is used to generate N-best lists, then N-best
list rescoring is performed using the different FLM
topologies shown in Table 1. We start by N = 1000-
best down to 3-best sentences. Using N = 10 always
gives the best results. The recognition WERs are
recorded in Table 2. The least WER is obtained with
FLM4. We note that the best FLM does not corre-
spond to the least PPL. This is because a higher ”gt-
min” value causes more backoff in cases of insuffi-
cient data leading to better estimates. Therefore, we
select FLM4 for the coming experiments.

702

4 Experimental Setup

Our recognition system is close to the one described
in section 3. However, we use within and across-
word models at different recognition passes. In ad-
dition, we use 70k or 256k lexicon of full-words or
partially decomposed words. Alternatively, we eval-
uate the results on the GALE 2007 development and
evaluation sets (dev07: 2.5h; eval07: 4h). Our rec-
ognizer works in 3 passes. In the first pass, within-
word acoustic models are used with no adaptation,
along with a standard bi-gram LM to generate lat-
tices, followed by a standard tri-gram or 4-gram LM
rescoring of lattices. The second pass does the same,
but it uses across-word models with Constrained
Maximum Likelihood Linear Regression (CMLLR)
adaptation. Then, a third pass with additional Max-
imum Likelihood Linear Regression (MLLR) adap-
tation is performed, using a standard bi-gram LM to
generate lattices or N-best lists. Then, one of the fol-
lowing is performed: 1) lattice rescoring using stan-
dard tri-gram or 4-gram LM, 2) N-best list rescoring
using FLMs based on full-words, partially or fully
decomposed words.

5 Experiments

In this section, we record our recognition results
for: 1) systems based on full-words, and 2) systems
based on decomposed words. Also, we introduce
additional results for larger lexicon sizes.

5.1 Systems Based on Full-words

In this section, we present the WERs of our recogni-
tion systems based on full-words. Where, during the
search, we use a lexicon of 70K full-words. In the
first 2 passes, we use a standard bi-gram LM to gen-
erate lattices, followed by a standard tri-gram LM
rescoring of lattices. However, in the third pass, we
generate both lattices and N-best lists based on the
same bi-gram LM. The final lattices and N-best lists
are rescored using different LMs as shown in Table
3. In case we perform N-best list rescoring with a
FLM, the N-best lists are processed to produce fac-
tored representation, followed by partial or full de-
composition as previously described in section 2.

It is clear from Table 3 that the least WER is
achieved when using N-best list rescoring using a
full-words based FLM. This gives an absolute im-

LM rescoring (3rd pass) Dev07 [%]
tri-gram lattice resc. (baseline) 16.5
4-gram lattice resc. 16.3
N-best FLM resc.:

+ FW (original N-best) 15.7
+ PD (decomposed N-best) 15.8
+ FD (decomposed N-best) 16.0

Table 3: WERs for 70k full-words systems.

LM rescoring (3rd pass) Dev07 [%]
tri-gram lattice resc. (baseline) 14.7
4-gram lattice resc. 14.5
N-best FLM resc.:

+ FW (re-joint N-best) 14.6
+ PD (original N-best) 14.3
+ FD (decomposed N-best) 14.4

Table 4: WERs for 70k partially decomposed systems
(20k full-words + 50k morphemes).

provement of 0.8% (about 4.8% relative) compared
to the standard tri-gram lattice rescoring. On the
other hand, we have 0.6% absolute improvement
(about 3.7% relative) compared to the standard 4-
gram lattice rescoring. Decomposition does not help
in this case. This is because the original N-best lists
are generated in full-words format, whose decom-
position might not lead to better LM scores. For this
reason, we expect that it is better to start with a de-
composed LM for lattice and N-best generation.

5.2 Systems Based on Decomposed Words

This section introduces the WERs of our systems
based on decomposed words. We use a similar setup
as in section 5.1. However, we use a lexicon and a
bi-gram LM based on a 70k partially decomposed
words (20k full-words + 50k morphemes). Table 4
presents the results. As expected, we get the best
WER when using N-best list rescoring with a FLM
based on partially decomposed words. An absolute
improvement of 0.4% (2.7% relative) is achieved
compared to the new baseline. Compared to the old
baseline of Table 3, we get an absolute improvement
of 2.2% (13.3% relative).

5.3 Larger Lexicon Sizes

Now, we increase the size of our lexicon to 256k
partially decomposed words (20k full-words + 236k

703

Dev07 Eval07
System [%] [%]
traditional full-words 14.9 16.5
partially decomposed
+ 4-gram lat. resc. (baseline) 14.2 16.1
+ N-best FLM resc.:

+ FW (re-joint N-best) 14.1 -
+ PD (original N-best) 13.9 15.9
+ FD (decomposed N-best) 14.0 -

Table 5: WERs for 256k full-words, and partially decom-
posed systems (20k full-words + 236k morphemes).

70k vocabularies 256k vocabularies
Corpus FW PD FD FW PD FD
Dev07 3.65 1.33 0.75 1.36 0.51 0.24
Eval07 4.82 1.94 1.13 1.85 0.64 0.41

Table 6: OOVs [%] of the used vocabularies.

morphemes). In addition, we use a standard 4-
gram LM for rescoring the bi-gram lattices in the
first 2 passes. To complete our comparisons, we
record the WERs using traditional 256k full-words
lexicon, standard bi-gram search, and standard 4-
gram LM for lattice rescoring, with no decomposi-
tion or factorization. In Table 5, we see that the im-
provement persists for the larger lexicon. Compared
to the new baseline, the 256k decomposed system
achieves WER reductions of [dev07: 0.3% absolute
(2.1% relative); eval07: 0.2% absolute (1.2% rela-
tive)] when using N-best list rescoring with a FLM
based on partially decomposed words. Moreover, it
improves over the traditional full-words by [dev07:
1.0% absolute (6.7% relative); eval07: 0.6% abso-
lute (3.6% relative)]. The out-of-vocabulary rates
(OOVs) are given in Table 6. It is worth noting that
using fully decomposed lexicons as well as higher
order LMs could not improve WERs, this we previ-
ously proved in (El-Desoky et al., 2009).

6 Conclusions
We have introduced a hybrid approach to Ara-
bic language modeling. Our approach combines
the strengths of both morphological decomposition
and factored language modeling. Thus, we have
used language models with factored morphemes.
We have compared our approach to traditional ap-
proaches like: standard full-word n-grams, standard

decomposed n-grams, and full-word based factored
language models. Finally, we could achieve some
improvements over all the traditional approaches.
Nevertheless, we have only considered the use of
factored language models in the rescoring phase.

Acknowledgments
This material is based upon work supported by the
DARPA under Contract No. HR0011-06-C-0023.
Any opinions, findings and conclusions expressed in
this material are those of the authors and do not nec-
essarily reflect the views of DARPA.

References
J. Bilmes and K. Kirchhoff. 2003. Factored language

models and generalized parallel backoff. In Proc. Hu-
man Language Technology Conf. of the North Ameri-
can Chapter of the ACL, volume 2, pages 4 – 6, Ed-
monton, Canada, May.

M. Creutz, T. Hirsimki, M. Kurimo, A. Puurula,
J. Pylkknen, V. Siivola, M. Varjokallio, E. Arisoy,
M. Saraclar, and A. Stolcke. 2007. Morph-based
speech recognition and modeling of out-of-vocabulary
words across languages. ACM Transactions on Speech
and Language Processing, 5(1), December.

K. Darwish. 2002. Building a shallow Arabic morpho-
logical analyzer in one day. In ACL workshop on Com-
putational approaches to semitic languages, Philadel-
phia, PA, USA, July.

A. El-Desoky, C. Gollan, D. Rybach, R. Schlüter, and
H. Ney. 2009. Investigating the use of morphological
decomposition and diacritization for improving Arabic
LVCSR. In Interspeech, pages 2679 – 2682, Brighton,
UK, September.

N. Habash and O. Rambow. 2007. Arabic diacritiza-
tion through full morphological tagging. In Proc. Hu-
man Language Technology Conf. of the North Ameri-
can Chapter of the ACL, volume Companion, pages 53
– 56, Rochester, NY, USA, April.

K. Kirchhoff, D. Vergyri, J. Bilmes, K. Duh, and A. Stol-
cke. 2006. Morphology-based language modeling for
conversational Arabic speech recognition. Computer
Speech and Language, 20(4):589 – 608, October.

K. Kirchhoff, J. Bilmes, and K. Duh. 2008. Factored
language model tutorial. Technical report, Department
of Electrical Engineering, University of Washington,
Seattle, Washington, USA, February.

L. Lamel, A. Messaoudi, and J.L Gauvain. 2008. Investi-
gating morphological decomposition for transcription
of Arabic broadcast news and broadcast conversation
data. In Interspeech, volume 1, pages 1429 – 1432,
Brisbane, Australia, September.

704

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 705–708,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Is Arabic Part of Speech Tagging Feasible Without Word Segmentation?

Emad Mohamed, Sandra Kübler
Indiana University

Department of Linguistics
Memorial Hall 322

Bloomington, IN 47405
USA

{emohamed,skuebler}@indiana.edu

Abstract

In this paper, we compare two novel methods
for part of speech tagging of Arabic without
the use of gold standard word segmentation
but with the full POS tagset of the Penn Ara-
bic Treebank. The first approach uses com-
plex tags without any word segmentation, the
second approach is segmention-based, using
a machine learning segmenter. Surprisingly,
word-based POS tagging yields the best re-
sults, with a word accuracy of 94.74%.

1 Introduction

Arabic is a morphologically rich language, in
which a word carries not only inflections but
also clitics, such as pronouns, conjunctions, and
prepositions. This morphological complexity also
has consequences for the part-of-speech (POS)
annotation of Arabic: Since words can be com-
plex, POS tags refer to segments rather than to
whole words. Thus, the wordwsyrfEwnhA
(in Buckwalter transliteration; engl.: and they
will raise it) is assigned the following POS tag:
[CONJ+FUTUREPARTICLE+IMPERFECTVERB PREFIX

+IMPERFECTVERB+IMPERFECTVERB SUFFIX MAS-

CULINE PLURAL 3RD PERSON+OBJECTPRONOUN

FEMININE SINGULAR] in the Penn Arabic Treebank
(ATB) (Bies and Maamouri, 2003); the boundaries
between segments are depicted by + signs. Auto-
matic approaches to POS tagging either must assign
such complex tags from a large tagset to complete
words, or they must segment the word first and
then assign POS tags to the segments. Previous
approaches (Diab et al., 2004; Habash and Rambow,

2005; van den Bosch et al., 2007; AlGahtani et al.,
2009) chose the segmentation approach but concen-
trated on POS tagging by using the segmentation
provided by the ATB. Additionally, Diab et al. and
Habash and Rambow used a reduced tagset. Diab et
al. and Habash and Rambow used Support Vector
Machines, the former with a standard windowing
approach, the latter performing a full morphological
analysis before POS tagging. Van den Bosch et
al., whose approach is the most similar to ours,
used memory-based learning with the full ATB
tagset. They report a POS tagging accuracy of
91.5% (93.3% on known words, 66.4% on unknown
words). However, they also evaluated on words
as defined in the ATB, which differs from written
Arabic in the treatment of affixes with syntactic
functions (see section 2 for details). AlGahtani et
al. used transformation-based learning combined
with a morphological analysis for unknown words
and words containing clitics. They reached a POS
tagging accuracy of 96.9% on ATB1. Surprisingly,
their results are lower for the experiment using the
whole ATB (96.1%).

In this paper, we present two methods for Ara-
bic POS tagging that do not require gold stan-
dard segmentation but can rather be used for natu-
rally occurring Arabic. We investigate two differ-
ent approaches: (1) Assigning complete POS tags
to whole words, without any segmentation, and (2)
a segmentation-based approach, for which we de-
veloped a machine learning based segmenter. In
this approach, the words are first passed to the
segmenter, then to the POS tagger. The first ap-
proach is surprisingly successful given the complex-

705

ity of the task, reaching an accuracy on the word
level of 94.74%, as compared to 93.47% for the
segmentation-based approach. Thus, the result for
the whole word approach is very close to the re-
sult obtained by using gold standard segmentation
(94.91%). However, a more detailed analysis shows
that this good performance of the word-based ap-
proach is due to its performance on known words
while the few unknown words are more often mis-
classified: we reach an accuracy of 96.61% on
known words but only 74.64% on unknown words.

2 Data, Methods, and Evaluation

Like the previous approaches, we base our experi-
ments on the ATB, specifically on the after-treebank
POS files, for extracting our training and test sets.
More specifically, we use two sections of the ATB
(P1V3 and P3V1) since those two sets do not contain
duplicate sentences. This data set contains approxi-
mately 500,000 words. In order to be as representa-
tive of real-world Arabic, we use the non-vocalized
version of the treebank. Since previous approaches,
to our knowledge, used different data sets, our re-
sults are not directly comparable.

For both segmentation and POS tagging, we mod-
ified the ATB representation of words in order to ob-
tain the text, as it would occur in newscasts. The
ATB treats inflectional affixes, including the defi-
nite articleAl, as part of a word but splits off those
affixes that serve a syntactic function into separate
words. In order to obtain text as it occurs in news-
casts, we re-attached all conjunctions, prepositions,
pronouns, and any elements that constitute parts of
the word as an orthographic unit (with the excep-
tion of punctuation) to the word. The wordltxbrh
(engl.: in order to tell him), for example, is repre-
sented as three words in the ATB,l, txbr, and
h, but is treated as one single unit in our experi-
ment. Our second modification concerns the null
element in Arabic verbs. Since Arabic is pro-drop,
the ATB annotation includes a null element in place
of the omitted subject plus the POS tag it would
receive. Since this information is not available in
naturally occurring text, we delete the null element
and its tag. For example,{i$otaraY+(null)
and its tag PV+PVSUFFSUBJ: 3MS would occur
as{i$otaraY with the tag PV in our representa-

tion (we additionally remove the short vowels).
We perform 5-fold cross validation and use the

same data split for all three types of experiments: (1)
POS tagging using gold standard segmentation taken
from the ATB, (2) POS tagging using a segmenter,
and (3) POS tagging whole words with complex
POS tags. The first experiment serves as the upper
bound and as a comparison to previous approaches.
The second experiment uses an automatic segmenter
as a pre-processing component to the POS tagger.
This means that the accuracy of the segmenter is
also the upper limit of the POS tagger since errors
in segmentation inevitably lead to errors in POS tag-
ging. The last experiment uses full words and com-
plex POS tags. The purpose of this experiment is
to determine whether it is possible to tag complete
words without segmentation.

The segmenter and the two POS taggers use
memory-based learning. For segmentation, we use
TiMBL (Daelemans and van den Bosch, 2005); for
POS tagging MBT, a memory-based tagger (Daele-
mans et al., 1996). Memory-based learning is a lazy
learning paradigm that does not abstract over the
training data. During classification, thek nearest
neighbors to a new example are retrieved from the
training data, and the class that was assigned to the
majority of the neighbors is assigned to the new ex-
ample. MBT uses TiMBL as classifier; it offers the
possibility to use words from both sides of the focus
word as well as previous tagging decisions and am-
bitags as features. An ambitag is a combination of
all POS tags of the ambiguity class of the word.

Word segmentation is defined as a per-letter clas-
sification task: If a character in the word constitutes
the end of a segment, its class is ’+’, otherwise ’-’.
We use a sliding window approach with 5 characters
before and 5 characters after the focus character, the
previous decisions of the classifier, and the POS tag
of the focus word assigned by the whole word tag-
ger (cf. below) as features. The best results were
obtained for all experiments with the IB1 algorithm
with similarity computed as weighted overlap, rel-
evance weights computed with gain ratio, and the
number ofk nearest neighbors equal to 1.

For POS tagging, we use the full tagset, with in-
formation about every segment in the word, rather
than the reduced tagset (RTS) used by Diab et al.
and Habash and Rambow, since the RTS assumes

706

Gold Standard SegmentationSegmentation-Based TaggingWhole Words
SAR WAR SAR WAR WAR
96.72% 94.91% 94.70% 93.47% 94.74%

Table 1: POS tagging results.

a segmentation of words in which syntactically rel-
evant affixes are split from the stem. The word
w+y+bHv+wn+hA, for example, in RTS is split into
3 separate tokens,w, ybHvwn, hA. Then, each of
these tokens is assigned one POS tag, Conjunction
for w, Imperfective Verb forybHvwn, and Pronoun
for hA. The split into tokens makes a preprocessing
step necessary, and it also affects evaluation since
a word-based evaluation is based on one word, the
RTS evaluation on 3 tokens for the above example.

For all the POS tagging experiments, we use
MBT. The best results were obtained with the Modi-
fied Value Difference Metric as a distance metric and
with k = 25. For known words, we use the IGTree
algorithm and 2 words to the left, their POS tags, the
focus word and its ambitag, 1 right context word and
its ambitag as features. For unknown words, we use
IB1 as algorithm and the unknown word itself, its
first 5 and last 3 characters, 1 left context word and
its POS tag, and 1 right context word and its ambitag
tag as features.

3 Experimental Results and Discussion

3.1 Word Segmentation

The memory-based word segmentation performs
very reliably with a word accuracy of 98.23%. This
also means that when the segmentation module is
used as a pre-processing step for POS tagging, the
accuracy of the tagger will have this accuracy as its
upper bound. While there are cases where wrong
segmentation results in the same number of seg-
ments, all of these words were assigned the wrong
POS tags in our data. In an error analysis, we found
that words of specific POS are more difficult to seg-
ment than others. Proper nouns constitute 33.87%
of all segmentation errors, possibly due to the fact
that many of these are either foreign names that re-
semble Arabic words (e.g.Knt, which is ambigu-
ous between the English nameKent, and the Ara-
bic verb I was), or they are ordinary nouns used as
proper nouns but with a different segmentation (e.g.

AlHyAp, engl.: the life). The POS tag with the
second highest error rate was the noun class with
30.67%.

3.2 Part of Speech Tagging

Table 1 shows the results of the three POS tagging
experiments described above. For the segmentation-
based experiments, we report per-segment (SAR)
and per-word (WAR) accuracy. As expected, POS
tagging using gold standard segments gives the best
results: 94.91% WAR. These results are approxi-
mately 3 percent points higher than those reported
by van den Bosch et al. (2007). Although the results
are not absolutely comparable because of the dif-
ferent data sets, this experiment shows that our ap-
proach is competitive. The next experiments investi-
gate the two possibilities to perform POS tagging on
naturally occurring Arabic, i.e. when gold segmen-
tation is not available. The results of these experi-
ments show that POS tagging based on whole words
gives higher results (WAR: 94.74%) than tagging
based on automatic segmentation (WAR: 93.47%).
This result is surprising given that tagging whole
words is more difficult than assigning tags to seg-
ments, as there are 993 complex tags (22.70% of
which occur only once in the training set), versus
139 segment tags. A detailed error analysis of a pre-
vious but similar experiment can be found in Mo-
hamed and Kübler (2010).

We assume that these results are an artifact of the
ATB since it is based exclusively on newswire texts.
This means that there is only a limited vocabulary,
as shown by the very low rate of unknown words:
across the five folds, we calculated an average of
8.55% unknown words. In order to test our hypoth-
esis that unknown words are tagged more reliably
with a segment-based approach, we performed an
analysis on known and unknown words separately.
The results of this analysis are shown in Table 2.

This analysis shows that for all experiments, the
unknown words are tagged with a considerably

707

Gold Standard SegmentationSegmentation-Based TaggingWhole Words
Known words 95.90% 95.57% 96.61%
Unknown words 84.25% 71.06% 74.64%

Table 2: POS results for known and unknown words.

lower accuracy. However, the loss of performance
is more pronounced in the approaches without gold
segmentation. It is also evident that tagging whole
words reaches a higher accuracy than segment-based
tagging for both known words and unknown words.
From these results, we can conclude that while seg-
mentation makes properties of the words available,
it is not required for POS tagging. We also inves-
tigated the poor performance of the segmentation-
based tagger. A closer look at the results for un-
known words in segmentation-based tagging shows
that 59.68% of the tagging errors are direct results
from incorrect segmentation decisions. In compari-
son, for known words, only 6.24% of the incorrectly
tagged words are also ill-segmented. This means
that even though the quality of the segmenter is very
high, the errors still harm the POS tagging step.

To make our results more comparable to those by
Habash and Rambow (2005), we converted the test
set with the POS tags from the whole word tagger
to their tokenization and to a reduced tagset of 15
tags. In this setting, we reach a tokenization ac-
curacy of 99.36% and a POS tagging accuracy of
96.41%. This is very close to the results by Habash
and Rambow so that we conclude that high accu-
racy POS tagging for Arabic is possible without a
full morphological analysis.

4 Conclusions and Future Work

We have presented a method for POS tagging for
Arabic that does not assume gold segmentation,
which would be unrealistic for naturally occurring
Arabic. The approach we developed is competi-
tive although it uses the full POS tagset, without
any previous morphological analysis. The results
of our experiments suggest that segmentation is not
required for POS tagging. On the contrary, using
whole words as basis for POS tagging yields higher
accuracy, thus rendering a full morphological anal-
ysis or segmentation unnecessary. We reached the
best results in tagging whole words both for known

words and unknown words. These results were only
marginally worse that the results obtained by the ex-
periment based on gold segmentation.

The weakness of the segmentation-based ap-
proach is its low accuracy on unknown words. In the
future, we will investigate knowledge-richer meth-
ods for segmentation. In particular, we will inves-
tigate whether an automatic vocalization step previ-
ous to segmentation will improve POS tagging ac-
curacy for unknown words.

References

Shahib AlGahtani, William Black, and John Mc-
Naught. 2009. Arabic part-of-speech-tagging using
transformation-based learning. InProceeedings of the
2nd International Conference on Arabic Language Re-
sources and Tools, Cairo, Egypt.

Ann Bies and Mohamed Maamouri. 2003. Penn Arabic
Treebank guidelines. Technical report, LDC, Univer-
sity of Pennsylvania.

Walter Daelemans and Antal van den Bosch. 2005.
Memory Based Language Processing. Cambridge
University Press.

Walter Daelemans, Jakub Zavrel, Peter Berck, and Steven
Gillis. 1996. MBT: A memory-based part of speech
tagger-generator. In Eva Ejerhed and Ido Dagan, ed-
itors, Proceedings of the 4th Workshop on Very Large
Corpora, pages 14–27, Copenhagen, Denmark.

Mona Diab, Kadri Hacioglu, and Daniel Jurafsky. 2004.
Automatic tagging of Arabic text: From raw text to
base phrase chunks. InProceedings of HLT-NAACL,
Boston, MA.

Nizar Habash and Owen Rambow. 2005. Arabic tok-
enization, part-of-speech tagging and morphological
disambiguation in one fell swoop. InProceedings of
ACL-2005, pages 573—580, Ann Arbor, MI.

Emad Mohamed and Sandra Kübler. 2010. Arabic part
of speech tagging. InProceedings of LREC, Valetta,
Malta.

Antal van den Bosch, Erwin Marsi, and Abdelhadi Soudi.
2007. Memory-based morphological analysis and
part-of-speech tagging of Arabic. In Abdelhadi Soudi,
Antal van den Bosch, and Günter Neumann, editors,
Arabic Computational Morphology. Springer.

708

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 709–712,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Arabic Mention Detection: Toward Better Unit of Analysis

Yassine Benajiba
Center for Computational Learning Systems

Columbia University
ybenajiba@ccls.columbia.edu

Imed Zitouni
IBM T. J. Watson Research Center

izitouni@us.ibm.com

Abstract

We investigate in this paper the adequate unit
of analysis for Arabic Mention Detection. We
experiment different segmentation schemes
with various feature-sets. Results show that
when limited resources are available, models
built on morphologically segmented data out-
perform other models by up to 4F points. On
the other hand, when more resources extracted
from morphologically segmented data become
available, models built with Arabic TreeBank
style segmentation yield to better results. We
also show additional improvement by combin-
ing different segmentation schemes.

1 Introduction
This paper addresses an important and basic task of
information extraction: Mention Detection (MD)1:
the identification and classification of textual refer-
ences to objects/abstractions (i.e., mentions). These
mentions can be either named (e.g. Mohammed,
John), nominal (city, president) or pronominal (e.g.
he, she). For instance, in the sentence “President
Obama said he will visit ...” there are three men-
tions: President, Obama and he. This is similar
to the Named Entity Recognition (NER) task with
the additional twist of also identifying nominal and
pronominal mentions. We formulate the mention de-
tection problem as a classification problem, by as-
signing to each token in the text a label, indicating
whether it starts a specific mention, is inside a spe-
cific mention, or is outside all mentions. The se-
lection of the unit of analysis is an important step
toward a better classification. When processing lan-
guages, such as English, using the word itself as the

1We adopt here the ACE nomenclature:
http://www.nist.gov/speech/tests/ace/index.html

unit of analysis (after separating punctuations) leads
to a good performance (Florian et al., 2004). For
other languages, such as Chinese, character is con-
sidered as the adequate unit of analysis (Jing et al.,
2003). In this paper, we investigate different seg-
mentation schemes in order to define the best unit of
analysis for Arabic MD. Arabic adopts a very com-
plex morphology, i.e. each word is composed of zero
or more prefixes, one stem and zero or more suffixes.
Consequently, the Arabic data is sparser than other
languages, such as English, and it is necessary to
“segment” the words into several units of analysis in
order to achieve a good performance.
(Zitouni et al., 2005) used Arabic morphologically
segmented data and claimed to have very competi-
tive results in ACE 2003 and ACE 2004 data. On the
other hand, (Benajiba et al., 2008) report good re-
sults for Arabic NER on ACE 2003, 2004 and 2005
data using Arabic TreeBank (ATB) segmentation. In
all published works, authors do not mention a spe-
cific motivation for the segmentation scheme they
have adopted. Only for the Machine Translation
task, (Habash and Sadat, 2006) report several results
using different Arabic segmentation schemes. They
report that the best results were obtained when the
ATB-like segmentation was used. We explore here
the four known and linguistically-motivated sorts of
segmentation: punctuation separation, ATB, mor-
phological and character-level segmentations. To
our knowledge, this is the first paper which inves-
tigates different segmentation schemes to define the
unit of analysis which best fits Arabic MD.

2 Arabic Segmentation Schemes
Character-level Segmentation: considers that each
character is a separate token.
Morphological Segmentation : aims at segmenting

709

all affixes of a word. The morphological segmenta-
tion for the word I.

�
JºÖÏ @ð (wAlmktb — and the of-

fice)2 could be: “I.
�
JºÓ+ È@+ ð” (w +Al +mktb).

Arabic TreeBank (ATB) segmentation : This seg-
mentation considers splitting the word into affixes
only if it projects an independent phrasal constituent
in the parse tree. As an example, in the word shown
above I.

�
JºÖÏ @ð, the phrasal independent constituents

are: the conjunction ð (w — and) and the noun
I.

�
JºÖÏ @ (Almktb — the office). The morphological

segmentation of this word would lead to the follow-
ing parse tree:

S
HHH

���
CONJ

w

NP
b
bb

"
""
Al +mktb

Since the È@ (Al, the definite article) is not an in-
dependent constituent, it is not considered for ATB
segmentation. Hence, for I.

�
JºÖÏ @ð, the ATB segmen-

tation would be I.
�
JºÖÏ @+ ð (w +Almktb).

Punctuation separation : it consists of separating
the punctuation marks from the word.
Both ATB and morphological segmentation sys-
tems are based on weighted finite state transducers
(WFST). The decoder implements a general Bell-
man dynamic programming search for the best path
on a lattice of segmentation hypotheses that match
the input characters (Benajiba and Zitouni, 2009).
ATB and morphological segmentation systems have
a performance of 99.4 and 98.1 F-measure respec-
tively on ATB data.

The unit of analysis when doing classification de-
pends on the used segmentation. When using the
punctuation separation or character-based segmen-
tations, the unit of analysis is the word itself (with-
out the punctuation marks attached) or the character,
respectively. The ATB and morphological segmen-
tations are language specific and are based on dif-
ferent linguistic viewpoint. When using one of these
two segmentation schemes, the unit of analysis is the
morph (i.e. prefix, stem or suffix). Our goal in this
paper is to find the unit of analysis that fits best Ara-
bic MD.

2Throughout the paper, for each Arabic example we show
between parenthesis its transliteration and English translation
separated by “—”.

3 Mention Detection System
As explained earlier, we consider the MD task as a
sequence classification problem where the class we
predict for each unit of analysis (i.e., token) is the
type of the entity which it refers to. We chose the
maximum entropy (MaxEnt) classifier that can in-
tegrate arbitrary types of information and make a
classification decision by aggregating all informa-
tion available for a given classification. For more
details about the system architecture, reader may re-
fer to (Zitouni et al., 2009). The features used in our
MD system can be divided into four categories:
Lexical Features: n-grams spanning the current to-
ken; both preceding and following it. A number of
n equal to 3 turned out to be a good choice.
Stem n-gram Features: stem trigram spanning the
current stem; both preceding and following it (Zi-
touni et al., 2005).
Syntactic Features: POS tags and shallow parsing
information in a ±2 window.
Features From Other Classifiers: outputs of MD
and NER taggers trained on other data-sets different
from the one we used here. They may identify types
of mentions different from the mentions of interest
in our task. For instance, such a tagger may identify
dates or occupation references (not used in our task),
among other types. Our hypothesis is that combin-
ing classifiers from diverse sources will boost per-
formance by injecting complementary information
into the mention detection models. We also use the
two previously assigned classification tags as addi-
tional feature.

4 Data
Experiments are conducted on the Arabic ACE 2007
data. Since the evaluation tests set are not publicly
available, we have split the publicly available train-
ing corpus into an 85%/15% data split. We use 323
documents (80, 000 words, 17, 634 mentions) for
training and 56 documents (18, 000 words, 3, 566
mentions) as a test set. We are interested in 7 types
of mentions: facility, Geo-Political Entity (GPE),
location, organization, person, vehicle and weapon.
We segmented the training and test set with four dif-
ferent styles building the following corpora:
Words: a corpus which is the result of running
punctuation separation;
ATBs: a corpus obtained by running punctuation
separation and ATB segmentation;
Mophs: a corpus where we conduct punctuation
separation and morphological segmentation;
Chars: a corpus where the original text is separated

710

into a sequence of characters.
When building MD systems on Words, ATBs,

Morphs and Chars, the unit of analysis is the word,
the ATB token, the morph and the character, respec-
tively.

5 Experiments
We show in this section the experimental results
when using Arabic MD system with different seg-
mentation schemes and different feature sets. We
explore in this paper four categories of features (c.f.
Section 3):
Lexf : lexical features;
Stemf : Lexf + morphological features;
Syntf : Stemf + syntactic features;
Semf : Syntf + output of other MD classifiers.
Lexf and Stemf features are directly extracted
from the appropriate corpus based on the used seg-
mentation style. This is different for Semf : we first
run classifiers on the morphologically segmented
data. Thereafter, we project those labels to other
corpora. This is because, we use classifiers initially
trained on morphologically segmented data such as
ACE 2003, 2004 and 2005 data. In such data, two
morphs belonging to the same word or ATB token
may have 2 different mentions. During transfer, a
token will have the label of the corresponding stem
in the morphologically segmented data. One moti-
vation to not re-train classifiers on each corpus sep-
arately is to be able to extract Semf features from
classifiers with similar performance.

Table 1: Results in terms of F-measure per feature-set and
segmentation scheme

Lexf Stemf Syntf Semf

Words 66.4 66.6 69.0 77.1
ATBs 70.1 69.8 72.1 79.0

Morphs 74.1 74.5 75.5 78.3
Chars 22.3 22.4 22.5 22.6

Results in Table 1 show that classifiers built on
ATBs and Morphs have shown to perform better
than classifiers trained on data with other segmenta-
tion styles. When the system uses character as the
unit of analysis, performance is poor. This is be-
cause the token itself becomes insignificant informa-
tion to the classifier. On the other hand, when only
punctuation separation is performed (Words), the
data is significantly sparse and the obtained results
achieves high F-measure (77.1) only when outputs
of other classifiers are used. As mentioned earlier,
classifiers used to extract those features are trained

on Morphs (less sparse), which explains their re-
markable positive impact since they resolve part of
the data sparseness problem in Words. When us-
ing full morphological segmentation, the data is less
sparse, which leads to less Out-Of-Vocabulary to-
kens (OOVs): the number of OOVs in the Morphs

data is 1,518 whereas it is 2,464 in the ATBs.
As an example, the word �

é
	
JJ
ëQË@ (Alrhynp — the

hostage), which is person mention in the training
data. This word is kept unchanged after ATB seg-
mentation and is segmented to ” �

è+
	á�
ëP + È@” (Al+

rhyn +p) in Morphs. In the development set the
same word appears in its dual form without defi-
nite article, i.e. 	á�

�
J
	
�J
ëP. This word is unchanged in

ATBs and is segmented to ” 	áK

+ �

H+ 	á�
ëP” (rhyn
+p +yn) in Morphs. For the model built on ATBs,
this word is an OOV, whereas for the model built
on Morphs the stem has been seen as part of a per-
son mention and consequently has a better chance
to tag it correctly. These phenomena are frequent,
which make the classifier trained on Morphs more
robust for such cases. Also, we observed that mod-
els trained on ATBs perform better on long span
mentions. We think this is because a model trained
on ATBs has access to larger context. One may
argue that a similar behavior of the model built on
the Morphs might be obtained if we use a wider
context window than the one used for ATBs in or-
der to have similar contextual information. In or-
der to confirm this statement, we have carried out a
set of experiments using all features over Morphs

data for a context window up to −5/ + 5, the ob-
tained results show no improvement. Similar behav-
ior is observed when looking to results on identi-
fied named (Nam.), nominal (Nom.) and pronomi-
nal (Pro.) mentions on ATBs and Morphs (c.f. Ta-
ble 2); we remind the reader that NER is about rec-
ognizing named mentions. When limited resources
are available (e.g. Lexf , Stemf or Syntf), we be-
lieve that it is more effective to morphologically seg-
ment the text (Morphs) as a pre-processing step.
The use of morph as a unit of analysis reduces the
data sparseness issue and at the same time allows
better context handling when compared to character.
On the other hand, when a larger set of resources
are available (e.g., Semf), the use of the ATB to-
ken as a unit of analysis combined with morph-
based features leads to better performance (79.0 vs.
78.3 on Morphs). This is because (1) classifiers
trained on ATBs handle better the context and (2)
the use of morph-based features (output of classi-

711

fiers trained on morphologically segmented data) re-
moves some of the data sparseness from which clas-
sifiers trained on ATBs suffer. The obtained im-
provement in performance is statistically significant
when using the stratified bootstrap re-sampling sig-
nificance test (Noreen, 1989). We consider results
as statistically significant when p < 0.02, which is
the case in this paper. For an accurate MD system,
we think it is appropriate to benefit from ATBs to-
kens and Morphs. We investigate in the following
the combination of these two segmentation styles.

Table 2: Performance in terms of F-measure per level on
ATBs and Morphs

Seg. Lexf Stemf Syntf Semf

Nam. ATBs 68.2 69.0 72.8 79.1
Morphs 73.4 73.8 75.3 78.7

Nom. ATBs 65.6 64.6 66.9 75.8
Morphs 71.7 72.2 72.9 75.4

Pro. ATBs 60.7 60.1 59.9 66.3
Morphs 63.0 67.2 65.7 65.1

5.1 Combination of ATB and Morph
We trained a model on ATBs that uses output of the
model trained on Morphs as additional information
(M2Af feature). We proceed similarly by training a
model on Morphs using output of the model trained
on ATBs (A2Mf feature). We have obtained the
features by a 15-way round-robin. Table 3 shows
the obtained results.

Table 3: Results in terms of F-measure of the combina-
tion experiments

Lexf Stemf Syntf Semf

ATBs 70.1 69.8 72.1 79.0
ATBs+M2Af 70.7 70.8 73.1 79.1

Morphs 74.1 74.5 75.5 78.3
Morphs+A2Mf 74.9 75.2 75.4 78.6

Results show a significant improvement for mod-
els that are trained on ATBs using information from
Morphs in addition to Lexf , Stemf and Syntf
features. This again confirms our claim that the use
of features from morphologically segmented text re-
duces the data sparseness and consequently leads to
better performance. For Semf features, only a 0.1
F-measure points have been gained. This is because
we are already using output of classifiers trained
on morphologically segmented data, which resolve
some of the data sparseness issue. The Morphs

side shows that the obtained performance when the
ATBs output is employed together with the Stemf

(75.2) is only 0.3 points below the performance of
the system using Syntf (75.5).

6 Conclusions
We have shown a comparative study aiming at defin-
ing the adequate unit of analysis for Arabic MD.
We conducted our study using four segmentation
schemes with four different feature-sets. Results
show that when only limited resources are available,
using morphological segmentation leads to the best
results. On the other hand, model trained on ATB
segmented data become more powerful and effective
when data sparseness is reduced by the use of other
classifier outputs trained on morphologically seg-
mented data. More improvement is obtained when
both segmentation styles are combined.

References

Y. Benajiba and I. Zitouni. 2009. Morphology-
based segmentation combination for arabic men-
tion detection. Special Issue on Arabic Nat-
ural Language Processing of ACM Transac-
tions on Asian Language Information Processing
(TALIP), 8(4).

Y. Benajiba, M. Diab, and P. Rosso. 2008. Arabic
named entity recognition using optimized feature
sets. In Proc. of EMNLP’08, pages 284–293.

R. Florian, H. Hassan, A. Ittycheriah, H. Jing,
N. Kambhatla, X. Luo, N. Nicolov, and
S. Roukos. 2004. A statistical model for
multilingual entity detection and tracking. In
Proc.eedings of HLT-NAACL’04, pages 1–8.

N. Habash and F. Sadat. 2006. Combination of ara-
bic preprocessing schemes for statistical machine
translation. In Proceedings of ACL’06, pages 1–8.

H. Jing, R. Florian, X. Luo, T. Zhang, and A. Itty-
cheriah. 2003. HowtogetaChineseName(Entity):
Segmentation and combination issues. In Pro-
ceedings of EMNLP’03, pages 200–207.

E. W. Noreen. 1989. Computer-Intensive Methods
for Testing Hypotheses. John Wiley Sons.

I. Zitouni, J. Sorensen, X. Luo, and R. Florian.
2005. The impact of morphological stemming on
arabic mention detection and coreference resolu-
tion. In Proc. of the ACL Workshop on Compu-
tational Approaches to Semitic Languages, pages
63–70.

I. Zitouni, X. Luo, and R. Florian. 2009. A cascaded
approach to mention detection and chaining in
arabic. IEEE Transactions on Audio, Speech and
Language Processing, 17:935–944.

712

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 713–716,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

An MDL-based approach to extracting subword units for
grapheme-to-phoneme conversion

Sravana Reddy
Department of Computer Science

The University of Chicago
Chicago, IL 60637

sravana@cs.uchicago.edu

John Goldsmith
Departments of Linguistics

and Computer Science
The University of Chicago

Chicago, IL 60637
goldsmith@uchicago.edu

Abstract

We address a key problem in grapheme-to-
phoneme conversion: the ambiguity in map-
ping grapheme units to phonemes. Rather than
using single letters and phonemes as units, we
propose learning chunks, or subwords, to re-
duce ambiguity. This can be interpreted as
learning a lexicon of subwords that has min-
imum description length. We implement an
algorithm to build such a lexicon, as well as a
simple decoder that uses these subwords.

1 Introduction

A system for converting written words to their pro-
nunciations is an important component of speech-
related applications, especially in large vocabulary
tasks. This problem, commonly termed “grapheme-
to-phoneme conversion”, or g2p, is non-trivial for
several written languages, including English, since a
given letter (grapheme) may represent one of several
possible phonemes, depending on the context. Be-
cause the length of the context varies throughout the
dictionary, fixed-length contexts may overfit some
words, or inaccurately model others.

We approach this problem by treating g2p as a
function from contiguous sequences of graphemes,
which we call ‘grapheme subwords’, to sequences
of phonemes (‘phoneme subwords’), so that there is
minimal ambiguity in finding the phoneme subword
that corresponds to a given grapheme subword. That
is, we seek to minimize both these quantities:

1. The conditional entropy of the phoneme sub-
words given a grapheme subword. This di-

rectly tackles the problem of ambiguity – a per-
fectly unambiguous phoneme subword condi-
tional distribution would have entropy = 0.

2. The entropy of the grapheme subwords. This
prevents the model from getting arbitrarily
complex.

As a toy example, consider the following word-
pronunciation1 pairs:

time T AY M
sting S T IH NG

negation N AH G EY SH AH N

There are at least 5 graphemes whose correspond-
ing phoneme distribution is ambiguous (‘i’, ‘e’, ‘t’,
‘n’, ‘g’). In the segmentation below, every grapheme
subword corresponds to only one phoneme subword:

t + ime T + AY M
s + t + ing S + T + IH NG

neg + a + tion N AH G + EY + SH AH N

2 Related Work

Many grapheme-to-phoneme algorithms rely on
something resembling subwords; these are mainly
used to account for sequences of letters representing
a single phoneme (‘ph’ for F), or vice versa (‘x’ for
K S). Some of the early works that create one-to-
one alignments between a word and its pronuncia-
tion address these cases by allowing a letter to map
to one phoneme, a null phoneme, or 2-3 phonemes.

Jiampojamarn and Kondrak (2009) use
expectation-maximization (EM) to learn many-
to-many alignments between words and pro-
nunciations, effectively obtaining subwords.

1All phonemes are denoted by their Arpabet representations.

713

Joint-sequence models divide a word-pronunciation
pair into a sequence of disjoint graphones or
graphonemes – tuples containing grapheme and
phoneme subwords. Such segmentations may
include only trivial graphones containing subwords
of length at most 1 (Chen, 2003). Other such
models use EM to learn the maximum likelihood
segmentation into graphones (Deligne and Bimbot,
1995; Bisani and Ney, 2008; Vozilla et al., 2003).

Subwords – or phrases – are used widely in ma-
chine translation. There is a large body of work on
phrase extraction starting from word alignments; see
Koehn et al. (2003) for a review. Marcu and Wong
(2002) learn phrases directly from sentence pairs us-
ing a joint probability model.

3 Subword Extraction

3.1 Motivation for using MDL

Consider a lexicon of grapheme subwords G and
phoneme subwords P that is extracted from a dic-
tionary of word-pronunciation pairs, along with a
joint probability distribution over G and P . As
stated earlier, our objective is to minimize the en-
tropy of phoneme subwords conditioned on a given
grapheme subword, as well as the entropy of the
grapheme subwords. That is, we would like to min-
imize H(P|G) +H(G), which is

H(G,P) = −
∑
g∈G

∑
p∈P

pr(g, p) log pr(g, p) (1)

This objective can be restated as minimizing the
expected description length of the lexicon, which is
given by its entropy. This is reflected in the MDL
principle (Rissanen, 1978), which seeks to find a
lexicon such that the description length of the lex-
icon (and the compression of the data under the lex-
icon) is minimized.

3.2 Lexicon Induction

We begin with an initial alignment between a word’s
graphemes and the phonemes in its pronunciation
for all word-pronunciation pairs in the training dic-
tionary. These alignments are derived using the stan-
dard string edit distance dynamic programming al-
gorithm (Wagner and Fischer, 1974), giving a list

of tuples t = [(w1, r1), (w2, r2), . . .] for each word-
pronunciation pair.2 The set of all tuple lists t com-
poses the training dictionary T .

The initial lexicon is composed of all singleton
graphemes and phonemes (including null). The
probability pr(g, p) is taken to be the number of
times the tuple (g, p) occurs in T divided by the total
number of tuples over all alignments in T .

Following a procedure similar the word-discovery
algorithm of de Marcken (1996), the lexicon is iter-
atively updated as sketched in Table 1. At no point
do we delete singleton graphemes or phonemes.

The subwords in the final updated lexicon are then
used to decode the pronunciations of unseen words.

4 G2P Decoding

4.1 Joint segmentation and decoding

Finding the pronunciation of a word based on the
induced subword lexicon involves segmenting the
word into a sequence of grapheme subwords, and
mapping it to a sequence of phoneme subwords.

One possibility is carry these steps out sequen-
tially: first parse the word into grapheme subwords,
and then use a sequence labeling algorithm to find
the best corresponding sequence of phoneme sub-
words. However, it is likely that the true pronuncia-
tion of a word is not derived from its best parse into
grapheme units. For example, the best parse of the
word ‘gnat’ is ‘g nat’, which yields the pronuncia-
tion G N AE T, while the parse ‘gn at’ would give
the correct pronunciation N AE T.

Therefore, we search for the best pronunciation
over all segmentations of the word, adapting the
monotone search algorithm proposed by Zens and
Ney (2004) for phrase-based machine translation.3

4.2 Smoothing

A bigram model is used over both the grapheme
and phoneme subwords. These bigrams need to be
smoothed before the decoding step. Adding an equal
probability mass to unseen bigrams would fail to re-
flect simple phonotactics (patterns that govern sound

2Phoneme insertions and deletions are represented by the
null grapheme and null phoneme respectively.

3The key adaptation is in using a bigram model over both
graphemes and phonemes, rather than only phonemes as in the
original algorithm.

714

Table 1: Concatenative algorithm for building a subword lexicon that minimizes description length. The input is T ,
the set of alignments, and a threshold integer k, which is tuned using a held-out development set.

1 Update pr(g, p) by computing the posterior probabilities of the tuple (g, p) in T ,
using the forward-backward algorithm. Repeat once more to get an intermediate lexicon.

2 Compute the Viterbi parse of each t ∈ T under the lexicon derived in step 1.
3 Let A, the set of candidate tuples for addition to the lexicon, contain all tuples (wiwi+1, riri+1) such that

(wi, ri) and (wi+1, ri+1) are adjacent more than k times in the computed Viterbi parses. For each (g, p) ∈ A,
estimate the change in description length of the lexicon if (g, p) is added. If description length decreases,
remove any null symbols within g and p, and add (g, p) to the lexicon.

4 Repeat steps 1 and 2.
5 Delete all tuples that do not occur in any of the Viterbi parses.
6 Compare the description length of the new lexicon with the lexicon at the start of the iteration. If the

difference is sufficiently small, return the new lexicon; else, repeat from step 1.

sequences) in several cases. For example, the bi-
gram L UW K + S is much more likely than L UW
K + Z, since S is more likely than Z to follow K.

To introduce a bias towards phonotacticaly likely
bigrams, we define the smoothed bigram probability
of the subword a following a subword b. Given that
b is made up of a sequence of l phonemes b1b2 . . . bl,
the probability is defined as the interpolation4:

prnew(a|b) = λ1pr(a|b1b2 . . . bl) +
λ2pr(a|b1b2 . . . bl−1) + λ3pr(a|b1b2 . . . bl−2)

Both the grapheme and phoneme subword bi-
grams are smoothed as described.

5 Results

We test our algorithm on the CMU Pronouncing
Dictionary5. The dictionary is divided randomly
into a training (90% of the data) and a test set. Per-
formance is evaluated by measuring the phoneme er-
ror rate (PER) and the word error rate (WER).

The subword extraction algorithm converges in 3
iterations.We run the g2p decoder using the lexicon
after 3 iterations, as well as after 0, 1 and 2 itera-
tions. The results are shown in Table 2.

Figure 1 compares the results of our method (de-
noted by ‘MDL-Sub’) to two baselines, at different
values of maximum subword length. To evaluate the
quality of our subwords, we substitute another ex-
traction algorithm to create the lexicon – the grow-
diag-final phrase extraction method (Koehn et al.,

4In our experiments, we set λ1 = 0.5, λ2 = 0.3, λ3 = 0.2.
5The CMU Pronouncing Dictionary. Available online at

http://www.speech.cs.cmu.edu/cgi-bin/cmudict

Table 2: Results after each iteration of subword extrac-
tion. While the maximum subword length after iteration
3 is 8, the vast majority of subwords have length 6 or less.

subwords Max subword WER PER
length

0 |G| : 27, |P| : 40 1 73.16 24.20
1 |G| : 819, |P| : 1254 2 48.39 12.43
2 |G| : 5430, |P| : 4954 4 28.32 7.16
3 |G| : 6417, |P| : 5358 6 26.31 6.29

2005), denoted by ‘GD’ in the figure. We also run
the implementation of Bisani and Ney (2008) – de-
noted by ‘BN’ – on the same data. BN is an example
of a joint-sequence n-gram model, which uses a joint
distribution pr(G,P) of graphemes and phonemes
(‘graphones’), conditioned on the preceding n-1 gra-
phones for context information. Since this algorithm
outperforms most of the existing g2p algorithms, it
serves as a good point of comparison to the state of
the art in g2p. The results of BN using an n-gram
model are compared to MDL-Sub with an n-1 max-
imum subword length6.

The MDL-Sub lexicon does significantly better
than the phrases extracted by GD. While BN starts
off doing better than MDL-Sub, the latter outper-
forms BN at longer subword lengths. Most of the ad-
ditional errors in BN at that stage involve grapheme-
to-phoneme ambiguity – phonemes like AE, AA, and
AH being confused for one another when mapping

6The contextual information of (n-1)-length subwords with
bigrams is assumed to be roughly comparable to that of very
short subwords over n-grams.

715

the grapheme ‘a’, and so on. Far fewer of these er-
rors are produced by our algorithm. However, some
of the longer subwords in MDL-Sub do introduce
additional errors, mainly because the extraction al-
gorithm merges smaller subwords from previous it-
erations. For example, one of the items in the ex-
tracted lexicon is ‘icati’ – a product of merging ‘ic’
and ‘ati’ – corresponding to IH K EY SH, thus
generating incorrect pronunciations for words con-
taining the string ‘icating’.

Figure 1: Comparison of error rates.

6 Conclusion

This paper deals with translational ambiguity, which
is a major issue in grapheme-to-phoneme conver-
sion. The core of our system consists of extract-
ing subwords of graphemes and phonemes from the
training data, so that the ambiguity of deriving a
phoneme subword from a grapheme subword is min-
imized. This is achieved by formalizing ambiguity
in terms of the minimum description length princi-
ple, and using an algorithm that reduces the descrip-
tion length of the subword lexicon at each iteration.

In addition, we also introduce a smoothing mech-
anism which retains some of the phonotactic depen-
dencies that may be lost when using subwords rather
than singleton letters and phonemes.

While retaining the basic approach to minimizing
ambiguity, there are some avenues for improvement.

The algorithm that builds the lexicon creates a more
or less hierarchical structure – subwords tend to be
composed from those extracted at the previous iter-
ation. This appears to be the cause of many of the
errors produced by our method. A subword extrac-
tion algorithm that does not use a strictly bottom-up
process may create a more robust lexicon.

Our method of subword extraction could also be
applied to phrase extraction for machine transla-
tion, or in finding subwords for related problems like
transliteration. It may also be useful in deriving sub-
word units for speech recognition.

References
Maximilian Bisani and Hermann Ney. 2008. Joint-

sequence models for grapheme-to-phoneme conver-
sion. Speech Communication, 50:434–451.

Stanley F Chen. 2003. Conditional and joint models for
grapheme-to-phoneme conversion. In Proceedings of
Eurospeech.

Carl G de Marcken. 1996. Unsupervised Language Ac-
quisistion. Ph.D. thesis, MIT.

Sabine Deligne and Frederic Bimbot. 1995. Language
modeling by variable length sequences: theoretical
formulation and evaluation of multigrams. In Pro-
ceedings of ICASSP.

Sittichai Jiampojamarn and Grzegorz Kondrak. 2009.
Online discriminative training for grapheme-to-
phoneme conversion. In Proceedings of Interspeech.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Proceed-
ings of HLT-NAACL.

Philipp Koehn, Amittai Axelrod, Alexandra Birch
Mayne, Chris Callison-Burch, Miles Osborne, and
David Talbot. 2005. Edinburgh System Description
for the 2005 IWSLT Speech Translation Evaluation.
In Proceedings of IWSLT.

Daniel Marcu and William Wong. 2002. A phrase-based,
joint probability model for statistical machine transla-
tion. In Proceedings of EMNLP.

Jorma Rissanen. 1978. Modeling by the shortest data
description. Automatica.

Paul Vozilla, Jeff Adams, Yuliya Lobacheva, and Ryan
Thomas. 2003. Grapheme to phoneme conversion and
dictionary verification using graphonemes. In Pro-
ceedings of Eurospeech.

Robert Wagner and Michael Fischer. 1974. The string-
to-string correction problem. Journal of the ACM.

Richard Zens and Hermann Ney. 2004. Improvements in
phrase-based statistical machine translation. In Pro-
ceedings of HLT-NAACL.

716

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 717–720,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Extracting Phrase Patterns with Minimum Redundancy
for Unsupervised Speaker Role Classification

Bin Zhang, Brian Hutchinson, Wei Wu and Mari Ostendorf∗
University of Washington, Seattle, WA 98125

Abstract

This paper addresses the problem of learning
phrase patterns for unsupervised speaker role
classification. Phrase patterns are automati-
cally extracted from large corpora, and redun-
dant patterns are removed via a graph prun-
ing algorithm. In experiments on English and
Mandarin talk shows, the use of phrase pat-
terns results in an increase of role classifi-
cation accuracy over n-gram lexical features,
and more compact phrase pattern lists are ob-
tained due to the redundancy removal.

1 Introduction

The identification of speaker roles is fundamental to
the analysis of social content and information re-
liability in conversational speech. Previous work
has primarily used supervised learning in automatic
role classification. Barzilay et al. (2000) described a
speaker role classification system for English broad-
cast news (BN), where the speakers were catego-
rized into three types: anchor, journalist, and guest.
The authors used supervised learning to discover n-
gram signature phrases for speaker introduction and
structural features such as duration, achieving an ac-
curacy of 80% on ASR derived transcripts. Liu et al.
(2006) studied speaker role classification on TDT-4
Mandarin BN data. Hidden Markov and maximum
entropy models were used to label the sequence of
speaker turns with the roles anchor, reporter, and
other, based on n-gram features, which yielded 80%
classification accuracy on human transcripts.

Hutchinson et al. (2010) extend previous work to
the case of unsupervised learning, with the goal of
portability across languages. That work explored

∗ This research was funded by the Office of the Director of
National Intelligence (ODNI), Intelligence Advanced Research
Projects Activity (IARPA). All statements of fact, opinion or
conclusions contained herein are those of the authors and should
not be construed as representing the official views or policies of
IARPA, the ODNI or the U.S. Government.

speaker role classification using structural and n-
gram features on talk show (or broadcast conversa-
tion (BC)) data. In this paper, we address a limita-
tion of n-grams as features by proposing a method
for learning phrases with gaps, which is particularly
important for conversational speech, since there are
more disfluencies that can cause failure of n-gram
matching. In addition, we want to avoid topic words
(e.g., proper nouns) in order to model speaker roles
rather than topics. For example, for identifying the
host, the phrase pattern “We’ll be back with * in a
minute” is more general than the n-grams “We’ll be
back with John Smith in a minute.” To prevent these
problems with n-grams, one must limit the length of
learned n-grams, making them less discriminative.

Phrase patterns have been used in other NLP ap-
plications such as (Sun et al., 2007). To remove the
redundancies in the automatically extracted phrase
patterns, we propose a redundancy removal algo-
rithm based on graph pruning that does not require
role-labeled data. The resulting set of patterns is
then used to extract lists of signature and conversa-
tional phrases, from which features are derived that
are used to distinguish between the different roles.
Using the phrase pattern-based lexical features in
clustering, we obtain 82-89% speaker role classifi-
cation accuracy on human transcripts of BC shows.

2 Method

Phrase patterns are generalizations of n-grams. A
phrase pattern p of length n is an ordered list of
words (w1, w2, . . . , wn). It is matched by a word se-
quence of lengthm ≥ n if the sequence contains the
words in the order defined by the pattern. Because
the words in a phrase pattern need not appear con-
tiguously in the sequence, phrase matching is less
sensitive to disfluencies and topic words.

2.1 Phrase Pattern Extraction
Phrase patterns can be extracted by the sequen-
tial pattern mining algorithm PrefixSpan (Pei et al.,

717

2001). This algorithm efficiently extracts frequent
phrase patterns in a corpus (i.e., relative frequency
greater than a given threshold). Prior to the extrac-
tion, we perform text preprocessing including split-
ting the text into lines based on commas and peri-
ods to limit the pattern span, followed by case and
punctuation removal. The extracted phrase patterns
have variable length. As a result, longer patterns
may contain shorter patterns. Phrase patterns with
the same length may also be overlapped. These re-
dundancies should be removed; otherwise, the same
phrase may match several patterns, resulting in bi-
ased counts.

2.2 Phrase Pattern Redundancy Removal

Define a phrase pattern p as contained in another
phrase pattern q if q contains all the words in p in the
same order. p is called a parent pattern and q is the
corresponding child pattern. Instead of constructing
a tree as in (Siu et al., 2000) for variable length n-
grams, we create a graph of phrase patterns based
on containment, because a pattern can contain and
be contained by multiple patterns. Our redundancy
removal algorithm involves pruning this graph. With
the nodes being the phrase patterns, the edges of the
phrase pattern graph are constructed by connecting
length-n phrase pattern p to length-(n + 1) phrase
pattern q for all n, if p is contained in q. We con-
nect only phrase patterns that differ by one word in
length for computational efficiency, and this results
in a multi-layer structure: the phrase patterns in each
layer have the same length. For the convenience of
pruning, a virtual node T is created as the “zeroth”-
layer, and it is directly connected to all the nodes in
the layer with the shortest pattern length.

Once a phrase pattern graph has been created, we
prune the graph in order to remove the redundant
nodes. First, we remove edges based on the ratio of
counts c(q)/c(p) between child node q and parent
node p. A large ratio implies that the child appears in
most of the cases where the parent appears. Hence,
we keep the edge to indicate that the child can be
used as a preferred substitute for the parent. On the
other hand, the edge is removed if the ratio is small
(less than a threshold t, see Fig. 1).

After this procedure is performed on all the edges
in the graph, we determine whether a node is pruned
based on its connectivity to parents and children. We

A B

A B C A B D A B E

A B C D F A B D A B E D

X

Figure 1: A fragment of an example phrase pattern graph.
The letters represent words. The edge between “AB” and
“ABD” is removed because the ratio of counts is less than
the threshold.

define two levels of pruning, which differ in whether
a node can be preserved even if its connections to
parents are removed:

Conservative pruning A node is pruned if it has at
least one child.

Aggressive pruning A node is pruned if it has at
least one child or is not on a path connected to
T .

Both methods were investigated, in case some useful
phrase patterns ended up being pruned with the more
aggressive approach.

2.3 Features Based on Phase Patterns
Although (Hutchinson et al., 2010) uses both lex-
ical and structural features, here we use only lexi-
cal features to better assess impact. Once the graph
pruning has provided a list of phrase patterns (elimi-
nating phrases of length one because of low reliabil-
ity), two subsets are extracted to represent signature
phrases as might be used by a host and conversa-
tional phrases as might occur more frequently in live
interviews. The signature statistic

θ1 =
DF

SF
+ α log(fBC). (1)

is based on the speaker frequency (SF , # speak-
ers whose utterances match p), document frequency
(DF , # shows that match p), and genre-dependent
frequency fBC (# occurrences of p in BC), all com-
puted on the training data. The ratio DF

SF favors
phrases that occur in many documents but few
speakers, e.g. one per show, as for a host. The log
BC frequency term is a penalty to eliminate infre-
quent patterns. The conversation statistic

θ2 =
fBC

fBN + 1
1SF>β . (2)

718

uses frequency fBN (# occurrences of p in BN), to
look for phrases that are more frequent in BC data
than BN, ideally live discussion phenomena. The in-
dicator function 1SF>β eliminates phrases used by
a small number of speakers to avoid topic-related
phrases. Hyper-parameters α and β are tuned by in-
specting the top phrase patterns after ranking. We
use α = 10−3, β = 500 for English and α =
10−4, β = 1000 for Mandarin. Phrase patterns are
ranked by the two statistics to generate lists of sig-
nature and conversational patterns, respectively.

During speaker-level feature extraction in role de-
tection, each phrase pattern in the lists is matched
against a speaker’s utterances. The lexical features
have two dimensions: the count of matches using the
signature and conversational patterns, each normal-
ized by the total number of patterns matched in the
show to account for differences between shows.

3 Experiments

3.1 Task and Data

In the absence of speaker-role-labeled conversa-
tional speech training data, we perform unsuper-
vised speaker role classification with three classes:
host, expert guest, and soundbite. We evaluate
on two human-labeled evaluation sets (English and
Mandarin). The English eval set contains nine BC
shows (150 speakers), while the Mandarin eval set
contains 14 shows (140 speakers). There is an addi-
tional labeled Mandarin development set composed
of ten shows (71 speakers). There are on average
7.6k words and 7.5k characters per show for English
and Mandarin, respectively. The phrase patterns are
learned from much larger corpora with speaker la-
bels but without speaker role labels, including web
transcripts for 310 English shows and quick rich
transcripts for 4395 Mandarin shows. Because of
the larger amount of Mandarin data, we use a lower
threshold (5 × 10−5) for phrase pattern extraction
than for English (10−4).

3.2 Classification

Spectral clustering (Shi and Malik, 2000) is used
in this work, since we found it to outperform other
clustering approaches such as k-means and Gaus-
sian mixture models. Given a two-dimensional fea-
ture vector for each speaker in a show, we con-

struct a speaker graph with edge weights defined
by Gaussian similarity exp

(
−‖xi−xj‖2

2σ2

)
. The spec-

tral clustering is non-deterministic, because it uses
k-means as its final step (k = 3), which is ini-
tialized by randomly choosing k samples as ini-
tial centroids. We vary σ as an integer from 1 to
100 in combination with different random initial-
izations to generate multiple clustering alternatives,
and then use a partition selection algorithm to pick
the most common clustering among the candidates.
We use domain knowledge to map speaker clusters
into speaker roles: the cluster whose members have
the largest average number of speaker turns is the
host cluster, that with the smallest average number
of turns is the soundbite cluster, and the remaining
cluster contains the expert guests.

3.3 Results

The phase pattern pruning threshold t was tuned on
the Mandarin dev set. We varied t from 0.1 to 0.9,
and measured the classification accuracy. t = 0.8
was found to be optimal (Fig. 2).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.7

0.75

0.8

0.85

0.9

Conservative

Aggressive

No pruning

Figure 2: Accuracy on Man dev vs. pruning threshold t

The list of classification results on all the data sets
is shown in Tab. 1. Aggressive pruning yields the
best classification performance on all the data sets. It
is also better than using n-gram matching for feature
extraction (the last row of the table).

Man dev Man eval Eng eval
No pruning 0.83 0.86 0.81

Cons. pruning 0.86 0.83 0.81
Aggr. pruning 0.89 0.89 0.82

N-gram 0.86 0.86 0.77

Table 1: Classification results

The size of phrase pattern lists is given in Tab.
2, and the number of redundant phrase patterns (the
patterns that are contained in other patterns) is in
Tab. 3 for different pruning levels. Using aggres-
sive pruning, the list size and number of redun-

719

dant phrase patterns are greatly reduced. However,
the classification accuracy does not decrease. This
demonstrates that the redundant phrase patterns are
not helpful and can be harmful for this task.

Signature ptn. Conv. ptn.
Pruning level Eng Man Eng Man
No pruning 2000 2000 1000 1000

Cons. pruning 1605 946 928 998
Aggr. pruning 244 370 465 835

Table 2: Phrase pattern list size

Signature ptn. Conv. ptn.
Pruning level Eng Man Eng Man
No pruning 396 1331 337 142

Cons. pruning 35 307 334 142
Aggr. pruning 6 59 8 0

Table 3: Number of redundant phrase patterns in the list

The unsupervised speaker role classification sys-
tem in (Hutchinson et al., 2010) uses both n-gram
and structural features, giving classification accu-
racy on English and Mandarin eval sets of 0.86
and 0.84, respectively. Adding structural features
to phrase-pattern-based lexical features improves
the performance on English but not Mandarin, per-
haps because soundbites in English tend to be much
shorter than those in Mandarin.

3.4 Discussion
The experiments reflect differences between the two
languages. We observe that the main gain in Man-
darin comes from improved classification of hosts,
due to the signature phrase patterns. In English, the
improvement is attributed to improved classification
of expert guests and soundbites, suggesting an im-
proved conversational dimension of the lexical fea-
tures. The performance difference of the two lan-
guages seems more related to the languages them-
selves, rather than the size of data sets on which
phrase patterns are learned, because we were able to
obtain similar performance on Mandarin even when
the training set size is reduced.

Anecdotal inspection of the phrase patterns
learned for the signature phrases suggests that the
combination of redundancy pruning and the heuris-
tic signature statistic is quite effective. For exam-
ple, we observed English signature patterns such
as “back with after this” and “let’s take a look

at.” The former pattern can be matched by phrases
with names or topics inserted, and the latter can be
matched by “let’s just take a look at” or “let’s take
a brief look at.” In the Mandarin signature patterns,
we also found patterns such as “今天请到演播室
的嘉宾是 *的 *教授” (today the guest invited to
the studio is Professor from) and “谢谢来自 *的报
道” (thanks to the report from). These patterns can
be considered to be templates for hosts, where the
named-entities are skipped.

4 Conclusions

We have presented a method for extracting phrase
patterns with minimum redundancy for speaker role
classification. The proposed algorithm removes
most of the redundancies in the phrase patterns,
leading to more compact pattern lists and improved
classification accuracy over n-gram lexical features.
We can apply the algorithm to other applications
such as text classification, where phrase patterns
can be used in place of n-grams. One way to ex-
tend this work is to use the automatically extracted
phrase patterns as initial features, and then employ
supervised or semi-supervised learning techniques
to learn a more discriminative feature set.

References
R. Barzilay et al. 2000. The Rules Behind Roles: Iden-

tifying Speaker Role in Radio Broadcasts Proc. AAAI,
pp. 679–684.

Y. Liu. 2006. Initial Study on Automatic Identification of
Speaker Role in Broadcast News Speech. Proc. HLT,
pp. 81–84.

B. Hutchinson et al. 2010. Unsupervised Broadcast Con-
versation Speaker Role Labeling Proc. ICASSP, pp.
5322–5325.

G. Sun et al. 2007. Detecting Erroneous Sentences Using
Automatically Mined Sequential Patterns. Proc. ACL,
pp. 81–88.

J. Pei et al. 2001. PrefixSpan: Mining Sequential Pat-
terns Efficiently by Prefix-projected Pattern Growth.
Proc. ICDE, pp. 215–224.

M. Siu and M. Ostendorf. 2000. Variable N-grams and
Extensions for Conversational Speech Language Mod-
eling. IEEE Transactions on Speech and Audio Pro-
cessing, 8(1):63–75.

J. Shi and J. Malik. 2000. Normalized Cuts and Image
Segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(8):888–905.

720

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 721–724,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Classification of Prosodic Events using Quantized Contour Modeling

Andrew Rosenberg
Department of Computer Science

Queens College CUNY, New York, USA
andrew@cs.qc.cuny.edu

Abstract

We present Quantized Contour Modeling (QCM), a
Bayesian approach to the classification of acoustic
contours. We evaluate the performance of this tech-
nique in the classification of prosodic events. We
find that, on BURNC, this technique can success-
fully classify pitch accents with 63.99% accuracy
(.4481 CER), and phrase ending tones with 72.91%
accuracy.

1 Introduction

Intonation can significantly vary the intended meaning
of a spoken utterance. In Standard American English,
contrast is frequently indicated with an accent that has
a steeper pitch rise – “I went to thestore (not the li-
brary)” – than an accent that is used to indicate focus or
introduce new information – “I went to thestore (before
going home)” . At phrase boundaries, rising pitch can
indicate uncertainty or that the speaker is asking a ques-
tion – “John likes Mary?” vs. “John likes Mary”. Auto-
matically detecting prosodic events and classifying their
type allows natural language understanding systems ac-
cess to intonational information that would unavailable if
processing transcribed text alone.

The ToBI standard of intonation (Silverman et al.,
1992) describes intonational contours as a sequence
of High and Low tones associated with two types of
prosodic events – pitch accents and phrase boundaries.
The tones describe an inventory oftypes of prosodic
events. In this work, we present Quantized Contour Mod-
eling, a novel approach to the automatic classification of
prosodic event types.

In Section 2, we describe related work on this task. We
describe Quantized Contour Modeling in Section 3. Our
materials are described in Section 4. Experimental results
are presented and discussed in Section 5. We conclude
and describe future directions for this work in Section 6.

2 Related Work

Five types of pitch accents – pitch movements that corre-
spond to perceived prominence of an associated word –
are defined in the ToBI standard(Silverman et al., 1992):
H*, L*, L+H*, L*+H, H+!H*. In addition to these five,
high tones (H) can be produced in a compressed pitch
range indicated by (!H). For the purposes of the experi-
ments described in this paper, we collapse high (H) and
downstepped High (!H) tones into a single class leav-
ing five accent types. The ToBI standard describes two
levels of phrasing, intermediate phrases and intonational
phrases which are comprised of one or more intermedi-
ate phrases. Each intermediate phrase has an associated
phrase accent describing the pitch movement between the
ultimate pitch accent and the phrase boundary. Phrase
accents can have High (H-), downstepped High (!H-) or
low (L-) tones. Intonational phrase boundaries have an
additional boundary tone, to describe a final pitch move-
ment. These can be high (H%) or low (L%). Intona-
tional phrases have five possible phrase ending tone com-
binations, L-L%, L-H%, H-L%, !H-L% and H-H%. In
section 5.3, we describe experiments classifying these
phrase ending tones.

The detectionof pitch accents and phrase boundaries
has received significantly more research attention than
the classificationof accent types and phrase ending be-
havior. However, one technique that has been used in
a number of research efforts is to simultaneously detect
and classify pitch accent. This is done by represent-
ing pitch accent detection and classfication as a four-way
classification task, where a token may be classified as
UNACCENTED, HIGH, LOW, or DOWNSTEPPED. Both
Ross and Ostendorf (1996) and Sun (2002) used this ap-
proach, reporting 72.4% and 77.0% accuracy respectively
when evaluated on a single speakers. Levow also used
this four-way classification for pitch accent detection and
classification under supervised (2005), and unsupervised
and semi-supervised learning approaches (2006). Using

721

SVMs with only acoustic features, 81.3% accuracy at the
syllable level is achieved. Using unsupervised spectral
clustering, 78.4% accuracy is reported, while using the
semi-supervised technique, Laplacian SVMs, 81.5% ac-
curacy is achieved. Since these approaches simultane-
ously evaluate the detectionand classification of pitch
accents, direct comparison with this work is impossible.

Ananthakrishnan and Narayanan (2008) used RFC
(Taylor, 1994) and Tilt (Taylor, 2000) parameters along
with word and part of speech language modeling to clas-
sify pitch accents as H*, !H*, L+H* or L*. When eval-
uated on six BURNC speakers using leave-one-speaker-
out cross-validation, accuracy of 56.4% was obtained. In
the same work, the authors were able to classify L-L%
from L-H% phrase-final tones in the BURNC with 67.7%
accuracy. This performance was obtained using RFC F0
parameterization and a language model trained over cat-
egorical prosodic events.

3 Quantized Contour Modeling

In this section, we present a modeling technique, Quan-
tized Contour Modeling. This technique quantizes the f0
contour of a word in the time and pitch domains, generat-
ing a low-dimensional representation of the contour. The
pitch of the contour is linearly normalized to the range be-
tween the minimum and maximum pitch in the contour,
and quantized intoN equally sized bins. The time do-
main is normalized to the range [0,1] and quantized into
M equally sized bins. An example of such a quantiza-
tion is presented in Figure 1 whereN = 3 andM = 4.
Using this quantized representation of a pitch contour, we

Figure 1:Quantization withN=3 value andM=4 time bins.

train a multinomial mixture model for each pitch accent
type. Let the quantized contour be anM dimensional
vector C whereC = (C1, C2, . . . , CM), whereCi ∈
{0 . . .N − 1}. We indicate pitch (f0) contours byCf0

and intensity contours byCI . We train a multinomial
modelp(type|Ci, i) for each time bini ∈ {0 . . .N − 1}
with Laplace (add-one) smoothing. When using multi-
nomial models, we quantize the mean of the pitch values
assigned to a time bin. We use these pitch accent type
models to classify a contour using the Bayesian classi-
fication function found in Equation 1. This formulation
assumes that the values at each time are conditionally in-
dependent given the contour type. Also, we can modify

the model incorporating a Markov hypothesis to include
a sequential component by explicitly modeling the cur-
rent and previous quantized values, as in Equation 2. We
extend each of these models to model the energy contour
shape simultaneously with the pitch contour. The clas-
sification technique allows for the number of pitch and
energy value quantization bins to be distinct. However,
in these experiments, we tie these, constraining them to
be equal. The form of the classification functions using
the energy contours are found in Figure 2.

Standard shape modeling

type
∗ = argmax

type

p(type)
M
Y

i

p(Ci|type, i) (1)

Sequential f0 modeling

type
∗ = argmax

type

p(type)
M
Y

i

p(Ci|Ci−1, type, i) (2)

Standard f0 + I modeling

type
∗ = argmax

type

p(type)

M
Y

i

p(Cf0

i , C
I
i |type, i) (3)

Sequential f0 + I modeling

type
∗ = argmax

type

p(type)

M
Y

i

p(Cf0

i , C
I
i |Cf0

i−1
, C

I
i , type, i)

(4)

Figure 2:Quantized contour modeling classification formulae.

4 Materials and Methods

We use two corpora that have been manually annotated
with ToBI labels to evaluate the use of QCM in the clas-
sification of prosodic events. These two corpora are the
Boston University Radio News Corpus (BURNC) (Os-
tendorf et al., 1995) and the Boston Directions Corpus
(BDC) (Nakatani et al., 1995). The BURNC is a cor-
pus of professionally read radio news data. A 2.35 hour,
29,578 word, subset from six speakers (three female and
three male) has been prosodically annotated. The BDC
is made up of elicited monologues spoken by four non-
professional speakers, three male and one female. The
BDC is divided into two subcorpora comprised of spon-
taneous and read speech. The 50 minutes of read speech
contain 10,831 words. There are 60 minutes of annotated
spontaneous material containing 11,627 words. Both
are spoken by the same four speakers. In these experi-
ments we evaluate these subcorpora separately, and refer
to them as BDC-spon and BDC-read, respectively. The
distribution of pitch accents and phrase-ending tones for
these three corpora can be found in Figure 3.

722

Corpus H* L+H* L* L*+H H+!H*
BDC-read 78.24% 13.72% 5.97% 1.36% 0.71%
BDC-spon 84.57% 6.32% 7.70% 0.68% 0.73%
BURNC 69.99% 21.64% 3.67% 0.34% 4.37%

Corpus L-L% L-H% H-L% !H-L% H-H%
BDC-read 49.00% 35.62% 9.66% 4.29% 1.43%
BDC-spon 29.45% 32.57% 30.96% 4.40% 2.61%
BURNC 56.16% 38.38% 3.57% 0.68% 1.20%

Figure 3:Distribution of prosodic event types in BURNC, BDC-
read and BDC-spon corpora.

In order to use QCM classification, we must first
identify the region of an acoustic contour to quantify.
Though there is evidence that acoustic evidence of promi-
nence crosses the syllable boundary (Rosenberg and
Hirschberg, 2009), it is largely held that the acoustic ex-
cursion corresponding to intonational prominence is cen-
tered around a syllable. To identify the region of analysis
for QCM, we identify the accent-bearing syllable from
the manual prosodic annotation, and quantize the contour
extracted from the syllable boundaries. For the BURNC
material, forced alignment syllable boundaries are avail-
able. However, no forced-alignment phone information
is available for the BDC data. Therefore we apply Villing
et al.’s (2004) envelope based pseudosyllabification rou-
tine to identify candidate syllabic regions. We use the
pseudosyllable containing the accent annotation as the re-
gion of analysis for the BDC material. For classification
of phrase ending intonation, we use the final syllable (or
pseudosyllable) in the phrase as the region of analysis.
To be clear, the accent and phrase boundary locations are
derived from manual annotations; the intonational tones
associated with these events are classified using QCM.

5 Prosodic Event Classification Results

In this section we present results applying QCM to the
classification of pitch accents and phrase ending intona-
tion. The work described in this section assumes the
presenceof prosodic events is knowna priori. The ap-
proaches described can be seen as operating on output of
an automatic prosodic eventdetectionsystem.

5.1 Combined Error Rate

Automatic pitch accent classification poses an interest-
ing problem. Pitrelli, et al. (Pitrelli et al., 1994) report
human agreement of only 64.1% on accent classifica-
tion in the ToBI framework. If downstepped variants of
accents are collapsed with their non-downstapped forms
this agreement improves to 76.1%. Second, pitch accents
are overwhelmingly H* in most labeled corpus, includ-
ing the BDC and BURNC material used in this paper.
This skewed class distribution leads to a very high base-
line, at or above the rate of human agreement. Because
of this, we find accuracy an unreliable measure for evalu-

ating the performance of this task. Multiple solutions can
have similar accuracy, but radically different classifica-
tion performance on minority classes. We therefore pro-
pose to use a different measure for the evaluation of pitch
accent type classification. We define the Combined Error
Rate (CER) as the mean of the weighted rates of Type I
and Type II errors. The combination of these measures
results in an increased penalty for errors of the majority
class while being more sensitive to minority class perfor-
mance than accuracy. Throughout this chapter, we will
continue to report accuracy for comparison to other work,
but consider CER to provide a more informative evalua-
tion. To avoid confusion, accuracy will be reported as a
percentage (%) while CER will be reported as a decimal.

CER =
p(FP) + p(FN)

2
(5)

The Type I error rate measures the false positive rate for
a given class (cf. Equation 6).

p(FP) =
∑

i

p(Ci)p(FPi) (6)

We combine this measure with the Weighted Type II Er-
ror Rate (cf. Equation 7). The Type II error rate measures
the false negative rate for a given class

p(FN) =
∑

i

p(Ci)p(FNi) (7)

5.2 Pitch Accent Classification

The first step in applying Quantized Contour Modeling
is to fix the desired quantization parameters. We do this
by identifying a stratified 10% held out tuning set from
the training data. We evaluate quantization sizes ranging
between 2 and 7 for both the time and value parameters,
leading to 36 candidates. Once we identify the best pa-
rameterization on this tuning data, we run ten-fold cross
validation on the remaining data to evaluate the perfor-
mance of each modeling technique (cf. Figure 2).

The classification accuracy andCER for each model
is reported in Table 1 along with the number of time and
value bins that were used. We first observe that model-
ing intensity information with f0 data does not improve
classification performance. The alignment between pitch
and intensity peaks have been shown to distinguish pitch
accent types (Rosenberg, 2009); this relationship is not
successfully captured by QCM. Moreover, we find that
sequential modeling only leads to improvements in CER
on BDC-read. On all corpora, the classification accuracy
is improved, with statistically insignificant (p> 0.05)
reductions in CER. This leads us to consider sequential
modeling of pitch to be the best performing approach to
the classification of pitch accent using QCM.

723

Method BDC-read BDC-spon BURNC
f0 46.51/.3860(5,3) 55.41/.4103(3,4) 47.56/.4444(4,4)

Seq. f0 73.17/.3667(6,7) 81.20/.4156 (7,5) 63.99/.4481(7,7)
f0+I 37.53/.4094(3,3) 47.96/.4222(4,2) 48.36/.4472(2,2)

Seq. f0+I 74.08/.4032(7,3) 80.60/.4361(5,4) 66.97/.4530(6,5)
Baseline 78.22/.0000 84.57/.0000 70.23/.0000

Table 1:Accuracy (%), CER, time and value bins from QCM pitch accent type classification experiments.

5.3 Phrase-ending Tone Classification

As in Section 5.2, we identify the best performing quanti-
zation parameters on a stratified 10% tuning set, then run
10-fold cross validation on the remaining data. Results
from QCM classification experiments classifying intona-
tional phrase ending tone combinations – phrase accent
and boundary tone – can be found in Table 2. We find

Method BDC-read BDC-spon BURNC
f0 48.21(3,6) 40.26(2,2) 70.36 (5,2)

Seq. f0 53.86(2,2) 43.80(4,4) 71.77 (6,2)
f0+I 48.21(6,6) 38.28(6,6) 67.83(2,2)

Seq. f0+I 57.94(6,6) 46.61(6,5) 72.91(7,7)
Baseline 49% 32% 55%

Table 2:Accuracy (%), time and value bins from QCM phrase
ending tone classification experiments.

that the simultaneous modeling of f0 and intensity con-
sistently yields the best performance in the classification
of phrase ending tones. These results all represent signif-
icant improvement over the majority class baseline. The
interaction between pitch and intensity contours in the
classification of phrase-ending intonation has not been
thoroughly investigated and remains an open area for fu-
ture research.

6 Conclusion and Future Work

In this paper we present a novel technique for the clas-
sification of two dimensional contour data, Quantized
Contour Modeling (QCM). QCM operates by quantizing
acoustic data into a pre-determined, fixed number of time
and value bins. From this quantized data, a model of the
value information is constructed for each time bin. The
likelihood of new data fitting these models is then per-
formed using a Bayesian inference.

We have applied QCM to the tasks of classifying pitch
accent types, and phrase-ending intonation. The best
performing parameterizations of QCM are able to clas-
sify pitch accent types on BURNC with63.99% accuracy
and.4481 Combined Error Rate (CER). QCM classifies
phrase ending tones on this corpus with72.91% accuracy.

These results do not represent the best performing ap-
proaches to these tasks. The best reported classification
of pitch accent types on BURNC is59.95% accuracy and
.422 CER, for phrase ending intonation75.09% (Rosen-
berg, 2009). However, the classification of phrase ending

intonation is accomplished by including QCM posteriors
in an SVM feature vector with other acoustic features.

This technique may be applicable to classifying other
phenomena. Here we have used ToBI tone classifications
as an intermediate representation of intonational phenom-
ena. QCM could be used to directly classify turn-taking
behavior, or dialog acts. Also, previous work has looked
at using the same techniques to classify prosodic events
and lexical tones in tonal languages such as Mandarin
Chinese. QCM could be directly applied to lexical tone
modeling; the only modification required would be a dif-
ferent segmentation routine.

References
S. Ananthakrishnan and S. Narayanan. 2008. Fine-grained

pitch accent and boundary tone labeling with parametric f0
features. InICASSP.

G.-A. Levow. 2005. Context in multi-lingual tone and pitch
accent recognition. InInterspeech.

G.-A. Levow. 2006. Unsupervised and semi-supervised learn-
ing of tone and pitch accent. InHLT-NAACL.

C. Nakatani, J. Hirschberg, and B. Grosz. 1995. Discourse
structure in spoken language: Studies on speech corpora. In
AAAI Spring Symposium on Empirical Methods in Discourse
Interpretation and Generation.

M. Ostendorf, P. Price, and S. Shattuck-Hufnagel. 1995. The
boston university radio news corpus. Technical Report ECS-
95-001, Boston University, March.

J. Pitrelli, M. Beckman, and J. Hirschberg. 1994. Evaluation of
prosodic transcription labeling reliability in the tobi frame-
work. In ICSLP.

A. Rosenberg and J. Hirschberg. 2009. Detecting pitch accents
at the word, syllable and vowel level. InHLT-NAACL.

A. Rosenberg. 2009.Automatic Detection and Classification
of Prosodic Events. Ph.D. thesis, Columbia University.

K. Ross and M. Ostendorf. 1996. Prediction of abstract
prosodic labels for speech synthesis.Computer Speech &
Language, 10(3):155–185.

K. Silverman, et al. 1992. Tobi: A standard for labeling english
prosody. InICSLP.

X. Sun. 2002. Pitch accent predicting using ensemble machine
learning. InICSLP.

P. Taylor. 1994. The rise/fall/connection model of intonation.
Speech Commun., 15(1-2):169–186.

P. Taylor. 2000. Analysis and synthesis of intonation usingthe
tilt model. Journal of the Acoustical Society of America.

R. Villing, et al. 2004. Automatic blind syllable segmentation
for continuous speech. InISSC.

724

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 725–728,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Investigations into the Crandem Approach to Word Recognition

Rohit Prabhavalkar, Preethi Jyothi, William Hartmann, Jeremy Morris, and Eric Fosler-Lussier
Department of Computer Science and Engineering

The Ohio State University, Columbus, OH
{prabhava,jyothi,hartmanw,morrijer,fosler}@cse.ohio-state.edu

Abstract

We suggest improvements to a previously pro-
posed framework for integrating Conditional
Random Fields and Hidden Markov Models,
dubbed a Crandem system (2009). The pre-
vious authors’ work suggested that local la-
bel posteriors derived from the CRF were too
low-entropy for use in word-level automatic
speech recognition. As an alternative to the
log posterior representation used in their sys-
tem, we explore frame-level representations
derived from the CRF feature functions. We
also describe a weight normalization transfor-
mation that leads to increased entropy of the
CRF posteriors. We report significant gains
over the previous Crandem system on the Wall
Street Journal word recognition task.

1 Introduction

Conditional Random Fields (CRFs) (Lafferty et
al., 2001) have recently emerged as a promising
new paradigm in the domain of Automatic Speech
Recognition (ASR). Unlike Hidden Markov Mod-
els (HMMs), CRFs are direct discriminative models:
they predict the probability of a label sequence con-
ditioned on the input. As a result, CRFs can capture
long-range dependencies in the data and avoid the
need for restrictive independence assumptions. Vari-
ants of CRFs have been successfully used in phone
recognition tasks (Gunawardana et al., 2005; Morris
and Fosler-Lussier, 2008; Hifny and Renals, 2009).

While the improvements in the phone recognition
task are encouraging, recent efforts have been di-
rected towards extending the CRF paradigm to the

word recognition level (Zweig and Nguyen, 2009;
Morris and Fosler-Lussier, 2009). The Crandem
system (Morris and Fosler-Lussier, 2009) is one of
the promising approaches in this regard. The Cran-
dem system is directly inspired by the techniques
of the Tandem system (Hermansky et al., 2000),
where phone-label posterior estimates produced by
a Multi-Layer Perceptron (MLP) are transformed
into a suitable acoustic representation for a standard
HMM. In both systems, the frame-based log poste-
rior vector of P (phone|acoustics) over all phones is
decorrelated using the Karhunen-Loeve (KL) trans-
form; unlike MLPs, CRFs take into account the en-
tire label sequence when computing local posteriors.
However, posterior estimates from the CRF tend to
be overconfident compared to MLP posteriors (Mor-
ris and Fosler-Lussier, 2009).

In this paper, we analyze the interplay between
the various steps involved in the Crandem process.
Is the local posterior representation from the CRF
the best representation? Given that the CRF poste-
rior estimates can be overconfident, what transfor-
mations to the posteriors are appropriate?

In Section 2 we briefly describe CRFs and the
Crandem framework. We suggest techniques for im-
proving Crandem word recognition performance in
Section 3. Details of experiments and our results are
discussed in Sections 4 and 5 respectively. We con-
clude with a discussion of future work in Section 6.

2 CRFs and the Crandem System

Conditional random fields (Lafferty et al., 2001) ex-
press the probability of a label sequence Q condi-
tioned on the input data X as a log-linear sum of

725

weighted feature functions,

p(Q|X) =
exp

P
t

P
j λjsj(qt, X) +

P
j µjfj(qt−1, qt, X)

Z(X)
(1)

where sj(·) and fj(·) are known as state feature
functions and transition feature functions respec-
tively, and λj and µj are the associated weights.
Z(X) is a normalization term that ensures a valid
probability distribution. Given a set of labeled ex-
amples, the CRF is trained to maximize the con-
ditional log-likelihood of the training set. The
log-likelihood is concave over the entire parameter
space, and can be maximized using standard convex
optimization techniques (Lafferty et al., 2001; Sha
and Pereira, 2003). The local posterior probability
of a particular label can be computed via a forward-
backward style algorithm. Mathematically,

p(qt = q|X) =
αt(q|X)βt(q|X)

Z(X)
(2)

where αt(q|X) and βt(q|X) accumulate contribu-
tions associated with possible assignments of la-
bels before and after the current time-step t. The
Crandem system utilizes these local posterior val-
ues from the CRF analogously to the way in which
MLP-posteriors are treated in the Tandem frame-
work (Hermansky et al., 2000), by applying a log
transformation to the posteriors. These transformed
outputs are then decorrelated using a KL-transform
and then dimensionality-reduced to be used as a re-
placement for MFCCs in a HMM system. While
the MLP is usually reduced to 39 dimensions, the
standard CRF benefits from a higher dimensionality
reduction (to 19 dimensions). The decorrelated out-
puts are then used as an input representation for a
conventional HMM system.

3 Improving Crandem Recognition
Results

Morris and Fosler-Lussier (2009) indicate that the
local posterior outputs from the CRF model pro-
duces features that are more heavily skewed to the
dominant phone class than the MLP system, leading
to an increase in word recognition errors. In order
to correct for this, we perform a non-linear trans-
formation on the local CRF posterior representa-
tion before applying a KL-transform and subsequent

stages. Specifically, we normalize all of the weights
λj and µj in Equation 1 by a fixed positive constant
n to obtain normalized weights λ′j and µ′j . We note
that the probability of a label sequence computed us-
ing the transformed weights, p′(Q|X), is equivalent
to taking the nth-root of the CRF probability com-
puted using the unnormalized weights, with a new
normalization term Z ′(X)

p′(Q|X) =
p(Q|X)1/n

Z ′(X)
(3)

where, p(Q|X) is as defined in Equation 1. Also
observe that the monotonicity of the nth-root func-
tion ensures that if p(Q1|X) > p(Q2|X) then
p′(Q1|X) > p′(Q2|X). In other words, the rank
order of the n-best phone recognition results are not
impacted by this change. The transformation does,
however, increase the entropy between the domi-
nant class from the CRF and its competitors, since
p′(Q|X) < p(Q|X). As we shall discuss in Section
5, this transformation helps improve word recogni-
tion performance in the Crandem framework.

Our second set of experiments are based on the
following observation regarding the CRF posteriors.
As can be seen from Equation 2, the CRF posteri-
ors involve a global normalization over the entire ut-
terance as opposed to the local normalization of the
MLP posteriors in the output softmax layer. This
motivates the use of representations derived from
the CRF that are ‘local’ in some sense. We there-
fore propose two alternative representations that are
modeled along the lines of the linear outputs from an
MLP. The first uses the sum of the state feature func-
tions, to obtain a vector f state(X, t) for each time
step t and input utterance X of length |Q| dimen-
sions, where Q is the set of possible phone labels

f state(X, t) =

∑
j

λjsj(q,X)

T

∀q ∈ Q

(4)
where q is a particular phone label. Note that the
lack of an exponential term in this representation en-
sures that the representation is less ‘spiky’ than the
CRF posteriors. Additionally, the decoupling of the
representation from the transition feature functions
could potentially allow the system to represent rel-

726

ative ambiguity between multiple phones hypothe-
sized for a given frame.

The second ‘local’ representation that we experi-
mented with incorporates the CRF transition feature
functions as follows. For each utterance X we per-
form a Viterbi decoding of the most likely state se-
quence Qbest = argmaxQ{p(Q|X)} hypothesized
for the utterance X . We then augmented the state
feature representation with the sum of the transition
features corresponding to the phone label hypothe-
sized for the previous frame (qbest

t−1) to obtain a vector
f trans(X, t) of length |Q|,

f trans(X, t) =

"X
j

λjsj(q,X) +
X

j

µjfj(q
best
t−1 , q,X)

#T

(5)

As a final note, following (Morris and Fosler-
Lussier, 2009), our CRF systems are trained using
the linear outputs of MLPs as its state feature func-
tions and transition biases as the transition feature
functions. Hence, f state is a linear transformation of
the MLP linear outputs down to |Q| dimensions.1

Both f state and f trans can thus be viewed as an im-
plicit mapping performed by the CRF of the in-
put feature function dimensions down to |Q| dimen-
sions. Note that the CRF implicitly uses informa-
tion concerning the underlying phone labels unlike
dimensionality reduction using KL-transform.

4 Experimental Setup

To evaluate our proposed techniques, we carried
out word recognition experiments on the speaker-
independent portion of the Wall Street Journal 5K
closed vocabulary task (WSJ0). Since the corpus is
not phonetically transcribed, we first trained a stan-
dard HMM recognition system using PLP features
and produced phonetic transcriptions by force align-
ing the training data. These were used to train an
MLP phone classifier with a softmax output layer,
using a 9-frame window of PLPs with 4000 hidden
layer units to predict one of the 41 phone labels (in-
cluding silence and short pause). The linear outputs
of the MLP were used to train a baseline Tandem
system. We then trained a CRF using the MLP lin-
ear outputs as its state feature functions. We extract

1We note that our system uses an additional state bias feature
that has a fixed value of 1. However, since this is a constant
term, it has no role to play in the derived representation.

System Accuracy (%)
Crandem-baseline 89.4%
Tandem-baseline 91.8%
Crandem-NormMax 91.4%
Crandem-Norm5 92.1%
Crandem-state 91.7%
Crandem-trans 91.0%

Table 1: Word recognition results on the WSJ0 task

local posteriors as well as the two ‘local’ representa-
tions described in Section 3. These input represen-
tations were then normalized at the utterance level,
before applying a KL-transformation to decorrelate
them and reduce dimensionality to 39 dimensions.
Finally, each of these representations was used to
train a HMM system with intra-word triphones and
16 Gaussians per mixture using the Hidden Markov
Model Toolkit (Young et al., 2002).

5 Results

Results for each of the experiments described in
Section 4 are reported in Table 1 on the 330-
sentence standard 5K non-verbalized test set. The
Crandem-baseline represents the system of (Mor-
ris and Fosler-Lussier, 2009). Normalizing the
CRF weights of the system by either the weight
with largest absolute value (CRF-NormMax) or by
5 (tuned on the development set) leads to signif-
icant improvements (p ≤ 0.005) over the Cran-
dem baseline. Similarly, using either the state fea-
ture sum (Crandem-state) or the representation aug-
mented with the transition features (Crandem-trans)
leads to significant improvements (p ≤ 0.005) over
the Crandem baseline. Note that the performance of
these systems is comparable to the Tandem baseline.

To further analyze the results obtained using the
state feature sum representations and the Tandem
baseline, we compute the mean distance for each
phone HMM from every other phone HMM ob-
tained at the end of the GMM-HMM training phase.
The distance between two HMMs is computed as a
uniformly weighted sum of the average distances be-
tween the GMMs of a one-to-one alignment of states
corresponding to the two HMMs. GMM distances
are computed using a 0.5-weighted sum of inter-
dispersions normalized by self-dispersions (Wang et

727

Figure 1: Normalized mean distances for each of the phone models from every other phone model trained using the
Tandem MLP baseline and the state feature sum representation.

al., 2004). Distances between monomodal Gaus-
sian distributions were computed using the Bhat-
tacharyya distance measure. The phone HMM dis-
tances are normalized using the maximum phone
distance for each system. As can be seen in Figure
1, the mean distances obtained from the state feature
sum representation are consistently greater than the
corresponding distances in the Tandem-MLP sys-
tem, indicating larger separability of the phones in
the feature space. Similar trends were seen with the
transition feature sum representation.

6 Conclusions and Future Work

In this paper, we report significant improvements
over the Crandem baseline. The weight normaliza-
tion experiments confirmed the hypothesis that in-
creasing the entropy of the CRF posteriors leads to
better word-level recognition. Our experiments with
directly extracting frame-level representations from
the CRF reinforce this conclusion. Although our ex-
periments with the systems using the state feature
sum and transition feature augmented representation
did not lead to improvements over the Tandem base-
line, the increased separability of the phone models
trained using these representations is encouraging.
In the future, we intend to examine techniques by
which these representations could be used to further
improve word recognition results.
Acknowledgement: The authors gratefully ac-
knowledge support by NSF grants IIS-0643901 and
IIS-0905420 for this work.

References
A. Gunawardana, M. Mahajan, A. Acero, and J. Platt.

2005. Hidden conditional random fields for phone
classification. Interspeech.

H. Hermansky, D. Ellis, and S. Sharma. 2000. Tan-
dem connectionist feature stream extraction for con-
ventional hmm systems. ICASSP.

Y. Hifny and S. Renals. 2009. Speech recognition using
augmented conditional random fields. IEEE Trans-
actions on Audio, Speech, and Language Processing,
17(2):354–365.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. ICML.

J. Morris and E. Fosler-Lussier. 2008. Conditional ran-
dom fields for integrating local discriminative classi-
fiers. IEEE Transactions on Acoustics, Speech, and
Language Processing, 16(3):617–628.

J. Morris and E. Fosler-Lussier. 2009. Crandem: Con-
ditional random fields for word recognition. Inter-
speech.

F. Sha and F. Pereira. 2003. Shallow parsing with condi-
tional random fields. NAACL.

Xu Wang, Peng Xuan, and Wang Bingxi. 2004. A gmm-
based telephone channel classification for mandarin
speech recognition. ICSP.

S. Young, G. Evermann, T. Hain, D. Kershaw, G. Moore,
J. Odell, D. Ollason, D. Povey, V. Valtchev, and
P. Woodland. 2002. The HTK Book. Cambridge Uni-
versity Press.

G. Zweig and P. Nguyen. 2009. A segmental crf ap-
proach to large vocabulary continuous speech recogni-
tion. ASRU.

728

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 729–732,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Constraint-Driven Rank-Based Learning for Information Extraction

Sameer Singh Limin Yao Sebastian Riedel Andrew McCallum
Dept. of Computer Science
University of Massachusetts

Amherst MA 01003
{sameer,lmyao,riedel,mccallum}@cs.umass.edu

Abstract

Most learning algorithms for undirected
graphical models require complete inference
over at least one instance before parameter up-
dates can be made. SampleRank is a rank-
based learning framework that alleviates this
problem by updating the parameters during in-
ference. Most semi-supervised learning algo-
rithms also perform full inference on at least
one instance before each parameter update.
We extend SampleRank to semi-supervised
learning in order to circumvent this compu-
tational bottleneck. Different approaches to
incorporate unlabeled data and prior knowl-
edge into this framework are explored. When
evaluated on a standard information extraction
dataset, our method significantly outperforms
the supervised method, and matches results of
a competing state-of-the-art semi-supervised
learning approach.

1 Introduction

Most supervised learning algorithms for undirected
graphical models require full inference over the
dataset (e.g., gradient descent), small subsets of the
dataset (e.g., stochastic gradient descent), or at least
a single instance (e.g., perceptron, Collins (2002))
before parameter updates are made. Often this is the
main computational bottleneck during training.

SampleRank (Wick et al., 2009) is a rank-based
learning framework that alleviates this problem by
performing parameter updates within inference. Ev-
ery pair of samples generated during inference is
ranked according to the model and the ground truth,
and the parameters are updated when the rankings
disagree. SampleRank has enabled efficient learn-

ing for massive information extraction tasks (Culotta
et al., 2007; Singh et al., 2009).

The problem of requiring a complete inference it-
eration before parameters are updated also exists in
the semi-supervised learning scenario. Here the sit-
uation is often considerably worse since inference
has to be applied to potentially very large unlabeled
datasets. Most semi-supervised learning algorithms
rely on marginals (GE, Mann and McCallum, 2008)
or MAP assignments (CODL, Chang et al., 2007).
Calculating these is computationally inexpensive for
many simple tasks (such as classification and re-
gression). However, marginal and MAP inference
tends to be expensive for complex structured pre-
diction models (such as the joint information extrac-
tion models of Singh et al. (2009)), making semi-
supervised learning intractable.

In this work we employ a fast rank-based learning
algorithm for semi-supervised learning to circum-
vent the inference bottleneck. The ranking function
is extended to capture both the preference expressed
by the labeled data, and the preference of the domain
expert when the labels are not available. This allows
us to perform SampleRank as is, without sacrificing
its scalability, which is crucial for future large scale
applications of semi-supervised learning.

We applied our method to a standard information
extraction dataset used for semi-supervised learning.
Empirically we demonstrate improvements over the
supervised model, and closely match the results of a
competing state-of-the-art semi-supervised learner.

2 Background

Conditional random fields (Lafferty et al., 2001) are
undirected graphical models represented as factor

729

graphs. A factor graph G = {Ψi} defines a prob-
ability distribution over assignments y to a set of
output variables, conditioned on an observation x.
A factor Ψi computes the inner product between
the vector of sufficient statistics f(xi,yi) and pa-
rameters Θ. Let Z(x) be the data-dependent par-
tition function used for normalization. The proba-
bility distribution defined by the graph is:

p(y|x,Θ) =
1

Z(x)

∏
Ψi∈G

eΘ·f(xi,yi)

2.1 Rank-Based Learning
SampleRank (Wick et al., 2009) is a rank-based
learning framework for that performs parameter up-
dates within MCMC inference. Every pair of con-
secutive samples in the MCMC chain is ranked ac-
cording to the model and the ground truth, and the
parameters are updated when the rankings disagree.
This allows the learner to acquire more supervision
per sample, and has led to efficient training of mod-
els for which inference is very expensive (Singh
et al., 2009).

SampleRank considers two ranking functions: (1)
the unnormalized conditional probability (model
ranking), and (2) a truth function F(y) (objective
ranking) which is defined as −L(y,yL), the neg-
ative loss between the possible assignment y and
the true assignment yL. The truth function can take
different forms, such as tokenwise accuracy or F1-
measure with respect to some labeled data.

In order to learn the parameters for which model
rankings are consistent with objective rankings,
SampleRank performs the following update for each
consecutive pair of samples ya and yb of the MCMC
chain. Let α be the learning rate, and ∆ =
f(xi,y

a
i)− f(xi,y

b
i), then Θ is updated as follows:

Θ
+←

α∆ if p(ya|x)

p(yb|x)
< 1 ∧ F(ya) > F(yb)

−α∆ if p(ya|x)
p(yb|x)

> 1 ∧ F(ya) < F(yb)

0 otherwise.

This update is usually fast: in order to calculate
the required model ratio, only factors that touch
changed variables have to be taken into account.

SampleRank has been incorporated into the FAC-
TORIE toolkit for probabilistic programming with
imperatively-defined factor graphs (McCallum et al.,
2009).

3 Semi-Supervised Rank-Based Learning

To apply SampleRank to the semi-supervised set-
ting, we need to specify the truth function F over
both labeled and unlabeled data. For labeled data
YL, we can use the true labels. These are not avail-
able for unlabeled data YU , and we present alterna-
tive ways of defining a truth function FU : YU → <
for this case.

3.1 Self-Training
Self-training, which uses predictions as truth, fits di-
rectly into our SampleRank framework. After per-
forming SampleRank on training data (using FL),
MAP inference is performed on the unlabeled data.
The prediction ŷU is used as the ground truth for
the unlabeled data. Thus the self-training objective
function Fs over the unlabeled data can be defined
as Fs(y) = −L(y, ŷU).

3.2 Encoding Constraints
Constraint-driven semi-supervised learning uses
constraints to incorporate external domain knowl-
edge when labels are missing (Chang et al., 2007;
Mann and McCallum, 2008; Bellare et al., 2009).
Constraints prefer certain label configurations over
others. For example, one constraint may be that oc-
currences of the word “California” are preferred to
have the label “location”.

We can encode constraints directly into the objec-
tive function FU . Let a constraint i be specified as
〈pi, ci〉, where ci(y) denotes whether assignment y
satisfies the constraint i (+1), violates it (−1), or the
constraint does not apply (0), and pi is the constraint
strength. Then the objective function is:

Fc(y) =
∑

i

pici(y)

3.3 Incorporating Model Predictions
When the objective function Fc is used, every pre-
diction on unlabeled data is ranked only according to
the constraints, and thus the model is trained to sat-
isfy all the constraints. This is a problem when the
constraints prefer a wrong solution while the model
favors the correct solution, resulting in SampleR-
ank updating the model away from the true solution.
To avoid this, the ranking function needs to balance
preferences of the constraints and the current model.

730

One option is to incorporate the self-training ob-
jective function Fs. A new objective function that
combines self-training with constraints can be de-
fined as:

Fsc(y) = Fs(y) + λsFc(y)

= −L(y, ŷU) + λs

∑
i

pici(y)

This objective function has at least two limita-
tions. First, self-training involves a complete infer-
ence step to obtain ŷU . Second, the model might
have low confidence in its prediction (this is the case
when the underlying marginals are almost uniform),
but the self-training objective des not take this into
account. Hence, we also propose an objective func-
tion that incorporates the model score directly, i.e.

Fmc(y) = log p(y|x,Θ) + logZ(x) + λmFc(y)

=
∑
Ψi

Θ · f(xi,yi) + λm

∑
i

pici(y)

This objective does not require inference, and also
takes into account model confidence.

In both objective functions Fsc and Fmc, λ con-
trols the relative contribution of the constraint pref-
erences to the objective function. With higher λ,
SampleRank will make updates that never try to vi-
olate constraints, while with low λ, SampleRank
trusts the model more. λ corresponds to constraint
satisfaction weights ρ used in (Chang et al., 2007).

4 Related Work

Chang et al. propose constraint-driven learn-
ing (CODL, Chang et al., 2007) which can be in-
terpreted as a variation of self-training: Instances
are selected for supervision based not only on the
model’s prediction, but also on their consistency
with a set of user-defined constraints. By directly in-
corporating the model score and the constraints (as
inFmc in Section 3.3) we follow the same approach,
but avoid the expensive “Top-K” inference step.

Generalized expectation criterion (GE, Mann and
McCallum, 2008) and Alternating Projections (AP,
Bellare et al., 2009) encode preferences by speci-
fying constraints on feature expectations, which re-
quire expensive inference. Although AP can use on-
line training, it still involves full inference over each

instance. Furthermore, these methods only support
constraints that factorize according to the model.

Li (2009) incorporates prior knowledge into con-
ditional random fields as variables. They require full
inference during learning, restricting the application
to simple models. Furthermore, higher-order con-
straints are specified using large cliques in the graph,
which slow down inference. Our approach directly
incorporates these constraints into the ranking func-
tion, with no impact on inference time.

5 Experiments

We carried out experiments on the Cora citation
dataset. The task is to segment each citation into
different fields, such as “author” and “title”. We use
300 instances as training data, 100 instances as de-
velopment data, and 100 instances as test data. Some
instances from the training data are selected as la-
beled instances, and the remaining data (including
development) as unlabeled. We use the same token-
label constraints as Chang et al. (2007).

We use the objective functions defined in Sec-
tion 3, specifically self-training (Self:Fs), direct
constraints (Cons:Fc), the combination of the two
(Self+Cons:Fsc), and combination of the model
score and the constraints (Model+Cons:Fmc). We
set pi = 1.0, α = 1.0, λs = 10, and λm = 0.0001.

Average token accuracy for 5 runs is reported and
compared with CODL1 in Table 1. We also report
supervised results from (Chang et al., 2007) and
SampleRank. All of our methods show vast im-
provement over the supervised method for smaller
training sizes, but this difference decreases as the
training size increases. When the complete training
data is used, additional unlabeled data hurts our per-
formance. This is not observed in CODL since they
use more unlabeled data, which may also explain
their slightly higher accuracy. Note that Self+Cons
performs better than Self or Cons individually.

Model+Cons also performs competitively, and
may potentially outperform other methods if a bet-
ter λm is chosen. Note, however, that λm is much
harder to tune than λs since λm weighs the contri-
bution of the unnormalized model score, the range

1We report inference without constraints results from
CODL. Their results that incorporated constraints were higher,
but we do not implement this alternative due to the difficulty in
balancing the model score and constraint weights.

731

Method 5 10 15 20 25 300
Sup. (CODL) 55.1 64.6 68.7 70.1 72.7 86.1
SampleRank 66.5 74.6 75.6 77.6 79.5 90.7

CODL 71 76.7 79.4 79.4 82 88.2
Self 67.6 75.1 75.8 78.6 80.4 88
Cons 67.2 75.3 77.5 78.6 79.4 88.3

Self+Cons 71.3 77 77.5 79.5 81.1 87.4
Model+Cons 69.8 75.4 75.7 79.3 79.3 90.6

Table 1: Tokenwise Accuracy: for different methods as we vary the size of the labeled data

of which depends on many different factors such as
properties of the data, the learning rate, number of
samples, proposal function, etc. For self+cons (λs),
the ranges of the predictions and constraint penalties
are fixed and known, making the task simpler.

Self training takes 90 minutes to run on average,
while Self+Cons and Model+Cons need 100 min-
utes. Since the Cons method skips the inference
step over unlabeled data, it takes only 30 minutes
to run. As the size of the model and unlabeled data
set grows, this saving will become more significant.
Running time of CODL was not reported.

6 Conclusion

This work extends the rank-based learning frame-
work to semi-supervised learning. By integrating
the two paradigms, we retain the computational effi-
ciency provided by parameter updates within infer-
ence, while utilizing unlabeled data and prior knowl-
edge. We demonstrate accuracy improvements on a
real-word information extraction dataset.

We believe that the method will be of greater ben-
efit to learning in complex factor graphs such as
joint models over multiple extraction tasks. In future
work we will investigate our approach in such set-
tings. Additionally, various sensitivity, convergence,
and robustness properties of the method need to be
analyzed.

Acknowledgments

This work was supported in part by the Center for In-
telligent Information Retrieval, in part by SRI Inter-
national subcontract #27-001338 and ARFL prime
contract #FA8750-09-C-0181, and in part by The
Central Intelligence Agency, the National Secu-
rity Agency and National Science Foundation under

NSF grant #IIS-0326249. Any opinions, findings
and conclusions or recommendations expressed in
this material are the authors’ and do not necessarily
reflect those of the sponsor.

References
Kedar Bellare, Gregory Druck, and Andrew McCallum.

Alternating projections for learning with expectation
constraints. In UAI, 2009.

Mingwei Chang, Lev Ratinov, and Dan Roth. Guiding
semi-supervision with constraint-driven learning. In
ACL, 2007.

Michael Collins. Discriminative training methods for
hidden markov models: Theory and experiments with
perceptron algorithm. In ACL, 2002.

Aron Culotta, Michael Wick, and Andrew McCallum.
First-order probabilistic models for coreference reso-
lution. In NAACL/HLT, 2007.

John Lafferty, Andrew McCallum, and Fernando Pereira.
Conditional random fields: probabilistic models for
segmenting and labeling sequence data. In ICML,
2001.

Xiao Li. On the use of virtual evidence in conditional
random fields. In EMNLP, 2009.

Gideon S. Mann and Andrew McCallum. Generalized ex-
pectation criteria for semi-supervised learning of con-
ditional random fields. In ACL, 2008.

Andrew McCallum, Karl Schultz, and Sameer Singh.
FACTORIE: probabilistic programming via impera-
tively defined factor graphs. In NIPS, 2009.

Sameer Singh, Karl Schultz, and Andrew McCallum.
Bi-directional joint inference for entity resolution
and segmentation using imperatively-defined factor
graphs. In ECML/PKDD, 2009.

Michael Wick, Khashayar Rohanimanesh, Aron Culotta,
and Andrew McCallum. SampleRank: Learning pref-
erences from atomic gradients. In NIPS Workshop on
Advances in Ranking, 2009.

732

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 733–736,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Softmax-Margin CRFs: Training Log-Linear Models with Cost Functions
Kevin Gimpel Noah A. Smith

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA

{kgimpel,nasmith}@cs.cmu.edu

Abstract

We describe a method of incorporating task-
specific cost functions into standard condi-
tional log-likelihood (CLL) training of linear
structured prediction models. Recently intro-
duced in the speech recognition community,
we describe the method generally for struc-
tured models, highlight connections to CLL
and max-margin learning for structured pre-
diction (Taskar et al., 2003), and show that
the method optimizes a bound on risk. The
approach is simple, efficient, and easy to im-
plement, requiring very little change to an
existing CLL implementation. We present
experimental results comparing with several
commonly-used methods for training struc-
tured predictors for named-entity recognition.

1 Introduction

Conditional random fields (CRFs; Lafferty et al,
2001) and other conditional log-linear models
(Berger et al., 1996) achieve strong performance
for many NLP problems, but the conditional log-
likelihood (CLL) criterion optimized when training
these models cannot take a task-specific cost func-
tion into account.

In this paper, we describe a simple approach
for training conditional log-linear models with cost
functions. We show how the method relates to other
methods and how it provides a bound on risk. We
apply the method to train a discriminative model
for named-entity recognition, showing a statistically
significant improvement over CLL.

2 Structured Log-Linear Models

Let X denote a structured input space and, for a par-
ticular x ∈ X, let Y(x) denote a structured output
space for x. The size of Y(x) is often exponential
in x, which differentiates structured prediction from
multiclass classification. For named-entity recogni-
tion, for example, x might be a sentence and Y(x)

the set of all possible named-entity labelings for the
sentence. Given an x ∈ X and a y ∈ Y(x), we use a
conditional log-linear model for pθ(y|x):

pθ(y|x) =
exp{θ>f(x, y)}∑

y′∈Y(x) exp{θ>f(x, y′)}
(1)

where f(x, y) is a feature vector representation of
x and y and θ is a parameter vector containing one
component for each feature.

2.1 Training Criteria

Many criteria exist for training the weights θ. We
next review three choices in detail. For the follow-
ing, we assume a training set consisting of n exam-
ples {〈x(i), y(i)〉}n

i=1. Some criteria will make use of
a task-specific cost function that measures the extent
to which a structure y differs from the true structure
y(i), denoted by cost(y(i), y).

2.1.1 Conditional Log-Likelihood
The learning problem for maximizing conditional

log-likelihood is shown in Eq. 3 in Fig. 1 (we trans-
form it into a minimization problem for easier com-
parison). This criterion is commonly used when a
probabilistic interpretation of the model is desired.

2.1.2 Max-Margin
An alternative approach to training structured lin-

ear classifiers is based on maximum-margin Markov
networks (Taskar et al., 2003). The basic idea is
to choose weights such that the linear score of each
〈x(i), y(i)〉 is better than 〈x(i), y〉 for all alternatives
y ∈ Y(x(i)) \ {y(i)}, with a larger margin for those
y with higher cost. The “margin rescaling” form of
this training criterion is shown in Eq. 4. Note that
the cost function is incorporated into the criterion.

2.1.3 Risk
Risk is defined as the expected value of the cost

with respect to the conditional distribution pθ(y|x);

733

on training data:∑n
i=1

∑
y∈Y(x(i)) pθ(y|x(i))cost(y(i), y) (2)

With a log-linear model, learning then requires solv-
ing the problem shown in Eq. 5. Unlike the previous
two criteria, risk is typically non-convex.

Risk minimization first appeared in the speech
recognition community (Kaiser et al., 2000; Povey
and Woodland, 2002). In NLP, Smith and Eis-
ner (2006) minimized risk using k-best lists to de-
fine the distribution over output structures. Li and
Eisner (2009) introduced a novel semiring for min-
imizing risk using dynamic programming; Xiong et
al. (2009) minimized risk in a CRF.

2.1.4 Other Criteria
Many other criteria have been proposed to at-

tempt to tailor training conditions to match task-
specific evaluation metrics. These include the aver-
age per-label marginal likelihood for sequence label-
ing (Kakade et al., 2002), minimum error-rate train-
ing for machine translation (Och, 2003), F1 for lo-
gistic regression classifiers (Jansche, 2005), and a
wide range of possible metrics for sequence label-
ing and segmentation tasks (Suzuki et al., 2006).

3 Softmax-Margin

The softmax-margin objective is shown as Eq. 6 and
is a generalization of that used by Povey et al. (2008)
and similar to that used by Sha and Saul (2006).
The simple intuition is the same as the intuition
in max-margin learning: high-cost outputs for x(i)

should be penalized more heavily. Another view
says that we replace the probabilistic score inside
the exp function of CLL with the “cost-augmented”
score from max-margin. A third view says that we
replace the “hard” maximum of max-margin with
the “softmax” (log

∑
exp) from CLL; hence we use

the name “softmax-margin.” Like CLL and max-
margin, the objective is convex; a proof is provided
in Gimpel and Smith (2010).

3.1 Relation to Other Objectives
We next show how the softmax-margin criterion
(Eq. 6) bounds the risk criterion (Eq. 5). We first
define some additional notation:

E(i)[F] =
∑

y∈Y(x(i)) pθ(y | x(i))F (y)

for some function F : Y(x(i)) → R. First note that
the softmax-margin objective (Eq. 6) is equal to:

(Eq. 3) +
∑n

i=1 log E(i)[exp cost(y(i), ·)] (7)

The first term must be nonnegative. Taking each part
of the second term, and using Jensen’s inequality,

log E(i)[e
cost(y(i),·)] ≥ E(i)[log ecost(y(i),·)]

= E(i)[cost(y(i), ·)]

which is exactly Eq. 5. Softmax-margin is also an
upper bound on the CLL criterion because, assum-
ing cost is nonnegative, log E[exp cost] ≥ 0. Fur-
thermore, softmax-margin is a differentiable upper
bound on max-margin, because the softmax function
is a differentiable upper bound on the max function.

We note that it may also be interest-
ing to consider minimizing the function∑n

i=1 log E(i)[exp cost(y(i), ·)], since it is an
upper bound on risk but requires less computation
for computing the gradient.1 We call this objec-
tive the Jensen risk bound and include it in our
experimental comparison below.

3.2 Implementation
Most methods for training structured models with
cost functions require the cost function to decom-
pose across the pieces of the structure in the same
way as the features, such as the standard methods
for maximizing margin and minimizing risk (Taskar
et al., 2003; Li and Eisner, 2009). If the same con-
ditions hold, softmax-margin training can be im-
plemented atop standard CRF training simply by
adding additional “features” to encode the local
cost components, only when computing the partition
function during training.2 The weights of these “cost
features” are not learned.

4 Experiments

We consider the problem of named-entity recog-
nition (NER) and use the English data from the
CoNLL 2003 shared task (Tjong Kim Sang and De
Meulder, 2003). The data consist of news articles

1Space does not permit a full discussion; see Gimpel and
Smith (2010) for details.

2Since cost(y(i), y(i)) = 0 by definition, these “features”
will never fire for the numerator and can be ignored.

734

CLL: min
θ

n∑
i=1

−θ>f(x(i), y(i)) + log
∑

y∈Y(x(i))

exp{θ>f(x(i), y)} (3)

Max-Margin: min
θ

n∑
i=1

−θ>f(x(i), y(i)) + max
y∈Y(x(i))

(
θ>f(x(i), y) + cost(y(i), y)

)
(4)

Risk: min
θ

n∑
i=1

∑
y∈Y(x(i))

cost(y(i), y)
exp{θ>f(x(i), y)}∑

y′∈Y(x(i)) exp{θ>f(x(i), y′)}
(5)

Softmax-Margin: min
θ

n∑
i=1

−θ>f(x(i), y(i)) + log
∑

y∈Y(x(i))

exp{θ>f(x(i), y) + cost(y(i), y)} (6)

Figure 1: Objective functions for training linear models. Regularization terms (e.g., C
∑d

j=1 θ2
j) are not shown here.

annotated with four entity types: person, location,
organization, and miscellaneous. Our experiments
focus on comparing training objectives for struc-
tured sequential models for this task. For all objec-
tives, we use the same standard set of feature tem-
plates, following Kazama and Torisawa (2007) with
additional token shape like those in Collins (2002b)
and simple gazetteer features. A feature was in-
cluded if it occurred at least once in training data
(total 1,312,255 features).

The task is evaluated using the F1 score, which
is the harmonic mean of precision and recall (com-
puted at the level of entire entities). Since this metric
is computed from corpus-level precision and recall,
it is not easily decomposable into features used in
standard chain CRFs. For simplicity, we only con-
sider Hamming cost in this paper; experiments with
other cost functions more targeted to NER are pre-
sented in Gimpel and Smith (2010).

4.1 Baselines
We compared softmax-margin to several baselines:
the structured perceptron (Collins, 2002a), 1-best
MIRA with cost-augmented inference (Crammer et
al., 2006), CLL, max-margin, risk, and our Jensen
risk bound (JRB) introduced above.

We used L2 regularization, experimenting with
several coefficients for each method. For CLL,
softmax-margin, max-margin, and MIRA, we used
regularization coefficients C ∈ {0.01, 0.1, 1}. Risk
has not always been used with regularization, as reg-
ularization does not have as clear a probabilistic in-
terpretation with risk as it does with CLL; so, for
risk and JRB we only used C ∈ {0.0, 0.01}. In
addition, since these two objectives are non-convex,

we initialized with the output of the best-performing
CLL model on dev data (which was the CLL model
with C = 0.01).3 All methods except CLL and the
perceptron make use of a cost function, for which
we used Hamming cost. We experimented with dif-
ferent fixed multipliers m for the cost function, for
m ∈ {1, 5, 10, 20}.

The hyperparameters C and m were tuned on the
development data and the best-performing combina-
tion was used to label the test data. We also tuned
the decision to average parameters across all train-
ing iterations; this has generally been found to help
the perceptron and MIRA, but in our experiments
had mixed results for the other methods.

We ran 100 iterations through the training data for
each method. For CLL, softmax-margin, risk, and
JRB, we used stochastic gradient ascent with a fixed
step size of 0.01. For max-margin, we used stochas-
tic subgradient ascent (Ratliff et al., 2006) also with
a fixed step size of 0.01.4 For the perceptron and
MIRA, we used their built-in step size formulas.

4.2 Results
Table 1 shows our results. On test data, softmax-
margin is statistically indistinguishable from MIRA,
risk, and JRB, but performs significantly better
than CLL, max-margin, and the perceptron (p <
0.03, paired bootstrap with 10,000 samples; Koehn,

3When using initialization of all ones for risk and JRB, re-
sults were several points below the results here, and with all
zeroes, learning failed, resulting in 0.0 F-measure on dev data.
Thus, risk and JRB appear sensitive to model initialization.

4In preliminary experiments, we tried other fixed and de-
creasing step sizes for (sub)gradient ascent and found that a
fixed step of 0.01 consistently performed well across training
objectives, so we used it for all settings for simplicity.

735

Method Dev. Test (C, m, avg.?)
Perceptron 90.48 83.98 (Y)
MIRA 91.13 85.72 (0.01, 20, Y)
CLL 90.79 85.46 (0.01, N)
Max-Margin 91.17 85.28 (0.01, 1, Y)
Risk 91.14 85.59 (0.01, 10, N)
JRB 91.05 85.65 (0.01, 1, N)
Softmax-Margin 91.30 85.84 (0.01, 5, N)

Table 1: Results on development and test sets, along with
hyperparameter values chosen using development set.

2004). It may be surprising that an improvement
of 0.38 in F1 could be significant, but this indicates
that the improvements are not limited to certain cate-
gories of phenomena in a small number of sentences
but rather appear throughout the majority of the test
set. The Jensen risk bound performs comparably to
risk, and takes roughly half as long to train.

5 Discussion

The softmax-margin approach offers (1) a convex
objective, (2) the ability to incorporate task-specific
cost functions, and (3) a probabilistic interpretation
(which supports, e.g., hidden-variable learning and
computation of posteriors). In contrast, max-margin
training and MIRA do not provide (3); risk and
JRB do not provide (1); and CLL does not support
(2). Furthermore, softmax-margin training improves
over standard CLL training of CRFs, is straightfor-
ward to implement, and requires the same amount of
computation as CLL.

We have also presented the Jensen risk bound,
which is easier to implement and faster to train than
risk, yet gives comparable performance. The pri-
mary limitation of all these approaches, including
softmax-margin, is that they only support cost func-
tions that factor in the same way as the features of
the model. Future work might exploit approximate
inference for more expressive cost functions.

Acknowledgments
We thank the reviewers, John Lafferty, and André Martins
for helpful comments and feedback on this work. This
research was supported by NSF grant IIS-0844507.

References
A. Berger, V. J. Della Pietra, and S. A. Della Pietra. 1996. A

maximum entropy approach to natural language processing.
Computational Linguistics, 22(1):39–71.

M. Collins. 2002a. Discriminative training methods for hidden
Markov models: Theory and experiments with perceptron
algorithms. In Proc. of EMNLP.

M. Collins. 2002b. Ranking algorithms for named-entity ex-
traction: Boosting and the voted perceptron. In Proc. of
ACL.

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and
Y. Singer. 2006. Online passive-aggressive algorithms.
Journal of Machine Learning Research, 7:551–585.

K. Gimpel and N. A. Smith. 2010. Softmax-margin training
for structured log-linear models. Technical report, Carnegie
Mellon University.

M. Jansche. 2005. Maximum expected F -measure training of
logistic regression models. In Proc. of HLT-EMNLP.

J. Kaiser, B. Horvat, and Z. Kacic. 2000. A novel loss function
for the overall risk criterion based discriminative training of
HMM models. In Proc. of ICSLP.

S. Kakade, Y. W. Teh, and S. Roweis. 2002. An alternate ob-
jective function for Markovian fields. In Proc. of ICML.

J. Kazama and K. Torisawa. 2007. A new perceptron algorithm
for sequence labeling with non-local features. In Proc. of
EMNLP-CoNLL.

P. Koehn. 2004. Statistical significance tests for machine trans-
lation evaluation. In Proc. of EMNLP.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Conditional
random fields: Probabilistic models for segmenting and la-
beling sequence data. In Proc. of ICML.

Z. Li and J. Eisner. 2009. First- and second-order expecta-
tion semirings with applications to minimum-risk training on
translation forests. In Proc. of EMNLP.

F. J. Och. 2003. Minimum error rate training for statistical
machine translation. In Proc. of ACL.

D. Povey and P. C. Woodland. 2002. Minimum phone error and
I-smoothing for improved discrimative training. In Proc. of
ICASSP.

D. Povey, D. Kanevsky, B. Kingsbury, B. Ramabhadran,
G. Saon, and K. Visweswariah. 2008. Boosted MMI for
model and feature space discriminative training. In Proc. of
ICASSP.

N. Ratliff, J. A. Bagnell, and M. Zinkevich. 2006. Subgradient
methods for maximum margin structured learning. In ICML
Workshop on Learning in Structured Output Spaces.

F. Sha and L. K. Saul. 2006. Large margin hidden Markov
models for automatic speech recognition. In Proc. of NIPS.

D. A. Smith and J. Eisner. 2006. Minimum risk annealing for
training log-linear models. In Proc. of COLING-ACL.

J. Suzuki, E. McDermott, and H. Isozaki. 2006. Training con-
ditional random fields with multivariate evaluation measures.
In Proc. of COLING-ACL.

B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin
Markov networks. In Advances in NIPS 16.

E. F. Tjong Kim Sang and F. De Meulder. 2003. Introduction to
the CoNLL-2003 shared task: Language-independent named
entity recognition. In Proc. of CoNLL.

Y. Xiong, J. Zhu, H. Huang, and H. Xu. 2009. Minimum tag
error for discriminative training of conditional random fields.
Information Sciences, 179(1-2):169–179.

736

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 737–740,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Bitext-Based Resolution of German Subject-Object Ambiguities

Florian Schwarck Alexander Fraser

Institute for Natural Language Processing

University of Stuttgart

{koehlefn,fraser}@ims.uni-stuttgart.de

Hinrich Schütze

Abstract

We present a method for disambiguating syn-

tactic subjects from syntactic objects (a fre-

quent ambiguity) in German sentences taken

from an English-German bitext. We exploit

the fact that subject and object are usually eas-

ily determined in English. We show that a

simple method disambiguates some subject-

object ambiguities in German, while making

few errors. We view this procedure as the first

step in automatically acquiring (mostly) cor-

rect labeled data. We also evaluate using it to

improve a state of the art statistical parser.

1 Introduction

Ambiguity of grammatical role is a problem when

parsing a number of natural languages. In German,

subject-object ambiguities are frequent. The sen-

tence “Die Maus jagt die Katze” “the – mouse –

chases – the – cat” exhibits such an ambiguity. Be-

cause word order is freer in German than in English,

the sentence has two possible meanings: (i) The cat

is chasing the mouse and (ii) the mouse is chasing

the cat. We exploit the fact that such ambiguities are

much less frequent in languages that possess a less

flexible syntax than German. In English, the trans-

lation of the sentence “Die Maus jagt die Katze” is

not ambiguous. If we have access to this translation,

we can use this information to disambiguate the Ger-

man sentence. The English translation is viewed as

a surrogate for both contextual knowledge from the

text and for world knowledge.

We present a method for disambiguating the sub-

ject and object roles in German sentences. We use

an English-German bitext and exploit the fact that

subject and object roles are rarely ambiguous in En-

glish. Using a new gold standard we created we

show that our method disambiguates a significant

proportion of subject-object ambiguities in German

with high precision. We view this procedure as the

first step in automatically acquiring (mostly) correct

labeled data for training a statistical disambiguator

that can be used on German text (even when no

translation is available). In addition to measuring

algorithm performance directly, we present experi-

ments on improving the disambiguation of BitPar, a

state of the art statistical parser.

2 Algorithm

Data and Word Alignment. We use the aligned

English and German sentences in Europarl (Koehn,

2005) for our experiments. The corpus contains long

and complex sentences. To establish translational

correspondence between parallel sentences we use

GIZA++ (Och and Ney, 2003). Its input is a tok-

enized parallel corpus. We lemmatized the text prior

to aligning it.

Procedure. Figure 1 shows the architecture of

our system. The boxes signify data sets, while the

lines are processes applied to the data sets. The pa-

per presents two applications. The first is the cre-

ation of a set of disambiguated German sentences

(which involves word alignments in the upper right

corner, and the use of parsers in the middle of the

graphic). We also present a reranking of the N -best

parses produced by BitPar (Schmid, 2004), a state of

the art statistical parser (bottom of the graphic).

For processing of German we chose FSPar

737

Figure 1: System Architecture

(Schiehlen, 2003), a fast shallow dependency parser.

FSPar has extensive lexical knowledge which helps

it to find subject-object ambiguities with high accu-

racy, but it does not try to resolve such ambiguities.

The key to our approach is to project syntactic

roles from English text. For English parsing we used

MINIPAR (Lin, 1998).

Based on FSPar’s analysis, all German sentences

with a subject-object ambiguity (about a third) were

selected from EuroParl. The parallel English sen-

tences were parsed with MINIPAR.

Words marked as ambiguous by FSPar were then

processed using our algorithm. If an ambiguous

German word was aligned to an English word that

MINIPAR had (unambiguously) assigned the gram-

matical role of subject or object, then the syntactic

role of the German word was defined by this infor-

mation, see Figure 2.

Figure 2: Disambiguation Algorithm

We used standard heuristics for improving word

alignment (Och and Ney, 2003; Koehn et al., 2003),

but there were many misalignments of ambiguous

German words. In order for the procedure to work,

we require that the German word to be disam-

biguated be aligned to the English subject or object.

For this reason, we implemented second guessing

based on a dictionary that lists for every German

word the 10 most frequently aligned English words

(found using the word alignment of all of Europarl).

If an ambiguous German word was either unaligned

or not aligned to the English subject or object, it was

checked whether a dictionary translation was part of

the parallel sentence and marked as subject or ob-

ject by MINIPAR. If so, this dictionary word was

used for disambiguation.

3 Evaluation

Gold Standard. We had access to a small set of

gold standard parses (Padó and Lapata, 2009), but

decided to create a larger corpus. We found that FS-

Par had acceptable performance for finding subject-

object ambiguities1. The syntactic roles of words

marked as ambiguous by FSPar were annotated.

Four annotators annotated the syntactic roles in 4000

sentences using a graphical user interface (GUI).

The GUI showed the ambiguous words in context

and gave the annotator four different subject-object

labels to choose from for each ambiguous word:

subject, object, expletive es and none. Because the

syntactic expletive “es” (English gloss: ‘it’) is fre-

quent in German, as in “es scheint zu regnen” ‘it

appears to be raining,’ we created a separate label

for expletive “es”, which is not treated as a subject.2

The statistics are shown in table 1.

1000 sentences were annotated by all four an-

notators. Inter-annotator agreement was sufficient

(κ = 0.77 on average (Carletta, 1996)).

Evaluation Measures. The output of our algo-

rithm labels each word that FSPar classified as am-

biguous with one of the three possible labels subject,

1FSPar has a very high precision in detecting subject-object

ambiguities, as can be seen in Table 1 (approximately 0.955,

the sum of two left columns divided by sum of all cells). We

tried to get an idea of recall using the smaller gold standard.

We made conservative assumptions about recall errors which

we manually checked on a small sample, details are omitted.

Using these assumptions led to an estimate for recall of 0.733,

but true recall is likely higher.
2German “es” is also frequently used as a non-expletive,

where it can take a syntactic role.

738

subj obj expl es none

Annotator1 4152 3210 115 150

Annotator2 4472 3359 92 226

Annotator3 4444 3584 42 155

Annotator4 4027 3595 9 650

Table 1: Annotator decisions on the full gold standard

DE2EN Refined GDFA Intersection

nosg

P 0.8412 0.8381 0.8353 0.8551

R 0.4436 0.3856 0.3932 0.3380

F1 0.5809 0.5282 0.5347 0.4845

sg

P 0.7404 0.7307 0.7310 0.7240

R 0.5564 0.4873 0.4946 0.4528

F1 0.6353 0.5847 0.5900 0.5571

filter-nosg

P 0.9239 0.9203 0.9192 0.9277

R 0.3940 0.3397 0.3461 0.2984

F1 0.5524 0.4962 0.5028 0.4515

filter-sg

P 0.8458 0.8358 0.8369 0.8290

R 0.4839 0.4213 0.4279 0.3898

F1 0.6156 0.5602 0.5662 0.5302

Table 2: Precision, Recall and F1 of the algorithm.

object and no decision3. We use the standard evalua-

tion metrics Precision (P , the percentage of subject

and object labelings in our hypothesis that are cor-

rect), Recall (R, the percentage of subject and ob-

ject labelings in the gold standard that are correctly

labeled in the hypothesis), and balanced F (F1).

4 Experiments

Algorithm Performance. Table 2 shows the perfor-

mance of our algorithm when evaluated against the

manual annotation4. The lines nosg, sg, filter-nosg

and filter-sg denote different configurations of the al-

gorithm: Second guessing (section 2) was (“sg”) or

was not (“nosg”) applied and filtering was (“filter”)

or was not applied. The filter increases precision by

only keeping labels of subjects and objects that oc-

cur in the default order (e.g., the subject is to the

left of the object in the main clause). As an aid to

the user, FSPar presents such a determination of de-

fault order depending on its classification of clause

type5. The columns indicate the heuristic postpro-

3If expletive es or none was annotated, the system is correct

if it does not make a decision.
4Because of problems with BitPar caused by preprocessing

for FSPar, we use 11,279 sentences of the 13,000 annotated.
5Using this determination alone results in P 0.7728 R 0.8206

F 0.7960, very high recall but low precision.

configuration P R F1

1 top-1 (no change) 0.8088 0.8033 0.8060

2 relabeling nosg 0.7998 0.8176 0.8086

3 relabeling filter-nosg 0.8229 0.8344 0.8286

4 reranking nosg 0.8082 0.8123 0.8102

5 reranking filter-nosg 0.8145 0.8143 0.8144

Table 3: Precision, Recall and F1 of changing BitPar de-

cisions, DE2EN alignment

cessing we applied to GIZA++’s alignment. DE2EN

is the 1-to-N alignment calculated using German as

the source language and English as the target lan-

guage (i.e., each English word is linked to exactly

zero or one German words).

As we see in table 2, with the most strict setup,

filter-nosg, the algorithm resolves subject-object

ambiguities with a precision of more than 92%

but the best recall is only 39.4%, obtained using

DE2EN. Second guessing increases recall but leads

to losses in precision. The best precision result with-

out the filter is 85.5%.

Improving BitPar’s Subject-Object Decisions.

For improving BitPar (which always tries to disam-

biguate subject-object), our baseline is the accuracy

of the most probable parse shown in table 3, row 1.

Using the most probable parse from BitPar, we

relabel a word “subject” or “object” if our system

indicates to do so. With the algorithm alone we are

able to improve recall (table 3, row 2). When we add

the filter both precision and recall are improved (row

3). This experiment measures the improvement pos-

sible if our syntactic role information were directly

integrated as a hard constraint into a parser (see sec-

tion 5).

We now perform a simple reranking experiment,

using BitPar’s 100-best parses. For each sentence

we choose the parse which agrees with as many of

the subject/object decisions of the algorithm as pos-

sible (once again ignoring words where the algo-

rithm chooses no decision). In case of ties in the

number of agreements, we take the most probable

parse. The results are in rows 4–5. Reranking in-

creases F1 by about 0.8%.

5 Related Work

Syntactic projection has been used to bootstrap tree-

banks in resource poor languages (Yarowsky and

739

Ngai, 2001; Hwa et al., 2005). In contrast with such

work, we are addressing subject-object ambiguity in

German. German parsers have no access to the con-

textual and world knowledge necessary to resolve

this ambiguity.

Work on projecting semantic roles (Padó and La-

pata, 2009; Fung et al., 2007) requires both syntac-

tic parsing and semantic role labeling and is con-

cerned with filling in the complete information in a

semantic frame. Our approach is simpler and con-

cerned only with syntactic disambiguation, not se-

mantic projection. We focus only on difficult cases

of subject-object ambiguity and although we do not

always make a prediction, we obtain levels of pre-

cision that projection approaches making no use of

knowledge of German syntax cannot achieve.

In bitext parsing, Burkett and Klein (2008) and

Fraser et al. (2009) used feature functions defined on

triples of (parse tree in language 1, parse tree in lan-

guage 2, word alignment), combined in a log-linear

model trained to maximize parse accuracy, requir-

ing translated treebanks. We focus only on subject-

object disambiguation in German, and annotated a

new gold standard. We work on sentences that a

partial parser has determined to be ambiguous. Fos-

sum and Knight (2008) and Huang et al. (2009) im-

prove English prepositional phrase attachment using

features from an unparsed Chinese sentence. The

latter work integrated the PP-attachment constraint

(detected from the Chinese translation) directly into

an English shift-reduce parser. As we have shown

in the labeling experiment, integrating our subject-

object disambiguation into BitPar could result in fur-

ther increases beyond 100-best reranking.

6 Conclusion

We demonstrated the utility of bitext-based disam-

biguation of grammatical roles. We automatically

created a large corpus of 164,874 disambiguated

subject-object decisions with a precision of over

92%. This corpus will be of use in future research

on syntactic role preferences and for the training

of monolingual subject-object disambiguators. We

presented a prototype application of subject-object

disambiguation through a simple reranking of the

100-best list output by BitPar, and showed a possible

further improvement if integrated in the parser. The

new gold standard, which is publicly available, will

hopefully be useful for work on both monolingual

and bitext-based disambiguation.

Acknowledgments

This work was supported by Deutsche Forschungs-

gemeinschaft grants SFB 732 and MorphoSynt.

References

David Burkett and Dan Klein. 2008. Two languages are

better than one (for syntactic parsing). In EMNLP.

Jean Carletta. 1996. Assessing agreement on classifi-

cation tasks: The kappa statistic. Computational Lin-

guistics, 22.

Victoria Fossum and Kevin Knight. 2008. Using bilin-

gual Chinese-English word alignments to resolve PP-

attachment ambiguity in English. In AMTA.

Alexander Fraser, Renjing Wang, and Hinrich Schütze.

2009. Rich bitext projection features for parse rerank-

ing. In EACL.

Pascale Fung, Zhaojun Wu, Yongsheng Yang, and Dekai

Wu. 2007. Learning bilingual semantic frames: Shal-

low semantic parsing vs. semantic role projection. In

TMI.

Liang Huang, Wenbin Jiang, and Qun Liu. 2009.

Bilingually-constrained (monolingual) shift-reduce

parsing. In EMNLP.

Rebecca Hwa, Philip Resnik, Amy Weinberg, Clara

Cabezas, and Okan Kolak. 2005. Bootstrapping

parsers via syntactic projection across parallel texts.

Nat. Lang. Eng., 11(3).

Philipp Koehn, Franz J. Och, and Daniel Marcu. 2003.

Statistical phrase-based translation. In HLT-NAACL.

Philipp Koehn. 2005. Europarl: a parallel corpus for

statistical machine translation. InMT Summit X.

Dekang Lin. 1998. Dependency-based evaluation of

MINIPAR. InWorkshop on Eval of Parsing Systems.

Franz J. Och and Hermann Ney. 2003. A systematic

comparison of various statistical alignment models.

Computational Linguistics, 29(1).

Sebastian Padó and Mirella Lapata. 2009. Cross-lingual

annotation projection of semantic roles. Journal of Ar-

tificial Intelligence Research, 36:307–340.

Michael Schiehlen. 2003. A cascaded finite-state parser

for German. In Research Notes (EACL).

Helmut Schmid. 2004. Efficient parsing of highly am-

biguous context-free grammars with bit vectors. In

COLING.

David Yarowsky and Grace Ngai. 2001. Inducing multi-

lingual POS taggers and NP bracketers via robust pro-

jection across aligned corpora. In NAACL.

740

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, page 741,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Music, Language, and Computational Modeling: Lessons from
the Key-Finding Problem

David Temperley

Eastman School of Music, University of Rochester
26 Gibbs St.

Rochester, NY 14604
dtemperley@esm.rochester.edu

Abstract

Recent research in computational music research, including my own, has been greatly influenced by methods in
computational linguistics. But I believe the influence could also go the other way: Music may offer some interesting
lessons for language research, particularly with regard to the modeling of cognition.

In this talk I will focus on an important problem in music cognition: the problem of key identification. I will argue
that this problem is in some ways analogous to the problem of syntactic parsing in language. I will present a simple
Bayesian model that performs well at the key-finding task. I will then consider some implications of the model for
other issues. The model represents moment-to-moment changes in key over time and captures “reanalysis” effects in
key perception. The model can be used to estimate the tonal ambiguity of a musical passage, and can also be used to
estimate the probability of note patterns (just as a probabilistic grammar can be used to estimate the probability of
word strings). An interesting question here concerns expectation: In forming expectations for the next surface ele-
ment (note or word), do we consider all possible structures (syntactic structures or keys) or just the most probable
one? Finally, the model sheds light on the concept of “information flow.” It has been suggested that language re-
flects a tendency towards uniform density of information, in that less probable elements are spread out or elongated;
I will suggest that the same may be true in music.

Slides for the talk will be available at my website, <www.theory.esm.rochester.edu/temperley>.

741

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 742–750,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

An Efficient Algorithm for Easy-First Non-Directional Dependency Parsing

Yoav Goldberg∗ and Michael Elhadad
Ben Gurion University of the Negev

Department of Computer Science
POB 653 Be’er Sheva, 84105, Israel

{yoavg|elhadad}@cs.bgu.ac.il

Abstract

We present a novel deterministic dependency pars-
ing algorithm that attempts to create the easiest arcs
in the dependency structure first in a non-directional
manner. Traditional deterministic parsing algorithms
are based on a shift-reduce framework: they traverse
the sentence from left-to-right and, at each step, per-
form one of a possible set of actions, until a complete
tree is built. A drawback of this approach is that
it is extremely local: while decisions can be based
on complex structures on the left, they can look only
at a few words to the right. In contrast, our algo-
rithm builds a dependency tree by iteratively select-
ing the best pair of neighbours to connect at each
parsing step. This allows incorporation of features
from already built structures both to the left and to the
right of the attachment point. The parser learns both
the attachment preferences and the order in which
they should be performed. The result is a determin-
istic, best-first, O(nlogn) parser, which is signifi-
cantly more accurate than best-first transition based
parsers, and nears the performance of globally opti-
mized parsing models.

1 Introduction

Dependency parsing has been a topic of active re-
search in natural language processing in the last sev-
eral years. An important part of this research effort
are the CoNLL 2006 and 2007 shared tasks (Buch-
holz and Marsi, 2006; Nivre et al., 2007), which al-
lowed for a comparison of many algorithms and ap-
proaches for this task on many languages.

∗Supported by the Lynn and William Frankel Center for
Computer Sciences, Ben Gurion University

Current dependency parsers can be categorized
into three families: local-and-greedy transition-
based parsers (e.g., MALTPARSER (Nivre et al.,
2006)), globally optimized graph-based parsers
(e.g., MSTPARSER (McDonald et al., 2005)), and
hybrid systems (e.g., (Sagae and Lavie, 2006b;
Nivre and McDonald, 2008)), which combine the
output of various parsers into a new and improved
parse, and which are orthogonal to our approach.

Transition-based parsers scan the input from left
to right, are fast (O(n)), and can make use of rich
feature sets, which are based on all the previously
derived structures. However, all of their decisions
are very local, and the strict left-to-right order im-
plies that, while the feature set can use rich struc-
tural information from the left of the current attach-
ment point, it is also very restricted in information
to the right of the attachment point: traditionally,
only the next two or three input tokens are avail-
able to the parser. This limited look-ahead window
leads to error propagation and worse performance on
root and long distant dependencies relative to graph-
based parsers (McDonald and Nivre, 2007).

Graph-based parsers, on the other hand, are glob-
ally optimized. They perform an exhaustive search
over all possible parse trees for a sentence, and find
the highest scoring tree. In order to make the search
tractable, the feature set needs to be restricted to fea-
tures over single edges (first-order models) or edges
pairs (higher-order models, e.g. (McDonald and
Pereira, 2006; Carreras, 2007)). There are several
attempts at incorporating arbitrary tree-based fea-
tures but these involve either solving an ILP prob-
lem (Riedel and Clarke, 2006) or using computa-

742

(1) ATTACHRIGHT(2)

a brown fox jumped with joy

-157

-27

-68

403

-197

-47

-152

-243

231

3

(2) ATTACHRIGHT(1)

a fox

brown

jumped with joy
-52

314

-159

0

-176

-146

246

12

(3) ATTACHRIGHT(1)

fox

a brown

jumped with joy

-133

270

-149

-154

246

10

(4) ATTACHLEFT(2)

jumped

fox

a brown

with joy

-161

-435

186

-2

(5) ATTACHLEFT(1)

jumped

fox

a brown

with

joy

430

-232

(6)

jumped

fox

a brown

with

joy

Figure 1: Parsing the sentence “a brown fox jumped with joy”. Rounded arcs represent possible actions.

tionally intensive sampling-based methods (Naka-
gawa, 2007). As a result, these models, while accu-
rate, are slow (O(n3) for projective, first-order mod-
els, higher polynomials for higher-order models, and
worse for richer tree-feature models).

We propose a new category of dependency pars-
ing algorithms, inspired by (Shen et al., 2007): non-
directional easy-first parsing. This is a greedy, de-
terministic parsing approach, which relaxes the left-
to-right processing order of transition-based pars-
ing algorithms. By doing so, we allow the ex-
plicit incorporation of rich structural features de-
rived from both sides of the attachment point, and
implicitly take into account the entire previously de-
rived structure of the whole sentence. This exten-
sion allows the incorporation of much richer features
than those available to transition- and especially to
graph-based parsers, and greatly reduces the local-
ity of transition-based algorithm decisions. On the
other hand, it is still a greedy, best-first algorithm
leading to an efficient implementation.

We present a concrete O(nlogn) parsing algo-
rithm, which significantly outperforms state-of-the-
art transition-based parsers, while closing the gap to
graph-based parsers.
2 Easy-first parsing
When humans comprehend a natural language sen-
tence, they arguably do it in an incremental, left-to-

right manner. However, when humans consciously
annotate a sentence with syntactic structure, they
hardly ever work in fixed left-to-right order. Rather,
they start by building several isolated constituents
by making easy and local attachment decisions and
only then combine these constituents into bigger
constituents, jumping back-and-forth over the sen-
tence and proceeding from easy to harder phenom-
ena to analyze. When getting to the harder decisions
a lot of structure is already in place, and this struc-
ture can be used in deciding a correct attachment.

Our parser follows a similar kind of annotation
process: starting from easy attachment decisions,
and proceeding to harder and harder ones. When
making later decisions, the parser has access to the
entire structure built in earlier stages. During the
training process, the parser learns its own notion of
easy and hard, and learns to defer specific kinds of
decisions until more structure is available.

3 Parsing algorithm

Our (projective) parsing algorithm builds the parse
tree bottom up, using two kinds of actions: AT-
TACHLEFT(i) and ATTACHRIGHT(i) . These
actions are applied to a list of partial structures
p1, . . . , pk, called pending, which is initialized with
the n words of the sentence w1, . . . , wn. Each ac-

743

tion connects the heads of two neighbouring struc-
tures, making one of them the parent of the other,
and removing the daughter from the list of partial
structures. ATTACHLEFT(i) adds a dependency
edge (pi, pi+1) and removes pi+1 from the list. AT-
TACHRIGHT(i) adds a dependency edge (pi+1, pi)
and removes pi from the list. Each action shortens
the list of partial structures by 1, and after n−1 such
actions, the list contains the root of a connected pro-
jective tree over the sentence.

Figure 1 shows an example of parsing the sen-
tence “a brown fox jumped with joy”. The pseu-
docode of the algorithm is given in Algorithm 1.

Algorithm 1: Non-directional Parsing
Input: a sentence= w1 . . . wn

Output: a set of dependency arcs over the
sentence (Arcs)

Acts = {ATTACHLEFT, ATTACHRIGHT}1

Arcs← {}2

pending = p1 . . . pn ← w1 . . . wn3

while length(pending) > 1 do4

best← arg max
act∈Acts

1≤i≤len(pending)

score(act(i))
5

(parent, child)← edgeFor(best)6

Arcs.add((parent, child))7

pending.remove(child)8

end9

return Arcs10

edgeFor(act(i)) =

{
(pi, pi+1) ATTACHLEFT(i)
(pi+1, pi) ATTACHRIGHT(i)

At each step the algorithm chooses a spe-
cific action/location pair using a function
score(ACTION(i)), which assign scores to ac-
tion/location pairs based on the partially built
structures headed by pi and pi+1, as well as neigh-
bouring structures. The score() function is learned
from data. This scoring function reflects not only
the correctness of an attachment, but also the order
in which attachments should be made. For example,
consider the attachments (brown,fox) and (joy,with)
in Figure (1.1). While both are correct, the scoring
function prefers the (adjective,noun) attachment
over the (prep,noun) attachment. Moreover, the
attachment (jumped,with), while correct, receives
a negative score for the bare preposition “with”
(Fig. (1.1) - (1.4)), and a high score once the verb
has its subject and the PP “with joy” is built (Fig.

(1.5)). Ideally, we would like to score easy and
reliable attachments higher than harder less likely
attachments, thus performing attachments in order
of confidence. This strategy allows us both to limit
the extent of error propagation, and to make use of
richer contextual information in the later, harder
attachments. Unfortunately, this kind of ordering
information is not directly encoded in the data. We
must, therefore, learn how to order the decisions.

We first describe the learning algorithm (Section
4) and a feature representation (Section 5) which en-
ables us to learn an effective scoring function.

4 Learning Algorithm
We use a linear model score(x) = ~w · φ(x), where
φ(x) is a feature representation and ~w is a weight
vector. We write φact(i) to denote the feature repre-
sentation extracted for action act at location i. The
model is trained using a variant of the structured per-
ceptron (Collins, 2002), similar to the algorithm of
(Shen et al., 2007; Shen and Joshi, 2008). As usual,
we use parameter averaging to prevent the percep-
tron from overfitting.

The training algorithm is initialized with a zero
parameter vector ~w. The algorithm makes several
passes over the data. At each pass, we apply the
training procedure given in Algorithm 2 to every
sentence in the training set.

At training time, each sentence is parsed using the
parsing algorithm and the current ~w. Whenever an
invalid action is chosen by the parsing algorithm, it
is not performed (line 6). Instead, we update the pa-
rameter vector ~w by decreasing the weights of the
features associated with the invalid action, and in-
creasing the weights for the currently highest scor-
ing valid action.1 We then proceed to parse the sen-
tence with the updated values. The process repeats
until a valid action is chosen.

Note that each single update does not guarantee
that the next chosen action is valid, or even different
than the previously selected action. Yet, this is still
an aggressive update procedure: we do not leave a
sentence until our parameters vector parses it cor-

1We considered 3 variants of this scheme: (1) using the high-
est scoring valid action, (2) using the leftmost valid action, and
(3) using a random valid action. The 3 variants achieved nearly
identical accuracy, while (1) converged somewhat faster than
the other two.

744

rectly, and we do not proceed from one partial parse
to the next until ~w predicts a correct location/action
pair. However, as the best ordering, and hence the
best attachment point is not known to us, we do not
perform a single aggressive update step. Instead, our
aggressive update is performed incrementally in a
series of smaller steps, each pushing ~w away from
invalid attachments and toward valid ones. This way
we integrate the search of confident attachments into
the learning process.

Algorithm 2: Structured perceptron training
for direction-less parser, over one sentence.

Input: sentence,gold arcs,current ~w,feature
representation φ

Output: weight vector ~w

Arcs← {}1

pending ← sent2

while length(pending) > 1 do3

allowed← {act(i)|isV alid(act(i), Gold,Arcs)}4

choice← arg max
act∈Acts

1≤i≤len(pending)

~w · φact(i)

5

if choice ∈ allowed then6

(parent, child)← edgeFor(choice)7

Arcs.add((parent, child))8

pending.remove(child)9

else10

good← arg max
act(j)∈allowed

~w · φact(j)
11

~w ← ~w + φgood − φchoice12

end13

return ~w14

Function isValid(action,Gold,Arcs)
(p, c)← edgeFor(action)1

if (∃c′ : (c, c′) ∈ Gold ∧ (c, c′) 6∈ Arcs)2

∨ (p, c) 6∈ Gold then
return false3

return true4

The function isV alid(act(i), gold, arcs) (line 4)
is used to decide if the chosen action/location pair
is valid. It returns True if two conditions apply: (a)
(pi, pj) is present in gold, (b) all edges (2, pj) in
gold are also in arcs. In words, the function verifies
that the proposed edge is indeed present in the gold
parse and that the suggested daughter already found
all its own daughters.2

2This is in line with the Arc-Standard parsing strategy of
shift-reduce dependency parsers (Nivre, 2004). We are cur-
rently experimenting also with an Arc-Eager variant of the non-

5 Feature Representation

The feature representation for an action can take
into account the original sentence, as well as
the entire parse history: φact(i) above is actually
φ(act(i), sentence,Arcs, pending).

We use binary valued features, and each feature is
conjoined with the type of action.

When designing the feature representation, we
keep in mind that our features should not only di-
rect the parser toward desired actions and away from
undesired actions, but also provide the parser with
means of choosing between several desired actions.
We want the parser to be able to defer some desired
actions until more structure is available and a more
informed prediction can be made. This desire is re-
flected in our choice of features: some of our fea-
tures are designed to signal to the parser the pres-
ence of possibly “incomplete” structures, such as an
incomplete phrase, a coordinator without conjuncts,
and so on.

When considering an action ACTION(i), we limit
ourselves to features of partial structures around the
attachment point: pi−2, pi−1, pi, pi+1, pi+2, pi+3,
that is the two structures which are to be attached by
the action (pi and pi+1), and the two neighbouring
structures on each side3.

While these features encode local context, it is lo-
cal in terms of syntactic structure, and not purely in
terms of sentence surface form. This let us capture
some, though not all, long-distance relations.

For a partial structure p, we use wp to refer to
the head word form, tp to the head word POS tag,
and lcp and rcp to the POS tags of the left-most and
right-most child of p respectively.

All our prepositions (IN) and coordinators (CC)
are lexicalized: for them, tp is in fact wptp.

We define structural, unigram, bigram and pp-
attachment features.

The structural features are: the length of the
structures (lenp), whether the structure is a word
(contains no children: ncp), and the surface distance
between structure heads (∆pipj). The unigram and
bigram features are adapted from the feature set for
left-to-right Arc-Standard dependency parsing de-

directional algorithm.
3Our sentences are padded from each side with sentence de-

limiter tokens.

745

Structural
for p in pi−2, pi−1, pi, pi+1, pi+2, pi+3 lenp , ncp
for p,q in (pi−2, pi−1),(pi−1, pi),(pi, pi+1),(pi+1, pi+ 2),(pi+2, pi+3) ∆qp , ∆qptptq

Unigram
for p in pi−2, pi−1, pi, pi+1, pi+2, pi+3 tp , wp , tplcp , tprcp , tprcplcp

Bigram
for p,q in (pi, pi+1),(pi, pi+2),(pi−1, pi),(pi−1, pi+2),(pi+1, pi+2) tptq , wpwq , tpwq , wptq

tptqlcplcq , tptqrcplcq
tptqlcprcq , tptqrcprcq

PP-Attachment
if pi is a preposition wpi−1wpircpi , tpi−1wpircwpi

if pi+1 is a preposition wpi−1wpi+1rcpi+1 , tpi−1wpi+1rcwpi+1

wpiwpi+1rcpi+1 , tpiwpi+1rcwpi+1

if pi+2 is a preposition wpi+1wpi+2rcpi+2 , tpi+1wpi+2rcwpi+2

wpiwpi+2rcpi+2 , tpiwpi+2rcwpi+2

Figure 2: Feature Templates

scribed in (Huang et al., 2009). We extended that
feature set to include the structure on both sides of
the proposed attachment point.

In the case of unigram features, we added features
that specify the POS of a word and its left-most and
right-most children. These features provide the non-
directional model with means to prefer some attach-
ment points over others based on the types of struc-
tures already built. In English, the left- and right-
most POS-tags are good indicators of constituency.

The pp-attachment features are similar to the bi-
gram features, but fire only when one of the struc-
tures is headed by a preposition (IN). These features
are more lexicalized than the regular bigram fea-
tures, and include also the word-form of the right-
most child of the PP (rcwp). This should help the
model learn lexicalized attachment preferences such
as (hit, with-bat).

Figure 2 enumerate the feature templates we use.

6 Computational Complexity and Efficient
Implementation

The parsing algorithm (Algorithm 1) begins with
n+1 disjoint structures (the words of the sentence +
ROOT symbol), and terminates with one connected
structure. Each iteration of the main loop connects
two structures and removes one of them, and so the
loop repeats for exactly n times.

The argmax in line 5 selects the maximal scoring
action/location pair. At iteration i, there are n − i
locations to choose from, and a naive computation of
the argmax isO(n), resulting in anO(n2) algorithm.

Each performed action changes the partial struc-

tures and with it the extracted features and the com-
puted scores. However, these changes are limited
to a fixed local context around the attachment point
of the action. Thus, we observe that the feature ex-
traction and score calculation can be performed once
for each action/location pair in a given sentence, and
reused throughout all the iterations. After each iter-
ation we need to update the extracted features and
calculated scores for only k locations, where k is a
fixed number depending on the window size used in
the feature extraction, and usually k � n.

Using this technique, we perform only (k + 1)n
feature extractions and score calculations for each
sentence, that is O(n) feature-extraction operations
per sentence.

Given the scores for each location, the argmax can
then be computed in O(logn) time using a heap,
resulting in an O(nlogn) algorithm: n iterations,
where the first iteration involves n feature extrac-
tion operations and n heap insertions, and each sub-
sequent iteration involves k feature extractions and
heap updates.

We note that the dominating factor in polynomial-
time discriminative parsers, is by far the feature-
extraction and score calculation. It makes sense to
compare parser complexity in terms of these opera-
tions only.4 Table 1 compares the complexity of our

4Indeed, in our implementation we do not use a heap, and
opt instead to find the argmax using a simple O(n) max oper-
ation. This O(n2) algorithm is faster in practice than the heap
based one, as both are dominated by the O(n) feature extrac-
tion, while the cost of the O(n) max calculationis negligible
compared to the constants involved in heap maintenance.

746

parser to other dependency parsing frameworks.

Parser Runtime Features / Scoring
MALT O(n) O(n)
MST O(n3) O(n2)
MST2 O(n3) O(n3)
BEAM O(n ∗ beam) O(n ∗ beam)
NONDIR (This Work) O(nlogn) O(n)

Table 1: Complexity of different parsing frameworks.
MST: first order MST parser, MST2: second order MST
parser, MALT: shift-reduce left-to-right parsing. BEAM:
beam search parser, as in (Zhang and Clark, 2008)

In terms of feature extraction and score calcula-
tion operations, our algorithm has the same cost as
traditional shift-reduce (MALT) parsers, and is an
order of magnitude more efficient than graph-based
(MST) parsers. Beam-search decoding for left-to-
right parsers (Zhang and Clark, 2008) is also linear,
but has an additional linear dependence on the beam-
size. The reported results in (Zhang and Clark,
2008) use a beam size of 64, compared to our con-
stant of k = 6.

Our Python-based implementation5 (the percep-
tron is implemented in a C extension module) parses
about 40 tagged sentences per second on an Intel
based MacBook laptop.

7 Experiments and Results
We evaluate the parser using the WSJ Treebank. The
trees were converted to dependency structures with
the Penn2Malt conversion program,6 using the head-
finding rules from (Yamada and Matsumoto, 2003).7

We use Sections 2-21 for training, Section 22 for
development, and Section 23 as the final test set.
The text is automatically POS tagged using a trigram
HMM based POS tagger prior to training and pars-
ing. Each section is tagged after training the tagger
on all other sections. The tagging accuracy of the
tagger is 96.5 for the training set and 96.8 for the
test set. While better taggers exist, we believe that
the simpler HMM tagger overfits less, and is more

5http://www.cs.bgu.ac.il/∼yoavg/software/
6http://w3.msi.vxu.se/∼nivre/research/Penn2Malt.html
7While other and better conversions exist (see, e.g., (Johans-

son and Nugues, 2007; Sangati and Mazza, 2009)), this con-
version heuristic is still the most widely used. Using the same
conversion facilitates comparison with previous works.

representative of the tagging performance on non-
WSJ corpus texts.
Parsers We evaluate our parser against the
transition-based MALT parser and the graph-based
MST parser. We use version 1.2 of MALT parser8,
with the settings used for parsing English in the
CoNLL 2007 shared task. For the MST parser9,
we use the default first-order, projective parser set-
tings, which provide state-of-the-art results for En-
glish. All parsers are trained and tested on the same
data. Our parser is trained for 20 iterations.
Evaluation Measures We evaluate the parsers using
three common measures:
(unlabeled) Accuracy: percentage of tokens which
got assigned their correct parent.
Root: The percentage of sentences in which the
ROOT attachment is correct.
Complete: the percentage of sentences in which all
tokens were assigned their correct parent.
Unlike most previous work on English dependency
parsing, we do not exclude punctuation marks from
the evaluation.

Results are presented in Table 2. Our non-
directional easy-first parser significantly outper-
forms the left-to-right greedy MALT parser in terms
of accuracy and root prediction, and significantly
outperforms both parsers in terms of exact match.
The globally optimized MST parser is better in root-
prediction, and slightly better in terms of accuracy.

We evaluated the parsers also on the English
dataset from the CoNLL 2007 shared task. While
this dataset is also derived from the WSJ Treebank, it
differs from the previous dataset in two important as-
pects: it is much smaller in size, and it is created us-
ing a different conversion procedure, which is more
linguistically adequate. For these experiments, we
use the dataset POS tags, and the same parameters as
in the previous set of experiments: we train the non-
directional parser for 20 iterations, with the same
feature set. The CoNLL dataset contains some non-
projective constructions. MALT and MST deal with
non-projectivity. For the non-directional parser, we
projectivize the training set prior to training using
the procedure described in (Carreras, 2007).

Results are presented in Table 3.

8http://maltparser.org/dist/1.2/malt-1.2.tar.gz
9http://sourceforge.net/projects/mstparser/

747

Parser Accuracy Root Complete
MALT 88.36 87.04 34.14
MST 90.05 93.95 34.64
NONDIR (this work) 89.70 91.50 37.50

Table 2: Unlabeled dependency accuracy on PTB Section
23, automatic POS-tags, including punctuation.

Parser Accuracy Root Complete
MALT 85.82 87.85 24.76
MST 89.08 93.45 24.76
NONDIR (this work) 88.34 91.12 29.43

Table 3: Unlabeled dependency accuracy on CoNLL
2007 English test set, including punctuation.

While all models suffer from the move to the
smaller dataset and the more challenging annotation
scheme, the overall story remains the same: the non-
directional parser is better than MALT but not as
good as MST in terms of parent-accuracy and root
prediction, and is better than both MALT and MST

in terms of producing complete correct parses.
That the non-directional parser has lower accu-

racy but more exact matches than the MST parser
can be explained by it being a deterministic parser,
and hence still vulnerable to error propagation: once
it erred once, it is likely to do so again, result-
ing in low accuracies for some sentences. How-
ever, due to the easy-first policy, it manages to parse
many sentences without a single error, which lead
to higher exact-match scores. The non-directional
parser avoids error propagation by not making the
initial error. On average, the non-directional parser
manages to assign correct heads to over 60% of the
tokens before making its first error.

The MST parser would have ranked 5th in the
shared task, and NONDIR would have ranked 7th.
The better ranking systems in the shared task
are either higher-order global models, beam-search
based systems, or ensemble-based systems, all of
which are more complex and less efficient than the
NONDIR parser.
Parse Diversity The parses produced by the non-
directional parser are different than the parses pro-
duced by the graph-based and left-to-right parsers.
To demonstrate this difference, we performed an Or-
acle experiment, in which we combine the output of
several parsers by choosing, for each sentence, the
parse with the highest score. Results are presented

Combination Accuracy Complete
Penn2Malt, Train 2-21, Test 23

MALT+MST 92.29 44.03
NONDIR+MALT 92.19 45.48
NONDIR+MST 92.53 44.41
NONDIR+MST+MALT 93.54 49.79

CoNLL 2007
MALT+MST 91.50 33.64
NONDIR+MALT 91.02 34.11
NONDIR+MST 91.90 34.11
NONDIR+MST+MALT 92.70 38.31

Table 4: Parser combination with Oracle, choosing the
highest scoring parse for each sentence of the test-set.

in Table 4.
A non-oracle blending of MALT+MST+NONDIR

using Sagae and Lavie’s (2006) simplest combina-
tion method assigning each component the same
weight, yield an accuracy of 90.8 on the CoNLL
2007 English dataset, making it the highest scoring
system among the participants.

7.1 Error Analysis / Limitations

When we investigate the POS category of mistaken
instances, we see that for all parsers, nodes with
structures of depth 2 and more which are assigned
an incorrect head are predominantly PPs (headed
by ’IN’), followed by NPs (headed by ’NN’). All
parsers have a hard time dealing with PP attachment,
but MST parser is better at it than NONDIR, and both
are better than MALT.

Looking further at the mistaken instances, we no-
tice a tendency of the PP mistakes of the NONDIR

parser to involve, before the PP, an NP embedded
in a relative clause. This reveals a limitation of our
parser: recall that for an edge to be built, the child
must first acquire all its own children. This means
that in case of relative clauses such as “I saw the
boy [who ate the pizza] with my eyes”, the parser
must decide if the PP “with my eyes” should be at-
tached to “the pizza” or not before it is allowed to
build parts of the outer NP (“the boy who. . . ”). In
this case, the verb “saw” and the noun “boy” are
both outside of the sight of the parser when decid-
ing on the PP attachment, and it is forced to make a
decision in ignorance, which, in many cases, leads
to mistakes. The globally optimized MST does not
suffer as much from such cases. We plan to address
this deficiency in future work.

748

8 Related Work

Deterministic shift-reduce parsers are restricted by a
strict left-to-right processing order. Such parsers can
rely on rich syntactic information on the left, but not
on the right, of the decision point. They are forced
to commit early, and suffer from error propagation.
Our non-directional parser addresses these deficien-
cies by discarding the strict left-to-right processing
order, and attempting to make easier decisions be-
fore harder ones. Other methods of dealing with
these deficiencies were proposed over the years:
Several Passes Yamada and Matsumoto’s (2003)
pioneering work introduces a shift-reduce parser
which makes several left-to-right passes over a sen-
tence. Each pass adds structure, which can then be
used in subsequent passes. Sagae and Lavie (2006b)
extend this model to alternate between left-to-right
and right-to-left passes. This model is similar to
ours, in that it attempts to defer harder decisions to
later passes over the sentence, and allows late deci-
sions to make use of rich syntactic information (built
in earlier passes) on both sides of the decision point.
However, the model is not explicitly trained to op-
timize attachment ordering, has an O(n2) runtime
complexity, and produces results which are inferior
to current single-pass shift-reduce parsers.
Beam Search Several researchers dealt with the
early-commitment and error propagation of deter-
ministic parsers by extending the greedy decisions
with various flavors of beam-search (Sagae and
Lavie, 2006a; Zhang and Clark, 2008; Titov and
Henderson, 2007). This approach works well and
produces highly competitive results. Beam search
can be incorporated into our parser as well. We leave
this investigation to future work.

Strict left-to-right ordering is also prevalent in se-
quence tagging. Indeed, one major influence on
our work is Shen et.al.’s bi-directional POS-tagging
algorithm (Shen et al., 2007), which combines a
perceptron learning procedure similar to our own
with beam search to produce a state-of-the-art POS-
tagger, which does not rely on left-to-right process-
ing. Shen and Joshi (2008) extends the bidirectional
tagging algorithm to LTAG parsing, with good re-
sults. We build on top of that work and present a
concrete and efficient greedy non-directional depen-
dency parsing algorithm.

Structure Restrictions Eisner and Smith (2005)
propose to improve the efficiency of a globally op-
timized parser by posing hard constraints on the
lengths of arcs it can produce. Such constraints
pose an explicit upper bound on parser accuracy.10

Our parsing model does not pose such restrictions.
Shorter edges are arguably easier to predict, and our
parses builds them early in time. However, it is
also capable of producing long dependencies at later
stages in the parsing process. Indeed, the distribu-
tion of arc lengths produced by our parser is similar
to those produced by the MALT and MST parsers.

9 Discussion
We presented a non-directional deterministic depen-
dency parsing algorithm, which is not restricted by
the left-to-right parsing order of other deterministic
parsers. Instead, it works in an easy-first order. This
strategy allows using more context at each decision.
The parser learns both what and when to connect.
We show that this parsing algorithm significantly
outperforms a left-to-right deterministic algorithm.
While it still lags behind globally optimized pars-
ing algorithms in terms of accuracy and root pre-
diction, it is much better in terms of exact match,
and much faster. As our parsing framework can eas-
ily and efficiently utilize more structural information
than globally optimized parsers, we believe that with
some enhancements and better features, it can out-
perform globally optimized algorithms, especially
when more structural information is needed, such as
for morphologically rich languages.

Moreover, we show that our parser produces
different structures than those produced by both
left-to-right and globally optimized parsers, mak-
ing it a good candidate for inclusion in an ensem-
ble system. Indeed, a simple combination scheme
of graph-based, left-to-right and non-directional
parsers yields state-of-the-art results on English de-
pendency parsing on the CoNLL 2007 dataset.
We hope that further work on this non-directional
parsing framework will pave the way to better under-
standing of an interesting cognitive question: which
kinds of parsing decisions are hard to make, and
which linguistic constructs are hard to analyze?

10In (Dreyer et al., 2006), constraints are chosen “to be the
minimum value that will allow recovery of 90% of the left
(right) dependencies in the training corpus”.

749

References
Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X

shared task on multilingual dependency parsing. In
Proc. of CoNLL.

Xavier Carreras. 2007. Experiments with a higher-order
projective dependency parser. In Proc. of CoNLL
Shared Task, EMNLP-CoNLL.

Michael Collins. 2002. Discriminative training methods
for hidden markov models: Theory and experiments
with perceptron algorithms. In Proc of EMNLP.

Markus Dreyer, David A. Smith, and Noah A. Smith.
2006. Vine parsing and minimum risk reranking for
speed and precision. In Proc. of CoNLL, pages 201–
205, Morristown, NJ, USA. Association for Computa-
tional Linguistics.

Jason Eisner and Noah A. Smith. 2005. arsing with soft
and hard constraints on dependency length. In Proc.
of IWPT.

Liang Huang, Wenbin Jiang, and Qun Liu. 2009.
Bilingually-constrained (monolingual) shift-reduce
parsing. In Proc of EMNLP.

Richard Johansson and Pierre Nugues. 2007. Extended
constituent-to-dependency conversion for english. In
Proc of NODALIDA.

Ryan McDonald and Joakim Nivre. 2007. Characteriz-
ing the errors of data-driven dependency parsing mod-
els. In Proc. of EMNLP.

Ryan McDonald and Fernando Pereira. 2006. On-
line learning of approximate dependency parsing al-
gorithms. In Proc of EACL.

Ryan McDonald, Koby Crammer, and Fernando Pereira.
2005. Online large-margin training of dependency
parsers. In Proc of ACL.

Tetsuji Nakagawa. 2007. Multilingual dependency pars-
ing using global features. In Proc. of EMNLP-CoNLL.

Joakim Nivre and Ryan McDonald. 2008. Integrating
graph-based and transition-based dependency parsers.
In Proc. of ACL, pages 950–958, Columbus, Ohio,
June. Association for Computational Linguistics.

Joakim Nivre, Johan Hall, and Jens Nillson. 2006. Malt-
Parser: A data-driven parser-generator for dependency
parsing. In Proc. of LREC.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan Mcdon-
ald, Jens Nilsson, Sebastian Riedel, and Deniz Yuret.
2007. The CoNLL 2007 shared task on dependency
parsing. In Proc. of EMNLP-CoNLL.

Joakim Nivre. 2004. Incrementality in deterministic de-
pendency parsing. In Incremental Parsing: Bringing
Engineering and Cognition Together, ACL-Workshop.

Sebastian Riedel and James Clarke. 2006. Incremental
integer linear programming for non-projective depen-
dency parsing. In Proc. of EMNLP 2006, July.

Kenji Sagae and Alon Lavie. 2006a. A best-first proba-
bilistic shift-reduce parser. In Proc of ACL.

Kenji Sagae and Alon Lavie. 2006b. Parser combination
by reparsing. In Proc of NAACL.

Federico Sangati and Chiara Mazza. 2009. An english
dependency treebank à la tesnière. In Proc of TLT8.

Libin Shen and Aravind K. Joshi. 2008. Ltag depen-
dency parsing with bidirectional incremental construc-
tion. In Proc of EMNLP.

Libin Shen, Giorgio Satta, and Aravind K. Joshi. 2007.
Guided learning for bidirectional sequence classifica-
tion. In Proc of ACL.

Ivan Titov and James Henderson. 2007. Fast and robust
multilingual dependency parsing with a generative la-
tent variable model. In Proc. of EMNLP-CoNLL.

Yamada and Matsumoto. 2003. Statistical dependency
analysis with support vector machines. In Proc. of
IWPT.

Yue Zhang and Stephen Clark. 2008. A tale of
two parsers: investigating and combining graph-based
and transition-based dependency parsing using beam-
search. In Proc of EMNLP.

750

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 751–759,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

From Baby Steps to Leapfrog: How “Less is More”
in Unsupervised Dependency Parsing∗

Valentin I. Spitkovsky
Stanford University and Google Inc.
valentin@cs.stanford.edu

Hiyan Alshawi
Google Inc., Mountain View, CA, 94043

hiyan@google.com

Daniel Jurafsky
Stanford University, Stanford, CA, 94305

jurafsky@stanford.edu

Abstract

We present three approaches for unsupervised
grammar induction that are sensitive to data
complexity and apply them to Klein and Man-
ning’s Dependency Model with Valence. The
first, Baby Steps, bootstraps itself via iterated
learning of increasingly longer sentences and
requires no initialization. This method sub-
stantially exceeds Klein and Manning’s pub-
lished scores and achieves 39.4% accuracy on
Section 23 (all sentences) of the Wall Street
Journal corpus. The second,Less is More,
uses a low-complexity subset of the avail-
able data: sentences up to length 15. Focus-
ing on fewer but simpler examples trades off
quantity against ambiguity; it attains 44.1%
accuracy, using the standard linguistically-
informed prior and batch training, beating
state-of-the-art.Leapfrog, our third heuristic,
combinesLess is More with Baby Steps by
mixing their models of shorter sentences, then
rapidly ramping up exposure to the full train-
ing set, driving up accuracy to 45.0%. These
trends generalize to the Brown corpus; aware-
ness of data complexity may improve other
parsing models and unsupervised algorithms.

1 Introduction

Unsupervised learning of hierarchical syntactic
structure from free-form natural language text is a
hard problem whose eventual solution promises to
benefit applications ranging from question answer-
ing to speech recognition and machine translation.
A restricted version that targets dependencies and

∗Partially funded by NSF award IIS-0811974; first author
supported by the Fannie & John Hertz Foundation Fellowship.

assumes partial annotation, e.g., sentence bound-
aries, tokenization and typically even part-of-speech
(POS) tagging, has received much attention, elicit-
ing a diverse array of techniques (Smith and Eis-
ner, 2005; Seginer, 2007; Cohen et al., 2008). Klein
and Manning’s (2004) Dependency Model with Va-
lence (DMV) was the first to beat a simple parsing
heuristic — the right-branching baseline. Today’s
state-of-the-art systems (Headden et al., 2009; Co-
hen and Smith, 2009) are still rooted in the DMV.

Despite recent advances, unsupervised parsers lag
far behind their supervised counterparts. Although
large amounts of unlabeled data are known to im-
prove semi-supervised parsing (Suzuki et al., 2009),
the best unsupervised systems use less data than is
available for supervised training, relying on complex
models instead: Headden et al.’s (2009) Extended
Valence Grammar (EVG) combats data sparsity with
smoothing alone, training on the same small subset
of the tree-bank as the classic implementation of the
DMV; Cohen and Smith (2009) use more compli-
cated algorithms (variational EM and MBR decod-
ing) and stronger linguistic hints (tying related parts
of speech and syntactically similar bilingual data).

We explore what can be achieved through judi-
cious use of data and simple, scalable techniques.
Our first approach iterates over a series of training
sets that gradually increase in size and complex-
ity, forming an initialization-independent scaffold-
ing for learning a grammar. It works with Klein and
Manning’s simple model (the original DMV) and
training algorithm (classic EM) but eliminates their
crucial dependence on manually-tuned priors. The
second technique is consistent with the intuition that
learning is most successful within a band of the size-
complexity spectrum. Both could be applied to more

751

intricate models and advanced learning algorithms.
We combine them in a third, efficient hybrid method.

2 Intuition

Focusing on simple examples helps guide unsuper-
vised learning,1 as blindly added confusing data can
easily mislead training. We suggest that unless it is
increased gradually, unbridled, complexity can over-
whelm a system. How to grade an example’s diffi-
culty? The cardinality of its solution space presents
a natural proxy. In the case of parsing, the num-
ber of possible syntactic trees grows exponentially
with sentence length. For longer sentences, the un-
supervised optimization problem becomes severely
under-constrained, whereas for shorter sentences,
learning is tightly reined in by data. In the extreme
case of a single-word sentence, there is no choice
but to parse it correctly. At two words, a raw 50%
chance of telling the head from its dependent is still
high, but as length increases, the accuracy of even
educated guessing rapidly plummets. In model re-
estimation, long sentences amplify ambiguity and
pollute fractional counts with noise. At times, batch
systems are better off using less data.

Baby Steps: Global non-convex optimization is
hard. We propose a meta-heuristic that takes the
guesswork out of initializing local search. Begin-
ning with an easy (convex) case, it slowly extends it
to the fully complex target task by taking tiny steps
in the problem space, trying not to stray far from
the relevant neighborhoods of the solution space. A
series of nested subsets of increasingly longer sen-
tences that culminates in the complete data set offers
a natural progression. Its base case — sentences of
length one — has a trivial solution that requires nei-
ther initialization nor search yet reveals something
of sentence heads. The next step — sentences of
length one and two — refines initial impressions
of heads, introduces dependents, and exposes their
identities and relative positions. Although not rep-
resentative of the full grammar, short sentences cap-
ture enough information to paint most of the picture
needed by slightly longer sentences. They set up an
easier, incremental subsequent learning task. Step
k + 1 augments training input to include lengths

1It mirrors the effect that boosting hard examples has for
supervised training (Freund and Schapire, 1997).

1, 2, . . . , k, k + 1 of the full data set and executes
local search starting from the (smoothed) model es-
timated by stepk. This truly is grammar induction.

Less is More: For standard batch training, just us-
ing simple, short sentences is not enough. They are
rare and do not reveal the full grammar. We find a
“sweet spot” — sentence lengths that are neither too
long (excluding the truly daunting examples) nor too
few (supplying enough accessible information), us-
ing Baby Steps’ learning curve as a guide. We train
where it flattens out, since remaining sentences con-
tribute little (incremental) educational value.2

Leapfrog: As an alternative to discarding data, a
better use of resources is to combine the results of
batch and iterative training up to the sweet spot data
gradation, then iterate with a large step size.

3 Related Work

Two types of scaffolding for guiding language learn-
ing debuted in Elman’s (1993) experiments with
“starting small”: data complexity (restricting input)
and model complexity (restricting memory). In both
cases, gradually increasing complexity allowed ar-
tificial neural networks to master a pseudo-natural
grammar they otherwise failed to learn. Initially-
limited capacity resembled maturational changes in
working memory and attention span that occur over
time in children (Kail, 1984), in line with the “less
is more” proposal (Newport, 1988; 1990). Although
Rohde and Plaut (1999) failed to replicate this3 re-
sult with simple recurrent networks, other machine
learning techniques reliably benefit from scaffolded
model complexity on a variety of language tasks.
In word-alignment, Brown et al. (1993) used IBM
Models 1-4 as “stepping stones” to training Model 5.
Other prominent examples include “coarse-to-fine”

2This is akin to McClosky et al.’s (2006) “Goldilocks effect.”
3Worse, they found that limiting inputhindered language

acquisition. And making the grammar more English-like (by
introducing and strengthening semantic constraints),increased
the already significant advantage for “starting large!” With it-
erative training invoking the optimizer multiple times, creating
extra opportunities to converge, Rohde and Plaut (1999) sus-
pected that Elman’s (1993) simulations simply did not allow
networks exposed exclusively to complex inputs sufficient train-
ing time. Our extremely generous, low termination threshold
for EM (see§5.1) addresses this concern. However, given the
DMV’s purely syntactic POS tag-based approach (see§5), it
would be prudent to re-test Baby Steps with a lexicalized model.

752

approaches to parsing, translation and speech recog-
nition (Charniak and Johnson, 2005; Charniak et al.,
2006; Petrov et al., 2008; Petrov, 2009), and re-
cently unsupervised POS tagging (Ravi and Knight,
2009). Initial models tend to be particularly simple,4

and each refinement towards a full model introduces
only limited complexity, supporting incrementality.

Filtering complex data, the focus of our work,
is unconventional in natural language processing.
Such scaffolding qualifies asshaping — a method
of instruction (routinely exploited in animal train-
ing) in which the teacher decomposes a complete
task into sub-components, providing an easier path
to learning. When Skinner (1938) coined the term,
he described it as a “method of successive approx-
imations.” Ideas that gradually make a task more
difficult have been explored in robotics (typically,
for navigation), with reinforcement learning (Singh,
1992; Sanger, 1994; Saksida et al., 1997; Dorigo
and Colombetti, 1998; Savage, 1998; Savage, 2001).
Recently, Krueger and Dayan (2009) showed that
shaping speeds up language acquisition and leads
to better generalization in abstract neural networks.
Bengio et al. (2009) confirmed this for deep de-
terministic and stochastic networks, using simple
multi-stagecurriculum strategies. They conjectured
that a well-chosen sequence of training criteria —
different sets of weights on the examples — could
act as a continuation method (Allgower and Georg,
1990), helping find better local optima for non-
convex objectives. Elman’s learners constrained the
peaky solution space by focusing on just the right
data (simple sentences that introduced basic repre-
sentational categories) at just the right time (early
on, when their plasticity was greatest). Self-shaping,
they simplified tasks through deliberate omission (or
misunderstanding). Analogously, Baby Steps in-
duces an early structural locality bias (Smith and
Eisner, 2006), then relaxes it, as if annealing (Smith
and Eisner, 2004). Its curriculum of binary weights
initially discards complex examples responsible for
“high-frequency noise,” with earlier, “smoothed”
objectives revealing more of the global picture.

There are important differences between our re-
sults and prior work. In contrast to Elman, we use a

4Brown et al.’s (1993) Model 1 (and, similarly, the first baby
step) has a global optimum that can be computed exactly, so that
no initial or subsequent parameters depend on initialization.

large data set (WSJ) of real English. Unlike Bengio
et al. and Krueger and Dayan, we shape a parser, not
a language model. Baby Steps is similar, in spirit, to
Smith and Eisner’s methods. Deterministic anneal-
ing (DA) shares nice properties with Baby Steps,
but performs worse than EM for (constituent) pars-
ing; Baby Steps handedly defeats standard training.
Structural annealing works well, but requires a hand-
tuned annealing schedule and direct manipulation of
the objective function; Baby Steps works “out of the
box,” its locality biases a natural consequence of a
complexity/data-guided tour of optimization prob-
lems. Skewed DA incorporates a good initializer
by interpolating between two probability distribu-
tions, whereas our hybrid, Leapfrog, admits multi-
ple initializers by mixing structures instead. “Less
is More” is novel and confirms the tacit consensus
implicit in training on small data sets (e.g., WSJ10).

4 Data Sets and Metrics

Klein and Manning (2004) both trained and tested
the DMV on the same customized subset (WSJ10)
of Penn English Treebank’s Wall Street Journal por-
tion (Marcus et al., 1993). Its 49,208 annotated
parse trees were pruned5 down to 7,422 sentences
of at most 10 terminals, spanning 35 unique POS
tags. Following standard practice, automatic “head-
percolation” rules (Collins, 1999) were used to con-
vert the remaining trees into dependencies. Forced
to produce a single “best” parse, their algorithm
was judged on accuracy: itsdirected score was the
fraction of correct dependencies; a more flattering6

undirected score was also used. We employ the
same metrics, emphasizing directed scores, and gen-
eralize WSJk to be the subset of pre-processed sen-
tences with at mostk terminals. Our experiments fo-
cus onk ∈ {1, . . . , 45}, but we also test on WSJ100
and Section 23 of WSJ∞ (the entire WSJ), as well as
the held-out Brown100 (similarly derived from the
Brown corpus (Francis and Kucera, 1979)). See Fig-
ure 1 for these corpora’s sentence and token counts.

5Stripped of all empty sub-trees, punctuation, and terminals
(tagged# and$) not pronounced where they appear, those sen-
tences still containing more than ten tokens were thrown out.

6Ignoring polarity of parent-child relations partially ob-
scured effects of alternate analyses (systematic choices between
modals and main verbs for heads of sentences, determiners for
noun phrases, etc.) and facilitated comparison with prior work.

753

Corpus Sentences POS Tokens Corpus Sentences POS Tokens
WSJ1 159 159 WSJ13 12,270 110,760
WSJ2 499 839 WSJ14 14,095 136,310
WSJ3 876 1,970 WSJ15 15,922 163,715
WSJ4 1,394 4,042 WSJ20 25,523 336,555
WSJ5 2,008 7,112 WSJ25 34,431 540,895
WSJ6 2,745 11,534 WSJ30 41,227 730,099
WSJ7 3,623 17,680 WSJ35 45,191 860,053
WSJ8 4,730 26,536 WSJ40 47,385 942,801
WSJ9 5,938 37,408 WSJ45 48,418 986,830
WSJ10 7,422 52,248 WSJ100 49,206 1,028,054
WSJ11 8,856 68,022 Section 23 2,353 48,201
WSJ12 10,500 87,750 Brown100 24,208 391,796 5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

40

45
Thousands

of Sentences

Thousands
of Tokens

100

200

300

400

500

600

700

800

900

WSJk

Figure 1: Sizes of WSJ{1, . . . , 45, 100}, Section 23 of WSJ∞ and Brown100.

NNS VBD IN NN ♦

Payrolls fell in September .

P = (1−

0
z }| {

PSTOP(⋄, L, T)) × PATTACH(⋄, L, VBD)
× (1− PSTOP(VBD, L, T)) × PATTACH(VBD, L, NNS)
× (1− PSTOP(VBD, R, T)) × PATTACH(VBD, R, IN)
× (1− PSTOP(IN, R, T)) × PATTACH(IN, R, NN)
× PSTOP(VBD, L, F) × PSTOP(VBD, R, F)
× PSTOP(NNS, L, T) × PSTOP(NNS, R, T)
× PSTOP(IN, L, T) × PSTOP(IN, R, F)
× PSTOP(NN, L, T) × PSTOP(NN, R, T)
× PSTOP(⋄, L, F)

| {z }

1

× PSTOP(⋄, R, T)
| {z }

1

.

Figure 2: A simple dependency structure for a short sen-
tence and its probability, as factored by the DMV.

5 New Algorithms for the Classic Model

The DMV (Klein and Manning, 2004) is a single-
state head automata model (Alshawi, 1996) over lex-
ical word classes{cw} — POS tags. Its generative
story for a sub-tree rooted at a head (of classch) rests
on three types of independent decisions: (i) initial
directiondir ∈ {L, R} in which to attach children, via
probability PORDER(ch); (ii) whether to sealdir, stop-
ping with probability PSTOP(ch, dir, adj), conditioned
on adj ∈ {T, F} (true iff consideringdir’s first, i.e.,
adjacent, child); and (iii) attachments (of classca),
according toPATTACH(ch, dir, ca). This produces only
projective trees.7 A root token♦ generates the head
of a sentence as its left (and only) child. Figure 2
displays an example that ignores (sums out)PORDER.

The DMV lends itself to unsupervised learn-

7Unlike spanning tree algorithms (McDonald et al., 2005),
DMV’s chart-based method disallows crossing dependencies.

ing via inside-outside re-estimation (Baker, 1979).
Klein and Manning did not use smoothing and
started with an “ad-hoc harmonic” completion: aim-
ing for balanced trees, non-root heads attached de-
pendents in inverse proportion to (a constant plus)
their distance;♦ generated heads uniformly at ran-
dom. This non-distributional heuristic created favor-
able initial conditions that nudged EM towards typi-
cal linguistic dependency structures.

5.1 Algorithm #0: Ad-Hoc∗

— A Variation on Original Ad-Hoc Initialization

Since some of the important implementation details
are not available in the literature (Klein and Man-
ning, 2004; Klein, 2005), we had to improvise ini-
tialization and terminating conditions. We suspect
that our choices throughout this section do not match
Klein and Manning’s actual training of the DMV.

We use the following ad-hoc harmonic scores (for
all tokens other than♦): P̃ORDER ≡ 1/2;

P̃STOP ≡ (ds + δs)
−1 = (ds + 3)−1, ds ≥ 0;

P̃ATTACH ≡ (da + δa)−1 = (da + 2)−1, da ≥ 1.

Integersd{s,a} are distances from heads to stopping
boundaries and dependents.8 We initialize train-
ing by producing best-scoring parses of all input
sentences and converting them into proper proba-
bility distributions PSTOP and PATTACH via maximum-
likelihood estimation (a single step of Viterbi train-
ing (Brown et al., 1993)). Since left and right chil-
dren are independent, we dropPORDER altogether, mak-

8Constantsδ{s,a} come from personal communication.
Note thatδs is one higher than is strictly necessary to avoid both
division by zero and determinism;δa could have been safely ze-
roed out, since we never compute1− PATTACH (see Figure 2).

754

ing “headedness” deterministic. Our parser care-
fully randomizes tie-breaking, so that all parse trees
having the same score get an equal shot at being
selected (both during initialization and evaluation).
We terminate EM when a successive change in over-
all per-token cross-entropy drops below2−20 bits.

5.2 Algorithm #1: Baby Steps
— An Initialization-Independent Scaffolding

We eliminate the need for initialization by first train-
ing on a trivial subset of the data — WSJ1; this
works, since there is only one (the correct) way to
parse a single-token sentence. We plug the resulting
model into training on WSJ2 (sentences of up to two
tokens), and so forth, building up to WSJ45.9 This
algorithm is otherwise identical to Ad-Hoc∗, with
the exception that it re-estimates each model using
Laplace smoothing, so that earlier solutions could
be passed to next levels, which sometimes contain
previously unseen dependent and head POS tags.

5.3 Algorithm #2: Less is More
— Ad-Hoc∗ where Baby Steps Flatlines

We jettison long, complex sentences and deploy Ad-
Hoc∗’s initializer and batch training at WSJk̂∗ — an
estimate of the sweet spot data gradation. To find
it, we track Baby Steps’ successive models’ cross-
entropies on the complete data set, WSJ45. An ini-
tial segment of rapid improvement is separated from
the final region of convergence by aknee — points
of maximum curvature (see Figure 3). We use an
improved10 L method (Salvador and Chan, 2004) to
automatically locate this area of diminishing returns.
Specifically, we determine its end-points[k0, k

∗] by
minimizing squared error, estimatinĝk0 = 7 and
k̂∗ = 15. Training at WSJ15 just misses the plateau.

5.4 Algorithm #3: Leapfrog
— A Practical and Efficient Hybrid Mixture

Cherry-picking the best features of “Less is More”
and Baby Steps, we begin by combining their mod-

9Its 48,418 sentences (see Figure 1) cover 94.4% of all sen-
tences in WSJ; the longest of the missing 790 has length 171.

10Instead of iteratively fitting a two-segment form and adap-
tively discarding its tail, we usethree line segments, applying
ordinary least squares to the first two, but requiring the third to
be horizontal and tangent to a minimum. The result is abatch
optimization routine that returns aninterval for the knee, rather
than a point estimate (see Figure 3 for details).

5 10 15 20 25 30 35 40 45

3.0

3.5

4.0

4.5

5.0

WSJk

bpt
Cross-entropyh (in bits per token) on WSJ45

Knee
[7, 15] Tight, Flat, Asymptotic Bound

min
b0,m0,b1,m1

2<k0<k∗<45

8

>>>>>>>>>><

>>>>>>>>>>:

k0−1X

k=1

(hk − b0 −m0k)2 +

k∗X

k=k0

(hk − b1 −m1k)2 +

45X

k=k∗+1

„

hk −
45

min
j=k∗+1

hj

«2

Figure 3: Cross-entropy on WSJ45 after each baby step, a
piece-wise linear fit, and an estimated region for the knee.

els at WSĴk∗. Using one best parse from each,
for every sentence in WSJk̂∗, the base case re-
estimates a new model from amixture of twice the
normal number of trees; inductive steps leap overk̂∗

lengths, conveniently ending at WSJ45, and estimate
their initial models by applying a previous solution
to a new input set. Both follow up the single step of
Viterbi training with at most five iterations of EM.

Our hybrid makes use of two good (condition-
ally) independent initialization strategies and exe-
cutes many iterations of EM where that is cheap —
at shorter sentences (WSJ15 and below). It then in-
creases the step size, training just three more times
(at WSJ{15, 30, 45}) and allowing only a few (more
expensive) iterations of EM. Early termination im-
proves efficiency and regularizes these final models.

5.5 Reference Algorithms
— Baselines, a Skyline and Published Art

We carve out the problem space using two extreme
initialization strategies: (i) the uninformed uniform
prior, which serves as a fair “zero-knowledge” base-
line for comparing uninitialized models; and (ii) the
maximum-likelihood “oracle” prior, computed from
reference parses, which yields askyline (a reverse
baseline) — how well any algorithm that stumbled
on the true solution would fare at EM’s convergence.

In addition to citing Klein and Manning’s (2004)
results, we compare our accuracies on Section 23
of WSJ∞ to two state-of-the-art systems and past
baselines (see Table 2). Headden et al.’s (2009)
lexicalized EVG is the best on short sentences, but

755

5 10 15 20 25 30 35 40

20

30

40

50

60

70

80

90

Oracle

Baby StepsAd-Hoc

Uninformed

WSJk

(a) Directed Accuracy (%) on WSJk

5 10 15 20 25 30 35 40 45

(b) Undirected Accuracy (%) on WSJk

Oracle

Baby Steps

Ad-Hoc

Uninformed

Figure 4: Directed and undirected accuracy scores attainedby the DMV, when trained and tested on the same gradation
of WSJ, for several different initialization strategies. Green circles mark Klein and Manning’s (2004) published scores;
red, violet and blue curves represent the supervised (maximum-likelihood oracle) initialization, Baby Steps, and the
uninformed uniform prior. Dotted curves reflect starting performance, solid curves register performance at EM’s
convergence, and the arrows connecting them emphasize the impact of learning.

5 10 15 20 25 30 35 40 45

20

30

40

50

60

WSJk

Oracle

Leapfrog

Baby Steps

Ad-Hoc∗

Uninformed

Ad-Hoc

Directed Accuracy (%) on WSJk

Figure 5: Directed accuracies for Ad-Hoc∗ (shown in
green) and Leapfrog (in gold); all else as in Figure 4(a).

its performance is unreported for longer sentences,
for which Cohen and Smith’s (2009) seem to be
the highest published scores; we include their in-
termediate results that preceded parameter-tying —
Bayesian models with Dirichlet and log-normal pri-
ors, coupled with both Viterbi and minimum Bayes-
risk (MBR) decoding (Cohen et al., 2008).

6 Experimental Results

We packed thousands of empirical outcomes into the
space of several graphs (Figures 4, 5 and 6). The col-
ors (also in Tables 1 and 2) correspond to different
initialization strategies — to a first approximation,

the learning algorithm was held constant (see§5).
Figures 4 and 5 tell one part of our story. As data

sets increase in size, training algorithms gain access
to more information; however, since in this unsu-
pervised setting training and test sets are the same,
additional longer sentences make for substantially
more challenging evaluation. To control for these
dynamics, we applied Laplace smoothing to all (oth-
erwise unsmoothed) models and re-plotted their per-
formance, holding several test sets fixed, in Figure 6.

We report undirected accuracies parenthetically.

6.1 Result #1: Baby Steps

Figure 4 traces out performance on the training set.
Klein and Manning’s (2004) published scores ap-
pear as dots (Ad-Hoc) at WSJ10: 43.2% (63.7%).
Baby Steps achieves 53.0% (65.7%) by WSJ10;
trained and tested on WSJ45, it gets 39.7% (54.3%).
Uninformed, classic EM learns little about directed
dependencies: it improves only slightly, e.g., from
17.3% (34.2%) to 19.1% (46.5%) on WSJ45 (learn-
ing some of the structure, as evidenced by its undi-
rected scores), but degrades with shorter sentences,
where its initial guessing rate is high. In the case
of oracle training, we expected EM to walk away
from supervised solutions (Elworthy, 1994; Meri-

756

5 10 15 20 25 30 35 40

20

30

40

50

60

70

80

(a) Directed Accuracy (%) on WSJ10

WSJk

Oracle

Leapfrog

Baby Steps

Less is More
| {z }

Ad-Hoc∗

Ad-Hoc

Uninformed

5 10 15 20 25 30 35 40 45

(b) Directed Accuracy (%) on WSJ40

Oracle

Leapfrog

Baby Steps

Less is More
| {z }

Ad-Hoc∗

Uninformed

Figure 6: Directed accuracies attained by the DMV, when trained at various gradations of WSJ, smoothed, then tested
against fixed evaluation sets — WSJ{10, 40}; graphs for WSJ{20, 30}, not shown, are qualitatively similar to WSJ40.

aldo, 1994; Liang and Klein, 2008), but the ex-
tent of its drops is alarming, e.g., from the super-
vised 69.8% (72.2%) to the skyline’s 50.6% (59.5%)
on WSJ45. In contrast, Baby Steps’ scores usu-
ally do not change much from one step to the
next, and where its impact of learning is big (at
WSJ{4, 5, 14}), it is invariably positive.

6.2 Result #2: Less is More

Ad-Hoc∗’s curve (see Figure 5) suggests how Klein
and Manning’s Ad-Hoc initializer may have scaled
with different gradations of WSJ. Strangely, our im-
plementation performs significantly above their re-
ported numbers at WSJ10: 54.5% (68.3%) is even
slightly higher than Baby Steps; nevertheless, given
enough data (from WSJ22 onwards), Baby Steps
overtakes Ad-Hoc∗, whose ability to learn takes a se-
rious dive once the inputs become sufficiently com-
plex (at WSJ23), and never recovers. Note that Ad-
Hoc∗’s biased prior peaks early (at WSJ6), eventu-
ally falls below the guessing rate (by WSJ24), yet
still remains well-positioned to climb, outperform-
ing uninformed learning.

Figure 6 shows that Baby Steps scales better with
more (complex) data — its curves do not trend
downwards. However, a good initializer induces a
sweet spot at WSJ15, where the DMV is learned
best using Ad-Hoc∗. This modeis “Less is More,”
scoring 44.1% (58.9%) on WSJ45. Curiously, even
oracle training exhibits a bump at WSJ15: once sen-
tences get long enough (at WSJ36), its performance

degrades below that of oracle training with virtually
no supervision (at the hardly representative WSJ3).

6.3 Result #3: Leapfrog

Mixing Ad-Hoc∗ with Baby Steps at WSJ15 yields
a model whose performance initially falls between
its two parents but surpasses both with a little train-
ing (see Figure 5). Leaping to WSJ45, via WSJ30,
results in our strongest model: its 45.0% (58.4%) ac-
curacy bridges half of the gap between Baby Steps
and the skyline, and at a tiny fraction of the cost.

6.4 Result #4: Generalization

Our models carry over to the larger WSJ100, Section
23 of WSJ∞, and the independent Brown100 (see
Table 1). Baby Steps improves out of domain, con-
firming that shaping generalizes well (Krueger and
Dayan, 2009; Bengio et al., 2009). Leapfrog does
best across the board but dips on Brown100, despite
its safe-guards against over-fitting.

Section 23 (see Table 2) reveals, unexpectedly,
that Baby Steps would have been state-of-the-art in
2008, whereas “Less is More” outperforms all prior
work on longer sentences. Baby Steps is competi-
tive with log-normal families (Cohen et al., 2008),
scoring slightly better on longer sentences against
Viterbi decoding, though worse against MBR. “Less
is More” beats state-of-the-art on longer sentences
by close to 2%; Leapfrog gains another 1%.

757

Ad-Hoc∗ Baby Steps Leapfrog Ad-Hoc∗ Baby Steps Leapfrog
Section 23 44.1(58.8) 39.2(53.8) 43.3(55.7) 31.5(51.6) 39.4(54.0) 45.0(58.4)
WSJ100 43.8(58.6) 39.2(53.8) 43.3(55.6) @15 31.3(51.5) 39.4(54.1) 44.7(58.1) @45
Brown100 43.3(59.2) 42.3(55.1) 42.8(56.5) 32.0(52.4) 42.5(55.5) 43.6(59.1)

Table 1: Directed and undirected accuracies on Section 23 ofWSJ∞, WSJ100 and Brown100 for Ad-Hoc∗, Baby
Steps and Leapfrog, trained at WSJ15 and WSJ45.

Decoding WSJ10 WSJ20 WSJ∞

Attach-Right (Klein and Manning, 2004) — 38.4 33.4 31.7
DMV Ad-Hoc (Klein and Manning, 2004) Viterbi 45.8 39.1 34.2

Dirichlet (Cohen et al., 2008) Viterbi 45.9 39.4 34.9
Ad-Hoc (Cohen et al., 2008) MBR 46.1 39.9 35.9
Dirichlet (Cohen et al., 2008) MBR 46.1 40.6 36.9
Log-Normal Families (Cohen et al., 2008) Viterbi 59.3 45.1 39.0
Baby Steps (@15) Viterbi 55.5 44.3 39.2
Baby Steps (@45) Viterbi 55.1 44.4 39.4
Log-Normal Families (Cohen et al., 2008) MBR 59.4 45.9 40.5
Shared Log-Normals (tie-verb-noun) (Cohen and Smith, 2009) MBR 61.3 47.4 41.4
Bilingual Log-Normals (tie-verb-noun) (Cohen and Smith, 2009) MBR 62.0 48.0 42.2
Less is More (Ad-Hoc∗ @15) Viterbi 56.2 48.2 44.1
Leapfrog (Hybrid @45) Viterbi 57.1 48.7 45.0

EVG Smoothed (skip-val) (Headden et al., 2009) Viterbi 62.1
Smoothed (skip-head) (Headden et al., 2009) Viterbi 65.0
Smoothed (skip-head), Lexicalized (Headden et al., 2009) Viterbi 68.8

Table 2: Directed accuracies on Section 23 of WSJ{10, 20,∞ } for several baselines and recent state-of-the-art systems.

7 Conclusion

We explored three simple ideas for unsupervised de-
pendency parsing. Pace Halevy et al. (2009), we
find “Less is More” — the paradoxical result that
better performance can be attained by training with
less data, even when removing samples from the true
(test) distribution. Our small tweaks to Klein and
Manning’s approach of 2004 break through the 2009
state-of-the-art on longer sentences, when trained at
WSJ15 (the auto-detected sweet spot gradation).

The second, Baby Steps, is an elegant meta-
heuristic for optimizing non-convex training crite-
ria. It eliminates the need for linguistically-biased
manually-tuned initializers, particularly if the loca-
tion of the sweet spot is not known. This tech-
nique scales gracefully with more (complex) data
and should easily carry over to more powerful pars-
ing models and learning algorithms.

Finally, Leapfrog forgoes the elegance and metic-
ulousness of Baby Steps in favor of pragmatism.
Employing both good initialization strategies at
its disposal, and spending CPU cycles wisely, it
achieves better performance than both “Less is
More” and Baby Steps.

Future work could explore unifying these tech-
niques with other state-of-the-art approaches. It may
be useful to scaffold on both data and model com-
plexity, e.g., by increasing head automata’s number
of states (Alshawi and Douglas, 2000). We see many
opportunities for improvement, considering the poor
performance of oracle training relative to the super-
vised state-of-the-art, and in turn the poor perfor-
mance of unsupervised state-of-the-art relative to the
oracle models.11 To this end, it would be instructive
to understand both the linguistic and statistical na-
ture of the sweet spot, and to test its universality.

Acknowledgments

We thank Angel X. Chang, Pi-Chuan Chang, David L.W. Hall,
Christopher D. Manning, David McClosky, Daniel Ramage and
the anonymous reviewers for many helpful comments on draft
versions of this paper.

References

E. L. Allgower and K. Georg. 1990.Numerical Continuation
Methods: An Introduction. Springer-Verlag.

11To facilitate future work, all of our models are publicly
available athttp://cs.stanford.edu/∼valentin/.

758

H. Alshawi and S. Douglas. 2000. Learning dependency trans-
duction models from unannotated examples. InRoyal Soci-
ety of London Philosophical Transactions Series A, volume
358.

H. Alshawi. 1996. Head automata for speech translation. In
Proc. of ICSLP.

J. K. Baker. 1979. Trainable grammars for speech recognition.
In Speech Communication Papers for the 97th Meeting of the
Acoustical Society of America.

Y. Bengio, J. Louradour, R. Collobert, and J. Weston. 2009.
Curriculum learning. InICML.

P. F. Brown, V. J. Della Pietra, S. A. Della Pietra, and R. L. Mer-
cer. 1993. The mathematics of statistical machine transla-
tion: Parameter estimation.Computational Linguistics, 19.

E. Charniak and M. Johnson. 2005. Coarse-to-finen-best pars-
ing and MaxEnt discriminative reranking. InProc. of ACL.

E. Charniak, M. Johnson, M. Elsner, J. Austerweil, D. Ellis,
I. Haxton, C. Hill, R. Shrivaths, J. Moore, M. Pozar, and
T. Vu. 2006. Multilevel coarse-to-fine PCFG parsing. In
HLT-NAACL.

S. B. Cohen and N. A. Smith. 2009. Shared logistic normal dis-
tributions for soft parameter tying in unsupervised grammar
induction. InProc. of NAACL-HLT.

S. B. Cohen, K. Gimpel, and N. A. Smith. 2008. Logistic nor-
mal priors for unsupervised probabilistic grammar induction.
In NIPS.

M. Collins. 1999.Head-Driven Statistical Models for Natural
Language Parsing. Ph.D. thesis, University of Pennsylvania.

M. Dorigo and M. Colombetti. 1998.Robot Shaping: An
Experiment in Behavior Engineering. MIT Press/Bradford
Books.

J. L. Elman. 1993. Learning and development in neural net-
works: The importance of starting small.Cognition, 48.

D. Elworthy. 1994. Does Baum-Welch re-estimation help tag-
gers? InProc. of ANLP.

W. N. Francis and H. Kucera, 1979.Manual of Information to
Accompany a Standard Corpus of Present-Day Edited Amer-
ican English, for use with Digital Computers. Department of
Linguistic, Brown University.

Y. Freund and R. E. Schapire. 1997. A decision-theoretic gen-
eralization of on-line learning and an application to boosting.
Journal of Computer and System Sciences, 55(1).

A. Halevy, P. Norvig, and F. Pereira. 2009. The unreasonable
effectiveness of data.IEEE Intelligent Systems, 24(2).

W. P. Headden, III, M. Johnson, and D. McClosky. 2009. Im-
proving unsupervised dependency parsing with richer con-
texts and smoothing. InProc. of NAACL-HLT.

R. Kail. 1984.The development of memory in children. W. H.
Freeman and Company, 2nd edition.

D. Klein and C. D. Manning. 2004. Corpus-based induction of
syntactic structure: Models of dependency and constituency.
In Proc. of ACL.

D. Klein. 2005. The Unsupervised Learning of Natural Lan-
guage Structure. Ph.D. thesis, Stanford University.

K. A. Krueger and P. Dayan. 2009. Flexible shaping: How
learning in small steps helps.Cognition, 110.

P. Liang and D. Klein. 2008. Analyzing the errors of unsuper-
vised learning. InProc. of HLT-ACL.

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz. 1993.
Building a large annotated corpus of English: The Penn
Treebank.Computational Linguistics, 19(2).

D. McClosky, E. Charniak, and M. Johnson. 2006. Effective
self-training for parsing. InProc. of NAACL-HLT.

R. McDonald, F. Pereira, K. Ribarov, and J. Hajic. 2005.
Non-projective dependency parsing using spanning tree al-
gorithms. InProc. of HLT-EMNLP.

B. Merialdo. 1994. Tagging English text with a probabilistic
model.Computational Linguistics, 20(2):155–172.

E. L. Newport. 1988. Constraints on learning and their role in
language acquisition: Studies of the acquisition of American
Sign Language.Language Sciences, 10(1).

E. L. Newport. 1990. Maturational constraints on language
learning.Cognitive Science, 14(1).

S. Petrov, A. Haghighi, and D. Klein. 2008. Coarse-to-fine
syntactic machine translation using language projections. In
Proc. of EMNLP.

S. O. Petrov. 2009.Coarse-to-Fine Natural Language Process-
ing. Ph.D. thesis, University of California, Berkeley.

S. Ravi and K. Knight. 2009. Minimized models for unsuper-
vised part-of-speech tagging. InProc. of ACL-IJCNLP.

D. L. T. Rohde and D. C. Plaut. 1999. Language acquisition in
the absence of explicit negative evidence: How important is
starting small?Cognition, 72(1).

L. M. Saksida, S. M. Raymond, and D. S. Touretzky. 1997.
Shaping robot behavior using principles from instrumental
conditioning.Robotics and Autonomous Systems, 22(3).

S. Salvador and P. Chan. 2004. Determining the number of
clusters/segments in hierarchical clustering/segmentation al-
gorithms. InProc. of ICTAI.

T. D. Sanger. 1994. Neural network learning control of
robot manipulators using gradually increasing task difficulty.
IEEE Trans. on Robotics and Automation, 10.

T. Savage. 1998. Shaping: The link between rats and robots.
Connection Science, 10(3).

T. Savage. 2001. Shaping: A multiple contingencies analysis
and its relevance to behaviour-based robotics.Connection
Science, 13(3).

Y. Seginer. 2007. Fast unsupervised incremental parsing. In
Proc. of ACL.

S. P. Singh. 1992. Transfer of learning by composing solutions
of elemental squential tasks.Machine Learning, 8.

B. F. Skinner. 1938.The behavior of organisms: An experi-
mental analysis. Appleton-Century-Crofts.

N. A. Smith and J. Eisner. 2004. Annealing techniques for
unsupervised statistical language learning. InProc. of ACL.

N. A. Smith and J. Eisner. 2005. Guiding unsupervised gram-
mar induction using contrastive estimation. InProc. of the
IJCAI Workshop on Grammatical Inference Applications.

N. A. Smith and J. Eisner. 2006. Annealing structural bias
in multilingual weighted grammar induction. InProc. of
COLING-ACL.

J. Suzuki, H. Isozaki, X. Carreras, and M. Collins. 2009. An
empirical study of semi-supervised structured conditional
models for dependency parsing. InProc. of EMNLP.

759

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 760–768,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Relaxed Marginal Inference and its Application to Dependency Parsing

Sebastian Riedel David A. Smith
Department of Computer Science

University of Massachusetts, Amherst
{riedel,dasmith}@cs.umass.edu

Abstract

Recently, relaxation approaches have been
successfully used for MAP inference on NLP
problems. In this work we show how to extend
the relaxation approach to marginal inference
used in conditional likelihood training, pos-
terior decoding, confidence estimation, and
other tasks. We evaluate our approach for the
case of second-order dependency parsing and
observe a tenfold increase in parsing speed,
with no loss in accuracy, by performing in-
ference over a small subset of the full factor
graph. We also contribute a bound on the error
of the marginal probabilities by a sub-graph
with respect to the full graph. Finally, while
only evaluated with BP in this paper, our ap-
proach is general enough to be applied with
any marginal inference method in the inner
loop.

1 Introduction

In statistical natural language processing (NLP) we
are often concerned with finding the marginal proba-
bilities of events in our models or the expectations of
features. When training to optimize conditional like-
lihood, feature expectations are needed to calculate
the gradient. Marginalization also allows a statis-
tical NLP component to give confidence values for
its predictions or to marginalize out latent variables.
Finally, given the marginal probabilities of variables,
we can pick the values that maximize these marginal
probabilities (perhaps subject to hard constraints) in
order to predict a good variable assignment.1

1With a loss function that decomposes on the variables, this
amounts to Minimum Bayes Risk (MBR) decoding, which is

Traditionally, marginal inference in NLP has been
performed via dynamic programming (DP); how-
ever, because this requires the model to factor in
a way that lends itself to DP algorithms, we have
to restrict the class of probabilistic models we con-
sider. For example, since we cannot derive a dy-
namic program for marginal inference in second or-
der non-projective dependency parsing (McDonald
and Satta, 2007), we have non-projective languages
such as Dutch using second order projective mod-
els if we want to apply DP. Some previous work
has circumvented this problem for MAP inference
by starting with a second-order projective solution
and then greedily flipping edges to find a better non-
projective solution (McDonald and Pereira, 2006).

In order to explore richer model structures, the
NLP community has recently started to investigate
the use of other, well-known machine learning tech-
niques for marginal inference. One such technique is
Markov chain Monte Carlo, and in particular Gibbs
sampling (Finkel et al., 2005), another is (loopy)
sum-product belief propagation (Smith and Eisner,
2008). In both cases we usually work in the frame-
work of graphical models—in our case, with factor
graphs that describe our distributions through vari-
ables, factors, and factor potentials. In theory, meth-
ods such as belief propagation can take any graph
and perform marginal inference. This means that we
gain a great amount of flexibility to represent more
global and joint distributions for NLP tasks.

The graphical models of interest, however, are
often too large and densely connected for efficient
inference in them. For example, in second order

often very effective.

760

dependency parsing models, we have O(n2) vari-
ables and O(n3) factors, each of which may have
to be inspected several times. While belief prop-
agation is still tractable here (assuming we follow
the approach of Smith and Eisner (2008) to enforce
tree constraints), it is still much slower than sim-
pler greedy parsing methods, and the advantage sec-
ond order models give in accuracy is often not sig-
nificant enough to offset the lack of speed in prac-
tice. Moreover, if we extend such parsing models to,
say, penalizing all pairs of crossing edges or scoring
syntax-based alignments, we will need to inspect at
least O

(
n4
)

factors, increasing our efficiency con-
cerns.

When looking at the related task of finding the
most likely assignment in large graphical models
(i.e., MAP inference), we notice that several recent
approaches have significantly sped up computation
through relaxation methods (Tromble and Eisner,
2006; Riedel and Clarke, 2006). Here we start with
a small subset of the full graph, and run inference
for this simpler problem. Then we search for factors
that are “violated” in the solution, and add them to
the graph. This is repeated until no more new factors
can be added. Empirically this approach has shown
impressive success. It often dramatically reduces the
effective network size, with no loss in accuracy.

How can we extend or generalize MAP relax-
ation algorithms to the case of marginal inference?
Roughly speaking, we answer it by introducing a
notion of factor gain that is defined as the KL di-
vergence between the current distribution with and
without the given factor. This quantity is then used
in an algorithm that starts with a sub-model, runs
marginal inference in it and then determines the
gains of the not-yet-added factors. In turn, all fac-
tors for which the gain exceeds some threshold are
added to the current model. This process is repeated
until no more new factors can be found or a maxi-
mum number of iterations is reached.

We evaluate this form of relaxed marginal infer-
ence for the case of second-order dependency pars-
ing. We follow Smith and Eisner’s tree-aware be-
lief propagation procedure for inference in the inner
loop of our algorithm. This leads to a tenfold in-
crease in parsing speed with no loss in accuracy.

We also contribute a bound on the error on
marginal probabilities the sub-graph defines with re-

spect to the full graph. This bound can be used both
for terminating (although not done here) and under-
standing the dynamics of inference. Finally, while
only evaluated with BP so far, it is general enough
to be applied with any marginal inference method in
the inner loop.

In the following, we first give a sketch of the
graphical model we apply. Then we briefly discuss
marginal inference. In turn we describe our relax-
ation algorithm for marginal inference and some of
its theoretic guarantees. Then we present empirical
support for the effectiveness of our approach, and
conclude.

2 Graphical Models of Dependency Trees

We give a brief overview of the graphical model we
apply in our experiments. We chose the grandpar-
ents and siblings model, together with language spe-
cific multiroot and projectivity options as taken from
Smith and Eisner (2008). All our models are defined
over a set of binary variables Lij that indicate a de-
pendency between token i and j of the input sen-
tence W .

2.1 Markov Random Fields

Following Smith and Eisner (2008), we define a
probability distribution over all dependency trees as
a collection of edges y for a fixed input sentence
W . This distribution is represented by an undirected
graphical model, or Markov random field (MRF):

pF (y) def=
1
Z

∏
i∈F

Ψi (y) (1)

specified by an index set F and a corresponding
family (Ψi)F of factors Ψi : Y 7→ <+. Here Z
is the partition function ZF =

∑
y

∏
i Ψi (y).

We will restrict our attention to binary factors that
can be represented as Ψi (y) = eθiφi(y) with binary
functions φi (y) ∈ {0, 1} and weights θi ∈ <.2 This

2These φi are also called sufficient statistics or feature func-
tions, not to be confused with the features whose weighted sum
forms the weight θi. The restriction to binary functions is with-
out loss of generality since we can combine constraints on par-
ticular variable assignments into potential tables with several
dimensions.

761

leads to

pF (y) def=
1
Z

exp

(∑
i∈F

θiφi (y)

)

as an alternative representation for pF . Note that
when φi (y) = 1 we will say that Ψi fires for y.

Note that a factor function Ψi(y) can depend on
any part of the observed input sentence W ; however,
for brevity we will suppress this extra argument to
Ψi.

2.2 Hard and Soft Constraints on Trees

A particular model specifies its preference for set of
dependency edges over another by a set of hard and
soft constraints. We use hard constraints to rule out
a priori illegal structures, such as trees where a word
has two parents, and soft constraints to raise or lower
the score of trees that contain particular good or bad
substructures.

A hard factor (or constraint) Ψi evaluates an as-
signment y with respect to some specified condi-
tion and fires only if this condition is violated; in
this case it evaluates to 0. It is therefore ruling out
all configurations in which the condition does not
hold. Note that a hard constraint Ψi corresponds to
θi = −∞ in our loglinear representation.

For dependency parsing, we consider two partic-
ular hard constraints, each of which touches all edge
variables in y: the constraint Tree requires that all
edges form a directed spanning tree rooted at the
root node 0; the constraint PTree enforces the more
stringent condition that all edges form a projective
directed tree. As in (Smith and Eisner, 2008), we
used algorithms from edge-factored parsing to com-
pute BP messages for these factors. In our experi-
ments, we enforced one or the other constraint de-
pending on the projectivity of given treebank data.

A soft factor Ψi acts as a soft constraint that
prefers some assignments to others. This is equiv-
alent to saying that its weight θi is finite. Note that
the weight of a soft factor is usually itself composed
as a sum of (sub-)weights wj for feature functions
that have the same input-output behavior as φi (y)
when conditioned on the current sentence. It is these
wj which are adjusted at training time.

We use three kinds of soft factors from Smith and
Eisner (2008). In the full model, there are: O(n2)

LINKi,j factors that judge dependency edges in iso-
lation; O(n3) GRANDi,j,k factors that judge pairs
of dependency edges in a grandparent-parent-child
chain; and O(n3) SIBi,j,k factors that judge pairs of
dependency edges that share the same parent.

3 Marginal Inference

Formally, given our set of factors F and an observed
sentence W , marginal inference amounts to calcu-
lating the probability µFi that our binary features φi

are active. That is, for each factor Ψi

µFi
def=

∑
φi(y)=1

pF (y) = EF [φi] (2)

For compactness, we follow the convention of Wain-
wright and Jordan (2008) and represent the belief for
a variable using the marginal probability of its cor-
responding unary factor. Hence, if we want to calcu-
late pF (Lij) we use µFLINKij

in place. Moreover we

will use µF¬i
def= 1−µFi when we need the probability

of the event φi (y) = 0.
The two most prominent approaches to marginal

inference in general graphical models are Markov
Chain Monte Carlo (MCMC) and variational meth-
ods. In a nutshell, MCMC iteratively generates a
Markov chain that yields pF as its stationary distri-
bution. Any expectation µFi can then be calculated
simply by counting the corresponding statistics in
the generated chain.

Generally speaking, variational methods frame
marginal inference as an optimization problem. Ei-
ther in the sense of minimizing the KL divergence
of a much simpler distribution to the actual distribu-
tion pF , as in mean field methods. Or in the sense of
maximizing a variational representation of the log-
partition function over the setM of valid mean vec-
tors (Wainwright and Jordan, 2008). Note that the
variational representation of the log partition func-
tion involves an entropy term that is intractable to
calculate in general and therefore usually approxi-
mated. Likewise, the set of constraints that guaran-
tee vectors µ to be valid mean vectors is intractably
large and is often simplified.

Because we use belief propagation (BP) as base-
line to compare to, and as a subroutine in our pro-
posed algorithm, a brief characterization of it is in
order. BP can be seen as a variational method that

762

uses the Bethe Free Energy as approximation to the
entropy, and the setML of locally consistent mean
vectors as an outer bound onM. A mean vector is
locally consistent if its beliefs on factors are consis-
tent with the beliefs of the factor neighbors.

BP solves the variational problem by iteratively
updating the beliefs of factors and variables based
on the current beliefs of their neighbors. When ap-
plied to acyclic graphical models BP yields the exact
marginals at convergence. For general graphs, BP is
not guaranteed to converge, and the beliefs it calcu-
lates are generally not the true marginals; however,
in practice BP often does converge and lead to accu-
rate marginals.

4 Relaxed Incremental Marginal Inference

Generally the runtime and accuracy of a marginal in-
ference method depends on size, density, tree-width
and interaction strength (i.e. the magnitude of its
weights) of the Graphical Model. For example, in
Belief Propagation the number of messages we have
to send in each iteration scales with the number of
factors (and their degrees). This means that when
we add a large number of extra factors to our model,
such as the O(n3) grandparent and sibling factors
for dependency parsing, we have to pay a price in
terms of speed, sometimes even accuracy.

However, on close inspection often many of the
additional factors we use to model some higher or-
der interactions are somewhat unnecessary or redun-
dant. To illustrate this, let us look at a second or-
der parsing model with grandparent factors. Surely
determiners are not heads of other determiners, and
this should be easy to encourage using LINK fea-
tures only. Hence, a grandparent factor that dis-
courages a determiner-determiner-determiner chain
seems unnecessary.

This raises two questions: (a) can we get away
without most of these factors, and (b) can we effi-
ciently tell which factors should be discarded. We
will see in section 5 that question (a) can be an-
swered affirmatively: with a only fraction of all sec-
ond order factors we can calculate marginals that are
very close to the BP marginals, and when used in
MBR decoding, lead to the same trees.

Question (b) can be approached by looking at how
a similar problem has been tackled in combinato-

rial optimization and MAP inference. Riedel and
Clarke (2006) tackled the MAP problem for depen-
dency parsing by an incremental approach that starts
with a relaxation of the problem, solves it, and adds
additional constraints only if they are violated. If
constraints were added, the process is repeated, oth-
erwise we terminate.

4.1 Evaluating Candidate Factors
To develop such an incremental relaxation approach
to marginal inference, we generalize the notion of a
violated constraint. What does it mean for a factor to
be violated with respect to the solution of a marginal
inference problem?

One answer is to interpret the violation of a con-
straint as “adding this constraint will impact our cur-
rent belief”. To assess the impact of adding factor
Ψi to a sub-graph F ′ ⊆ F we can then use the fol-
lowing intuition: if the distribution F ′ ∪ {i} is very
similar to the distribution corresponding to F ′, it is
probably safe to say that the marginals we get from
both are close, too. If we use the KL divergence be-
tween the (distributions of) F ′ ∪ {i} and F ′ for our
interpretation of the above mentioned closeness, we
can define a potential gain for adding Ψi as follows:

gF ′ (Ψi)
def= DKL

(
pF ′ ||pF ′∪{i}

)
.

Together with a threshold ε on this gain we can
now adapt the relaxation approach to marginal in-
ference by simply replacing the question, “Is Ψi vi-
olated?” with the question, “Is gF ′ (i) > ε?” We
can see the latter question as a generalization of the
former if we interpret MAP inference as the zero-
temperature limit of marginal inference (Wainwright
and Jordan, 2008).

The form of the gain function is chosen to be eas-
ily evaluated using the beliefs we have already avail-
able for the current sub-graph F ′. It is easy to show
(see Appendix) that the following holds:

Proposition 1. The gain of a factor Ψi with respect
to the sub-graph F ′ ⊆ F is

gF ′ (Ψi) = log
(
µF

′
¬i + µF

′
i eθi

)
− µF

′
i θi (3)

That is, the gain of a factor Ψi depends on two
properties of Ψi. First, the expectation µF

′
i that

Ψi fires under the current model F ′, and second,

763

its loglinear weight θi. To get an intuition for this
gain, consider the limit lim

µF
′

i →1
gF ′ (Ψi) of a fac-

tor with positive weight that is expected to be active
under F ′. In this case the gain becomes zero, mean-
ing that the more likely Ψi fires under the current
model, the less useful will it be to add according to
our gain. For lim

µF
′

i →0
gF ′ (Ψi) the gain also disap-

pears. Here the confidence of the current model in φi

being inactive is so high that any single factor which
indicates the opposite cannot make a difference.

Fortunately, the marginal probability µF
′

i is usu-
ally available after inference, or can be approxi-
mated. This allows us to maintain the same basic
algorithm as in the MAP case: in each “inspection
step” we can use the results of the last run of infer-
ence in order to evaluate whether a factor has to be
added or not.

4.2 Algorithm

Algorithm 1 shows our proposed algorithm, Relaxed
Marginal Inference. We are given an initial factor
graph (for example, the first order dependency pars-
ing model), a threshold ε on the minimal gain a fac-
tor needs to have in order to be added, and a solver S
for marginal inference in the partial graphs we gen-
erate along the way.

We start by finding the marginals µ for the initial
graph. These marginals are then used in step 4 to
find the factors that would, when added in isolation,
change the distribution substantially (i.e., by more
than ε in terms of KL divergence). We will refer
to this step as separation, in line with cutting plane
terminology. The factors are added to the current
graph, and we start from the top unless there were
no new factors added. In this case we return the last
marginals µ.

Clearly, this algorithm is guaranteed to converge:
either we add at least one factor per iteration until
we reach the full graph F , or we converge before.
However, it is difficult to make any general state-
ments about the number of iterations it takes until
convergence. Nevertheless, in our experiments we
find that algorithm 1 converges to a much smaller
graph after a small number of iterations, and hence
we are always faster than inference on the full graph.

Finally, note that calculating the gain for all fac-
tors in F \ F ′ in step 4 (separation) takes time pro-

Algorithm 1 Relaxed Marginal Inference.

1: require:
F ′:init. graph, ε: threshold, S:solver, R: max. it

2: repeat
Find current marginals using solver S

3: µ← marginals(F ′
, S)

Find factors with high gain not yet added

4: ∆F ← {i ∈ F \ F ′ |gF ′ (Ψi) > ε}
Add factors to current graph

5: F ′ ← F ′ ∪∆F
Check: no more new factors were added or R reached

6: until ∆F = ∅ or iteration >R
return the marginals for the last graph F ′

7: return µ

portional to |F \ F ′|.

4.3 Accuracy

We have seen how to evaluate the potential gain
when adding a single factor. However, this does
not tell us how good the current sub-model is with
respect to the complete graph. After all, while all
remaining factors individually might not contribute
much, in concert they may. We therefore present a
(calculable) bound on the KL divergence of the par-
tial graph from the full graph that can give us confi-
dence in the solutions we return at convergence.

Note that for this bound we still only need fea-
ture expectations from the current model. More-
over, we assume all weights θi are positive—without
loss of generality since we can always replace φi

with its negation 1 − φi and then change the sign
of θi (Richardson and Domingos, 2006).

Proposition 2. Assume non-negative weights, let

F ′ ⊆ F be a subset of factors, G
def
= F \ F ′ and

η
def
= ‖θG‖1 − 〈µG, θG〉 ≥ 0. Then

1. for the KL divergence between F ′ and the full
network F we have:

DKL

(
pF ′ ||pF

)
≤ η.

2. for the error we make when estimating φi’s true
expectation µFi by µF

′
i we have:

− (eη − 1) µF
′

¬i ≤ µFi − µF
′

i ≤ (eη − 1) µF
′

i .

764

This says that (1) we get closer to the full distri-
bution and that (2) our marginals closer to the true
marginals, if the remaining factors G either have
a low total weight ‖θG‖, or the current belief µG

already assigns high probability to the features φG

being active (and hence −〈µG, θG〉 is small). The
latter condition is the probabilistic analog to con-
straints already being satisfied. Finally, since η can
be easily calculated, we plan to investigate its utility
as a convergence criterion in future work.

4.4 Related Work

Our approach is inspired by earlier work on re-
laxation algorithms for performing MAP inference
by incrementally tightening relaxations of a graph-
ical model (Anguelov et al., 2004; Riedel, 2008),
weighted Finite State Machine (Tromble and Eisner,
2006), Integer Linear Program (Riedel and Clarke,
2006) or Marginal Polytope (Sontag et al., 2008).
However, none of these methods apply to marginal
inference.

Sontag and Jaakkola (2007) compute marginal
probabilities by using a cutting plane approach that
starts with the local polytope and then optimizes
some approximation of the log partition function.
Cycle consistency constraints are added if they are
violated by the current marginals, and the process is
repeated until no more violations appear. While this
approach does tackle marginalization, it is focused
on improving its accuracy. In particular, the opti-
mization problems they solve in each iteration are in
fact larger than the problem we want to relax.

Our approach is also related to edge deletion
in Bayesian networks (Choi and Darwiche, 2006).
Here edges are removed from a Bayesian network in
order to find a close approximation to the full net-
work useful for other inference-related tasks (such
as combined marginal and MAP inference). The
core difference to our approach is the fact that they
ask which edges to remove from the full graph, in-
stead of which to add to a partial graph. This re-
quires inference in the full model—the very opera-
tion we want to avoid.

5 Experiments

In our experiments we seek to answer the following
questions. First, how fast is our relaxation approach

compared to full marginal inference at comparable
dependency accuracy? This requires us to find the
best tree in terms of marginal probabilities on the
link variables (Smith and Eisner, 2008). Second,
how good is the final relaxed graph as an approxima-
tion of the full graph? Finally, how does incremental
relaxation scale with sentence length?

5.1 Data and Models
We trained and tested on a subset of languages
from the CoNLL Dependency Parsing Shared
Tasks (Nivre et al., 2007): Dutch, Danish, Italian,
and English. We apply non-projective second order
models for Dutch, Danish and Italian, and a projec-
tive second order model for English. To be able to
compare inference on the same model, we trained
using BP on the full set of LINK, GRAND, and SIB

factors.
Note that our models would rank highly among

the shared task submissions, but could surely be fur-
ther improved. For example, we do not use any lan-
guage specific features. Since our focus in this paper
is speeding up marginal inference, we will search for
better models in future work.

5.2 Runtime and Dependency Accuracy
In our first set of experiments we explore the speed
and accuracy of relaxed BP in comparison to full BP.
To this end we first tested BP configurations with at
most 5, at most 10, and at most 50 iterations to find
the best setup in terms of speed and accuracy. Smith
and Eisner (2008) use 5 iterations but we found that
by using 10 iterations accuracy could be slightly im-
proved. Running at most 50 iterations led to the
same accuracy but was significantly slower. Hence
we only report BP results with 10 iterations here.

For relaxed BP we tested along three dimensions:
the threshold ε on the gain of factors, the maximum
number of BP iterations in the inner loop of relaxed
BP, and the maximum number of relaxation itera-
tions. A configuration with maximum relaxation it-
erations R, threshold ε, and maximum BP iterations
B will be identified by RelR,ε,B . In all settings we
use the LINK factors and the hard factors as initial
graph F ′.

Table 1 shows the results for several configura-
tions and our four languages in terms of unlabeled
dependency accuracy (percentage of correctly iden-

765

Dutch Danish English Italian
Configuration Acc. Time Acc. Time Acc. Time Acc. Time
BP 84.9 0.665 88.1 1.44 88.3 2.43 87.4 1.68
Rel∞,0.0001,5 85.0 0.120 88.1 0.234 88.2 0.575 87.4 0.261
Rel∞,0.0001,50 84.9 0.121 88.2 0.236 88.3 0.728 87.4 0.266
Rel1,0.0001,50 84.9 0.060 88.2 0.110 88.4 0.352 87.4 0.132

Table 1: Dependency accuracy (%) and average parsing time (sec.) using second order models.

tified heads) in comparison to the gold data, and av-
erage parsing time in seconds. Here parsing time
includes both time spent for marginal inference and
the MBR decoding step after the marginals are avail-
able.

We notice that by relaxing BP with no limit on the
number of iterations we gain a 4-6 fold increase in
parsing speed across all languages when using the
threshold ε = 0.0001, while accuracy remains as
high as for full BP. This can be achieved with fewer
BP iterations (at most 5) in each round of relaxation
than full BP needs per sentence (at most 10). Intu-
itively this makes sense: since our factor graphs are
smaller in each iteration there will be fewer cycles
to slow down convergence. This only has a small
impact on overall parsing time for languages other
than English, since for most sentences even full BP
converges after less than 10 iterations.

We also observe that running just one iteration of
our relaxation algorithm (Rel1,0.0001,50) is enough to
achieve accurate solutions. This leads to a twofold
speed-up in comparison to running relaxation until
convergence (primarily because of fewer calls to the
separation routine), and a 7-13 fold speed-up (ten-
fold on average) when compared to full BP.

5.3 Quality of Relaxed Subgraphs

How large is the fraction of the full graph needed
for accurate marginal probabilities? And do we re-
ally need our relaxation algorithm with repeated in-
ference or could we instead just prune the graph in
advance? Here we try to answer these questions, and
will focus on the Danish dataset. Note that our re-
sults for the other languages follow the same pattern.

In table 2, we present the average ratio of the sizes
of the partial and the full graph in terms of the sec-
ond order factors. We also show the total runtime
needed to find the subgraph and run inference in it.

Configuration Size Time Err. Acc.
BP 100% 1.44 — 88.1
Rel∞,0.1,50 ≈ 0% 0.12 0.20 87.5
Rel∞,0.0001,50 0.8% 0.24 0.012 88.2
Rel1,0.0001,50 0.8% 0.11 0.015 88.2
Pruned0.1 42% 0.56 0.022 88.0
Pruned0.5 22% 0.40 0.098 87.7

Table 2: Ratio of partial and full graph size (Size),
runtime in seconds (Time), avg. error on marginals
(Err.) and tree accuracy (Acc.) for Danish.

As a measure of accuracy for marginal probabilities
we find the average error in marginal probability for
the variables of a sentence. Note that this measure
does not necessarily correspond to the true error of
our marginals because BP itself is approximate and
may not return the correct marginals.

The first row shows the full BP system, working
on 100% of the factor graph. The next three rows
look at relaxed marginal inference. We notice that
with a low threshold ε = 0.1 we pick almost no ad-
ditional factors (0.003%), and this does affect accu-
racy. However, by lowering the threshold to 0.0001
and adding about 0.8% of the second order factors,
we already match the dependency accuracy of full
BP. On average we are also very close to the BP
marginals.

Can we find such small graphs without running
extra iterations of inference? One approach could
be to simply cut off factors Ψi with absolute weights
|θi| that fall under a certain threshold t. In the final
rows of the table we test such an approach with t =
0.1, 0.5.

We notice that pruning can reduce the second or-
der factors to 42% while yielding (almost) the same
accuracy, and close marginals. However, it is 5 times
slower than our fastest approach. When reducing

766

0 20 40 60

0
20

40
60

Sentence Length

Ti
m
e

BP
Pruned
Relaxed
Relaxed 1 It.

Figure 1: Total runtimes by sentence length.

size further to about 20%, accuracy drops below the
values we achieved with our relaxation approach at
0.8% of the second order factors. Hence simple
pruning removes factors that do have a low weight,
but are still important to keep.

5.4 Runtime with Varying Sentence Length

We have seen how relaxed BP is faster than full
BP on average. But how does its speed scale with
sentence length? To answer this question figure 1
shows a plot of runtime by sentence length for full
BP, pruned BP with threshold 0.1, Rel∞,0.0001,50 and
Rel1,0.0001,50.

The graph indicates that the advantage of relaxed
BP over both full BP and Pruned BP becomes even
more significant for longer sentences, in particular
when running only one iteration. This shows that by
using our technique, second order parsing becomes
more practical, in particular for very long sentences.

6 Conclusion

We have presented a novel incremental relaxation al-
gorithm that can be applied to marginal inference.
Instead of adding violated constraints in each iter-
ation, it adds factors that significantly change the
distribution of the graph. This notion is formalized
by the introduction of a gain function that calculates
the KL divergence between the current network with
and without the candidate factor. We show how this
gain can be calculated and provide bounds on the er-

ror made by the marginals of the relaxed graph in
place of the full one.

Our algorithm led to a tenfold reduction in run-
time at comparable accuracy when applied to multi-
lingual dependency parsing with Belief Propagation.
It is five times faster than pruning factors by their
absolute weight, and results in smaller graphs with
better marginals.

In future work we plan to apply relaxed marginal
inference to larger joint inference problems within
NLP, and test its effectiveness with other marginal
inference algorithms as solvers in the inner loop.

Acknowledgments

This work was supported in part by the Center for
Intelligent Information Retrieval and in part by SRI
International subcontract #27-001338 and ARFL
prime contract #FA8750-09-C-0181. Any opinions,
findings and conclusions or recommendations ex-
pressed in this material are the authors’ and do not
necessarily reflect those of the sponsor.

Appendix: Proof Sketches
For Proposition 1 we use the primal form of the KL diver-
gence (Wainwright and Jordan, 2008)

D
`
p′F ||pF

´
= log

`
ZFZ−1

F′
´
− 〈µF ′ , θF − θF′〉

and represent the ratio ZFZ−1
F′ of partition functions as

ZF

ZF′
=

X
y

e〈θF′ ,φF′ (y)〉
ZF′

e〈θG,φG(y)〉 = EF′

h
e〈θG,φG〉

i
where G

def
= F \ F ′. With G = {i} we get the desired gain.

For Proposition 2, part 1, we first pick a simple upper bound
on ZFZ−1

F′ by replacing the expectation with e‖θG‖1 . Insert-
ing this into the primal form KL divergence leads to the given
bound. For part 2 we represent pF using pF′

pF (y) = ZF′Z−1
F e〈θG,φG(y)〉pF′ (y)

and reuse our above representation of ZFZ−1
F′ . This gives

pF (y) = EF′

h
e〈θG,φG(y)〉

i−1

pF′ (y) e〈θG,φG(y)〉

which can be upper bounded by lower bounding the expectation
and upper bounding the log-linear term. For the latter we use
e‖θG‖1 , for the first Jensen’s inequality gives

EF′

h
e〈θG,φG(y)〉

i−1

≥ eEF′ [〈θG,φG(y)〉] = e

D
θG,µF

′
G

E

where the equality follows from linearity of expectations. This
yields pF (y) ≤ pF′ (y) eη and therefore upper bounds on µFi
and µF¬i. Basic algebra then gives the desired error interval for
µFi in terms of µF

′
i .

767

References
D. Anguelov, D. Koller, P. Srinivasan, S. Thrun, H.-C.

Pang, and J. Davis. 2004. The correlated correspon-
dence algorithm for unsupervised registration of non-
rigid surfaces. In Advances in Neural Information
Processing Systems (NIPS ’04), pages 33–40.

Arthur Choi and Adnan Darwiche. 2006. A varia-
tional approach for approximating bayesian networks
by edge deletion. In Proceedings of the Proceedings
of the Twenty-Second Conference Annual Conference
on Uncertainty in Artificial Intelligence (UAI-06), Ar-
lington, Virginia. AUAI Press.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by gibbs sam-
pling. In Proceedings of the 43rd Annual Meeting of
the Association for Computational Linguistics (ACL’
05), pages 363–370, June.

R. McDonald and F. Pereira. 2006. Online learning
of approximate dependency parsing algorithms. In
Proceedings of the 11th Conference of the European
Chapter of the ACL (EACL ’06), pages 81–88.

Ryan McDonald and Giorgio Satta. 2007. On the com-
plexity of non-projective data-driven dependency pars-
ing. In IWPT ’07: Proceedings of the 10th Inter-
national Conference on Parsing Technologies, pages
121–132, Morristown, NJ, USA. Association for Com-
putational Linguistics.

J. Nivre, J. Hall, S. Kubler, R. McDonald, J. Nilsson,
S. Riedel, and D. Yuret. 2007. The conll 2007 shared
task on dependency parsing. In Conference on Em-
pirical Methods in Natural Language Processing and
Natural Language Learning, pages 915—932.

Matt Richardson and Pedro Domingos. 2006. Markov
logic networks. Machine Learning, 62:107–136.

Sebastian Riedel and James Clarke. 2006. Incremen-
tal integer linear programming for non-projective de-
pendency parsing. In Proceedings of the Conference
on Empirical methods in natural language processing
(EMNLP ’06), pages 129–137.

Sebastian Riedel. 2008. Improving the accuracy and ef-
ficiency of MAP inference for markov logic. In Pro-
ceedings of the 24th Annual Conference on Uncer-
tainty in AI (UAI ’08), pages 468–475.

David A. Smith and Jason Eisner. 2008. Dependency
parsing by belief propagation. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 145–156, Hon-
olulu, October.

D. Sontag and T. Jaakkola. 2007. New outer bounds on
the marginal polytope. In Advances in Neural Infor-
mation Processing Systems (NIPS ’07), pages 1393–
1400.

David Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and
Y. Weiss. 2008. Tightening LP relaxations for MAP
using message passing. In Proceedings of the 24th An-
nual Conference on Uncertainty in AI (UAI ’08).

Roy W. Tromble and Jason Eisner. 2006. A fast
finite-state relaxation method for enforcing global con-
straints on sequence decoding. In Joint Human Lan-
guage Technology Conference/Annual Meeting of the
North American Chapter of the Association for Com-
putational Linguistics (HLT-NAACL ’06), pages 423–
430.

Martin Wainwright and Michael Jordan. 2008. Graphi-
cal Models, Exponential Families, and Variational In-
ference. Now Publishers.

768

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 769–776,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Optimal Parsing Strategies for Linear Context-Free Rewriting Systems

Daniel Gildea
Computer Science Department

University of Rochester
Rochester, NY 14627

Abstract

Factorization is the operation of transforming
a production in a Linear Context-Free Rewrit-
ing System (LCFRS) into two simpler produc-
tions by factoring out a subset of the nontermi-
nals on the production’s righthand side. Fac-
torization lowers the rank of a production but
may increase its fan-out. We show how to
apply factorization in order to minimize the
parsing complexity of the resulting grammar,
and study the relationship between rank, fan-
out, and parsing complexity. We show that it
is always possible to obtain optimum parsing
complexity with rank two. However, among
transformed grammars of rank two, minimum
parsing complexity is not always possible with
minimum fan-out. Applying our factorization
algorithm to LCFRS rules extracted from de-
pendency treebanks allows us to find the most
efficient parsing strategy for the syntactic phe-
nomena found in non-projective trees.

1 Introduction

Gómez-Rodríguez et al. (2009a) recently examined
the problem of transforming arbitrary grammars in
the Linear Context-Free Rewriting System (LCFRS)
formalism (Vijay-Shankar et al., 1987) in order to
reduce the rank of a grammar to 2 while minimiz-
ing its fan-out. The work was motivated by the
desire to develop efficient chart-parsing algorithms
for non-projective dependency trees (Kuhlmann and
Nivre, 2006) that do not rely on the independence
assumptions of spanning tree algorithms (McDon-
ald et al., 2005). Efficient parsing algorithms for
general LCFRS are also relevant in the context of
Synchronous Context-Free Grammars (SCFGs) as a

formalism for machine translation, as well as the de-
sire to handle even more general synchronous gram-
mar formalisms which allow nonterminals to cover
discontinuous spans in either language (Melamed et
al., 2004; Wellington et al., 2006). LCFRS provides
a very general formalism which subsumes SCFGs,
the Multitext Grammars of Melamed et al. (2004),
as well as mildly context-sensitive monolingual for-
malisms such as Tree Adjoining Grammar (Joshi
and Schabes, 1997). Thus, work on transforming
general LCFRS grammars promises to be widely ap-
plicable in both understanding how these formalisms
interrelate, and, from a more practical viewpoint, de-
riving efficient parsing algorithms for them.

In this paper, we focus on the problem of trans-
forming an LCFRS grammar into an equivalent
grammar for which straightforward application of
dynamic programming to each rule yields a tabular
parsing algorithm with minimum complexity. This
is closely related, but not equivalent, to the prob-
lem considered by Gómez-Rodríguez et al. (2009a),
who minimize the fan-out, rather than the parsing
complexity, of the resulting grammar. In Section 4,
we show that restricting our attention to factorized
grammars with rank no greater than 2 comes at no
cost in parsing complexity. This result may be sur-
prising, as Gómez-Rodríguez et al. (2009a) com-
ment that “there may be cases in which one has to
find an optimal trade-off between rank and fan-out”
in order to minimize parsing complexity – in fact,
no such trade-off is necessary, as rank 2 is always
sufficient for optimal parsing complexity. Given
this fact, we show how to adapt the factorization al-
gorithm of Gómez-Rodríguez et al. (2009a) to re-
turn a transformed grammar with minimal parsing
complexity and rank 2. In Section 5, we give a

769

counterexample to the conjecture that minimal pars-
ing complexity is possible among binarizations with
minimal fan-out.

2 Background

A linear context-free rewriting system (LCFRS) is
defined as a tupleG = (VN , VT , P, S), whereVT is
a set of terminal symbols,VN is a set of nonterminal
symbols,P is a set of productions, andS ∈ VN is
a distinguished start symbol. Associated with each
nonterminalB is a fan-out ϕ(B), which tell how
many discontinuous spansB covers. Productions
p ∈ P take the form:

p : A→ g(B1, B2, . . . , Br) (1)

whereA, B1, . . . Br ∈ VN , andg is a function

g : (V ∗

T)ϕ(B1) × . . .× (V ∗

T)ϕ(Br) → (V ∗

T)ϕ(A)

which specifies how to assemble the
∑r

i=1 ϕ(Bi)
spans of the righthand side nonterminals into the
ϕ(A) spans of the lefthand side nonterminal. The
function g must be linear, non-erasing, which
means that if we write

g(〈x1,1, . . . , x1,ϕ(B1)〉, . . . , 〈x1,1, . . . , x1,ϕ(Br)〉)

= 〈t1, . . . , tϕ(A)〉

the tuple of strings〈t1, . . . , tϕ(A)〉 on the righthand
side contains each variablexi,j from the lefthand
side exactly once, and may also contain terminals
from VT .

We call r, the number of nonterminals on the
righthand side of a productionp, therank of p, ρ(p).
The fan-out of a production,ϕ(p) is the fan-out of its
lefthand side,ϕ(A). The rank of a grammar is the
maximum rank of its rules,

ρ(G) = max
p∈P

ρ(p)

and similarly the fan-out of a grammar is the maxi-
mum fan-out of its rules, or equivalently, of its non-
terminals:

ϕ(G) = max
B∈VN

ϕ(B)

3 Parsing LCFRS

A bottom-up dynamic programming parser can be
produced from an LCFRS grammar by generaliz-
ing the CYK algorithm for context-free grammars.
We convert each production of the LCFRS into a
deduction rule with variables for the left and right
endpoints of each of theϕ(Bi) spans of each of the
nonterminalsBi, i ∈ [r] in the righthand side of the
production.

The computational complexity of the resulting
parser is polynomial in the length of the input string,
with the degree of the polynomial being the number
of distinct endpoints in the most complex produc-
tion. Thus, for input of lengthn, the complexity
is O(nc) for some constantc which depends on the
grammar.

For a given rule, each of ther nonterminals has
ϕ(Bi) spans, and each span has a left and right end-
point, giving an upper bound ofc ≤ 2

∑r
i=1 ϕ(Bi).

However, some of these endpoints may be shared
between nonterminals on the righthand side. The
exact number of distinct variables for the dynamic
programming deduction rule can the written

c(p) = ϕ(A) +
r
∑

i=1

ϕ(Bi) (2)

wherec(p) is theparsing complexity of a produc-
tion p of the form of eq. 1 (Seki et al., 1991). To
see this, consider counting the left endpoint of each
span on the lefthand side of the production, and the
right endpoint of each span on the righthand side of
the production. Any variable corresponding to the
left endpoint of a span of a righthand side nonter-
minal will either be shared with the right endpoint
of another span if two spans are being joined by the
production, or, alternatively, will form the left end-
point of a span ofA. Thus, each distinct endpoint in
the production is counted exactly once by eq. 2.

The parsing complexity of a grammar,c(G), is
the maximum parsing complexity of its rules. From
eq. 2, we see thatc(G) ≤ (ρ(G) + 1)ϕ(G). While
we focus on the time complexity of parsing, it is in-
teresting to note the space complexity of the DP al-
gorithm isO(n2ϕ(G)), since the DP table for each
nonterminal is indexed by at most2ϕ(G) positions
in the input string.

770

4 Binarization Minimizes Parsing
Complexity

An LCFRS production of rankr can befactorized
into two productions of the form:

p1 : A→ g1(B1, . . . , Br−2, X)

p2 : X → g2(Br−1, Br)

This operation results in new productions that have
lower rank, but possibly higher fan-out, than the
original production.

If we examine the DP deduction rules correspond-
ing to the original productionp, and the first new
productionp1 we find that

c(p1) ≤ c(p)

regardless of the functiong of the original produc-
tion, or the fan-out of the production’s nonterminals.
This is because

ϕ(X) ≤ ϕ(Br−1) + ϕ(Br)

that is, our newly created nonterminalX may join
spans fromBr−1 andBr, but can never introduce
new spans. Thus,

c(p1) = ϕ(A) +

(

r−2
∑

i=1

ϕ(Bi)

)

+ ϕ(X)

≤ ϕ(A) +
r
∑

i=1

ϕ(Bi)

= c(p)

As similar result holds for the second newly cre-
ated production:

c(p2) ≤ c(p)

In this case, the fan-out of the newly created nonter-
minal,ϕ(X) may be greater thanϕ(A). Let us con-
sider the left endpoints of the spans ofX. Each left
endpoint is either also the left endpoint of a span of
A, or is the right endpoint of some nonterminal not
included inX, that is, one ofB1, . . . Br−2. Thus,

ϕ(X) ≤ ϕ(A) +
r−2
∑

i=1

ϕ(Bi)

and applying this inequality to the definition ofc(p2)
we have:

c(p2) = ϕ(X) + ϕ(Br−1) + ϕ(Br−2)

≤ ϕ(A) +
r
∑

i=1

ϕ(Bi)

= c(p)

For notational convenience, we have defined the
factorization operation as factoring out the last two
nonterminals of a rule; however, the same operation
can be applied to factor out any subset of the orig-
inal nonterminals. The same argument that parsing
complexity cannot increase still applies.

We may apply the factorization operation repeat-
edly until all rules have rank 2; we refer to the re-
sulting grammar as abinarization of the original
LCFRS. The factorization operation may increase
the fan-out of a grammar, but never increases its
parsing complexity. This guarantees that, if we wish
to find the transformation of the original grammar
having the lowest parsing complexity, it is sufficient
to consider only binarizations. This is because any
transformed grammar having more than two nonter-
minals on the righthand side can be binarized with-
out increasing its parsing complexity.

5 The relationship between fan-out and
parsing complexity

Gómez-Rodríguez et al. (2009a) provide an algo-
rithm for finding the binarization of an LCFRS hav-
ing minimal fan-out. The key idea is to search over
ways of combining subsets of a rule’s righthand side
nonterminals such that subsets with low fan-out are
considered first; this results in an algorithm with
complexity polynomial in the rank of the input rule,
with the exponent depending on the resulting mini-
mum fan-out.

This algorithm can be adapted to find the binariza-
tion with minimum parsing complexity, rather than
minimum fan-out. We simply usec(p) rather than
ϕ(p) as the score for new productions, controlling
both which binarizations we prefer and the order in
which they are explored.

An interesting question then arises: does the bina-
rization with minimal parsing complexity also have
minimal fan-out? A binarization into a grammar of

771

A→ g(B1, B2, B3, B4)

g(〈x1,1, x1,2〉, 〈x2,1, x2,2, x2,3〉, 〈x3,1, x3,2, x3,3, x3,4, x3,5〉, 〈x4,1, x4,2, x4,3〉) =

〈x4,1x3,1, x2,1, x4,2x1,1x2,2x4,3x3,2x2,3x3,3, x1,2x3,4, x3,5〉

Figure 2: A production for which minimizing fan-out and minimizing parsing complexity are mutually exclusive.

{B3}

{B4}

{B3, B4}

{B3, B4}

{B1}

{B1, B3, B4}

{B1, B3, B4}

{B2}

{B1, B2, B3, B4}

Figure 3: The binarization of the rule from Figure 2 that minimizes parsing complexity. In each of the three steps,
we show the spans of each of the two subsets of the rule’s righthand-side nonterms being combined, with the spans of
their union (corresponding to a nonterminal created by the binarization) below.

772

1: function M INIMAL -BINARIZATION (p,≺)
2: workingSet← ∅;
3: agenda← priorityQueue(≺);
4: for i from 1 toρ(p) do
5: workingSet← workingSet∪{Bi};
6: agenda← agenda∪{Bi};

7: while agenda6= ∅ do
8: p′ ← pop minimum from agenda;
9: if nonterms(p′) = {B1, . . . Bρ(p)} then

10: return p′;

11: for p1 ∈ workingSet do
12: p2 ← newProd(p′, p1);
13: find p′2 ∈ workingSet:
14: nonterms(p′2) = nonterms(p2);
15: if p2 ≺ p′2 then
16: workingSet← workingSet∪{p2}\{p

′

2};
17: push(agenda,p2);

Figure 1: Algorithm to compute best binarization accord-
ing to a user-specified ordering≺ over productions.

fan-out f ′ cannot have parsing complexity higher
than3f ′, according to eq. 2. Thus, minimizing fan-
out puts an upper bound on parsing complexity, but
is not guaranteed to minimize it absolutely. Bina-
rizations with the same fan-out may in fact vary
in their parsing complexity; similarly binarizations
with the same parsing complexity may vary in their
fan-out. It is not immediately apparent whether, in
order to find a binarization of minimal parsing com-
plexity, it is sufficient to consider only binarizations
of minimal fan-out.

To test this conjecture, we adapted the algorithm
of Gómez-Rodríguez et al. (2009a) to use a prior-
ity queue as the agenda, as shown in Figure 1. The
algorithm takes as an argument an arbitrary partial
ordering relation on productions, and explores pos-
sible binarized rules in the order specified by this re-
lation. In Figure 1, “workingSet” is a set of single-
ton nonterminals and binarized productions which
are guaranteed to be optimal for the subset of non-
terminals that they cover. The function “nonterms”
returns, for a newly created production, the subset
of the original nonterminalsB1, . . . Br that it gen-
erates, and returns subsets of singleton nonterminals
directly.

To find the binarization with the minimum fan-out

f ′ and the lowest parsing complexity among bina-
rizations with fan-outf ′, we use the following com-
parison operation in the binarization algorithm:

p1 ≺ϕc p2 iff ϕ(p1) < ϕ(p2) ∨

(ϕ(p1) = ϕ(p2) ∧ c(p1) < c(p2))

guaranteeing that we explore binarizations with
lower fan-out first, and, among binarizations with
equal fan-out, those with lower parsing complexity
first. Similarly, we can search for the binarization
with the lowest parsing complexityc′ and the lowest
fan-out among binarizations with complexityc′, we
use

p1 ≺cϕ p2 iff c(p1) < c(p2) ∨

(c(p1) = c(p2) ∧ ϕ(p1) < ϕ(p2))

We find that, in fact, it is sometimes necessary to
sacrifice minimum fan-out in order to achieve mini-
mum parsing complexity. An example of an LCFRS
rule for which this is the case is shown in Figure 2.
This production can be binarized to produce a set of
productions with parsing complexity 14 (Figure 3);
among binarizations with this complexity the mini-
mum fan-out is 6. However, an alternative binariza-
tion with fan-out 5 is also possible; among binariza-
tions with this fan-out, the minimum parsing com-
plexity is 15. This binarization (not pictured) first
joinsB1 andB2, then addsB4, and finally addsB3.

Given the incompatibility of optimizing time
complexity and fan-out, which corresponds to space
complexity, which should we prefer? In some sit-
uations, it may be desirable to find some trade-off
between the two. It is important to note, however,
that if optimization of space complexity is the sole
objective, factorization is unnecessary, as one can
never improve on the fan-out required by the origi-
nal grammar nonterminals.

6 A Note on Generative Capacity

Rambow and Satta (1999) categorize the genera-
tive capacity of LCFRS grammars according to their
rank and fan-out. In particular, they show that
grammars can be arranged in a two-dimensional
grid, with languages of rankr and fan-outf having
greater generative capacity than both grammars of
rankr and fan-outf −1 and grammars of rankr−1

773

nmod sbj root vc pp nmod np tmp

A hearing is scheduled on the issue today

nmod→ g1 g1 = 〈A 〉

sbj→ g2(nmod, pp) g2(〈x1,1〉, 〈x2,1〉) = 〈x1,1 hearing , x2,1〉

root→ g3(sbj, vc) g3(〈x1,1, x1,2〉, 〈x2,1, x2,2〉) = 〈x1,1 is x2,1x1,2x2,2〉

vc→ g4(tmp) g4(〈x1,1〉) = 〈 scheduled , x1,1〉

pp→ g5(tmp) g5(〈x1,1〉) = 〈 on x1,1〉

nmod→ g6 g6 = 〈 the 〉

np→ g7(nmod) g7(〈x1,1〉) = 〈x1,1 issue 〉

tmp→ g8 g8 = 〈 today 〉

Figure 4: A dependency tree with the LCFRS rules extracted for each word (Kuhlmann and Satta, 2009).

and fan-outf , with two exceptions: with fan-out 1,
all ranks greater than one are equivalent (context-
free languages), and with fan-out 2, rank 2 and rank
3 are equivalent.

This classification is somewhat unsatisfying be-
cause minor changes to a grammar can change both
its rank and fan-out. In particular, through factor-
izing rules, it is always possible to decrease rank,
potentially at the cost of increasing fan-out, until a
binarized grammar of rank 2 is achieved.

Parsing complexity, as defined above, also pro-
vides a method to compare the generative capacity
of LCFRS grammars. From Rambow and Satta’s
result that grammars of rank two and increasing
fan-out provide an infinite hierarchy of increasing
generative capacity, we see that parsing complexity
also provides such an infinite hierarchy. Compar-
ing grammars according to the parsing complexity
amounts to specifying a normalized binarization for
grammars of arbitrary rank and fan-out, and compar-
ing the resulting binarized grammars. This allows us
to arrange LCFRS grammars into total ordering over
generative capacity, that is a one-dimensional hier-
archy, rather than a two-dimensional grid. It also
gives a way of categorizing generative capacity that
is more closely tied to algorithmic complexity.

It is important to note, however, that parsing com-
plexity as calculated by our algorithm remains a
function of the grammar, rather than an intrinsic
function of the language. One can produce arbitrar-
ily complex grammars that generate the simple lan-
guagea∗. Thus the parsing complexity of a gram-
mar, like its rank and fan-out, can be said to catego-
rize itsstrong generative capacity.

7 Experiments

A number of recent papers have examined dynamic
programming algorithms for parsing non-projective
dependency structures by exploring how well vari-
ous categories of polynomially-parsable grammars
cover the structures found in dependency treebanks
for various languages (Kuhlmann and Nivre, 2006;
Gómez-Rodríguez et al., 2009b).

Kuhlmann and Satta (2009) give an algorithm for
extracting LCFRS rules from dependency structures.
One rule is extracted for each word in the depen-
dency tree. The rank of the rule is the number of
children that the word has in the dependency tree,
as shown by the example in Figure 4. The fan-out
of the symbol corresponding to a word is the num-
ber of continuous intervals in the sentence formed
by the word and its descendants in the tree. Projec-

774

complexity arabic czech danish dutch german port swedish
20 1
18 1
16 1
15 1
13 1
12 2 3
11 1 1 1
10 2 6 16 3
9 7 4 1
8 4 7 129 65 10
7 3 12 89 30 18
6 178 11 362 1811 492 59
5 48 1132 93 411 1848 172 201
4 250 18269 1026 6678 18124 2643 1736
3 10942 265202 18306 39362 154948 41075 41245

Table 1: Number of productions with specified parsing complexity

tive trees yield LCFRS rules of fan-out one and pars-
ing complexity three, while the fan-out and parsing
complexity from non-projective trees are in princi-
ple unbounded.

Extracting LCFRS rules from treebanks allows us
to study how many of the rules fall within certain
constraints. Kuhlmann and Satta (2009) give an al-
gorithm for binarizing LCRFS rules without increas-
ing the rules’ fan-out; however, this is not always
possible, and the algorithm does not succeed even in
some cases for which such a binarization is possible.
Kuhlmann and Satta (2009) find that all but 0.02%
of productions in the CoNLL 2006 training data,
which includes various languages, can be binarized
by their algorithm, but they do not give the fan-out
or parsing complexity of the resulting rules. In re-
lated work, Gómez-Rodríguez et al. (2009b) define
the class ofmildly ill-nested dependency structures
of varying gap degrees; gap degree is essentially fan-
out minus one. For a given gap degreek, this class of
grammars can be parsing in timeO(n3k+4) for lexi-
calized grammars. Gómez-Rodríguez et al. (2009b)
study dependency treebanks for nine languages and
find that all dependency structures meet the mildly
ill-nested condition in the dependency treebanks for
some gap degree. However, they do not report the
maximum gap degree or parsing complexity.

We extracted LCFRS rules from dependency tree-

banks using the same procedure as Kuhlmann and
Satta (2009), and applied the algorithm of Figure 1
directly to calculate their minimum parsing com-
plexity. This allows us to characterize the pars-
ing complexity of the rules found in the treebank
without needing to define specific conditions on
the rules, such as well-nestedness (Kuhlmann and
Nivre, 2006) or mildly ill-nestedness, that may not
be necessary for all efficiently parsable grammars.
The numbers of rules of different complexities are
shown in Table 1.

As found by previous studies, the vast major-
ity of productions are context-free (projective trees,
parsable inO(n3)). Of non-projective rules, the
vast majority can be parsed inO(n6), including the
well-nested structures of gap degree one defined by
Kuhlmann and Nivre (2006). The single most com-
plex rule had parsing complexity ofO(n20), and was
derived from a Swedish sentence which turns out to
be so garbled as to be incomprehensible (taken from
the high school essay portion of the Swedish tree-
bank). It is interesting to note that, while the bina-
rization algorithm is exponential in the worst case, it
is practical for real data: analyzing all the rules ex-
tracted from the various treebanks takes only a few
minutes. We did not find any cases in rules extracted
from Treebank data of rules where minimizing pars-
ing complexity is inconsistent with minimizing fan-

775

out, as is the case for the rule of Figure 2.

8 Conclusion

We give an algorithm for finding the optimum pars-
ing complexity for an LCFRS among grammars ob-
tained by binarization. We find that minimum pars-
ing complexity is always achievable with rank 2, but
is not always achievable with minimum fan-out. By
applying the binarization algorithm to productions
found in dependency treebanks, we can completely
characterize the parsing complexity of the extracted
LCFRS grammar.

Acknowledgments This work was funded by NSF
grants IIS-0546554 and IIS-0910611. We are grate-
ful to Joakim Nivre for assistance with the Swedish
treebank.

References

Carlos Gómez-Rodríguez, Marco Kuhlmann, Giorgio
Satta, and David Weir. 2009a. Optimal reduction of
rule length in linear conext-free rewriting systems. In
Proceedings of the 2009 Meeting of the North Ameri-
can chapter of the Association for Computational Lin-
guistics (NAACL-09), pages 539–547.

Carlos Gómez-Rodríguez, David Weir, and John Car-
roll. 2009b. Parsing mildly non-projective depen-
dency structures. InProceedings of the 12th Confer-
ence of the European Chapter of the ACL (EACL-09),
pages 291–299.

A.K. Joshi and Y. Schabes. 1997. Tree-adjoining gram-
mars. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, volume 3, pages 69–
124. Springer, Berlin.

Marco Kuhlmann and Joakim Nivre. 2006. Mildly
non-projective dependency structures. InProceed-
ings of the International Conference on Computational
Linguistics/Association for Computational Linguistics
(COLING/ACL-06), pages 507–514.

Marco Kuhlmann and Giorgio Satta. 2009. Treebank
grammar techniques for non-projective dependency
parsing. InProceedings of the 12th Conference of the
European Chapter of the ACL (EACL-09), pages 478–
486.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajǐc. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. InProceedings of
Human Language Technology Conference and Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (HLT/EMNLP).

I. Dan Melamed, Giorgio Satta, and Ben Wellington.
2004. Generalized multitext grammars. InProceed-
ings of the 42nd Annual Conference of the Association
for Computational Linguistics (ACL-04), Barcelona,
Spain.

Owen Rambow and Giorgio Satta. 1999. Independent
parallelism in finite copying parallel rewriting sys-
tems.Theor. Comput. Sci., 223(1-2):87–120.

H. Seki, T. Matsumura, M. Fujii, and T. Kasami. 1991.
On multiple context-free grammars.Theoretical Com-
puter Science, 88:191–229.

K. Vijay-Shankar, D. L. Weir, and A. K. Joshi. 1987.
Characterizing structural descriptions produced by
various grammatical formalisms. InProceedings of
the 25th Annual Conference of the Association for
Computational Linguistics (ACL-87).

Benjamin Wellington, Sonjia Waxmonsky, and I. Dan
Melamed. 2006. Empirical lower bounds on the
complexity of translational equivalence. InProceed-
ings of the International Conference on Computa-
tional Linguistics/Association for Computational Lin-
guistics (COLING/ACL-06), pages 977–984, Sydney,
Australia.

776

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 777–785,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

The viability of web-derived polarity lexicons

Leonid Velikovich Sasha Blair-Goldensohn Kerry Hannan Ryan McDonald
Google Inc., New York, NY

{leonidv|sasha|khannan|ryanmcd}@google.com

Abstract

We examine the viability of building large
polarity lexicons semi-automatically from the
web. We begin by describing a graph propa-
gation framework inspired by previous work
on constructing polarity lexicons from lexi-
cal graphs (Kim and Hovy, 2004; Hu and
Liu, 2004; Esuli and Sabastiani, 2009; Blair-
Goldensohn et al., 2008; Rao and Ravichan-
dran, 2009). We then apply this technique
to build an English lexicon that is signifi-
cantly larger than those previously studied.
Crucially, this web-derived lexicon does not
require WordNet, part-of-speech taggers, or
other language-dependent resources typical of
sentiment analysis systems. As a result, the
lexicon is not limited to specific word classes
– e.g., adjectives that occur in WordNet –
and in fact contains slang, misspellings, multi-
word expressions, etc. We evaluate a lexicon
derived from English documents, both qual-
itatively and quantitatively, and show that it
provides superior performance to previously
studied lexicons, including one derived from
WordNet.

1 Introduction

Polarity lexicons are large lists of phrases that en-
code the polarity of each phrase within it – either
positive or negative – often with some score rep-
resenting the magnitude of the polarity (Hatzivas-
siloglou and McKeown, 1997; Wiebe, 2000; Turney,
2002). Though classifiers built with machine learn-
ing algorithms have become commonplace in the
sentiment analysis literature, e.g., Pang et al. (2002),
the core of many academic and commercial senti-
ment analysis systems remains the polarity lexicon,

which can be constructed manually (Das and Chen,
2007), through heuristics (Kim and Hovy, 2004;
Esuli and Sabastiani, 2009) or using machine learn-
ing (Turney, 2002; Rao and Ravichandran, 2009).
Often lexicons are combined with machine learning
for improved results (Wilson et al., 2005). The per-
vasiveness and sustained use of lexicons can be as-
cribed to a number of reasons, including their inter-
pretability in large-scale systems as well as the gran-
ularity of their analysis.

In this work we investigate the viability of polar-
ity lexicons that are derived solely from unlabeled
web documents. We propose a method based on
graph propagation algorithms inspired by previous
work on constructing polarity lexicons from lexical
graphs (Kim and Hovy, 2004; Hu and Liu, 2004;
Esuli and Sabastiani, 2009; Blair-Goldensohn et al.,
2008; Rao and Ravichandran, 2009). Whereas past
efforts have used linguistic resources – e.g., Word-
Net – to construct the lexical graph over which prop-
agation runs, our lexicons are constructed using a
graph built from co-occurrence statistics from the
entire web. Thus, the method we investigate can
be seen as a combination of methods for propagat-
ing sentiment across lexical graphs and methods for
building sentiment lexicons based on distributional
characteristics of phrases in raw data (Turney, 2002).
The advantage of breaking the dependence on Word-
Net (or related resources like thesauri (Mohammad
et al., 2009)) is that it allows the lexicons to include
non-standard entries, most notably spelling mistakes
and variations, slang, and multiword expressions.

The primary goal of our study is to understand the
characteristics and practical usefulness of such a lex-
icon. Towards this end, we provide both a qualitative
and quantitative analysis for a web-derived English

777

lexicon relative to two previously published lexicons
– the lexicon used in Wilson et al. (2005) and the
lexicon used in Blair-Goldensohn et al. (2008). Our
experiments show that a web-derived lexicon is not
only significantly larger, but has improved accuracy
on a sentence polarity classification task, which is
an important problem in many sentiment analysis
applications, including sentiment aggregation and
summarization (Hu and Liu, 2004; Carenini et al.,
2006; Lerman et al., 2009). These results hold true
both when the lexicons are used in conjunction with
string matching to classify sentences, and when they
are included within a contextual classifier frame-
work (Wilson et al., 2005).

Extracting polarity lexicons from the web has
been investigated previously by Kaji and Kitsure-
gawa (2007), who study the problem exclusively for
Japanese. In that work a set of positive/negative sen-
tences are first extracted from the web using cues
from a syntactic parser as well as the document
structure. Adjectives phrases are then extracted from
these sentences based on different statistics of their
occurrence in the positive or negative set. Our work,
on the other hand, does not rely on syntactic parsers
or restrict the set of candidate lexicon entries to spe-
cific syntactic classes, i.e., adjective phrases. As a
result, the lexicon built in our study is on a different
scale than that examined in Kaji and Kitsuregawa
(2007). Though this hypothesis is not tested here, it
also makes our techniques more amenable to adap-
tation for other languages.

2 Constructing the Lexicon

In this section we describe a method to construct po-
larity lexicons using graph propagation over a phrase
similarity graph constructed from the web.

2.1 Graph Propagation Algorithm

We construct our lexicon using graph propagation
techniques, which have previously been investigated
in the construction of polarity lexicons (Kim and
Hovy, 2004; Hu and Liu, 2004; Esuli and Sabas-
tiani, 2009; Blair-Goldensohn et al., 2008; Rao and
Ravichandran, 2009). We assume as input an undi-
rected edge weighted graph G = (V,E), where
wij ∈ [0, 1] is the weight of edge (vi, vj) ∈ E. The
node set V is the set of candidate phrases for inclu-

sion in a sentiment lexicon. In practice,G should en-
code semantic similarities between two nodes, e.g.,
for sentiment analysis one would hope that wij >
wik if vi=good, vj=great and vk=bad. We also as-
sume as input two sets of seed phrases, denoted P
for the positive seed set and N for the negative seed
set. The common property among all graph propaga-
tion algorithms is that they attempt to propagate in-
formation from the seed sets to the rest of the graph
through its edges. This can be done using machine
learning, graph algorithms or more heuristic means.

The specific algorithm used in this study is given
in Figure 1, which is distinct from common graph
propagation algorithms, e.g., label propagation (see
Section 2.3). The output is a polarity vector pol ∈
R|V | such that poli is the polarity score for the ith

candidate phrase (or the ith node inG). In particular,
we desire pol to have the following semantics:

poli =

> 0 ith phrase has positive polarity
< 0 ith phrase has negative polarity
= 0 ith phrase has no sentiment

Intuitively, the algorithm works by computing both
a positive and a negative polarity magnitude for
each node in the graph, call them pol+i and pol-i.
These values are equal to the sum over the max
weighted path from every seed word (either posi-
tive or negative) to node vi. Phrases that are con-
nected to multiple positive seed words through short
yet highly weighted paths will receive high positive
values. The final polarity of a phrase is then set to
poli = pol+i − βpol-i, where β a constant meant to
account for the difference in overall mass of positive
and negative flow in the graph. Thus, after the al-
gorithm is run, if a phrase has a higher positive than
negative polarity score, then its final polarity will be
positive, and negative otherwise.

There are some implementation details worth
pointing out. First, the algorithm in Figure 1 is writ-
ten in an iterative framework, where on each itera-
tion, paths of increasing lengths are considered. The
input variable T controls the max path length con-
sidered by the algorithm. This can be set to be a
small value in practice, since the multiplicative path
weights result in long paths rarely contributing to
polarity scores. Second, the parameter γ is a thresh-
old that defines the minimum polarity magnitude a

778

Input: G = (V,E), wij ∈ [0, 1],
P , N , γ ∈ R, T ∈ N

Output: pol ∈ R|V |
Initialize: poli,pol+

i ,pol-
i = 0, for all i

pol+
i = 1.0 for all vi ∈ P and

pol-
i = 1.0 for all vi ∈ N

1. set αij = 0 for all i, j
2. for vi ∈ P
3. F = {vi}
4. for t : 1 . . . T
5. for (vk, vj) ∈ E such that vk ∈ F
6. αij = max{αij , αik · wkj}

F = F ∪ {vj}
7. for vj ∈ V
8. pol+

j =
∑

vi∈P αij

9. Repeat steps 1-8 using N to compute pol-

10. β =
∑

i pol+
i /

∑
i pol-

i

11. poli = pol+
i − βpol-

i, for all i
12. if |poli| < γ then poli = 0.0, for all i

Figure 1: Graph Propagation Algorithm.

phrase must have to be included in the lexicon. Both
T and γ were tuned on held-out data.

To construct the final lexicon, the remaining
nodes – those with polarity scores above γ – are ex-
tracted and assigned their corresponding polarity.

2.2 Building a Phrase Graph from the Web

Graph propagation algorithms rely on the existence
of graphs that encode meaningful relationships be-
tween candidate nodes. Past studies on building po-
larity lexicons have used linguistic resources like
WordNet to define the graph through synonym and
antonym relations (Kim and Hovy, 2004; Esuli and
Sabastiani, 2009; Blair-Goldensohn et al., 2008;
Rao and Ravichandran, 2009). The goal of this study
is to examine the size and quality of polarity lexi-
cons when the graph is induced automatically from
documents on the web.

Constructing a graph from web-computed lexi-
cal co-occurrence statistics is a difficult challenge
in and of itself and the research and implementa-
tion hurdles that arise are beyond the scope of this
work (Alfonseca et al., 2009; Pantel et al., 2009).
For this study, we used an English graph where the
node set V was based on all n-grams up to length
10 extracted from 4 billion web pages. This list was

filtered to 20 million candidate phrases using a num-
ber of heuristics including frequency and mutual in-
formation of word boundaries. A context vector for
each candidate phrase was then constructed based
on a window of size six aggregated over all men-
tions of the phrase in the 4 billion documents. The
edge set E was constructed by first, for each po-
tential edge (vi, vj), computing the cosine similar-
ity value between context vectors. All edges (vi, vj)
were then discarded if they were not one of the 25
highest weighted edges adjacent to either node vi or
vj . This serves to both reduce the size of the graph
and to eliminate many spurious edges for frequently
occurring phrases, while still keeping the graph rela-
tively connected. The weight of the remaining edges
was set to the corresponding cosine similarity value.

Since this graph encodes co-occurrences over a
large, but local context window, it can be noisy for
our purposes. In particular, we might see a number
of edges between positive and negative sentiment
words as well as sentiment words and non-sentiment
words, e.g., sentiment adjectives and all other adjec-
tives that are distributionally similar. Larger win-
dows theoretically alleviate this problem as they en-
code semantic as opposed to syntactic similarities.
We note, however, that the graph propagation al-
gorithm described above calculates the sentiment of
each phrase as the aggregate of all the best paths to
seed words. Thus, even if some local edges are erro-
neous in the graph, one hopes that, globally, positive
phrases will be influenced more by paths from pos-
itive seed words as opposed to negative seed words.
Section 3, and indeed this paper, aims to measure
whether this is true or not.

2.3 Why Not Label Propagation?

Previous studies on constructing polarity lexicons
from lexical graphs, e.g., Rao and Ravichandran
(2009), have used the label propagation algorithm,
which takes the form in Figure 2 (Zhu and Ghahra-
mani, 2002). Label propagation is an iterative algo-
rithm where each node takes on the weighted aver-
age of its neighbour’s values from the previous iter-
ation. The result is that nodes with many paths to
seeds get high polarities due to the influence from
their neighbours. The label propagation algorithm
is known to have many desirable properties includ-
ing convergence, a well defined objective function

779

Input: G = (V,E), wij ∈ [0, 1], P , N
Output: pol ∈ R|V |
Initialize: poli = 1.0 for all vi ∈ P and

poli = −1.0 for all vi ∈ N and
poli = 0.0 ∀vi /∈ P ∪N

1. for : t .. T

2. poli =
P

(vi,vj)∈E wij×poljP
(vi,vj) wij

, ∀vi ∈ V
3. reset poli = 1.0 ∀vi ∈ P

reset poli = −1.0 ∀vi ∈ N

Figure 2: The label propagation algorithm (Zhu and
Ghahramani, 2002).

(minimize squared error between values of adjacent
nodes), and an equivalence to computing random
walks through graphs.

The primary difference between standard label
propagation and the graph propagation algorithm
given in Section 2.1, is that a node with multiple
paths to a seed will be influenced by all these paths
in the label propagation algorithm, whereas only the
single path from a seed will influence the polarity
of a node in our proposed propagation algorithm –
namely the path with highest weight. The intuition
behind label propagation seems justified. That is, if
a node has multiple paths to a seed, it should be re-
flected in a higher score. This is certainly true when
the graph is of high quality and all paths trustwor-
thy. However, in a graph constructed from web co-
occurrence statistics, this is rarely the case.

Our graph consisted of many dense subgraphs,
each representing some semantic entity class, such
as actors, authors, tech companies, etc. Problems
arose when polarity flowed into these dense sub-
graphs with the label propagation algorithm. Ulti-
mately, this flow would amplify since the dense sub-
graph provided exponentially many paths from each
node to the source of the flow, which caused a re-
inforcement effect. As a result, the lexicon would
consist of large groups of actor names, companies,
etc. This also led to convergence issues since the
polarity is divided proportional to the size of the
dense subgraph. Additionally, negative phrases in
the graph appeared to be in more densely connected
regions, which resulted in the final lexicons being
highly skewed towards negative entries due to the
influence of multiple paths to seed words.

For best path propagation, these problems were
less acute as each node in the dense subgraph would
only get the polarity a single time from each seed,
which is decayed by the fact that edge weights are
smaller than 1. Furthermore, the fact that edge
weights are less than 1 results in most long paths
having weights near zero, which in turn results in
fast convergence.

3 Lexicon Evaluation

We ran the best path graph propagation algorithm
over a graph constructed from the web using manu-
ally constructed positive and negative seed sets of
187 and 192 words in size, respectively. These
words were generated by a set of five humans and
many are morphological variants of the same root,
e.g., excel/excels/excelled. The algorithm produced
a lexicon that contained 178,104 entries. Depending
on the threshold γ (see Figure 1), this lexicon could
be larger or smaller. As stated earlier, our selection
of γ and all hyperparameters was based on manual
inspection of the resulting lexicons and performance
on held-out data.

In the rest of this section we investigate the prop-
erties of this lexicon to understand both its general
characteristics as well as its possible utility in sen-
timent applications. To this end we compare three
different lexicons:

1. Wilson et al.: Described in Wilson et al.
(2005). Lexicon constructed by combining the
lexicon built in Riloff and Wiebe (2003) with
other sources1. Entries are are coarsely rated
– strong/weak positive/negative – which we
weighted as 1.0, 0.5, -0.5, and -1.0 for our ex-
periments.

2. WordNet LP: Described in Blair-Goldensohn
et al. (2008). Constructed using label propaga-
tion over a graph derived from WordNet syn-
onym and antonym links. Note that label prop-
agation is not prone to the kinds of errors dis-
cussed in Section 2.3 since the lexical graph is
derived from a high quality source.

3. Web GP: The web-derived lexicon described
in Section 2.1 and Section 2.2.

1See http://www.cs.pitt.edu/mpqa/

780

3.1 Qualitative Evaluation

Table 1 breaks down the lexicon by the number of
positive and negative entries of each lexicon, which
clearly shows that the lexicon derived from the web
is more than an order of magnitude larger than pre-
viously constructed lexicons.2 This in and of it-
self is not much of an achievement if the additional
phrases are of poor quality. However, in Section 3.2
we present an empirical evaluation that suggests that
these terms provide both additional and useful in-
formation. Table 1 also shows the recall of the each
lexicon relative to the other. Whereas the Wilson
et al. (2005) and WordNet lexicon have a recall of
only 3% relative to the web lexicon, the web lexi-
con has a recall of 48% and 70% relative to the two
other lexicons, indicating that it contains a signifi-
cant amount of information from the other lexicons.
However, this overlap is still small, suggesting that
a combination of all the lexicons could provide the
best performance. In Section 3.2 we investigate this
empirically through a meta classification system.

Table 2 shows the distribution of phrases in the
web-derived lexicon relative to the number of to-
kens in each phrase. Here a token is simply defined
by whitespace and punctuation, with punctuation
counting as a token, e.g., “half-baked” is counted as
3 tokens. For the most part, we see what one might
expect, as the number of tokens increases, the num-
ber of corresponding phrases in the lexicon also de-
creases. Longer phrases are less frequent and thus
will have both fewer and lower weighted edges to
adjacent nodes in the graph. There is a single phrase
of length 9, which is “motion to dismiss for failure
to state a claim”. In fact, the lexicon contains quite
a number of legal and medical phrases. This should
not be surprising, since in a graph induced from the
web, a phrase like “cancer” (or any disease) should
be distributionally similar to phrases like “illness”,
“sick”, and “death”, which themselves will be simi-
lar to standard sentiment phrases like “bad” and “ter-
rible”. These terms are predominantly negative in
the lexicon representing the broad notion that legal
and medical events are undesirable.

2This also includes the web-derived lexicon of (Kaji and Kit-
suregawa, 2007), which has 10K entries. A recent study by
Mohammad et al. (2009) generated lexicons from thesauri with
76K entries.

Phrase length 1 2 3
of phrases 37,449 108,631 27,822

Phrase length 4 5 6 7 8 9
of phrases 3,489 598 71 29 4 1

Table 2: Number of phrases by phrase length in lexicon
built from the web.

Perhaps the most interesting characteristic of the
lexicon is that the most frequent phrase length is 2
and not 1. The primary reason for this is an abun-
dance of adjective phrases consisting of an adverb
and an adjective, such as “more brittle” and “less
brittle”. Almost every adjective of length 1 is fre-
quently combined in such a way on the web, so it
not surprising that we see many of these phrases
in the lexicon. Ideally we would see an order on
such phrases, e.g., “more brittle” has a larger neg-
ative polarity than “brittle”, which in turn has a
larger negative polarity than “less brittle”. However,
this is rarely the case and usually the adjective has
the highest polarity magnitude. Again, this is eas-
ily explained. These phrases are necessarily more
common and will thus have more edges with larger
weights in the graph and thus a greater chance of ac-
cumulating a high sentiment score. The prominence
of such phrases suggests that a more principled treat-
ment of them should be investigated in the future.

Finally, Table 3 presents a selection of phrases
from both the positive and negative lexicons cate-
gorized into revealing verticals. For both positive
and negative phrases we present typical examples of
phrases – usually adjectives – that one would expect
to be in a sentiment lexicon. These are phrases not
included in the seed sets. We also present multiword
phrases for both positive and negative cases, which
displays concretely the advantage of building lexi-
cons from the web as opposed to using restricted lin-
guistic resources such as WordNet. Finally, we show
two special cases. The first is spelling variations
(and mistakes) for positive phrases, which were far
more prominent than for negative phrases. Many of
these correspond to social media text where one ex-
presses an increased level of sentiment by repeat-
ing characters. The second is vulgarity in negative
phrases, which was far more prominent than for pos-
itive phrases. Some of these are clearly appropri-

781

Recall wrt other lexicons
All Phrases Pos. Phrases Neg. Phrases Wilson et al. WordNet LP Web GP

Wilson et al. 7,628 2,718 4,910 100% 37% 2%
WordNet LP 12,310 5,705 6,605 21% 100% 3%

Web GP 178,104 90,337 87,767 70% 48% 100%

Table 1: Lexicon statistics. Wilson et al. is the lexicon used in Wilson et al. (2005), WordNet LP is the lexicon
constructed by Blair-Goldensohn et al. (2008) that uses label propagation algorithms over a graph constructed through
WordNet, and Web GP is the web-derived lexicon from this study.

POSITIVE PHRASES NEGATIVE PHRASES
Typical Multiword expressions Spelling variations Typical Multiword expressions Vulgarity
cute once in a life time loveable dirty run of the mill fucking stupid
fabulous state - of - the - art nicee repulsive out of touch fucked up
cuddly fail - safe operation niice crappy over the hill complete bullshit
plucky just what the doctor ordered cooool sucky flash in the pan shitty
ravishing out of this world coooool subpar bumps in the road half assed
spunky top of the line koool horrendous foaming at the mouth jackass
enchanting melt in your mouth kewl miserable dime a dozen piece of shit
precious snug as a bug cozy lousy pie - in - the - sky son of a bitch
charming out of the box cosy abysmal sick to my stomach sonofabitch
stupendous more good than bad sikk wretched pain in my ass sonuvabitch

Table 3: Example positive and negative phrases from web lexicon.

ate, e.g., “shitty”, but some are clearly insults and
outbursts that are most likely included due to their
co-occurrence with angry texts. There were also a
number of derogatory terms and racial slurs in the
lexicon, again most of which received negative sen-
timent due to their typical disparaging usage.

3.2 Quantitative Evaluation

To determine the practical usefulness of a polarity
lexicon derived from the web, we measured the per-
formance of the lexicon on a sentence classifica-
tion/ranking task. The input is a set of sentences and
the output is a classification of the sentences as be-
ing either positive, negative or neutral in sentiment.
Additionally, the system outputs two rankings, the
first a ranking of the sentence by positive polarity
and the second a ranking of the sentence by negative
polarity. Classifying sentences by their sentiment is
a subtask of sentiment aggregation systems (Hu and
Liu, 2004; Gamon et al., 2005). Ranking sentences
by their polarity is a critical sub-task in extractive
sentiment summarization (Carenini et al., 2006; Ler-
man et al., 2009).

To classify sentences as being positive, negative
or neutral, we used an augmented vote-flip algo-
rithm (Choi and Cardie, 2009), which is given in
Figure 3. This intuition behind this algorithm is sim-

ple. The number of matched positive and negative
phrases from the lexicon are counted and whichever
has the most votes wins. The algorithm flips the de-
cision if the number of negations is odd. Though this
algorithm appears crude, it benefits from not relying
on threshold values for neutral classification, which
is difficult due to the fact that the polarity scores in
the three lexicons are not on the same scale.

To rank sentences we defined the purity of a sen-
tence X as the normalized sum of the sentiment
scores for each phrase x in the sentence:

purity(X) =
∑

x∈X polx
δ +

∑
x∈X |polx|

This is a normalized score in the range [−1, 1]. In-
tuitively, sentences with many terms of the same po-
larity will have purity scores at the extreme points of
the range. Before calculating purity, a simple nega-
tion heuristic was implemented that reversed the
sentiment scores of terms that were within the scope
of negations. The term δ helps to favor sentences
with multiple phrase matches. Purity is a common
metric used for ranking sentences for inclusion in
sentiment summaries (Lerman et al., 2009). Purity
and negative purity were used to rank sentences as
being positive and negative sentiment, respectively.

The data used in our initial English-only experi-

782

Lexicon Classifier Contextual Classifier
Positive Negative Positive Negative

P R AP P R AP P R AP P R AP
Wilson et al. 56.4 61.8 60.8 58.1 39.0 59.7 74.5 70.3 76.2 80.7 70.1 81.2
WordNet LP 50.9 61.7 62.0 54.9 36.4 59.7 72.0 72.5 75.7 78.0 69.8 79.3

Web GP 57.7 65.1† 69.6† 60.3 42.9 68.5† 74.1 75.0† 79.9† 80.5 72.6† 82.9†
Meta Classifier - - - - - - 76.6‡ 74.7 81.2‡ 81.8‡ 72.2 84.1‡

Table 4: Positive and negative precision (P), recall (R), and average precision (AP) for three lexicons using either
lexical matching or contextual classification strategies. †Web GP is statistically significantly better than Wilson et al.
and WordNet LP (p < 0.05). ‡Meta Classifier is statistically significantly better than all other systems (p < 0.05).

Input: Scored lexicon pol, negation list NG,
input sentence X

Output: sentiment ∈ {POS, NEG, NEU}

1. set p, n, ng = 0
2. for x ∈ X
3. if polx > 0 then p++
4. else if polx < 0 then n++
5. else if x ∈ NG then ng++
6. flip = (ng % 2 == 1) //ng is odd
7. if (p > n & ¬flip) ‖ (n > p & flip)

return POS
8. else if (p > n & flip) ‖ (n > p & ¬flip)

return NEG
19. return NEU

Figure 3: Vote-flip algorithm (Choi and Cardie, 2009).

ments were a set of 554 consumer reviews described
in (McDonald et al., 2007). Each review was sen-
tence split and annotated by a human as being pos-
itive, negative or neutral in sentiment. This resulted
in 3,916 sentences, with 1,525, 1,542 and 849 posi-
tive, negative and neutral sentences, respectively.

The first six columns of Table 4 shows: 1) the pos-
itive/negative precision-recall of each lexicon-based
system where sentence classes were determined us-
ing the vote-flip algorithm, and 2) the average preci-
sion for each lexicon-based system where purity (or
negative purity) was used to rank sentences. Both
the Wilson et al. and WordNet LP lexicons perform
at a similar level, with the former slightly better, es-
pecially in terms of precision. The web-derived lex-
icon, Web GP, outperforms the other two lexicons
across the board, in particular when looking at av-
erage precision, where the gains are near 10% ab-
solute. If we plot the precision-recall graphs using
purity to classify sentences – as opposed to the vote-

flip algorithm, which only provides an unweighted
classification – we can see that at almost all recall
levels the web-derived lexicon has superior preci-
sion to the other lexicons (Figure 4). Thus, even
though the web-derived lexicon is constructed from
a lexical graph that contains noise, the graph prop-
agation algorithms appear to be fairly robust to this
noise and are capable of producing large and accu-
rate polarity lexicons.

The second six columns of Table 4 shows the per-
formance of each lexicon as the core of a contextual
classifier (Wilson et al., 2005). A contextual classi-
fier is a machine learned classifier that predicts the
polarity of a sentence using features of that sentence
and its context. For our experiments, this was a max-
imum entropy classifier trained and evaluated us-
ing 10-fold cross-validation on the evaluation data.
The features included in the classifier were the pu-
rity score, the number of positive and negative lex-
icon matches, and the number of negations in the
sentence, as well as concatenations of these features
within the sentence and with the same features de-
rived from the sentences in a window of size 1.

For each sentence, the contextual classifier pre-
dicted either a positive, negative or neutral classifi-
cation based on the label with highest probability.
Additionally, all sentences were placed in the posi-
tive and negative sentence rankings by the probabil-
ity the classifier assigned to the positive and negative
classes, respectively. Mirroring the results of Wil-
son et al. (2005), we see that contextual classifiers
improve results substantially over lexical matching.
More interestingly, we see that the a contextual clas-
sifier over the web-derived lexicons maintains the
performance edge over the other lexicons, though
the gap is smaller. Figure 5 plots the precision-recall
curves for the positive and negative sentence rank-

783

0 0.2 0.4 0.6 0.8 1
Recall

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ec

isi
on

Wilson et al.
WordNet LP
Web GP

0 0.2 0.4 0.6 0.8 1
Recall

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ec

isi
on

Wilson et al.
WordNet LP
Web GP

Figure 4: Lexicon classifier precision/recall curves for positive (left) and negative (right) classes.

0 0.2 0.4 0.6 0.8 1
Recall

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ec

isi
on

Wilson et al. CC
WordNet LP CC
Web GP CC
Meta Classifier

0 0.2 0.4 0.6 0.8 1
Recall

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ec

isi
on

Wilson et al. CC
WordNet LP CC
Web GP CC
Meta Classifier

Figure 5: Contextual classifier precision/recall curves for positive (left) and negative (right) classes

ings, again showing that at almost every level of re-
call, the web-derived lexicon has higher precision.

For a final English experiment we built a meta-
classification system that is identical to the contex-
tual classifiers, except it is trained using features de-
rived from all lexicons. Results are shown in the
last row of Table 4 and precision-recall curves are
shown in Figure 5. Not surprisingly, this system has
the best performance in terms of average precision
as it has access to the largest amount of information,
though its performance is only slightly better than
the contextual classifier for the web-derived lexicon.

4 Conclusions

In this paper we examined the viability of senti-
ment lexicons learned semi-automatically from the
web, as opposed to those that rely on manual anno-
tation and/or resources such as WordNet. Our quali-
tative experiments indicate that the web derived lex-
icon can include a wide range of phrases that have

not been available to previous systems, most no-
tably spelling variations, slang, vulgarity, and multi-
word expressions. Quantitatively, we observed that
the web derived lexicon had superior performance
to previously published lexicons for English clas-
sification. Ultimately, a meta classifier that incor-
porates features from all lexicons provides the best
performance. In the future we plan to investigate the
construction of web-derived lexicons for languages
other than English, which is an active area of re-
search (Mihalcea et al., 2007; Jijkoun and Hofmann,
2009; Rao and Ravichandran, 2009). The advantage
of the web-derived lexicons studied here is that they
do not rely on language specific resources besides
unlabeled data and seed lists. A primary question is
whether such lexicons improve performance over a
translate-to-English strategy (Banea et al., 2008).

Acknowledgements: The authors thank Andrew
Hogue, Raj Krishnan and Deepak Ravichandran for
insightful discussions about this work.

784

References

E. Alfonseca, K. Hall, and S. Hartmann. 2009. Large-
scale computation of distributional similarities for
queries. In Proceedings of the North American Chap-
ter of the Association for Computational Linguistics
(NAACL-HLT).

C. Banea, R. Mihalcea, J. Wiebe, and S. Hassan. 2008.
Multilingual subjectivity analysis using machine trans-
lation. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP).

S. Blair-Goldensohn, K. Hannan, R. McDonald, T. Ney-
lon, G.A. Reis, and J. Reynar. 2008. Building a senti-
ment summarizer for local service reviews. In NLP in
the Information Explosion Era.

G. Carenini, R. Ng, and A. Pauls. 2006. Multi-document
summarization of evaluative text. In Proceedings of
the European Chapter of the Association for Compu-
tational Linguistics (EACL).

Y. Choi and C. Cardie. 2009. Adapting a polarity lexicon
using integer linear programming for domain-specific
sentiment classification. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP).

S.R. Das and M.Y. Chen. 2007. Yahoo! for Amazon:
Sentiment extraction from small talk on the web. Man-
agement Science, 53(9):1375–1388.

A Esuli and F. Sabastiani. 2009. SentiWordNet: A pub-
licly available lexical resource for opinion mining. In
Proceedings of the Language Resource and Evaluation
Conference (LREC).

M. Gamon, A. Aue, S. Corston-Oliver, and E. Ringger.
2005. Pulse: Mining customer opinions from free text.
In Proceedings of the 6th International Symposium on
Intelligent Data Analysis (IDA).

V. Hatzivassiloglou and K.R. McKeown. 1997. Predict-
ing the semantic orientation of adjectives. In Proceed-
ings of the European Chapter of the Association for
Computational Linguistics (EACL).

M. Hu and B. Liu. 2004. Mining and summarizing cus-
tomer reviews. In Proceedings of the International
Conference on Knowledge Discovery and Data Min-
ing (KDD).

V.B. Jijkoun and K. Hofmann. 2009. Generating a non-
english subjectivity lexicon: Relations that matter. In
Proceedings of the European Chapter of the Associa-
tion for Computational Linguistics (EACL).

N. Kaji and M. Kitsuregawa. 2007. Building lexicon for
sentiment analysis from massive collection of HTML
documents. In Proceedings of the Joint Conference
on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning
(EMNLP-CoNLL).

S.M. Kim and E. Hovy. 2004. Determining the senti-
ment of opinions. In Proceedings of the International
Conference on Computational Linguistics (COLING).

Kevin Lerman, Sasha Blair-Goldensohn, and Ryan Mc-
Donald. 2009. Sentiment summarization: Evaluat-
ing and learning user preferences. In Proceedings of
the European Chapter of the Association for Compu-
tational Linguistics (EACL).

R. McDonald, K. Hannan, T. Neylon, M. Wells, and
J. Reynar. 2007. Structured models for fine-to-coarse
sentiment analysis. In Proceedings of the Annual Con-
ference of the Association for Computational Linguis-
tics (ACL).

R. Mihalcea, C. Banea, and J. Wiebe. 2007. Learning
multilingual subjective language via cross-lingual pro-
jections. In Proceedings of the Annual Conference of
the Association for Computational Linguistics (ACL).

S. Mohammad, B. Dorr, and C. Dunne. 2009. Generat-
ing high-coverage semantic orientation lexicons from
overtly marked words and a thesaurus. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing (EMNLP).

B. Pang, L. Lee, and S. Vaithyanathan. 2002. Thumbs
up? Sentiment classification using machine learn-
ing techniques. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

P. Pantel, E. Crestan, A. Borkovsky, A. Popescu, and
V. Vyas. 2009. Web-scale distributional similarity and
entity set expansion. In Proceedings of Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

D. Rao and D. Ravichandran. 2009. Semi-Supervised
Polarity Lexicon Induction. In Proceedings of the Eu-
ropean Chapter of the Association for Computational
Linguistics (EACL).

E. Riloff and J. Wiebe. 2003. Learning extraction pat-
terns for subjective expressions. In Proceedings of
the Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP).

P. Turney. 2002. Thumbs up or thumbs down? Sentiment
orientation applied to unsupervised classification of re-
views. In Proceedings of the Annual Conference of the
Association for Computational Linguistics (ACL).

J. Wiebe. 2000. Learning subjective adjectives from cor-
pora. In Proceedings of the National Conference on
Artificial Intelligence (AAAI).

T. Wilson, J. Wiebe, and P. Hoffmann. 2005. Recogniz-
ing contextual polarity in phrase-level sentiment anal-
ysis. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP).

X. Zhu and Z. Ghahramani. 2002. Learning from labeled
and unlabeled data with label propagation. Technical
report, CMU CALD tech report CMU-CALD-02.

785

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 786–794,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Dependency Tree-based Sentiment Classification using CRFs with Hidden
Variables

Tetsuji Nakagawa∗, Kentaro Inui∗† and Sadao Kurohashi∗‡
∗National Institute of Information and Communications Technology

†Tohoku University
‡Kyoto University

tnaka@nict.go.jp, inui@ecei.tohoku.ac.jp, kuro@i.kyoto-u.ac.jp

Abstract
In this paper, we present a dependency tree-
based method for sentiment classification of
Japanese and English subjective sentences us-
ing conditional random fields with hidden
variables. Subjective sentences often con-
tain words which reverse the sentiment po-
larities of other words. Therefore, interac-
tions between words need to be considered
in sentiment classification, which is difficult
to be handled with simple bag-of-words ap-
proaches, and the syntactic dependency struc-
tures of subjective sentences are exploited in
our method. In the method, the sentiment po-
larity of each dependency subtree in a sen-
tence, which is not observable in training data,
is represented by a hidden variable. The po-
larity of the whole sentence is calculated in
consideration of interactions between the hid-
den variables. Sum-product belief propaga-
tion is used for inference. Experimental re-
sults of sentiment classification for Japanese
and English subjective sentences showed that
the method performs better than other meth-
ods based on bag-of-features.

1 Introduction

Sentiment classification is a useful technique for an-
alyzing subjective information in a large number of
texts, and many studies have been conducted (Pang
and Lee, 2008). A typical approach for sentiment
classification is to use supervised machine learning
algorithms with bag-of-words as features (Pang et
al., 2002), which is widely used in topic-based text
classification. In the approach, a subjective sen-
tence is represented as a set of words in the sen-
tence, ignoring word order and head-modifier rela-
tion between words. However, sentiment classifi-
cation is different from traditional topic-based text
classification. Topic-based text classification is gen-
erally a linearly separable problem ((Chakrabarti,

2002), p.168). For example, when a document con-
tains some domain-specific words, the document
will probably belong to the domain. However, in
sentiment classification, sentiment polarities can be
reversed. For example, let us consider the sentence
“The medicine kills cancer cells.” While the phrase
cancer cells has negative polarity, the word kills re-
verses the polarity, and the whole sentence has pos-
itive polarity. Thus, in sentiment classification, a
sentence which contains positive (or negative) polar-
ity words does not necessarily have the same polar-
ity as a whole, and we need to consider interactions
between words instead of handling words indepen-
dently.

Recently, several methods have been proposed to
cope with the problem (Zaenen, 2004; Ikeda et al.,
2008). However, these methods are based on flat
bag-of-features representation, and do not consider
syntactic structures which seem essential to infer
the polarity of a whole sentence. Other methods
have been proposed which utilize composition of
sentences (Moilanen and Pulman, 2007; Choi and
Cardie, 2008; Jia et al., 2009), but these methods
use rules to handle polarity reversal, and whether po-
larity reversal occurs or not cannot be learned from
labeled data. Statistical machine learning can learn
useful information from training data and generally
robust for noisy data, and using it instead of rigid
rules seems useful. Wilson et al. (2005) proposed
a method for sentiment classification which utilizes
head-modifier relation and machine learning. How-
ever, the method is based on bag-of-features and po-
larity reversal occurred by content words is not han-
dled. One issue of the approach to use sentence
composition and machine learning is that only the
whole sentence is labeled with its polarity in gen-
eral corpora for sentiment classification, and each
component of the sentence is not labeled, though
such information is necessary for supervised ma-

786

Whole Dependency Tree

Polarities of Dependency Subtrees

It cancer and heart disease.

prevents

cancer and heart disease.

prevents

cancer and heart disease.

+− −

Figure 1: Polarities of Dependency Subtrees

chine learning to infer the sentence polarity from its
components.

In this paper, we propose a dependency tree-based
method for Japanese and English sentiment classifi-
cation using conditional random fields (CRFs) with
hidden variables. In the method, the sentiment po-
larity of each dependency subtree, which is not ob-
servable in training data, is represented by a hidden
variable. The polarity of the whole sentence is cal-
culated in consideration of interactions between the
hidden variables.

The rest of this paper is organized as follows: Sec-
tion 2 describes a dependency tree-based method
for sentiment classification using CRFs with hid-
den variables, and Section 3 shows experimental re-
sults on Japanese and English corpora. Section 4
discusses related work, and Section 5 gives conclu-
sions.

2 Dependency Tree-based Sentiment
Classification using CRFs with Hidden
Variables

In this study, we handle a task to classify the polar-
ities (positive or negative) of given subjective sen-
tences. In the rest of this section, we describe a prob-
abilistic model for sentiment classification based on
dependency trees, methods for inference and param-
eter estimation, and features we use.

2.1 A Probabilistic Model based on
Dependency Trees

Let us consider the subjective sentence “It prevents
cancer and heart disease.” In the sentence, cancer
and heart disease have themselves negative polari-

It cancer and heart disease.prevents

s0

+

<root>

s1

0

s2

+

s3

−

s4

−

Figure 2: Probabilistic Model based on Dependency Tree

s
0

s
1

s
2

s
3

s
4

g
1

g
2

g
3

g
4

g
5

g
6

g
7
g
8

Figure 3: Factor Graph

ties. However, the polarities are reversed by modi-
fying the word prevents, and the dependency subtree
“prevents cancer and heart disease” has positive po-
larity. As a result, the whole dependency tree “It
prevents cancer and heart disease.” has positive po-
larity (Figure 1). In such a way, we can consider
the sentiment polarity for each dependency subtree
of a subjective sentence. Note that we use phrases as
a basic unit instead of words in this study, because
phrases are useful as a meaningful unit for sentiment
classification1. In this paper, a dependency subtree
means the subtree of a dependency tree whose root
node is one of the phrases in the sentence.

We use a probabilistic model as shown in Fig-
ure 2. We consider that each phrase in the subjective
sentence has a random variable (indicated by a cir-
cle in Figure 2). The random variable represents the
polarity of the dependency subtree whose root node
is the corresponding phrase. Two random variables
are dependent (indicated by an edge in Figure 2) if
their corresponding phrases have head-modifier re-
lation in the dependency tree. The node denoted as
<root> in Figure 2 indicates a virtual phrase which
represents the root node of the sentence, and we re-
gard that the random variable of the root node is the
polarity of the whole sentence. In usual annotated
corpora for sentiment classification, only each sen-
tence is labeled with its polarity, and each phrase
(dependency subtree) is not labeled, so all the ran-
dom variables except the one for the root node are

1From an empirical view, in our preliminary experiments
with the proposed method, phrase-based processing performed
better than word-based processing in accuracy and in computa-
tional efficiency.

787

hidden variables that cannot be observed in labeled
data (indicated by gray circles in Figure 2). With
such a probabilistic model, it is possible to utilize
properties such that phrases which contain positive
(or negative) words tend to have positive (negative)
polarities, and two phrases with head-modifier rela-
tion tend to have opposite polarities if the head con-
tains a word which reverses sentiment polarity.

Next, we define the probabilistic model as shown
in Figure 2 in detail. Let n denote the number of
phrases in a subjective sentence, wi the i-th phrase,
and hi the head index of the i-th phrase. Let si de-
note the random variable which represents the po-
larity of the dependency subtree whose root is the
i-th phrase (si ∈ {+1,−1}), and let p denote the
polarity of the whole sentence (p ∈ {+1,−1}). We
regard the 0-th phrase as a virtual phrase which rep-
resents the root of the sentence. w,h, s respectively
denote the sequence of wi, hi, si.

w = w1 · · ·wn, h = h1 · · ·hn, s = s0 · · · sn,

p = s0.

For the example sentence in Figure 1, w1 =It,
w2 =prevents, w3 =cancer, w4 =and heart dis-
ease., h1 = 2, h2 = 0, h3 = 2, h4 = 2. We define
the joint probability distribution of the sentiment po-
larities of dependency subtrees s, given a subjective
sentence w and its dependency tree h, using log-
linear models:

PΛ(s|w,h)=
1

ZΛ(w,h)
exp

{
K∑

k=1

λkFk(w,h, s)

}
,

(1)

ZΛ(w,h)=
∑
s

exp

{
K∑

k=1

λkFk(w,h, s)

}
, (2)

Fk(w,h, s)=
n∑

i=1

fk(i,w,h, s), (3)

where Λ = {λ1, · · · , λK} is the set of parameters
of the model. fk(i,w,h, s) is the feature function
of the i-th phrase, and is classified to node feature
which considers only the corresponding node, or
edge feature which considers both the correspond-
ing node and its head, as follows:

fk(i,w,h, s)=
{

fn
k (wi, si) (k ∈ Kn),

f e
k(wi, si, whi

, shi
) (k ∈ Ke),

(4)

where Kn and Ke respectively represent the sets of
indices of node features and edge features.

2.2 Classification of Sentiment Polarity

Let us consider how to infer the sentiment polarity
p ∈ {+1,−1}, given a subjective sentence w and
its dependency tree h. The polarity of the root node
(s0) is regarded as the polarity of the whole sentence,
and p can be calculated as follows:

p=argmax
p′

PΛ(p′|w,h), (5)

PΛ(p|w,h)=
∑

s:s0=p

PΛ(s|w,h). (6)

That is, the polarity of the subjective sentence is ob-
tained as the marginal probability of the root node
polarity, by summing the probabilities for all the
possible configurations of hidden variables. How-
ever, enumerating all the possible configurations of
hidden variables is computationally hard, and we use
sum-product belief propagation (MacKay, 2003) for
the calculation.

Belief propagation enables us to efficiently calcu-
late marginal probabilities. In this study, the graph-
ical model to be solved has a tree structure (identi-
cal to the syntactic dependency tree) which has no
loops, and an exact solution can be obtained us-
ing belief propagation. Dependencies among ran-
dom variables in Figure 2 are represented by a factor
graph in Figure 3. The factor graph consists of vari-
able nodes si indicated by circles, and factor (fea-
ture) nodes gi indicated by squares. In the exam-
ple in Figure 3, gi(1 ≤ i ≤ 4) correspond to the
node features in Equation (4), and gi(5 ≤ i ≤ 8)
correspond to the edge features. In belief propa-
gation, marginal distribution is calculated by pass-
ing messages (beliefs) among the variables and fac-
tors connected by edges in the factor graph (Refer
to (MacKay, 2003) for detailed description of belief
propagation).

2.3 Parameter Estimation

Let us consider how to estimate model parameters Λ,
given L training examples D = {〈wl,hl, pl〉}L

l=1.
In this study, we use the maximum a posteriori es-
timation with Gaussian priors for parameter estima-
tion. We define the following objective function LΛ,

788

and calculate the parameters Λ̂ which maximize the
value:

LΛ=
L∑

l=1

log PΛ(pl|wl,hl) − 1
2σ2

K∑
k=1

λ2
k, (7)

Λ̂=argmax
Λ

LΛ, (8)

where σ is a parameter of Gaussian priors and is set
to 1.0 in later experiments. The partial derivatives of
LΛ are as follows:

∂LΛ

∂λk
=

L∑
l=1

[∑
s

PΛ(s|wl,hl, pl)Fk(wl,hl, s)

−
∑
s

PΛ(s|wl,hl)Fk(wl,hl, s)

]
− 1

σ2
λk.

(9)

The model parameters can be calculated with the
L-BFGS quasi-Newton method (Liu and Nocedal,
1989) using the objective function and its partial
derivatives. While the partial derivatives contain
summation over all the possible configurations of
hidden variables, it can be calculated efficiently us-
ing belief propagation as explained in Section 2.2.
This parameter estimation method is same to one
used for Latent-Dynamic Conditional Random Field
(Morency et al., 2007). Note that the objective func-
tion LΛ is not convex, and there is no guarantee for
global optimality. The estimated model parameters
depend on the initial values of the parameters, and
the setting of the initial values of model parameters
will be explained in Section 2.4.

2.4 Features
Table 1 shows the features used in this study. Fea-
tures (a)–(h) in Table 1 are used as the node fea-
tures (Equation (4)) for the i-th phrase, and fea-
tures (A)–(E) are used as the edge features for the
i-th and j-th phrases (j=hi). In Table 1, si denotes
the hidden variable which represents the polarity of
the dependency subtree whose root node is the i-
th phrase, qi denotes the prior polarity of the i-th
phrase (explained later), ri denotes the polarity re-
versal of the i-th phrase (explained later), mi de-
notes the number of words in the i-th phrase, ui,k,
bi,k, ci,k, fi,k respectively denote the surface form,
base form, coarse-grained part-of-speech (POS) tag,

Node Features
a si

b si&qi

c si&qi&ri

d si&ui,1, · · · , si&ui,mi

e si&ci,1, · · · , si&ci,mi

f si&fi,1, · · · , si&fi,mi

g si&ui,1&ui,2, · · · , si&ui,mi−1&ui,mi

h si&bi,1&bi,2, · · · , si&bi,mi−1&bi,mi

Edge Features
A si&sj

B si&sj&rj

C si&sj&rj&qj

D si&sj&bi,1, · · · , si&sj&bi,mi

E si&sj&bj,1, · · · , si&sj&bj,mj

Table 1: Features Used in This Study

fine-grained POS tag of the k-th word in the i-th
phrase.

We used the morphological analysis system JU-
MAN and the dependency parser KNP2 for pro-
cessing Japanese data, and the POS tagger MX-
POST (Ratnaparkhi, 1996) and the dependency
parser MaltParser3 for English data. KNP outputs
phrase-based dependency trees, but MaltParser out-
puts word-based dependency trees, and we con-
verted the word-based ones to phrase-based ones us-
ing simple heuristic rules explained in Appendix A.

The prior polarity of a phrase qi ∈ {+1, 0,−1} is
the innate sentiment polarity of a word contained in
the phrase, which can be obtained from sentiment
polarity dictionaries. We used sentiment polarity
dictionaries made by Kobayashi et al. (2007) and Hi-
gashiyama et al. (2008)4 for Japanese experiments
(The resulting dictionary contains 6,974 positive ex-
pressions and 8,428 negative expressions), and a dic-
tionary made by Wilson et al. (2005)5 for English
experiments (The dictionary contains 2,289 positive
expressions and 4,143 negative expressions). When
a phrase contains the words registered in the dictio-
naries, its prior polarity is set to the registered po-
larity, otherwise the prior polarity is set to 0. When
a phrase contains multiple words in the dictionaries,
the registered polarity of the last (nearest to the end

2http://nlp.kuee.kyoto-u.ac.jp/nl-resource/
3http://maltparser.org/
4http://cl.naist.jp/˜inui/research/EM/sentiment-lexicon.html
5http://www.cs.pitt.edu/mpqa/

789

of the sentence) word is used.
The polarity reversal of a phrase ri ∈ {0, 1} rep-

resents whether it reverses the polarities of other
phrases (1) of not (0). We prepared polarity revers-
ing word dictionaries, and the polarity reversal of
a phrase is set to 1 if the phrase contains a word
in the dictionaries, otherwise set to 0. We con-
structed polarity reversing word dictionaries which
contain such words as decrease and vanish that re-
verse sentiment polarity. A Japanese polarity revers-
ing word dictionary was constructed from an auto-
matically constructed corpus, and the construction
procedure is described in Appendix B (The dictio-
nary contains 219 polarity reversing words). An
English polarity reversing word dictionary was con-
structed from the General Inquirer dictionary6 in the
same way as Choi and Cardie (2008), by collecting
words which belong to either NOTLW or DECREAS

categories (The dictionary contains 121 polarity re-
versing words).

Choi and Cardie (2008) categorized polarity re-
versing words into two categories: function-word
negators such as not and content-word negators such
as eliminate. The polarity reversal of a phrase ri ex-
plained above handles only the content-word nega-
tors, and function-word negators are handled in an-
other way, since the scope of a function-word nega-
tor is generally limited to the phrase containing it in
Japanese, and the number of function-word negators
is small. The prior polarity qi and the polarity rever-
sal ri of a phrase are changed to the following q′i and
r′i, if the phrase contains a function-word negator (in
Japanese) or if the phrase is modified by a function-
word negator (in English):

q′i=−qi, (10)

r′i=1 − ri. (11)

In this paper, unless otherwise noted, the word po-
larity reversal is used to indicate polarity reversing
caused by content-word negators, and function-word
negators are assumed to be applied to qi and ri in the
above way beforehand.

As described in Section 2.3, there is no guaran-
tee of global optimality for estimated parameters,
since the objective function is not convex. In our

6http://www.wjh.harvard.edu/ inquirer/

preliminary experiments, L-BFGS often did not con-
verge and classification accuracy was unstable when
the initial values of parameters were randomly set.
Therefore, in later experiments, we set the initial
values in the following way. For the feature (A) in
Table 1 in which si and sj are equal, we set the ini-
tial parameter λi of the feature to a random number
in [0.9, 1.1], otherwise we set to a random number in
[−0.1, 0.1]7. By setting such initial values, the initial
model parameters have a property that two phrases
with head-modifier relation tend to have the same
polarity, which is intuitively reasonable.

3 Experiments

We conducted experiments of sentiment classifica-
tion on four Japanese corpora and four English cor-
pora.

3.1 Data

We used four corpora for experiments of Japanese
sentiment classification: the Automatically Con-
structed Polarity-tagged corpus (ACP) (Kaji and
Kitsuregawa, 2006), the Kyoto University and NTT
Blog corpus (KNB) 8, the NTCIR Japanese opinion
corpus (NTC-J) (Seki et al., 2007; Seki et al., 2008),
the 50 Topics Evaluative Information corpus (50
Topics) (Nakagawa et al., 2008). The ACP corpus
is an automatically constructed corpus from HTML
documents on the Web using lexico-syntactic pat-
terns and layout structures. The size of the corpus
is large (it consists of 650,951 instances), and we
used 1/100 of the whole corpus. The KNB corpus
consists of Japanese blogs, and is manually anno-
tated. The NTC-J corpus consists of Japanese news-
paper articles. There are two NTCIR Japanese opin-
ion corpora available, the NTCIR-6 corpus and the
NTCIR-7 corpus; and we combined the two cor-
pora. The 50 Topics corpus is collected from various
pages on the Web, and is manually annotated.

We used four corpora for experiments of English
sentiment classification: the Customer Review data

7The values of most learned parameters distributed between
-1.0 and 1.0 in our preliminary experiments. Therefore, we de-
cided to give values around the upper bound (1.0) and the mean
(0.0) to the features in order to incorporate minimal prior knowl-
edge into the model.

8http://nlp.kuee.kyoto-u.ac.jp/kuntt/

790

(CR)9, the MPQA Opinion corpus (MPQA)10, the
Movie Review Data (MR) 11, and the NTCIR En-
glish opinion corpus (NTC-E) (Seki et al., 2007;
Seki et al., 2008). The CR corpus consists of re-
view articles about products such as digital cameras
and cellular phones. There are two customer review
datasets, the 5 products dataset and the 9 products
dataset, and we combined the two datasets. In the
MPQA corpus, sentiment polarities are attached not
to sentences but expressions (sub-sentences), and we
regarded the expressions as sentences and classified
the polarities. There are two NTCIR English cor-
pora available, the NTCIR-6 corpus and the NTCIR-
7 corpus, and we combined the two corpora.

The statistical information of the corpora we used
is shown in Table 2. We randomly split each corpus
into 10 portions, and conducted 10-fold cross valida-
tion. Accuracy of sentiment classification was cal-
culated as the number of correctly predicted labels
(polarities) divided by the number of test examples.

3.2 Compared Methods
We compared our method to 6 baseline methods,
and this section describes them. In the following,
p0 ∈ {+1,−1} denotes the major polarity in train-
ing data, Hi denotes the set consisting of all the an-
cestor nodes of the i-th phrase in the dependency
tree, and sgn(x) is defined as below:

sgn(x)=

+1 (x > 0),

0 (x = 0),
−1 (x < 0).

Voting without Polarity Reversal The polarity of
a subjective sentence is decided by voting of
each phrase’s prior polarity. In the case of a
tie, the major polarity in the training data is
adopted.

p=sgn

(
n∑

i=1

qi + 0.5p0

)
. (12)

Voting with Polarity Reversal Same to Voting
without Polarity Reversal, except that the po-
larities of phrases which have odd numbers of

9http://www.cs.uic.edu/ liub/FBS/sentiment-analysis.html
10http://www.cs.pitt.edu/mpqa/
11http://www.cs.cornell.edu/People/pabo/movie-review-

data/

reversal phrases in their ancestors are reversed
before voting.

p=sgn

(
n∑

i=1

qi

∏
j∈Hi

(−1)rj + 0.5p0

)
. (13)

Rule The polarity of a subjective sentence is deter-
ministically decided basing on rules, by con-
sidering the sentiment polarities of dependency
subtrees. The polarity of the dependency sub-
tree whose root is the i-th phrase is decided by
voting the prior polarity of the i-th phrase and
the polarities of the dependency subtrees whose
root nodes are the modifiers of the i-th phrase.
The polarities of the modifiers are reversed if
their head phrase has a reversal word. The de-
cision rule is applied from leaf nodes in the de-
pendency tree, and the polarity of the root node
is decided at the last.

si=sgn

(
qi +

∑
j:hj=i

sj(−1)ri

)
, (14)

p=sgn(s0 + 0.5p0). (15)

Bag-of-Features with No Dictionaries The polar-
ity of a subjective sentence is classified us-
ing Support Vector Machines. Surface forms,
base forms, coarse-grained POS tags and fine-
grained POS tags of word unigrams and bi-
grams in the subjective sentence are used as
features12. The second order polynomial ker-
nel is used and the cost parameter C is set to
1.0. No prior polarity information (dictionary)
is used.

Bag-of-Features without Polarity Reversal Same
to Bag-of-Features with No Dictionaries, ex-
cept that the voting result of prior polarities
(one of positive, negative or tie) is also used
as a feature.

Bag-of-Features with Polarity Reversal Same to
Bag-of-Features without Polarity Reversal, ex-
cept that the polarities of phrases which have

12In experiments on English corpora, only the features of un-
igrams are used and those of bigrams are not used, since the
bigram features decreased accuracies in our preliminary experi-
ments as reported in previous work (Andreevskaia and Bergler,
2008).

791

Language Corpus Number of Instances (Positive / Negative)
ACP 6,510 (2,738 / 3,772)

Japanese KNB 2,288 (1,423 / 865)
NTC-J 3,485 (1,083 / 2,402)

50 Topics 5,366 (3,175 / 2,191)
CR 3,772 (2,406 / 1,366)

English MPQA 10,624 (3,316 / 7,308)
MR 10,662 (5,331 / 5,331)

NTC-E 3,812 (1,226 / 2,586)

Table 2: Statistical Information of Corpora

Method Japanese English
ACP KNB NTC-J 50 Topics CR MPQA MR NTC-E

Voting-w/o Rev. 0.686 0.764 0.665 0.727 0.714 0.804 0.629 0.730
Voting-w/ Rev. 0.732 0.792 0.714 0.765 0.742 0.817 0.631 0.740
Rule 0.734 0.792 0.742 0.764 0.743 0.818 0.629 0.750
BoF-no Dic. 0.798 0.758 0.754 0.761 0.793 0.818 0.757 0.768
BoF-w/o Rev. 0.812 0.823 0.794 0.805 0.802 0.840 0.761 0.793
BoF-w/ Rev. 0.822 0.830 0.804 0.819 0.814 0.841 0.764 0.797
Tree-CRF 0.846* 0.847* 0.826* 0.841* 0.814 0.861* 0.773* 0.804

(* indicates statistical significance at p < 0.05)

Table 3: Accuracy of Sentiment Classification

odd numbers of reversal phrases in their ances-
tors are reversed before voting.

Tree-CRF The proposed method based on depen-
dency trees using CRFs, described in Section 2.

3.3 Experimental Results
The experimental results are shown in Table 3. The
proposed method Tree-CRF obtained the best ac-
curacies for all the four Japanese corpora and the
four English corpora, and the differences against
the second best methods were statistically signifi-
cant (p < 0.05) with the paired t-test for the six
of the eight corpora. Tree-CRF performed better
for the Japanese corpora than for the English cor-
pora. For both the Voting methods and the Bag-of-
Features methods, the methods with polarity rever-
sal performed better than those without it13.

Both BoF-w/ Rev. and Tree-CRF use supervised
machine learning and the same dictionaries (the

13The Japanese polarity reversing word dictionary was con-
structed from the ACP corpus as described in Appendix B, and
it is not reasonable to compare the methods with and without
polarity reversal on the ACP corpus. However, the tendency
can be seen on the other 7 corpora.

prior polarity dictionaries and the polarity revers-
ing word dictionaries), but the latter performed bet-
ter than the former. Our error analysis showed that
BoF-w/ Rev. was not robust for erroneous words in
the prior polarity dictionaries. BoF-w/ Rev. uses the
voting result of the prior polarities as a feature, and
the feature is sensitive to the errors in the dictionary,
while Tree-CRF uses several information as well as
the prior polarities to decide the polarities of depen-
dency subtrees, and was robust to the dictionary er-
rors. We investigated the trained model parameters
of Tree-CRF, and found that the features (E) in Ta-
ble 1, in which the head and the modifier have op-
posite polarities and the head word is such as pro-
tect and withdraw, have large positive weights. Al-
though these words were not included in the polar-
ity reversing word dictionary, the property that these
words reverse polarities of other words seems to be
learned with the model.

4 Related Work

Various studies on sentiment classification have
been conducted, and there are several methods pro-

792

posed for handling reversal of polarities. In this pa-
per, our method was not directly compared with the
other methods, since it is difficult to completely im-
plement them or conduct experiments with exactly
the same settings.

Choi and Cardie (2008) proposed a method to
classify the sentiment polarity of a sentence bas-
ing on compositional semantics. In their method,
the polarity of the whole sentence is determined
from the prior polarities of the composing words by
pre-defined rules, and the method differs from ours
which uses the probabilistic model to handle interac-
tions between hidden variables. Syntactic structures
were used in the studies of Moilanen and Pulman
(2007) and, Jia et al. (2009), but their methods are
based on rules and supervised learning was not used
to handle polarity reversal. As discussed in Sec-
tion 1, Wilson et al. (2005) studied a bag-of-features
based statistical sentiment classification method in-
corporating head-modifier relation.

Ikeda et al. (2008) proposed a machine learning
approach to handle sentiment polarity reversal. For
each word with prior polarity, whether the polarity is
reversed or not is learned with a statistical learning
algorithm using its surrounding words as features.
The method can handle only words with prior polar-
ities, and does not use syntactic dependency struc-
tures.

Conditional random fields with hidden variables
have been studied so far for other tasks. Latent-
Dynamic Conditional Random Fields (LDCRF)
(Morency et al., 2007; Sun et al., 2008) are prob-
abilistic models with hidden variables for sequen-
tial labeling, and belief propagation is used for in-
ference. Out method is similar to the models, but
there are several differences. In our method, only
one variable which represents the polarity of the
whole sentence is observable, and dependency re-
lation among random variables is not a linear chain
but a tree structure which is identical to the syntactic
dependency.

5 Conclusion

In this paper, we presented a dependency tree-based
method for sentiment classification using condi-
tional random fields with hidden variables. In this
method, the polarity of each dependency subtree

of a subjective sentence is represented by a hid-
den variable. The values of the hidden variables
are calculated in consideration of interactions be-
tween variables whose nodes have head-modifier re-
lation in the dependency tree. The value of the
hidden variable of the root node is identified with
the polarity of the whole sentence. Experimental
results showed that the proposed method performs
better for Japanese and English data than the base-
line methods which represents subjective sentences
as bag-of-features.

Appendix

A Rules for Converting Word Sequence to
Phrase Sequence

Let v1, · · · , vN denote an English word sequence, yi

the part-of-speech of the i-th word, and zi the head
index of the i-th word. The word sequence was con-
verted to a phrase sequence as follows, by applying
rules which combine two adjacent words:
LT ≡ {“,(,-LRB-,-LSB-,-LCB-,CC}
RT ≡ {”,),,,--,.,:,POS,-RRB-,-RSB-,-RCB-}
PP ≡ {IN,RP,TO,DT,PDT,PRP,WDT,WP,WP$,WRB}
NN ≡ {CD,FW,NN,NNP,NNPS,NNS,SYM,JJ}
do
for i := 1 to N − 1
if xi and xi+1 are not yet combined ∧

(xi ∈ LT ∨
xi+1 ∈ RT ∨
((yi = yi+1 ∨ yi = i + 1 ∨ yi+1 = i) ∧
(xi ∈ PP ∨
(xi ∈ NN ∧ xi+1 ∈ NN)))) then

Combine the words vi and vi+1

until No rules are applied

B Construction of Japanese Polarity
Reversing Word Dictionary

We constructed a Japanese polarity reversing word
dictionary from the Automatically Constructed
Polarity-tagged corpus (Kaji and Kitsuregawa,
2006). First, we collected sentences, each of which
contains just one phrase having prior polarity, and
the phrase modifies a phrase which modifies the root
node. Among them, we selected sentences in which
the prior polarity is not equal to the polarity of the
whole sentence. We extracted all the words in the
head phrase, and manually checked them whether
they should be put into the dictionary or not. The ra-
tionale behind the procedure is that the prior polarity
can be considered to be reversed by a certain word
in the head phrase.

793

References
Alina Andreevskaia and Sabine Bergler. 2008. When

Specialists and Generalists Work Together: Overcom-
ing Domain Dependence in Sentiment Tagging. In
Proceedings of the 46th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 290–298.

Soumen Chakrabarti. 2002. Mining the Web: Dis-
covering Knowledge from Hypertext Data. Morgan-
Kauffman.

Yejin Choi and Claire Cardie. 2008. Learning with
Compositional Semantics as Structural Inference for
Subsentential Sentiment Analysis. In Proceedings of
the 2008 Conference on Empirical Methods in Natural
Language Processing, pages 793–801.

Masahiko Higashiyama, Kentaro Inui, and Yuji Mat-
sumoto. 2008. Acquiring Noun Polarity Knowledge
Using Selectional Preferences. In Proceedings of the
14th Annual Meeting of the Association for Natural
Language Processing, pages 584–587. (in Japanese).

Daisuke Ikeda, Hiroya Takamura, Lev-Arie Ratinov, and
Manabu Okumura. 2008. Learning to Shift the Po-
larity of Words for Sentiment Classification. In Pro-
ceedings of the 3rd International Joint Conference on
Natural Language Processing, pages 296–303.

Lifeng Jia, Clement Yu, and Weiyi Meng. 2009. The Ef-
fect of Negation on Sentiment Analysis and Retrieval
Effectiveness. In Proceeding of the 18th ACM Con-
ference on Information and Knowledge Management,
pages 1827–1830.

Nobuhiro Kaji and Masaru Kitsuregawa. 2006. Auto-
matic Construction of Polarity-Tagged Corpus from
HTML Documents. In Proceedings of the COL-
ING/ACL 2006 Main Conference Poster Sessions,
pages 452–459.

Nozomi Kobayashi, Kentaro Inui, and Yuji Matsumoto.
2007. Opinion Mining from Web Documents: Extrac-
tion and Structurization. Journal of the Japanese So-
ciety for Artificial Intelligence, 22(2):227–238.

Dong C. Liu and Jorge Nocedal. 1989. On the limited
memory BFGS method for large scale optimization.
Mathematical Programming, 45(3):503–528.

David J. C. MacKay. 2003. Information Theory, Infer-
ence, and Learning Algorithms. Cambridge Univer-
sity Press.

Karo Moilanen and Stephen Pulman. 2007. Sentiment
Composition. In Proceedings of the Recent Advances
in Natural Language Processing International Confer-
ence, pages 378–382.

Louis-Philippe Morency, Ariadna Quattoni, and Trevor
Darrell. 2007. Latent-Dynamic Discriminative Mod-
els for Continuous Gesture Recognition. In Proceed-
ings of the 2007 IEEE Conference on Computer Vision
and Pattern Recognition, pages 1–8.

Tetsuji Nakagawa, Takuya Kawada, Kentaro Inui, and
Sadao Kurohashi. 2008. Extracting Subjective and
Objective Evaluative Expressions from the Web. In
Proceedings of the 2nd International Symposium on
Universal Communication.

Bo Pang and Lillian Lee. 2008. Opinion Mining and
Sentiment Analysis. Foundations and Trends in Infor-
mation Retrieval, 2(1-2):1–135.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up? Sentiment Classification using
Machine Learning Techniques. In Proceedings of the
2002 Conference on Empirical Methods in Natural
Language Processing, pages 79–86.

Adwait Ratnaparkhi. 1996. A Maximum Entropy Model
for Part-of-Speech Tagging. In Proceedings of the
1996 Conference on Empirical Methods in Natural
Language Processing Conference, pages 133–142.

Yohei Seki, David Kirk Evans, Lun-Wei Ku, Hsin-His
Chen, Noriko Kando, and Chin-Yew Lin. 2007.
Overview of Opinion Analysis Pilot Task at NTCIR-
6. In Proceedings of the 6th NTCIR Workshop, pages
265–278.

Yohei Seki, David Kirk Evans, Lun-Wei Ku, Le Sun,
Hsin-Hsi Chen, and Noriko Kando. 2008. Overview
of Multilingual Opinion Analysis Task at NTCIR-7. In
Proceedings of the 7th NTCIR Workshop.

Xu Sun, Louis-Philippe Morency, Daisuke Okanohara,
and Jun’ichi Tsujii. 2008. Modeling Latent-Dynamic
in Shallow Parsing: A Latent Conditional Model with
Improved Inference. In Proceedings of the 22nd In-
ternational Conference on Computational Linguistics,
pages 841–848.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing Contextual Polarity in Phrase-
Level Sentiment Analysis. In Proceedings of the 2005
Joint Conference on Human Language Technology and
Empirical Methods in Natural Language Processing,
pages 347–354.

Livia Polanyi Annie Zaenen. 2004. Contextual Lexical
Valence Shifters. In Proceedings of the AAAI Spring
Symposium on Exploring Attitude and Affect in Text.

794

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 795–803,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Convolution Kernels for Opinion Holder Extraction

Michael Wiegand and Dietrich Klakow
Spoken Language Systems

Saarland University
D-66123 Saarbrücken, Germany

{Michael.Wiegand|Dietrich.Klakow}@lsv.uni-saarland.de

Abstract

Opinion holder extraction is one of the impor-
tant subtasks in sentiment analysis. The ef-
fective detection of an opinion holder depends
on the consideration of various cues on vari-
ous levels of representation, though they are
hard to formulate explicitly as features. In this
work, we propose to use convolution kernels
for that task which identify meaningful frag-
ments of sequences or trees by themselves.
We not only investigate how different levels
of information can be effectively combined
in different kernels but also examine how the
scope of these kernels should be chosen. In
general relation extraction, the two candidate
entities thought to be involved in a relation are
commonly chosen to be the boundaries of se-
quences and trees. The definition of bound-
aries in opinion holder extraction, however, is
less straightforward since there might be sev-
eral expressions beside the candidate opinion
holder to be eligible for being a boundary.

1 Introduction

In recent years, there has been a growing interest
in the automatic detection of opinionated content
in natural language text. One of the more impor-
tant tasks in sentiment analysis is the extraction of
opinion holders. Opinion holder extraction is one
of the critical components of an opinion question-
answering system (i.e. systems which automatically
answer opinion questions, such as “What does [X]
like about [Y]?”). Such systems need to be able to
distinguish which entities in a candidate answer sen-
tence are the sources of opinions (= opinion holder)

and which are the targets.
On other NLP tasks, in particular, on relation extrac-
tion, there has been much work onconvolution ker-
nels, i.e. kernel functions exploiting huge amounts
of features without an explicit feature representa-
tion. Previous research on that task has shown that
convolution kernels, such as sequence and tree ker-
nels, are quite effective when compared to manual
feature engineering (Moschitti, 2008; Bunescu and
Mooney, 2005; Nguyen et al., 2009). In order to
effectively use convolution kernels, it is often nec-
essary to choose appropriate substructures of a sen-
tence rather than represent the sentence as a whole
structure (Bunescu and Mooney, 2005; Zhang et al.,
2006; Moschitti, 2008). As for tree kernels, for ex-
ample, one typically chooses the syntactic subtree
immediately enclosing two entities potentially ex-
pressing a specific relation in a given sentence. The
opinion holder detection task is different from this
scenario. There can beseveralcues within a sen-
tence to indicate the presence of a genuine opinion
holder and these cues need not be member of a par-
ticular word group, e.g. they can be opinion words
(see Sentences 1-3), communication words, such as
maintainedin Sentence 2, or other lexical cues, such
asaccordingin Sentence 3.

1. The U.S. commandersconsideropinion the prisoners to be un-
lawful combatantsopinion as opposed to prisoners of war.

2. During the summit, Koizumimaintainedcommunication a
clear-cutcollaborativestanceopinion towards the U.S. and em-
phasized that the President was objectiveopinion and circum-
spect.

3. Accordingcue to Fernandez, it was the worstmistakeopinion in
the history of the Argentine economy.

795

Thus, the definition of boundaries of the structures
for the convolution kernels is less straightforward in
opinion holder extraction.
The aim of this paper is to explore in how far convo-
lution kernels can be beneficial for effective opinion
holder detection. We are not only interested in how
far different kernel types contribute to this extraction
task but we also contrast the performance of these
kernels with a manually designed feature set used
as a standard vector kernel. Finally, we also exam-
ine the effectiveness of expanding word sequences
or syntactic trees by additional prior knowledge.

2 Related Work

Choi et al. (2005) examine opinion holder extraction
using CRFs with various manually defined linguis-
tic features and patterns automatically learnt by the
AutoSlog system (Riloff, 1996). The linguistic fea-
tures focus on named-entity information and syntac-
tic relations to opinion words. In this paper, we use
very similar settings. The features presented in Kim
and Hovy (2005) and Bloom et al. (2007) resemble
very much Choi et al. (2005). Bloom et al. (2007)
also consider communication words to be predictive
cues for opinion holders.
Kim and Hovy (2006) and Bethard et al. (2005) ex-
plore the usefulness of semantic roles provided by
FrameNet (Fillmore et al., 2003) for both opinion
holder and opinion target extraction. Due to data
sparseness, Kim and Hovy (2006) expand FrameNet
data by using an unsupervised clustering algorithm.
Choi et al. (2006) is an extension of Choi et al.
(2005) in that opinion holder extraction is learnt
jointly with opinion detection. This requires that
opinion expressions and their relations to opinion
holders are annotated in the training data. Seman-
tic roles are also taken as a potential source of in-
formation. In our work, we deliberately work with
minimal annotation and, thus, do not consider any
labeled opinion expressions and relations to opinion
holders in the training data. We exclusively rely on
entities marked as opinion holders. In many practi-
cal situations, the annotation beyond opinion holder
labeling is too expensive.
Complex convolution kernels have been success-
fully applied to various NLP tasks, such as rela-
tion extraction (Bunescu and Mooney, 2005; Zhang

et al., 2006; Nguyen et al., 2009), question an-
swering (Zhang and Lee, 2003; Moschitti, 2008),
and semantic role labeling (Moschitti et al., 2008).
In all these tasks, they offer competitive perfor-
mance to manually designed feature sets. Bunescu
and Mooney (2005) combine different sequence ker-
nels encoding different contexts of candidate en-
tities in a sentence. They argue that several ker-
nels encoding different contexts are more effective
than just using one kernel with one specific context.
We build on that idea and compare various scopes
eligible for opinion holder extraction. Moschitti
(2008) and Nguyen et al. (2009) suggest that differ-
ent kinds of information, such as word sequences,
part-of-speech tags, syntactic and semantic informa-
tion should be contained in separate convolution ker-
nels. We also adhere to this notion.

3 Data

As labeled data, we use the sentiment annotation of
theMPQA 2.0 corpus1. Opinion holders are not ex-
plicitly labeled as such. However sources ofpri-
vate statesand subjective speech events(Wiebe et
al., 2003) are a fairly good approximation of the
task. Previous work (Choi et al., 2005; Kim and
Hovy, 2005; Choi et al., 2006) uses similar approxi-
mations.

4 Method

In this work, we consider all noun phrases (NPs)
as possible candidate opinion holders. Therefore,
the set of all data instances is the set of the NPs
within the MPQA 2.0 corpus. Each NP is labeled
as to whether it is a genuine opinion holder or not.
Throughout this section, we will use Sentence 2
from Section 1 as an example.

4.1 The Different Levels of Representation

Several levels of representation are important for
opinion holder extraction. Table 1 lists all the dif-
ferent levels that are used in this work. Generalized
sequences employnamed-entity tags, an OPINION
tag for opinion wordsand a COMM tag forcom-
munication words2. Thus, in a generalized word se-

1www.cs.pitt.edu/mpqa/databaserelease
2Note that all candidate tokens are reduced to one generic

CAND token. Thus, we hope to account for data sparseness in

796

quence (WRDGN) a word is replaced by a general-
ized token whereas in a generalized part-of-speech
sequence (POSGN) a part-of-speech tag is replaced.
For augmented constituent trees (CONSTAUG), the
same sources of information are used. The differ-
ence to generalizing sequences is that instead of re-
placing words by generalized tokens, we add a node
in the syntax tree with a generalized token so that it
dominates the pertaining leaf node (see also nodes
marked withAUG in Figure 2). All sources used for
this type of generalization are known to be predictive
for opinion holder classification (Choi et al., 2005;
Kim and Hovy, 2005; Choi et al., 2006; Kim and
Hovy, 2006; Bloom et al., 2007).

Note that the grammatical relation paths, i.e.
GRAMWRD andGRAMPOS, can only be applied
in case there is another expression in the focus in
addition to the candidate of the data instance itself,
e.g. the nearest opinion expression to the candidate.
Section 4.4 explains in detail how this is done.

Predicate-argument structures (PAS) are repre-
sented by PropBank trees (Kingsbury and Palmer,
2002).

4.2 Support Vector Machines and Kernel
Methods

Support Vector Machines (SVMs) are one of the
most robust supervised machine learning techniques
in which training data instances~x are separated by a
hyperplaneH(~x) = ~w · ~x + b = 0 wherew ∈ R

n

and b ∈ R. One advantage of SVMs is that ker-
nel methods can be applied which map the data to
other feature spaces in which they can be separated
more easily. Given a feature functionφ : O → R,
whereO is the set of the objects, the kernel trick
allows the decision hyperplane to be rewritten as:

H(~x) =

(

∑

i=1...l

yiαi~xi

)

· ~x + b =

∑

i=1...l

yiαi~xi · ~x + b =
∑

i=1...l

yiαiφ (oi) · φ (o) + b

where yi is equal to1 for positive and−1 for
negative examples,αi ∈ R with αi ≥ 0, oi∀i ∈
{1, . . . , l} are the training instances and the product
K(oi, o) = 〈φ(oi) · φ(o)〉 is the kernel function as-
sociated with the mappingφ.

case there are several tokens making up the candidate.

4.3 Sequence and Tree Kernels

A sequence kernel (SK) measures the similarity
of two sequences by counting the number of com-
mon subsequences. We use the kernel by Taylor
and Christianini (2004) which has the advantage that
it also considers subsequences of the original se-
quence with some elements missing. The extent of
thesegaps in a sequence is suitably reflected by a
weighting function incorporated into the kernel.

Tree kernels (TKs) represent trees by their sub-
structures. The feature space of these substructures,
or fragments, is mapped onto a vector space. The
kernel function computes the similarity of pairs of
trees by counting the number of common fragments.
In this work, we evaluate two tree kernels: Subset
Tree Kernel (STK) (Collins and Duffy, 2002) and
Partial Tree Kernel (PTKbasic) (Moschitti, 2006).

In STK, a tree fragment can be any set of nodes
and edges of the original tree provided that every
node has either all or none of its children. This con-
straint makes that kind of kernel well-suited for con-
stituency trees which have been generated by con-
text free grammars since the constraint corresponds
to the restriction that no grammatical rule must be
broken. For example,STK enforces that a subtree,
such as[VP [VBZ, NP]], cannot be matched with
[VP [VBZ]] since the latterVP node only possesses
one of the children of the former.

PTKbasic is more flexible since the constraint
of STK on nodes is relaxed. This makes this
type of tree kernel less suitable for constituency
trees. We, therefore, apply it only to trees
representing predicate-argument structures (PAS)
(see Figure 1). Note that a data instance is
represented by a set of those structures3 rather
than a single structure. Thus, the actual partial
tree kernel function we use for this task,PTK,
sums over all possible pairsPASl and PASm of
two data instancesxi and xj: PTK(xi, xj) =
∑

PASl∈xi

∑

PASm∈xj

PTKbasic(PASl, PASm).

To summarize, Table 2 lists the different kernel
types we use coupled with the suitable levels of rep-
resentation. This choice of pairing has already been
motivated and empirically proven suitable on other

3i.e. all predicate-argument structures of a sentence in which
the head of the candidate opinion holder occurs

797

Type Description Example

WRD sequence of words During the summit , KoizumiCAND maintained a clear-cut
collaborative stance. . .

WRDGN sequence of generalized words During the summit , CAND COMM OPINION. . .

POS part-of-speech sequence IN DET NN PUNC CAND VBD DET JJ JJ NN. . .

POSGN generalized part-of-speech sequence IN DET NN PUNC CAND COMM OPINION. . .

CONST constituency tree see Figure 2 without nodes markedAUG

CONSTAUG augmented constituency tree see Figure 2

GRAMWRD grammatical relation path labels with words KoizumiCAND NSUBJ↑ maintained DOBJ↓ stance

GRAMPOS grammatical relation path labels with part-of-speech tagsCAND NSUBJ↑ VBD DOBJ↓ NN

PAS predicate argument structures see Figure 1(a)

PASAUG augmented predicate argument structures see Figure 1(b)

Table 1: The different levels of representation.

(a) plain

(b) augmented

Figure 1: Predicate-argument structures (PAS).

tasks (Moschitti, 2008; Nguyen et al., 2009).

Type Description Levels of Representation

SK Sequential Kernel WRD(GN), POS(GN),
GRAMWRD , GRAMPOS

STK Subset Tree Kernel CONST(AUG)

PTK Partial Tree Kernel PAS

V K Vector Kernel not restricted

Table 2: The different types of kernels.

4.4 The Different Scopes

We argue that using the entire word sequence or syn-
tax tree of the sentence in which a candidate opinion
holder is situated to represent a data instance pro-
duces too large structures for a convolution kernel.
Since a classifier based on convolution kernels has
to derive meaningful features by itself, the larger
these structures are, the more likely noise is included

in the model. Previous work in relation extraction
has also shown that the usage of more focused sub-
structures, e.g. the smallest subtree containing the
two candidate entities of a relation, is more effec-
tive (Zhang et al., 2006). Unfortunately, in our task
there is only one explicit entity we know of for each
data instance which is the candidate opinion holder.
However, there are several indicative cues within the
context of the candidate which might be considered
important. We identify three different cues being the
nearestpredicate, i.e. full verb or nominalization,
opinion wordandcommunication word4. For each
of these expressions, we define a scope where the
boundaries are the candidate opinion holder and the
pertaining cue. Given these scopes, we can define
resulting subsequences/subtrees and combine them.
We further add twobackground scopes, one being
the semantic scope of the candidate opinion holder
and the entire sentence. As semantic scope we con-
sider the subclause in which a candidate opinion
holder is situated5.

Figure 2 illustrates the different scopes. Abbre-
viations are explained in Table 3. As already men-
tioned in Section 4.1 for grammatical relation paths,
a second expression in addition to the candidate
opinion holder is required. These expressions can be
derived from the different scopes, i.e. forPRED it

4These three expressions may coincide but do not have to.
5Typically, the subtree representing a subclause has the clos-

estS node dominating the candidate opinion holder as the root
node and it contains only those nodes from the original sentence
parse which are also dominated by thatS node and whose path
to that node does not contain anotherS node.

798

is the nearest predicate to the candidate, forOP it is
the nearest opinion word and forCOMM it is the
nearest communication word. For the background
scopesSEM andSENT , however, there is no sec-
ond expression in focus. Therefore, grammatical re-
lation paths cannot be defined for these scopes.

Type Description

PRED scope with the boundaries being the candidate opinion
holder and the nearest predicate

OP scope with the boundaries being the candidate opinion
holder and nearest opinion word

COMM scope with the boundaries being the candidate opinion
holder and the nearest communication word

SEM semantic scope of the candidate opinion holder, i.e.
subclause containing the candidate

SENT entire sentence in which in the opinion holder occurs

Table 3: The different types of scope.

4.5 Manually Designed Feature Set for a
Standard Vector Kernel

In addition to the different types of convolution ker-
nels, we also define an explicit feature set for a vec-
tor kernel (V K). Many of these features mainly de-
scribe properties of the relation between the candi-
date and the nearest predicate6 since in our initial
experiments the nearest predicate has always been
the strongest cue. Adding these types of features
for other cues, e.g. the nearest opinion or commu-
nication word, only resulted in a decrease in perfor-
mance. Table 4 lists all the features we use. Note
that this manual feature set employs all those sources
of information which are also exploited by the con-
volution kernels. Some of the information contained
in the convolution kernels can, however, only be rep-
resented in a more simplified fashion when using
a manual feature set. For example, the firstPAS

in Figure 1(a) is converted to just the pair of pred-
icate and argument representing the candidate (i.e.
REL:maintainA0:Koizumi). The entirePAS is not
used since it would create too sparse features. Con-
volution kernels can cope with fairly complex struc-
tures as input since they internally match substruc-
tures. Manual features are less flexible since they do
not account for partial matches.

6We select the nearest predicate by using the syntactic parse
tree. Thus, we hope to select the predicate which syntactically

headword/governing category of CAND

is CAND capitalized/a person?

is CAND subj|dobj|iobj|pobj of OPINION/COMM?

is CAND preceded byaccording to? (Choi et al., 2005)

does CAND contain possessive and is followed by OPIN-
ION/COMM? (Choi et al., 2005)

is CAND preceded byby which is attached to OPINION/COMM?
(Choi et al., 2005)

predicate-argument pairs in which CAND occurs

lemma/part-of-speech tag/subcategorization frame/voice of nearest
predicate

is nearest predicate OPINION/COMM?

does CAND precede/follow nearest predicate?

words between nearest predicate and CAND (bag of words)

part-of-speech sequence between nearest predicate and CAND

constituency path/grammatical relation path from predicate to
CAND

Table 4: Manually designed feature set.

5 Experiments

We used400 documents of the MPQA corpus for
five-fold crossvalidation and133 documents as a de-
velopment set. We report statistical significance on
the basis of a paired t-test using0.05 as the signif-
icance level. All experiments were done with the
SVM-Light-TKtoolkit7. We evaluated on the basis
of exact phrase matching. We set the trade-off pa-
rameterj = 5 for all feature sets. For the manual
feature set we used a polynomial kernel of third de-
gree. These two critical parameters were tuned on
the development set. As far as the sequence and
tree kernels are concerned, we used the parameter
settings from Moschitti (2008), i.e.λ = 0.4 and
µ = 0.4. Kernels were combined using plain sum-
mation. The documents were parsed using the Stan-
ford Parser (Klein and Manning, 2003). Named-
entity information was obtained by the Stanford tag-
ger (Finkel et al., 2005). Semantic roles were ob-
tained by using the parser by Zhang et al. (2008).
Opinion expressions were identified using the Sub-
jectivity Lexicon from the MPQA project (Wil-
son et al., 2005). Communication words were ob-
tained by using the Appraisal Lexicon (Bloom et al.,
2007). Nominalizations were recognized by looking

relates to the candidate opinion holder.
7available atdisi.unitn.it/moschitti

799

Figure 2: Illustration of the different scopes on aCONSTAUG; nodes belonging to the candidate opinion holder are
marked withCAND.

up nouns in NOMLEX (Macleod et al., 1998).

5.1 Notation

Each kernel is represented as a triple
〈levelOfRepresentation(Table 1), Scope (Table 3), typeOfKernel

(Table 2)〉, e.g. 〈CONST, SENT, STK〉 is a Subset
Tree Kernel of a constituency parse having the
scope of the entire sentence. Note that not all com-
binations of these three parameters are meaningful.
In the following, we will just focus on important
and effective combinations. The kernel composed
of manually designed features is denoted by just
V K. The kernel composed of predicate-argument
structures is denoted by〈PAS, SENT,PTK〉.

5.2 Vector Kernel (VK)

The first line in Table 7 displays the result of the
vector kernel using a manually designed feature set.
It should be interpreted as a baseline. Due to the
high class imbalance we will focus on the compari-
son of F(1)-Score throughout this paper rather than
accuracy which is fairly biased on this data set. The
F-Score of this classifier is at56.16%.

5.3 Sequence Kernels (SKs)

For both sequence and tree kernels we need to find
out what the best scope is, whether it is worthwhile
to combine different scopes and what different lay-
ers of representation can be usefully combined.

The upper part of Table 5 lists the results of simple
word kernels using the different scopes. The perfor-

mance of the kernels using individual scopes varies
greatly. The best scope isPRED (1), the second
best isSEM (2). The good performance ofPRED

does not come as a surprise since the sequence is the
smallest among the different scopes, so this scope is
least affected by data sparseness. Moreover, this re-
sult is consistent with our initial experiments on the
manual feature set (see Section 4.5).

Using different combinations of the word se-
quence kernels shows thatPRED and SEM (6)
are a good combination, whereasOP , COMM ,
andSENT (7;8;9) do not positively contribute to
the overall performance which is consistent which
the individual scope evaluation. Apparently, these
scopes capture less linguistically relevant structure.

The next part of Table 5 shows the contribution of
POS kernels when added toWRD kernels. Adding
the correspondingPOS kernel to theWRD kernel
with PRED scope (10) results in an improvement
by more than5% in F-Score. We get another im-
provement by approx.3% when the corresponding
SEM kernels (11) are added. This suggests that
POS is an effective generalization and that the two
scopesPRED andSEM are complementary.

For theGRAMWRD kernel, thePRED scope
(12) is again most effective. We assume that this ker-
nel most likely expresses meaningful syntactic rela-
tionships for our task. Adding theGRAMPOS ker-
nel (14) gives another boost by almost4%.

Generalized sequence kernels are important.

800

Adding the correspondingWRDGN kernels to the
WRD kernel withPRED andSEM scope results
in an improvement from47.77% (1) to53.00% (15)
which is a bit less than the combination ofWRD

andPOS(GN) kernels (16). However, these types of
kernels seem to be complementary since their com-
bination provides an F-Score of56.06% (17). This
kernel combination already performs on a par with
the manually designed vector kernel though less in-
formation is taken into consideration.

Finally, the best combination of sequence ker-
nels (18) comprisesWRD, WRDGN , POS, and
POSGN kernels with PRED and SEM scope
combined with aGRAMWRD and aGRAMPOS

kernel with PRED scope. The performance of
58.70% significantly outperforms the vector kernel.

5.4 Tree Kernels (TKs)

Table 6 shows the results of the different tree ker-
nels. The table is divided into two halves. The
left half (A) are plain tree kernels, whereas the right
half (B) are the augmented tree kernels. As far as
CONST kernels are concerned, there is a system-
atic improvement by approximately2% using tree
augmentation. This proves that further non-syntactic
knowledge added to the tree itself results in an im-
proved F-Score. However, tree augmentation does
not have any impact on thePAS kernels.

The overall performance of the tree kernels shows
that they are much more expressive than sequence
kernels. For instance, in order to obtain the same
performance as of〈CONSTAUG, PRED,STK〉
(19B), i.e. a single kernel with an F-Score56.52, it
requires several sequence kernels, hence much more
effort. The performance of the differentCONST

kernels relative to each other resembles the results
of the WRD kernels. The best scope isPRED

(19). By far the worst performance is obtained by
theSENT scope (23). The combination ofPRED

and SEM scope achieves an F-Score of59.67%
(25B) which is already slightly better than the best
configuration of sequence kernels (18).

The performance of thePAS kernel (28A) with
an F-Score of53.51% is slightly worse than the best
single plainCONST kernel (19A). ThePAS ker-
nel and theCONST kernels are complementary,
since their best combination (29B) achieves an F-
Score of61.67% which is significantly better than

Combination Acc. Prec. Rec. F1

VK 93.63 53.28 59.37 56.16

best SKs 94.21 57.64 59.81 58.70

best TKs 94.16 56.18 68.36 61.67∗

VK + best SKs 94.34 58.44 61.27 59.82∗

VK + best TKs 94.33 57.41 68.03 62.27∗

best SKs + best TKs 94.49 59.22 63.96 61.49∗

VK + best SKs + best TKs 94.53 59.10 66.57 62.61∗†

Table 7: Results of kernel combinations (∗: significantly
better than best SKs;†: significantly better than best TKs;
all convolution kernels are significantly better than VK).

the best combination ofCONST kernels (25B) or
sequence kernels (18).

5.5 Combinations

Table 7 lists the results of the different kernel type
combinations. If VK is added to the best TKs, the
best SKs, or both, a slight increase in F-Score is
achieved. The best performance with an F-Score of
62.61% is obtained by combining all kernels.

6 Conclusion

In this paper, we compared convolution kernels for
opinion holder extraction. We showed that, in gen-
eral, a combination of two scopes, namely the scope
immediately encompassing the candidate opinion
holder and its nearest predicate and the subclause
containing the candidate opinion holder provide best
performance. Tree kernels containing constituency
parse information and semantic roles achieve better
performance than sequence kernels or vector kernels
using a manually designed feature set. Best perfor-
mance is achieved if all kernels are combined.

Acknowledgements

Michael Wiegand was funded by the German research
council DFG through the International Research Training
Group “IRTG” between Saarland University and Univer-
sity of Edinburgh.

The authors would like to thank Yi Zhang for pro-
cessing the MPQA corpus with his semantic-role label-
ing system, the researchers from the MPQA project for
helping to create an opinion holder corpus, and, in partic-
ular, Alessandro Moschitti for insightful comments and
suggestions.

801

ID Kernel Acc. Prec. Rec. F1

1 〈WRD, PRED, SK〉 93.25 51.08 42.29 46.26

2 〈WRD, OP, SK〉 92.77 46.38 32.52 38.21

3 〈WRD, COMM, SK〉 92.42 43.70 35.99 39.46

4 〈WRD, SEM,SK〉 93.16 50.32 34.65 41.04

5 〈WRD, SENT, SK〉 90.60 29.90 27.29 28.53

6 〈WRD, PRED, SK〉 + 〈WRD, SEM,SK〉 93.78 56.55 41.36 47.77

7
P

j∈{PRED,OP,COMM}〈WRD, j,SK〉 93.55 54.26 39.50 45.71

8
P

j∈Scopes\SENT 〈WRD, j, SK〉 93.82 57.21 40.28 47.26

9
P

j∈Scopes〈WRD, j, SK〉 93.63 55.15 39.52 46.03

10 〈WRD, PRED, SK〉 + 〈POS, PRED, SK〉 93.03 49.39 53.53 51.37

11
P

i∈{PRED,SEM} (〈WRD, i, SK〉 + 〈POS, i, SK〉) 93.86 55.60 53.22 54.38

12
P

i∈{PRED,SEM}〈WRD, i, SK〉 + 〈GRAMWRD , PRED, SK〉 94.01 58.19 45.88 51.29

13
P

i∈{PRED,SEM}〈WRD, i, SK〉 +
P

j∈{PRED,OP,COMM}〈GRAMWRD , j, SK〉 93.83 56.28 45.64 50.40

14
X

i∈{PRED,SEM}

〈WRD, i, SK〉+〈GRAMWRD, PRED, SK〉+〈GRAMPOS, PRED, SK〉 93.98 56.59 53.92 55.21

15
P

i∈{PRED,SEM} (〈WRD, i, SK〉 + 〈WRDGN , i, SK〉) 93.97 57.08 49.46 53.00

16
P

i∈{PRED,SEM} (〈WRD, i, SK〉 + 〈POSGN , i, SK〉) 93.97 56.60 52.42 54.42

17
X

i∈{PRED,SEM}

(〈WRD, i, SK〉 + 〈WRDGN , i, SK〉 + 〈POS, i, SK〉 + 〈POSGN , i, SK〉) 93.85 55.16 57.00 56.06

18

X

i∈{PRED,SEM}

(〈WRD, i, SK〉 + 〈WRDGN , i, SK〉 + 〈POS, i, SK〉 + 〈POSGN , i, SK〉)
94.21 57.64 59.81 58.70

+〈GRAMWRD , PRED, SK〉 + 〈GRAMPOS , PRED, SK〉

Table 5: Results of the different sequence kernels.

A B

i = CONST, j = PAS i = CONSTAUG, j = PASAUG

ID Kernel Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

19 〈i, PRED, STK〉 92.89 48.68 62.34 54.67 93.12 49.99 65.04 56.52

20 〈i, OP,STK〉 93.04 49.49 54.71 51.96 93.27 50.93 59.06 54.68

21 〈i, COMM,STK〉 92.76 47.79 55.89 51.50 92.96 49.03 58.85 53.47

22 〈i, SEM,STK〉 93.70 54.40 52.13 53.23 93.90 55.47 56.59 56.03

23 〈i, SENT,STK〉 92.42 44.34 39.92 41.99 92.50 45.20 42.40 43.74

24
P

k∈{PRED,OP,COMM}〈i, k, STK〉 93.62 53.26 60.05 56.44 93.77 54.06 63.21 58.26

25
P

k∈{PRED,SEM}〈i, k, STK〉 93.90 55.26 59.50 57.30 94.13 56.57 63.12 59.67

26
P

k∈Scopes\SENT 〈i, k, STK〉 94.09 56.65 59.68 58.11 94.21 57.21 62.61 59.80

27
P

k∈Scopes〈i, k, STK〉 94.14 57.41 57.88 57.63 94.29 58.11 61.10 59.56

28 〈j, SENT, PTK〉 92.11 45.02 69.96 53.51 91.92 44.27 67.39 53.43

29
X

k∈{PRED,SEM}

〈i, k, STK〉+〈PAS,SENT, PTK〉 94.05 55.68 66.01 60.40 94.16 56.18 68.36 61.67

30
X

k∈Scopes\SENT

〈i, k, STK〉+ 〈PAS,SENT, PTK〉 94.30 57.95 62.62 60.19 94.36 58.07 64.94 61.31

Table 6: Results of the different tree kernels.

802

References

Steven Bethard, Hong Yu, Ashley Thornton, Vasileios
Hatzivassiloglou, and Dan Jurafsky. 2005. Extracting
Opinion Propositions and Opinion Holders using Syn-
tactic and Lexical Cues. InComputing Attitude and
Affect in Text: Theory and Applications. Springer.

Kenneth Bloom, Sterling Stein, and Shlomo Argamon.
2007. Appraisal Extraction for News Opinion Analy-
sis at NTCIR-6. InProceedings of NTCIR-6 Workshop
Meeting, Tokyo, Japan.

Razvan C. Bunescu and Raymond J. Mooney. 2005.
Subsequence Kernels for Relation Extraction. InPro-
ceedings of the Conference on Neural Information
Processing Systems (NIPS), Vancouver, Canada.

Yejin Choi, Claire Cardie, Ellen Riloff, and Siddharth
Patwardhan. 2005. Identifying Sources of Opinions
with Conditional Random Fields and Extraction Pat-
terns. InProceedings of the Conference on Human
Language Technology and Empirical Methods in Nat-
ural Language Processing (HLT/EMNLP), Vancouver,
Canada.

Yejin Choi, Eric Breck, and Claire Cardie. 2006.
Joint Extraction of Entities and Relations for Opin-
ion Recognition. InProceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP), Sydney, Australia.

Michael Collins and Nigel Duffy. 2002. New Ranking
Algorithms for Parsing and Tagging. InProceedings
of the Annual Meeting of the Association for Compu-
tational Linguistics (ACL), Philadelphia, USA.

Charles. J. Fillmore, Christopher R. Johnson, and
Miriam R. Petruck. 2003. Background to FrameNet.
International Journal of Lexicography, 16:235 – 250.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating Non-local Information
into Information Extraction Systems by Gibbs Sam-
pling. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics (ACL), Ann
Arbor, USA.

Soo-Min Kim and Eduard Hovy. 2005. Identifying
Opinion Holders for Question Answering in Opin-
ion Texts. In Proceedings of AAAI-05 Workshop
on Question Answering in Restricted Domains, Pitts-
burgh, USA.

Soo-Min Kim and Eduard Hovy. 2006. Extracting Opin-
ions, Opinion Holders, and Topics Expressed in On-
line News Media Text. InProceedings of the ACL
Workshop on Sentiment and Subjectivity in Text, Syd-
ney, Australia.

Paul Kingsbury and Martha Palmer. 2002. From Tree-
Bank to PropBank. InProceedings of the 3rd Confer-
ence on Language Resources and Evaluation (LREC),
Las Palmas, Spain.

Dan Klein and Christopher D. Manning. 2003. Accurate
Unlexicalized Parsing. InProceedings of the Annual
Meeting of the Association for Computational Linguis-
tics (ACL), Sapporo, Japan.

Catherine Macleod, Ralph Grishman, Adam Meyers,
Leslie Barrett, and Ruth Reeves. 1998. NOMLEX:
A Lexicon of Nominalizations. InProceedings of EU-
RALEX, Liège, Belgium.

Alessandro Moschitti, Daniele Pighin, and Roberto
Basili. 2008. Tree Kernels for Semantic Role Label-
ing. Computational Linguistics, 34(2):193 – 224.

Alessandro Moschitti. 2006. Efficient Convolution Ker-
nels for Dependency and Constituent Syntactic Trees.
In Proceedings of the 17th European Conference on
Machine Learning (ECML), Berlin, Germany.

Alessandro Moschitti. 2008. Kernel Methods, Syn-
tax and Semantics for Relational Text Categorization.
In Proceedings of the Conference on Information and
Knowledge Management (CIKM), Napa Valley, USA.

Truc-Vien T. Nguyen, Alessandro Moschitti, and
Giuseppe Riccardi. 2009. Convolution Kernels on
Constituent, Dependency and Sequential Structures
for Relation Extraction. InProceedings of the Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), Singapore.

Ellen Riloff. 1996. An Empirical Study of Automated
Dictionary Construction for Information Extraction.
Artificial Intelligence, 85.

John Taylor and Nello Christianini. 2004.Kernel Meth-
ods for Pattern Analysis. Cambridge University Press.

Janyce Wiebe, Theresa Wilson, and Claire Cardie. 2003.
Annotating Expressions of Opinions and Emotions in
Language.Language Resources and Evaluation, 1:2.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing Contextual Polarity in Phrase-
level Sentiment Analysis. InProceedings of Hu-
man Language Technologies Conference/Conference
on Empirical Methods in Natural Language Process-
ing (HLT/EMNLP), Vancouver, Canada.

Dell Zhang and Wee Sun Lee. 2003. Question Classifi-
cation using Support Vector Machines. InProceedings
of the ACM Special Interest Group on Information Re-
trieval (SIGIR), Toronto, Canada.

Min Zhang, Jie Zhang, and Jian Su. 2006. Explor-
ing Syntactic Features for Relation Extraction using a
Convolution Tree Kernel. InProceedings of the Hu-
man Language Technology Conference of the North
American Chapter of the ACL (HLT/NAACL), New
York City, USA.

Yi Zhang, Rui Wang, and Hans Uszkoreit. 2008. Hy-
brid Learning of Dependency Structures from Het-
erogeneous Linguistic Resources. InProceedings of
the Conference on Computational Natural Language
Learning (CoNLL), Manchester, United Kingdom.

803

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 804–812,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

An Unsupervised Aspect-Sentiment Model for Online Reviews

Samuel Brody
Dept. of Biomedical Informatics

Columbia University
samuel.brody@dbmi.columbia.edu

Noemie Elhadad
Dept. of Biomedical Informatics

Columbia University
noemie@dbmi.columbia.edu

Abstract

With the increase in popularity of online re-
view sites comes a corresponding need for
tools capable of extracting the information
most important to the user from the plain text
data. Due to the diversity in products and ser-
vices being reviewed, supervised methods are
often not practical. We present an unsuper-
vised system for extracting aspects and deter-
mining sentiment in review text. The method
is simple and flexible with regard to domain
and language, and takes into account the in-
fluence of aspect on sentiment polarity, an is-
sue largely ignored in previous literature. We
demonstrate its effectiveness on both compo-
nent tasks, where it achieves similar results to
more complex semi-supervised methods that
are restricted by their reliance on manual an-
notation and extensive knowledge sources.

1 Introduction

Online review sites continue to grow in popularity as
more people seek the advice of fellow users regard-
ing services and products. Unfortunately, users are
often forced to wade through large quantities of writ-
ten data in order to find the information they want.
This has led to an increase in research in the areas
of opinion mining and sentiment analysis, with the
aim of providing systems that can automatically an-
alyze user reviews and extract the information most
relevant to the user.

One example of such an application is generat-
ing a summary of the important factors mentioned
in the reviews of a product (see Lerman et al. 2009).
Another application is comparing two similar prod-
ucts. In this case, it is important to present to the
user the aspects in which the products differ, rather

than just provide a general star rating. A third exam-
ple is systems for generating automatic recommen-
dations, based on similarity between products, user
reviews, and history of previous purchases. These
types of application require an underlying frame-
work to identify the important aspects of the prod-
uct (also known as features or attributes), and the
sentiment expressed by the review writer.

Unsupervised Methods are desirable for this task,
for two reasons. First, due to the wide range and va-
riety of products and services being reviewed, the
framework must be robust and easily transferable
between domains. The second reason is the nature of
the data. Online reviews are often short and unstruc-
tured, and may contain many spelling and gram-
matical errors, as well as slang or specialized jar-
gon. These factors often present a problem to meth-
ods relying exclusively on dictionaries, manually-
constructed knowledge resources, and gazetteers, as
they may miss out on an important aspect of the
product or an indicator of sentiment. Unsupervised
methods, on the other hand, are not influenced by
the lexical form, and can handle unknown words or
word-forms, provided they occur frequently enough.
This insures that any emergent topic that is salient in
the data will be addressed by the system.

In this paper, we present an unsupervised system
which addresses the core tasks necessary to enable
advanced applications to handle review data. We in-
troduce a local topic model, which works at the sen-
tence level and employs a small number of topics, to
automatically infer the aspects. For sentiment detec-
tion, we present a method for automatically deriving
an unsupervised seed set of positive and negative ad-
jectives that replaces the manually constructed ones
commonly used in the literature. Our approach is
specifically designed to take into account the inter-

804

action between the two tasks.
The rest of the paper is structured as follows. In

Sec. 2 we provide relevant background, and place
our method in the context of previous work in the
field. We describe the data we used in Sec. 3, and our
experiments on the aspect and sentiment-polarity
components in Sec. 4 and 5, respectively. We con-
clude in Sec. 6 with a discussion of our results and
findings and directions for future research.

2 Previous Approaches

In this paper, we focus on the detection of two prin-
ciple elements in the review text: aspects and sen-
timent. In previous work these elements have been
treated, for the most part, as two separate tasks.

Aspect The earliest attempts at aspect detection
were based on the classic information extraction (IE)
approach of using frequently occurring noun phrases
(e.g., Hu and Liu 2004). Such approaches work well
in detecting aspects that are strongly associated with
a single noun, but are less useful when aspects en-
compass many low frequency terms (e.g., the food
aspect of restaurants, which involves many differ-
ent dishes), or are abstract (e.g. ambiance can be
described without using any concrete nouns at all).
Common solutions to this problem involve cluster-
ing with the help of knowledge-rich methods, in-
volving manually-constructed rules, semantic hier-
archies, or both (e.g., Popescu and Etzioni 2005,
Fahrni and Klenner 2008). Titov and McDonald
(2008b) underline the need for unsupervised meth-
ods for aspect detection. However, according to the
authors, existing topic models, such as standard La-
tent Dirichlet Allocation (LDA) (Blei et al., 2003),
are not suited to the task of aspect detection in re-
views, because they tend to capture global topics
in the data, rather than rateable aspects pertinent
to the review. To address this problem, they con-
struct a multi-grain topic model (MG-LDA), which
attempts to capture two layers of topics - global and
local, where the local topics correspond to rateable
aspects. MG-LDA distinguishes tens of local top-
ics, but the many-to-one mapping between these and
rateable aspects is not explicit in the system. To re-
solve this issue, the authors extend their model in
Titov and McDonald (2008a) and attempt to infer
such a mapping with the help of aspect-specific rat-
ings provided along with the review text.

Sentiment Sentiment analysis has been the fo-
cus of much previous research. In this discussion,
we will only mention work directly related to our
own. For a comprehensive survey of the subject, the
reader is directed to Pang and Lee (2008).

Most previous approaches rely on a manually
constructed lexicon of terms which are strongly pos-
itive or negative regardless of context. This informa-
tion on its own is usually insufficient, due to lack
of coverage and the fact that sentiment is often ex-
pressed through words whose polarity is highly do-
main and context specific. If a sentiment lexicon is
available for one domain, domain adaptation can be
used, provided the domains are sufficiently similar
(Blitzer et al., 2007). Another common solution is
through bootstrapping - using a seed group of terms
with known polarity to infer the polarity of domain
specific terms (e.g., Fahrni and Klenner 2008; Jijk-
oun and Hofmann 2009). The most minimalist ex-
ample of this approach is Turney (2002), who used
only a single pair of adjectives (good and poor) to
determine the polarity of other terms through mu-
tual information. For Chinese, Zagibalov and Carroll
(2008) use a single seed word meaning good, and six
common indicators of negation in their bootstrap-
ping approach. Often, when using a context indepen-
dent seed, large amounts of domain-specific data are
required, in order to obtain sufficient co-occurrence
statistics. Commonly, web queries are used to obtain
such data.

Independently of any specific task, Hatzivas-
siloglou and McKeown (1997) present a completely
unsupervised method for determining the polarity of
adjectives in a large corpus. A graph is created, in
which adjectives are nodes, and edges between them
are weighted according to a (dis)similarity function
based primarily on whether the two adjectives oc-
curred in a conjunction or disjunction in the corpus.
A heuristic approach is then used to split the graph
in two. The group containing the adjectives with the
higher average frequency is labeled as positive, and
the other as negative.

Combined Approaches Aspects can influence
sentiment polarity within a single domain. For ex-
ample, in the restaurant domain, cheap is usually
positive when discussing food, but negative when
discussing the decor or ambiance. Many otherwise
neutral terms (e.g., warm, heavy, soft) acquire a sen-
timent polarity in the context of a specific aspect.

805

Recent work has addressed this interaction in differ-
ent ways. Mei et al. (2007) present a form of do-
main adaptation using an LDA model which treats
positive and negative sentiment as two additional
topics. Fahrni and Klenner (2008) directly address
the specificity of sentiment to the word it is modi-
fying. Aspects are defined by a manually specified
subset of the Wikipedia category hierarchy. For sen-
timent, the authors use a seed set of positive and
negative adjectives, and iteratively propagate sen-
timent polarity through conjunction relations (like
those used by Hatzivassiloglou and McKeown 1997,
above). Web queries are used to overcome the spar-
sity issue of these highly-specific patterns. In the IE
setting, Popescu and Etzioni (2005) extract frequent
terms, and cluster them into aspects. The sentiment
detection task is formulated as a Relaxation Label-
ing problem of finding the most likely sentiment la-
bels for opinion-bearing terms, while satisfying as
many local constraints as possible. The authors use
a variety of knowledge sources, web queries, and
hand crafted rules to detect relations between terms
(e.g., meronymy). These relations are used both for
the clustering, and as a basis for the constraints.

Our approach is designed to be as unsupervised
and knowledge-lean as possible, so as to make it
transferable across different types of products and
services, as well as across languages. Aspects are
determined via a local version of LDA, which oper-
ates on sentences, rather than documents, and em-
ploys a small number of topics that correspond di-
rectly to aspects. This approach overcomes the prob-
lems of frequent-term methods, as well as the issues
raised by Titov and McDonald (2008b). We use mor-
phological negation indicators to automatically cre-
ate a seed set of highly relevant positive and nega-
tive adjectives, which are guaranteed to be pertinent
to the aspect at hand. These automatically-derived
seed sets achieve comparable results to the use of
manual ones, and the work of Zagibalov and Car-
roll (2008) suggests that the use of negation can be
easily transfered to other languages.

3 Data

Our primary dataset is the publicly available corpus
used in Ganu et al. (2009). It contains over 50,000
restaurant reviews from Citysearch New York1. Ad-

1http://newyork.citysearch.com/

ditionally, to demonstrate the domain independence
of our system, we collected 1086 reviews for four
leading netbook computers from Amazon.com.

For evaluation purposes, we used the annotated
dataset from Ganu et al. (2009), which is a sub-
set of 3,400 sentences from the Citysearch corpus.
These sentences were manually labeled for aspect
and sentiment. There were six manually defined as-
pect labels - Food & Drink, Service, Price, Atmo-
sphere, Anecdotes and Miscellaneous. A sentence
could contain multiple aspects, but, for our evalua-
tion, we used only sentences with a single label. For
sentiment, each sentence was given a single value -
Positive, Negative, Neutral or Conflict (indicating a
mixture of positive and negative sentiment).

We were also provided with a seed set of 128 pos-
itive and 88 negative adjectives used by Fahrni and
Klenner (2008), which were specifically selected to
be domain and target independent.

For the purpose of the experiments presented
here, we focused on sentences containing noun-
adjective pairs. Such pairs are one of the most com-
mon way of expressing sentiment about an aspect
and allow us to capture the interaction between the
two.

4 Aspect

4.1 Methodology
In order to infer the salient aspects in the data, we
employed the following steps:

Local LDA We used a standard implementation2

of LDA. In order to prevent the inference of global
topics and direct the model towards rateable aspects
(see Sec. 2), we treated each sentence as a separate
document. The output of the model is a distribution
over inferred aspects for each sentence in the data.
The parameters we employed were standard, out-of-
the-box settings (α = 0.1,β = 0.1, 3000 iterations),
with no specific tuning to our data. We ran the algo-
rithm with the number of aspects ranging from 10 to
20, and employed a cluster validation scheme (see
below) to determine the optimal number.

Model Order The issue of model order, i.e., deter-
mining the correct number of clusters, is an impor-
tant element in unsupervised learning. A common

2GibbsLDA++, by Xuan-Hieu Phan. Available at http://
gibbslda.sourceforge.net/.

806

approach (Levine and Domany, 2001; Lange et al.,
2004; Niu et al., 2007) is to use a cluster validation
procedure. In such a procedure, different model or-
ders are compared, and the one with the most con-
sistent clustering is chosen. For the purpose of the
validation procedure, we have a cluster correspond-
ing to each aspect, and we label each sentence as
belonging to the cluster of the most probable aspect.

Given the collection of sentences in our data, D,
and two connectivity matrices C and Ĉ, where a cell
i, j contains 1 if sentences di and d j belong to the
same cluster, we define a consistency function F
(following Niu et al. 2007):

F(C,Ĉ) =
∑i, j 1{Ci, j = Ĉi, j = 1,di,d j ∈ D̂}

∑i, j 1{Ci, j = 1,di,d j ∈ D̂}
(1)

We then employ the following procedure:

1. Run the LDA model with k topics on D to ob-
tain connectivity matrix Ck.

2. Create a comparison connectivity matrix Rk
based on uniformly drawn random assignments
of the instances.

3. Sample random subset Di of size δ|D| from D.

4. Run the LDA model on Di to obtain connectiv-
ity matrix Ci

k.

5. Create a comparison matrix Ri
k based on uni-

formly drawn random assignments of the in-
stances in Di.

6. Calculate scorei(k) = F(Ĉ,C)−F(R̂,R) where
F is given in Eq. 1.

7. Repeat steps 3 to 6 q times.

8. Return the average score over q iterations.

This procedure calculates the consistency of our
clustering solution, using a similar sized random as-
signment for comparison. It does this on q subsets to
reduce the effects of chance. The k with the high-
est score is chosen. In our experiments, we used
q = 5,δ = 0.9. For both our datasets (restaurants and
netbooks), the highest-scoring k was 14.

Determining Representative Words For each as-
pect, we list all the nouns in the data according to a
score based on their mutual information with regard
to that aspect.

Scorea(w) = p(w,a) · log
p(w,a)

p(w) · p(a)
(2)

Where p(w), p(a), p(w,a) are the probabilities, ac-
cording to the LDA model, of the word w, the aspect
a, and the word w labeled with aspect a, respectively.

We then select, for each aspect, the top ka rank-
ing words, such that they cover 75% of the word-
instances labeled by the LDA model with aspect la-
bel a. Due to the skewed frequency distribution of
words, this is a relatively small portion of the words
(typically 100-200). This set of representative words
for each aspect is used in the sentiment component
of our system (see Sec. 5.1).

4.2 Inferred Aspects

Table 1 presents the aspects inferred by our system
for the restaurant domain. The inferred aspects cover
all those defined in the manual annotation, but also
distinguish between a finer granularity of aspects,
based solely on the review text, e.g., between phys-
ical environment and ambiance, and between the at-
titude of the staff and the quality of the service.

In order to demonstrate that our method can be
transfered between very different domains and cat-
egories of products, we also ran our algorithm on
our set of netbook reviews. The inferred aspects
are presented in Table 2. The system identifies im-
portant aspects relevant to our data. Some of these
(e.g., software, hardware) might be suggested by hu-
man annotators, but some would probably be missed
unless the annotators carefully read through all the
reviews, e.g., the Memory aspect, which includes ad-
vice about upgrading specific models. This capabil-
ity of our system is important, as it demonstrates that
our method can be used to produce customized com-
parisons for the user and will take into account the
important common factors, as well as the unique as-
pects of each item.

4.3 Evaluation

To determine the quality of our automatically in-
ferred aspects, we compared the output of our sys-
tem to the sentence-level manual annotation of Ganu
et al. (2009). To each sentence in the data, the LDA
model assigns a distribution {P(a)}a∈A over the set
A of inferred aspects. By defining a threshold ta for
each aspect, we can label a sentence as belonging
to aspect a if P(a) > ta. By varying the threshold ta
we created precision-recall curves for the top three
rateable aspects in the restaurant domain, shown in

807

Inferred Aspect Representative Words Manual Aspect
Main Dishes chicken, sauce, rice, cheese, spicy, salad,

Food & DrinkBakery hot, delicious, dessert, bagels, bread, chocolate
Food - General menu, fresh, sushi, fish, chef, cuisine
Wine & Drinks wine, list, glass, drinks, beer, bottle

Ambiance / Mood great, atmosphere, wonderful, music, experience, relaxed AtmospherePhysical Atmosphere bar, room, outside, seating, tables, cozy, loud
Staff service, staff, friendly, attentive, busy, slow StaffService table, order, wait, minutes, reservation, forgot
Value portions, quality, worth, size, cheap Price

Anecdotes dinner, night, group, friends, date, family AnecdotesAnecdotes out, back, definitely, around, walk, block
General best, top, favorite, city, NYC

Misc.Misc. - Location never, restaurant, found, Paris, (New) York, location
Misc. place, eat, enjoy, big, often, stuff

Table 1: List of automatically inferred aspects for the restaurant domain, with some representative words for each
aspect (middle), and the corresponding aspect label from the manual annotation (right). Labels (left) were assigned by
the authors.

Aspect Representative Words
Performance power, performance, mode, fan, quiet

Hardware drive, wireless, bluetooth, usb, speakers, webcam
Memory ram, 2GB, upgrade, extra, 1GB, speed
Software using, office, software, installed, works, programs
Usability internet, video, web, movies, music, email, play

Portability around, light, work, portable, weight, travel
Comparison netbooks, best, reviews, read, decided, research

Aspect Representative Words
Mouse mouse, right, touchpad, pad, buttons, left
General great, little, machine, price, netbook, happy
Purchase amazon, purchased, bought, weeks, ordered

Looks looks, feel, white, finish, blue, solid, glossy
OS windows, xp, system, boot, linux, vista, os

Battery battery, life, hours, time, cell, last
Size screen, keyboard, size, small, enough, big

Table 2: List of automatically inferred aspects for the netbook dataset, with representative words for each aspect .

Figure 13. Although the data used in Titov and Mc-
Donald (2008a) was unavailable for direct compar-
ison, our method exhibits similar behavior and per-
formance (compare Fig. 4, there) on a domain with
similar characteristics (abstract aspects which en-
compass many low frequency words). This demon-
strates that our local version of LDA with few top-
ics overcomes the issues which confronted the au-
thors of that work (i.e., global topics and many-to-
one mapping of topics to aspects), without requiring
specially designed models or additional information
in the form of user-provided aspect-specific ratings
(see Sec. 2).

We believe the reason for this stems from the
composition of online reviews. Since many reviews
have similar mixtures of local topics (e.g., food, ser-
vice), standard LDA prefers global topics, which

3We combined the probabilities of all the inferred aspects
that match a single manually assigned aspect, according to the
mapping in Table 1.

distinguish more strongly between reviews (e.g., cui-
sine type, restaurant type). However, when em-
ployed at the sentence level, local topics (corre-
sponding to rateable aspects) provide a stronger way
to distinguish between individual sentences.

5 Sentiment

5.1 Methodology
For determining sentiment polarity, we developed
the following procedure. For each aspect, we ex-
tracted the relevant adjectives, built a conjunction
graph, automatically determined the seed set (or
used a manual one, for comparison), and propagated
the polarity scores to the rest of the adjectives. De-
tails of each step are described below.

Extracting Adjectives As a pre-processing step,
we parsed our data (using RASP, Briscoe and Car-
roll 2002). The parsed output was used to detect
negation and conjunction. If an adjective A partic-

808

(a) (b) (c)

Figure 1: Precision / Recall curves for the top three rateable aspects: (a) Food, (b) Service, and (c) Atmosphere.

ipated in a negation in the sentence, it was replaced
by a new adjective not-A. We then extract all cases
where an adjective modified a noun. For example,
from the sentence “The food was tasty and hot, but
our waiter was not friendly.” we can extract the pairs
(tasty, food), (hot, food), (not-friendly, waiter).

Building the Graph Our method for determin-
ing sentiment polarity is based on an adaptation of
Hatzivassiloglou and McKeown (1997) (see Sec. 2).

Several issues confronted us when attempting to
adapt their method to our task. In the original arti-
cle, adjectives with no orientation were ignored. It
is unclear how this can be easily done in an unsu-
pervised fashion, and such sentiment-neutral adjec-
tives are ubiquitous in real-world data. Furthermore,
adjectives whose orientation depended on the con-
text were also ignored. These are of particular in-
terest in our task, and are likely to be missing or
incorrectly labeled in standard sentiment dictionar-
ies. For our purposes, since we need to handle ad-
jectives expressing various shades of sentiment, not
only strongly positive or negative ones, we are inter-
ested in a scoring method, rather than a binary label-
ing. Also, we do not want to use a general corpus,
but rather the text from the reviews themselves. This
usually means a much smaller corpus than the one
used in the original paper, but has the advantage of
being domain specific.

Our method of building the polarity graph differed
in several ways from the original. First, we did not
use disjunctions (e.g., ‘but’) as indicators of opposite
polarity. The reason for this was that, in our domain
of online reviews, disjunctions often did not convey
contrast in polarity, but rather in perceived expecta-
tions, e.g., “dainty but strong necklace”, and “cheap

but delicious food”.
Instead of using regular expressions to capture ex-

plicit conjunctions, we retrieved all cases where our
parser indicated that two adjectives modified a sin-
gle noun in the same sentence.

To ensure that aspect-specific adjectives are han-
dled correctly, we built a separate graph for each as-
pect, by selecting the cases where the modified noun
was one of the representative words for that aspect
(see Sec. 4.1).

Constructing a Seed Set We used morphologi-
cal information and explicit negation to find pairs of
opposite polarity. Specifically, adjective pairs which
were distinguished only by one of the prefixes ‘un’,
‘in’, ‘dis’, ‘non’, or by the negation marker ‘not-’
were selected for the seed set. Starting with the most
frequent pair, we assigned a positive polarity to the
more frequent member of the pair.

Then, in order of decreasing frequency, we as-
signed polarity to the other seed pairs, based on the
shortest path either of the members had to a previ-
ously labeled adjective. That member received its
neighbor’s polarity, and the other member of the pair
received the opposite polarity. When all pairs were
labeled, we corrected for misclassifications by iter-
ating through the pairs and reversing the polarity if
that improved consistency, i.e., if it caused the mem-
bers of the pair to match the polarities of more of
their neighbors. Finally, we reverse the polarity of
the seed groups if the negative group has a higher
total frequency.

Propagating Polarity Our propagation method is
based on the label propagation algorithm of Zhu
and Ghahramani (2002). The adjectives in the posi-
tive and negative seed groups are assigned a polarity

809

score of 1 and 0, respectively. All the rest start with
a score of 0.5. Then, an update step is repeated. In
update iteration t, for each adjective x that is not in
the seed, the following update rule is applied:

pt(x) =
Σy∈N(x)w(y,x) · pt−1(y)

Σy∈N(x)w(y,x)
(3)

Where pt(x) is the polarity of adjective x at step t,
N(x) is the set of the neighbors of x, and w(y,x) is the
weight of the edge connecting x and y. We set this
weight to be 1 + log(#mod(y,x)) where #mod(y,x)
is the number of times y and x both modified a single
noun. The update step is repeated to convergence.

5.2 Aspect-Specific Gold Standard

To evaluate the performance of the sentiment com-
ponent of our system, we created an aspect-specific
gold standard. For each of the top eight automati-
cally inferred aspects (corresponding to the Food,
Service and Atmosphere aspects in the annotation),
we constructed a polarity graph, as described in
Sec. 5.1. We retrieved a list of all adjectives that
participated in five or more modifications of nouns
from that specific aspect). Table 3 lists the number of
such adjectives in each aspect. We split the data into
ten portions and, for each portion, asked two volun-
teers to rate each adjective according to the polar-
ity of the sentiment it expresses in the context of the
specified aspect. The judges could select from the
following ratings: Strongly Negative, Weakly Nega-
tive, Neutral, Weakly Positive, Strongly Positive, and
N/A. As expected, exact inter-annotator agreement
was low - only 54%, but when considering two ad-
jacent ratings as equivalent (i.e, Strongly vs. Weakly
Negative or Positive, and Neutral vs. Weakly Neg-
ative or Positive), agreement was 93.3%. This indi-
cates there is some difficulty distinguishing between
the fine-grained categories we specified, but high
agreement at a coarser level, which advocates us-
ing a ranking approach for evaluation (see also Pang
and Lee 2005). We therefore translated the annota-
tor ratings to a numerical scale, from −2 (Strongly
Negative) to +2 (Strongly Positive) at unit intervals.
After discarding adjectives where one or more anno-
tators gave a ‘N/A’ tag, we averaged the two annota-
tor numerical scores, and used this data as the gold
standard for our evaluation.

Aspect # Adj. # Rated % Neu.
Mood 293 206 17%
Staff 155 122 3%

Main Dishes 287 185 25%
Physical Atmo. 161 103 21%

Bakery 180 129 23%
Food - General 192 144 28%
Wine & Drinks 111 75 18%

Service 89 57 5%
Total 1468 1021 –

Table 3: For each aspect, the number of frequently oc-
curring adjectives for each aspect (# Adj.), number of
adjectives remaining after removing those labeled ‘N/A’
(# Rated), and percent of rated adjectives labeled ‘Neu-
tral’ by both annotators (% Neu.).

Auto. Manual
Aspect τk Dk τk Dk
Mood 0.53 0.23 0.56 0.22
Staff 0.57 0.22 0.60 0.20

Main Dishes 0.19 0.40 0.38 0.31
Physical Atmo. 0.34 0.33 0.25 0.37

Bakery 0.33 0.33 0.35 0.33
Food - General 0.19 0.41 0.41 0.30
Wine & Drinks 0.32 0.34 0.52 0.24

Service 0.41 0.30 0.54 0.23
Average 0.36 0.32 0.45 0.27

Table 4: Kendall coefficient and distance scores for eight
inferred aspects.

5.3 Evaluation Measures
Kendall’s tau coefficient (τk) and Kendall’s distance
(Dk) are commonly used (e.g., Jijkoun and Hofmann
2009) to compare rankings. These measures look at
the number of pairs of ranked items that agree or
disagree with the ordering in the gold standard. The
value of τk ranges from -1 (perfect disagreement) to
1 (perfect agreement), with 0 indicating an almost
random ranking. The value of Dk ranges from 0 (per-
fect agreement) to 1 (perfect disagreement). It is im-
portant to note that only pairs that are ordered in the
gold standard are used in the comparison.

5.4 Evaluation Results
Table 4 reports Kendall’s coefficient (τk) and dis-
tance (Dk) values for our method when using our
automatically derived seed set (Auto.). For com-
parison, we ran our procedure using the manually
compiled seed set (Manual) of Fahrni and Klenner

810

Food - General: Mexican, French, Eastern, Turkish,
European, Tuscan, Mediterranean, American, Cuban,
Thai, Peruvian, Spanish, Korean, Vietnamese, Indian,
African, Japanese, Italian, Chinese, Asian
Mood: Vietnamese, Brazilian, Turkish, Eastern,
Caribbean, Cuban, Italian, Spanish, Japanese, Euro-
pean, Mediterranean, Colombian, Mexican, Asian,
Indian, Thai, British, American, French, Korean,
Chinese, Russian, Moroccan
Staff: British, European, Chinese, Indian, American,
Spanish, Asian, Italian, French

Table 5: Polarity ranking of cuisine adjectives (from most
positive) for three aspects.

(2008). Using the manual seed set obtains results
that correspond better to our gold standard. Our au-
tomatic method also achieves good results, and can
be used when a manual seed set is not available.
More importantly, correlation with the gold standard
may not indicate better suitability to the sentiment
detection task in reviews. For instance, it is interest-
ing to note that the worst correlation scores were on
the Main Dishes and Food - General aspects. If we
compare to Table 3, we can see these aspects have
the highest percentage of adjectives rated as neutral
by the annotators. However, in many cases, these ad-
jectives actually carry some sentiment in their con-
text. An example of this are adjectives describing
the type of cuisine, which are objective, and there-
fore usually considered neutral by annotators. Ta-
ble 5 shows the automatic ranking of cuisine type
from positive to negative in three aspects. It is inter-
esting to see that the rankings change according to
the aspect, and certain cuisines are strongly associ-
ated with specific aspects and not with others. This
is supported by Ganu et al. (2009), who observed
during the annotation that, in the restaurant corpus,
French and Italian restaurants were strongly associ-
ated with the service aspect. This trend can be iden-
tified automatically by our method, and at a much
more detailed level than that noticed by a human an-
alyzing the data.

6 Discussion & Future Work

Our experiments confirm the value of a fully un-
supervised approach to the tasks of aspect detec-
tion and sentiment analysis. The aspects are inferred
from the data, and are more representative than
manually derived ones. For instance, in our restau-

rant domain, the manually constructed aspect list
omitted or over-generalized some important aspects,
while over-representing others. There was no sep-
arate Drinks category, even though it was strongly
present in the data. The Service aspect, dealing with
waiting time, reservations, and mistaken orders, was
an important emergent aspect on its own, but was
grouped under Staff in the manual annotation.

Adjectives can convey different sentiments de-
pending on the aspect being discussed. For exam-
ple, the adjective ‘warm’ was ranked very positive in
the Staff aspect, but slightly negative in the General
Food aspect. A knowledge-rich approach might ig-
nore such adjectives, thereby missing important ele-
ments of the review.

Finally, as online reviews belong to an informal
genre, with inventive spelling and specialized jar-
gon, it may be insufficient, for both aspect and
sentiment, to rely only on lexicons. For example,
our restaurant reviews included spelling errors such
as desert, decour/decore, anti-pasta, creme-brule,
sandwhich, omlette, exelent, tastey, as well as at
least six different common misspellings of restau-
rant. There were also specialized terms, such as Ko-
rma, Edamame, Dosa and Pho, all of which do not
appear in common dictionaries, and creative use of
adjectives, such as orgasmic and New-Yorky.

This work has opened many avenues for future re-
search and improvements. So far, we focused on ad-
jectives as sentiment indicators, however, there have
been studies showing that other parts of speech can
be very helpful for this task (e.g., Pang et al. 2002;
Benamara et al. 2007). Also, it would be interesting
to take a closer look at the interactions between as-
pect and sentiment, especially at a multiple-sentence
level (see Snyder and Barzilay 2007). Finally, we
feel that the true test of the usability of our system
should be through an application, and intend to pro-
ceed in that direction.

Acknowledgments
We’d like to thank Angela Fahrni and Manfred Klenner
for kindly allowing us access to their data and annotation.
We also wish to thank the volunteer annotators. This work
was partially supported by a Google Research Award.

References
Benamara, Farah, Carmine Cesarano, Antonio Picariello,

Diego Reforgiato, and V. S. Subrahmanian. 2007. Sen-
timent analysis: Adjectives and adverbs are better than

811

adjectives alone. In Proc. of the International Confer-
ence on Weblogs and Social Media (ICWSM).

Blei, David M., Andrew Y. Ng, and Michael I. Jordan.
2003. Latent dirichlet allocation. Journal of Machine
Learning Research 3:993–1022.

Blitzer, John, Mark Dredze, and Fernando Pereira. 2007.
Biographies, bollywood, boom-boxes and blenders:
Domain adaptation for sentiment classification. In
Proc. of the 45th Annual Meeting of the Association of
Computational Linguistics. ACL, Prague, Czech Re-
public, pages 440–447.

Briscoe, Ted and John Carroll. 2002. Robust accurate
statistical annotation of general text. In Proc. of the 3rd
LREC. Las Palmas, Gran Canaria, pages 1499–1504.

Fahrni, Angela and Manfred Klenner. 2008. Old Wine
or Warm Beer: Target-Specific Sentiment Analysis of
Adjectives. In Proc.of the Symposium on Affective
Language in Human and Machine, AISB 2008 Con-
vention. pages 60 – 63.

Ganu, Gayatree, Noemie Elhadad, and Amelie Marian.
2009. Beyond the stars: Improving rating predictions
using review text content. In WebDB.

Hatzivassiloglou, Vasileios and Kathleen R. McKeown.
1997. Predicting the semantic orientation of adjec-
tives. In Proc. of the 35th Annual Meeting of the Asso-
ciation for Computational Linguistics. ACL, Madrid,
Spain, pages 174–181.

Hu, Minqing and Bing Liu. 2004. Mining and summariz-
ing customer reviews. In KDD ’04: Proc. of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining. ACM, New York, NY,
USA, pages 168–177.

Jijkoun, Valentin and Katja Hofmann. 2009. Generating a
non-english subjectivity lexicon: Relations that matter.
In Proc. of the 12th Conference of the European Chap-
ter of the ACL (EACL 2009). ACL, Athens, Greece,
pages 398–405.

Lange, Tilman, Volker Roth, Mikio L. Braun, and
Joachim M. Buhmann. 2004. Stability-based val-
idation of clustering solutions. Neural Comput.
16(6):1299–1323.

Lerman, Kevin, Sasha Blair-Goldensohn, and Ryan Mc-
Donald. 2009. Sentiment summarization: evaluating
and learning user preferences. In EACL ’09: Proc. of
the 12th Conference of the European Chapter of the
Association for Computational Linguistics. ACL, Mor-
ristown, NJ, USA, pages 514–522.

Levine, Erel and Eytan Domany. 2001. Resampling
method for unsupervised estimation of cluster validity.
Neural Comput. 13(11):2573–2593.

Mei, Qiaozhu, Xu Ling, Matthew Wondra, Hang Su, and
ChengXiang Zhai. 2007. Topic sentiment mixture:
modeling facets and opinions in weblogs. In WWW

’07: Proc. of the 16th international conference on
World Wide Web. ACM, New York, NY, USA, pages
171–180.

Niu, Zheng-Yu, Dong-Hong Ji, and Chew-Lim Tan. 2007.
I2r: three systems for word sense discrimination, chi-
nese word sense disambiguation, and english word
sense disambiguation. In SemEval ’07: Proc. of the
4th International Workshop on Semantic Evaluations.
ACL, Morristown, NJ, USA, pages 177–182.

Pang, Bo and Lillian Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with
respect to rating scales. In Proc. of the ACL. pages
115–124.

Pang, Bo and Lillian Lee. 2008. Opinion mining and sen-
timent analysis. Foundations and Trends in Informa-
tion Retrieval 2(1-2):1–135.

Pang, Bo, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up?: sentiment classification using ma-
chine learning techniques. In EMNLP ’02: Proc. of the
conference on Empirical methods in natural language
processing. ACL, Morristown, NJ, USA, pages 79–86.

Popescu, Ana-Maria and Oren Etzioni. 2005. Extract-
ing product features and opinions from reviews. In
HLT ’05: Proc. of the conference on Human Language
Technology and Empirical Methods in Natural Lan-
guage Processing. ACL, Morristown, NJ, USA, pages
339–346.

Snyder, Benjamin and Regina Barzilay. 2007. Multi-
ple aspect ranking using the good grief algorithm. In
Candace L. Sidner, Tanja Schultz, Matthew Stone, and
ChengXiang Zhai, editors, HLT-NAACL. The Associa-
tion for Computational Linguistics, pages 300–307.

Titov, Ivan and Ryan McDonald. 2008a. A joint model of
text and aspect ratings for sentiment summarization. In
Proc. of ACL-08: HLT . ACL, Columbus, Ohio, pages
308–316.

Titov, Ivan and Ryan McDonald. 2008b. Modeling online
reviews with multi-grain topic models. In WWW ’08:
Proc. of the 17th international conference on World
Wide Web. ACM, New York, NY, pages 111–120.

Turney, Peter. 2002. Thumbs up or thumbs down? se-
mantic orientation applied to unsupervised classifica-
tion of reviews. In Proc. of 40th Annual Meeting of
the Association for Computational Linguistics. ACL,
Philadelphia, Pennsylvania, USA, pages 417–424.

Zagibalov, Taras and John Carroll. 2008. Automatic seed
word selection for unsupervised sentiment classifica-
tion of chinese text. In COLING ’08: Proc. of the 22nd
International Conference on Computational Linguis-
tics. ACL, Morristown, NJ, USA, pages 1073–1080.

Zhu, X. and Z. Ghahramani. 2002. Learning from labeled
and unlabeled data with label propagation. Technical
report, CMU-CALD-02.

812

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 813–821,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Joint Inference for Knowledge Extraction from Biomedical Literature

Hoifung Poon∗
Dept. of Computer Sci. & Eng.

University of Washington
Seattle, WA 98195

hoifung@cs.washington.edu

Lucy Vanderwende
Microsoft Research

Redmond, WA 98052
Lucy.Vanderwende@microsoft.com

Abstract

Knowledge extraction from online reposito-
ries such as PubMed holds the promise of
dramatically speeding up biomedical research
and drug design. After initially focusing on
recognizing proteins and binary interactions,
the community has recently shifted their at-
tention to the more ambitious task of recogniz-
ing complex, nested event structures. State-of-
the-art systems use a pipeline architecture in
which the candidate events are identified first,
and subsequently the arguments. This fails
to leverage joint inference among events and
arguments for mutual disambiguation. Some
joint approaches have been proposed, but they
still lag much behind in accuracy. In this pa-
per, we present the first joint approach for bio-
event extraction that obtains state-of-the-art
results. Our system is based on Markov logic
and adopts a novel formulation by jointly pre-
dicting events and arguments, as well as indi-
vidual dependency edges that compose the ar-
gument paths. On the BioNLP’09 Shared Task
dataset, it reduced F1 errors by more than 10%
compared to the previous best joint approach.

1 Introduction

Extracting knowledge from unstructured text has
been a long-standing goal of NLP and AI. The ad-
vent of the World Wide Web further increases its
importance and urgency by making available an as-
tronomical number of online documents containing
virtually unlimited amount of knowledge (Craven et

∗ This research was conducted during the author’s intern-
ship at Microsoft Research.

al., 1999). A salient example domain is biomedical
literature: the PubMed1 online repository contains
over 18 million abstracts on biomedical research,
with more than two thousand new abstracts added
each day; the abstracts are written in grammatical
English, which enables the use of advanced NLP
tools such as syntactic and semantic parsers.

Traditionally, research on knowledge extraction
from text is primarily pursued in the field of in-
formation extraction with a rather confined goal of
extracting instances for flat relational schemas with
no nested structures (e.g, recognizing protein names
and protein-protein interaction (PPI)). This restric-
tion mainly stems from limitations in available re-
sources and algorithms. The BioNLP’09 Shared
Task (Kim et al., 2009) is one of the first that
faced squarely information needs that are complex
and highly structured. It aims to extract nested
bio-molecular events from research abstracts, where
an event may have variable number of arguments
and may contain other events as arguments. Such
nested events are ubiquitous in biomedical literature
and can effectively represent complex biomedical
knowledge and subsequently support reasoning and
automated discovery. The task has generated much
interest, with twenty-four teams having submitted
their results. The top system by UTurku (Bjorne et
al., 2009) attained the state-of-the-art F1 of 52.0%.

The nested event structures make this task partic-
ularly attractive for applying joint inference. By al-
lowing information to propagate among events and
arguments, joint inference can facilitate mutual dis-
ambiguation and potentially lead to substantial gain

1http://www.ncbi.nlm.nih.gov/pubmed

813

in predictive accuracy. However, joint inference is
underexplored for this task. Most participants ei-
ther reduced the task to classification (e.g., by using
SVM), or used heuristics to combine manual rules
and statistics. The previous best joint approach was
Riedel et al. (2009). While competitive, it still lags
UTurku by more than 7 points in F1.

In this paper, we present the first joint approach
that achieves state-of-the-art results for bio-event ex-
traction. Like Riedel et al. (2009), our system
is based on Markov logic, but we adopted a novel
formulation that models dependency edges in ar-
gument paths and jointly predicts them along with
events and arguments. By expanding the scope of
joint inference to include individual argument edges,
our system can leverage fine-grained correlations to
make learning more effective. On the development
set, by merely adding a few joint inference formu-
las to a simple logistic regression model, our system
raised F1 from 28% to 54%, already tying UTurku.

We also presented a heuristic method to fix errors
in syntactic parsing by leveraging available semantic
information from task input, and showed that this in
turn led to substantial performance gain in the task.
Overall, our final system reduced F1 error by more
than 10% compared to Riedel et al. (2009).

We begin by describing the shared task and re-
lated work. We then introduce Markov logic and our
Markov Logic Network (MLN) for joint bio-event
extraction. Finally, we present our experimental re-
sults and conclude.

2 Bio-Event Extraction

We follow the BioNLP’09 Shared Task (Kim et
al., 2009) on problem setup for bio-event extrac-
tion. A bio-molecular event (bio-event) refers to
the change of state for bio-molecules such as DNAs
and proteins. The goal is to extract these events
from unstructured text such as biomedical abstracts.
For each event, one needs to identify the trigger
words that signifies the event and the theme argu-
ments that undergo the change. In addition, for
regulation events, the cause argument also needs to
be identified if it is present. The task considers
nine event types: Expression, Transcription,
Localization, Phosphorylation, Catabolism,
Binding, Regulation, Positive regulation,

and Negative regulation. Only Binding can
take multiple themes. Regulation events may take
events as arguments. To facilitate evaluation, the
task fixes the type of non-event arguments to pro-
tein and provides ground truth of protein mentions
as input. 2

Like any NLP task, ambiguity is a central prob-
lem. The same event can be expressed in many
variations. For example, a Negative regulation
event may be signified by “inhibition”, “down-
regulation”, “is abrogated by”, to name a few. On
the other hand, depending on the context, the same
expression may represent different events. For ex-
ample, “level” may signify any one of five event
types in the training set, or signify none.

In addition, the nested event structures present
new challenges to knowledge extraction systems. To
recognize a complex event, besides from identifying
the event type and trigger words, one also needs to
identify its arguments and recursively identify their
event structures. A mistake in any part will render a
failure in this extraction.

The interdependencies among events and argu-
ments naturally argue for joint predictions. For
example, given the snippet “the level of VCAM-
1 mRNA”, knowing that “level” might signify an
event helps to recognize the prepositional phrase
(PP) as its theme. Conversely, the presence of the
PP suggests that “level” is likely an event. More-
over, the word “mRNA” in the PP indicates that the
event type is probably Transcription.

Most existing systems adopt a pipeline architec-
ture and reduce the task to independent classifica-
tions of events and arguments. For example, the best
system UTurku (Bjorne et al., 2009) first extracts a
list of candidate triggers with types, and then deter-
mines for each pair of candidate triggers or proteins
whether one is a theme or cause of the other. The
triggers missed in the first stage can never be recov-
ered in the second one. Moreover, since the second
stage is trained with gold triggers as input, any trig-
ger identified in the first stage tends to get at least

2The Shared Task also defines two other tasks (Tasks 2 and
3), which aim either to extract additional arguments (e.g., sites),
or to determine if an event is a negation or speculation. In this
paper, we focus on the core task (Task 1) as it is what most sys-
tems participate in, but our approach can be extended straight-
forwardly to handle the other tasks.

814

one argument, even though it may not be an event at
all. As a result, the authors had to use an ad hoc pro-
cedure to trade off precision and recall for the final
prediction task while training the first-stage extrac-
tor. In addition, each trigger or argument is classified
independently using a multi-class SVM.

While joint inference can potentially improve ac-
curacy, in practice, it is often very challenging to
make it work (Poon and Domingos, 2007). The pre-
vious best joint approach for this task was proposed
by Riedel et al. (2009) (labeled UT+DBLS in Kim
et al. (2009)). Their system is also based on Markov
logic (Domingos and Lowd, 2009). While compet-
itive (ranked fourth in the evaluation), their system
still lags UTurku by more than 7 points in F1.

Most systems, Riedel et al.’s included, classify
each candidate argument path as a whole. A notable
exception is the UTokyo system (Saetre et al., 2009),
which incorporated sequential modeling by adapt-
ing a state-of-the-art PPI system based on MEMM.
But they considered adjacent words in the sentence,
which offered little help in this task, and their system
trailed UTurku by 15 points in F1.

All top systems for event extraction relied heav-
ily on syntactic features. We went one step further
by formulating joint predictions directly on depen-
dency edges. While this leverages sequential corre-
lation along argument paths, it also makes our sys-
tem more prone to the adverse effect of syntactic
errors. Joint syntactic and semantic processing has
received much attention lately (Hajic et al., 2009).
In this paper, we explore using a heuristic method
to correct syntactic errors based on semantic infor-
mation, and show that it leads to significant perfor-
mance gain for event extraction.

3 Markov Logic

In many NLP applications, there exist rich relation
structures among objects, and recent work in statisti-
cal relational learning (Getoor and Taskar, 2007) and
structured prediction (Bakir et al., 2007) has shown
that leveraging these can greatly improve accuracy.
One of the leading frameworks for joint inference
is Markov logic, a probabilistic extension of first-
order logic (Domingos and Lowd, 2009). A Markov
logic network (MLN) is a set of weighted first-order
clauses. Together with a set of constants, it defines a

Markov network with one node per ground atom and
one feature per ground clause. The weight of a fea-
ture is the weight of the first-order clause that gener-
ated it. The probability of a state x in such a network
is given by P (x) = (1/Z) exp (

∑
iwifi(x)), where

Z is a normalization constant,wi is the weight of the
ith clause, fi = 1 if the ith clause is true, and fi = 0
otherwise.

Markov logic makes it possible to compactly
specify probability distributions over complex re-
lational domains. Efficient inference can be per-
formed using MC-SAT (Poon and Domingos, 2006).
MC-SAT is a “slice sampling” Markov chain Monte
Carlo algorithm that uses an efficient satisfiability
solver to propose the next sample. It is orders of
magnitude faster than previous MCMC algorithms
like Gibbs sampling, making efficient sampling pos-
sible on a scale that was previously out of reach.

Supervised learning for Markov logic maximizes
the conditional log-likelihood of query predicates
given the evidence in the train data. This learning
objective is convex and can be optimized using gra-
dient descent, where the gradient is estimated using
MC-SAT.

In practice, it is often difficult to tune the learn-
ing rate, especially when the number of ground-
ings varies widely among clauses (known as ill-
conditioning in numerical optimization). This prob-
lem is particularly severe in relational domains. One
remedy is to apply preconditioning to the gradient.
For example, Poon & Domingos (2007) divided the
global learning rate by the number of true ground-
ings of the corresponding clause in the training data,
whereas Lowd & Domingos (2007) divided it by the
variance of the clause (also estimated using MC-
SAT). The latter can be viewed as approximating
the Hessian with its diagonal, and is guaranteed op-
timal when the weights are not correlated (e.g., in
logistic regression). Lowd & Domingos (2007) also
used a scaled conjugate gradient algorithm to incor-
porate second-order information and further adapt
the search direction.

The open-source Alchemy package (Kok et al.,
2009) provides implementations of existing algo-
rithms for Markov logic.

815

4 An MLN for Joint Bio-Event Extraction

In this section, we present our MLN for joint bio-
event extraction. As standard for this task, we as-
sume that Stanford dependency parses are available
in the input. Our MLN jointly makes the following
predictions: for each token, whether it is a trigger
word (and if so, what is the event type), and for each
dependency edge, whether it is in an argument path
leading to a theme or cause.

To the best of our knowledge, the latter part makes
this formulation a novel one. By breaking the pre-
diction of an argument path into that on individual
dependency edges, it can leverage the correlation
among adjacent edges and make learning more ef-
fective. Indeed, compared to other top systems, our
MLN uses a much simpler set of features, but is still
capable of obtaining state-of-the-art results.3 Com-
putationally, this formulation is also attractive. The
number of predictions is bounded by the number of
tokens and edges, and is linear in sentence length,
rather than quadratic.

Our MLN also handles the regulation events
differently. We notice that events of the three
regulation types often occur in similar contexts, and
sometimes share trigger words (e.g., “involve”).
Therefore, our MLN merges them into a single
event type Regulation, and additionally predicts
the regulation direction (Positive or Negative).
This allows it to pool information shared by the
three types.

Base MLN: The following are the main query pred-
icates we used, along with descriptions:

Event(i): token i signifies an event;

EvtType(i, e): i is of event type e;

RegType(i, r): i is of regulation type r;

InArgPath(i, j, a): the dependency edge from i
to j is in an argument path of type a, with a
being either Theme or Cause.

If event i has type Positive regulation,
both EvtType(i, Regulation) and
RegType(i, Positive) are true. Similarly
for Negative regulation. If the type is

3In future work, we plan to incorporate a much richer set of
features; Markov logic makes such extensions straightforward.

Table 1: Formulas in the base MLN.

Token(i,+t)⇒ EvtType(i,+e)
Token(i,+t)⇒ RegType(i,+r)

Token(j,+t) ∧ Dep(i, j, d)⇒ EvtType(i,+e)
Dep(i, j,+d)⇒ InArgPath(i, j,+a)

Dep(i, j,+d) ∧ Prot(i)⇒ InArgPath(i, j,+a)
Dep(i, j,+d) ∧ Prot(j)⇒ InArgPath(i, j,+a)

Token(i,+t) ∧ Dep(i, j,+d)⇒ InArgPath(i, j,+a)
Token(j,+t) ∧ Dep(i, j,+d)⇒ InArgPath(i, j,+a)

Regulation, only EvtType(i, Regulation) is
true.

The main evidence predicates are:

Token(i, w): token i has word w;

Dep(i, j, d): there is a dependency edge from i to
j with label d; 4

Prot(i): i is a protein.

Our base MLN is a logistic regression model, and
can be succintly captured by eight formulas in Ta-
ble 1. All free variables are implicitly universally
quantified. The “+” notation signifies that the MLN
contains an instance of the formula, with a separate
weight, for each value combination of the variables
with a plus sign. The first three formulas predict
the event type and regulation direction based on the
token word or its neighbor in the dependency tree.
The next five formulas predict whether a depen-
dency edge is in an argument path, based on some
combinations of token word, dependency label, and
whether the nodes are proteins.

By default, we also added the unit formulas:
Theme(x, y), Cause(x, y), EventType(x,+e),
RegType(x,+r), which capture default regularities.

Joint Inference: Like any classification system, the
formulas in the base MLN make independent predic-
tions at inference time. This is suboptimal, because
query atoms are interdependent due to either hard
constraints (e.g., an event must have a type) or soft
correlation (e.g., “increase” signifies an event and
the dobj edge from it leads to a theme). We thus

4For convenience, we include the reverse dependency edges
in the evidence. For example, if Dep(i, j, nn) is true, then so is
Dep(j, i,−nn).

816

augment the base MLN with two groups of joint-
inference formulas. First we incorporate the follow-
ing hard constraints.

Event(i)⇒ ∃t. EvtType(i, t)

EvtType(i, t)⇒ Event(i)

RegType(i, r)⇒ EvtType(i, Regulation)

InArgPath(i, j, Theme)⇒ Event(i)
∨ ∃ k 6= j. InArgPath(k, i, Theme)

InArgPath(i, j, Cause)
⇒ EvtType(i, Regulation)

∨ ∃ k 6= j. InArgPath(k, i, Cause)

InArgPath(i, j, Theme)⇒ Prot(j)
∨ ∃ k 6= i. InArgPath(j, k, Theme)

InArgPath(i, j, Cause)⇒ Event(j) ∨ Prot(j)
∨ ∃ k 6= i. InArgPath(j, k, Cause)

The first three formulas enforce that events must
have a type, that a token assigned an event (regula-
tion) type must be an (regulation) event. The next
four formulas enforce the consistency of argument
path assignments: an argument path must start with
an event, in particular, a cause path must start with a
regulation event; a theme path must eventually trace
to a protein, whereas a cause path may also stop at
an event (which does not have a cause itself). To
avoid looping, we forbid reverse edges in a path.5

Notice that with these constraints, adjacent edges
in the dependency tree correlate with each other
in their InArgPath assignments, much like in an
HMM for linear sequences. Moreover, these assign-
ments correlate with the event and event-type ones;
knowing that i probably signifies an event makes it
easier to detect an argument path, and vice versa.
In addition, events that share partial argument paths
can inform each other through the predictions on
edges. In the experiments section, we will see that
merely adding these hard constraints leads to 26-
point gain in F1.

We also notice that different trigger words may
use different dependencies to start an argument path
of a particular type. For example, for many verbs,
nsubj tends to start a cause path and dobj a theme

5This is violated in some cases, and can be relaxed. We
enforced it for simplicity in this paper.

path. However, for “bind” that signifies a Binding
event, both lead to themes, as in “A binds B”.
Such soft regularities can be captured by a single
joint formula: Token(i,+w) ∧ Dep(i, j,+d) ⇒
Event(i)∧ InArgPath(i, j,+a), which correlates
event and argument type with token and dependency.

Linguistically-Motivated Formulas: Natural lan-
guages often possess systematic syntactic alterna-
tions. For example, for the word “increase”, if both
subject and object are present, as in “A increases
the level of B”, the subject is the cause whereas
the object is the theme. However, if only sub-
ject is present, as in “The level of B increases”,
the subject is the theme. We thus augment the
MLN with a number of context-specific formulas
such as: Token(i, increase)∧ Dep(i, j, nsubj)∧
Dep(i, k, dobj) ∧ Event(i) ∧ Cause(i, j).6

5 Learning And Inference

When training data comprises of many independent
subsets (e.g., individual abstracts), stochastic gradi-
ent descent (SGD) is often a favorable method for
parameter learning. By adopting small and frequent
updates, it can dramatically speed up learning and
sometimes even improve accuracy. Moreover, it eas-
ily scales to large datasets since each time it only
needs to bring a few subsets into the memory.

In this paper, we used SGD to learn weights for
our MLN. During this process, we discovered some
general challenges for applying SGD to relational
domains. For example, the ill-conditioning problem
is particularly severe, and using a single learning
rate either makes learning extremely slow or leads
to divergence. Like Lowd & Domingos (2007),
we combat this by dividing the learning rate by the
variance. However, this still leads to divergence as
learning progresses. The reason is that some weights
are strongly correlated due to the joint formulas, es-
pecially the hard constraints. Therefore, the diag-
onal approximates the Hessian poorly. Inspired by
Poon & Domingos (2007), for each formula, we
count the numbers of true and false groundings in
the train data, and add the smaller of the two plus one
to the variance, before dividing the global rate by it.

6Available at http://research.microsoft.com/-
en-us/people/lucyv/naacl10.

817

We found that this is effective for making learning
stable in our experiments.

To compute the most probable state, we used MC-
SAT to estimate the marginal probability of each
query atom, and returned the ones with probability
above a threshold. This allows us to easily trade off
precision and recall by varying the threshold. To
speed up burn-in, we followed Poon et al. (2009)
and first ran MC-SAT with deterministic annealing
for initialization.

6 Correcting Syntactic Errors With
Semantic Information

Two typical types of syntactic errors are PP-
attachment and coordination. For semantic tasks
such as bio-event extraction, these errors also have
the most adverse impact to performance. For ex-
ample, for the snippet “involvement of p70 acti-
vation in IL-10 up-regulation by gp41”, the Stan-
ford parser makes two errors by attaching “up-
regulation” to “activation” instead of “involvement”,
and attaching “gp41” to “involvement” instead of
“up-regulation”. This makes it very difficult to pre-
dict that “gp41” is the cause of “up-regulation”,
and that “up-regulation” is the theme of “involve-
ment”. For conjucts such as “IL-2 and IL-4 ex-
pressions”, the parser will align “IL-2” with “ex-
pressions”, which makes it difficult to recognize the
expression event on “IL-2”. For nested events like
“gp41 regulates IL-2 and IL-4 expressions”, this re-
sults in three extraction errors: IL-2 expression and
the regulation event on it are missing, whereas an
erroneous regulation event on IL-2 is predicted.

Syntactic errors are often incurred due to lack
of semantic information during parsing (e.g., the
knowledge that IL-2 and IL-4 are both proteins). In
this paper, we used a heuristic method to fix such
errors by incorporating two sources of semantic in-
formation: argument paths in training data and in-
put protein labels. For conjuncts (signified by prefix
conj in Stanford dependencies) between a protein
and a non-protein, we check whether the non-protein
has a protein child, if so, we remove the conjunct and
reattach the first protein to the non-protein. For PP-
attachments, we notice that often the errors can be
fixed by reattaching the child to the closest node that
fits a known attachment pattern (e.g., “up-regulation

by PROTEIN”). We used the following heuristics to
gather attachment patterns. For each argument path
in the training data, if it consists of a single PP edge,
then we add the combination of governor, depen-
dency label, and dependent to the pattern. (Protein
names are replaced with a special string.) If a path
contains multiple edges, but a PP edge attaches to a
word to the left of the event trigger (e.g., “gp41” at-
tached to “involvement”), our system concludes that
the dependent should instead be attached to the trig-
ger and adds the corresponding pattern. In addition,
we added a few default patterns like “involvement
in” and “effect on”. For each PP edge, the candi-
dates for reattachment include the current governor,
and the governor’s parent and all rightmost descen-
dants (i.e., its rightmost child, the rightmost child of
that child, etc.) that are to the left of the dependent.
We reattach the dependent to the closest candidate
that fits an attachment pattern. If there is none, the
attachment remains unchanged. In total, the fraction
of reattachments is about 4%.

7 Experiments

We evaluated our system on the dataset for Task 1
in the BioNLP’09 Shared Task (Kim et al., 2009).
It consists of 800 abstracts for training, 150 for de-
velopment and 260 for test. We conducted feature
development and tuned hyperparameters using the
development set, and evaluated our final system on
test using the online tool provided by the organizers.
(The test annotations are not released to the public.)
All results reported were obtained using the main
evaluation criteria for the shared task.7

7.1 System

Our system first carries out lemmatization and
breaks up hyphenated words.8 It then uses the Stan-
ford parser (de Marneffe et al., 2006) to generate de-
pendencies. For simplicity, if an event contains mul-
tiple trigger words, only the head word is labeled.9

7Namely, “Approximate Span/Approximate Recursive
Matching”. See Kim et al. (2009) for details.

8E.g., “gp41-induced” becomes “gp41” and “induced”, with
a new dependency edge labeled hyphen from “induced” to
“gp41”. To avoid breaking up protein names with hyphens, we
only dehyphenate words with suffix in a small hand-picked list.

9Most events have only one trigger, and the chosen words
only need to lie within an approximate span in evaluation.

818

Table 2: Comparison of our full system with its variants
and with UTurku on the development set.

Rec. Prc. F1
BASE 17.4 67.2 27.7
BASE+HARD 49.4 58.5 53.6
FULL 51.5 60.0 55.5
−LING 50.5 59.6 54.7
−SYN-FIX 48.2 54.6 51.2

UTurku 51.5 55.6 53.5

We implemented our system as an extension to the
Alchemy system (Kok et al., 2009). In particular, we
developed an efficient parallelized implementation
of our stochastic gradient descent algorithm using
the message-passing interface (MPI). For learning,
we used a mini-batch of 20 abstracts and iterated
through the training files twice. For each mini-batch,
we estimated the gradient by running MC-SAT for
300 samples; the initialization was done by running
annealed MC-SAT for 200 samples, with tempera-
ture dropping from 10 to 0.1 at 0.05 decrements.
For inference, we initialized MC-SAT with 1000 an-
nealed samples, with temperature dropping from 10
to 0.1 at 0.01 decrements, we then ran MC-SAT for
5000 samples to compute the marginal probabilities.
This implementation is very efficient: learning took
about 20 minutes in a 32-core cluster with 800 train-
ing files; inference took a few minutes in average.

To obtain the final assignment, we set the query
atoms with probability no less than 0.4 to true and
the rest to false. The threshold is chosen to max-
imize F1 in the development set. To generate the
events, we first found arguments for each trigger i
by gathering all proteins and event triggers that were
accessible from i along an argument path without
first encountering another trigger. For triggers of
base event types, we dropped other triggers from
its argument list. For nested triggers, we generated
events recursively by first processing argument trig-
gers and generating their events, and then generating
events for the parent trigger by including all combi-
nations of argument events. For Binding triggers,
we group its arguments by the first dependency la-
bels in the argument paths, and generate events by a
cross-product of the group members.

Table 3: Per-type recall/precision/F1 for our full system
on the development set.

Rec. Prc. F1
Expression 75.6 79.1 77.3
Transcription 69.5 73.1 71.3
Phosphorylation 87.2 87.2 87.2
Catabolism 85.7 100 92.3
Localization 66.0 85.4 74.5
Binding 39.1 61.8 47.9
Positive regulation 41.8 51.0 46.0
Negative regulation 39.3 56.2 46.3
Regulation 41.4 33.2 36.8

7.2 Results
We first conducted experiments on the develop-
ment set to evaluate the contributions of individual
components. Table 2 compares their performances
along with that of UTurku. The base MLN (BASE)
alone performed rather poorly. Surprisingly, by just
adding the hard constraints to leverage joint infer-
ence (BASE+HARD), our system almost doubled
the F1, and tied UTurku. In addition, adding the
soft joint-inference formula results in further gain,
and our full system (FULL) attained an F1 of 55.5.
This is two points higher than UTurku and the best
reported result on this dataset. The linguistically-
motivated formulas are beneficial, as can seen by
comparing with the system without them (−LING),
although the difference is small. Fixing the syntactic
errors with semantic information, on the other hand,
leads to substantial performance gain. Without do-
ing it (−SYN-FIX), our system suffers an F1 loss of
more than four points. This verifies that the quality
of syntactic analysis is important for event extrac-
tion. The differences between FULL and other vari-
ants (except -LING) are all statistically significant at
1% level using McNemar’s test.

To understand the performance bottlenecks, we
show the per-type results in Table 3 and the re-
sults at the predicate level in Table 4.10 Both trig-
ger and argument-edge detections leave much room
for improvement. In particular, the system pro-
posed many incorrect regulation triggers, partly be-
cause regulation triggers have the most variations

10Numbers in Table 3 refer to events, whereas in Table 4 to
triggers. A trigger may signify multiple events, so numbers in
Table 4 can be smaller than that in Table 3.

819

Table 4: Predicate recall/precision/F1 for our full system
on the development set.

Rec. Prc. F1
Expression 80.1 82.0 81.0
Transcription 68.8 71.0 69.8
Phosphorylation 87.5 92.1 89.7
Catabolism 84.2 100 91.4
Localization 62.5 86.2 72.5
Binding 62.4 82.4 71.1
Positive regulation 65.8 70.7 68.2
Negative regulation 58.3 71.7 64.3
Regulation 61.7 43.4 50.9
All triggers 68.1 71.7 69.9
Argument edge 69.0 71.8 70.4

Table 5: Comparison of our full system with top systems
on the test set.

Rec. Prc. F1
UTurku 46.7 58.5 52.0
JULIELab 45.8 47.5 46.7
ConcordU 35.0 61.6 44.6
Riedel et al. 36.9 55.6 44.4
FULL MLN 43.7 58.6 50.0

among all types. Our system did well in recognizing
Binding triggers, but performed much poorer at the
event level. This indicates that the bottleneck lies in
correctly identifying all arguments for multi-theme
events. Indeed, if we evaluate on individual event-
theme pairs for Binding, the F1 jumps 15 points to
62.8%, with precision 82.7% and recall 50.6%.

Finally, Table 5 compares our system with the top
systems on the test set. Our system trailed UTurku
due to a somewhat lower recall, but substantially
outperformed all other systems. In particular, it re-
duced F1 error by more than 10% compared to the
previous best joint approach by Riedel et al. (2009).

7.3 Error Analysis
Through manual inspection, we found that many re-
maining errors were related to syntactic parses. The
problem is particularly severe when there are nested
or co-occuring PP-attachments and conjuncts (e.g.,
“increased levels of IL-2 and IL-4 mRNA and pro-
tein in the cell”). Our rule-based procedure in Sec-
tion 6 has high precision in fixing some of these er-
rors, but the coverage is limited. It also makes hard

decisions in a preprocessing step, which cannot be
reverted. A principled solution is to resolve syntactic
and semantic ambiguities in a joint model that inte-
grates reattachment decisions and extractions. This
can potentially resolve more syntactic errors, as ex-
traction makes more semantic information available,
and is more robust to reattachment uncertainty.

In some challenging cases, we found further op-
portunities for joint inference. For example, in the
sentence “These cells are deficient in FasL expres-
sion, although their cytokine IL-2 production is nor-
mal”, “normal” signifies a Positive regulation
event over “IL-2 production” because of its contrast
with “deficient”. Such events can be detected by in-
troducing additional joint inference rules that lever-
age syntactic structures such as subclauses.

We also found many cases where the annota-
tions differ for the same expressions. For ex-
ample, “cotransfection with PROTEIN” is some-
times labeled as both an Expression event and a
Positive regulation event, and sometimes not
labeled at all. This occurs more often for regulation
events, which partly explains the low precision for
them.

8 Conclusion

This paper presents the first joint approach for bio-
event extraction that achieves state-of-the-art results.
This is made possible by adopting a novel formula-
tion that jointly predicts events, arguments, as well
as individual dependency edges in argument paths.
Our system is based on Markov logic and can be
easily extended to incorporate additional knowledge
and linguistic features to further improve accuracy.

Directions for future work include: leveraging ad-
ditional joint-inference opportunities, better integra-
tion of syntactic parsing and event extraction, and
applying this approach to other extraction tasks and
domains.

9 Acknowledgements

We give warm thanks to Sebastian Riedel and three
anonymous reviewers for helpful comments and
suggestions.

820

References
G. Bakir, T. Hofmann, B. B. Schölkopf, A. Smola,

B. Taskar, S. Vishwanathan, and (eds.). 2007. Pre-
dicting Structured Data. MIT Press, Cambridge, MA.

Jari Bjorne, Juho Heimonen, Filip Ginter, Antti Airola,
Tapio Pahikkala, and Tapio Salakoski. 2009. Extract-
ing complex biological events with rich graph-based
feature sets. In Proceedings of the BioNLP Workshop
2009.

Mark Craven, Dan DiPasquo, Dayne Freitag, Andrew
McCallum, Tom Mitchell, Kamal Nigam, and Sean
Slattery. 1999. Learning to construct knowledge bases
from the world wide web. Artificial Intelligence.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed
dependency parses from phrase structure parses. In
Proceedings of the Fifth International Conference on
Language Resources and Evaluation, pages 449–454,
Genoa, Italy. ELRA.

Pedro Domingos and Daniel Lowd. 2009. Markov
Logic: An Interface Layer for Artificial Intelligence.
Morgan & Claypool, San Rafael, CA.

Lise Getoor and Ben Taskar, editors. 2007. Introduction
to Statistical Relational Learning. MIT Press, Cam-
bridge, MA.

Jan Hajic, Massimiliano Ciaramita, Richard Johansson,
Daisuke Kawahara, Maria Antonia Martii, Lluis Mar-
quez, Adam Meyers, Joakim Nivre, Sebastian Pado,
Jan Stepanek, Pavel Stranak, Mihai Surdeanu, Nian-
wen Xue, and Yi Zhang. 2009. The CoNLL-2009
Shared Task: syntactic and semantic dependencies
in multiple languages. In Proceedings of the Thir-
teenth Conference on Computational Natural Lan-
guage Learning: Shared Task.

Jin-Dong Kim, Tomoko Ohta, Sampo Pyysalo, Yoshi-
nobu Kano, and Junichi Tsujii. 2009. Overview of
BioNLP-09 Shared Task on event extraction. In Pro-
ceedings of the BioNLP Workshop 2009.

Stanley Kok, Parag Singla, Matt Richardson, Pedro
Domingos, Marc Sumner, Hoifung Poon, and Daniel
Lowd. 2009. The alchemy system for statistical re-
lational ai. Technical report, Dept. of CSE, Univ. of
Washington, http://alchemy.cs.washington.edu/.

Daniel Lowd and Pedro Domingos. 2007. Efficient
weight learning for markov logic networks. In Pro-
ceedings of the Eleventh European Conference on
Principles and Practice of Knowledge Discovery in
Databases, pages 200–211, Warsaw. Springer.

Hoifung Poon and Pedro Domingos. 2006. Sound and
efficient inference with probabilistic and determinis-
tic dependencies. In Proceedings of the Twenty First
National Conference on Artificial Intelligence, pages
458–463, Boston, MA. AAAI Press.

Hoifung Poon and Pedro Domingos. 2007. Joint infer-
ence in information extraction. In Proceedings of the
Twenty Second National Conference on Artificial In-
telligence, pages 913–918, Vancouver, Canada. AAAI
Press.

Hoifung Poon, Colin Cherry, and Kristina Toutanova.
2009. Unsupervised morphological segmentation with
log-linear models. In Proceedings of NAACL-HLT,
Boulder, Colorado. ACL.

Sebastian Riedel, Hong-Woo Chun, Toshihisa Takagi,
and Junichi Tsujii. 2009. A markov logic approach
to bio-molecular event extraction. In Proceedings of
the BioNLP Workshop 2009.

Rune Saetre, Makoto Miwa, Kazuhiro Yoshida, and Ju-
nichi Tsujii. 2009. From protein-protein interaction
to molecular event extraction. In Proceedings of the
BioNLP Workshop 2009.

821

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 822–830,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Clinical Information Retrieval using Document and PICO Structure

Florian Boudin and Jian-Yun Nie
DIRO, Université de Montréal

CP. 6128, succursale Centre-ville
Montréal, H3C 3J7 Québec, Canada

{boudinfl,nie}@iro.umontreal.ca

Martin Dawes
Department of Family Medicine

McGill University, 515 Pine Ave W
Montréal, H2W 1S4 Québec, Canada
martin.dawes@mcgill.ca

Abstract

In evidence-based medicine, clinical questions
involve four aspects: Patient/Problem (P), In-
tervention (I), Comparison (C) and Outcome
(O), known as PICO elements. In this pa-
per we present a method that extends the lan-
guage modeling approach to incorporate both
document structure and PICO query formu-
lation. We present an analysis of the distri-
bution of PICO elements in medical abstracts
that motivates the use of a location-based
weighting strategy. In experiments carried out
on a collection of 1.5 million abstracts, the
method was found to lead to an improvement
of roughly 60% in MAP and 70% in P@10 as
compared to state-of-the-art methods.

1 Introduction

As the volume of published medical literature con-
tinues to grow exponentially, there is more and more
research for physicians to assess and evaluate and
less time to do so. Evidence-based medicine (EBM)
(Sackett et al., 1996) is a widely accepted paradigm
in medical practice that relies on evidence from
patient-centered clinical research to make decisions.
Taking an evidence-based approach to searching
means doing a systematic search of all the available
literature, individually critically appraising each re-
search study and then applying the findings in clini-
cal practice. However, this is a time consuming ac-
tivity. One way to facilitate searching for a precise
answer is to formulate a well-focused and structured
question (Schardt et al., 2007).

Physicians are educated to formulate their clinical
questions according to several well defined aspects
in EBM: Patient/Problem (P), Intervention (I),

Comparison (C) and Outcome (O), which are called
PICO elements. In many documents in medical lit-
erature (e.g. MEDLINE), one can find the elements
of the PICO structure, but rarely explicitly anno-
tated (Dawes et al., 2007). To identify documents
corresponding to a patient’s state, physicians also
construct their queries according to the PICO struc-
ture. For example, in the question “In children with
pain and fever how does paracetamol compared
with ibuprofen affect levels of pain and fever?” one
can identify the following PICO elements:

Patient/Problem: children/pain and fever
Intervention: paracetamol
Comparison: ibuprofen
Outcome: levels of pain and fever

Very little work, if any, has been carried out on the
use of these elements in the Information Retrieval
(IR) process. There are several reasons for that. It
is not easy to identify PICO elements in documents,
as well as in the question if these are not explicitly
separated in it. Several studies have been performed
on identifying PICO elements in abstracts (Demner-
Fushman and Lin, 2007; Hansen et al., 2008; Chung,
2009). However, all of them are reporting coarse-
grain (sentence-level) tagging methods that have not
yet been shown to be sufficient for the purpose of
IR. Moreover, there is currently no standard test col-
lection of questions in PICO structure available for
evaluation. On the other hand, the most critical as-
pect in IR is term weighting. One of the purpose
of tagging PICO elements is to assign appropriate
weights to these elements during the retrieval pro-
cess. From this perspective, a semantic tagging of
PICO elements may be a task that goes well beyond

822

that is required for IR. It may be sufficient to have
a method that assigns appropriate weights to ele-
ments rather than recognizing their semantic roles.
In this paper, we will propose an approach to deter-
mine term weights according to document structure.
This method will be compared to that using tagging
of PICO elements.

In this paper, we first report an attempt to manu-
ally annotate the PICO elements in documents by
physicians and use them as training data to build
an automatic tagging tool. It turns out that there
is a high disagreement rate between human anno-
tators. The utilization of the automatic tagging tool
in an IR experiment shows only a small gain in re-
trieval effectiveness. We therefore propose an alter-
native to PICO element detection that uses the struc-
tural information of documents. This solution turns
out to be robust and effective. The alternative ap-
proach is motivated by a strong trend that we ob-
serve in the distribution of PICO elements in docu-
ments. We then make use of both PICO query and
document structure to extend the classical language
modeling approach to IR. Specifically, we investi-
gate how each element of a PICO query should be
weighted and how a location-based weighting strat-
egy can be used to emphasize the most informative
parts (i.e. containing the most PICO elements) of
documents.

The paper is organized as follows. We first briefly
review the previous work, followed by a description
of the method we propose. Next, we present our
experiments and results. Lastly, we conclude with a
discussion and directions for future work.

2 Related work

There have been only a few studies trying to use
PICO elements in the retrieval process. (Demner-
Fushman and Lin, 2007) is one of the few such stud-
ies. The method they describe consists in re-ranking
an initial list of retrieved citations. To this end, the
relevance of a document is scored by the use of de-
tected PICO elements, among other things. Several
other studies aimed to build a Question-Answering
system for clinical questions (Demner-Fushman and
Lin, 2006; Andrenucci, 2008). But again, the focus
has been set on the post-retrieval step, while the doc-
ument retrieval step only uses a standard approach.

In this paper, we argue that IR has much to gain by
using PICO elements.

The task of identifying PICO elements has how-
ever gain more attention. In their paper, (Demner-
Fushman and Lin, 2007) presented a method that
uses either manually crafted pattern-matching rules
or a combination of basic classifiers to detect PICO
elements in medical abstracts. Prior to that, biomed-
ical concepts are labelled by Metamap (Aronson,
2001) while relations between these concepts are
extracted with SemRep (Rindflesch and Fiszman,
2003). Recently, supervised classification using
Support Vector Machines (SVM) was proposed by
(Hansen et al., 2008) to extract the number of trial
participants. In a later study, (Chung, 2009) ex-
tended this work to other elements using Conditional
Random Fields. Although these studies are report-
ing interesting results, they are limited in several as-
pects. First, many are restricted to some segments
of the medical documents (e.g. Method section)
(Chung, 2009), and in most cases, the test collection
is very small (a few hundreds abstracts). Second, the
precision and granularity of these methods have not
yet been shown to be sufficient for the purpose of IR.

The structural information provided by markup
languages (e.g. XML) has been successfully used
to improve the IR effectiveness (INEX, 2002 2009).
For such documents, the structure information can
be used to emphasize some particular parts of the
document. Thereby, a given word should not have
the same importance depending on its position in the
document structure.

Taking into account the structure can be done ei-
ther at the step of querying or at the step of index-
ing. One way to integrate the structure at querying
is to adapt query languages (Fuhr and Großjohann,
2001). These approaches follow the assumption that
the user knows where the most relevant information
is located. However, (Kamps et al., 2005) showed
that it is preferable to use structure as a search hint,
and not as a strict search requirement

The second approach consists in integrating the
document structure at the indexing step by introduc-
ing a structure weighting scheme (Wilkinson, 1994).
In such a scheme, the weight assigned to a word is
not only based on its frequency but also on its posi-
tion in the document. The structure of a document
can be defined in terms of tags (e.g. title, section),

823

each of those having a weight chosen either empiri-
cally or automatically by the use of optimizing tech-
niques such as genetic algorithms (Trotman, 2005).

3 Using PICO elements in retrieval

In this section, we present an experiment on the
manual annotation of PICO elements. We then de-
scribe an approach to detect these elements in doc-
uments and give some results on the use of these
tagged elements in the retrieval process.

3.1 Manual annotation of PICO elements

We asked medical professionals to manually anno-
tate the PICO elements in a small collection of ab-
stracts from PubMed1. The instructions given to
the annotators were fairly simple. They were asked
to precisely annotate all PICO elements in abstracts
with no restriction about the size of the elements (i.e.
they could be words, phrases or sentences). More
than 50 abstracts were manually annotated this way
by at least two different annotators. Two annotations
by two annotators are considered to agree if they
share some words (i.e. they overlap). We computed
the well known Cohen’s kappa measure as well as an
ad-hoc measure called loose. The latter uses PICO
elements as units and estimates the proportion of el-
ements that have been annotated by both raters.

Measure P-element I/C-element O-element

kappa 0.687 0.539 0.523
loose 0.363 0.136 0.140

Table 1: Agreement measures computed for each ele-
ment. Cohen’s kappa and loose agreement are presented.

We can observe that there is a very low agree-
ment rate between human annotators. The loose
measure indicates that less than 15% of the I, C and
O elements have been marked by both annotators.
This fact shows that such human annotations can be
hardly used to develop an automatic tagging tool for
PICO elements, which requires consistent training
data. We therefore try to develop a coarser-grained
tagging method.

1www.pubmed.gov, PubMed is a service of the US Na-
tional Library of Medicine that includes over 19 million cita-
tions from MEDLINE and other life science journals.

3.2 Automatic detection of PICO elements

Similarly to previous work, we propose a sentence-
level detection method. The identification of PICO
elements can be seen as a classification task. Even
for a coarser-grain classification task, we are still
lack of annotated data. One solution is to use the
structural information embedded in some medical
abstracts for which the authors have clearly stated
distinctive sentence headings. Some recent ab-
stracts in PubMed do contain explicit headings such
as “PATIENTS”, “SAMPLE” or “OUTCOMES”,
that can be used to locate sentences correspond-
ing to PICO elements. Using that information, we
extracted three sets of abstracts: Patient/Problem
(14 279 abstracts), Intervention/Comparison (9 095)
and Outcome (2 394).

Tagging each document goes through a three steps
process. First, the document is segmented into plain
sentences. Then each sentence is converted into a
feature vector using statistical (e.g. position, length)
and knowledge-based features (e.g. MeSH semantic
type). Knowledge-based features were derived ei-
ther from manually crafted cue-words/verbs lists or
semantic types within the MeSH ontology2. Finally,
each vector is submitted to multiple classifiers, one
for each element, allowing to label the correspond-
ing sentence. We use several algorithms imple-
mented in the Weka toolkit3: decision trees, SVM,
multi-layer perceptron and Naive Bayes. Combin-
ing multiple classifiers using a weighted linear com-
bination of their prediction scores achieves the best
results with a f-measure score of 86.3% for P, 67%
for I/C and 56.6% for O in 10-fold cross-validation.

3.3 Use of detected elements in IR

We use language modeling approach to IR in this
work. The idea is that a document is a good match to
a query if its language model is likely to generate the
query (Ponte and Croft, 1998). It is one of the state-
of-the-art approaches in current IR research. Most
language modeling work in IR use unigram lan-
guage models –also called bags-of-words models–
assuming that there is no structure in queries or doc-
uments. A typical way to score a document d as
relevant to a query q is to use the Kullback-Leibler

2www.nlm.nih.gov/mesh/
3www.cs.waikato.ac.nz/ml/index.html

824

divergence between their respective LMs:

score(q, d) =
∑
w∈q

P(w |Mq) · log P(w |Md) (1)

∝ −KL(Mq ||Md)

whereMq is the LM of the query andMd the LM of
the document. P(w | Mρ) estimates the probability
of the word w given the language model Mρ. The
most direct way to estimate these models is to use
Maximum Likelihood estimation over the words:

P(w |Mρ) =
count(w, ρ)

| ρ |

where ρ is the observed document, count(w, ρ) the
number of times the wordw occurs in ρ and | ρ | the
length of the document. Bayesian smoothing using
Dirichlet priors is then applied to the maximum like-
lihood estimator to compensate for data sparseness.

We propose an approach that extend the basic
LM approach to take into consideration the PICO
element annotation. We assume that each ele-
ment in the document has a different importance
weight. Four more LMs are created, one for each
elements. Givenωe the weight of the PICO element
e, P(w |Md) in equation 1 is re-defined as:

P1(w |Md) ∝ P(w |Md) +
∑

e∈[P,I,C,O]

ωe · P(w |Me)

The right hand of the above equation is not a prob-
ability function. We could use a normalization to
transform it. However, for the purpose of document
ranking, this will not make any difference. There-
fore, we will keep the un-normalized value.

We performed an extensive series of experiments
using this model on the test collection described in
Section 5. The results are shown in Table 2. It turns
out that the best improvement we were able to obtain
is very small (0.5% of MAP increase). There may
be several reasons for that. First, the accuracy of
the automatic document tagging may be insufficient.
Second, even if elements are correctly identified in
documents, if queries are treated as bags-of-words
then any PICO element can match with any identi-
cal word in the query, whether it describe the same
element or not. However, we also tested a naı̈ve ap-
proach that matches the PICO elements in queries

with the corresponding elements in documents. But
this approach quickly turns out to be too restrictive
and leads to bad results.

Measure Weighted elements

P I / C O Best†

MAP increase 0.0% −0.2% −0.1% +0.5%

Table 2: Results using the PICO elements automatically
detected in documents (†: wP = 0.5, wI = 0.2).

As we can see, this approach only brings limited
improvement in retrieval effectiveness. This rises
the question of the usability of such tagging method
in its current performance state. We will see in the
next section an alternative solution to this problem
that relies on the distribution of PICO elements in
documents.

4 Method

4.1 Distribution of PICO elements
PICO elements are not evenly distributed in medical
documents, which often follow some implicit writ-
ing convention. An intuitive method is to weight
higher a segment that is more probable to con-
tain PICO elements. The distribution of PICO el-
ements is likely to correlate to the position within
the document. This intuition has been used in most
of the supervised PICO detection methods which
use location-based features. There has been sev-
eral studies that cover the PICO extraction problem.
However, as far as we know, none of them analyses
and uses the positional ditribution of these elements
within the documents for the purpose of IR. Biomed-
ical abstracts can be typically represented by four or-
dered rhetorical categories which are Introduction,
Methods, Results and Discussion (IMRAD) (Sollaci
and Pereira, 2004). The reason is found in the need
for speed when reviewing literature, as this format
allows readers to pick those parts of particular in-
terest. Besides, many scientific journals explicitly
recommended this ordered structure.

The PICO dispersion is highly correlated to these
rhetorical categories as some elements are more
likely to occur in certain categories. For example,
outcomes are more likely to appear in Results and/or
Discussion parts. One could also expect to infer the

825

role played by PICO elements in a clinical study. For
example, the drug pioglitazone has not the same role
in a clinical study if it appears as the main interven-
tion (likely to occur in all parts) or as a comparative
treatment (Methods and/or Results parts).

Instead of analysing the dispersion of PICO ele-
ments into the four IMRAD categories, we choose to
the use automatically splitted parts. There are sev-
eral reasons for that. First, the IMRAD categories
are not explicitely marked in abstracts. An auto-
matic tagging of these would surely result in some
errors. Second, using a low granularity approach
would provide more precise statistics. Furthermore,
if one would use the dispersion of elements as a cri-
terion to estimate how important each part is, an au-
tomatic partition would be a good choice because of
its repeatability and ease to implement.

We divided each manually annotated abstract into
10 parts of equal length (P1 being the begining and
P10 the ending) and computed statistics on the num-
ber of elements than occur in each of these parts.
The Figure 1 shows the proportion of elements for
each part. We can observe that PICO elements are
not evenly distributed throughout the abstracts. Uni-
versally accepted rules that govern medical writing
styles would be the first reason for that. It is clear
that the beginning and ending parts of abstracts do
contain most of the PICO elements. This gives us a
clear indication on which parts should be enhanced
when searching for these elements.

8 9 10 11 12 13

% of PICO elements

P10

P9

P8

P7

P6

P5

P4

P3

P2

P1

P
a
rt

s
o
f

th
e
 a

b
st

ra
ct

s

Figure 1: Proportion of PICO elements computed for
each different part of abstracts.

Therefore, there may be several levels of granu-

larity when using the PICO framework in IR. One
can identify each PICO element in the document,
whether it is described by a word, a phrase or a com-
plete sentence. One can also use a coarser-grain
approach, estimating from the distribution across
documents the probability that each part contains a
PICO element. As attempts to precisely locate PICO
elements have shown that this task is particularly
difficult, we propose to get rid this issue by using
the second method.

4.2 Model definitions

We propose three different models that extend the
classical language modeling approach. The first uses
the structural information of documents, the second
takes advantage of the PICO query structure while
the third simply combine the first two models.

Model-1

Attempts to precisely locate PICO elements in doc-
uments have shown that this task is particularly dif-
ficult. We propose to get around this issue by intro-
ducing structural markers to convey document struc-
ture and use them as a means of providing location
information. Accordingly, each document is repre-
sented as a series of successive parts. To integrate
document structure into the ranking function, we es-
timate a series of probabilities that constraints the
word counts to a specific part instead of the entire
document. Each document d is then ranked by a
weighted linear interpolation. Intuitively, the weight
of a part should depend on how much information is
conveyed by its words. Given γp the weight of the
part p ∈ [TITLE, P1 · · · P10], P(w |Md) in equation
1 is re-defined as:

P2(w |Md) ∝ P(w |Md)+
∑
p∈d

γp ·P(w ∈ p |Md)

Model-2

The PICO formulation of queries provides informa-
tion about the role of each query word. One idea
is to use this structural decomposition to thoroughly
balance elements in the ranking function. For exam-
ple, the weight given to the drug fluoxetine should be
different depending on whether it refers to the inter-
vention or comparison concept. The same goes for
obesity which can be a problem or an outcome. To

826

integrate this in the ranking function, we define a pa-
rameter δe that represents the weight given to query
words belonging to the element e ∈ [P, I, C, O].
f(w, e) = 1 if w ∈ e, 0 otherwise. We re-defined
P(w |Md) in equation 1 as:

P3(w |Mq) ∝ P(w |Mq)+
∑

e∈[P,I,C,O]

δe ·f(w, e)·P(w |Mq)

Model-1+2
This is the combination of the two previously de-
scribed models. We re-defined the scoring function
as:

score(q, d) =
∑
w∈q

P3(w |Mq) · log P2(w |Md)

5 Experiments

In this section, we describe the details of our exper-
imental protocol. We then present the results ob-
tained with the three proposed models.

Experimental settings
We gathered a collection of nearly 1.5 million ab-
stracts from PubMed with the following require-
ments: with abstract, humans subjects, in english
and selecting the following publication types: RCT,
reviews, clinical trials, letters, practice guidelines,
editorials and meta-analysis. Prior to the index con-
struction, each abstract is automatically divided into
10 parts of equal length, abstracts containing less
than 10 words are discarded. The following fields
are then marked: TITLE, P1, P2, ... P10 with P1 be-
ing the begining of the document and P10 the end-
ing.

Unfortunately, there is no standard test collection
appropriate for testing the use of PICO in IR and
we had to manually create one. For queries, we use
the Cochrane systematic reviews4 on 10 clinical
questions about different aspects of “diabetes”.
These reviews contain the best available infor-
mation about an healthcare intervention and are
designed to facilitate the choices that doctors face
in health care. All the documents in the “Included
studies” section are judged to be relevant for the

4www.cochrane.org/reviews/

question. These included studies are selected by
the reviewers (authors of the review article) and
judged to be highly related to the clinical question.
In our experiments, we consider these documents
as relevant ones. From the 10 selected questions,
professors in family medicine have formulated a set
of 52 queries, each of which was manually anno-
tated according to the PICO structure. The resulting
testing corpus is composed of 52 queries (average
length of 14.7 words) and 378 relevant documents.
Below are some of the alternative formulations of
queries for the question “Pioglitazone for type 2
diabetes mellitus”:

In patients with type 2 diabetes (P) | does pioglita-
zone (I) | compared to placebo (C) | reduce stroke
and myocardial infarction (O)

In patients with type 2 diabetes who have a high risk
of macrovascular events (P) | does pioglitazone (I) |

compared to placebo (C) | reduce mortality (O)

We use cross-validation to determine reasonable
weights and avoid over-fitting. We have divided the
queries into two groups of 26 queries: Qa and Qb.
The best parameters found for Qa are used to test
on Qb, and vice versa. In our experiments, we use
the KL divergence ranking (equation 1) as baseline.
The following evaluation measures are considered
relevant:

Precision at n (P@n). Precision computed on only
the n topmost retrieved documents.

Mean Average Precision (MAP). Average of preci-
sions computed at the point of each relevant docu-
ment in the ranked list of retrieved documents.

MAP is a popular measure that gives a global
quality score of the entire ranked list of retrieved
documents. In the case of clinical searches, one
could also imagine this scenario: a search performed
by a physician who does not have the time to look
into large sets of results, but for whom it is impor-
tant to have relevant results in the top 10. In such
case, P@10 is also an appropriate measure.

Student’s t-test is performed to determine statis-
tical significance. The Lemur Toolkit5 was used for

5www.lemurproject.org

827

all retrieval tasks. Experiments were performed with
an “out-of-the-box” version of Lemur, using its tok-
enization algorithm and porter stemmer. The Dirich-
let prior smoothing parameter was set to its default
value µ = 2500.

Experiments with model-1

We first investigated whether assigning a weight to
each part of the document can improve the retrieval
accuracy. It is however difficult to determine a set
of reasonable values for all the parts together, as the
value of one part will affect those of the others. In
this study, we perform a two pass tuning. First, we
consider the γp weights to be independent. By doing
so, searching for the optimal weight distribution can
be seen as tuning the weight of each part separately.
When searching the optimal weight of a part, the
weight for other parts is assigned 0. Second, these
approximations of the optimum values are used as
initial weights prior to the second pass. The final
weight distribution is obtained by searching for the
best weight combination around the initial values.

The Figure 2 shows the optimal weight distri-
butions along with the best relative MAP increase
for each part. A noticeable improvement is ob-
tained by increasing the weights associated to the ti-
tle/introduction and conclusion of documents. This
is consistent with the results observed on the dis-
tribution of PICO elements in abstracts. Boosting
middle parts of documents seems to have no impact
at all. We can see that the two γp weight distribu-
tions (1-pass and 2-pass) are very close.

Performance measures obtained by model-1 are
presented in Table 3. With 1-pass tuning, we ob-
serve a MAP score increase of 37.5% and a P@10
increase of 64.1%. After the second pass, scores are
lower with 35% and 60.5% for MAP and P@10 re-
spectively. This result indicates that there is possibly
overfitting when we perform the two pass parameter
tuning. It could also be caused by the limited num-
ber of query in our test collection. However, we can
determine reasonable weights by tuning each part
weight separately.

Experiments with model-2

We have seen that a large improvement could come
from weighting each part accordingly. In a second
series of experiments, we try to assign a different

10

20

30

0.2

0.4

0.6

0.8

1.0

 W
e
ig

h
t p

a
ra

m
e
te

r γ
p

Q26A

1-pass

2-pass

Title P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
0

10

20

30

 M

A
P
 i
n
cr

e
a
se

 (
%

)

Title P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Different part of the documents

0.0

0.2

0.4

0.6

0.8

1.0
Q26B

1-pass

2-pass

Figure 2: Best MAP increase for each part p (bar charts),
corresponding 1 and 2-pass γp weights are also given.

weight to each PICO element in queries. A grid
search was used to find the optimal δe weights com-
bination. The results are shown in Table 3.

We observe a MAP score increase of 22.5% and
an increase of 11% in P@10. Though the use of
a PICO weighting scheme increases the retrieval
accuracy, there is clearly much to gain by using
the document structure. The optimal [δp, δi, δc, δo]
weights distribution is [0.3, 1.2, 0, 0.1] for Qa and
[0.2, 1, 0, 0.2] for Qb. That means that the most im-
portant words in queries belong to the Intervention
element. This supports the manual search strategy
proposed by (Weinfeld and Finkelstein, 2005), in
which they suggested that I and P elements should
be used first to construct queries, and only if too
many results are obtained that other elements should
be considered.

It is interesting to see that query words belonging
to the Comparison element have to be considered
as the least important part of a query. Even more
so because they are in the same semantic group as
the Intervention words. A reason for that could be
the use of vague words such as “no-intervention” or
“placebo”. The methodology employed to construct
the queries is also responsible. Indeed, physicians
have focused on producing alternative formulations
of 10 general clinical questions by predominantly
modifying the one of the PICO elements. As a re-
sult, some of them do share the same vague Com-
parison words.

828

Experiments MAP P@10

Qb→Qa Qa→Qb % Avg. Qb→Qa Qa→Qb % Avg.

Baseline 0.118 0.131 0.219 0.239

Model-1 / 1pass 0.165 0.176 +37.5%‡ 0.377 0.373 +64.1%‡

Model-1 / 2pass 0.165 0.170 +35.0%‡ 0.354 0.381 +60.5%‡

Model-2 0.149 0.168 +22.5%‡ 0.250 0.258 +11.0%
Model-1+2 0.198 0.202 +61.5%‡ 0.385 0.392 +70.0%‡

Table 3: Cross-validation (train→test) scores for the baseline (Kullback-Leibler divergence), model-1 with 1 and 2-
pass tuning, model-2 and their combination (model-1+2). Relative increase over the baseline is also given (averaged
between Qa and Qb). (‡: t.test < 0.01)

Experiments with model-1+2

We have seen that both the use of a location-based
weighting and a PICO-structure weighting scheme
increase the retrieval accuracy. In this last series of
experiments, we analyse the results of their com-
bination. We can observe that fusing model-1 and
model-2 allows us to obtain the best retrieval ac-
curacy with a MAP score increase of 61.5% and a
P@10 increase of 70.0%. It is a large improvement
over the baseline as it means that instead of about
two relevant documents in the top 10, our system
can retrieve nearly four. These results confirm that
both PICO framework and document structure can
be very helpful for the IR process.

6 Conclusion

We presented a language modeling approach that in-
tegrates document and PICO structure for the pur-
pose of clinical IR. A straightforward idea is to de-
tect PICO elements in documents and use the ele-
ments in the retrieval process. However, this ap-
proach does not work well because of the diffi-
culty to arrive at a consistent tagging of these ele-
ments. Instead, we propose a less demanding ap-
proach which assigns different weights to different
parts of a document.

We first analysed the distribution of PICO el-
ements in a manually annotated abstracts collec-
tion. The observed results led us to believe that a
location-based weighting scheme can be used in-
stead of a PICO detection approach. We then ex-
plored whether this strategy can be used as an in-
dicator to refine document relevance. We also pro-
posed a model to integrate the PICO information

provided in queries and investigated how each el-
ement should be balanced in the ranking function.
On a data set composed of 1.5 million abstracts ex-
tracted from PubMed, our method obtains an in-
crease of 61.5% for MAP and 70% for P@10 over
the classical language modeling approach.

This work can be much improved in the future.
For example, the location-based weighting method
can be improved in order to model a different weight
distribution for each PICO element. As the distri-
bution in abstracts is not the same among PICO el-
ements, it is expected that differentiated weighting
schemes could result in better retrieval effectiveness.
In a similar perspective, we are continuing our ef-
forts to construct a larger manually annotated col-
lection of abstracts. It will be thereafter conceiv-
able to use this data to infer the structural weighting
schemes or to train a more precise PICO detection
method. The focused evaluation described in this
paper is a first step. Although the queries are limited
to diabetes, this does not affect the general PICO
structure in queries. We plan to extend the coverage
of queries to other topics in the future.

Acknowledgements

The work described in this paper was funded by
the Social Sciences and Humanities Research Coun-
cil (SSHRC). The authors would like to thank Dr.
Ann McKibbon, Dr. Dina Demner-Fushman, Lorie
Kloda, Laura Shea, Lucas Baire and Lixin Shi for
their contribution in the project.

829

References
A. Andrenucci. 2008. Automated Question-Answering

Techniques and the Medical Domain. In International
Conference on Health Informatics, volume 2, pages
207–212.

A.R. Aronson. 2001. Effective Mapping of Biomedical
Text to the UMLS Metathesaurus: The MetaMap Pro-
gram. In AMIA Symposium.

G. Chung. 2009. Sentence retrieval for abstracts of ran-
domized controlled trials. BMC Medical Informatics
and Decision Making, 9(1):10.

M. Dawes, P. Pluye, L. Shea, R. Grad, A. Green-
berg, and J.Y. Nie. 2007. The identification of
clinically important elements within medical jour-
nal abstracts: Patient-Population-Problem, Exposure-
Intervention, Comparison, Outcome, Duration and
Results (PECODR). Informatics in Primary care,
15(1):9–16.

D. Demner-Fushman and J. Lin. 2006. Answer extrac-
tion, semantic clustering, and extractive summariza-
tion for clinical question answering. In ACL.

D. Demner-Fushman and J. Lin. 2007. Answering
clinical questions with knowledge-based and statistical
techniques. Computational Linguistics, 33(1):63–103.

N. Fuhr and K. Großjohann. 2001. XIRQL: A query
language for information retrieval in XML documents.
In SIGIR, pages 172–180.

M.J. Hansen, N.O. Rasmussen, and G. Chung. 2008. A
method of extracting the number of trial participants
from abstracts describing randomized controlled trials.
Journal of Telemedicine and Telecare, 14(7):354–358.

INEX. 2002-2009. Proceedings of the INitiative for the
Evaluation of XML Retrieval (INEX) workshop.

J. Kamps, M. Marx, M. de Rijke, and B. Sigurbjörnsson.
2005. Structured queries in XML retrieval. In CIKM,
pages 4–11.

J.M. Ponte and W.B. Croft. 1998. A language model-
ing approach to information retrieval. In SIGIR, pages
275–281.

T.C. Rindflesch and M. Fiszman. 2003. The interac-
tion of domain knowledge and linguistic structure in
natural language processing: interpreting hypernymic
propositions in biomedical text. Journal of Biomedical
Informatics, 36(6):462–477.

D.L. Sackett, W. Rosenberg, J.A. Gray, R.B. Haynes, and
W.S. Richardson. 1996. Evidence based medicine:
what it is and what it isn’t. British medical journal,
312(7023):71.

C. Schardt, M. Adams, T. Owens, S. Keitz, and
P. Fontelo. 2007. Utilization of the PICO frame-
work to improve searching PubMed for clinical ques-
tions. BMC Medical Informatics and Decision Mak-
ing, 7(1):16.

L.B. Sollaci and M.G. Pereira. 2004. The introduction,
methods, results, and discussion (IMRAD) structure:
a fifty-year survey. Journal of the Medical Library
Association, 92(3):364.

A. Trotman. 2005. Choosing document structure
weights. Information Processing and Management,
41(2):243–264.

J.M. Weinfeld and K. Finkelstein. 2005. How to answer
your clinical questions more efficiently. Family prac-
tice management, 12(7):37.

R. Wilkinson. 1994. Effective retrieval of structured doc-
uments. In SIGIR, pages 311–317.

830

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 831–839,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Topic Models for Image Annotation and Text Illustration

Yansong Feng and Mirella Lapata
School of Informatics, University of Edinburgh
10 Crichton Street, Edinburgh EH8 9AB, UK

Y.Feng-4@sms.ed.ac.uk, mlap@inf.ed.ac.uk

Abstract

Image annotation, the task of automatically
generating description words for a picture,
is a key component in various image search
and retrieval applications. Creating image
databases for model development is, however,
costly and time consuming, since the key-
words must be hand-coded and the process
repeated for new collections. In this work
we exploit the vast resource of images and
documents available on the web for develop-
ing image annotation models without any hu-
man involvement. We describe a probabilistic
model based on the assumption that images
and their co-occurring textual data are gener-
ated by mixtures of latent topics. We show that
this model outperforms previously proposed
approaches when applied to image annotation
and the related task of text illustration despite
the noisy nature of our dataset.

1 Introduction
Recent years have witnessed the rapid growth of im-
age collections available for searching and browsing
over the Internet. Although image search engines are
still in their infancy, initial research suggests that the
deployed algorithms are not very accurate (Hawking
et al., 1999). Given a query, search engines retrieve
relevant pictures by analyzing the image caption (if
it exists), textual descriptions found adjacent to the
image, and other text-related factors such as the file
name of the image. However, since they do not an-
alyze the actual content of the images, search en-
gines cannot be used to retrieve pictures from unan-
notated collections. The ability to perform the an-
notation task automatically would be of significant
practical import for many image-based applications.
Besides search and retrieval, other examples include
browsing support (e.g., by clustering images into

groups that are visually and semantically coherent)
and story picturing (i.e., automatically suggesting
images to illustrate text).

Automatic image annotation is a popular task in
computer vision; a large number of approaches have
been proposed in the literature under many distinct
learning paradigms. These range from supervised
classification (Smeulders et al., 2000; Vailaya et al.,
2001) to instantiations of the noisy-channel model
(Duygulu et al., 2002), to clustering (Barnard et al.,
2002), and methods inspired by information retrieval
(Feng et al., 2004; Lavrenko et al., 2003). Despite
differences in application and formulation, all these
methods essentially attempt to learn the correlation
between image features and words from examples
of annotated images. The Corel database has been
extensively used as a testbed for the development
and evaluation of image annotation models. It is a
collection of stock photographs, divided into themes
(e.g., tigers, sunsets) each of which are associated
with keywords (e.g., sun, sea) that are considered
appropriate descriptors for all images belonging to
the same theme.

Unfortunately, the Corel database is not represen-
tative of the size or content of real-world image col-
lections. It has a small number of themes with many
closely related images which in turn share keyword
descriptions. It is therefore relatively easy to learn
the associations between images and keywords and
do well on annotation and retrieval tasks (Tang and
Lewis, 2007; Westerveld and de Vries, 2003). An
appealing alternative is the use of resources where
images and their annotations co-occur naturally. Ex-
amples include images found in news documents,
consumer photo collections, Wikipedia articles, il-
lustrated stories and so on. The key idea here is to
treat the words in the surrounding text as annota-
tions for the image. These annotations are undoubt-

831

edly noisy, but plenty and cost-free. Moreover, the
collateral text is often longer and more informative
in comparison to the few keywords reserved for each
image in Corel.

In this paper we propose a probabilistic image
annotation model that learns to automatically label
images under such noisy conditions. We use the
database created in Feng and Lapata (2008) which
consists of news articles, images, and their cap-
tions. Our model exploits the redundancy inherent
in this multimodal dataset by assuming that images
and their surrounding text are generated by a shared
set of latent variables or topics. Specifically, we de-
scribe documents and images by a common multi-
modal vocabulary consisting of textual words and
visual terms (visiterms). Due to polysemy and syn-
onymy many words in this vocabulary will refer to
the same underlying concept. Using Latent Dirichlet
Allocation (LDA, Blei and Jordan 2003), a proba-
bilistic model of text generation, we represent visual
and textual meaning jointly as a probability distribu-
tion over a set of topics. Our annotation model takes
these topic distributions into account while finding
the most likely keywords for an image and its asso-
ciated document. We also show how the model can
be straightforwardly modified to perform automatic
text illustration.1 The task is routinely performed by
news writers who often have to search large image
collections in order to find suitable pictures for their
text. Here, the model takes a document as input and
suggests images that match its content. Experimen-
tal results on both tasks bring improvements over
competitive models.

2 Related Work
A variety of learning methods have been applied to
the image annotation task. These generally fall un-
der two broad categories. Supervised methods de-
fine annotation as a classification task, e.g., by as-
suming a one-to-one correspondence between vo-
cabulary words and classes or by grouping several
words into a single class (see Chai and Hung 2008
for an overview). Unsupervised approaches attempt
to discover the underlying connections between vi-
sual features and words, typically by introducing
latent variables. Standard latent semantic analysis
(LSA) and its probabilistic variant (PLSA) have
been applied to this task (Hofmann, 2001; Monay
and Gatica-Perez, 2007; Pan et al., 2004). More so-
phisticated models estimate the joint distribution of
words and regional image features, whilst treating

1We use the terms “text illustration” and “story picturing”
interchangeably throughout the paper.

annotation as a problem of statistical inference in a
graphical model (Barnard et al., 2002; Blei and Jor-
dan, 2003; Wang et al., 2009).

Irrespectively of the underlying model or task at
hand, much work has focused how to best represent
the visual and textual modalities in order to exploit
their synergy. Several approaches attempt to render
images more word-like, by reducing the dimension-
ality of the image feature space (Bosch et al., 2008;
Fei-Fei and Perona, 2005) or by learning a single
representation for both visual and textual features
(Monay and Gatica-Perez, 2007; Zhao and Grosky,
2003).

Our own work approaches the image annotation
(and related story picturing) task from a slightly dif-
ferent angle. We train and test our model on im-
ages that contain implicit (and thus noisy) annota-
tions that have not been specifically created for our
task. On account of this, our model has access to
knowledge sources other than the image and its key-
words (i.e., the news article containing the image
we wish to annotate). In Feng and Lapata (2008)
we addressed this problem with a modified ver-
sion of the continuous relevance annotation model
(Lavrenko et al., 2003). Unlike other unsupervised
approaches where a set of latent variables is in-
troduced, each defining a joint distribution on the
space of keywords and image features, the relevance
model captures the joint probability of images and
annotated words directly, without requiring an inter-
mediate clustering stage (i.e., each annotated image
in the training set is treated as a latent variable). We
modified this model so as to exploit the informa-
tion present in the document in two ways. First, in
estimating the conditional probability of a keyword
given an image, we also considered its likelihood in
the collateral document. Secondly, we used an LDA
model (trained on the document collection) to prune
from the model’s output words that are not represen-
tative of the document’s topics.

The proposed approach differs from Feng
and Lapata (2008) in three important respects:
(a) document-based information is an integral part
of our model as we predict caption words given the
image and its accompanying document (b) LDA is
no longer a post-processing step; our model relies on
LDA to infer meaningful topics that capture the co-
occurrence of visual features and words; (c) beyond
image annotation, we show how the same frame-
work can be applied to story picturing (Joshi et al.,
2006), a task which has received less attention in the
literature.

In terms of model structure, Blei and Jordan

832

(2003) and Monay and Gatica-Perez (2007) are clos-
est to our work. The first model, known as corre-
spondence LDA (CorrLDA), has been successfully
employed for modeling annotated images in the
Corel domain. CorrLDA also uses the notion of topic
to model the generation of images and their captions.
In this model, the visual modality drives the defini-
tion of the latent space to which the textual modality
is linked. The second model is based on PLSA and
learns a representation similar to ours consisting of
textual and visual features. It is also trained using
captioned images from the Corel database. We work
with noisier and larger datasets. Our model exploits
the captions accompanying the images as well as
their surrounding documents. As a result, we obtain
a similar number of textual and visual words; these
are often imbalanced in the Corel database, where
visual words are nearly 50 times more than textual
words. The different nature of our data dictates the
use of a model where the visual and textual modal-
ity are given equal importance in defining the latent
space.

3 Problem Formulation
In this section we give a brief description of the im-
age database we employ and also define the image
annotation and story picturing tasks we are attempt-
ing here. As mentioned earlier, we use the dataset
created in Feng and Lapata (2008).2 It contains
3,361 articles that have been downloaded from the
BBC News website3. Each article contains a news
image which in turn is associated with a caption.
The images are usually 203 pixels wide and 152 pix-
els high. The average caption length is 5.35 tokens,
and the average document length 133.85 tokens. The
captions vocabulary is 2,167 words and the docu-
ment vocabulary is 6,253. The vocabulary shared
between captions and documents is 2,056 words.
In contrast to the Corel database, this dataset con-
tains more complex images (with many objects) and
has a larger vocabulary (Corel’s vocabulary is ap-
proximately 300 words). An example of an abridged
database entry is shown in Figure 1.

Due to the non-standard nature of the database
we assume that the caption and news article de-
scribe the content of the image either directly or in-
directly. It also follows that we may not be able to
name all objects depicted in the image. Now, given
these constraints our goal is twofold. Firstly, we will
perform image annotation. Our model is trained on

2Available from http://homepages.inf.ed.ac.uk/
s0677528/data.html.

3http://news.bbc.co.uk/

A woman from East
Sussex who bought an
emu egg sold as a nov-
elty food item on a
farm on the Isle of
Wight has managed to
hatch it into a chick. Osborne the emu will grow
Gillian Stone, from to over 6ft tall
Bexhill, who breeds chickens, brought home three large
green emu eggs from a holiday and put them in an incu-
bator in her kitchen. Two turned out to be infertile, but
after 52 days little Osborne hatched

Table 1: Each entry in the BBC News database contains a
document, an image, and its caption (shown in boldface).

document-image-caption tuples like the one shown
in Table 1. During testing, we must infer the cap-
tion for an image. Secondly, we use the same dataset
to perform automatic text illustration. During train-
ing, the model has access to the same collection of
image-caption-document tuples. During testing, we
are given a document and must find the images that
best illustrate it.

4 Image and Document Representation

Words and images represent distinct modalities, im-
ages live in a continuous feature space, whereas
words are discrete. Yet, both modalities on some
level capture the same underlying concepts as they
are used to describe the same objects. A common
first step to all previous methods is the segmenta-
tion of the image into regions, using either a fixed-
grid layout or an image segmentation algorithm. Re-
gions are usually described by a standard set of fea-
tures including color, texture, and shape which are
treated as continuous vectors (e.g., Barnard et al.
2002; Blei and Jordan 2003) or in quantized form
(e.g., Duygulu et al. 2002). Through this process,
the low-level image features are made to resemble
word-like units.

Here, we go one step further and represent each
image by a bag of visual words, thereby convert-
ing visual features from a continuous onto a discrete
space. In order to do this we use the Scale Invariant
Feature Transform (SIFT) algorithm (Lowe, 1999).
The general idea behind the algorithm is to first
sample an image with the difference-of-Gaussians
point detector at different scales and locations. Im-
portantly, this detector is, to some extent, invariant to
translation, scale, rotation and illumination changes.
Each detected region is represented with a SIFT de-
scriptor which is a histogram of edge directions at

833

different locations. SIFT descriptors are quantized
using the K-means clustering algorithm to obtain a
discrete set of visual terms (visiterms) which form
our visual vocabulary Vocv. Each entry in this vo-
cabulary stands for a group of image regions which
are similar in content or appearance and assumed to
originate from similar objects. More formally, each
image I is expressed in a bag-of-words format vec-
tor, [wv1,wv2, ...,wvL], where wvi = n only if I has n
regions labeled with vi.

Since visual and textual modalities have now the
same status—they are both represented as bags-of-
words—we can also represent any image-caption-
document tuple jointly as a mixed document dMix.
The underlying assumption is that the two modali-
ties express the same meaning which, as we explain
below, can be operationalized as a probability distri-
bution over a set of topics.

5 Modeling

Latent Dirichlet Allocation For ease of exposi-
tion, we first describe the basics of Latent Dirichlet
Allocation (LDA; Blei et al. 2003), a probabilistic
model of text generation and then move on to dis-
cuss our models which make use of probabilities es-
timated by LDA.

LDA can be represented as a three level hierarchi-
cal Bayesian model. Given a corpus consisting of M
documents, Blei et al. (2003) define the generative
process for a document d as follows:

1. Choose θ|α ∼ Dir(α)
2. For n ∈ 1,2, ...,N :

(a) Choose topic zn|θ ∼ Mult(θ)
(b) Choose a word wn|zn,β1:K ∼ Mult(βzn)

The mixing proportion over topics θ is drawn from
a Dirichlet prior with parameters α whose role is to
create a smoothed topic distribution. Once α and β

are sampled, then each document is generated ac-
cording to the topic proportions z1:K and word prob-
abilities over topics β. The probability of a docu-
ment d in a corpus is defined as:

P(d|α,β)=
Z

θ

P(θ|α)

(
N

∏
n=1

∑
zk

P(zk|θ)P(wn|zk,β)

)
dθ

Computing the posterior distribution P(θ,z|d,α,β)
of the hidden variables given a document is in-
tractable in general. However, a variety of approx-
imate inference algorithms have been proposed in
the literature including variational inference which
our model adopts (Blei et al., 2003). In this case,

training an LDA model on a document collection
will give two sets of parameters, the word proba-
bilities given topics, p(w|z1:K), and the topic pro-
portions given documents, P(z1:K |d). The latter are
document-specific, whereas the former represent the
set of topics learned from the document collection.

Given a trained model, it is possible to do infer-
ence on an unseen document dnew:

p(w|dnew)≈
K

∑
k=1

P(w|zk)
γk

∑
K
j=1 γ j

(1)

where P(w|z1:K) are word probabilities over top-
ics z1:K estimated during model training, and γ1:K
are variational Dirichlet parameters obtained during
inference on the new document (and can be consid-
ered as the posteriors of topic proportions over doc-
uments).

Image Annotation In the standard image annota-
tion setting, a hypothetical model is given an image I
and a set of keywords W , and must find the subset WI
(WI ⊆W) which appropriately describes image I:

W ∗
I = argmax

W
P(W |I) (2)

The keywords are usually assumed to be condition-
ally independent on each other, so Equation (2) sim-
plifies to:

W ∗
I = argmax

W ∏
w∈W

P(w|I) (3)

Each entry in our database is an image-caption-
document tuple (I,C,D). In this setting, we must
find the subset of keywords WI which appropriately
describe image I with the help of the accompanying
document D:

W ∗
I = argmax

Wt
P(Wt |I,D) (4)

Here, Wt denotes a set of textual words (we use the
subscript t to discriminate from the visual words
which are not part of the model’s output). We also
assume that the keywords are conditionally indepen-
dent of each other:

W ∗
I =argmax

Wt
P(Wt |I,D)=argmax

Wt
∏

wt∈Wt

P(wt |I,D) (5)

Since I and D are represented jointly as the con-
catenation of textual and visual terms, we may intu-
itively simplify the problem and use the mixed doc-
ument representation dMix directly in estimating the
conditional probabilities P(wt |I,D):

P(wt |I,D)≈ P(wt |dMix) (6)

834

Substituting Equation (6) into (5) yields:

W ∗
I ≈ argmax

Wt
∏

wt∈Wt

P(wt |dMix) (7)

As mentioned earlier, we assume that the image and
its associated text are generated by a mixture of
latent topics which we infer using LDA. Specifi-
cally, we select the number of topics K and apply
the LDA algorithm to a corpus consisting of doc-
uments {dMix} in order to obtain the multimodal
word distributions over topics P(w|z1:K), and the
estimated posterior of the topic proportions over
documents P(z1:K |dMix). We infer the topic pro-
portions P(z1:K |dMixnew) on a new document-image
pair dMixnew approximately using Equations (1)
and (7):4

W ∗
I ≈ argmax

Wt
∏

wt∈Wt

P(wt |dMix) (8)

= argmax
Wt

∏
wt∈Wt

K

∑
k=1

P(wt |zk)P(zk|dMix)

≈ argmax
Wt

∏
wt∈Wt

K

∑
k=1

P(wt |zk)
γk

∑
K
j=1 γ j

where P(wt |zk) are obtained during training, and γ1:K
are inferred on the image-document test pair.

However, note that for an unseen image dI and ac-
companying document dD, the estimated topic pro-
portions are solely based on variational inference
which is an approximate algorithm. In order to ren-
der the model more robust, we smooth the topic pro-
portions P(z1:K |dMix) with probabilities based on a
single modality:

P∗(z1:K |dMix)≈ (9)
q1P(z1:K |dMix)+q2P(z1:K |dD)+q3P(z1:K |dI)

where P(z1:K |dD) and P(z1:K |dI) are inferred on dD
and dI , respectively, and q1, q2, q3 are smoothing
parameters (which we tune experimentally on held-
out data); q3 is a shorthand for (1−q1−q2).

In sum, calculating P(Wt |I,D) boils down to es-
timating the probabilities P(wt |dMix) according to
Equations (8) and (9) which we obtain using the
LDA model. We train LDA on the document col-
lection {dMix} and use inference to obtain the topic
distributions of unseen image-document pairs. In the
end, we obtain a ranked list of textual words wt , the
n-best of which are the annotations for image I.

4During training, the model has access to all three elements
(I,C,D), so the mixed document dMix is the concatenation of
the visual terms and words in the caption and document. Dur-
ing testing, the model is given an image and its accompanying
document, so dMix contains words based on I and D, but not C.

Text Illustration Previous text illustration models
are based on Corel-like databases with manual im-
age descriptions (Barnard and Forsyth, 2001; Blei
and Jordan, 2003) or instance-based learning using
complex learning schemes (Joshi et al., 2006). Here,
we present a relatively simple model, again under
the topic mixture framework.

Given a test document D and a candidate image
database I1...N with captions C, we must find the im-
age or images which best describe the document.
We can simply compute the probability of each vi-
sual term in the vocabulary given D by marginaliz-
ing over the document topics z1:K :

P(wv|D) = ∑
z1:K

P(wv|zk)P(zk|dD) (10)

where wv is a visual term and P(wv|zk) the probabil-
ity of wv given topic zk (as estimated on the training
set).

Equation (10) delivers a ranked list of visual terms
according to a given document. We could multiply
these probabilities together mirroring Equation (7),
however this is not reliable. In contrast to textual
words, for which we may infer whether they are
linguistically meaningful (e.g., by resorting to their
part of speech), there is no easy way of knowing
which visual words are important. Relying solely on
frequency is not reliable either, as frequent visiterms
may simply represent features common in all images
(e.g., most images have some white color). To avoid
a bias towards frequent but potentially irrelevant vi-
sual words, we output a fixed number of visual terms
and select the image with the highest overlap as the
correct illustration.

6 Experimental Setup
In this section we discuss our experimental design
for assessing the performance of the models pre-
sented above. We give details on our training pro-
cedure and parameter estimation, describe our fea-
tures, and present the baseline methods used for
comparison with our models.

Data We evaluated the image annotation and text
illustration tasks on the dataset described in Sec-
tion 3. Documents and captions were part-of-speech
tagged and lemmatized with Tree Tagger (Schmid,
1994). We excluded from the vocabulary low fre-
quency words (appearing fewer than five times)
and words other than nouns, verbs, and adjectives.
For the image annotation task we follow the data
split used in Feng and Lapata (2008). The training
set contains 2,881 image-caption-document tuples;
240 tuples are reserved for development and 240 for

835

testing. Our text illustration experiments, used 2,881
image-caption-document tuples for training. For the
purposes of simulating a real story picturing engine
environment, we created a large image pool of 450
image-caption pairs and tested on 300 of them.

Model Parameters For each image we ex-
tracted 150 (on average) SIFT features. These were
quantized into a discrete set of visual terms us-
ing K-means. We varied K from 100 to 2,000. We
trained the LDA topic model on the multimodal doc-
ument collection {dMix} and varied the number of
topics from 15 to 1,000. The hyperparameter α was
initialized to 0.1; the β probabilities were initial-
ized randomly. The maximum number of iterations
for variational inference was set to 1,000. We tuned
the smoothing parameters q1, q2, and q3 (see Equa-
tion (9)) on the development set. The best values
were q1 = 0.84, q2 = 0.12, and q3 = 0.04 (for both
tasks). As the number of visual terms and topics are
interrelated we exhaustively examined all possible
combinations on the development set. We obtained
best results on image annotation with 1,000 topics
and 750 visual terms. On text illustration the best pa-
rameters were 1,000 topics and 2,000 visual terms.

Baselines For the image annotation experiments,
we compared our model against the following base-
lines. Firstly, we trained a vanilla LDA model on
the document collection without taking the im-
ages into account. This model estimates P(wt |D) =
∑

K
k=1 P(wt |zk)P(zk|D), the probability of textual

word wt given text document D. We assume that the
most probable words are the captions for the accom-
panying image. Our second baseline is the extended
relevance model (Feng and Lapata, 2008) that also
takes the document into account but crucially as-
sumes that the process of generating the images is
independent from the process of generating its key-
words.

We also compared our approach with two
closely related latent variable models (developed for
image-caption pairs), a PLSA-based model (Monay
and Gatica-Perez, 2007) and CorrLDA (Blei and
Jordan, 2003). The former model is an asymmet-
ric version of PLSA; it estimates the topic structure
solely from the textual modality and keeps it fixed
for the visual modality. The technique is similar to
folding-in (Hofmann, 2001), the standard PLSA pro-
cedure for inference in unseen documents and al-
lows modeling an image as a mixture of latent top-
ics that is defined only by one modality (in this
case the caption words). CorrLDA first generates
image regions from a Gaussian multinomial distri-

bution parametrized with Dirichlet priors. Then, for
each annotation word, it uniformly selects a region
from the image and generates a word according to
the topic used to generate that region. We optimized
the parameters for both models on the development
set. For CorrLDA, we followed the mean-field vari-
ational inference strategy proposed in Blei (2004).
The optimal number of topics for PLSA, was 200
(with 2000 visual terms) and for CorrLDA 50.

For the text illustration experiments, the pro-
posed model was compared with three baselines.
The first one is essentially word overlap. We se-
lect the image whose caption has the largest num-
ber of words in common with the test document.
The second one is a straightforward implementa-
tion of the vector space model (Salton and McGill,
1983) where documents and captions are repre-
sented by vectors whose components correspond to
term-document co-occurrences. We followed com-
mon practice in weighting terms by their tf-idf val-
ues, and used the cosine similarity measure to find
the image whose caption is most similar to the
test document. Our third baseline uses a text-based
LDA model to estimate document-caption similar-
ity probabilistically, through topic sharing. The im-
ages most relevant to a document are found by max-
imizing the conditional probability of the candi-
date captions C given the document dD: P(C|dD) =
∏

wc∈C
∑

K
k=1 P(wc|zk)P(zk|dD) (where wc are the cap-

tion words, P(wc|zk) the conditional distribution of
each wc given a topic zk, and P(zk|dD) the condi-
tional distribution of zk given dD, the document we
wish to illustrate.

Evaluation In the image annotation task we
follow the evaluation methodology proposed in
Duygulu et al. (2002). We are given an un-annotated
image I and asked to automatically produce the
n-best keywords. For all models discussed here, we
report results with the top 10 annotation words us-
ing precision, recall and F1. In the text illustration
task, we are given a test document d and a pool
of candidate images I1...N with captions C1...N . The
model is expected to find an image from the can-
didate pool that matches the test document. We use
equation (10) to output a ranked list of MI visual
terms. The image having the highest overlap with
the top 30 visual terms is selected as the illustration
for the test document. All illustration models were
evaluated using top 1 accuracy, which is the percent-
age of successfully matched image-document pairs
in the test set.

836

Model Top 10
Precision Recall F1

CorrLDA 5.33 11.80 7.36
TxtLDA 7.30 16.90 10.20
PLSA 10.26 22.60 14.12
ExtRel 14.70 27.90 19.80
MixLDA 16.30 33.10 21.60

Table 2: Automatic image annotation results.

7 Results
Our results on the image annotation task are summa-
rized in Table 2. Here, we compare our own model
(MixLDA) which is trained on both visual and tex-
tual information against an LDA model based solely
on textual information (TxtLDA), an extended ver-
sion of the Continuous Relevance model that also
exploits collateral document information (ExtRel;
Feng and Lapata 2008), a PLSA model that prior-
itizes the textual over visual modality (Monay and
Gatica-Perez, 2007), and CorrLDA (Blei and Jor-
dan, 2003) which does the opposite. We performed
significance testing on F1 using stratified shuffling
(Noreen, 1989), an instance of assumption-free ap-
proximative randomization testing.

Let us first discuss the performance of TxtLDA
and MixLDA. These two models are closely related
— they both rely on the probabilities P(wt |d) to
generate the image keywords — save one important
difference. MixLDA uses a concatenated represen-
tation of words and visual features assuming that
the two modalities have equal importance in defin-
ing the latent space, whereas TxtLDA considers only
the textual modality. Our results show that MixLDA
outperforms TxtLDA in terms of precision (by 9%),
recall (by 16.2%). MixLDA improves F1 by 11.4%,
and the difference is significant (p < 0.01).

PLSA significantly (p < 0.01) improves upon
TxtLDA. The key difference is the visual informa-
tion which makes up (to a certain extent) for the
lack of richer textual data. Interestingly, CorrLDA
performs significantly (p < 0.01) worse than both
PLSA and TxtLDA. Recall that in CorrLDA word
topic assignments are drawn from the image regions
which are in turn drawn from a Gaussian distribu-
tion. Although this modeling choice delivers bet-
ter results on the simpler Corel dataset, it does not
seem able to capture the characteristics of our im-
ages which are noisier and more complex. More-
over, CorrLDA assumes that annotation keywords
must correspond to image regions. This assumption
is too restrictive in our setting where a single key-

TxtLDA
Afghanistan, Taleban,
soldier, British, zone,
kill, force, Microsoft,
troop, NATO

police, Burgess, time,
letter, crash, case,
death, operation,
investigation, jail

MixLDA
Afghanistan, troop,
Blair, British, NATO,
helicopter, soldier,
support, operation,
commander

Diana, police, case,
crash, Princess, re-
port, death, inquest,
Paris, Burgess

Caption
Troops need more
Chinook helicopters to
carry out operations

Princess Diana died in
a car crash in Paris in
1997

Figure 1: Annotations generated by the TxtLDA and
MixLDA models. Words in bold face indicate exact
matches. The original captions are in the last row.

word may refer to many objects or persons in an
image (e.g.,the word badminton is used to collec-
tively describe an image depicting players, shuttle-
cocks, and rackets). As an aside, it is interesting to
note, that neither PLSA nor CorrLDA achieve better
results, when modified to take the captions and asso-
ciated documents into account. PLSA scores are in
the same ballpark (see Table 2), whereas CorrLDA
performs worse, F1 decreases by 2%.

The extended relevance model improves consid-
erably upon TxtLDA, CorrLDA, and PLSA but is
significantly worse (p < 0.01) than MixLDA. On
the surface, MixLDA seems similar to ExtRel, both
models take advantage of visual and textual informa-
tion. ExtRel smooths the conditional probability of a
word given an image with the conditional probabil-
ity of the same word given the document and uses an
LDA model (trained on the document collection) to
remove non-topical keywords from the model’s out-
put. MixLDA is conceptually simpler, LDA is the
actual model rather than a post-processing step, and
exploits the synergy between visual and textual in-
formation more directly. Topics are created based on
both modalities which are treated on an equal foot-
ing. Compared to ExtRel, MixLDA improves pre-
cision by 1.6%, recall by 5.2% and the overall F1
by 1.8%.

Figure 1 illustrates examples of annotations gen-

837

Model Accuracy
TxtLDA 31.0
Overlap 31.3
VectorSpace 38.7
MixLDA 57.3

Table 3: Text Illustration results.

erated by TxtLDA and MixLDA for two images. For
comparison, we also show the goldstandard image
captions. Note that TxtLDA fails to generate any
words relating to the objects shown in the image.
It finds primarily words relating to the topics of the
associated articles such as troops and crash. On the
contrary, MixLDA is more successful at identifying
the depicted objects, since it takes visual informa-
tion into account.

Table 3 presents our results on the automatic
text illustration task. Here, we compare our mul-
timodal topic model (MixLDA) against three text-
based baselines, namely word overlap (Overlap)
a standard vector space model (VectorSpace), and
TxtLDA. We examined whether differences in per-
formance are statistically significant using a χ2 test.
As can be seen, MixLDA significantly (p < 0.01)
outperforms these models by a wide margin (accu-
racy is 57.3% for MixLDA vs. 31.0% for TxtLDA,
38.7% for the vector space model, and 31.3% for
word overlap). These results are encouraging given
the simplicity of our model. They also indicate that
substantial mileage can be gained by taking into ac-
count the visual modality.

Figure 2 shows the three best illustrations found
by MixLDA and VectorSpace (incidentally, Overlap
delivered the same ranking as VectorSpace). The im-
ages are presented in ranked order, i.e., the first im-
age was given a higher score than the second one,
etc. The document discusses Smart 1 Probe, a lunar
satellite about to end its mission by crashing onto
the moon’s surface. MixLDA identifies an image de-
picting this satellite. The second best picture is also
relevant, it resembles the moon’s surface. The Vec-
torSpace model does not find any related images, the
first one is a DNA image, the second one depicts
policemen at a crime scene and the third one Ben
Nevis, the highest mountain in the British Isles.

8 Conclusions

In this paper we have presented a probabilistic ap-
proach for automatic image annotation and text il-
lustration. Our model postulates that visual terms
and words are generated by common (hidden) top-

V
ec

to
rS

pa
ce

M
ix

L
D

A

Europe’s lunar satellite, the Smart 1 probe, is
about to end its mission by crashing onto the
Moon’s surface. It will be a spectacular end
for the robot which has spent the past 16 months
testing innovative and miniaturized space tech-
nologies. Smart 1 has also produced detailed
maps of the Moon’s chemical make-up.

Figure 2: Top-3 illustrations for document in bottom row.

ics and is trained on a dataset consisting of images
available on the Internet, their captions, and associ-
ated news articles. The annotations are implicit and
the dataset is representative of the scale, diversity,
and difficulty of real-world image collections. Over-
all, our results show that the model is robust to the
noise inherent in such data. It improves upon com-
petitive approaches that prioritize one modality over
the other or exploit them indirectly. We also show
that with minor modifications the model can be used
to automatically illustrate a document with an appro-
priate image. Our method shows promise for multi-
modal search and image retrieval and other applica-
tions which have been traditionally text-based. An
interesting future direction involves generating ac-
tual sentence descriptions rather than isolated key-
words. Another relevant application is summariza-
tion. Our results suggest that taking visual informa-
tion into account could potentially create more fo-
cused and accurate summaries.

The model presented here could be further im-
proved in two ways. Firstly, we could allow an in-
finite number of topics and develop a nonparamet-
ric version that learns how many topics are optimal.
Secondly, our model is based on word unigrams, and
in this sense takes very little linguistic knowledge
into account. Recent developments in topic model-
ing could potentially rectify this, e.g., by assuming
that each word is generated by a distribution that
combines document-specific topics and parse-tree-
specific syntactic transitions (Boyd-Graber and Blei,
2009).

838

References

Barnard, K., P. Duygulu, D. Forsyth, N. de Freitas,
D. Blei, and M. Jordan. 2002. Matching words and pic-
tures. Journal of Machine Learning Research 3:1107–
1135.

Barnard, K. and D. Forsyth. 2001. Learning the semantics
of words and pictures. In Proceedings of the 8th Inter-
national Conference on Computer Vision. Vancouver,
BC, pages 408–415.

Blei, D. 2004. Probabilistic Models of Text and Images.
Ph.D. thesis, U.C. Berkeley, Division of Computer Sci-
ence.

Blei, D. and M. Jordan. 2003. Modeling annotated data.
In Proceedings of the 26th Annual International ACM
SIGIR Conference. Toronto, ON, pages 127–134.

Blei, D., A. Ng, and M. Jordan. 2003. Latent Dirich-
let allocation. Journal of Machine Learning Research
3:993–1022.

Bosch, A., A. Zisserman, and X. Munoz. 2008. Scene
classification using a hybrid generative/discriminative
approach. IEEE Transactions on Pattern Analysis and
Machine Intelligence 30(4):712–727.

Boyd-Graber, J. and D. Blei. 2009. Syntactic topic
models. In Proceedings of the 22nd Conference on
Advances in Neural Information Processing Systems.
MIT, Press, Cambridge, MA, pages 185–192.

Chai, C. and C. Hung. 2008. Automatically annotating
images with keywords: A review of image annotation
systems. Recent Patents on Computer Science 1:55–
68.

Duygulu, P., K. Barnard, J. de Freitas, and D. Forsyth.
2002. Object recognition as machine translation:
Learning a lexicon for a fixed image vocabulary. In
Proceedings of the 7th European Conference on Com-
puter Vision. Copenhagen, Danemark, pages 97–112.

Fei-Fei, L. and P. Perona. 2005. A Bayesian hierarchi-
cal model for learning natural scene categories. In
Proceedings of the 2005 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition.
IEEE Computer Society Washington, DC, volume 2,
pages 524–531.

Feng, S., V. Lavrenko, and R. Manmatha. 2004. Mul-
tiple Bernoulli relevance models for image and video
annotation. In Proceedings of the International Con-
ference on Computer Vision and Pattern Recognition.
Washington, DC, pages 1002–1009.

Feng, Y. and M. Lapata. 2008. Automatic image annota-
tion using auxiliary text information. In Proceedings
of ACL-08: HLT . Columbus, OH, pages 272–280.

Hawking, D., N. Craswell, P. Thistlewaite, and D. Har-
man. 1999. Results and challenges in web search eval-
uation. Computer Networks 31(11):1321–1330.

Hofmann, T. 2001. Unsupervised learning by proba-
bilistic latent semantic analysis. Machine Learning
41(2):177–196.

Joshi, D., J.Z. Wang, and J. Li. 2006. The story picturing

engine—a system for automatic text illustration. ACM
Transactions on Multimedia Computing, Communica-
tions, and Applications 2(1):68–89.

Lavrenko, V., R. Manmatha, and J. Jeon. 2003. A model
for learning the semantics of pictures. In Proceedings
of the 17th Conference on Advances in Neural Infor-
mation Processing Systems. MIT, Press, Cambridge,
MA.

Lowe, D. 1999. Object recognition from local scale-
invariant features. In Proceedings of International
Conference on Computer Vision. IEEE Computer So-
ciety, pages 1150–1157.

Monay, F. and D. Gatica-Perez. 2007. Modeling semantic
aspects for cross-media image indexing. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence
29(10):1802–1817.

Pan, J., H. Yang, P. Duygulu, and C. Faloutsos. 2004. Au-
tomatic image captioning. In Proceedings of the 2004
International Conference on Multimedia and Expo.
Taipei, pages 1987–1990.

Salton, G. and M.J. McGill. 1983. Introduction to Mod-
ern Information Retrieval. McGraw-Hill, New York.

Schmid, H. 1994. Probabilistic part-of-speech tagging us-
ing decision trees. In Proceedings of the International
Conference on New Methods in Language Processing.
Manchester, UK, pages 44–49.

Smeulders, A. W., M. Worring, S. Santini, A. Gupta, and
R. Jain. 2000. Content-based image retrieval at the
end of the early years. IEEE Transactions on Pattern
Analysis and Machine Intelligence 22(12):1349–1380.

Tang, J. and P. H. Lewis. 2007. A study of quality is-
sues for image auto-annotation with the Corel data-set.
IEEE Transactions on Circuits and Systems for Video
Technology 17(3):384–389.

Vailaya, A., M. Figueiredo, A. Jain, and H. Zhang. 2001.
Image classification for content-based indexing. IEEE
Transactions on Image Processing 10:117–130.

Wang, C., D. Blei, and L. Fei-Fei. 2009. Simultaneous
image classification and annotation. In Proceedings of
CVPR. Miami, FL, pages 1903–1910.

Westerveld, T. and A. P. de Vries. 2003. Experimental
evaluation of a generative probabilistic image retrieval
model on ‘easy’ data. In Proceedings of the SIGIR
Multimedia Information Retrieval Workshop. Toronto,
ON.

Zhao, R. and W. I. Grosky. 2003. Video shot detection
using color anglogram and latent semantic indexing:
From contents to semantics. In B. Furht and O. Mar-
ques, editors, Handbook of Video Databases: Design
and Applications, CRC Press, pages 371–392.

839

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 840–848,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Learning about Voice Search for Spoken Dialogue Systems

Rebecca J. Passonneau
1
, Susan L. Epstein

2,3
, Tiziana Ligorio

2
,

Joshua B. Gordon
4
, Pravin Bhutada

4

1
Center for Computational Learning Systems, Columbia University

2
Department of Computer Science, Hunter College of The City University of New York

3
Department of Computer Science, The Graduate Center of The City University of New York

4
Department of Computer Science, Columbia University

becky@cs.columbia.edu, susan.epstein@hunter.cuny.edu, tligorio@gc.cuny.edu,

joshua@cs.columbia.edu, pravin.bhutada@gmail.com

Abstract

In a Wizard-of-Oz experiment with multiple

wizard subjects, each wizard viewed automated

speech recognition (ASR) results for utterances

whose interpretation is critical to task success:

requests for books by title from a library data-

base. To avoid non-understandings, the wizard

directly queried the application database with

the ASR hypothesis (voice search). To learn

how to avoid misunderstandings, we investi-

gated how wizards dealt with uncertainty in

voice search results. Wizards were quite suc-

cessful at selecting the correct title from query

results that included a match. The most suc-

cessful wizard could also tell when the query

results did not contain the requested title. Our

learned models of the best wizard’s behavior

combine features available to wizards with

some that are not, such as recognition confi-

dence and acoustic model scores.

1 Introduction

Wizard-of-Oz (WOz) studies have long been used

for spoken dialogue system design. In a relatively

new variant, a subject (the wizard) is presented

with real or simulated automated speech recogni-

tion (ASR) to observe how people deal with incor-

rect speech recognition output (Rieser, Kruijff-

Korbayová, & Lemon, 2005; Skantze, 2003;

Stuttle, Williams, & Young, 2004; Williams &

Young, 2003, 2004; Zollo, 1999). In these experi-

ments, when a wizard could not interpret the ASR

output (non-understanding), she rarely asked users

to repeat themselves. Instead, the wizard found

other ways to continue the task.

This paper describes an experiment that pre-

sented wizards with ASR results for utterances

whose interpretation is critical to task success: re-

quests for books from a library database, identified

by title. To avoid non-understandings, wizards

used voice search (Wang et al., 2008): they direct-

ly queried the application database with ASR out-

put. To investigate how to avoid errors in

understanding (misunderstandings), we examined

how wizards dealt with uncertainty in voice search

results. When the voice search results included the

requested title, all seven of our wizards were likely

to identify it. One wizard, however, recognized far

better than the others when the voice search results

did not contain the requested title. The experiment

employed a novel design that made it possible to

include system features in models of wizard beha-

vior. The principal result is that our learned models

of the best wizard’s behavior combine features that

are available to wizards with some that are not,

such as recognition confidence and acoustic model

scores.

The next section of the paper motivates our ex-

periment. Subsequent sections describe related

work, the dialogue system and embedded wizard

infrastructure, experimental design, learning me-

thods, and results. We then discuss how to general-

ize from the results of our study for spoken

dialogue system design. We conclude with a sum-

mary of results and their implications.

2 Motivation

Rather than investigate full dialogues, we ad-

dressed a single type of turn exchange or adjacency

pair (Sacks et al., 1974): a request for a book by its

840

title. This allowed us to collect data exclusively

about an utterance type critical for task success in

our application domain. We hypothesized that low-

level features from speech recognition, such as

acoustic model fit, could independently affect

voice search confidence. We therefore applied a

novel approach, embedded WOz, in which a wizard

and the system together interpret noisy ASR.

To address how to avoid misunderstandings, we

investigated how wizards dealt with uncertainty in

voice search returns. To illustrate what we mean

by uncertainty, if we query our book title database

with the ASR hypothesis:
ROLL DWELL

our voice search procedure returns, in this order:
CROMWELL

ROBERT LOWELL

ROAD TO WEALTH

The correct title appears last because of the score it

is assigned by the string similarity metric we use.

Three factors motivated our use of voice search

to interpret book title requests: noisy ASR, un-

usually long query targets, and high overlap of the

vocabulary across different query types (e.g., au-

thor and title) as well as with non-query words in

caller utterances (e.g., “Could you look up . . .”).

First, accurate speech recognition for a real-

world telephone application can be difficult to

achieve, given unpredictable background noise and

transmission quality. For example, the 68% word

error rate (WER) for the fielded version of Let’s

Go Public! (Raux et al., 2005) far exceeded its

17% WER under controlled conditions. Our appli-

cation handles library requests by telephone, and

would benefit from robustness to noisy ASR.

Second, the book title field in our database dif-

fers from the typical case for spoken dialogue sys-

tems that access a relational database. Such

systems include travel booking (Levin et al., 2000),

bus route information (Raux et al., 2006), restau-

rant guides (Johnston et al., 2002; Komatani et al.,

2005), weather (Zue et al., 2000) and directory

services (Georgila et al., 2003). In general for these

systems, a few words are sufficient to retrieve the

desired attribute value, such as a neighborhood, a

street, or a surname. Mean utterance length in a

sample of 40,000 Let’s Go Public! utterances, for

example, is 2.4 words. The average book title

length in our database is 5.4 words.

Finally, our dialogue system, CheckItOut, al-

lows users to choose whether to request books by

title, author, or catalogue number. The database

represents 5028 active patrons (with real borrow-

ing histories and preferences but fictitious personal

information), 71,166 book titles and 28,031 au-

thors. Though much smaller than a database for a

directory service application (Georgila et al.,

2003), this is much larger than that of many current

research systems. For example, Let’s Go Public!

accesses a database with 70 bus routes and 1300

place names. Titles and author names contribute

50,394 words to the vocabulary, of which 57.4%

occur only in titles, 32.1% only in author names,

and 10.5% in both. Many book titles (e.g., You See

I Haven’t Forgotten, You Never Know) have a high

potential for confusability with non-title phrases in

users’ book requests. Given the longer database

field and the confusability of the book title lan-

guage, integrating voice search is likely to have a

relatively larger impact in CheckItOut.

We seek to minimize non-understandings and

misunderstandings for several reasons. First, user

corrections in both situations have been shown to

be more poorly recognized than non-correction ut-

terances (Litman et al., 2006). Non-understandings

typically result in re-prompting the user for the

same information. This often leads to hyper-

articulation and concomitant degradation in recog-

nition performance. Second, users seem to prefer

systems that minimize non-understandings and mi-

sunderstandings, even at the expense of dialogue

efficiency. Users of the TOOT train information

spoken dialogue system preferred system-initiative

to mixed- or user-initiative, and preferred explicit

confirmation to implicit or no confirmation

(Litman & Pan, 1999). This was true despite the

fact that a mixed-initiative, implicit confirmation

strategy led to fewer turns for the same task. Most

of the more recent work on spoken dialogue sys-

tems focuses on mixed-initiative systems in labora-

tory settings. Still, recent work suggests that while

mixed- or user-initiative is rated highly in usability

studies, under real usage it “fails to provide [a] ro-

bust enough interface” (Turunen et al., 2006). In-

corporating accurate voice search into spoken

dialogue systems could lead to fewer non-

understandings and fewer misunderstandings.

3 Related Work

Our approach to noisy ASR contrasts with many

other information-seeking and transaction-based

dialogue systems. Those systems typically perform

841

natural language understanding on ASR output be-

fore database query with techniques that try to im-

prove or expand ASR output. None that we know

of use voice search. For one directory service ap-

plication, users spell the first three letters of sur-

names, and then ASR results are expanded using

frequently confused phones (Georgila et al., 2003).

A two-pass recognition architecture added to Let’s

Go Public! improved concept recognition in post-

confirmation user utterances (Stoyanchev & Stent,

2009). In (Komatani et al., 2005), a shallow se-

mantic interpretation phase was followed by deci-

sion trees to classify utterances as relevant either to

query type or to specific query slots, to narrow the

set of possible interpretations. CheckItOut is most

similar in spirit to the latter approach, but relies on

the database earlier, and only for semantic interpre-

tation, not to also guide the dialogue strategy.

Our approach to noisy ASR is inspired by pre-

vious WOz studies with real (Skantze, 2003; Zollo,

1999) or simulated ASR (Kruijff-Korbayová et al.,

2005; Rieser et al., 2005; Williams & Young,

2004). Simulation makes it possible to collect di-

alogues without building a speech recognizer, and

to control for WER. In the studies that involved

task-oriented dialogues, wizards typically focused

more on the task and less on resolving ASR errors

(Williams & Young, 2004; Skantze, 2003; Zollo,

1999). In studies more like the information-seeking

dialogues addressed here, an entirely different pat-

tern is observed (Kruijff-Korbayová et al., 2005;

Rieser et al., 2005).

Zollo collected seven dialogues with different

human-wizard pairs to develop an evacuation plan.

The overall WER was 30%. Of the 227 cases of

incorrect ASR, wizard utterances indicated a fail-

ure to understand for only 35% of them. Wizards

ignored words not salient in the domain and hy-

pothesized words based on phonetic similarity. In

(Skantze, 2003), both users and wizards knew

there was no dialogue system; 44 direction-finding

dialogues were collected with 16 subjects. Despite

a WER of 43%, the wizard operators signaled mis-

understanding only 5% of the time, in part because

they often ignored ASR errors and continued the

dialogue. For the 20% of non-understandings, op-

erators continued a route description, asked a task-

related question, or requested a clarification.

Williams and Young collected 144 dialogues

simulating tourist requests for directions and other

negotiations. WER was constrained to be high,

medium, or low. Under medium WER, a task-

related question in response to a non-understanding

or misunderstanding led to full understanding more

often than explicit repairs. Under high WER, how-

ever, the reverse was true. Misunderstandings sig-

nificantly increased when wizards followed non-

understandings or misunderstandings with a task-

related question instead of a repair.

In (Rieser et al., 2005), wizards simulated a

multimodal MP3 player application with access to

a database of 150K music albums. Responses

could be presented verbally or graphically. In the

noisy transcription condition, wizards made clarifi-

cation requests about twice as often as that found

in similar human-human dialogue.

In a system like CheckItOut, user utterances that

request database information must be understood.

We seek an approach that would reduce the rate of

misunderstandings observed for high WER in

(Williams & Young, 2004) and the rate of clarifi-

cation requests observed in (Rieser et al., 2005).

4 CheckItOut and Embedded Wizards

CheckItOut is modeled on library transactions at

the Andrew Heiskell Braille and Talking Book Li-

brary, a branch of the New York Public Library

and part of the National Library of Congress. Bor-

rowing requests are handled by telephone. Books,

mainly in a proprietary audio format, travel by

mail. In a dialogue with CheckItOut, a user identi-

fies herself, requests books, and is told which are

available for immediate shipment or will go on re-

serve. The user can request a book by catalogue

number, title, or author.

CheckItOut builds on the Olympus/RavenClaw

framework (Bohus & Rudnicky, 2009) that has

been the basis for about a dozen dialogue systems

in different domains, including Let’s Go Public!

(Raux et al., 2005). Speech recognition relies on

PocketSphinx. Phoenix, a robust context-free

grammar (CFG) semantic parser, handles natural

language understanding (Ward & Issar, 1994). The

Apollo interaction manager (Raux & Eskenazi,

2007) detects utterance boundaries using informa-

tion from speech recognition, semantic parsing,

and Helios, an utterance-level confidence annotator

(Bohus & Rudnicky, 2002). The dialogue manager

is implemented in RavenClaw.

842

To design CheckItOut’s dialogue manager, we

recorded 175 calls (4.5 hours) from patrons to li-

brarians. We identified 82 book request calls, tran-

scribed them, aligned the utterances with the

speech signal, and annotated the transcripts for di-

alogue acts. Because active patrons receive

monthly newsletters listing new titles in the desired

formats, patrons request specific items with ad-

vance knowledge of the author, title, or catalogue

number. Most book title requests accurately repro-

duce the exact title, the title less an initial deter-

miner (“the,” “a”), or a subtitle.

We exploited the Galaxy message passing archi-

tecture of Olympus/RavenClaw to insert a wizard

server into CheckItOut. The hub passes messages

between the system and a wizard’s graphical user

interface (GUI), allowing us to collect runtime in-

formation that can be included in models of wi-

zards’ actions.

For speech recognition, CheckItOut relies on

PocketSphinx 0.5, a Hidden Markov Model-based

recognizer. Speech recognition for this experiment,

relied on the freely available Wall Street Journal

“read speech” acoustic models. We did not adapt

the models to our population or to spontaneous

speech, thus insuring that wizards would receive

relatively noisy recognition output.

We built trigram language models from the

book titles using the CMU Statistical Language

Modeling Toolkit. Pilot tests with one male and

one female native speaker indicated that a lan-

guage model based on 7500 titles would yield

WER in the desired range. (Average WER for the

book title requests in our experiment was 71%.) To

model one aspect of the real world useful for an ac-

tual system, titles with below average circulation

were eliminated. An offline pilot study had demon-

strated that one-word titles were easy for wizards,

so we eliminated those as well. A random sample

of 7,500 was chosen from the remaining 19,708

titles to build the trigram language model.

We used Ratcliff/Obersherhelp (R/O) to meas-

ure the similarity of an ASR string to book titles in

the database (Ratcliff & Metzener, 1988). R/O cal-

culates the ratio r of the number of matching cha-

racters to the total length of both strings, but

requires O(r2
) time on average and O(r3) time in

the worst case. We therefore computed an upper

bound on the similarity of a title/ASR pair prior to

full R/O to speed processing.

5 Experimental Design

In this experiment, a user and a wizard sat in sepa-

rate rooms where they could not overhear one

another. Each had a headset with microphone and a

GUI. Audio input on the wizard’s headset was dis-

abled. When the user requested a title, the ASR

hypothesis for the title appeared on the wizard’s

GUI. The wizard then selected the ASR hypothesis

to execute a voice search against the database.

Given the ASR and the query return, the wi-

zard’s task was to guess which candidate in the

query return, if any, matched the ASR hypothesis.

Voice search accessed the full backend of 71,166

titles. The custom query designed for the experi-

ment produced four types of return, in real time,

based on R/O scores:

· Singleton: a single best candidate (R/O ≥ 0.85)

· AmbiguousList: two to five moderately good

candidates (0.85 > R/O ≥ 0.55)

· NoisyList: six to ten poor but non-random can-

didates (0.55 > R/O ≥ 0.40)

· Empty: No candidate titles (max R/O < 0.40)

In pilot tests, 5%-10% of returns were empty ver-

sus none in the experiment. The distribution of

other returns was: 46.7% Singleton, 50.5% Ambi-

guousList, and 2.8% NoisyList.

Seven undergraduate computer science majors

at Hunter College participated. Two were non-

native speakers of English (one Spanish, one Ro-

manian). Each of the possible 21 pairs of students

met for five trials. During each trial, one student

served as wizard and the other as user for a session

of 20 title cycles. They immediately reversed roles

for a second session, as discussed further below.

The experiment yielded 4172 title cycles rather

than the full 4200, because users were permitted to

end sessions early. All titles were selected from the

7500 used to construct the language model.

Each user received a printed list of 20 titles and

a brief synopsis of each book. The acoustic quality

of titles read individually from a list is unlikely to

approximate that of a patron asking for a specific

title. Therefore, immediately before each session,

the user was asked to read a synopsis of each book,

and to reorder the titles to reflect some logical

grouping, such as genre or topic. Users requested

titles in this new order that they had created.

Participants were encouraged to maximize a ses-

sion score, with a reward for the experiment win-

ner. Scoring was designed to foster cooperative

843

strategies. The wizard scored +1 for a correctly

identified title, +0.5 for a thoughtful question, and

-1 for an incorrect title. The user scored +0.5 for a

successfully recognized title. User and wizard

traded roles for the second session, to discourage

participants from sabotaging the others’ scores.

The wizard’s GUI presented a real-time live

feed of ASR hypotheses, weighted by grayscale to

reflect acoustic confidence. Words in each candi-

date title that matched a word in the ASR appeared

darker: dark black for Singleton or AmbiguousList,

and medium black for NoisyList. All other words

were in grayscale in proportion to the degree of

character overlap. The wizard queried the database

with a recognition hypothesis for one utterance at a

time, but could concatenate successive utterances,

possibly with some limited editing.

After a query, the wizard’s GUI displayed can-

didate matches in descending order of R/O score.

The wizard had four options: make a firm choice of

a candidate, make a tentative choice, ask a ques-

tion, or give up to end the title cycle. Questions

were recorded. The wizard’s GUI showed the suc-

cess or failure of each title cycle before the next

one began. The user’s GUI posted the 20 titles to

be read during the session. On the GUI, the user

rated the wizard’s title choices as correct or incor-

rect. Titles were highlighted green if the user

judged a wizard’s offered title correct, red if incor-

rect, yellow if in progress, and not highlighted if

still pending. The user also rated the wizard’s

questions. Average elapsed time for each 20-title

session was 15.5 minutes.

A questionnaire similar to the type used in

PARADISE evaluations (Walker et al., 1998) was

administered to wizards and users for each pair of

sessions. On a 5-point Likert scale, the average re-

sponse to the question “I found the system easy to

use this time” was 4 (sd=0; 4=Agree), indicating

that participants were comfortable with the task.

All other questions received an average score of

Neutral (3) or Disagree (2). For example, partici-

pants were neutral (3) regarding confidence in

guessing the correct title, and disagreed (2) that

they became more confident as time went on.

6 Learning Method and Goals

To model wizard actions, we assembled 60 fea-

tures that would be available at run time. Part of

our task was to detect their relative independence,

meaningfulness, and predictive ability. Features

described the wizard’s GUI, the current title ses-

sion, similarity between ASR and candidates, ASR

relevance to the database, and recognition and con-

fidence measures. Because the number of voice

search returns varied from one title to the next, fea-

tures pertaining to candidates were averaged.

We used three machine-learning techniques to

predict wizards’ actions: decision trees, linear re-

gression, and logistic regression. All models were

produced with the Weka data mining package, us-

ing 10-fold cross-validation (Witten & Frank,

2005). A decision tree is a predictive model that

maps feature values to a target value. One applies a

decision tree by tracing a path from the root (the

top node) to a leaf, which provides the target value.

Here the leaves are the wizard actions: firm choice,

tentative choice, question, or give up. The algo-

rithm used is a version of C4.5 (Quinlan, 1993),

where gain ratio is the splitting criterion.

To confirm the learnability and quality of the

decision tree models, we also trained logistic re-

gression and linear regression models on the same

data, normalized in [0, 1]. The logistic regression

model predicts the probability of wizards’ actions

by fitting the data to a logistic curve. It generalizes

the linear model to the prediction of categorical da-

ta; here, categories correspond to wizards’ actions.

The linear regression models represent wizards’

actions numerically, in decreasing value: firm

choice, tentative choice, question, give up.

Although analysis of individual wizards has not

been systematic in other work, we consider the

variation in human performance significant. Be-

cause we seek excellent, not average, teachers for

CheckItOut, our focus is on understanding good

wizardry. Therefore, we learned two kinds of mod-

els with each of the three methods: the overall
model using data from all of our wizards, and indi-

vidual wizard models.

Preliminary cross-correlation confirmed that

many of the 60 features were heavily interdepen-

dent. Through an initial manual curation phase, we

isolated groups of features with R2
 > 0.5. When

these groups referenced semantically similar fea-

tures, we selected a single representative from the

group and retained only that one. For example, the

features that described similarity between hypo-

theses and candidates were highly correlated, so

we chose the most comprehensive one: the number

of exact word matches. We also grouped together

844

and represented by a single feature: three features

that described the gaps between exact word

matches, three that described the data presented to

the wizard, nine that described various system con-

fidence scores, and three that described the user’s

speaking rate. This left 28 features.

Next we ran CfsSubsetEval, a supervised

attribute selection algorithm for each model

(Witten & Frank, 2005). This greedy, hill-climbing

algorithm with backtracking evaluates a subset of

attributes by the predictive ability of each feature

and the degree of redundancy among them. This

process further reduced the 28 features to 8-12 fea-

tures per model. Finally, to reduce overfitting for

decision trees, we used pruning and subtree rising.

For linear regression we used the M5 method, re-

peatedly removing the attribute with the smallest

standardized coefficient until there was no further

improvement in the error estimate given by the

Akaike information criterion.

7 Results

Table 1 shows the number of title cycles per wi-

zard, the raw session score according to the formu-

la given to the wizards, and accuracy. Accuracy is

the proportion of title cycles where the wizard

found the correct title, or correctly guessed that the

correct title was not present (asked a question or

gave up). Note that score and accuracy are highly

correlated (R=0.91, p=0.0041), indicating that the

instructions to participants elicited behavior con-

sistent with what we wanted to measure.

Wizards clearly differed in performance, large-

ly due to their response when the candidate list did

not include the correct title. Analysis of variance

with wizard as predictor and accuracy as the de-

pendent variable is highly significant (p=0.0006);

significance is somewhat greater (p=0.0001) where

session score is the dependent variable. Table 2

shows the distribution of correct actions: to offer a

candidate at a given position in the query return

(Returns 1 through 9), or to ask a question or give

up. As reflected in Table 2, a baseline accuracy of

about 65% could be achieved by offering the first

return. The fifth column of Table 1 shows how of-

ten wizards did that (Offered Return 1), and clearly

illustrates that those who did so most often (W3

and W6) had accuracy results closest to the base-

line. The wizard who did so least often (W4) had

the highest accuracy, primarily because she more

often correctly offered no title, as shown in the last

column of Table 1. We conclude that a spoken di-

alogue system would do well to emulate W4.

Overall, our results in modeling wizards’ actions

were uniform across the three learning methods,

gauged by accuracy and F measure. For the com-

bined wizard data, logistic regression had an accu-

racy of 75.2%, and F measures of 0.83 for firm

choices and 0.72 for tentative choices; the decision

tree accuracy was 82.2%, and the F measures for

firm versus tentative choices were respectively

0.82 and 0.71. The decision tree had a root mean

squared error of 0.306, linear regression 0.483. Ta-

ble 3 shows the accuracy and F measures on firm

choices for the decision trees by individual wizard,

along with the numbers of attributes and nodes per

Table 1. Raw session score, accuracy, proportion of offered titles that were listed first in the query return, and

frequency of correct non-offers for seven participants.

Participant Cycles Session Score Accuracy Offered Return 1 Correct Non-Offers

W4 600 0.7585 0.8550 0.70 0.64

W5 600 0.7584 0.8133 0.76 0.43

W7 599 0.6971 0.7346 0.76 0.14

W1 593 0.6936 0.7319 0.79 0.16

W2 599 0.6703 0.7212 0.74 0.10

W3 581 0.6648 0.6954 0.81 0.20

W6 600 0.6103 0.6950 0.86 0.03

Table 2. Distribution of correct actions

Correct Action N %

Return 1 2722 65.2445

Return 2 126 3.0201

Return 3 56 1.3423

Return 4 46 1.1026

Return 5 26 0.6232

Return 7 7 0.1678

Return 8 1 0.0002

Return 9 2 0.0005

Question or Giveup 1186 28.4276

Total 4172 1.0000

845

tree. Although relatively few attributes appeared in

any one tree, most attributes appeared in multiple

nodes. W1 was the exception, with a very small

pruned tree of 7 nodes.

Accuracy of the decision trees does not correlate

with wizard rank. In general, the decision trees

could consistently predict a confident choice (0.80

≤ F ≤ 0.87), but were less consistent on a tentative

choice (0.60 ≤ F ≤ 0.89), and could predict a ques-

tion only for W4, the wizard with the highest accu-

racy and greatest success at detecting when the

correct title was not in the candidates.

What wizards saw on the GUI, their recent suc-

cess, and recognizer confidence scores were key

attributes in the decision trees. The five features

that appeared most often in the root and top-level

nodes of all tree models reported in Table 3 were:

· DisplayType of the return (Singleton, Ambi-

guous List, NoisyList)

· RecentSuccess, how often the wizard chose the

correct title within the last three title cycles

· ContiguousWordMatch, the maximum number

of contiguous exact word matches between a

candidate and the ASR hypothesis (averaged

across candidates)

· NumberOfCandidates, how many titles were re-

turned by the voice search

· Confidence, the Helios confidence score

DisplayType, NumberOfCandidates and Conti-
guousWordMatch pertain to what the wizard could

see on her GUI. (Recall that DisplayType is distin-

guished by font darkness, as well as by number of

candidates.) The impact of RecentSuccess might

result not just from the wizard’s confidence in her

current strategy, but also from consistency in the

user’s speech characteristics. The Helios confi-

dence annotation uses a learned model based on

features from the recognizer, the parser, and the di-

alogue state. Here confidence primarily reflects

recognition confidence; due to the simplicity of our

grammar, parse results only indicate whether there

is a parse. In addition to these five features, every

tree relied on at least one measure of similarity be-

tween the hypothesis and the candidates.

W4 achieved superior accuracy: she knew when

to offer a title and when not to. In the learned tree

for W4, if the DisplayType was NoisyList, W4

asked a question; if DisplayType was Ambiguous-

List, the features used to predict W4’s action in-

cluded the five listed above, along with the acous-

tic model score, word length of the ASR, number

of times the wizard had asked the user to repeat,

and the maximum size of the gap between words in

the candidates that matched the ASR hypothesis.

To focus on W4’s questioning behavior, we

trained an additional decision tree to learn how W4

chose between two actions: offering a title versus

asking a question. This 37-node, 8-attribute tree

was based on 600 data points, with F=0.91 for

making an offer and F=0.68 for asking a question.

The tree is distinctive in that it splits at the root on

the number of frames in the ASR. If the ASR is

short (as measured both by the number of recogni-

tion frames and the words), W4 asks a question

when DisplayType = AmbiguousList or NoisyList,

either RecentSuccess ≤ 1 or ContiguousWord-
Match = 0, and the acoustic model score is low.

Note that shorter titles are more confusable. If the

ASR is long, W4 asks a question when Conti-
guousWordMatch ≤ 1, RecentSuccess ≤ 2, and ei-

ther CandidateDisplay = NoisyList, or Confidence

is low, and there is a choice of titles.

8 Discussion

Our experiment addressed whether voice search

can compensate for incorrect ASR hypotheses and

permit identification of a user’s desired book, giv-

en a request by title. The results show that with

high WER, a baseline dialogue strategy that always

offers the highest-ranked database return can nev-

ertheless achieve moderate accuracy. This is true

even with the relatively simplistic measure of simi-

larity between the ASR hypothesis and candidate

titles used here. As a result, we have integrated

voice search into CheckItOut, along with a linguis-

tically motivated grammar for book titles. Our cur-

rent Phoenix grammar relies on CFG rules

automatically generated from dependency parses

of the book titles, using the MICA parser

Table 3. Learning results for wizards

Tree Rank Nodes Attributes Accuracy F firm

W4 1 55 12 75.67 0.85

W5 2 21 10 76.17 0.85

W1 3 7 8 80.44 0.87

W7 4 45 11 73.62 0.83

W3 5 33 10 77.42 0.84

W2 6 35 10 78.49 0.85

W6 7 23 10 85.19 0.80

846

(Bangalore et al., 2009). As described in (Gordon

& Passonneau, 2010), a book title parse can con-

tain multiple title slots that consume discontinuous

sequences of words from the ASR hypothesis, thus

accommodating noisy ASR. For the voice search

phase, we now concatenate the words consumed by

a sequence of title slots. We are also experimenting

with a statistical machine learning approach that

will replace or complement the semantic parsing.

Computers clearly do some tasks faster and

more accurately than people, including database

search. To benefit from such strengths, a dialogue

system should also accommodate human prefe-

rences in dialogue strategy. Previous work has

shown that user satisfaction depends in part on task

success, but also on minimizing behaviors that can

increase task success but require the user to correct

the system (Litman et al., 2006).

The decision tree that models W4 has lower ac-

curacy than other models’ (see Table 3), in part be-

cause her decisions had finer granularity. A spoken

dialogue system could potentially do as well as or

better than the best human at detecting when the

title is not present, given the proper training data.

To support this, a dataset could be created that was

biased toward a larger proportion of cases where

not offering a candidate is the correct action.

9 Conclusion and Current Work

This paper presents a novel methodology that em-

beds wizards in a spoken dialogue system, and col-

lects data for a single turn exchange. Our results

illustrate the merits of ranking wizards, and learn-

ing from the best. Our wizards were uniformly

good at choosing the correct title when it was

present, but most were overly eager to identify a

title when it was not among the candidates. In this

respect, the best wizard (W4) achieved the highest

accuracy because she demonstrated a much greater

ability to know when not to offer a title. We have

shown that it is feasible to replicate this ability in a

model learned from features that include the pres-

entation of the search results (length of the candi-

date list, amount of word overlap of candidates

with the ASR hypothesis), recent success at select-

ing the correct candidate, and measures pertaining

to recognition results (confidence, acoustic model

score, speaker rate). If replicated in a spoken di-

alogue system, such a model could support integra-

tion of voice search in a way that avoids

misunderstandings. We conclude that learning

from embedded wizards can exploit a wider range

of relevant features, that dialogue managers can

profit from access to more fine-grained representa-

tions of user utterances, and that machine learners

should be selective about which people to model.

That wizard actions can be modeled using sys-

tem features bodes well for future work. Our next

experiment will collect full dialogues with embed-

ded wizards whose actions will again be restricted

through an interface. This time, NLU will integrate

voice search with the linguistically motivated CFG

rules for book titles described earlier, and a larger

language model and grammar for database entities.

We will select wizards who perform well during

pilot tests. Again, the goal will be to model the

most successful wizards, based upon data from

recognition results, NLU, and voice search results.

Acknowledgements

This research was supported by the National

Science Foundation under IIS-0745369, IIS-

084966, and IIS-0744904. We thank the anonym-

ous reviewers, the Heiskell Library, our CMU col-

laborators, our statistical wizard Liana Epstein, and

our enthusiastic undergraduate research assistants.

References

Bangalore, Srinivas; Bouillier, Pierre; Nasr, Alexis;

Rambow, Owen; Sagot, Benoit (2009). MICA: a
probabilistic dependency parser based on tree

insertion grammars. Application Note. Human

Language Technology and North American Chapter

of the Association for Computational Linguistics,

pp. 185-188.

Bohus, D.; Rudnicky, A.I. (2009). The RavenClaw

dialog management framework: Architecture and

systems. Computer Speech and Language, 23(3),

332-361.

Bohus, Daniel; Rudnicky, Alex (2002). Integrating

multiple knowledge sources for utterance-level
confidence annotation in the CMU Communicator

spoken dialog system (Technical Report No. CS-

190): Carnegie Mellon University.

Georgila, Kallirroi; Sgarbas, Kyrakos; Tsopanoglou,

Anastasios; Fakotakis, Nikos; Kokkinakis, George

(2003). A speech-based human-computer interaction

system for automating directory assistance services.

International Journal of Speech Technology, Special

Issue on Speech and Human-Computer Interaction,

6(2), 145-59.

847

Gordon, Joshua, B.; Passonneau, Rebecca J. (2010). An

evaluation framework for natural language

understanding in spoken dialogue systems. Seventh

International Conference on Language Resources

and Evaluation (LREC).

Johnston, Michael; Bangalore, Srinivas; Vasireddy,

Gunaranjan; Stent, Amanda; Ehlen, Patrick; Walker,

Marilyn A., et al. (2002). MATCH--An architecture

for multimodal dialogue systems. Proceedings of the

40th Annual Meeting of the Association for

Computational Linguistics, pp. 376-83.

Komatani, Kazunori; Kanda, Naoyuki; Ogata, Tetsuya;

Okuno, Hiroshi G. (2005). Contextual constraints

based on dialogue models in database search task

for spoken dialogue systems. The Ninth European

Conference on Speech Communication and

Technology (Eurospeech), pp. 877-880.

Kruijff-Korbayová, Ivana; Blaylock, Nate;

Gerstenberger, Ciprian; Rieser, Verena; Becker,

Tilman; Kaisser, Michael, et al. (2005). An

experiment setup for collecting data for adaptive
output planning in a multimodal dialogue system.

10th European Workshop on Natural Language

Generation (ENLG), pp. 191-196.

Levin, Esther; Narayanan, Shrikanth; Pieraccini,

Roberto; Biatov, Konstantin; Bocchieri, E.; De

Fabbrizio, Giuseppe, et al. (2000). The AT&T-

DARPA Communicator Mixed-Initiative Spoken

Dialog System. Sixth International Conference on

Spoken Dialogue Processing (ICLSP), pp. 122-125.

Litman, Diane; Hirschberg, Julia; Swerts, Marc (2006).

Characterizing and predicting corrections in spoken

dialogue systems. Computational Linguistics, 32(3),

417-438.

Litman, Diane; Pan, Shimei (1999). Empirically

evaluating an adaptable spoken dialogue system. 7th

International Conference on User Modeling (UM),

pp. 55-46.

Quinlan, J. Ross (1993). C4.5: Programs for Machine

Learning. San Mateo, CA: Morgan Kaufmann.

Ratcliff, John W.; Metzener, David (1988). Pattern

Matching: The Gestalt Approach. Dr. Dobb's

Journal, 46

Raux, Antoine; Bohus, Dan; Langner, Brian; Black,

Alan W.; Eskenazi, Maxine (2006). Doing research

on a deployed spoken dialogue system: one year of

Let's Go! experience. Ninth International

Conference on Spoken Language Processing

(Interspeech/ICSLP).

Raux, Antoine; Eskenazi, Maxine (2007). A Multi-layer

architecture for semi-synchronous event-driven

dialogue management.IEEE Workshop on

Automatic Speech Recognition and Understanding

(ASRU 2007), Kyoto, Japan.

Raux, Antoine; Langner, Brian; Black, Alan W.;

Eskenazi, Maxine (2005). Let's Go Public! Taking a

spoken dialog system to the real world.Interspeech

2005 (Eurospeech), Lisbon, Portugal.

Rieser, Verena; Kruijff-Korbayová, Ivana; Lemon,

Oliver (2005). A corpus collection and annotation

framework for learning multimodal clarification

strategies. Sixth SIGdial Workshop on Discourse

and Dialogue, pp. 97-106.

Sacks, Harvey; Schegloff, Emanuel A.; Jefferson, Gail

(1974). A simplest systematics for the organization

of turn-taking for conversation. Language, 50(4),

696-735.

Skantze, Gabriel (2003). Exploring human error

handling strategies: Implications for Spoken

Dialogue Systems. Proceedings of ISCA Tutorial

and Research Workshp on Error Handling in Spoken

Dialogue Systems, pp. 71-76.

Stoyanchev, Svetlana; Stent, Amanda (2009).

Predicting concept types in user corrections in

dialog. Proceedings of the EACL Workshop SRSL

2009, the Second Workshop on Semantic

Representation of Spoken Language, pp. 42-49.

Turunen, Markku; Hakulinen, Jaakko; Kainulainen,

Anssi (2006). Evaluation of a spoken dialogue

system with usability tests and long-term pilot

studies. Ninth International Conference on Spoken

Language Processing (Interspeech 2006 - ICSLP).

Walker, M A.; Litman, D, J.; Kamm, C. A.; Abella, A.

(1998). Evaluating Spoken Dialogue Agents with

PARADISE: Two Case Studies. Computer Speech

and Language, 12, 317-348.

Wang, Ye-Yi; Yu, Dong; Ju, Yun-Cheng; Acero, Alex

(2008). An introduction to voice search. IEEE
Signal Process. Magazine, 25(3).

Ward, Wayne; Issar, Sunil (1994). Recent improvements

in the CMU spoken language understanding

system.ARPA Human Language Technology

Workshop, Plainsboro, NJ.

Williams, Jason D.; Young, Steve (2004).

Characterising Task-oriented Dialog using a

Simulated ASR Channel. Eight International

Conference on Spoken Language Processing

(ICSLP/Interspeech), pp. 185-188.

Witten, Ian H.; Frank, Eibe (2005). Data Mining:
Practical Machine Learning Tools and Techniques

(2nd ed.). San Francisco: Morgan Kaufmann.

Zollo, Teresa (1999). A study of human dialogue

strategies in the presence of speech recognition

errors. Proceedings of AAAI Fall Symposium on

Psychological Models of Communication in

Collaborative Systems, pp. 132-139.

Zue, Victor; Seneff, Stephanie; Glass, James; Polifroni,

Joseph; Pao, Christine; Hazen, Timothy J., et al.

(2000). A Telephone-based conversational interface

for weather information. IEEE Transactions on

Speech and Audio Processing, 8, 85-96.

848

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 849–857,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

A Direct Syntax-Driven Reordering Model for Phrase-Based Machine
Translation

Niyu Ge

IBM T.J.Watson Research
Yorktown Heights, NY 10598
niyuge@us.ibm.com

Abstract

This paper presents a direct word reordering
model with novel syntax-based features for sta-
tistical machine translation. Reordering models
address the problem of reordering source lan-
guage into the word order of the target language.
IBM Models 3 through 5 have reordering com-
ponents that use surface word information but
very little context information to determine the
traversal order of the source sentence. Since the
late 1990s, phrase-based machine translation
solves much of the local reorderings by using
phrasal translations. The problem of long-
distance reordering has become a central re-
search topic in modeling distortions. We present
a syntax driven maximum entropy reordering
model that directly predicts the source traversal
order and is able to model arbitrarily long dis-
tance word movement. We show that this model
significantly improves machine translation qual-
ity.

1 Introduction

Machine translation reordering models model the
problem of the word order when translating a
source language into a target language. For exam-
ple in Spanish and Arabic, adjectives often come
after the nouns they modify whereas in English
modifying adjectives usually precede the nouns.
When translating Spanish or Arabic into English,
the position of the adjectives need to be properly
reordered to be placed before the nouns to make
fluent English.
In this paper, we present a word reordering model
that models the word reordering process in transla-
tion. The paper is organized as follows. §2 out-
lines previous approaches to reordering. §3 details
our model and its training and decoding process.
§4 discusses experiments to evaluate the model

and §5 presents machine translation results. §6 is
discussion and conclusion.

2 Previous Work

The word reordering problem has been one of the
major problems in statistical machine translation
(SMT). Since exploring all possible reorderings
of a source sentence is an NP-complete problem
(Knight 1999), SMT systems limit words to be re-
ordered within a window of length k. IBM Models
3 through 5 (Brown et.al. 1993) model reorderings
based on surface word information. For example,
Model 4 attempts to assign target-language posi-
tions to source-language words by modeling d(j | i,
l, m) where j is the target-language position, i is the
source-language position, l and m are respectively
source and target sentence lengths. These models
are not effective in modeling reorderings because
they don’t have enough context and lack structural
information.

Phrase-based SMT systems such as (Koehn et.al.
2003) move from using words as translation units
to using phrases. One of the advantages of phrase-
based SMT systems is that local reorderings are
inherent in the phrase translations. However,
phrase-based SMT systems capture reordering in-
stances and not reordering phenomena. For exam-
ple, if the Arabic phrase “the car red” and its
English translation “the red car’ is seen in the
training data, phrase-based SMT is able to produce
the correct English for the Arabic ‘the car red’.
However it will not be able to produce ‘the blue
car’ for the Arabic ‘the car blue’ if the training
data does not contain this phrase pair. Phrases do
not capture the phenomenon that Arabic adjectives
and nouns need to be reordered. Another problem
with phrase-based SMT is the problem of long-
range reorderings. Recent work on reordering has
been focusing on capturing general reordering

849

phenomena (as opposed to instances) and on solv-
ing long-range reordering problems.

(Al-onaizan et.al. 2006) proposes 3 distor-
tion models, the inbound, outbound, and pair mod-
els. They together model the likelihood of
translating a source word at position i given that
the source word at position j has just been trans-
lated. These models perform better than n-gram
based language models but are limited in their use
of only the surface strings.

Instead of directly modeling the distance
of word movement, phrasal level reordering mod-
els model how to move phrases, also called orien-
tations. Orientations typically apply to adjacent
phrases. Two adjacent phrases can be either
placed monotonically (sometimes called straight)
or swapped (non-monotonically or inverted).
Early orientation models do not use lexical con-
tents such as (Zens et. al., 2004). More recently,
(Xiong et.al. 2006; Zens 2006; Och et. al, 2004;
Tillmann, 2004; Kumar et al., 2005, Ni et al.,
2009) all presented models that use lexical features
from the phrases to predict their orientations.
These models are very powerful in predicting local
phrase placements. More recently (Galley et.al.
2008) introduced a hierarchical orientation model
that captures some non-local phrase reorderings by
a shift reduce algorithm. Because of the heavy use
of lexical features, these models tend to suffer
from data sparseness problems. Another limitation
is that these models are restricted to reorderings
with no gaps and phrases that are adjacent.

We present a probabilistic reordering model
that models directly the source translation se-
quence and explicitly assigns probabilities to the
reorderings of the source input with no restrictions
on gap, length or adjacency. This is different from
the approaches of pre-order such as (Xia and
McCord 2004; Collins et.al. 2005; Kanthak et. al.
2005; Li et. al., 2007). Although our model can
be used to produce top N pre-ordered source, the
experiments reported here do not use the model in
the pre-order mode. Instead, the reordering model
is used to generate a reorder lattice which encodes
many reorderings and their costs (negative log
probability). This reorder lattice is independent of
the translation decoder. In principle, any decoder
can use this lattice for its reordering needs. We
have integrated the reorder lattice into a phrase-
based. The experiments reported here are from the
phrase-based decoder.

We present the reordering model based on
maximum entropy models. We then describe the
syntactic features in the context of Chinese to Eng-
lish translation.

3 Maximum Entropy Reordering Model

The model takes a source sequence of length n:
],...,[21 nsssS =

and models its translation or visit order according
to the target language:

],...,[21 nvvvV =

where vj is the source position for target position j.
For example, if the 2nd source word is to be trans-
lated first, then v1 = 2. We find V such that

)2(),|(max

)1()|(maxarg

1
1...1

}{

∏
=

−

∈

=
n

j
jj

V

vvSvp

SVp
ν

In equation (1) {υ } is the set of possible visit or-
ders. We want to find a visit order V such that the
probability p(V|S) is maximized. Equation (2) is a
component-wise decomposition of (1).

Let

)...,(11 −== jj vvShandvf

We use the maximum entropy model to estimate
equation (2):

∑=
k

kk hf
hZ

hfp)3()),(exp(
)(

1
)|(φλ

where Z(h) is the normalization constant

)4(),(exp)(∑ ∑=
f k

kk hfhZ φλ

In equation (3), φk(f, h) are binary-valued features.
During training, instead of exploring all possible
permutations, samples are drawn given the correct
path only.

3.1 Feature Overview

Most of our features φk(f, h) are syntax-based.
They examine how each parse node is reordered
during translation. We also have a few non-syntax
features that inspect the surface words and part-of-
speech tags. They complement syntax features by
capturing lexical dependencies and guarding
against parsing errors. Instead of directly model-

850

Step: 1 2 3 4 5 6 7 8 9 10 11
Visit Sequence: 1 9 10 2 8 7 6 3 4 5 11

Figure 1. A Chinese-English Parallel Sentence with Chinese Parse

ing the absolute source position vj, we model the
jump from the last source position vj-1. All features
share two common components: j (for jump), and
cov (for coverage). Jumps are bucketed and
capped at 4 to prevent data sparsity. Coverage is
an integer indicating the visiting status of the
words between the jump. Coverage is 0 if none of
the words was visited prior to this step, 1 if all
were visited, and 2 if some but not all were visited.
(j, cov) are present in all features and are removed
from the descriptions below. A couple of features
use a variation of Jump and Coverage. These will
be described in the feature description.

3.2 Parse-based Syntax Features

We use the sentence pair in Figure 1. as a work-
ing example when describing the features. Shown
in the figure are a Chinese-English parallel sen-
tence pair, the word alignments between them, and

the Chinese parse tree. The parse tree is simpli-
fied. Some details such as part-of-speech tags are
omitted and denoted by triangles. The first step is
to determine the source visit sequence from the
word alignment, also shown at the bottom of Fig-

ure 1. If a target is aligned to more than one
source, we assume the visit order is left to right.
In Figure 1, source words 2 and 8 are aligned to the
English ‘at’ and we define the visit sequence to be
8 following 2.

Chinese and English differ in the positioning of
the modifiers. In English, non-adjectival modifiers
follow the object they modify. This is most
prominent in the use of relative clauses and prepo-
sitional phrases. Chinese in contrast is a pre-
modification language where modifiers whether
adjectival, clausal or prepositional typically pre-
cede the object they modify. In Figure 1., the
Chinese prepositional phrase PP (in lightly shaded
box in the parse tree) spanning range [2,8] pre-
cedes the verb phrase VP2 at positions [9,10].
These two phrases are swapped in English as
shown by the two lightly shaded boxes in the
alignment grid. The relative clause CP (in dark

shaded box in the parse tree) in Chinese spanning
range [3,6] precedes the noun phrase NP3 at posi-
tion 7 whereas these two phrases are again
swapped in English.

851

The phenomenon for the reordering model to
capture is that node VP1’s two children PP and
VP2 (lightly shaded) need to be swapped regard-
less of how long the PP phrase is. This is also true
for node NP2 whose two children CP and NP3
(dark shaded) need to be reversed.

Parse-based features model how to reorder the
constituents in the parse by learning how to walk
the parse nodes. For every non-unary node in the
parse we learn such features as which of its child is
visited first and for subsequent visits how to jump
from one child to another. For the treelet VP1 �
PP VP2 in Figure 1, we learn to visit the child VP2
first, then PP.

We now define the notion of ‘node visit’. When
a source word si is visited at step j, we find its path
to root from the leaf node denoted as PathToRooti.
We say all the nodes contained in PathToRooti are
being visited at that step. Parse-based features are
applied to every qualifying node in PathToRooti.
Unary extensions do not qualify and are ignored.
Since part-of-speech tags are unary branches,
parse-based features apply from the lowest-level
labels. Another condition depends on the jump
and is discussed in section §3.4. All our features
are encoded by a vector of integers and are denoted
as φ (·) in this paper. We now describe the fea-
tures.

3.2.1 First Child Features

The first-child feature applies when a node is vis-
ited for the first time. The feature learns which of
the node’s child to visit first. This feature learns
such phenomena as translating the main verb first
under a VP or translating the main NP first under
an NP. The feature is defined as φ(currentLabel,
parentLabel, nthNode, j, cov) where
currentLabel = label of the current parse node
parentLabel = label of the parent node
nthNode = an integer indicating the nth occurrence
of the current node
 In Figure 1, when source word 9 is visited at step
2, its PathToRoot is computed which is [VP2, VP1,
IP1]. The first-child feature applied to VP2 is
φ(VP2, VP1, 1, 4, 1) since
currentLabel = VP2; parentLabel = VP1;
nthChild = 1: VP2 is the 1st VP among its parent’s
children
j = 4: actual jump from 1 is 8 and is capped.

cov = 0: words in between the jump [1,9] are not
yet visited at this step.
The semantics of this feature is that when a VP
node is visited, the first VP child under it is visited
first. This feature learns to visit the first VP first
which is usually the head VP no matter where it is
positioned or how many modifiers precede it.

3.2.2 Node Jump Features

This feature applies on all subsequent visits to the
parse node. This feature models how to jump from
one sibling to another sibling. This feature has
these components: φ(currentLabel, parentLabel,
fromLable, nodeJump,cov) where
fromLabel = the node label where the jump is from
nodeJump = node distance from that node
This feature effectively captures syntactic reorder-
ings by looking at the node jump instead of surface
distance jump. In our example, a node-jump fea-
ture for jumping from source 10 to 2 at step 4 at
VP1 level is φ(PP, VP1, VP2, -1, 2) where
currentLabel = PP where source word 2 is under
parentLabel = VP1
fromLabel = VP2 where source word 10 is under
nodeJump = -1 since the jump is from VP2 to PP
cov = 2 because in between [2,10] word 9 has been
visited and other words have not.

This feature captures the necessary information
for the ‘PP VP’ reorderings regardless of how long
the PP or VP phrase is.

3.2.3 Jump Over Sibling Features

To make a correct jump from one sibling to the
other, siblings that are jumped over should also be
considered. For example in Chinese, while jump-
ing over a PP to cover a VP is a good jump, jump-
ing over an ADVP to cover a VP may not be
because adverbs in both Chinese and English often
precede the verb they modify. The jump-over-
sibling features help distinguish these cases. This
feature’s components are φ(currentLabel, parent-
Label, jumpOverSibling, siblingCov, j) where jum-
pOverSibling is the label of the sibling that is
jumped over and siblingCov is the coverage status
of that sibling.
 This feature applies to every sibling that is
jumped over. At step 2 where the jump is from
source 1 to 9, this feature at VP1 level is φ(VP2,
VP1, PP, 0, 4) because PP is a sibling of VP2 and

852

is jumped over, PP is not covered at this step, and
the jump is capped to be 4.

3.2.4 Back Jump Sibling Features

For every forward jump of length greater than 1,
there is a backward jump to cover those words that
were skipped. In these situations we want to know
how far we can move forward before we must
jump backward. The back-jump-sibling feature
applies when the jump is backward (distance is
negative) and inspects the sibling to the right. It
generates φ(currentLabel, rightSiblingCov, j).
When jumping from 10 to 2 at step 4, this feature
is φ(PP, 1, -4) where -4 is the jump and
currentLabel = PP where source word 2 is under
rightSiblingCoverage = 1 since VP2 has been
completed visited at this time. This feature learns
to go back to PP when its right sibling (VP2) is
completed.

3.2.5 Broken Features

Translations do not always respect the constituent
boundaries defined by the source parse tree. Con-
sider the fragment in Figure 2.

Figure 2. A ‘Broken’ Tree

After the VV under VP2 is translated (“account
for”), a transition is made to translate the ADVP
(“approximately”) leaving VP2 partially translated.
We say that the node VP2 is broken at this step.
This type of feature has been shown to be useful
for machine translation (Marton & Resnik 2008).
Here, broken features model the context under
which a node is broken by observing the feature
φ(curTag, prevTag, parentLabel, j, cov). For the
transition of source word 2 to source word 1 in
Figure 2, a broken feature applies at VP2: φ(AD,
VV, VP2, -1 ,1). This feature learns that a VP can
be broken when making a jump from a verb (VV)
to an adverb (AD).

3.3 Non-Parse Features

Non-parse features do not use or use less fine-
grained information from the parse tree.

3.3.1 Barrier Features

Barrier features model the intuition that certain
words such as punctuation should not move freely.
This phenomenon has been observed and shown to
be helpful in (Xiong et. al., 2008). We call these
words barrier words. Barrier features are φ(barri-
erWord, cov, j). All punctuations are barrier
words.

3.3.2 Number of Zero Islands Features

Although word reorderings can involve words
far apart, certain jump patterns are highly unlikely.
For example, the coverage pattern ‘1010101010’
where every other source word is translated would
be very improbable. Let the right most covered
source word be the frontier. For every jump, the
number-of-zero-islands feature computes the num-
ber of uncovered source islands to the left of the
frontier. Additionally it takes into account the
number of parse nodes in between. This feature is
defined as φ(numZeroIslands, j, num-
ParseNodesInBetween). The number of parse
nodes is the number of maximum spanning nodes
in between the jump. The jump at step 2 from
source 1 to 9 triggers this number-zero-island fea-
ture φ(1, 4, 1). The source coverage status at step 2
is 10000000100 because the first source word has
been visited and the current visit is source 9. All
words in between have not been visited. There is 1
contiguous sequence of 0’s between the first ‘1’
and the last ‘1’, hence the numZeroIslands = 1.
There is one parse node PP that spans all the
source words from 2 to 8, therefore the last argu-
ment to the feature is 1. If instead, the transition
was from source 1 to 8, then there would be 2
maximum spanning parse nodes for source [2,7]
which are nodes P and NP2. The feature would be
φ(1, 4, 2). This feature discourages scattered
jumps that leave lots of zero islands and jump over
lots of parse nodes.

3.4 Training

Training the maximum entropy reordering model
needs word alignments and source-side parses. We
use hand alignments from LDC. The training data

853

statistics are shown in Table 1. We use the (Levy
and Manning 2003) parser on Chinese.
Data #Sentences #Words
LDC2006E93 10,408 230,764
LDC2008E57 11,463 194,024

Table 1. Training Data

From the word alignments we first determine the

source visit sequence. Table 2 details how the visit
sequence is determined in various cases.
Alignment Type S-T Visit Sequence
1-1 Left to right from target
m-1 Left to right from source
1-m Left most target link
Ø Attaches left

Table 2. Determining visit sequence

The first column shows alignment type from

source (S) to target (T). 1-1 means one source
word aligns to one target word. m-1 means many
source words align to one target and vice versa. Ø
means unaligned source words.

After the source visit sequence is decided, fea-

tures are generated. Note that the height of the tree
is not uniform for all the words. To preserve the
structure and also alleviate the depth problem, we
use the lowest-level-common-ancestor approach.
For every jump, we generate features bottom up
until we reach the node that is the common ances-
tor of the origin and the destination of the jump. In
Figure 1 there is a jump from source 7 to 6 at step
7. The lowest-level-common-ancestor for source 6
and 7 is the node NP2 and features are generated
up to the level of NP2. Features on this training
data are shown in the second column in Table 5.

The MaxEnt model on this data is efficiently
trained at 15 minutes per iteration (24 sen-
tences/sec or 471 words/sec).

4 Experiments

4.1 Reorder Evaluation

To evaluate how accurate the reordering model is,
we first compute its prediction accuracy. We
choose the first 100 sentences from NIST MT03 as
our test set for this evaluation. We manually word
align them to the first set of reference using LDC
annotation guidelines version 1.0 of April 2006.

An average of 73% of the training sentences con-
tain unaligned source words and over 87% of the
test sentences contain unaligned source words.
The unaligned source words are mostly function
words. Because the visit sequence of unaligned
source words are determined not by truth but by
heuristics (Table 2), they pose a problem in evalua-
tion.
We thus evaluate the model by measuring the ac-

curacy of its decision conditioned on true history.
We measure performance on the model’s top-N
choices for N = 1,2, and 3. Results are in Table 3.
The table also shows the accuracy of no reorder-
ing in the Monotone column.
Top-N Accuracy Monotone
1 80.56% 65.39%
2 90.66% -
3 93.05% -
Table 3. Reordering model performance

Figure 3 plots accuracy vs. MaxEnt training itera-

tion. Accuracy starts low at 74.7% and reaches is
highest at iteration 8 and fluctuates around 80.5%
thereafter.

71

72

73

74

75

76

77

78

79

80

81

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Figure 3. Accuracy vs. MaxEnt Training Iteration

We analyze 50 errors from the top-1 run. The er-

rors are categorized and shown in Table 4.
Error Category Percentage
Lexical 34%
Parse 30%
Model 20%
Reference 16%

Table 4. Error Analysis

‘Lexical’ errors are those that rise from lexical
choice of source words. For example, an “ADVP
VP” structure would normally be visited mono-
tonically. However, in case of Chinese phrase ‘so
do’, they should be swapped. More than a third of
the errors are of this nature. Errors in the Refer-

854

ence category are those that are marked wrong be-
cause of the particular English reference. The pro-
posed reorderings are correct but they don’t match
the reference reorderings. Another 30% of the er-
rors are due to parsing errors. The Model errors
are due to two sources. One is the depth problem
mentioned above. Local statistics for some very
deep treelets overwhelm the global statistics and
local jumps win over the long jumps in these cases.
Another problem is the data sparseness. For ex-
ample, the model has learned to reorder the ‘PP
VP’ structure but there is not much data for ‘PP
ADVP VP’. The model fails to jump over PP into
ADVP.

4.2 Feature Utility

We conduct ablation studies to see the utilities of
each feature. We take the best feature set which
gives the performance in Table 3 and takes away
one feature type at a time. The results are in Table
5. The first row keeps all the features. The Sub-
tract column shows performance after subtracting
each feature while keeping all the other features.
The Add column shows performance of adding the
feature. Using just first-child features gets
75.97%. Adding node-jump features moves the
accuracy to 78.40% and so on.
Features #Features Sub-

tract
Add

- 80.56% -
First Child 7,559 79.87% 75.97%
Node Jump 6,334 79.52% 78.40%
JumpOver Sib. 2,403 80.52% 79.00%
BackJump 602 80.48% 79.05%
Broken 15,183 80.30% 79.13%
Barrier 158 80.26% 79.22%
NumZ Islands 200 79.52% 80.56%

Table 5. Ablation study on features

5 Translation Experiments

5.1 Reorder Lattice Generation

The reordering model is used to generate reorder
lattices which are used by machine translation de-
coders. Reorder lattices have been frequently used
in decoding in works such as (Zhang et. al 2007,
Kumar et.al. 2005, Hildebrand et.al. 2008), to
name just a few. The main difference here is that
our lattices encode probabilities from the reorder-
ing model and are not used to preorder the source.

The lattice contains reorderings and their cost
(negative log probability). Figure 4 shows a reor-
der lattice example. Nodes are lattice states. Arcs
store source word positions to be visited (trans-
lated) and their cost and they are delimited by
comma in the figure. Lower cost indicates better
choice. Figure 4 is much simplified for readability.
It shows only the best path (highlighted) and a few
neighboring arcs. For example, it shows source
words 1, 2, and 8 are the top 3 choices at step 1.
Position 1 is the best choice with the lowest cost of
0.302 and so on.

Figure 4. A lattice example

The sentence is shown at the bottom of the figure.
The first part of the reference (true) path is indi-
cated by the alignment which is source sequence 1,
8, 9, and 2. We see that this matches the lattice’s
top-1 choice.

Lattice generation takes source sentence and
source parse as input. The lattice generation proc-
ess makes use of a beam search algorithm. Every
node in the lattice generates top-N next possible
positions and the rest is pruned away. A coverage
vector is maintained on each path to ensure each
source word is visited exactly once. A wide
beam width explores many source positions at any
step and results in a bushy lattice. This is needed
for machine translation because the parses are er-
rorful. The structures that are hard for MT to reor-
der are also hard for parsers to parse. Labels criti-
cal to reordering such as CP are among the least
accurate labels. Overall parsing accuracy is
83.63% but CP accuracy is 73.11%. We need a
wide beam to include more long jumps to compen-
sate the parsing errors.

5.2 Machine Translation

We run MT experiments on NIST Chinese-English
test sets MT03-05. We compare the performance

855

of using distance-based reordering and using maxi-
mum entropy reordering lattices. The decoder is a
log-linear phrase based decoder. Translation mod-
els are trained from HMM alignments. A
smoothed 5-gram English LM is built on the Eng-
lish Gigaword corpus and English side of the Chi-
nese-English parallel corpora. In the experiments,
lexicalized distance-based reordering allows up to
9 words to be jumped over. MT performance is
measured by BLEUr4n4 (Papineni et.al. 2001).

The test set statistics and experiment results are
show in Table 6. Decoding with MaxEnt reorder
lattices shows significant improvement for all con-
ditions.

Data #Segs Lex
Skip-9

Reord Lattice Gain

MT03 919 0.3005 0.3315 +3.1
MT04 1788 0.3250 0.3388 +1.38
MT05 1082 0.2957 0.3236 +2.79

Table 6. MT results

Figures 5 shows an example from MT output
with word alignments to the Chinese input. The
MaxEnt reordering model correctly reorders two
source modifiers at source positions 8 and 22. The
Skip9 output reorders locally whereas the MaxEnt
lattice output shows much more complex reorder-
ings.

6 Conclusions

We present a direct syntax-based reordering model
that captures source structural information. The
model is capable of handling reorderings of arbi-
trary length. Long-range reorderings are essential
in translation between languages with great word
order differences such as Chinese-English and
Arabic-English. We have shown that phrase based
SMT can benefit significantly from such a reorder-
ing model.

The current model is not regularized and feature
selection by thresholding the feature counts is quite
primitive. Regularizing the model will prevent
overfitting, especially given the small training data
set. Regularization will also make the ablation
study more meaningful.

The reordering model presented here aims at
capturing structural differences between source
and target languages. It does not have enough
lexical features to deal with lexical idiosyncrasies.

ME Lattice MT Skip9 MT

Figure 5. MT comparison

Our initial attempt at adding lexical pair jump fea-
tures φ(fromWord, toWord, j) has not proved use-
ful. It hurt accuracy by 3% (from 80% to 77%).
We see from Table 4 that 34% of the errors are due
to source lexical choices which indicates the weak-
ness of the current lexical features. Regularization
of the model might also make a difference with the
lexical features.
Reordering and word choice in translation are not

independent of each other. We have shown some
initial success with a separate reordering model. In
the future, we will build joint models on reordering
and translation. This approach will also address
some of the reordering problems due to source
lexical idiosyncrasies.

7 Acknowledgement

We would like to acknowledge the support of
DARPA under Grant HR0011-08-C-0110 for fund-
ing part of this work. The views, opinions, and/or
findings contained in this article are those of the
author and should not be interpreted as represent-
ing the official views or policies, either expressed
or implied, of the Defense Advanced Research
Projects Agency or the Department of Defense.

References

856

A.S.Hildebrand, K.Rottmann, Mohamed Noamany, Qin
Gao, S. Hewavitharana, N. Bach and Stephan Voga.
2008. Recent Improvements in the CMU Large Scale
Chinese-English SMT System. In Proceedings of
ACL 2008 (Short Papers)

C. Wang, M. Collins, and Philipp Koehn. 2007. Chi-
nese Syntactic Reordering for Statistical Machine
Translation. In Proceedings of EMNLP 2007

Chi-Ho Li, Dongdong Zhang, Mu Li, Ming Zhou,
Minghui Li, and Yi Guan. 2007. A Probabilistic
Approach to syntax-based Reordering for Statistical
Machine Translation. In Proceedings of ACL 2007.

Christoph Tillmannn. 2004. A Block Orientation
Model for Statistical Machine Translation. In Pro-
ceedings of HLT-NAACL 2004.

David Chiang. 2005. A Hierarchical Phrase-based
Model for Statistical Machine Translation. In Pro-
ceedings of ACL 2005.

Dekai Wu. 1997. Stochastic Inversion Transduction
Grammars and Bilingual Parsing of Parallel Cor-
pora. Compuntational Linguistics, Vol. 23, pp 377-
404

Deyi Xiong, Qun Liu, and Shouxun Lin. 2006. Maxi-
mum Entropy Based Phrase Reordering Model for
Statistical Machine Translation. In Proceedings of
ACL 2006.

Deyi Xiong, Min Zhang, Aiti Aw, Haitao Mi, Qun Liu
and Shouxun Lin. 2008. Refinements in FTG-based
Statistical Machine Translation. In Proceedings of
ICJNLP 2008

Dongdong Zhang, Mu Li, Chi-Ho Li, and Ming Zhou.
2007. Phrase Reordering Model Integrating Syntac-
tic Knowledge for SMT. In Proceedings of EMNLP
2007

Fei Xia and Michael McCord. 2004. Improving a Sta-
tistical MT System with Automatically Learned Re-
write Patterns. In Proceedings of COLING 2004.

Franz Josef Och and Hermann Ney. 2004. The Align-
ment Template Approach to Statistical Machine
Translation. Computational Linguistics, Vol. 30(4).
pp. 417-449

Kenji Yamada and Kevin Knight 2001. A Syntax-based
Statistical Translation Model. In Proceedings of
ACL 2001

Kevin Knight. 1999. Decoding Complexity in Word
Replacement Translation Models. Computational
Linguistics, 25(4):607-615

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
jing Zhu. 2001. A Method for Automatic Evaluation
for MT. In Proceedings of ACL 2001

Michael Collins, Philipp Koehn, and Ivona Kucerova.
2005. Clause Restructuring for Statistical Machine
Translation. In Proceedings of ACL 2005.

Michell Galley, Christoph D. Manning. 2008. A Simple
and Effective Hierarchical Phrase Reordering
Model. Proceedings of the EMNLP 2008

Perter F. Brown, Stephen A. Della Pietra, Vincent J.
Della Pietra, and Robert L. Mercer. 1993. The
Mathematics of Statistical Machine Translation.
Computation Linguistics, 19(2).

Philip Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical Phrase-based Translation. In Pro-
ceedings of NLT/NAACL 2003.

Richard Zens, Hermann Ney, Taro Watanabe, and Eii-
chiro Sumita. 2004. Reordering Constraints for
Phrase-based Statistical Machine Translation. In
Proceedings of COLING 2004.

Richard Zens and Hermann Ney. 2006. Discriminative
Reordering Models for Statistical Machine Transla-
tion. In Proceedings of the Workshop on Statistical
Machine Translation, 2006.

Roger Levy and Christoph Manning. 2003. Is it harder
to parse Chinese, or the Chinese Treebank? In Pro-
ceedings of ACL 2003

 Shankar Kumar and William Byrne. 2005. Local
Phrase Roerdering Models for Statistical Machine
Translation. In Proceedings of HLT/EMNLP 2005

Stephan Kanthak, David Vilar, Evgeny Matusov, Rich-
ard Zens, and Hermann Ney. 2005. Novel Reorder-
ing Approaches in Phrase-based Statistical Machine
Translation. In Proceedings of the Workshop on
Building and Using Parallel Texts 2005.

Y. Al-Onaizan . K. 2006 Distortion Models for Statisti-
cal Machine Translation. In Proceedings of ACL
2006.

Yizhao Ni, C.J.Saunders, S. Szedmak and M.Niranjan
2009 Handling phrase reorderings for machine
translation. In Proceedings of ACL2009

Yuqi Zhang, Richard Zens, and Hermann Ney. 2007.
Improved Chunk-level Reordering for Statistical Ma-
chine Translation. In Proceedings of HLT/NAACL
2007.

Yuval Marton and Philip Resnik. 2008. Soft Syntactic
Constraints for Hierarchical Phrased-based Transla-
tion. In Proceedings of ACL 2008.

857

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 858–866,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Context-free reordering, finite-state translation

Chris Dyer and Philip Resnik
UMIACS Laboratory for Computational Linguistics and Information Processing

Department of Linguistics
University of Maryland, College Park, MD 20742, USA

redpony, resnik AT umd.edu

Abstract

We describe a class of translation model in
which a set of input variants encoded as a
context-free forest is translated using a finite-
state translation model. The forest structure of
the input is well-suited to representing word
order alternatives, making it straightforward to
model translation as a two step process: (1)
tree-based source reordering and (2) phrase
transduction. By treating the reordering pro-
cess as a latent variable in a probabilistic trans-
lation model, we can learn a long-range source
reordering model without example reordered
sentences, which are problematic to construct.
The resulting model has state-of-the-art trans-
lation performance, uses linguistically moti-
vated features to effectively model long range
reordering, and is significantly smaller than a
comparable hierarchical phrase-based transla-
tion model.

1 Introduction

Translation models based on synchronous context-
free grammars (SCFGs) have become widespread in
recent years (Wu, 1997; Chiang, 2007). Compared
to phrase-based models, which can be represented as
finite-state transducers (FSTs, Kumar et al. (2006)),
one important benefit that SCFG models have is the
ability to process long range reordering patterns in
space and time that is polynomial in the length of
the displacement, whereas an FST must generally
explore a number of states that is exponential in
this length.1 As one would expect, for language

1Our interest here is the reordering made possible by varying
the arrangement of the translation units, not the local word order
differences captured inside memorized phrase pairs.

pairs with substantial structural differences (and thus
requiring long-range reordering during translation),
SCFG models have come to outperform the best FST
models (Zollmann et al., 2008).

In this paper, we explore a new way to take advan-
tage of the computational benefits of CFGs during
translation. Rather than using a single SCFG to both
reorder and translate a source sentence into the target
language, we break the translation process into a two
step pipeline where (1) the source language is re-
ordered into a target-like order, with alternatives en-
coded in a context-free forest, and (2) the reordered
source is transduced into the target language using
an FST that represents phrasal correspondences.

While multi-step decompositions of the transla-
tion problem have been proposed before (Kumar et
al., 2006), they are less practical with the rise of
SCFG models, since the context-free languages are
not closed under intersection (Hopcroft and Ullman,
1979). However, the CFLs are closed under intersec-
tion with regular languages. By restricting ourselves
to a finite-state phrase transducer and representing
reorderings of the source in a context-free forest, ex-
act inference over the composition of the two models
is possible.

The paper proceeds as follows. We first ex-
plore reordering forests and describe how to trans-
late them with an FST (§2). Since we would like our
reordering model to discriminate between good re-
orderings of the source and bad ones, we show how
to train our reordering component as a latent variable
in an end-to-end translation model (§3). We then
presents experimental results on language pairs re-
quiring small amounts and large amounts of reorder-
ing (§4). We conclude with a discussion of related

858

work (§6) and possible extensions (§7).

2 Reordering forests and translation

In this section, we describe source reordering
forests, a context-free representation of source lan-
guage word order alternatives.2 The basic idea is
that for the source sentence, f, that is to be trans-
lated, we want to create a (monolingual) context-free
grammarF that generates strings (f′) of words in the
source language that are permutations of the origi-
nal sentence. Specifically, this forest should contain
derivations that put the source words into an order
that approximates how they will be ordered in the
grammar of the target language.

For a concrete example, let us consider the task of
English-Japanese translation.3 Our input sentence
is John ate an apple. Japanese is a head-final lan-
guage, where the heads of phrases (such as the verb
in a verb phrase) typically come last, and English
is a head-initial language, where heads come first.
As a result, the usual order for a declarative sen-
tence in English is SVO (subject-verb-object), but
in Japanese, it is SOV, and the desired translation
is John-ga ringo-o [an apple] tabeta [ate]. In sum-
mary, when translating from English into Japanese,
it is usually necessary to move verbs from their po-
sition between the subject and object to the end of
the sentence.

This reordering can happen in two ways, which
we depict in Figure 1. In the derivation on the left,
a memorized phrase pair captures the movement of
the verb (Koehn et al., 2003). In the other deriva-
tion, the source is first reordered into target word
order and then translated, using smaller translation
units. In addition, we have assumed that the phrase
translations were learned from a parallel corpus that
is in the original ordering, so the reordering forest F
should include derivations of phrase-size units in the
source order as well as the target order.

2Note that forests are isomorphic to context-free grammars.
For example, what is referred to as the ‘parse forest’, and un-
derstood to encode all derivations of a sentence s under some
grammar, can also be understood as being a context-free gram-
mar itself that exactly generates s. We therefore refer to a forest
as a grammar sometimes, or vice versa, depending on which
characterization is clearer in context.

3We use English as the source language since we expect the
parse structure of English sentences will be more familiar to
many readers.

0 1

an : ε

apple : リンゴを

John : ジョンが

ate : 食べた

[John-ga]

[ringo-o]

[tabeta]

23

ate : εan : ε

apple : リンゴを 食べた
[ringo-o tabeta]

Figure 2: A fragment of a phrase-based English-Japanese
translation model, represented as an FST. Japanese ro-
manization is given in brackets.

A minimal reordering forest that supports the
derivations depicted needs to include both an SOV
and SVO version of the source. This could be ac-
complished trivially with the following grammar:

S → John ate an apple
S → John an apple ate

However, this grammar misses the opportunity to
take advantage of the regularities in the permuted
structure. A better alternative might be:

S → John VP
VP → ate NP
VP → NP ate
NP → an apple

In this grammar, the phrases John and an apple are
fixed and only the VP contains ordering ambiguity.

2.1 Reordering forests based on source parses

Many kinds of reordering forests are possible; in
general, the best one for a particular language pair
will be one that is easiest to create given the re-
sources available in the source language. It will
also be the one that most compactly expresses the
source reorderings that are most likely to be use-
ful for translation. In this paper, we consider a
particular kind of reordering forest that is inspired
by the reordering model of Yamada and Knight
(2001).4 These are generated by taking a source lan-
guage parse tree and ‘expanding’ each node so that it

4One important difference is that our translation model is not
restricted by the structure of the source parse tree; i.e., phrases
used in transduction need not correspond to constituents in the
source reordering forest. However, if a phrase does cross a con-
stituent boundary between constituents A and B, then transla-
tions that use that phrase will have A and B adjacent.

859

ジョンが リンゴを 食べた
John-ga ringo-o tabeta

John an apple ate

ジョンが リンゴを 食べた
John-ga ringo-o tabeta

John ate an apple

John ate an appleJohn ate an applef

f'

e

Figure 1: Two possible derivations of a Japanese translation of an English source sentence.

rewrites with different permutations of its children.5

For an illustration using our example sentence, re-
fer to Figure 3 for the forest representation and Fig-
ure 4 for its isomorphic CFG representation. It is
easy to see that this forest generates the two ‘good’
order variants from Figure 1; however, the forest in-
cludes many other derivations that will probably not
lead to good translations. For this reason, it is help-
ful to associate the edges in the forest (that is, the
rules in the CFG) with weights reflecting how likely
that rule is to lead to a good translation. We discuss
how these weights can be learned automatically in
§3.

2.2 Translating reordering forests with FSTs

Having described how to construct a context-free re-
ordering forest for the source sentence, we now turn
to the problem of how to translate the source forest
into the target language using a phrase-based trans-
lation model encoded as an FST, e.g. Figure 2. The
process is quite similar to the one used when trans-
lating a source sentence with an SCFG, but with a
twist: rather than representing the translation model
as a grammar and parsing the source sentence, we
represent the source sentence as a grammar (i.e. its
reordering forest), and we use it to ‘parse’ the trans-
lation model (i.e. the FST representation of the
phrase-based model). The end result (either way!)
is a translation forest containing all possible target-
language translations of the source.

Parsing can be understood as a means of comput-
ing the intersection of an FSA and a CFG (Grune and
Jacobs, 2008). Since we are dealing with FSTs that
define binary relations over strings, not FSAs defin-
ing strings, this operation is more properly compo-
sition. However, since CFG/FSA intersection is less

5For computational tractability, we only consider all permu-
tations only when the number of children is less than 5, other-
wise we exclude permutations where a child moves more than
4 positions away from where it starts.

cumbersome to describe, we present the algorithm
in terms of intersection.

To compute the composition of a reordering for-
est, G, with an FSA, F , we will make use of a variant
of Earley’s algorithm (Earley, 1970). Let weighted
finite-state automaton F = 〈Σ, Q, q0, qfinal, δ, w〉.
Σ is a finite alphabet; Q is a set of states; q0 and
qfinal ∈ Q are start and accept states, respectively,6 δ
is the transition function Q× Σ→ 2Q, and w is the
transition cost function Q × Q → R. We use vari-
ables that refer to states in the FSA with the letters
q, r, and s. We use x to represent a variable that is
an element of Σ. Variables u and v represent costs.
X and Y are non-terminals. Lowercase Greek let-
ters are strings of terminals and non-terminals. The
function δ(q, x) returns the state(s) that are reach-
able from state q by taking a transition labeled with
x in the FSA.

Figure 5 provides the inference rules for a
top-down intersection algorithm in the form of a
weighted logic program; the three inference rules
correspond to Earley’s SCAN, PREDICT, and COM-
PLETE, respectively.

3 Reordering and translation model

As pointed out in §2.1, our reordering forests may
contain many paths, some of which when translated
will lead to good translations and others that will be
bad. We would like a model to distinguish the two.

If we had a parallel corpus of source language
sentences paired with ‘reference reorderings‘, such
a model could be learned directly as a supervised
learning task. However, creating the optimal target-
language reordering f′ for some f is a nontrivial
task.7 Instead of trying to solve this problem, we
opt to treat the reordered from of the source, f′, as a

6Other FSA definitions permit sets of start and final states.
We use the more restricted definition for simplicity and because
in our FSTs q0 = qfinal.

7For a discussion of methods for generating reference re-

860

Original parse:

Reordering forest:

S

V DT NN

VP

NPsubj

NPobj

John ate an apple

1 1

1

1

1

1

22

2

22

2

S

V DT NN

VP

NPsubj

NPobj

John ate an apple

1 1

1

2

2

2

Figure 3: Example of a reordering forest. Linearization
order of non-terminals is indicated by the index at the tail
of each edge. The isomorphic CFG is shown in Figure 4;
dashed edges correspond to reordering-specific rules.

latent variable in a probabilistic translation model.
By doing this, we only require a parallel corpus of
translations to learn the reordering model. Not only
does this make our lives easier, since ‘reference re-
orderings’ are not necessary, but it is also intuitively
satisfying because from a task perspective, we are
not concerned with values of f′, but only with pro-
ducing a good translation e.

3.1 A probabilistic translation model with a
latent reordering variable

The translation model we use is a two phase process.
First, source sentence f is reordered into a target-
like word order f′ according to a reordering model
r(f′|f). The reordered source is then transduced into
the target language according to a translation model
t(e|f′). We require that r(f′|f) can be represented by

orderings from word aligned parallel corpora, refer to Tromble
and Eisner (2009).

Original parse grammar: S→ NPsubj VP
VP→ V NPobj NPobj → DT NN

NPsubj → John V→ ate
DT→ an NN→ apple

Additional reordering grammar rules:
S→ VP NPsubj

VP→ NPobj V
NPobj → NN DT

Figure 4: Context-free grammar representation of the for-
est in Figure 3. The reordering grammar contains the
parse grammar, plus the reordering-specific rules.

Initialization:

[S′ → •S, q0, q0] : 1

Inference rules:

[X → α • xβ, q, r] : u
[X → αx • β, q, δ(r, x)] : u⊗ w(δ(r, x))

[X → α • Y β, q, r]
[Y → •γ, r, r] : u

Y
u−→ γ ∈ G

[X → α • Y β, q, s] : u [Y → γ•, s, r] : v
[X → αY • β, q, r] : u⊗ v

Goal state:
[S′ → S•, q0, qfinal]

Figure 5: Weighted logic program for computing the in-
tersection of a weighted FSA and a weighted CFG.

a recursion-free probabilistic context-free grammar,
i.e. a forest as in §2.1, and that t(e|f′) is represented
by a (cyclic) finite-state transducer, as in Figure 2.

Since the reordering forest may define multiple
derivations a from f to a particular f′, and the trans-
ducer may define multiple derivations d from f′ to
a particular translation e, we marginalize over these
nuisance variables as follows to define the probabil-
ity of a translation given the source:

p(e|f) =
∑

d

∑
f′
t(e,d|f′)

∑
a
r(f′, a|f) (1)

Crucially, since we have restricted r(f′|f) to have
the form of a weighted CFG and t(e|f′) to be an

861

FST, the quantity (1), which sums over all reorder-
ings (and derivations), can be computed in polyno-
mial time with dynamic programming composition,
as described in §2.2.

3.2 Conditional training
While it is straightforward to use expectation maxi-
mization to optimize the joint likelihood of the paral-
lel training data with a latent variable model, instead
we use a log-linear parameterization and maximize
conditional likelihood (Blunsom et al., 2008; Petrov
and Klein, 2008). This enables us to employ a rich
set of (possibly overlapping, non-independent) fea-
tures to discriminate among translations. The proba-
bility of a derivation from source to reordered source
to target is thus written in terms of model parameters
Λ = {λi} as:

p(e,d, f′, a|f; Λ) =
exp

∑
i λi ·Hi(e,d, f′, a, f)
Z(f; Λ)

where Hi(e,d, f′, a, f) =
∑
r∈d

hi(f′, r) +
∑
s∈a

hi(f, s)

The derivation probability is globally normalized by
the partition Z(f; Λ), which is just the sum of the
numerator for all derivations of f (corresponding to
any e). The Hi (written below without their argu-
ments) are real-valued feature functions that may
be overlapping and non-independent. For compu-
tational tractability, we assume that the feature func-
tions Hi decompose with the derivations of f′ and e
in terms of local feature functions hi. We also de-
fineZ(e, f;λ) to be the sum of the numerator over all
derivations that yield the sentence pair 〈e, f〉. Rather
than training purely to optimize conditional likeli-
hood, we also make use of a spherical Gaussian prior
on the value of Λ with mean 0 and variance σ2,
which helps prevent overfitting of the model (Chen
and Rosenfeld, 1998). Our objective is thus to select
Λ minimizing:

L = − log
∏
〈e,f〉

p(e|f; Λ)− ||Λ||
2

2σ2

= −
∑
〈e,f〉

[logZ(e, f; Λ)− logZ(f; Λ)]− ||Λ||
2

2σ2

The gradient of Lwith respect to the feature weights
has a parallel form; it is the difference in feature ex-
pectations under the reference distribution and the

translation distribution with a penalty term due to
the prior:

∂L
∂λi

=
∑
〈e,f〉

Ep(d,a|e,f;Λ)[hi]− Ep(e,d,a|f;Λ)[hi]−
λi

σ2

The form of the objective and gradient are quite sim-
ilar to the traditional fully observed training scenario
for CRFs (Sha and Pereira, 2003). However, rather
than matching the feature expectations in the model
to an observable feature value, we have to sum over
the latent structure that remains after observing our
target e, which makes the form of the first summand
an expectation rather than just a feature function
value.

3.2.1 Computing the objective and gradient
The objective and gradient that were just introduced
can be computed in two steps. Given a training pair
〈e, f〉, we generate the forest of reorderings F from f
as described in §2.1. We then compose this grammar
with T , the FST representing the translation model,
which yields F ◦T , a translation forest that contains
all possible translations of f into the target language,
as described in §2.2. Running the inside algorithm
on the translation forest computes Z(f; Λ), the first
term in the objective, and the inside-outside algo-
rithm can be used to compute Ep(e,d,a|f)[hi]. Next,
to compute Z(e, f; Λ) and the first expectation in the
gradient, we need to find the subset of the transla-
tion forest F ◦ T that exactly derives the reference
translation e. To do this, we again rely on the fact
that F ◦ T is a forest and therefore itself a context-
free grammar. So, we use this grammar to parse
the target reference string e. The resulting forest,
F ◦T ◦e, contains all and only derivations that yield
the pair 〈e, f〉. Here, the inside algorithm computes
Z(e, f; Λ) and the inside-outside algorithm can be
used to compute Ep(e,d,a|f)[hi].

Once we have an objective and gradient, we can
apply any first-order numerical optimization tech-
nique.8 Although the conditional likelihood surface
of this model is non-convex (on account of the la-
tent variables), we did not find a significant initial-
ization effect. For the experiments below, we ini-
tialized Λ = 0 and set σ2 = 1. Training generally
converged in fewer than 1500 function evaluations.

8For our experiments we used L-BFGS (Liu and Nocedal,
1989).

862

4 Experimental setup

We now turn to an experimental validation of the
models we have introduced. We define three con-
ditions: a small data scenario consisting of a trans-
lation task based on the BTEC Chinese-English cor-
pus (Takezawa et al., 2002), a large data Chinese-
English condition designed to be more comparable
to conditions in a NIST MT evaluation, and a large
data Arabic-English task.

For each condition, phrase tables were extracted
as described in Koehn et al. (2003) with a maxi-
mum phrase size of 5. The parallel training data
was aligned using the Giza++ implementation of
IBM Model 4 (Och and Ney, 2003). The Chinese
text was segmented using a CRF-based word seg-
menter (Tseng et al., 2005). The Arabic text was
segmented using the technique described in Lee et
al. (2003). The Stanford parser was used to generate
source parses for all conditions, and these were then
used to generate the reordering forests as described
in §2.1.

Table 1 summarizes statistics about the cor-
pora used. The reachability statistic indicates
what percentage of sentence pairs in the train-
ing data could be regenerated using our reorder-
ing/translation model.9 To train the reordering
model, we used all of the reachable sentence pairs
from BTEC, 20% of the reachable set in the
Chinese-English condition, and all reachable sen-
tence pairs under 40 words (source) in length in the
Arabic-English condition.

Error analysis indicates that a substantial portion
of unreachable sentence pairs are due to alignment
(word or sentence) or parse errors; however, in some
cases the reordering forests did not contain an ad-
equate source reordering to produce the necessary
target. For example, in Arabic, which is a VSO lan-
guage, the treebank annotation is to place the sub-
ject NP as the ‘middle child’ between the V and the
object constituent. This can be reordered into an En-
glish SVO order using our child-permutation rules;
however, if the source VP is modified by a modal
particle, the parser makes the particle the parent of
the VP, and it is no longer possible to move the sub-
ject to the first position in the sentence. Richer re-
ordering rules are needed to address this problem.

9Only sentences that can be generated by the model can be
used in training.

Other solutions to the reachability problem include
targeting reachable oracles instead of the reference
translation (Li and Khudanpur, 2009) or making use
of alternative training criteria, such as minimum risk
training (Li and Eisner, 2009).

4.1 Features

We briefly describe the feature functions we used
in our model. These include the typical dense fea-
tures used in translation: relative phrase translation
frequencies p(e|f) and p(f |e), ‘lexically smoothed’
translation probabilities plex(e|f) and plex(f |e), and
a phrase count feature. For the reordering model, we
used a binary feature for each kind of rule used, for
example φVP→V NP(a) would fire once for each time
the rule VP → V NP was used in a derivation, a.
For the Arabic-English condition, we observed that
the parse trees tended to be quite flat, with many re-
peated non-terminal types in one rule, so we aug-
mented the non-terminal types with an index indi-
cating where they were located in the original parse
tree. This resulted in a total of 6.7k features for
IWSLT, 18k features for the large Chinese-English
condition, and 516k features for Arabic-English.10

A target language model was not used during the
training of the source reordering model, but it was
used during the translation experiments (see below).

4.2 Qualitative assessment of reordering model

Before looking at the translation results, we exam-
ine what the model learns during training. Figure 6
lists the 10 most highly weighted reordering features
learned by the BTEC model (above) and shows an
example reordering using this model (below), with
the most English-like reordering indicated with a
star.11 Keep in mind, we expect these features to
reflect what the best English-like order of the input
should be. All are almost surprisingly intuitive, but
this is not terribly surprising since Chinese and En-
glish have very similar large-scale structures (both
are head initial, both have adjectives and quanti-
fiers that precede nouns). However, we see two en-
tries in the list (starred) that correspond to an En-

10The large number of features in the Arabic system was due
to the relative flatness of the Arabic parse trees.

11The italicized symbols in the English gloss are functional
elements with no precise translation. Q is an interrogative parti-
cle, and DE marks a variety of attributive roles and is used here
as the head of a relative clause.

863

Table 1: Corpus statistics

Condition Sentences Source words Target words Reachability
BTEC 44k 0.33M 0.36M 81%

Chinese-English 400k 9.4M 10.9M 25%
Arabic-English 120k 3.3M 3.6M 66%

glish word order that is ungrammatical in Chinese:
PP modifiers in Chinese typically precede the VPs
they modify, and CPs (relative clauses) also typi-
cally precede the nouns they modify. In English, the
reverse is true, and we see that the model has indeed
learned to prefer this ordering. It was not necessary
that this be the case: since our model makes use
of phrases memorized from a non-reordered training
set, it could hav relied on those for all its reordering.
Yet these results provide evidence that it is learning
large-scale reordering successfully.

Feature λ note
VP→ VE NP 0.995
VP→ VV VP 0.939 modal + VP
VP→ VV NP 0.895
VP→ VP PP∗ 0.803 PP modifier of VP

VP→ VV NP IP 0.763
PP→ P NP 0.753

IP→ NP VP PU 0.728 PU = punctuation
VP→ VC NP 0.598
NP→ DP NP 0.538

NP→ NP CP∗ 0.537 rel. clauses follow

我 能 赶上 去 西尔顿 饭店 的 巴士 吗 ?
 I CAN CATCH [NP[CP GO HILTON HOTEL DE] BUS] Q ?

I CAN CATCH [NP BUS [CP GO HILTON HOTEL DE]] Q ?
I CAN CATCH [NP BUS [CP DE GO HILTON HOTEL]] Q ?
I CAN CATCH [NP BUS [CP GO HOTEL HILTON DE]] Q ?

I CAN CATCH [NP BUS [CP DE GO HOTEL HILTON]] Q ?
I CATCH [NP BUS [CP GO HILTON HOTEL DE]] CAN Q ?

Input:

5-best reordering:

(Can I catch a bus that goes to the Hilton Hotel ?)

Figure 6: (Above) The 10 most highly-weighted features
in a Chinese-English reordering model. (Below) Exam-
ple reordering of a Chinese sentence (with English gloss,
translation, and partial syntactic information).

5 Translation experiments

We now consider how to apply this model to a trans-
lation task. The training we described in §3.2 is
suboptimal for state-of-the-art translation systems,
since (1) it optimizes likelihood rather than an MT
metric and (2) it does not include a language model.
We describe how we addressed these problems here,
and then present our results in the three conditions
defined above.

5.1 Training for Viterbi decoding
A language model was incorporated using cube
pruning (Huang and Chiang, 2007), using a 200-
best limit at each node during LM integration. To
improve the ability of the phrase model to match
reordered phrases, we extracted the 1-best reorder-
ing of the training data under the learned reordering
model and generated the phrase translation model so
that it contained phrases from both the original order
and the 1-best reordering.

To be competitive with other state-of-the-art sys-
tems, we would like to use Och’s minimum error
training algorithm for training; however, we can-
not tune the model as described with it, since it has
far too many features. To address this, we con-
verted the coefficients on the reordering features into
a single reordering feature which then had a coef-
ficient assigned to it. This technique is similar to
what is done with logarithmic opinion pools, only
the learned model is not a probability distribution
(Smith et al., 2005). Once we collapsed the reorder-
ing weights into a single feature, we used the tech-
niques described by Kumar et al. (2009) to optimize
the feature weights to maximize corpus BLEU on a
held-out development set.

5.2 Translation results
Scores on a held-out test set are reported in Table 2
using case-insensitive BLEU with 4 reference trans-
lations (16 for BTEC) using the original definition
of the brevity penalty. We report the results of our

864

model along with three baseline conditions, one with
no-reordering at all (mono), the performance of a
phrase-based translation model with distance-based
distortion, the performance of our implementation of
a hierarchical phrase-based translation model (Chi-
ang, 2007), and then our model.

Table 2: Translation results (BLEU)

Condition Mono PB Hiero Forest
BTEC 47.4 51.8 52.4 54.1

Chinese-Eng. 29.0 30.9 32.1 32.4
Arabic-Eng. 41.2 45.8 46.6 44.9

6 Related work

A variety of translation processes can be formalized
as the composition of a finite-state representation of
input (typically just a sentence, but often a more
complex structure, like a word lattice) with an SCFG
(Wu, 1997; Chiang, 2007; Zollmann and Venugopal,
2006). Like these, our work uses parsing algorithms
to perform the composition operation. But this is the
first time that the input to a finite-state transducer has
a context-free structure.12 Although not described
in terms of operations over formal languages, the
model of Yamada and Knight (2001) can be under-
stood as an instance of our class of models with a
specific input forest and phrases restricted to match
syntactic constituents.

In terms of formal similarity, Mi et al. (2008) use
forests as input to a tree-to-string transducer pro-
cess, but the forests are used to recover from 1-
best parsing errors (as such, all derivations yield
the same source string). Iglesias et al. (2009) use
a SCFG-based translation model, but implement it
using FSTs, although they use non-regular exten-
sions that make FSTs equivalent to recursive tran-
sition networks. Galley and Manning (2008) use
a context-free reordering model to score a phrase-
based (exponential) search space.

Syntax-based preprocessing approaches that have
relied on hand-written rules to restructure source
trees for particular translation tasks have been quite
widely used (Collins et al., 2005; Wang et al., 2007;
Xu et al., 2009; Chang et al., 2009). Discrimina-
tively trained reordering models have been exten-
sively explored. A widely used approach has been to

12Satta (submitted) discusses the theoretical possibility of
this sort of model but provides no experimental results.

use a classifier to predict the orientation of phrases
during decoding (Zens and Ney, 2006; Chang et al.,
2009). These classifiers must be trained indepen-
dently from the translation model using training ex-
amples extracted from the training data. A more am-
bitious approach is described by Tromble and Eisner
(2009), who build a global reordering model that is
learned automatically from reordered training data.

The latent variable discriminative training ap-
proach we describe is similar to the one originally
proposed by Blunsom et al. (2008).

7 Discussion and conclusion

We have described a new model of translation that
takes advantage of the strengths of context-free
modeling, but splits reordering and phrase transduc-
tion into two separate models. This lets the context-
free part handle what it does well, mid-to-long range
reordering, and lets the finite-state part handle lo-
cal phrasal correspondences. We have further shown
that the reordering component can be trained effec-
tively as a latent variable in a discriminative transla-
tion model using only conventional parallel training
data.

This model holds considerable promise for fu-
ture improvement. Not only does it already achieve
quite reasonable performance (performing particu-
larly well in Chinese-English, where mid-range re-
ordering is often required), but we have only begun
to scratch the surface in terms of the kinds of fea-
tures that can be included to predict reordering, as
well as the kinds of reordering forests used. Fur-
thermore, by reintroducing the concept of a cascade
of transducers into the context-free model space, it
should be possible to develop new and more effec-
tive rescoring mechanisms. Finally, unlike SCFG
and phrase-based models, our model does not im-
pose any distortion limits.

Acknowledgements

The authors gratefully acknowledge partial support from
the GALE program of the Defense Advanced Research
Projects Agency, Contract No. HR0011-06-2-001. Any
opinions, findings, conclusions or recommendations ex-
pressed in this paper are those of the authors and do not
necessarily reflect the views of the sponsors. Thanks
to Hendra Setiawan, Vlad Eidelman, Zhifei Li, Chris
Callison-Burch, Brian Dillon and the anonymous review-
ers for insightful comments.

865

References
P. Blunsom, T. Cohn, and M. Osborne. 2008. A discrim-

inative latent variable model for statistical machine
translation. In Proceedings of ACL-HLT.

P.-C. Chang, D. Jurafsky, and C. D. Manning. 2009. Dis-
ambiguating “DE” for Chinese-English machine trans-
lation,. In Proc. WMT.

S. F. Chen and R. Rosenfeld. 1998. A Gaussian prior
for smoothing maximum entropy models. Technical
Report TR-10-98, Computer Science Group, Harvard
University.

D. Chiang. 2007. Hierarchical phrase-based translation.
Computational Linguistics, 33(2):201–228.

M. Collins, P. Koehn, and I. Kucerova. 2005. Clause re-
structuring for statistical machine translation. In Pro-
ceedings of ACL 2005.

J. Earley. 1970. An efficient context-free parsing algo-
rithm. Communications of the Association for Com-
puting Machinery, 13(2):94–102.

M. Galley and C. D. Manning. 2008. A simple and ef-
fective hierarchical phrase reordering model. In Proc.
EMNLP.

D. Grune and C. J. H. Jacobs. 2008. Parsing as intersec-
tion. In D. Gries and F. B. Schneider, editors, Parsing
Techniques, pages 425–442. Springer, New York.

J. E. Hopcroft and J. D. Ullman. 1979. Introduc-
tion to Automata Theory, Languages and Computa-
tion. Addison-Wesley.

L. Huang and D. Chiang. 2007. Forest rescoring: Faster
decoding with integrated language models. In ACL.

G. Iglesias, A. de Gispert, E. R. Banga, and W. Byrne.
2009. Hierarchical phrase-based translation with
weighted finite state transducers. In Proc. NAACL.

P. Koehn, F. Och, and D. Marcu. 2003. Statistical phrase-
based translation. In Proc. of NAACL, pages 48–54.

S. Kumar, Y. Deng, and W. Byrne. 2006. A weighted fi-
nite state transducer translation template model for sta-
tistical machine translation. Journal of Natural Lan-
guage Engineering, 12(1):35–75.

S. Kumar, W. Macherey, C. Dyer, and F. Och. 2009.
Efficient minimum error rate training and minimum
Bayes-risk decoding for translation hypergraphs and
lattices. In Proc. ACL.

Y.-S. Lee, K. Papineni, S. Roukos, O. Emam, and H. Has-
san. 2003. Language model based Arabic word seg-
mentation. In Proc. ACL.

Z. Li and J. Eisner. 2009. First- and second-order ex-
pectation semirings with applications to minimum-risk
training on translation forests. In Proc. EMNLP.

Z. Li and S. Khudanpur. 2009. Efficient extraction of
oracle-best translations from hypergraphs. In Proc.
NAACL.

D. C. Liu and J. Nocedal. 1989. On the limited memory
BFGS method for large scale optimization. Mathemat-
ical Programming B, 45(3):503–528.

H. Mi, L. Huang, and Q. Liu. 2008. Forest-based transla-
tion. In Proceedings of ACL-08: HLT, pages 192–199,
Columbus, Ohio, June. Association for Computational
Linguistics.

F. Och and H. Ney. 2003. A systematic comparison of
various statistical alignment models. Computational
Linguistics, 29(1):19–51.

S. Petrov and D. Klein. 2008. Discriminative log-linear
grammars with latent variables. In Advances in Neu-
ral Information Processing Systems 20 (NIPS), pages
1153–1160.

G. Satta. submitted. Translation algorithms by means of
language intersection.

F. Sha and F. Pereira. 2003. Shallow parsing with condi-
tional random fields. In Proceedings of HLT-NAACL,
pages 213–220.

A. Smith, T. Cohn, and M. Osborne. 2005. Logarithmic
opinion pools for conditional random fields. In Proc.
ACL.

T. Takezawa, E. Sumita, F. Sugaya, H. Yamamoto, and
S. Yamamoto. 2002. Toward a broad-coverage bilin-
gual corpus for speech translation of travel conversa-
tions in the real world. In Proceedings of LREC 2002,
pages 147–152, Las Palmas, Spain.

R. Tromble and J. Eisner. 2009. Learning linear or-
der problems for better translation. In Proceedings of
EMNLP 2009.

H. Tseng, P. Chang, G. Andrew, D. Jurafsky, and C. Man-
ning. 2005. A conditional random field word seg-
menter. In Fourth SIGHAN Workshop on Chinese Lan-
guage Processing.

C. Wang, M. Collins, and P. Koehn. 2007. Chinese syn-
tactic reordering for statistical machine translation. In
Proc. EMNLP.

D. Wu. 1997. Stochastic inversion transduction gram-
mars and bilingual parsing of parallel corpora. Com-
putational Linguistics, 23(3):377–404.

P. Xu, J. Kang, M. Ringgaard, and F. Och. 2009. Using a
dependency parser to improve SMT for subject-object-
verb languages. In Proc. NAACL, pages 245–253.

K. Yamada and K. Knight. 2001. A syntax-based statis-
tical translation model. In Proc. ACL.

R. Zens and H. Ney. 2006. Discriminative reordering
models for statistical machine translation. In Proc. of
the Workshop on SMT.

A. Zollmann and A. Venugopal. 2006. Syntax aug-
mented machine translation via chart parsing. In Proc.
of the Workshop on SMT.

A. Zollmann, A. Venugopal, F. Och, and J. Ponte. 2008.
A systematic comparison of phrase-based, hierarchical
and syntax-augmented statistical MT. In Proc. Coling.

866

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 867–875,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Improved Models of Distortion Cost for Statistical Machine Translation

Spence Green, Michel Galley, and Christopher D. Manning
Computer Science Department

Stanford University
Stanford, CA 94305

{spenceg,mgalley,manning}@stanford.edu

Abstract

The distortion cost function used in Moses-
style machine translation systems has two
flaws. First, it does not estimate the future
cost of known required moves, thus increas-
ing search errors. Second, all distortion is
penalized linearly, even when appropriate re-
orderings are performed. Because the cost
function does not effectively constrain search,
translation quality decreases at higher dis-
tortion limits, which are often needed when
translating between languages of different ty-
pologies such as Arabic and English. To ad-
dress these problems, we introduce a method
for estimating future linear distortion cost, and
a new discriminative distortion model that pre-
dicts word movement during translation. In
combination, these extensions give a statis-
tically significant improvement over a base-
line distortion parameterization. When we
triple the distortion limit, our model achieves
a +2.32 BLEU average gain over Moses.

1 Introduction

It is well-known that translation performance in
Moses-style (Koehn et al., 2007) machine transla-
tion (MT) systems deteriorates when high distortion
is allowed. The linear distortion cost model used in
these systems is partly at fault. It includes no es-
timate of future distortion cost, thereby increasing
the risk of search errors. Linear distortion also pe-
nalizes all re-orderings equally, even when appro-
priate re-orderings are performed. Because linear
distortion, which is a soft constraint, does not effec-
tively constrain search, a distortion limit is imposed
on the translation model. But hard constraints are
ultimately undesirable since they prune the search
space. For languages with very different word or-

Followers of all of the Christian and Islamic sects engaged

����

Verb

��

NP-OBJ

����	
���

PP

�����
������������������������� !�

NP-SBJ

for themin waiting

Figure 1: The oracle translation for this Arabic VOS sen-
tence would be pruned during search using typical dis-
tortion parameters. The Arabic phrases read right-to-left,
but we have ordered the sentence from left-to-right in or-
der to clearly illustrate the re-ordering problem.

ders in which significant re-ordering is required, the
distortion limit can eliminate the oracle, or “best,”
translation prior to search, placing an artificial limit
on translation performance (Auli et al., 2009).

To illustrate this problem, consider the Arabic-
English example in Figure 1. Assuming that the En-
glish translation is constructed left-to-right, the verb
�CAJ shaaraka must be translated after the noun
phrase (NP) subject. If P phrases are used to trans-
late the Arabic source s to the English target t, then
the (unsigned) linear distortion is given by

D(s, t) = p1
first +

P∑
i=2

∣∣pi−1
last + 1− pifirst

∣∣ (1)

where pfirst and plast are the first and last source
word indices, respectively, in phrase i. By this for-
mula, the cost of the step to translate the NP sub-
ject before the verb is 9, which is high relative to
the monotone translation path. Moreover, a con-
ventional distortion limit (e.g., 5) would likely force
translation of the verb prior to the full subject un-
less the exact subject phrase existed in the phrase
table.1 Therefore, the correct re-ordering is either
improbable or impossible, depending on the choice
of distortion parameters.

1Our constrained NIST MT09 Arabic-English system,
which placed second, used a limit of 5 (Galley et al., 2009).

867

The objective of this work is to develop a dis-
tortion cost model that allows the distortion limit
to be raised significantly without a catastrophic de-
crease in performance. We first describe an admis-
sible future cost heuristic for linear distortion that
restores baseline performance at high distortion lim-
its. Then we add a feature-rich discriminative dis-
tortion model that captures e.g. the tendency of Ara-
bic verbs to move right during translation to English.
Model parameters are learned from automatic bitext
alignments. Together these two extensions allow
us to triple the distortion limit in our NIST MT09
Arabic-English system while maintaining a statisti-
cally significant improvement over the low distor-
tion baseline. At the high distortion limit, we also
show a +2.32 BLEU average gain over Moses with
an equivalent distortion parameterization.

2 Background

2.1 Search in Phrase-based MT

Given a J token source input string f =
{
fJi
}

,
we seek the most probable I token translation e ={
eIi
}

. The Moses phrase-based decoder models the
posterior probability pλ

(
eI1|fJ1

)
directly according

to a log-linear model (Och and Ney, 2004), which
gives the decision rule

ê = arg max
I,eI

1

{
M∑
m=1

λmhm
(
eI1, f

J
1

)}
where hm

(
eI1, f

J
1

)
areM arbitrary feature functions

over sentence pairs, and λm are feature weights set
using a discriminative training method like MERT
(Och, 2003). This search is made tractable by the
use of beams (Koehn et al., 2003). Hypotheses are
pruned from the beams according the sum of the cur-
rent model score and a future cost estimate for the
uncovered source words. Since the number of re-
ordering possibilities for those words is very large—
in theory it is exponential—an inadmissible heuris-
tic is typically used to estimate future cost. The
baseline distortion cost model is a weighted feature
in this framework and affects beam pruning only
through the current model score.

When we say linear distortion, we refer to the
“simple distortion model” of Koehn et al. (2003) that
is shown in Equation (1) and is converted to a cost
by multiplying by −1. When extended to phrases,

the key property of this model is that monotone de-
coding gives the least costly translation path. Re-
orderings internal to extracted phrases are not pe-
nalized. In practice, we commonly see n-best lists
of hypotheses with linear distortion costs equal to
zero. More sophisticated local phrase re-ordering
models have been proposed (Tillmann, 2004; Zens
and Ney, 2006; Koehn et al., 2007; Galley and Man-
ning, 2008), but these are typically used in addition
to linear distortion.

2.2 Arabic Linguistic Essentials

In this paper we use Arabic-English as a case study
since we possess a strong experimental baseline.
But we expect that the technique presented could
be even more effective for high distortion language
pairs such as Chinese-English and Hindi-English.
Since the analysis that follows is framed in terms of
Arabic, we point out several linguistic features that
motivate our approach. From the perspective of the
three criteria used to specify basic word order typol-
ogy (Greenberg, 1966), Arabic is somewhat unusual
in its combination of features: it has prepositions
(not postpositions), adjectives post-modify nouns,
and the basic word order is VSO, but SVO and VOS
configurations also appear.

The implications for translation to English are:
(1) prepositions remain in place, (2) NPs are in-
verted, and most importantly, (3) basic syntac-
tic constituents must often be identified and pre-
cisely re-ordered. The VOS configuration is espe-
cially challenging for Arabic-English MT. It usu-
ally appears when the direct object is short—e.g.,
pronominal—and the subject is long. For example,
translation of the VOS sentence in Figure 1 requires
both a high distortion limit to accommodate the sub-
ject movement and tight restrictions on the move-
ment of the PP. The particularity of these require-
ments in Arabic and other languages, and the dif-
ficulty of modeling them in phrase-based systems,
has inspired significant work in source language pre-
processing (Collins et al., 2005; Habash and Sadat,
2006; Habash, 2007).

Finally, we observe that target language models
cannot always select appropriate translations when
basic word order transformation is required. By
not modeling source side features like agreement—
which, in Arabic, appears between both verb and

868

� �

�

�

�

dlimit-4

step k Fk ∆cost D(s, t) D(s, t) + ∆cost

0 3 3 1 4
1 5 2 0 2
2 7 2 0 2
3 0 −7 4 −3
4 0 0 3 3

8 8

Figure 2: Translation sequence in which the distortion limit is reached and the decoder is forced to cover the first
skipped word. Future cost estimation penalizes the two monotone steps, yet total distortion cost remains unchanged.

subject, and adjective and noun—baseline phrase-
based systems rely on the language model to spec-
ify an appropriate target word order (Avramidis and
Koehn, 2008). Returning to Figure 1, we could have
an alternate hypothesis They waited for the followers
of the Christian and Islamic sects, which is accept-
able English and has low distortion, but is semanti-
cally inconsistent with the Arabic.

3 The Cost Model

In this section we describe the new distortion cost
model, which has four independent components.

3.1 Future Cost Estimation

Despite its lack of sophistication, linear distortion
is a surprisingly effective baseline cost model for
phrase-based MT systems. It can be computed in
constant time, gives non-decreasing values that are
good for search, and does not require an ancillary
feature to adjust for the number of components in
the calculation (e.g., language model scores are ad-
justed by the word penalty). Moreover, when a large
training bitext is used, many local re-orderings are
captured in the phrase table, so the decoder can often
realize competitive performance by finding a best set
of phrases with low distortion. But linear distortion
is not the only unlexicalized alternative: we can use
any function of the jump width. Table 1 shows de-
velopment set (MT04) performance for polynomials
of degree 1.5 and degree 2. The linear model is more
effective than the higher order functions, especially
at a higher distortion limit.

Nevertheless, Table 1 shows an unacceptable de-
crease in translation performance at the high distor-
tion limit for all three polynomial models. In Moses,
the reason is due in part to a dramatic underestima-
tion of future re-ordering cost. Consider Figure 2
in which a distortion limit of 4 is used. The first

dlimit = 5 dlimit = 15
LINEAR 51.65 49.35
DEGREE 1.5 51.69 (+0.04) 48.73 (−0.62)
DEGREE 2 51.55 (−0.10) 48.40 (−0.95)

Table 1: BLEU-4 [%] dev set (MT04) scores (uncased)
for several polynomial distortion models. Higher degree
polynomial distortion models underperform at a high dis-
tortion limit (15).

word is skipped, and translation proceeds monoton-
ically until the distortion limit forces the decoder to
cover the first word. At low distortion limits, sin-
gle phrases often saturate the distortion window, so
underestimation is not problematic. But at high dis-
tortion limits, the decoder can skip many source po-
sitions at low cost before the search is constrained
by the distortion limit. Words and phrases sprinkled
carelessly throughout the hypotheses are evidence of
errant search directions that have not been appropri-
ately penalized by the distortion cost model.

To constrain search, we add an admissible future
cost estimate to the linear model.2 By definition, the
model has a least cost translation path: monotone.
Therefore, we can add to the baseline calculation
D(s, t) the cost of skipping back to the first uncov-
ered source word and then translating the remaining
positions monotonically. It can be verified by induc-
tion on |C| that this is an admissible heuristic.

Formally, let j represent the first uncovered index
in the source coverage set C. Let Cj represent the
subset of C starting from position j. Finally, let j′

represent the leftmost position in phrase p applied at
translation step k. Then the future cost estimate Fk

2Moore and Quirk (2007) propose an alternate future cost
formulation. However, their model seems prone to the same
deterioration in performance shown in Table 1. They observed
decreased translation quality above a distortion limit of 5.

869

is

Fk =
{ |Cj |+ (j′ + |p|+ 1− j) if j′ > j

0 otherwise

For k > 0, we add the difference between the
current future cost estimate and the previous cost
estimate ∆cost = Fk − Fk−1 to the linear penalty
D(s, t).3 Table 2 shows that, as expected, the dif-
ference between the baseline and augmented models
is statistically insignificant at a low distortion limit.
However, at a very high distortion limit, the future
cost estimate approximately restores baseline per-
formance. While we still need a distortion limit for
computational efficiency, it is no longer required to
improve translation quality.

3.2 A Discriminative Distortion Model
So far, we have developed a search heuristic func-
tion that gives us a greater ability to control search
at high distortion limits. Now we need a cost model
that is sensitive to the behavior of certain words dur-
ing translation. The model must accommodate a
potentially large number of overlapping source-side
features defined over the (possibly whole) transla-
tion sequence. Since we intend to train on auto-
matic word alignments, data sparsity and noise are
also risks. These requirements motivate two choices.
First, we use a discriminative log-linear framework
that predicts one of the nine discretized distortion
classes in Figure 3. Let dj,j′ indicate the class cor-
responding to a jump from source word j to j′ com-
puted as (j + 1 − j′). The discriminative distortion
classifier is then

pλ
(
dj,j′ |fJ1 , j, j′

)
=

exp
[∑M

m=1 λmhm
(
fJ1 , j, j

′, dj,j′
)]

∑
di

j,j′
exp

[∑M
m=1 λmhm

(
fJ1 , j, j

′, dij,j′
)]

where λm are feature weights for the
hm(fJ1 , j, j

′, dij,j′) arbitrary feature functions.
This log conditional objective function is convex
and can be optimized with e.g. a gradient-based
procedure.

3One implementation choice is to estimate future cost to
an artificial end-of-sentence token. Here the decoder incurs a
penalty for covering the last word prior to completing a hypoth-
esis. Although this implementation is inconsistent with Moses
linear distortion, we find that it gives a small improvement.

dlimit = 5 dlimit = 15
BASELINE 51.65 49.35
FUTURECOST 51.73 51.65

Table 2: BLEU-4 [%] dev set scores (uncased) for the
linear distortion with future cost estimation.

���� ������� ��	��
� �� � � �
�	� ����� ��

�

	�����

������

������

�
�����

�������

�������

������������������������������

�
�
��
��
��
!
�"
#
�
$
%
��
�

Figure 3: Distortion in Arabic-English translation is
largely monotonic, but with noticeable right movement
as verbs move around arguments and nouns around mod-
ifiers. The ability to predict movement decreases with the
jump size, hence the increasing bin boundaries.

Second, we expect that many words will not be
useful for predicting translation order.4 In a large
training bitext, it can be extremely tedious to iden-
tify informative words and word classes analytically.
Our final decision is then to optimize the parame-
ter weights λm using L1 regularization (Andrew and
Gao, 2007), a technique that can learn good models
in the presence of many irrelevant features.5 The
L1 regularizer saves us from filtering the training
data (e.g., by discarding all words that appear less
than an empirically-specified threshold), and pro-
vides sparse feature vectors that can be analyzed
separately during feature engineering.

We train two independent distortion models. For
a transition from source word j to j′, we learn an
outbound model in which features are defined with
respect to word j. We have a corresponding inbound

4To train the models, we inverted and sorted the intersection
alignments in the bitext. In our baseline system, we observed
no decrease in performance between intersection and e.g. grow-
diag. However we do expect that our method could be extended
to multi-word alignments.

5We also add a Gaussian prior p (λ) v N (0, 1) to the ob-
jective (Chen and Rosenfeld, 1999). Using both L1 and L2 reg-
ularization is mathematically odd, but often helps in practice.

870

1 2 3 4 5 6 7 8 9
−6

−5

−4

−3

−2

−1

0

Fi
rs

tQ
ui

nt
ile

Outbound Distortion Model

1 2 3 4 5 6 7 8 9
−6

−5

−4

−3

−2

−1

0

M
id

dl
e

Q
ui

nt
ile

1 2 3 4 5 6 7 8 9
−6

−5

−4

−3

−2

−1

0

L
as

tQ
ui

nt
ile

To left Distortion Class To right

(a) �CAJ / VBD shaaraka (“he engaged”)

1 2 3 4 5 6 7 8 9
−6

−5

−4

−3

−2

−1

0

Fi
rs

tQ
ui

nt
ile

Inbound Distortion Model

1 2 3 4 5 6 7 8 9
−6

−5

−4

−3

−2

−1

0

M
id

dl
e

Q
ui

nt
ile

1 2 3 4 5 6 7 8 9
−7
−6
−5
−4
−3
−2
−1

0

L
as

tQ
ui

nt
ile

From right Distortion Class From left

(b) ¨k§r�¯� / JJ al-aamriikii (“American”)

Figure 4: Selected discriminative cost curves (log scale) over three quintiles of the relative position feature. We
condition on the word, POS, and length features. The classes correspond to those shown in Figure 3. (4a) The VSO
basic word order is evident: early in the sentence, there is a strong tendency towards right movement around arguments
after covering the verb. However, right movement is increasingly penalized at the end of the sentence. (4b) Adjectives
post-modify nouns, so the model learns high inbound probabilities for jumps from positions earlier in the sentence.
However, the curve is bi-modal reflecting right inbound moves from other adjectives in NPs with multiple modifiers.

model trained on features with respect to j′. At
training time, we also add sentence beginning and
ending delimiters such that inbound probabilities are
learned for words that begin sentences (e.g., nouns)
and outbound probabilities are available for tokens
that end sentences (e.g., punctuation).

As a baseline, we use the following binary
features: words, part-of-speech (POS) tags, rela-
tive source sentence position, and source sentence
length. Relative source sentence position is dis-
cretized into five bins, one for each quintile of the
sentence. Source sentence length is divided into four
bins with bounds set empirically such that training
examples are distributed evenly. To simplify the de-
coder integration for this evaluation, we have cho-
sen context-free features, but the framework permits
many other promising possibilities such as agree-
ment morphology and POS tag chains.

Our models reveal principled cost curves for spe-
cific words (Figure 4). However, monotonic decod-
ing no longer gives the least costly translation path,
thus complicating future cost estimation. We would
need to evaluate all possible re-orderings within the
k-word distortion window. For an input sentence of

length n, Zens (2008) shows that the number of re-
ordering possibilities rn is

rn =
{
kn−k · k! n > k

n! n ≤ k
which has an asymptotic complexity Θ(kn). In-
stead of using an inadmissible heuristic as is done
in beam pruning, we take a shortcut: we include
the linear future cost model as a separate feature.
Then we add the two discriminative distortion fea-
tures, which calculate the inbound and outbound log
probabilities of the word alignments in a hypothe-
sis. Since hypotheses may have different numbers
of alignments, we also include an alignment penalty
that adjusts the discriminative distortion scores for
unaligned source words. The implementation and
behavior of the alignment penalty is analogous to
that of the word penalty. In total, the new distortion
cost model has four independent MT features.

4 MT Evaluation

4.1 Experimental Setup
Our MT system is Phrasal (Cer et al., 2010),
which is a Java re-implementation of the Moses

871

dlimit = 5 MT03 MT05 MT06 MT08 Avg
MOSESLINEAR 52.31 52.67 42.97 41.29
COUNTS 52.05 52.32 42.28 40.56
FUTURE 52.26 (−0.05) 52.53 (−0.14) 43.04 (+0.07) 41.01 (−0.28) −0.09
DISCRIM+FUTURE 52.68* (+0.37) 53.13* (+0.46) 43.75** (+0.78) 41.82** (+0.53) +0.59

Table 3: BLEU-4 [%] scores (uncased) at the distortion limit (5) used in our baseline NIST MT09 Arabic-English
system (Galley et al., 2009). Avg is a weighted average of the performance deltas. The stars for positive results
indicate statistical significance compared to the MOSESLINEAR baseline (*: significance at p ≤ 0.05; **: significance
at p ≤ 0.01)

dlimit = 15 MT03 MT05 MT06 MT08 Avg
MOSESLINEAR 51.04 51.35 41.01 38.83
COUNTS 49.92 49.73 39.44 37.65
LEX 50.96 51.21 41.87 39.38
FUTURE 52.28** (+1.24) 52.45** (+1.10) 42.78** (+1.77) 41.01** (+2.18) +1.66
DISCRIM+FUTURE 52.36** (+1.32) 53.05** (+1.70) 43.65** (+2.64) 41.68** (+2.85) +2.32
num. sentences 663 1056 1797 1360 4876

Table 4: BLEU-4 [%] scores (uncased) at a very high distortion limit (15). DISCRIM+FUTURE also achieves a
statistically significant gain over the MOSESLINEAR dlimit=5 baseline for MT05 (p ≤ 0.06), MT06 (p ≤ 0.01), and
MT08 (p ≤ 0.01).

decoder with the same standard features: four
translation features (phrase-based translation prob-
abilities and lexically-weighted probabilities), word
penalty, phrase penalty, linear distortion, and lan-
guage model score. We disable baseline linear dis-
tortion when evaluating the other distortion cost
models. To tune parameters, we run MERT with the
Downhill Simplex algorithm on the MT04 dataset.
For all models, we use 20 random starting points and
generate 300-best lists.

We use the NIST MT09 constrained track training
data, but remove the UN and comparable data.6 The
reduced training bitext has 181k aligned sentences
with 6.20M English and 5.73M Arabic tokens. We
create word alignments using the Berkeley Aligner
(Liang et al., 2006) and take the intersection of the
alignments in both directions. Phrase pairs with a
maximum target or source length of 7 tokens are ex-
tracted using the method of Och and Ney (2004).

We build a 5-gram language model from the
Xinhua and AFP sections of the Gigaword corpus
(LDC2007T40), in addition to all of the target side
training data permissible in the NIST MT09 con-
strained competition. We manually remove Giga-

6Removal of the UN data does not affect the baseline at
a distortion limit of 5, and lowers the higher distortion base-
line by −1.40 BLEU. The NIST MT09 data is available at
http://www.itl.nist.gov/iad/mig/tests/mt/2009/.

word documents that were released during periods
that overlapped with the development and test sets.
The language model is smoothed with the modified
Kneser-Ney algorithm, retaining only trigrams, 4-
grams, and 5-grams that occurred two, three, and
three times, respectively, in the training data.

We remove from the test sets source tokens not
present in the phrase tables. For the discriminative
distortion models, we tag the pre-processed input us-
ing the log-linear POS tagger of Toutanova et al.
(2003). After decoding, we strip any punctuation
that appears at the beginning of a translation.

4.2 Results

In Table 3 we report uncased BLEU-4 (Papineni et
al., 2001) scores at the distortion limit (5) of our
most competitive baseline Arabic-English system.
MOSESLINEAR uses the linear distortion model
present in Moses. COUNTS is a separate baseline
with a discrete cost model that uses unlexicalized
maximum likelihood estimates for the same classes
present in the discriminative model. To show the
effect of the components in our combined distor-
tion model, we give separate results for linear dis-
tortion with future cost estimation (FUTURE) and for
the combined discriminative distortion model (DIS-
CRIM+FUTURE) with all four features: linear distor-
tion with future cost, inbound and outbound proba-

872

Ar
����������	
������������������������������������

Reference dutch national jaap de hoop scheffer today, monday, took up his responsibilities...

MosesLinear-d5 over dutchman jaap de hoop today , monday , in the post of...

MosesLinear-d15 dutch assumed his duties in the post of nato secretary general jaap de hoop today , monday...

Discrim+Future the dutchman jaap de hoop today , monday , assumed his duties...

��������	
���������	

Figure 5: Verb movement around both the subject and temporal NPs is impossible at a distortion limit of 5
(MOSESLINEAR-d5). The baseline system at a high distortion limit mangles the translation (MOSESLINEAR-d15).
DISCRIM+FUTURE (dlimit=15) correctly guides the search. The Arabic source is written right-to-left.

bilities, and the alignment penalty.
The main objective of this paper is to improve

performance at very high distortion limits. Table 4
shows performance at a distortion limit of 15. To
the set of baselines we add LEX, which is the lex-
icalized re-ordering model of Galley and Manning
(2008). This model was shown to outperform other
lexicalized re-ordering models in common use.

Statistical significance was computed with the
approximate randomization test of Riezler and
Maxwell (2005), which is less sensitive to Type I
errors than bootstrap re-sampling (Koehn, 2004).

5 Discussion

The new distortion cost model allows us to triple the
distortion limit while maintaining a statistically sig-
nificant improvement over the MOSESLINEAR base-
line at the lower distortion limit for three of the
four test sets. More importantly, we can raise the
distortion limit in the DISCRIM+FUTURE configu-
ration at minimal cost: a statistically insignificant
−0.2 BLEU performance decrease on average. We
also see a considerable improvement over both the
MOSESLINEAR and LEX baselines at the high dis-
tortion limit (Figure 5). As expected, future cost es-
timation alone does not increase performance at the
lower distortion limit.

We also observe that the effect of conditioning on
evidence is significant: the COUNTS model is cate-
gorically worse than all other models. To understand
why, we randomly sampled 500 sentences from the
excluded UN data and computed the log-likelihoods
of the alignments according to the different models.7

In this test, COUNTS is clearly better with a score of
7We approximated linear distortion using a Laplacian dis-

tribution with estimated parameters µ̂ = 0.51 and b̂ = 1.76
(Goodman, 2004).

−23388 versus, for example, the inbound model at
−38244. The explanation is due in part to optimiza-
tion. The two discriminative models often give very
low probabilities for the outermost classes. Noise
in the alignments along with the few cases of long-
distance movement are penalized heavily. For Ara-
bic, this property works in our favor as we do not
want extreme movement (as we might with Chinese
or German). But COUNTS applies a uniform penalty
for all movement that exceeds the outermost class
boundaries, making it more prone to search errors
than even linear distortion despite its favorable per-
formance when tested in isolation.

Finally, we note that previous attempts to improve
re-ordering during search (particularly long-distance
re-ordering (Chiang, 2007)) have delivered remark-
able gains for languages like Chinese, but improve-
ments for Arabic have been less exceptional. By
relaxing the distortion limit, we have left room for
more sophisticated re-ordering models in conven-
tional phrase-based decoders while maintaining a
significant performance advantage over hierarchical
systems (Marton and Resnik, 2008).

6 Prior Work

There is an expansive literature on re-ordering in
statistical MT. We first review the development of
re-ordering constraints, then describe previous cost
models for those constraints in beam search de-
coders. Because we allow re-ordering during search,
we omit discussion of the many different methods
for preprocessing the source input prior to mono-
tonic translation. Likewise, we do not recite prior
work in re-ranking translations.

Re-ordering constraints were first introduced by
Berger et al. (1996) in the context of the IBM trans-
lation models. The IBM constraints treat the source

873

word sequence as a coverage set C that is processed
sequentially. A source token is “covered” when it is
aligned with a new target token. For a fixed value
of k, we may leave up to k − 1 positions uncov-
ered and return to them later. We can alter the con-
straint slightly such that for the first uncovered posi-
tion u /∈ C we can cover position j when

j − u < k j /∈ C

which is the definition of the distortion limit used in
Moses. Variations of the IBM constraints also ex-
ist (Kanthak et al., 2005), as do entirely different
regimes like the hierarchical ITG constraints, which
represent the source as a sequence of blocks that
can be iteratively merged and inverted (Wu, 1996).
Zens and Ney (2003) exhaustively compare the IBM
and ITG constraints, concluding that although the
ITG constraints permit more flexible re-orderings,
the IBM constraints result in higher BLEU scores.

Since our work falls under the IBM paradigm, we
consider cost models for those constraints. We have
said that linear distortion is the simplest cost model.
The primary criticism of linear distortion is that
it is unlexicalized, thus penalizing all re-orderings
equally (Khalilov et al., 2009). When extended to
phrases as in Equation (1), linear distortion is also
agnostic to internal phrase alignments.

To remedy these deficiencies, Al-Onaizan and
Papineni (2006) proposed a lexicalized, generative
distortion model. Maximum likelihood estimates
for inbound, outbound, and pairwise transitions are
computed from automatic word alignments. But no
estimate of future cost is included, and their model
cannot easily accommodate features defined over the
entire translation sequence. As for experimental re-
sults, they use a distortion limit that is half of what
we report, and compare against a baseline that lacks
a distortion model entirely. Neither their model nor
ours requires generation of lattices prior to search
(Zhang et al., 2007; Niehues and Kolss, 2009).

Lexicalized re-ordering models are the other sig-
nificant approach to re-ordering. These models
make local predictions about the next phrase to be
translated during decoding, typically assigning costs
to one of three categories: monotone, swap, or dis-
continuous. Both generative (Tillmann, 2004; Och
and Ney, 2004; Koehn et al., 2007) and discrimina-
tive training (Tillmann and Zhang, 2005; Zens and

Ney, 2006; Liang et al., 2006) algorithms have been
proposed. Recently, Galley and Manning (2008) in-
troduced a hierarchical model capable of analyzing
alignments beyond adjacent phrases. Our discrimi-
native distortion framework is not designed as a re-
placement for lexicalized re-ordering models, but as
a substitute for linear distortion.

Finally, we comment on differences between our
Arabic-English results and the well-known high dis-
tortion system of Zollmann et al. (2008), who find
optimal baseline performance at a distortion limit of
9. First, they use approximately two orders of mag-
nitude more training data, which allows them to ex-
tract much longer phrases (12 tokens v. our maxi-
mum of 7). In this setting, many Arabic-English re-
orderings can be captured in the phrase table. Sec-
ond, their “Full” system uses three language models
each trained with significantly more data than our
single model. Finally, although they use a lexical-
ized re-ordering model, no details are given about
the baseline distortion cost model.

7 Conclusion

We have presented a discriminative cost framework
that both estimates future distortion cost and learns
principled cost curves. The model delivers a statis-
tically significant +2.32 BLEU improvement over
Moses at a high distortion limit. Unlike previous
discriminative local orientation models (Zens and
Ney, 2006), our framework permits the definition of
global features. The evaluation in this paper used
context-free features to simplify the decoder integra-
tion, but we expect that context-dependent features
could result in gains for other language pairs with
more complex re-ordering phenomena.

Acknowledgements

We thank the three anonymous reviewers and Daniel
Cer for constructive comments, and Claude Re-
ichard for editorial assistance. The first author is
supported by a National Defense Science and Engi-
neering Graduate (NDSEG) fellowship. This paper
is based on work supported in part by the Defense
Advanced Research Projects Agency through IBM.
The content does not necessarily reflect the views of
the U.S. Government, and no official endorsement
should be inferred.

874

References
Y Al-Onaizan and K Papineni. 2006. Distortion models

for statistical machine translation. In ACL.
G Andrew and J Gao. 2007. Scalable training of L1-

regularized log-linear models. In ICML.
M Auli, A Lopez, H Hoang, and P Koehn. 2009. A

systematic analysis of translation model search spaces.
In WMT.

E Avramidis and P Koehn. 2008. Enriching morpholog-
ically poor languages for statistical machine transla-
tion. In ACL.

A Berger, P Brown, S Della Pietra, V Della Pietra,
A Kehler, and R Mercer. 1996. Language translation
apparatus and method using context-based translation
models. US Patent 5,510,981.

D Cer, M Galley, D Jurafsky, and C D Manning. 2010.
Phrasal: A statistical machine translation toolkit for
exploring new model features. In NAACL, Demonstra-
tion Session.

S Chen and R Rosenfeld. 1999. A Gaussian prior for
smoothing maximum entropy models. Technical Re-
port CMU-CS-99-10S, Carnegie Mellon University.

D Chiang. 2007. Hierarchical phrase-based translation.
Computational Linguistics, 33(2):201–228.

M Collins, P Koehn, and I Kucerova. 2005. Clause re-
structuring for statistical machine translation. In ACL.

M Galley and C D Manning. 2008. A simple and effec-
tive hierarchical phrase reordering model. In EMNLP.

M Galley, S Green, D Cer, P-C Chang, and C D Manning.
2009. Stanford University’s Arabic-to-English statisti-
cal machine translation system for the 2009 NIST eval-
uation. Technical report, Stanford University.

J Goodman. 2004. Exponential priors for maximum en-
tropy models. In NAACL.

JH Greenberg, 1966. Some universals of grammar with
particular reference to the order of meaningful ele-
ments, pages 73–113. London: MIT Press.

N Habash and F Sadat. 2006. Arabic preprocessing
schemes for statistical machine translation. In NAACL.

N Habash. 2007. Syntactic preprocessing for statistical
machine translation. In MT Summit XI.

S Kanthak, D Vilar, E Matusov, R Zens, and H Ney.
2005. Novel reordering approaches in phrase-based
statistical machine translation. In ACL Workshop on
Building and Using Parallel Texts.

M Khalilov, J A R Fonollosa, and M Dras. 2009. Cou-
pling hierarchical word reordering and decoding in
phrase-based statistical machine translation. In SSST.

P Koehn, F J Och, and D Marcu. 2003. Statistical phrase-
based translation. In NAACL.

P Koehn, H Hoang, A Birch, C Callison-Burch, M Fed-
erico, N Bertoldi, B Cowan, W Shen, C Moran,

R Zens, C Dyer, O Bojar, A Constantin, and E Herbst.
2007. Moses: Open source toolkit for statistical ma-
chine translation. In ACL, Demonstration Session.

P Koehn. 2004. Statistical significance tests for machine
translation evaluation. In EMNLP.

P Liang, B Taskar, and D Klein. 2006. Alignment by
agreement. In NAACL.

Y Marton and P Resnik. 2008. Soft syntactic constraints
for hierarchical phrased-based translation. In ACL.

R C Moore and C Quirk. 2007. Faster beam-search de-
coding for phrasal statistical machine translation. In
MT Summit XI.

J Niehues and M Kolss. 2009. A POS-based model for
long-range reorderings in SMT. In WMT.

F J Och and H Ney. 2004. The alignment template ap-
proach to statistical machine translation. Computa-
tional Linguistics, 30:417–449.

F J Och. 2003. Minimum error rate training for statistical
machine translation. In ACL.

K Papineni, S Roukos, T Ward, and W-J Zhu. 2001.
BLEU: a method for automatic evaluation of machine
translation. In ACL.

S Riezler and J T Maxwell. 2005. On some pitfalls in au-
tomatic evaluation and significance testing in MT. In
ACL Workshop on Intrinsic and Extrinsic Evaluation
Measures for Machine Translation and/or Summariza-
tion (MTSE’05).

C Tillmann and T Zhang. 2005. A localized prediction
model for statistical machine translation. In ACL.

C Tillmann. 2004. A unigram orientation model for sta-
tistical machine translation. In NAACL.

K Toutanova, D Klein, C D Manning, and Y Singer.
2003. Feature-rich part-of-speech tagging with a
cyclic dependency network. In NAACL.

D Wu. 1996. A polynomial-time algorithm for statistical
machine translation. In ACL.

R Zens and H Ney. 2003. A comparative study on re-
ordering constraints in statistical machine translation.
In ACL.

R Zens and H Ney. 2006. Discriminative reordering
models for statistical machine translation. In WMT.

R Zens. 2008. Phrase-based Statistical Machine Trans-
lation: Models, Search, Training. Ph.D. thesis, RWTH
Aachen University.

Y Zhang, R Zens, and H Ney. 2007. Chunk-level re-
ordering of source language sentences with automati-
cally learned rules for statistical machine translation.
In SSST.

A Zollmann, A Venugopal, F J Och, and J Ponte. 2008.
A systematic comparison of phrase-based, hierarchical
and syntax-augmented statistical MT. In COLING.

875

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 876–884,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Why Synchronous Tree Substitution Grammars?

Andreas Maletti
Universitat Rovira i Virgili, Departament de Filologies Romàniques

Avinguda de Catalunya 35, 43002 Tarragona, Spain
andreas.maletti@urv.cat

Abstract

Synchronous tree substitution grammars are a
translation model that is used in syntax-based
machine translation. They are investigated in
a formal setting and compared to a competi-
tor that is at least as expressive. The competi-
tor is the extended multi bottom-up tree trans-
ducer, which is the bottom-up analogue with
one essential additional feature. This model
has been investigated in theoretical computer
science, but seems widely unknown in natu-
ral language processing. The two models are
compared with respect to standard algorithms
(binarization, regular restriction, composition,
application). Particular attention is paid to the
complexity of the algorithms.

1 Introduction

Every machine translation system uses a transla-
tion model, which is a formal model that describes
the translation process. Either this system is hand-
crafted (in rule-based translation systems) or it is
trained with the help of statistical processes. Brown
et al. (1990) discuss automatically trainable transla-
tion models in their seminal paper on the latter ap-
proach. The IBM models of Brown et al. (1993) are
string-based in the sense that they base the transla-
tion decision on the words and the surrounding con-
text. In the field of syntax-based machine transla-
tion, the translation models have access to the syntax
(in the form of parse trees) of the sentences. Knight
(2007) presents a good exposition to both fields.

In this paper, we focus on syntax-based transla-
tion models, and in particular, synchronous tree sub-
stitution grammars (STSGs), or the equally pow-
erful (linear and nondeleting) extended (top-down)

tree transducers of Graehl et al. (2008). Chiang and
Knight (2006) gives a good introduction to STSGs,
which originate from the syntax-directed transla-
tion schemes of Aho and Ullman (1972) [nowadays
more commonly known as synchronous context-free
grammars]. Roughly speaking, an STSG has rules
in which a nonterminal is replaced by two trees con-
taining terminal and nonterminal symbols. In addi-
tion, the nonterminals in the two trees are linked and
a rule is only applied to linked nonterminals.

Several algorithms for STSGs have been dis-
cussed in the literature. For example, we can
• train them [see Graehl et al. (2008)],
• attempt to binarize them using the methods of

(Zhang et al., 2006; Huang et al., 2009; DeNero
et al., 2009b),
• parse them [see DeNero et al. (2009a)], or
• attempt to compose them.

However, some important algorithms are partial be-
cause it is known that the construction might not be
possible in general. This is the case, for example,
for binarization and composition.

In the theoretical computer science community,
alternative models have been explored. Such
a model is the multi bottom-up tree transducer
(MBOT) of Arnold and Dauchet (1982) and Lilin
(1981), which essentially is the bottom-up analogue
of STSGs with the additional feature that nontermi-
nals can have an arbitrary rank (the rank of a non-
terminal of an STSG can be considered to be fixed
to 1). This model is even more expressive than
STSGs, but still offers good computational proper-
ties. In this contribution, we will compare STSGs
and MBOTs with respect to some standard algo-
rithms. Generally, MBOTs offer algorithmic ben-
efits over STSG, which can be summarized as fol-

876

lows:
• Every STSG can be transformed into an equiv-

alent MBOT in linear time.
• MBOTs can be fully binarized in linear

time whereas only partial binarizations (or
asynchronous binarizations) are possible for
STSGs.
• The input language of an MBOTM can be reg-

ularly restricted in O(|M | · |S|3), whereas the
corresponding construction for an STSG M is
in O(|M | · |S|2 rk(M)+5) where rk(M) is the
maximal number of nonterminals in a rule of
the STSG M .
• MBOTs can be composed, whereas this cannot

be achieved for STSGs.
Overall, we thus conclude that, from an algorith-
mic perspective, it would be beneficial to work with
MBOTs instead of STSGs. However, the full power
of MBOTs should not be tapped because, in gen-
eral, MBOTs have the finite-copying property [see
Engelfriet et al. (1980)], which complicates the al-
gorithms for forward and backward application (see
Section 7).

2 Preliminary definitions

An alphabet is a finite set of symbols. Our weighted
devices use real-number weights, but the results
translate easily to the more general setting of com-
mutative semirings [see Golan (1999)]. A weighted
string automaton as in Schützenberger (1961) and
Eilenberg (1974) is a system (S,Γ, I, τ, F) where
• S and Γ are alphabets of states and input sym-

bols, respectively,
• I, F : S → R assign initial and final weights,

respectively, and
• τ : S × Γ × S → R assigns a weight to each

transition.
Let w = γ1 · · · γk ∈ Γ∗ be an input string of
length k. A run on w is r : {0, . . . , k} → S. The
weight of the run r is wt(r) =

∏k
i=1 τ(ri−1, γi, ri).

The semantics of the automaton A then assigns to w
the weight

A(w) =
∑

r run on w

I(r0) · wt(r) · F (rk) .

A good introduction to weighted string automata can
be found in Mohri (2009) and Sakarovitch (2009).

To simplify the theoretical discussion, we as-
sume that each symbol that we use in trees has a
fixed rank, which determines the number of chil-
dren of each node with that label. A ranked alpha-
bet Σ =

⋃
k≥0 Σk is an alphabet whose symbols

have assigned ranks. The set Σk contains all sym-
bols of rank k. The set TΣ(V) of Σ-trees indexed
by a set V is the smallest set such that V ⊆ TΣ(V)
and σ(t1, . . . , tk) ∈ TΣ(V) for every σ ∈ Σk and
t1, . . . , tk ∈ TΣ(V). The size |t| of the tree t ∈ TΣ

is the number of occurrences of symbols from Σ∪V
that appear in t. A context c is a tree of TΣ∪{�}(V),
in which the nullary symbol � occurs exactly once.
The set of all such contexts is CΣ(V). The tree c[t]
is obtained from c by replacing the symbol � by t.

A weighted synchronous tree substitution gram-
mar (STSG) is a system (N,Σ,∆, I, P) where
• N is an alphabet of nonterminals,
• Σ and ∆ are ranked alphabets of input and out-

put symbols, respectively,
• I : N → R assigns initial weights, and
• P is a finite set of productions n : t a↔ u with
n ∈ N , t ∈ TΣ(N), a ∈ R, and u ∈ T∆(N)
such that

– every n′ ∈ N that occurs in t occurs ex-
actly once in u and vice versa, and

– t /∈ N or u /∈ N .
Note that our distinction between nonterminals and
terminals is rather uncommon for STSG [see Chi-
ang (2005)], but improves the generative power. We
chose the symbol “↔” because STSG productions
are symmetric. The size |n : t a↔ u| of a produc-
tion is |t| + |u|, and the size |M | of the STSG M is∑

p∈P |p|. It is a weighted tree substitution grammar

(TSG) if t = u for all productions n : t a↔ u ∈ P .
Further, it is in normal form if for every production
n : t a↔ u ∈ P there exist σ ∈ Σk, δ ∈ ∆k, and
nonterminals n1, . . . , nk, n

′
1, . . . , n

′
k ∈ N such that

t = σ(n1, . . . , nk) and u = δ(n′1, . . . , n
′
k). A de-

tailed exposition to STSGs and STSGs in normal
form (also called synchronous context-free gram-
mars) can be found in Chiang (2005). Further details
on TSGs can be found in Berstel and Reutenauer
(1982) and Fülöp and Vogler (2009).

Equal nonterminals in t and u of a produc-
tion n : t a↔ u ∈ P are linked. To keep the pre-
sentation simple, we assume that those links are re-

877

S

NP1 @

V NP2

↔

S

V @

NP1 NP2

S

NP

x1

@

V

x2

NP

x3

→

S

S

x2 @

x1 x3

Figure 1: STSG production (top) and corresponding
MBOT rule (bottom) where @ is an arbitrary symbol that
is introduced during binarization.

membered also in sentential forms. In addition, we
assume that N ∩ Σ = ∅. For every c, c′ ∈ CΣ(N)
and n ∈ N , let (c[n], c′[n]) a⇒ (c[t], c′[u]) if
• there is a production n : t a↔ u ∈ P , and
• the explicit (the ones replacing �) occurrences

of n in c[n] and c′[n] are linked.
Left-most derivations are defined as usual, and the
weight of a derivation D : ξ0

a1⇒ · · · ak⇒ ξk is
wt(D) =

∏k
i=1 ai. The weight assigned by the

grammar M to a pair (t, u) ∈ TΣ × T∆ is

M(t, u) =
∑
n∈N

I(n) ·
∑

D left-most derivation
from (n, n) to (t, u)

wt(D) .

The second restriction on productions ensures that
derivations are of finite length, and thus that the
sums in the definition of M(t, u) are finite.

In the following, we will use syntactic simplifica-
tions such as
• several occurrences of the same nonterminal in

a tree (disambiguated by decoration).
• symbols that are terminals (of Σ and ∆) and

nonterminals. We will print nonterminals in
italics and terminal symbols upright.
• omission of the nonterminal n (or the weight a)

of a rule n : t a↔ u if the terminal n occurs at
the root of t and u (or a = 1).
• n a→ t instead of n : t a↔ t if it is a TSG.

A sample STSG production (using those simplifica-
tions) is displayed in Figure 1. Our STSGs are es-
sentially equivalent to the (nondeleting and linear)
extended tree transducers of Graehl et al. (2008) and
Maletti et al. (2009).

@

V

x2

NP

x3

→
U

x2 x3

S

NP

x1

U

x2 x3

→

U ′

x2 @

x1 x3

U ′

x1 x2

→

S

S

x1 x2

Figure 2: Sample MBOT rules in one-symbol normal
form.

3 Multi bottom-up tree transducers

As indicated in the Introduction, we will compare
STSGs to weighted multi bottom-up tree transduc-
ers, which have been introduced by Arnold and
Dauchet (1982) and Lilin (1981). A more detailed
(and English) presentation can be found in Engel-
friet et al. (2009). Let us quickly recall the formal
definition. We use a fixed set X = {x1, x2, . . . }
of (formal) variables. For a ranked alphabet S and
L ⊆ TΣ(X) we let

S(L) = {s(t1, . . . , tk) | s ∈ Sk, t1, . . . , tk ∈ L}

and we treat elements of S(L) like elements
of TΣ∪S(X).

Definition 1 A weighted multi bottom-up tree trans-
ducer (MBOT) is a system (S,Σ,∆, F,R) where
• S, Σ, and ∆ are ranked alphabets of states, in-

put symbols, and output symbols, respectively,
• F : S1 → R assigns final weights, and
• R is a finite set of rules l a→ r where a ∈ R,
l ∈ TΣ(S(X)), and r ∈ S(T∆(X)) such that

– every x ∈ X that occurs in l occurs ex-
actly once in r and vice versa, and

– l /∈ S(X) or r /∈ S(X).

Roughly speaking, an MBOT is the bottom-up
version of an extended top-down tree transducer, in
which the states can have a rank different from 1. We
chose the symbol “→” because rules have a distin-
guished left- and right-hand side. The size |l a→ r| of

878

S

NP

t1

@

V

t2

NP

t3

⇒

S

NP

t1

U

t2 t3

⇒

U ′

t2 @

t1 t3

⇒

S

S

t2 @

t1 t3

Figure 3: Derivation using the MBOT rules of Fig. 2.

a rule is |l|+ |r|, and the size |M | of an MBOTM is∑
r∈R|r|. Again the second condition on the rules

will ensure that derivations will be finite. Let us
continue with the rewrite semantics for the MBOT
(S,Σ,∆, F,R). To simplify the presentation, we
again assume that S ∩ (Σ ∪ ∆) = ∅. We need
the concept of substitution. Let θ : X → T∆ and
t ∈ T∆(X). Then tθ is the tree obtained by replac-
ing every occurrence of x ∈ X in t by θ(x).

Definition 2 Let c ∈ CΣ(S(X)) and θ : X → T∆.
Then c[lθ] a⇒ c[rθ] if l a→ r ∈ R. The weight of a
derivation D : ξ0

a1⇒ · · · ak⇒ ξk is wt(D) =
∏k
i=1 ai.

The weight assigned by the MBOT M to a pair
(t, u) ∈ TΣ × T∆ is

M(t, u) =
∑
s∈S1

F (s) ·
∑

D left-most derivation
from t to s(u)

wt(D) .

We use the simplifications already mentioned in
the previous section also for MBOTs. Figures
1 and 2 display example rules of an MBOT. The
rules of Figure 2 are applied in a derivation in Fig-
ure 3. The first displayed derivation step uses the
context S(NP(t1),�) and any substitution θ such
that θ(x2) = t2 and θ(x3) = t3.

It is argued by Chiang (2005) and Graehl et
al. (2008) that STSGs (and extended tree trans-
ducers) have sufficient power for syntax-based ma-
chine translation. Knight (2007) presents a detailed
overview that also mentions short-comings. Since
our newly proposed device, the MBOT, should be
at least as powerful as STSGs, we quickly demon-
strate how each STSG can be coded as an MBOT.
An STSG production and the corresponding MBOT
rule are displayed in Figure 1. Since the correspon-
dence is rather trivial, we omit a formal definition.

Theorem 3 For every STSG M , an equivalent
MBOT can be constructed in time O(|M |).

4 Binarization

Whenever nondeterminism enters the playfield, bi-
narization becomes an important tool for efficiency
reasons. This is based on the simple, yet powerful
observation that instead of making 5 choices from a
space of n in one instant (represented by n5 rules),
it is more efficient (Wang et al., 2007) to make them
one-by-one (represented by 5n rules). Clearly, this
cannot always be done but positive examples exist in
abundance; e.g., binarization of context-free gram-
mars [see CHOMSKY normal form in Hopcroft and
Ullman (1979)].

Binarization of tree language devices typically
consists of two steps: (i) binarization of the involved
trees (using the auxiliary symbol @) and (ii) adjust-
ment (binarization) of the processing device to work
on (and fully utilize) the binarized trees. If success-
ful, then this leads to binarized derivation trees for
the processing device. In Figure 4 we show the bi-
narization of the trees in an STSG production. An-
other binarization of the rule of Figure 4 is displayed
in Figure 1. The binarization is evident enough, so
we can assume that all trees considered in the fol-
lowing are binarized.

The binarization in Figure 1 is unfortunate be-
cause the obtained production cannot be factor-
ized such that only two nonterminals occur in each
rule. However, the binarization of Figure 4 allows
the factorization into S(U ,NP) ↔ S(U ,NP) and
U : @(NP ,V)↔ @(V ,NP), which are fully bina-
rized productions. However, in general, STSGs (or
SCFGs or extended tree transducers) cannot be fully
binarized as shown in Aho and Ullman (1972).

Zhang et al. (2006) and Wang et al. (2007) show
the benefits of fully binarized STSGs and present a
linear-time algorithm for the binarization of binariz-
able STSGs. We show that those benefits can be
reaped for all STSGs by a simple change of model.

879

S

NP1 V NP2
↔

S

V NP1 NP2

S

@

NP1 V

NP2 ↔

S

@

V NP1

NP2

Figure 4: Binarization of trees in an STSG production.
Top: Original — Bottom: Binarized trees.

We have already demonstrated that every STSG can
be transformed into an equivalent MBOT in linear
time. Next, we discuss binarization of MBOTs.

An MBOT is in one-symbol normal form if there
is at most one input and at most one output symbol,
but at least one symbol in each rule (see Figure 2).
Raoult (1993) and Engelfriet et al. (2009) prove that
every MBOT can be transformed into one-symbol
normal form. The procedure presented there runs in
linear time in the size of the input MBOT. Conse-
quently, we can transform each STSG to an equiv-
alent MBOT in one-symbol normal form in linear
time. Finally, we note that a MBOT in one-symbol
normal form has binarized derivation trees, which
proves that we fully binarized the STSG.

Theorem 4 For every STSG M an equivalent, fully
binarized MBOT can be constructed in O(|M |).

The construction of Engelfriet et al. (2009) is il-
lustrated in Figure 2, which shows the rules of an
MBOT in one-symbol normal form. Those rules are
constructed from the unlucky binarization of Fig-
ure 1. In the next section, we show the benefit of the
full binarization on the example of the BAR-HILLEL

construction.

5 Input and output restriction

A standard construction for transformation devices
(and recognition devices alike) is the regular restric-
tion of the input or output language. This con-
struction is used in parsing, integration of a lan-
guage model, and the computation of certain metrics
[see Nederhof and Satta (2003), Nederhof and Satta
(2008), and Satta (2010) for a detailed account]. The
construction is generally known as BAR-HILLEL

construction [see Bar-Hillel et al. (1964) for the

original construction on context-free grammars].
STSGs (and extended tree transducers) are sym-

metric, so that input and output can freely be
swapped. Let M be an STSG and A a weighted
string automaton with states S. In the BAR-HILLEL

construction for M and A, the maximal rank rk(M)
of a symbol in the derivation forest ofM enters as an
exponent into the complexityO(|M | · |S|2 rk(M)+5).
Since full binarization is not possible in general, the
maximal rank cannot be limited to 2. In contrast,
full binarization is possible for MBOTs (with only
linear overhead), so let us investigate whether we
can exploit this in a BAR-HILLEL construction for
MBOTs.

Let M = (S,Σ,∆, F,R) be an MBOT in one-
symbol normal form. The symbols in Σ ∪ ∆ have
rank at most 2. Moreover, let G = (N,Σ,Σ, I, P)
be a TSG in normal form. We want to construct an
MBOT M ′ such that M ′(t, u) = M(t, u) ·G(t) for
every t ∈ TΣ and u ∈ T∆. In other words, each
input tree should be rescored according to G; in the
unweighted case this yields that the translation ofM
is filtered to the set of input trees accepted by G.

We occasionally write the pair (a, b) in angled
parentheses (‘〈’ and ‘〉’). In addition, we use the
center line ellipsis ‘· ·’ (also with decoration) like a
variable (especially for sequences).

Definition 5 The input product Prod(M,G) is the
MBOT Prod(M,G) = (S×N,Σ,∆, F ′, R′) where
• F ′(〈s, n〉) = F (s) · I(n) for every s ∈ S and
n ∈ N ,
• for every rule s(· ·) a→ s′(· ·′) ∈ R with
s, s′ ∈ S and every n ∈ N , there exists a rule

〈s, n〉(· ·) a→ 〈s′, n〉(· ·′) ∈ R′ ,

• for every rule σ(s1(· ·1), . . . , sk(· ·k))
a→ s(· ·)

in R with σ ∈ Σk and s, s1, . . . , sk ∈ S, and
every production n b→ σ(n1, . . . , nk) ∈ P , the
following rule is in R′:

σ(〈s1, n1〉(· ·1), . . . , 〈sk, nk〉(· ·k))
ab→ 〈s, n〉(· ·) .

The first type of rule (second item) does not in-
volve an input symbol, and thus the nonterminal
of G is just forwarded to the new state. Since no
step with respect to G is made, only the weight of
the rule of M is charged. The second type of rule
(third item) uses a rule of R with the input symbol σ

880

s1 s3

s1 s2 s2 s3

σ

〈s1,s3〉→σ(〈s1,s2〉,〈s2,s3〉)

s1 s2

s1 s2

σ

〈s1,s2〉→σ(〈s1,s2〉)

s1 γ s2

τ(s1, γ, s2)

〈s1,s2〉
τ(s1,γ,s2)
→ γ

Figure 5: Constructing a TSG from a weighted string au-
tomaton.

and a production of P that also contains σ. The rule
and the production are executed in parallel in the re-
sulting rule and its weight is thus the product of the
weights of the original rule and production. Over-
all, this is a classical product construction, which is
similar to other product constructions such as Bor-
chardt (2004). A straightforward proof shows that
M ′(t, u) = M(t, u) · G(t) for every t ∈ TΣ and
u ∈ T∆, which proves the correctness.

Next, let us look at the complexity. The MBOT
Prod(M,G) can be obtained in time O(|M | · |G|).
Furthermore, it is known [see, for example, Maletti
and Satta (2009)] that for every weighted string au-
tomaton A with states S, we can construct a TSG G
in normal form, which has size O(|Σ| · |S|3) and
recognizes each tree of TΣ with the weight that the
automaton A assigns to its yield. The idea of this
construction is illustrated in Figure 5. Consequently,
our BAR-HILLEL construction has the well-known
complexityO(|M | · |S|3). This should be compared
to the complexity of the corresponding construction
for an STSG M , which is in O(|M | · |S|2 rk(M)+5)
where rk(M) is the maximal number of (different)
nonterminals in a production of M . Thus, the STSG
should be transformed into an equivalent MBOT in
one-symbol normal form, which can be achieved
in linear time, and the BAR-HILLEL construction
should be performed on this MBOT.

Since STSGs are symmetric, our approach can
also be applied to the output side of an STSG.
However, it should be noted that we can apply it

only to one side (the input side) of the MBOT. A
construction for the output side of the MBOT can
be defined, but it would suffer from a similarly
high complexity as already presented for STSGs.
More precisely, we expect a complexity of roughly
O(|M | · |S|2 rk(M)+2) for this construction. The
small gain is due to the one-symbol normal form and
binarization.

6 Composition

Another standard construction for transformations is
(relational) composition. Composition constructs a
translation from a language L to L′′ given transla-
tions from L to L′ and from L′ to L′′. Formally,
given transformations M ′ : TΣ × T∆ → R and
M ′′ : T∆×TΓ → R, the composition ofM ′ andM ′′

is a tranformation M ′ ;M ′′ : TΣ × TΓ → R with

(M ′ ;M ′′)(t, v) =
∑
u∈T∆

M ′(t, u) ·M ′′(u, v)

for every t ∈ TΣ and v ∈ TΓ. Mind that the sum-
mation might be infinite, but we will only consider
compositions, in which it is finite.

Unfortunately, Arnold and Dauchet (1982) show
that the composition of two transformations com-
puted by STSGs cannot necessarily be computed by
an STSG. Consequently, there cannot be a general
composition algorithm for STSGs.

Let us consider the problem of composition for
MBOTs. Essentially, we will follow the unweighted
approach of Engelfriet et al. (2009) to obtain a com-
position construction, which we present next. Let

M ′ = (S′,Σ,∆, F ′, R′) and

M ′′ = (S′′,∆,Γ, F ′′, R′′)

be MBOTs in one-symbol normal form. We ex-
tend the rewrite semantics (see Definition 2) to
trees that include symbols foreign to a MBOT. In
other words, we (virtually) extend the input and
output alphabets to contain all used symbols (in
particular also the states of another MBOT). How-
ever, since we do not extend the set of rules, the
MBOT cannot process foreign symbols. Neverthe-
less it can perform rewrite steps on known sym-
bols (or apply rules that do not contain input sym-
bols). We use ⇒R′ and ⇒R′′ for derivation steps

881

s′

s′′1

t1 · · · tm

· · · s′′k

u1 · · · un

∼=

s′〈s′′1, . . . , s′′k〉

t1 · · · tm · · · u1 · · · un

Figure 6: Identification in sentential forms.

that exclusively use rules ofR′ andR′′, respectively.
In addition, we identify s′(s′′1(· ·1), . . . , s′′k(· ·k))
with s′〈s′′1, . . . , s′′k〉(· ·1, . . . , · ·k) for s′ ∈ S′ and
s′′1, . . . , s

′′
k ∈ S′′. This identification is illustrated

in Figure 6.

Definition 6 The MBOT M ′ ;M ′′ = (S,Σ,Γ, F,R)
is such that
• for every s′ ∈ S′k and s′′1 ∈ S′′`1 , . . . , s

′′
k ∈ S′′`k

we have s′〈s′′1, . . . , s′′k〉 ∈ S`1+···+`k ,
• F (s′〈s′〉) = F ′(s′) · F ′′(s′′) for every s′ ∈ S′1

and s′′ ∈ S′′1 , and
• the rules l a→ r of R, all of which are such that

the variables in l occur in order (x1, . . . , xk)
from left-to-right, are constructed in 3 ways:

– l
a⇒R′ r by a single rule of R′,

– l
a⇒R′′ r by a single rule of R′′, or

– l
a1⇒R′ ξ

a2⇒R′′ r with a = a1 · a2 and
the applied rule of R′ contains an output
symbol.

If a rule l a→ r can be constructed in several
ways (with exactly weight a), then the weights
of all possibilities are added for the weight of
the new rule.

Intuitively, a single rule ofR′ without output sym-
bols is used in the first type (because otherwise
r would have the wrong shape). In the second type, a
single rule of R′′ without input symbols is used. Fi-
nally, in the third type, first a rule ofR′ that produces
an output symbol of ∆ is used and then this symbol
is processed by a single rule of R′′. Note that every
rule of R′ can produce at most one output symbol
and the rules of R′′ either process none or one input
symbol due to the assumption that M ′ and M ′′ are
in one-symbol normal form. We illustrate a rule of
the first in Figure 7.

original rule:

σ

q1

x1 x2

q2

x3

a→
q

x3 x1 x2

constructed rule:

σ

q1

p1

x1 x2

p2

x3

q2

p3

x4 x5

a→

q

p3

x4 x5

p1

x1 x2

p2

x3

Figure 7: Example of a constructed rule of type 1.

The correctness proof of this construction can es-
sentially (i.e., for the unweighted case) be found in
Engelfriet et al. (2009). Before we can extend it to
the weighted case, we need to make sure that the
sum in the definition of composition is finite. We
achieve this by requiring that
• for every t ∈ TΣ and s ∈ S′1 there are finitely

many u ∈ T∆ such that t a1⇒ · · · an⇒ s(u), or
• for every v ∈ TΓ and s ∈ S′′1 there are finitely

many u ∈ T∆ such that u a1⇒ · · · an⇒ s(v).
In other words,M ′ may not have cyclic input ε-rules
or M ′′ may not have cyclic output ε-rules. Now we
can state the main theorem.

Theorem 7 For all MBOTs M ′ and M ′′ with the
above restriction the composition M ′ ; M ′′ of their
transformations can be computed by another MBOT.

This again shows an advantage of MBOTs. The
composition result relies essentially on the one-
symbol normal form (or full binarization), which
can always be achieved for MBOTs, but cannot for
STSGs. Consequently, MBOTs can be composed,
whereas STSGs cannot be composed in general. In-
deed, STSGs in one-symbol normal form, which can
be defined as for MBOTs, can be composed as well,
which shows that the one-symbol normal form is the
key for composition.

Finally, let us discuss the complexity of compo-
sition. Let rk(M ′) be the maximal rank of a state
in S′. Then there are
• O(|M ′| · |S′′|rk(M ′)) rules of type 1,
• O(|M ′′| · |S′′|rk(M ′)) rules of type 2, and

882

• O(|M ′| · |M ′′| · |S′′|rk(M ′)) rules of type 3.
Each rule can be constructed in linear time in the size
of the participating rules, so that we obtain a final
complexity ofO(|M ′| · |M ′′| · |S′′|rk(M ′)). Note that
ifM ′ is obtained from an STSGM (via Theorem 4),
then rk(M ′) ≤ rk(M). This shows that binarization
does not avoid the exponent for composition, but at
least enables composition in the general case. More-
over, the complexity could be slightly improved by
the observation that our construction only relies on
(i)M ′ having at most one output symbol per rule and
(ii) M ′′ having at most one input symbol per rule.

7 Forward and backward application

We might want to apply a transformation not just to
a single tree, but rather to a set of trees, which are,
in some cases, already weighted. In general, the set
of trees is given by a TSG G and we expect the re-
sult to be represented by a TSG as well. Forward
and backward application amount to computing the
image and pre-image of G under the transformation,
respectively. Since STSG are symmetric, we need to
solve only one of the problems if the transformation
is given by an STSG. The other problem can then be
solved by inverting the STSG (exchanging input and
output) and using the method for the solved prob-
lem. We chose to address forward application here.

Forward application can be reduced to the prob-
lem of computing the co-domain (or range) with the
help of a product construction for STSG, which is
similar to the one presented in Definition 5. The co-
domain codM of the tranformation computed by an
STSG M assigns to each t ∈ TΣ the weight

codM (t) =
∑
u∈T∆

M(t, u) .

This sum might not be well-defined. However, if
u /∈ N for all productions n : t a↔ u of the STSG,
then the sum is well-defined and the output-side
TSG (i.e., for every production n : t a↔ u in the
STSG there is a production n

a→ u in the TSG)
computes the co-domain. The restriction “u /∈ N”
guarantees that the output side is a TSG. Overall, do-
main, co-domain, and forward and backward appli-
cations (using the product construction) can be com-
puted given such minor new requirements.

Also for transformations computed by MBOTs
we can reduce the problem of forward applica-

tion to the problem of computing the co-domain
with the help of the product construction of Defi-
nition 5. However, the co-domain of an MBOT is
not necessarily representable by a TSG, which is
not due to well-definedness problems but rather the
finite-copying property (Engelfriet et al., 1980) of
MBOTs. This property yields that the co-domain
might not be a regular tree language (or context-free
string language). Consequently, we cannot com-
pute forward or backward applications for arbitrary
MBOT. However, if the MBOT is equivalent to an
STSG (for example, because it was constructed by
the method presented before Theorem 3), then for-
ward and backward application can be computed es-
sentially as for STSG. This can be understood as
a warning. MBOT can efficiently be used (with
computational benefits) as an alternative represen-
tation for transformations computed by STSG (or
compositions of STSG). However, MBOT can also
compute transformations, of which the domain or
range cannot be represented by a TSG. Thus, if we
train MBOT directly and utilize their full expressive
power, then we might not be able to perform forward
and backward application.

In the unweighted case, backward application can
always be computed for MBOT. Moreover, it can be
decided using (Ésik, 1984) whether all forward ap-
plications can be represented by TSGs. However, for
a given specific TSG, it cannot be decided whether
the forward application is representable by a TSG,
which was proved by Fülöp (1994). A subclass
of transformations computable by MBOT (that still
contains all transformations computable by STSG),
which allows all forward and backward applications,
has been identified by Raoult (1993).

Conclusion and acknowledgement

We compared STSGs and MBOTs on several stan-
dard algorithms (binarization, regular restriction,
composition, and application). We prove that
MBOTs offer computational benefits on all men-
tioned algorithms as long as the original transforma-
tion is computable by an STSG.

The author was financially supported by the Min-
isterio de Educación y Ciencia (MEC) grants JDCI-
2007-760 and MTM-2007-63422.

883

References
Alfred V. Aho and Jeffrey D. Ullman. 1972. The Theory

of Parsing, Translation, and Compiling. Prentice Hall.
André Arnold and Max Dauchet. 1982. Morphismes

et bimorphismes d’arbres. Theoret. Comput. Sci.,
20(1):33–93.

Y. Bar-Hillel, M. Perles, and E. Shamir. 1964. On for-
mal properties of simple phrase structure grammars.
In Language and Information: Selected Essays on
their Theory and Application, pages 116–150. Addi-
son Wesley.

Jean Berstel and Christophe Reutenauer. 1982. Recog-
nizable formal power series on trees. Theoret. Com-
put. Sci., 18(2):115–148.

Björn Borchardt. 2004. A pumping lemma and decid-
ability problems for recognizable tree series. Acta Cy-
bernet., 16(4):509–544.

Peter F. Brown, John Cocke, Stephen A. Della Pietra,
Vincent J. Della Pietra, Fredrick Jelinek, John D. Laf-
ferty, Robert L. Mercer, and Paul S. Roossin. 1990. A
statistical approach to machine translation. Computa-
tional Linguistics, 16(2):79–85.

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della
Pietra, and Robert L. Mercer. 1993. Mathematics of
statistical machine translation: Parameter estimation.
Computational Linguistics, 19(2):263–311.

David Chiang and Kevin Knight. 2006. An introduction
to synchronous grammars. In Proc. ACL tutorial.

David Chiang. 2005. A hierarchical phrase-based model
for statistical machine translation. In Proc. ACL, pages
263–270.

John DeNero, Mohit Bansal, Adam Pauls, and Dan Klein.
2009a. Efficient parsing for transducer grammars. In
Proc. NAACL, pages 227–235.

John DeNero, Adam Pauls, and Dan Klein. 2009b.
Asynchronous binarization for synchronous gram-
mars. In Proc. ACL, pages 141–144.

Samuel Eilenberg. 1974. Automata, Languages, and
Machines. Academic Press.

Joost Engelfriet, Grzegorz Rozenberg, and Giora Slutzki.
1980. Tree transducers, L systems, and two-way ma-
chines. J. Comput. System Sci., 20(2):150–202.

Joost Engelfriet, Eric Lilin, and Andreas Maletti. 2009.
Extended multi bottom-up tree transducers: Composi-
tion and decomposition. Acta Inform., 46(8):561–590.

Zoltán Ésik. 1984. Decidability results concerning tree
transducers II. Acta Cybernet., 6(3):303–314.

Zoltán Fülöp and Heiko Vogler. 2009. Weighted tree au-
tomata and tree transducers. In Handbook of Weighted
Automata, chapter IX, pages 313–403. Springer.

Zoltán Fülöp. 1994. Undecidable properties of determin-
istic top-down tree transducers. Theoret. Comput. Sci.,
134(2):311–328.

Jonathan S. Golan. 1999. Semirings and their Applica-
tions. Kluwer Academic, Dordrecht.

Jonathan Graehl, Kevin Knight, and Jonathan May. 2008.
Training tree transducers. Computational Linguistics,
34(3):391–427.

John E. Hopcroft and Jeffrey D. Ullman. 1979. Intro-
duction to Automata Theory, Languages and Compu-
tation. Addison Wesley.

Liang Huang, Hao Zhang, Daniel Gildea, and Kevin
Knight. 2009. Binarization of synchronous
context-free grammars. Computational Linguistics,
35(4):559–595.

Kevin Knight. 2007. Capturing practical natu-
ral language transformations. Machine Translation,
21(2):121–133.

Eric Lilin. 1981. Propriétés de clôture d’une extension
de transducteurs d’arbres déterministes. In CAAP, vol-
ume 112 of LNCS, pages 280–289. Springer.

Andreas Maletti and Giorgio Satta. 2009. Parsing algo-
rithms based on tree automata. In Proc. IWPT, pages
1–12.

Andreas Maletti, Jonathan Graehl, Mark Hopkins, and
Kevin Knight. 2009. The power of extended top-down
tree transducers. SIAM J. Comput., 39(2):410–430.

Mehryar Mohri. 2009. Weighted automata algorithms.
In Handbook of Weighted Automata, pages 213–254.
Springer.

Mark-Jan Nederhof and Giorgio Satta. 2003. Probabilis-
tic parsing as intersection. In Proc. IWPT, pages 137–
148.

Mark-Jan Nederhof and Giorgio Satta. 2008. Compu-
tation of distances for regular and context-free prob-
abilistic languages. Theoret. Comput. Sci., 395(2–
3):235–254.

Jean-Claude Raoult. 1993. Recursively defined tree
transductions. In Proc. RTA, volume 690 of LNCS,
pages 343–357. Springer.

Jacques Sakarovitch. 2009. Rational and recognisable
power series. In Handbook of Weighted Automata,
chapter IV, pages 105–174. Springer.

Giorgio Satta. 2010. Translation algorithms by means of
language intersection. Manuscript.

Marcel Paul Schützenberger. 1961. On the definition of
a family of automata. Information and Control, 4(2–
3):245–270.

Wei Wang, Kevin Knight, and Daniel Marcu. 2007. Bi-
narizing syntax trees to improve syntax-based machine
translation accuracy. In Proc. EMNLP-CoNLL, pages
746–754.

Hao Zhang, Liang Huang, Daniel Gildea, and Kevin
Knight. 2006. Synchronous binarization for machine
translation. In Proc. NAACL-HLT, pages 256–263.

884

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 885–893,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

An extractive supervised two-stage method for sentence compression

Dimitrios Galanis∗ and Ion Androutsopoulos∗+
∗Department of Informatics, Athens University of Economics and Business, Greece

+Digital Curation Unit – IMIS, Research Centre “Athena”, Greece

Abstract

We present a new method that compresses
sentences by removing words. In a first stage,
it generates candidate compressions by re-
moving branches from the source sentence’s
dependency tree using a Maximum Entropy
classifier. In a second stage, it chooses the
best among the candidate compressions using
a Support Vector Machine Regression model.
Experimental results show that our method
achieves state-of-the-art performance without
requiring any manually written rules.

1 Introduction

Sentence compression is the task of producing a
shorter form of a single given sentence, so that the
new form is grammatical and retains the most im-
portant information of the original one (Jing, 2000).
Sentence compression is valuable in many applica-
tions, for example when displaying texts on small
screens (Corston-Oliver, 2001), in subtitle genera-
tion (Vandeghinste and Pan, 2004), and in text sum-
marization (Madnani et al., 2007).

People use various methods to shorten sentences,
including word or phrase removal, using shorter
paraphrases, and common sense knowledge. How-
ever, reasonable machine-generated sentence com-
pressions can often be obtained by only remov-
ing words. We use the term extractive to refer to
methods that compress sentences by only removing
words, as opposed to abstractive methods, where
more elaborate transformations are also allowed.
Most of the existing compression methods are ex-
tractive (Jing, 2000; Knight and Marcu, 2002; Mc-

Donald, 2006; Clarke and Lapata, 2008; Cohn and
Lapata, 2009). Although abstractive methods have
also been proposed (Cohn and Lapata, 2008), and
they may shed more light on how people compress
sentences, they do not always manage to outperform
extractive methods (Nomoto, 2009). Hence, from an
engineering perspective, it is still important to inves-
tigate how extractive methods can be improved.

In this paper, we present a new extractive sentence
compression method that relies on supervised ma-
chine learning.1 In a first stage, the method gener-
ates candidate compressions by removing branches
from the source sentence’s dependency tree using a
Maximum Entropy classifier (Berger et al., 2006). In
a second stage, it chooses the best among the candi-
date compressions using a Support Vector Machine
Regression (SVR) model (Chang and Lin, 2001). We
show experimentally that our method compares fa-
vorably to a state-of-the-art extractive compression
method (Cohn and Lapata, 2007; Cohn and Lapata,
2009), without requiring any manually written rules,
unlike other recent work (Clarke and Lapata, 2008;
Nomoto, 2009). In essence, our method is a two-
tier over-generate and select (or rerank) approach to
sentence compression; similar approaches have been
adopted in natural language generation and parsing
(Paiva and Evans, 2005; Collins and Koo, 2005).

2 Related work

Knight and Marcu (2002) presented a noisy channel
sentence compression method that uses a language
model P (y) and a channel model P (x|y), where x

1An implementation of our method will be freely available
from http://nlp.cs.aueb.gr/software.html

885

is the source sentence and y the compressed one.
P (x|y) is calculated as the product of the proba-
bilities of the parse tree tranformations required to
expand y to x. The best compression of x is the
one that maximizes P (x|y) · P (y), and it is found
using a noisy channel decoder. In a second, alter-
native method Knight and Marcu (2002) use a tree-
to-tree transformation algorithm that tries to rewrite
directly x to the best y. This second method uses
C4.5 (Quinlan, 1993) to learn when to perform tree
rewriting actions (e.g., dropping subtrees, combin-
ing subtrees) that transform larger trees to smaller
trees. Both methods were trained and tested on
data from the Ziff-Davis corpus (Knight and Marcu,
2002), and they achieved very similar grammatical-
ity and meaning preservation scores, with no statis-
tically significant difference. However, their com-
pression rates (counted in words) were very dif-
ferent: 70.37% for the noisy-channel method and
57.19% for the C4.5-based one.

McDonald (2006) ranks each candidate compres-
sion using a function based on the dot product of a
vector of weights with a vector of features extracted
from the candidate’s n-grams, POS tags, and depen-
dency tree. The weights were learnt from the Ziff-
Davis corpus. The best compression is found us-
ing a Viterbi-like algorithm that looks for the best
sequence of source words that maximizes the scor-
ing function. The method outperformed Knight and
Marcu’s (2002) tree-to-tree method in grammatical-
ity and meaning preservation on data from the Ziff-
Davis corpus, with a similar compression rate.

Clarke and Lapata (2008) presented an unsuper-
vised method that finds the best compression using
Integer Linear Programming (ILP). The ILP obejc-
tive function takes into account a language model
that indicates which n-grams are more likely to be
deleted, and a significance model that shows which
words of the input sentence are important. Man-
ually defined constraints (in effect, rules) that op-
erate on dependency trees indicate which syntactic
constituents can be deleted. This method outper-
formed McDonald’s (2006) in grammaticality and
meaning preservation on test sentences from Edin-
burgh’s “written” and “spoken” corpora.2 However,
the compression rates of the two systems were dif-

2See http://homepages.inf.ed.ac.uk/s0460084/data/.

ferent (72.0% vs. 63.7% for McDonald’s method,
both on the written corpus).

We compare our method against Cohn and Lap-
ata’s T3 system (Cohn and Lapata, 2007; Cohn and
Lapata, 2009), a state-of-the-art extractive sentence
compression system that learns parse tree transduc-
tion operators from a parallel extractive corpus of
source-compressed trees. T3 uses a chart-based de-
coding algorithm and a Structured Support Vector
Machine (Tsochantaridis et al., 2005) to learn to
select the best compression among those licensed
by the operators learnt.3 T3 outperformed McDon-
ald’s (2006) system in grammaticality and meaning
preservation on Edinburgh’s “written” and “spoken”
corpora, achieving comparable compression rates
(Cohn and Lapata, 2009). Cohn and Lapata (2008)
have also developed an abstractive version of T3,
which was reported to outperform the original, ex-
tractive T3 in meaning preservation; there was no
statistically significant difference in grammaticality.

Finally, Nomoto (2009) presented a two-stage ex-
tractive method. In the first stage, candidate com-
pressions are generated by chopping the source sen-
tence’s dependency tree. Many ungrammatical com-
pressions are avoided using hand-crafted drop-me-
not rules for dependency subtrees. The candidate
compressions are then ranked using a function that
takes into account the inverse document frequen-
cies of the words, and their depths in the source
dependency tree. Nomoto’s extractive method was
reported to outperform Cohn and Lapata’s abstrac-
tive version of T3 on a corpus collected via RSS

feeds. Our method is similar to Nomoto’s, in that
it uses two stages, one that chops the source depen-
dency tree generating candidate compressions, and
one that ranks the candidates. However, we experi-
mented with more elaborate ranking models, and our
method does not employ any manually crafted rules.

3 Our method

As already mentioned, our method first generates
candidate compressions, which are then ranked. The
candidate compressions generator operates by re-
moving branches from the dependency tree of the

3T3 appears to be the only previous sentence compres-
sion method whose implementation is publicly available; see
http://www.dcs.shef.ac.uk/∼tcohn/t3/.

886

input sentence (figure 1); this stage is discussed in
section 3.1 below. We experimented with different
ranking functions, discussed in section 3.2, which
use features extracted from the source sentence s
and the candidate compressions c1, . . . , ck.

3.1 Generating candidate compressions

Our method requires a parallel training corpus con-
sisting of sentence-compression pairs 〈s, g〉. The
compressed sentences g must have been formed by
only deleting words from the corresponding source
sentences s. The 〈s, g〉 training pairs are used to es-
timate the propability that a dependency edge e of a
dependency tree Ts of an input sentence s is retained
or not in the dependency tree Tg of the compressed
sentence g. More specifically, we want to estimate
the probabilities P (Xi|context(ei)) for every edge
ei of Ts, where Xi is a variable that can take one
of the following three values: not del, for not delet-
ing ei; del u for deleting ei along with its head; and
del l for deleting e along with its modifier. The head
(respectively, modifier) of ei is the node ei originates
from (points to) in the dependency tree. context(ei)
is a set of features that represents ei’s local context
in Ts, as well as the local context of the head and
modifier of ei in s.

The propabilities above can be estimated using
the Maximum Entropy (ME) framework (Berger et
al., 2006), a method for learning the distribution
P (X|V) from training data, where X is discrete-
valued variable and V = 〈V1, . . . , Vn〉 is a real or
discrete-valued vector. Here, V = context(ei) and
X = Xi. We use the following features in V :

• The label of the dependency edge ei, as well as
the POS tag of the head and modifier of ei.

• The entire head-label-modifier triple of ei. This
feature overlaps with the previous two features,
but it is common in ME models to use feature
combinations as additional features, since they
may indicate a category more strongly than the
individual initial features.4

• The POS tag of the father of ei’s head, and the
label of the dependency that links the father to
ei’s head.

4http://nlp.stanford.edu/pubs/maxent-tutorial-slides.pdf.

• The POS tag of each one of the three previous
and the three following words of ei’s head and
modifier in s (12 features).

• The POS tag bi-grams of the previous two and
the following two words of ei’s head and mod-
ifier in s (4 features).

• Binary features that show which of the possible
labels occur (or not) among the labels of the
edges that have the same head as ei in Ts (one
feature for each possible dependency label).

• Two binary features that show if the subtree
rooted at the modifier of ei or ei’s uptree (the
rest of the tree, when ei’s subtree is removed)
contain an important word. A word is consid-
ered important if it appears in the document s
was drawn from significantly more often than
in a background corpus. In summarization,
such words are called signature terms and are
thought to be descriptive of the input; they can
be identified using the log-likelihood ratio λ of
each word (Lin and Hovy, 2000; Gupta et al.,
2007).

For each dependency edge ei of a source training
sentence s, we create a training vector V with the
above features. If ei is retained in the dependency
tree of the corresponding compressed sentence g in
the corpus, V is assigned the category not del. If
ei is not retained, it is assigned the category del l
or del u, depending on whether the head (as in the
ccomp of “said” in Figure 1) or the modifier (as in
the dobj of “attend”) of ei has also been removed.
When the modifier of an edge is removed, the entire
subtree rooted at the modifier is removed, and simi-
larly for the uptree, when the head is removed. We
do not create training vectors for the edges of the
removed subtree of a modifier or the edges of the
removed uptree of a head.

Given an input sentence s and its dependency tree
Ts, the candidate compressions generator produces
the candidate compressed sentences c1, . . . , cn by
deleting branches of Ts and putting the remaining
words of the dependency tree in the same order as in
s. The candidates c1, . . . , cn correspond to possible
assignments of values to theXi variables (recall that
Xi = not del|del l|del u) of the edges ei of Ts.

887

source: gold:

said
ccomp�� nsubj

KK

%%KK

attend
nsubj�� aux

KK
%%KK

attend
nusbj�� aux

JJ
%%JJ dobj
*j*j

***j*jprep
+k+k+k+k+k

+++k+k+k+k+k+k

he Mother
num��num�� num

JJ

%%JJJ amod
TTTT

**TTTT

will

Mother
num�� num

JJ

$$JJJ amod
TTTT

**TTTT

will hearing

det ##GG

on

pobj
FF

""

Catherine 82 superior

measure��
Catherine 82 superior

measure��

the Friday mother
det��

mother
det��

the

the

Figure 1: Dependency trees of a source sentence and its compression by a human (taken from Edinburgh’s “written”
corpus). The source sentence is: “Mother Catherine, 82, the mother superior, will attend the hearing on Friday, he
said.” The compressed one is: “Mother Catherine, 82, the mother superior, will attend.” Deleted edges and words are
shown curled and underlined, respectively.

Hence, there are at most 3m−1 candidate compres-
sions, where m is the number of words in s. This
is a large number of candidates, even for modestly
long input sentences. In practice, the candidates are
fewer, because del l removes an entire subtree and
del u an entire uptree, and we do not need to make
decisions Xi about the edges of the deleted subtrees
and uptrees. To reduce the number of candidates
further, we ignore possible assignments that contain
decisions Xi = x to which the ME model assigns
probabilities below a threshold t; i.e., the ME model
is used to prune the space of possible assignments.

When generating the possible assignments to the
Xi variables, we examine the edges ei of Ts in a
top-down breadth-first manner. In the source tree of
Figure 1, for example, we first consider the edges
of “said”; the left-to-right order is random, but let
us assume that we consider first the ccomp edge.
There are three possible actions: retain the edge
(not del), remove it along with the head “said”
(del u), or remove it along with the modifier “at-
tend” and its subtree (del l). If the ME model assigns
a low probability to one of the three actions, that ac-
tion is ignored. For each one of the (remaining) ac-
tions, we obtain a new form of Ts, and we continue
to consider its (other) edges. We process the edges

in a top-down fashion, because the ME model allows
del l actions much more often than del u actions,
and when del l actions are performed near the root
of Ts, they prune large parts of the space of possible
assignments to the Xi variables. Some of the candi-
date compressions that were generated for an input
sentence by setting t = 0.2 are shown in Table 1,
along with the gold (human-authored) compression.

3.2 Ranking candidate compressions

Given that we now have a method that generates
candidate compressions c1, . . . , ck for a sentence s,
we need a function F (ci|s) that will rank the candi-
date compressions. Many of them are ungrammat-
ical and/or do not convey the most important infor-
mation of s. F (ci|s) should help us select a short
candidate that is grammatical and retains the most
important information of s.

3.2.1 Grammaticality and importance rate
A simple way to rank the candidate compressions

is to assign to each one a score intended to measure
its grammaticality and importance rate. By gram-
maticality, Gramm(ci), we mean how grammati-
cally well-formed candidate ci is. A common way
to obtain such a measure is to use an n-gram lan-

888

s: Then last week a second note, in the same handwriting, informed Mrs Allan that the search was
on the wrong side of the bridge.
g: Last week a second note informed Mrs Allan the search was on the wrong side of the bridge.
c1: Last week a second note informed Mrs Allan that the search was on the side.
c2: Last week a second note informed Mrs Allan that the search was.
c3: Last week a second note informed Mrs Allan the search was on the wrong side of the bridge.
c4: Last week in the same handwriting informed Mrs Allan the search was on the wrong side of the bridge.

Table 1: A source sentence s, its gold (human authored) compression g, and candidate compressions c1, . . . , c4.

guage model trained on a large background corpus.
However, language models tend to assign smaller
probabilities to longer sentences; therefore they fa-
vor short sentences, but not necessarily the most ap-
propriate compressions. To overcome this problem,
we follow Cordeiro et al. (2009) and normalize the
score of a trigram language model as shown below,
where w1, . . . , wm are the words of candidate ci.

Gramm(ci) = logPLM (ci)1/m =

(1/m) · log(
m∏
j=1

P (wj |wj−1, wj−2)) (1)

The importance rate ImpRate(ci|s), defined be-
low, estimates how much information of the original
sentence s is retained in candidate ci. tf(wi) is the
term frequency of wi in the document that contained
ξ (ξ = ci, s), and idf(wi) is the inverse document
frequency of wi in a background corpus. We actu-
ally compute idf(wi) only for nouns and verbs, and
set idf(wi) = 0 for other words.

ImpRate(ci|s) = Imp(ci)/Imp(s) (2)

Imp(ξ) =
∑
wi∈ξ

tf(wi) · idf(wi) (3)

The ranking F (c|s) is then defined as a linear
combination of grammaticality and importance rate:

F (ci|s) = λ ·Gramm(ci) + (1− λ) ·
· ImpRate(ci|s)− α · CR(ci|s) (4)

A compression rate penalty factor CR(ci|s) =
|c|/|s| is included, to bias our method towards gen-
erating shorter or longer compressions; | · | denotes
word length in words (punctuation is ignored). We
explain how the weigths λ, α are tuned in following
sections. We call LM-IMP the configuration of our
method that uses the ranking function of equation 4.

3.2.2 Support Vector Regression
A more sophisticated way to select the best com-

pression is to train a Support Vector Machines Re-
gression (SVR) model to assign scores to feature vec-
tors, with each vector representing a candidate com-
pression. SVR models (Chang and Lin, 2001) are
trained using l training vectors (x1, y1), . . . , (xl, yl),
where xi ∈ Rn and yi ∈ R, and learn a function
f : Rn → R that generalizes the training data. In
our case, xi is a feature vector representing a candi-
date compression ci, and yi is a score indicating how
good a compression ci is. We use 98 features:

• Gramm(ci) and ImpRate(ci|s), as above.

• 2 features indicating the ratio of important and
unimportant words of s, identified as in section
3.1, that were deleted.

• 2 features that indicate the average depth of
the deleted and not deleted words in the depen-
dency tree of s.

• 92 features that indicate which POS tags appear
in s and how many of them were deleted in ci.
For every POS tag label, we use two features,
one that shows how many POS tags of that la-
bel are contained in s and one that shows how
many of these POS tags were deleted in ci.

To assign a regression score yi to each training
vector xi, we experimented with the following func-
tions that measure how similar ci is to the gold com-
pression g, and how grammatical ci is.

• Grammatical relations overlap: In this case, yi
is theF1-score of the dependencies of ci against
those of the gold compression g. This measure
has been shown to correlate well with human
judgements (Clarke and Lapata, 2006). As in

889

the ranking function of section 3.2.1, we add a
compression rate penalty factor.

yi = F1(d(ci)), d(g))− α · CR(ci|s) (5)

d(·) denotes the set of dependencies. We call
SVR-F1 the configuration of our system that
uses equation 5 to rank the candidates.

• Tokens accuracy and grammaticality: Tokens
accuracy, TokAcc(ci|s, g), is the percentage of
tokens of s that were correctly retained or re-
moved in ci; a token was correctly retained
or removed, if it was also retained (or re-
moved) in the gold compression g. To cal-
culate TokAcc(ci|s, g), we need the word-to-
word alignment of s to g, and s to ci. These
alignments were obtained as a by-product of
computing the corresponding (word) edit dis-
tances. We also want the regression model to
favor grammatical compressions. Hence, we
use a linear combination of tokens accuracy
and grammaticality of ci:

yi = λ · TokAcc(ci|s, g) +
(1− λ) ·Gramm(ci)− α · CR(ci|s) (6)

Again, we add a compression rate penalty, to
be able to generate shorter or longer compres-
sions. We call SVR-TOKACC-LM the config-
uration of our system that uses equation 6.

4 Baseline and T3

As a baseline, we use a simple algorithm based on
the ME classifier of section 3.1. The baseline pro-
duces a single compression c for every source sen-
tence s by considering sequentially the edges ei of
s’s dependency tree in a random order, and perform-
ing at each ei the single action (not del, del u, or
del l) that the ME model considers more probable;
the words of the chopped dependency tree are then
put in the same order as in s. We call this system
Greedy-Baseline.

We compare our method against the extractive
version of T3 (Cohn and Lapata, 2007; Cohn and
Lapata, 2009), a state-of-the-art sentence compres-
sion system that applies sequences of transduction
operators to the syntax trees of the source sentences.

The available tranduction operators are learnt from
the syntax trees of a set of source-gold pairs. Ev-
ery operator transforms a subtree α to a subtree γ,
rooted at symbols X and Y , respectively.

To find the best sequence of transduction opera-
tors that can be applied to a source syntax tree, a
chart-based dynamic programming decoder is used,
which finds the best scoring sequence q∗:

q∗ = arg max
q
score(q;w) (7)

where score(q;w) is the dot product 〈Ψ(q), w〉.
Ψ(q) is a vector-valued feature function, and w is a
vector of weights learnt using a Structured Support
Vector Machine (Tsochantaridis et al., 2005).

Ψ(q) consists of: (i) the log-probability of the re-
sulting candidate, as returned by a tri-gram language
model; and (ii) features that describe how the opera-
tors of q are applied, for example the number of the
terminals in each operator’s α and γ subtrees, the
POS tags of the X and Y roots of α and γ etc.

5 Experiments

We used Stanford’s parser (de Marneffe et al., 2006)
and ME classifier (Manning et al., 2003).5 For
the (trigram) language model, we used SRILM with
modified Kneser-Ney smoothing (Stolcke, 2002).6

The language model was trained on approximately
4.5 million sentences of the TIPSTER corpus. To
obtain idf(wi) values, we used approximately 19.5
million verbs and nouns from the TIPSTER corpus.

T3 requires the syntax trees of the source-gold
pairs in Penn Treebank format, as well as a trigram
language model. We obtained T3’s trees using Stan-
ford’s parser, as in our system, unlike Cohn and La-
pata (2009) that use Bikel’s (2002) parser. The lan-
guage models in T3 and our system are trained on
the same data and with the same options used by
Cohn and Lapata (2009). T3 also needs a word-to-
word alignment of the source-gold pairs, which was
obtained by computing the edit distance, as in Cohn
and Lapata (2009) and SVR-TOKACC-LM.

We used Edinburgh’s “written” sentence com-
pression corpus (section 2), which consists of
source-gold pairs (one gold compression per source

5Both available from http://nlp.stanford.edu/.
6See http://www.speech.sri.com/projects/srilm/.

890

sentence). The gold compressions were created by
deleting words. We split the corpus in 3 parts: 1024
training, 324 development, and 291 testing pairs.

5.1 Best configuration of our method
We first evaluated experimentally the three configu-
rations of our method (LM-IMP, SVR-F1, SVR-
TOKACC-LM), using the F1-measure of the de-
pendencies of the machine-generated compressions
against those of the gold compressions as an auto-
matic evaluation measure. This measure has been
shown to correlate well with human judgements
(Clarke and Lapata, 2006).

In all three configurations, we trained the ME

model of section 3.1 on the dependency trees of the
source-gold pairs of the training part of the corpus.
We then used the trained ME classifier to generate
the candidate compressions of each source sentence
of the training part. We set t = 0.2, which led to
at most 10,000 candidates for almost every source
sentence. We kept up to 1.000 candidates for each
source sentence, and we selected randonly approx-
imately 10% of them, obtaining 18,385 candidates,
which were used to train the two SVR configurations;
LM-IMP requires no training.

To tune the λ parameters of LM-IMP and SVR-
TOKACC-LM in equations 4 and 6, we initially set
α = 0 and we experimented with different val-
ues of λ. For each one of the two configurations
and for every different λ value, we computed the
average compression rate of the machine-generated
compressions on the development set. In the rest
of the experiments, we set λ to the value that gave
an average compression rate approximatelly equal to
that of the gold compressions of the training part.

We then experimented with different values of α
in all three configurations, in equations 4–6, to pro-
duce smaller or longer compression rates. The α pa-
rameter provides a uniform mechanism to fine-tune
the compression rate in all three configurations, even
in SVR-F1 that has no λ. The results on the de-
velopment part are shown in Figure 2, along with
the baseline’s results. The baseline has no param-
eters to tune; hence, its results are shown as a sin-
gle point. Both SVR models outperform LM-IMP,
which in turn outperforms the baseline. Also, SVR-
TOKACC-LM performs better or as well as SVR-
F1 for all compression rates. Note, also, that the

perfomance of the two SVR configurations might be
improved further by using more training examples,
whereas LM-IMP contains no learning component.

Figure 2: Evaluation results on the development set.

5.2 Our method against T3
We then evaluated the best configuration of our
method (SVR-TOKACC-LM) against T3, both au-
tomatically (F1-measure) and with human judges.
We trained both systems on the training set of the
corpus. In our system, we used the same λ value that
we had obtained from the experiments of the previ-
ous section. We then varied the values of our sys-
tem’s α parameter to obtain approximately the same
compression rate as T3.

For the evaluation with the human judges, we se-
lected randomly 80 sentences from the test part. For
each source sentence s, we formed three pairs, con-
taining s, the gold compression, the compression
of SVR-TOKACC-LM, and the compression of T3,
repsectively, 240 pairs in total. Four judges (grad-
uate students) were used. Each judge was given 60
pairs in a random sequence; they did not know how
the compressed sentenes were obtained and no judge
saw more than one compression of the same source
sentence. The judges were told to rate (in a scale
from 1 to 5) the compressed sentences in terms of
grammaticality, meaning preservation, and overall
quality. Their average judgements are shown in Ta-
ble 2, where the F1-scores are also included. Cohn
and Lapata (2009) have reported very similar scores

891

for T3 on a different split of the corpus (F1: 49.48%,
CR: 61.09%).

system G M Ov F1 (%) CR (%)
T3 3.83 3.28 3.23 47.34 59.16
SVR 4.20 3.43 3.57 52.09 59.85
gold 4.73 4.27 4.43 100.00 78.80

Table 2: Results on 80 test sentences. G: grammaticality,
M: meaning preservation, Ov: overall score, CR: com-
pression rate, SVR: SVR-TOKACC-LM.

Our system outperforms T3 in all evaluation mea-
sures. We used Analysis of Variance (ANOVA) fol-
lowed by post-hoc Tukey tests to check whether the
judge ratings differ significantly (p < 0.1); all judge
ratings of gold compressions are significantly differ-
ent from T3’s and those of our system; also, our sys-
tem differs significantly from T3 in grammaticality,
but not in meaning preservation and overall score.
We also performed Wilcoxon tests, which showed
that the difference in the F1 scores of the two sys-
tems is statistically significant (p < 0.1) on the 80
test sentences. Table 3 shows the F1 scores and the
average compression rates for all 291 test sentences.
Both systems have comparable compression rates,
but again our system outperforms T3 in F1, with a
statistically significant difference (p < 0.001).

system F1 CR
SVR-TOKACC-LM 53.75 63.72
T3 47.52 64.16

Table 3: F1 scores on the entire test set.

Finally, we computed the Pearson correlation r of
the overall (Ov) scores that the judges assigned to
the machine-generated compressions with the corre-
sponding F1 scores. The two measures were found
to corellate reliably (r = 0.526). Similar results
have been reported (Clarke and Lapata, 2006) for
Edinburgh’s “spoken” corpus (r = 0.532) and the
Ziff-Davis corpus (r = 0.575).

6 Conclusions and future work

We presented a new two-stage extractive method
for sentence compression. The first stage gener-
ates candidate compressions by removing or not
edges from the source sentence’s dependency tree;

an ME model is used to prune unlikely edge deletion
or non-deletions. The second stage ranks the can-
didate compressions; we experimented with three
ranking models, achieving the best results with an
SVR model trained with an objective function that
combines token accuracy and a language model.
We showed experimentally, via automatic evalua-
tion and with human judges, that our method com-
pares favorably to a state-of-the-art extractive sys-
tem. Unlike other recent approaches, our system
uses no hand-crafted rules. In future work, we plan
to support more complex tranformations, instead of
only removing words and experiment with different
sizes of training data.

The work reported in this paper was carried out in
the context of project INDIGO, where an autonomous
robotic guide for museum collections is being devel-
oped. The guide engages the museum’s visitors in
spoken dialogues, and it describes the exhibits that
the visitors select by generating textual descriptions,
which are passed on to a speech synthesizer. The
texts are generated from logical facts stored in an on-
tology (Galanis et al., 2009) and from canned texts;
the latter are used when the corresponding informa-
tion is difficult to encode in symbolic form (e.g., to
store short stories about the exhibits). The descrip-
tions of the exhibits are tailored depending on the
type of the visitor (e.g., child vs. adult), and an im-
portant tailoring aspect is the generation of shorter
or longer descriptions. The parts of the descrip-
tions that are generated from logical facts can be
easily made shorter or longer, by conveying fewer
or more facts. The methods of this paper are used
to automatically shorten the parts of the descrip-
tions that are canned texts, instead of requiring mul-
tiple (shorter and longer) hand-written versions of
the canned texts.

Acknowledgements

This work was carried out in INDIGO, an FP6 IST

project funded by the European Union, with addi-
tional funding provided by the Greek General Sec-
retariat of Research and Technology.7

7Consult http://www.ics.forth.gr/indigo/.

892

References
A.L. Berger, S.A. Della Pietra, and V.J. Della Pietra.

2006. A maximum entropy approach to natural
language processing. Computational Linguistics,
22(1):39–71.

D. Bikel. 2002. Design of a multi-lingual, parallel-
processing statistical parsing engine. In Proceedings
of the 2nd International Conference on Human Lan-
guage Technology Research, pages 24–27.

C.C Chang and C.J Lin. 2001. LIBSVM: a library for
Support Vector Machines. Technical report. Software
available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

J. Clarke and M. Lapata. 2006. Models for sentence
compression: A comparison across domains, training
requirements and evaluation measures. In Proceedings
of COLING, pages 377–384.

J. Clarke and M. Lapata. 2008. Global inference for
sentence compression: An integer linear programming
approach. Artificial Intelligence Research, 1(31):399–
429.

T. Cohn and M. Lapata. 2007. Large margin syn-
chronous generation and its application to sentence
compression. In Proceedings of EMNLP-CoNLL,
pages 73–82.

T. Cohn and M. Lapata. 2008. Sentence compression
beyond word deletion. In Proceedings of COLING,
pages 137–144.

T. Cohn and M. Lapata. 2009. Sentence compression
as tree to tree tranduction. Artificial Intelligence Re-
search, 34:637–674.

M. Collins and T. Koo. 2005. Discriminative reranking
for natural language parsing. Computational Linguis-
tics, 31(1):25–69.

J. Cordeiro, G. Dias, and P. Brazdil. 2009. Unsupervised
induction of sentence compression rules. In Proceed-
ings of the ACL Workshop on Language Generation
and Summarisation, pages 391–399.

S. Corston-Oliver. 2001. Text compaction for display
on very small screens. In Proceedings of the NAACL
Workshop on Automatic Summarization, pages 89–98.

M.C. de Marneffe, B. MacCartney, and C. Manning.
2006. Generating typed dependency parses from
phrase structure parses. In Proceedings of LREC,
pages 449–454.

Dimitrios Galanis, George Karakatsiotis, Gerasimos
Lampouras, and Ion Androutsopoulos. 2009. An
open-source natural language generator for OWL on-
tologies and its use in protege and second life. In Pro-
ceedings of the Demonstrations Session at EACL 2009,
pages 17–20, Athens, Greece, April. Association for
Computational Linguistics.

S. Gupta, A. Nenkova, and D. Jurafsky. 2007. Measur-
ing importance and query relevance in topic-focused

multi-document summarization. In Proceedings of
ACL, pages 193–196.

H. Jing. 2000. Sentence reduction for automatic text
summarization. In Proceedings of ANLP, pages 310–
315.

K. Knight and D. Marcu. 2002. Summarization beyond
sentence extraction: A probalistic approach to sen-
tence compression. Artificial Intelligence, 139(1):91–
107.

C.W. Lin and E. Hovy. 2000. The automated acqui-
sition of topic signatures for text summarization. In
Proceedings of ACL, pages 495–501.

N. Madnani, D. Zajic, B. Dorr, N. F. Ayan, and J. Lin.
2007. Multiple alternative sentence compressions
for automatic text summarization. In Proceedings of
DUC.

C. D. Manning, D. Klein, and C. Manning. 2003. Op-
timization, maxent models, and conditional estimation
without magic. In tutorial notes of HLT-NAACL 2003
and ACL 2003.

R. McDonald. 2006. Discriminative sentence compres-
sion with soft syntactic constraints. In Proceedings of
EACL, pages 297–304.

T. Nomoto. 2009. A comparison of model free versus
model intensive approaches to sentence compression.
In Proceedings of EMNLP, pages 391–399.

D. Paiva and R. Evans. 2005. Empirically-based con-
trol of natural language generation. In Proceedings of
ACL.

J. R. Quinlan. 1993. C4.5: Programs for Machine
Learning. Morgan Kaufmann.

A. Stolcke. 2002. SRILM - an extensible language mod-
eling toolkit. In Proceedings of the International Con-
ference on Spoken Language Processing, pages 901–
904.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun.
2005. Support vector machine learning for indepen-
dent and structured output spaces. Machine Learning
Research, 6:1453–1484.

V. Vandeghinste and Y. Pan. 2004. Sentence compres-
sion for automated subtitling: A hybrid approach. In
Proceedings of the ACL Workshop “Text Summariza-
tion Branches Out”, pages 89–95.

893

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 894–902,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Interpretation and Transformation for Abstracting Conver sations

Gabriel Murray
gabrielm@cs.ubc.ca

Giuseppe Carenini
carenini@cs.ubc.ca

Department of Computer Science, University of British Columbia
Vancouver, Canada

Raymond Ng
rng@cs.ubc.ca

Abstract

We address the challenge of automatically ab-
stracting conversations such as face-to-face
meetings and emails. We focus here on
the stages ofinterpretation, where sentences
are mapped to a conversation ontology, and
transformation, where the summary content
is selected. Our approach is fully developed
and tested on meeting speech, and we subse-
quently explore its application to email con-
versations.

1 Introduction

The dominant approach to the challenge of auto-
matic summarization has beenextraction, where in-
formative sentences in a document are identified and
concatenated to form a condensed version of the
original document. Extractive summarization has
been popular at least in part because it is a binary
classification task that lends itself well to machine
learning techniques, and does not require a natural
language generation (NLG) component. There is ev-
idence that human abstractors at times use sentences
from the source documents nearly verbatim in their
own summaries, justifying this approach to some ex-
tent (Kupiec et al., 1995). Extrinsic evaluations have
also shown that, while extractive summaries may be
less coherent than human abstracts, users still find
them to be valuable tools for browsing documents
(He et al., 1999; McKeown et al., 2005; Murray et
al., 2008).

However, these same evaluations also indicate
that concise abstracts are generally preferred by
users and lead to higher objective task scores. The
limitation of a cut-and-paste summary is that the
end-user does not knowwhy the selected sentences
are important; this can often only be discerned by
exploring the context in which each sentence origi-
nally appeared. One possible improvement is to cre-

ate structured extractsthat represent an increased
level of abstraction, where selected sentences are
grouped according to phenomena such asdecisions,
action itemsandproblems, thereby giving the user
more information on why the sentences are being
highlighted. For example, the sentenceLet’s go with
a simple chiprepresents a decision. An even higher
level of abstraction can be provided by generating
new text that synthesizes or extrapolates on the in-
formation contained in the structured summary. For
example, the sentenceSandra and Sue expressed
negative opinions about the remote control design
can be coupled with extracted sentences containing
these negative opinions, forming ahybrid summary.
Our summarization system ultimately performs both
types of abstraction, grouping sentences according
to various sentence-level phenomena, and generat-
ing novel text that describes this content at a higher
level.

In this work we describe the first two components
of our abstractive summarization system. In thein-
terpretation stage, sentences are mapped to nodes
in a conversation ontology by utilizing classifiers
relating to a variety of sentence-level phenomena
such asdecisions, action itemsandsubjective sen-
tences. These classifiers achieve high accuracy by
using a very large feature set integrating conversa-
tion structure, lexical patterns, part-of-speech (POS)
tags and character n-grams. In thetransformation
stage, we select the most informative sentences by
maximizing a function based on the derived ontol-
ogy mapping and the coverage of weighted enti-
ties mentioned in the conversation. This transforma-
tion component utilizes integer linear programming
(ILP) and we compare its performance with several
greedy selection algorithms.

We do not discuss the generation compo-
nent of our summarization system in this pa-
per. The transformation component is still ex-

894

tractive in nature, but the sentences that are se-
lected in the transformation stage correspond to
objects in the ontology and the properties link-
ing them. Specifically, these are triples of the
form < participant, relation, entity > where a
participant is a person in the conversation, an
entity is an item under discussion, and arelation

such aspositive opinionor action itemlinks the two.
This intermediate output enables us to create struc-
tured extracts as described above, with the triples
also acting as input to the downstream NLG com-
ponent.

We have tested our approach in summarization
experiments on both meeting and email conversa-
tions, where the quality of a sentence is measured
by how effectively it conveys information in a model
abstract summary according to human annotators.
On meetings the ILP approach consistently outper-
forms several greedy summarization methods. A
key finding is that emails exhibit markedly varying
conversation structures, and the email threads yield-
ing the best summarization results are those that are
structured similarly to meetings. Other email con-
versation structures are less amenable to the current
treatment and require further investigation and pos-
sibly domain adaptation.

2 Related Research

The view that summarization consists of stages of
interpretation, transformationand generationwas
laid out by Sparck-Jones (1999). Popular ap-
proaches to text extraction essentially collapse inter-
pretation and transformation into one step, with gen-
eration either being ignored or consisting of post-
processing techniques such as sentence compres-
sion (Knight and Marcu, 2000; Clarke and Lapata,
2006) or sentence merging (Barzilay and McKeown,
2005). In contrast, in this work we clearly separate
interpretation from transformation.

The most relevant research to ours is by Klein-
bauer et al. (2007), similarly focused on meet-
ing abstraction. They create an ontology for the
AMI scenario meeting corpus (Carletta et al., 2005),
described in Section 5.1. The system uses topic
segments and topic labels, and for each topic seg-
ment in the meeting a sentence is generated that de-
scribes the most frequently mentioned content items

in that topic. Our systems differ in two major re-
spects: their summarization process uses human
gold-standard annotations of topic segments, topic
labels and content items from the ontology, while
our summarizer is fully automatic; and the ontology
used by Kleinbauer et al. is specific not just to meet-
ings but to the AMI scenario meetings, while our
ontology applies to conversations in general.

While the work by Kleinbauer et al. is among
the earliest research on abstracting multi-party dia-
logues, much attention in recent years has been paid
to extractive summarization of such conversations,
including meetings (Galley, 2006), emails (Rambow
et al., 2004; Carenini et al., 2007), telephone con-
versations (Zhu and Penn, 2006) and internet relay
chats (Zhou and Hovy, 2005).

Recent research has addressed the challenges of
detecting decisions (Hsueh et al., 2007), action items
(Purver et al., 2007; Murray and Renals, 2008) and
subjective sentences (Raaijmakers et al., 2008). In
our work we perform all of these tasks but rely on
general conversational features without recourse to
meeting-specific or email-specific features.

Our approach to transformation is an adaptation
of an ILP sentence selection algorithm described by
Xie et al. (2009). We describe both ILP approaches
in Section 4.

3 Interpretation - Ontology Mapping

Source document interpretation in our system re-
lies on a simple conversation ontology. The ontol-
ogy is written in OWL/RDF and contains two core
upper-level classes: Participant and Entity. When
additional information is available about participant
roles in a given domain, Participant subclasses such
as ProjectManager can be utilized. The ontology
also contains six properties that express relations be-
tween the participants and the entities. For example,
the following snippet of the ontology indicates that
hasActionItemis a relationship between a meeting
participant (the property domain) and a discussed
entity (the property range).

<owl:ObjectProperty rdf:ID="hasActionItem">
<rdfs:domain rdf:resource="#Participant"/>
<rdfs:range rdf:resource="#Entity"/>

</owl:ObjectProperty>

Similar properties exist for decisions, actions,
problems, positive-subjective sentences, negative-

895

subjective sentences and general extractive sen-
tences (important sentences that may not match the
other categories), all connecting conversation par-
ticipants and entities. The goal is to populate the
ontology with participant and entity instances from
a given conversation and determine their relation-
ships. This involves identifying the important en-
tities and classifying the sentences in which they
occur as being decision sentences, action item sen-
tences, etc.

Our current definition of entity is simple. The en-
tities in a conversation are noun phrases with mid-
range document frequency. This is similar to the
definition of concept as defined by Xie et al. (Xie
et al., 2009), where n-grams are weighted bytf.idf
scores, except that we use noun phrases rather than
any n-grams because we want to refer to the enti-
ties in the generated text. We use mid-range doc-
ument frequency instead ofidf (Church and Gale,
1995), where the entities occur in between 10% and
90% of the documents in the collection. In Section 4
we describe how we use the entity’s term frequency
to detect the most informative entities. We do not
currently attempt coreference resolution for entities;
recent work has investigated coreference resolution
for multi-party dialogues (Muller, 2007; Gupta et
al., 2007), but the challenge of resolution on such
noisy data is highlighted by low accuracy (e.g. F-
measure of 21.21) compared with using well-formed
text (e.g. monologues).

We map sentences to our ontology’s object prop-
erties by building numerous supervised classifiers
trained on labeled decision sentences, action sen-
tences, etc. A general extractive classifier is also
trained on sentences simply labeled as important.
After predicting these sentence-level properties, we
consider a participant to be linked to an entity if
the participant mentioned the entity in a sentence in
which one of these properties is predicted. We give a
specific example of the ontology mapping using this
excerpt from the AMI corpus:

1. A: And you two are going to work together on
aprototypeusingmodelling clay.

2. A: You’ll get specific instructionsfrom your
personal coach.

3. C: Cool.
4. A: Um did we decide on achip?
5. A: Let’s go with asimple chip.

Example entities are italicized. Sentences 1 and
2 are classified as action items. Sentence 3 is clas-
sified as positive-subjective, but because it contains
no entities, no< participant, relation, entity >

triple can be added to the ontology. Sentence
4 is classified as a decision sentence, and Sen-
tence 5 is both a decision sentence and a positive-
subjective sentence (because the participant is advo-
cating a particular position). The ontology is pop-
ulated by adding all of the sentence entities as in-
stances of the Entity class, all of the participants
as instances of the Participant class, and adding
< participant, relation, entity > triples for Sen-
tences 1, 2, 4 and 5. For example, Sentence 5 results
in the following two triples being added to the on-
tology:

<ProjectManager rdf:ID="participant-A">
<hasDecision rdf:resource="#simple-chip"/>
</ProjectManager>

<ProjectManager rdf:ID="participant-A">
<hasPos rdf:resource="#simple-chip"/>
</ProjectManager>

Elements in the ontology are associated with lin-
guistic annotations used by the generation compo-
nent of our system; since we do not discuss the gen-
eration task here, we presently skip the details of this
aspect of the ontology. In the following section we
describe the features used for the ontology mapping.

3.1 Feature Set

The interpretation component uses general features
that are applicable to any conversation domain. The
first set of features we use for ontology mapping are
features relating to conversational structure. These
are listed and briefly described in Table 1. The
Sprob andTprob features measure how terms clus-
ter between conversation participants and conver-
sation turns. There are simple features measur-
ing sentence length (SLEN, SLEN2) and position
(TLOC, CLOC). Pause-style features indicate how
much time transpires between the previous turn, the
current turn and the subsequent turn (PPAU, SPAU).
For email conversations, pause features are based on
the timestamps between consecutive emails. Lexical
features capture cohesion (CWS) and cosine sim-
ilarity between the sentence and the conversation
(CENT1, CENT2). All structural features are nor-
malized by document length.

896

Feature ID Description

MXS maxSprobscore
MNS meanSprobscore
SMS sum ofSprobscores
MXT maxTprobscore
MNT meanTprobscore
SMT sum ofTprobscores
TLOC position in turn
CLOC position in conv.
SLEN word count, globally normalized
SLEN2 word count, locally normalized
TPOS1 time from beg. of conv. to turn
TPOS2 time from turn to end of conv.
DOM participant dominance in words
COS1 cos. of conv. splits, w/Sprob
COS2 cos. of conv. splits, w/Tprob
PENT entro. of conv. up to sentence
SENT entro. of conv. after the sentence
THISENT entropy of current sentence
PPAU time btwn. current and prior turn
SPAU time btwn. current and next turn
BEGAUTH is first participant (0/1)
CWS rough ClueWordScore
CENT1 cos. of sentence & conv., w/Sprob
CENT2 cos. of sentence & conv., w/Tprob

Table 1: Features Key

While these features have been found to work
well for generic extractive summarization, we use
additional features for capturing the more specific
sentence-level phenomena of this research.

• Character trigrams We derive all of the char-
acter trigrams in the collected corpora and in-
clude features indicating the presence or ab-
sence of each trigram in a given sentence.

• Word bigrams We similarly derive all of the
word bigrams in the collected corpora.

• POS bigrams We similarly derive all of the
POS-tag bigrams in the collected corpora.

• Word pairs We considerw1, w2 to be a word
pair if they occur in the same sentence andw1

precedesw2. We derive all of the word pairs
in the collected corpora and includes features
indicating the presence or absence of each word
pair in the given sentence. This is essentially a
skip bigram where any amount of intervening
material is allowed as long as the words occur
in the same sentence.

• POS pairsWe calculate POS pairs in the same
manner as word pairs, above. These are essen-
tially skip bigrams for POS tags.

• Varying instantiation ngrams We derive a
simplified set of VIN features for these exper-

iments. For each word bigramw1, w2, we fur-
ther represent the bigram asp1, w2 andw1, p2

so that each pattern consists of a word and a
POS tag. We include a feature indicating the
presence or absence of each of these varying
instantiation bigrams.

After removing features that occur fewer than five
times, we end up with 218,957 total features.

4 Transformation - ILP Content Selection

In the previous section we described how we
identify sentences that link participants and enti-
ties through a variety of sentence-level phenom-
ena. Having populated our ontology with these
triples to form a source representation, we now turn
to the task of transforming the source representa-
tion to a summary representation, identifying the<

participant, relation, entity > triples for which
we want to generate text. We adapt a method pro-
posed by Xie et al. (2009) for extractive sentence
selection. They propose an ILP approach that cre-
ates a summary by maximizing a global objective
function:

maximize (1− λ) ∗
∑

i

wici + λ ∗
∑

j

ujsj (1)

subject to
∑

j

ljsj < L (2)

wherewi is thetf.idf score for concepti, uj is the
weight for sentencej using the cosine similarity to
the entire document,ci is a binary variable indicat-
ing whether concepti is selected (with the concept
represented by a unique weighted n-gram),sj is a
binary variable indicating whether sentencej is se-
lected, lj is the length of sentencej and L is the
desired summary length. Theλ term is used to bal-
ance concept and sentence weights. This method se-
lects sentences that are weighted strongly and which
cover as many important concepts as possible. As
described by Gillick et al. (2009), concepts and
sentences are tied together by two additional con-
straints:

∑

j

sjoij ≥ ci ∀i (3)

sjoij ≤ ci ∀i,j (4)

897

whereoij is the occurence of concepti in sentence
j. These constraints state that a concept can only be
selected if it occurs in a sentence that is selected,
and that a sentence can only be selected if all of its
concepts have been selected.

We adapt their method in several ways. As men-
tioned in the previous section, we use weighted noun
phrases as our entities instead of n-grams. In our
version of Equation 1,wi is the tf score of en-
tity i (the idf was already used to identify entities
as described previously). More importantly, our
sentence weightuj is the sum of all the posterior
probabilities for sentencej derived from the various
sentence-level classifiers. In other words, sentences
are weighted highly if they correspond to multiple
object properties in the ontology. To continue the
example from Section 3, the sentenceLet’s go with
the simple chipmay be selected because it represents
both a decision and a positive-subjective opinion, as
well as containing the entitysimple chipwhich is
mentioned frequently in the conversation.

We include constraint 3 but not 4; it is possi-
ble for a sentence to be extracted even if not all
of its entities are. We know that all the sentences
under consideration will contain at least one en-
tity because sentences with no entities would not
have been mapped to the ontology in the form of
< participant, relation, entity > triples in the
first place. To begin with, we set theλ term at 0.75
as we are mostly concerned with identifying impor-
tant sentences containing multiple links to the on-
tology. In our caseL is 20% of the total document
word count.

5 Experimental Setup

In this section we describe our conversation cor-
pora, the statistical classifiers used, and the evalu-
ation metrics employed.

5.1 Corpora

These experiments are conducted on both meeting
and email conversations, which we describe in turn.

5.1.1 The AMI Meetings Corpus

For our meeting summarization experiments, we
use thescenarioportion of the AMI corpus (Carletta
et al., 2005), where groups of four participants take
part in a series of four meetings and play roles within

a fictitious company. There are 140 of these meet-
ings in total, including a 20 meeting test set contain-
ing multiple human summary annotations per meet-
ing (the others are annotated by a single individual).
We report results on both manual and ASR tran-
scripts. The word error rate for the ASR transcripts
is 38.9%.

For thesummary annotation, annotators wrote ab-
stract summaries of each meeting and extracted sen-
tences that best conveyed or supported the informa-
tion in the abstracts. The human-authored abstracts
each contain a general abstract summary and three
subsections for “decisions,” “actions” and “prob-
lems” from the meeting. A many-to-many mapping
between transcript sentences and sentences from the
human abstract was obtained for each annotator. Ap-
proximately 13% of the total transcript sentences are
ultimately labeled as extracted sentences. A sen-
tence is considered a decision item if it is linked to
the decision portion of the abstract, and action and
problem sentences are derived similarly.

For the subjectivity annotation, we use annota-
tions of positive-subjective and negative-subjective
utterances on a subset of 20 AMI meetings (Wil-
son, 2008). Such subjective utterances involve
the expression of a private state, such as a pos-
itive/negative opinion, positive/negative argument,
and agreement/disagreement. Of the roughly 20,000
total sentences in the 20 AMI meetings, nearly 4000
are labeled aspositive-subjectiveand nearly 1300 as
negative-subjective.

5.1.2 The BC3 Email Corpus

While our main experiments focus on the AMI
meeting corpus, we follow these up with an inves-
tigation into applying our abstractive techniques to
email data. The BC3 corpus (Ulrich et al., 2008)
contains email threads from the World Wide Web
Consortium (W3C) mailing list. The threads fea-
ture a variety of topics such as web accessibility and
planning face-to-face meetings. The annotated por-
tion of the mailing list consists of 40 threads. The
threads are annotated in the same manner as the AMI
corpus, with three human annotators per thread first
authoring abstracts and then linking email thread
sentences to the abstract sentences. The corpus also
contains speech act annotations. Unlike the AMI
corpus, however, there are no annotations for deci-

898

sions, actions and problems, an issue addressed later.

5.2 Classifiers

For these experiments we use a maximum entropy
classifier using theliblinear toolkit1 (Fan et al.,
2008). For each of the AMI and BC3 corpora, we
perform 10-fold cross-validation on the data. In all
experiments we apply a 20% compression rate in
terms of the total document word count.

5.3 Evaluation

We evaluate the various classifiers described in Sec-
tion 3 using the ROC curve and the area under the
curve (AUROC), where a baseline AUROC is 0.5
and an ideal classifier approaches 1.

To evaluate the content selection in the transfor-
mation stage, we use weighted recall.This evaluation
metric is based on the links between extracted sen-
tences and the human gold-standard abstracts, with
the underlying motivation being that sentences with
more links to the human abstract are generally more
informative, as they provide the content on which an
effective abstract summary should be built. IfM is
the number of sentences selected in the transforma-
tion step,O is the total number of sentences in the
document, andN is the number of annotators, then
Weighted Recall is given by

recall =

∑M
i=1

∑N
j=1

L(si, aj)
∑O

i=1

∑N
j=1

L(si, aj)

whereL(si, aj) is the number of links for a sen-
tencesi according to annotatoraj . We can com-
pare machine performance with human performance
in the following way. For each annotator, we rank
their sentences from most-linked to least-linked and
select the best sentences until we reach the same
word count as our selections. We then calculate their
weighted recall score by using the other N-1 annota-
tions, and then average over all N annotators to get
an average human performance. We report all trans-
formation scores normalized by human performance
for that dataset.

6 Results

In this section we present results for our interpreta-
tion and transformation components.

1http://www.csie.ntu.edu.tw/ cjlin/liblinear/

6.1 Interpretation: Meetings

Figure 1 shows the ROC curves for the sentence-
level classifiers applied to manual transcripts. On
both manual and ASR transcripts, the classifiers
with the largest AUROCs are the action item and
general extractive classifiers. Action item sentences
can be detected very well with this feature set, with
the classifier having an AUROC of 0.92 on man-
ual transcripts and 0.93 on ASR, a result compa-
rable to previous findings of 0.91 and 0.93 (Mur-
ray and Renals, 2008) obtained using a speech-
specific feature set. General extractive classification
is also similar to other state-of-the-art extraction ap-
proaches on spoken data using speech features (Zhu
and Penn, 2006)2 with an AUROC of 0.87 on man-
ual and 0.85 on ASR. Decision sentences can also
be detected quite well, with AUROCs of 0.81 and
0.77. Positive-subjective, negative-subjective and
problem sentences are the most difficult to detect,
but the classifiers still give credible performance
with AUROCs of approximately 0.76 for manual
and 0.70-0.72 for ASR.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
P

FP

actions
decisions
problems

positive-subjective
negative-subjective

extractive
random

Figure 1: ROC Curves for Ontology Mapping Classifiers
(Manual Transcripts)

6.2 Transformation: Meetings

In this section we present the weighted recall scores
for the sentences selected using the ILP method de-
scribed in Section 4. Remember, weighted recall
measures how useful these sentences would be in
generating sentences for an abstract summary. We
also assess the performance of three baseline sum-
marizers operating at the same compression level.

2Based on visual inspection of their reported best ROC curve

899

The simplest baseline (GREEDY) selects sentences
by ranking the posterior probabilites output by the
general extractive classifier. The second baseline
(CLASS COMBO) averages the posterior proba-
bilites output byall the classifiers and ranks sen-
tences from best to worst. The third baseline (RE-
TRAIN) uses the posterior probability outputs of all
the classifiers (except for the extractive classifier) as
new feature inputs for the general extractive classi-
fier.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Greedy

Class Com
bo

Retrain

ILP

W
ei

gh
te

d
R

ec
al

l,
N

or
m

al
iz

ed

manual
ASR

Figure 2: Weighted Recall Scores for AMI Meetings

Figure 2 shows the weighted recall scores, nor-
malized by human performance, for all approaches
on both manual and ASR transcripts. On man-
ual transcripts, the ILP approach (0.76) is better
than GREEDY (0.71) with a marginally significant
difference (p=0.07) and is significantly better than
CLASS COMBO and RETRAIN (both 0.68) ac-
cording to t-test (p < 0.05) . For ASR transcripts,
the ILP approach is significantly better than all other
approaches (p < 0.05). Xie et al. (2009) reported
ROUGE-1 F-measures on a different meeting cor-
pus, and our ROUGE-1 scores are in the same range
of 0.64-0.69 (they used 18% compression ratio).

6.3 Interpretation: Emails

We applied the same summarization method to the
40 BC3 email threads, with contrasting results. Be-
cause the BC3 corpus does not currently contain an-
notations for decisions, actions and problems, we
simply ran the AMI-trained models over the data
for those three phenomena. We can assess the
performance of the extractive, positive-subjective
and negative-subjective classifiers by examining the

ROC curves displayed in Figure 3. Both the general
extractive and negative-subjective classifiers have
AUROCs of around 0.75. The positive-subjective
classifier initially has the worst performance with
an AUROC of 0.66, but we found that positive-
subjective performance increased dramatically to an
AUROC of 0.77 when we used only conversational
features and not word bigrams, character trigrams or
POS tags.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
P

FP

positive-subjective
negative-subjective

extractive
random

Figure 3: ROC Curves for Ontology Mapping Classifiers
(BC3 Corpus)

6.4 Transformation: Emails

If we examine the weighted recall scores in Fig-
ure 4 we see that the ILP approach is worse than
the greedy summarizers on the BC3 dataset. How-
ever, the differences are not significant between ILP
and COMBO CLASS (p=0.15) and only marginally
significant compared with RETRAIN and GREEDY
(both p=0.08). The performance of the ILP approach
varies greatly across email threads. The top 15
threads (out of 40) yield ILP weighted recall scores
that are on par with human performance, while the
worst 15 are half that.

6.4.1 Email Corpus Analysis

Due to the large discrepancy in performance on
BC3 emails, we conducted additional experiments
for error analysis. We first explored whether we
could build a classifier that could discriminate the
best 15 emails from the worst 15 emails in terms of
weighted recall scores with the ILP approach, to de-
termine whether there are certain features that cor-
relate with good performance. Using the same fea-

900

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Greedy

Class Com
bo

Retrain

ILP

W
ei

gh
te

d
R

ec
al

l,
N

or
m

al
iz

ed

Figure 4: Weighted Recall Scores for BC3 Threads

tures described in Section 3.1, we built a logistic re-
gression classifier on the two classes and found that
they can be discriminated quite well (80% accuracy
on an approximately balanced dataset) and that the
conversation structure features are the most useful
for discerning them. Table 2 shows the weighted
recall scores and several conversation features that
were weighted most highly by the logistic regres-
sion model. In particular, we found that the email
threads that yielded good performance tended to fea-
ture more active participants (# Participants), were
not dominated by a single individual (BEGAUTH),
and featured a higher number of turns (# Turns)
that followed each other in quick succession without
long pauses (PPAU, pause as percentage of conver-
sation length). In other words, these emails were
structured more similarly to meetings. Note that
since we normalize weighted recall by human per-
formance, it is possible to have a weighted recall
score higher than 1. On the 15 best threads, our sys-
tem achieves human-level performance. Because we
used AMI-trained models for detecting decisions,
actions and problems in the BC3 data, it is not sur-
prising that performance was better on those emails
structured similarly to meetings. All of this indicates
that there are many different types of emails and that
we will have to focus on improving performance on
emails that differ markedly in structure.

7 Conclusion

We have presented two components of an abstractive
conversation summarization system. Theinterpreta-
tion component is used to populate a simple conver-

Metric Worst 15 Best 15
Weighted Recall 0.49 1.05
Turns 6.27 6.73
Participants 4.67 5.4
PPAU 0.18 0.12
BEGAUTH 0.31 0.18

Table 2: Selected Email Features, Averaged

sation ontology where conversation participants and
entities are linked by object properties such as deci-
sions, actions and subjective opinions. For this step
we show that highly accurate classifiers can be built
using a large set of features not specific to any con-
versation modality.

In the transformation step, a summary is cre-
ated by maximizing a function relating sentence
weights and entity weights, with the sentence
weights determined by the sentence-ontology map-
ping. Our evaluation shows that the sentences we
select are highly informative to generate abstract
summaries, and that our content selection method
outperforms several greedy selection approaches.
The system described thus far may appear extrac-
tive in nature, as the transformation step is iden-
tifying informative sentences in the conversation.
However, these selected sentences correspond to
< participant, relation, entity > triples in the
ontology, for which we can subsequently gener-
ate novel text by creating linguistic annotations of
the conversation ontology (Galanis and Androut-
sopolous, 2007). Even without the generation step,
the approach described above allows us to create
structured extracts by grouping sentences according
to specific phenomena such as action items and de-
cisions. The knowledge represented by the ontology
enables us to significantly improve sentence selec-
tion according to intrinsic measures and to generate
structured output that we hypothesize will be more
useful to an end user compared with a generic un-
structured extract.

Future work will focus on the generation compo-
nent and on applying the summarization system to
conversations in other modalities such as blogs and
instant messages. Based on the email error analysis,
we plan to pursue domain adaptation techniques to
improve performance on different types of emails.

901

References

R. Barzilay and K. McKeown. 2005. Sentence fusion for
multidocument news summarization.Computational
Linguistics, 31(3):297–328.

G. Carenini, R. Ng, and X. Zhou. 2007. Summarizing
email conversations with clue words. InProc. of ACM
WWW 07, Banff, Canada.

J. Carletta, S. Ashby, S. Bourban, M. Flynn, M. Guille-
mot, T. Hain, J. Kadlec, V. Karaiskos, W. Kraaij,
M. Kronenthal, G. Lathoud, M. Lincoln, A. Lisowska,
I. McCowan, W. Post, D. Reidsma, and P. Well-
ner. 2005. The AMI meeting corpus: A pre-
announcement. InProc. of MLMI 2005, Edinburgh,
UK, pages 28–39.

K. Church and W. Gale. 1995. Inverse document fre-
quency IDF: A measure of deviation from poisson. In
Proc. of the Third Workshop on Very Large Corpora,
pages 121–130.

J. Clarke and M. Lapata. 2006. Constraint-based
sentence compression: An integer programming ap-
proach. InProc. of COLING/ACL 2006, pages 144–
151.

R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and
C.-J. Lin. 2008. Liblinear: A library for large linear
classification.Journal of Machine Learning Research,
9:1871–1874.

D. Galanis and I. Androutsopolous. 2007. Generating
multilingual descriptions from linguistically annotated
owl ontologies: the naturalowl system. InProc. of
ENLG 2007, Schloss Dagstuhl, Germany.

M. Galley. 2006. A skip-chain conditional random
field for ranking meeting utterances by importance. In
Proc. of EMNLP 2006, Sydney, Australia, pages 364–
372.

D. Gillick, K. Riedhammer, B. Favre, and D. Hakkani-
Tür. 2009. A global optimization framework for meet-
ing summarization. InProc. of ICASSP 2009, Taipei,
Taiwan.

S. Gupta, J. Niekrasz, M. Purver, and D. Jurafsky. 2007.
Resolving ”You” in multi-party dialog. In Proc. of
SIGdial 2007, Antwerp, Belgium.

L. He, E. Sanocki, A. Gupta, and J. Grudin. 1999. Auto-
summarization of audio-video presentations. InProc.
of ACM MULTIMEDIA ’99, Orlando, FL, USA, pages
489–498.

P-Y. Hsueh, J. Kilgour, J. Carletta, J. Moore, and S. Re-
nals. 2007. Automatic decision detection in meeting
speech. InProc. of MLMI 2007, Brno, Czech Repub-
lic.

K. Spärck Jones. 1999. Automatic summarizing: Factors
and directions. In I. Mani and M. Maybury, editors,
Advances in Automatic Text Summarization, pages 1–
12. MITP.

T. Kleinbauer, S. Becker, and T. Becker. 2007. Com-
bining multiple information layers for the automatic
generation of indicative meeting abstracts. InProc. of
ENLG 2007, Dagstuhl, Germany.

K. Knight and D. Marcu. 2000. Statistics-based summa-
rization - step one: Sentence compression. InProc. of
AAAI 2000, Austin, Texas, USA, pages 703–710.

J. Kupiec, J. Pederson, and F. Chen. 1995. A trainable
document summarizer. InProc. of the 18th Annual In-
ternational ACM SIGIR Conference on Research and
Development in Information Retrieval. Seattle, Wash-
ington, USA, pages 68–73.

K. McKeown, J. Hirschberg, M. Galley, and S. Maskey.
2005. From text to speech summarization. InProc. of
ICASSP 2005, Philadelphia, USA, pages 997–1000.

C. Muller. 2007. ResolvingIt, This and That in un-
restricted multi-party dialog. InProc. of ACL 2007,
Prague, Czech Republic.

G. Murray and S. Renals. 2008. Detecting action items
in meetings. InProc. of MLMI 2008, Utrecht, the
Netherlands.

G. Murray, T. Kleinbauer, P. Poller, S. Renals, T. Becker,
and J. Kilgour. 2008. Extrinsic summarization evalu-
ation: A decision audit task. InProc. of MLMI 2008,
Utrecht, the Netherlands.

M. Purver, J. Dowding, J. Niekrasz, P. Ehlen, and
S. Noorbaloochi. 2007. Detecting and summariz-
ing action items in multi-party dialogue. InProc. of
the 9th SIGdial Workshop on Discourse and Dialogue,
Antwerp, Belgium.

S. Raaijmakers, K. Truong, and T. Wilson. 2008. Multi-
modal subjectivity analysis of multiparty conversation.
In Proc. of EMNLP 2008, Honolulu, HI, USA.

O. Rambow, L. Shrestha, J. Chen, and C. Lauridsen.
2004. Summarizing email threads. InProc. of HLT-
NAACL 2004, Boston, USA.

J. Ulrich, G. Murray, and G. Carenini. 2008. A publicly
available annotated corpus for supervised email sum-
marization. InProc. of AAAI EMAIL-2008 Workshop,
Chicago, USA.

T. Wilson. 2008. Annotating subjective content in meet-
ings. InProc. of LREC 2008, Marrakech, Morocco.

S. Xie, B. Favre, D. Hakkani-Tür, and Y. Liu. 2009.
Leveraging sentence weights in a concept-based op-
timization framework for extractive meeting summa-
rization. InProc. of Interspeech 2009, Brighton, Eng-
land.

L. Zhou and E. Hovy. 2005. Digesting virtual ”geek”
culture: The summarization of technical internet relay
chats. InProc. of ACL 2005, Ann Arbor, MI, USA.

X. Zhu and G. Penn. 2006. Summarization of spon-
taneous conversations. InProc. of Interspeech 2006,
Pittsburgh, USA, pages 1531–1534.

902

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 903–911,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Quantifying the Limits and Success of Extractive Summarization Systems
Across Domains

Hakan Ceylan and Rada Mihalcea
Department of Computer Science

University of North Texas
Denton, TX 76203

{hakan,rada}@unt.edu

Umut Özertem
Yahoo! Labs

701 First Avenue
Sunnyvale, CA 94089

umut@yahoo-inc.com

Elena Lloret and Manuel Palomar
Department of

Software and Computing Systems
University of Alicante

San Vicente del Raspeig
Alicante 03690, Spain

{elloret,mpalomar}@dlsi.ua.es

Abstract

This paper analyzes the topic identification
stage of single-document automatic text sum-
marization across four different domains, con-
sisting of newswire, literary, scientific and le-
gal documents. We present a study that ex-
plores the summary space of each domain
via an exhaustive search strategy, and finds
the probability density function (pdf) of the
ROUGE score distributions for each domain.
We then use this pdf to calculate the per-
centile rank of extractive summarization sys-
tems. Our results introduce a new way to
judge the success of automatic summarization
systems and bring quantified explanations to
questions such as why it was so hard for the
systems to date to have a statistically signifi-
cant improvement over the lead baseline in the
news domain.

1 Introduction

Topic identification is the first stage of the gener-
ally accepted three-phase model in automatic text
summarization, in which the goal is to identify the
most important units in a document, i.e., phrases,
sentences, or paragraphs (Hovy and Lin, 1999; Lin,
1999; Sparck-Jones, 1999). This stage is followed
by the topic interpretation and summary generation
steps where the identified units are further processed
to bring the summary into a coherent, human read-
able abstract form. The extractive summarization
systems, however, only employ the topic identifi-
cation stage, and simply output a ranked list of the
units according to a compression ratio criterion. In
general, for most systems sentences are the preferred

units in this stage, as they are the smallest grammat-
ical units that can express a statement.

Since the sentences in a document are reproduced
verbatim in extractive summaries, it is theoretically
possible to explore the search space of this problem
through an enumeration of all possible extracts for
a document. Such an exploration would not only
allow us to see how far we can go with extractive
summarization, but we would also be able to judge
the difficulty of the problem by looking at the dis-
tribution of the evaluation scores for the generated
extracts. Moreover, the high scoring extracts could
also be used to train a machine learning algorithm.

However, such an enumeration strategy has an
exponential complexity as it requires all possible
sentence combinations of a document to be gener-
ated, constrained by a given word or sentence length.
Thus the problem quickly becomes impractical as
the number of sentences in a document increases and
the compression ratio decreases. In this work, we try
to overcome this bottleneck by using a large cluster
of computers, and decomposing the task into smaller
problems by using the given section boundaries or a
linear text segmentation method. As a result of this
exploration, we generate a probability density func-
tion (pdf) of the ROUGE score (Lin, 2004) distri-
butions for four different domains, which shows the
distribution of the evaluation scores for the gener-
ated extracts, and allows us to assess the difficulty
of each domain for extractive summarization.

Furthermore, using these pdfs, we introduce a
new success measure for extractive summarization
systems. Namely, given a system’s average score
over a data set, we show how to calculate the per-

903

centile rank of this system from the corresponding
pdf of the data set. This allows us to see the true
improvement a system achieves over another, such
as a baseline, and provides a standardized scoring
scheme for systems performing on the same data set.

2 Related Work

Despite the large amount of work in automatic
text summarization, there are only a few studies
in the literature that employ an exhaustive search
strategy to create extracts, which is mainly due to
the prohibitively large search space of the prob-
lem. Furthermore, the research regarding the align-
ment of abstracts to original documents has shown
great variations across domains (Kupiec et al., 1995;
Teufel and Moens, 1997; Marcu, 1999; Jing, 2002;
Ceylan and Mihalcea, 2009), which indicates that
the extractive summarization techniques are not ap-
plicable to all domains at the same level.

In order to automate the process of corpus
construction for automatic summarization systems,
(Marcu, 1999) used exhaustive search to generate
the bestExtract from a given(Abstract, Text)tuple,
where the bestExtractcontains a set of clauses from
Textthat have the highest similarity to the givenAb-
stract.

In addition, (Donaway et al., 2000) used exhaus-
tive search to create all the sentence extracts of
length three starting with 15 TREC Documents, in
order to judge the performance of several summary
evaluation measures suggested in their paper.

Finally, the study most similar to ours was done
by (Lin and Hovy, 2003), who used the articles with
less than 30 sentences from the DUC 2001 data set
to find oracle extractsof 100 and150 (±5) words.
These extracts were compared against one summary
source, selected as the one that gave the highest
inter-human agreement. Although it was concluded
that a 10% improvement was possible for extrac-
tive summarization systems, which typically score
around the lead baseline, there was no report on how
difficult it would be to achieve this improvement,
which is the main objective of our paper.

3 Description of the Data Set

Our data set is composed of four different domains:
newswire, literary, scientific and legal. For all the

Domain µDw µSw µR µC µCw

Newswire 641 101 84% 1 641
Literary 4973 1148 77% 6 196
Scientific 1989 160 92% 9 221
Legal 3469 865 75% 18 192

Table 1: Statistical properties of the data set.µDw, and
µSw represent the average number of words for each doc-
ument and summary respectively;µR indicates the av-
erage compression ratio; andµC andµCw represent the
average number of sections for each document, and the
average number of words for each section respectively.

domains we used 50 documents and only one sum-
mary for each document, except for newswire where
we used two summaries per document. For the
newswire domain, we selected the articles and their
summaries from the DUC 2002 data set,1. For the
literary domain, we obtained 10 novels that are lit-
erature classics, and available online in text format.
Further, we collected the corresponding summaries
for these novels from various websites such as
CliffsNotes (www.cliffsnotes.com) and SparkNotes
(www.sparknotes.com), which make available hu-
man generated abstracts for literary works. These
sources give a summary for each chapter of the
novel, so each chapter can be treated as a sepa-
rate document. Thus we evaluate 50 chapters in to-
tal. For the scientific domain, we selected the ar-
ticles from the medical journalAutoimmunity Re-
views2 were selected, and their abstracts are used
as summaries. Finally, for the legal domain, we
gathered 50 law documents and their corresponding
summaries from the European Legislation Website,3

which comprises four types of laws -Council Di-
rectives, Acts, Communications, andDecisionsover
several topics, such as society, environment, educa-
tion, economics and employment.

Although all the summaries are human generated
abstracts for all the domains, it is worth mention-
ing that the documents and their corresponding sum-
maries exhibit a specific writing style for each do-
main, in terms of the vocabulary used and the length
of the sentences. We list some of the statistical prop-
erties of each domain in Table 1.

1http://www-nlpir.nist.gov/projects/duc/data.html
2http://www.elsevier.com/wps/product/cwshome/622356
3http://eur-lex.europa.eu/en/legis/index.htm

904

4 Experimental Setup

As mentioned in Section 1, an exhaustive search
algorithm requires generating all possible sentence
combinations from a document, and evaluating each
one individually. For example, using the values from
Table 1, and assuming 20 words per sentence, we
find that the search space for the news domain con-
tains approximately

(
32

5

)
× 50 = 10, 068, 800 sum-

maries. The same calculation method for the sci-
entific domain gives us

(
99

8

)
× 50 = 8.56 × 1012

summaries. Obviously the search space gets much
bigger for the legal and literary domains due to their
larger text size.

In order to be able to cope with such a huge
search space, the first thing we did was to modify
the ROUGE 1.5.54 Perl script by fixing the parame-
ters to those used in the DUC experiments,5 and also
by modifying the way it handles the input and output
to make it suitable for streaming on the cluster.

The resulting script evaluates around 25-30 sum-
maries per second on an Intel 2.33 GHz processor.
Next, we streamed the resulting ROUGE script for
each (document, summary) pair on a large cluster
of computers running on an Hadoop Map-Reduce
framework.6 Based on the size of the search space
for a (document, summary) pair, the number of com-
puters allocated in the cluster ranged from just a few
to more than one thousand.

Although the combination of a large cluster and a
faster ROUGE is enough to handle most of the doc-
uments in the news domain in just a few hours, a
simple calculation shows that the problem is still im-
practical for the other domains. Hence for the scien-
tific, legal, and literary domains, rather than consid-
ering each document as a whole, we divide them into
sections, and create extracts for each section such
that the length of the extract is proportional to the
length of the section in the original document. For
the legal and scientific domains, we use the given
section boundaries (without considering the subsec-
tions for scientific documents). For the novels, we
treat each chapter as a single document (since each
chapter has its own summary), which is further di-
vided into sections using a publicly available linear

4http://berouge.com
5-n 2 -x -m -2 4 -u -c 95 -r 1000 -f A -p 0.5 -t 0
6http://hadoop.apache.org/

text segmentation algorithm by (Utiyama and Isa-
hara, 2001).7 In all cases, we let the algorithm pick
the number of segments automatically.

To evaluate the sections, we modified ROUGE
further so that it applies the length constraint to the
extracts only, not to the model summaries. This is
due to the fact that we evaluate the extracts of each
section individually against the whole model sum-
mary, which is larger than the extract. This way,
we can get an overall ROUGE recall score for a
document extract, simply by summing up the re-
call scores of each section extracts. The precision
score for the entire document can also be found by
adding the weighted precision scores for each sec-
tion, where the weight is proportional to the length
of the section in the original document. In our study,
however, we only use recall scores.

Note that, since for the legal, scientific, and lit-
erary domains we consider each section of a doc-
ument independently, we are not performing a true
exhaustive search for these domains, but rather solv-
ing a suboptimal problem, as we divide the number
of words in the model summary to each section pro-
portional to the section’s length. However, we be-
lieve that this is a fair assumption, as it has been
shown repeatedly in the past that text segmentation
helps improving the performance of text summariza-
tion systems (yen Kan et al., 1998; Nakao, 2000;
Mihalcea and Ceylan, 2007).

5 Exhaustive Search Algorithm

Let Eik = Si1 , Si2 , ..., Sik be theith extract that
has k sentences, and generated from a document
D with n sentencesD = S1, S2, . . . , Sn. Further,
let len(Sj) give the number of words in sentence
Sj . We enforce thatEik satisfies the following con-
straints:

len(Eik) = len(Si1) + . . . + len(Sik) ≥ L

len(Eik−1
) = len(Si1) + . . . + len(Sik−1

) < L

whereL is the length constraint on all the extracts
of documentD. We note that for anyEik , the or-
der of the sentences inEik−1

does not affect the
ROUGE scores, since only the last sentence may be

7http://mastarpj.nict.go.jp/ mutiyama/software/textseg/textseg-
1.211.tar.gz

905

chopped off due to the length constraint.8 Hence, we
start generating sentence combinations

(
n
r

)
in lexico-

graphic order, for r = 1...n, and for each combina-
tion Eik = Si1 , Si2 , ..., Sik wherek > 1, we gener-
ate additional extractsE′

ik
by successfully swapping

Sij with Sik for j = 1, ..., k− 1 and checking to see
if the above constraints are still satisfied. Therefore
from a combination withk sentences that satisfies
the constraints, we might generate up tok − 1 ad-
ditional extracts. Finally, we stop the process either
whenr = n and the last combination is generated,
or we cannot find any extract that satisfies the con-
straints forr.

6 Generating pdfs

Once the extracts for a document are generated and
evaluated, we go through each result and assign its
recall score to a range, which we refer to as a bin.
We use1, 000 equally spaced bins between0 and
1. As an example, a recall score of0.46873 would
be assigned to the bin[0.468, 0.469]. By keeping
a count for each bin, we are in fact building a his-
togram of scores for the document. Let this his-
togram beh, andh[j] be the value in thejth bin of
the histogram. We then define the normalized his-
togramĥ as:

ĥ[j] =
N

∑N
i=1

h[j]
h[j] (1)

whereN = 1, 000 is the number of bins in the his-
togram. Note that since thewidth of each bin is1

N
,

the Riemann sum of the normalized histogramĥ is
equal to 1, sôh can be used as an approximation
to the underlying pdf. As an example, we show the
histogram̂h for the newswire document AP890323-
0218 in Figure 1.

We combine the normalized histograms of all the
documents in a domain in order to find the pdf for
that domain. This requires multiplying the value
of each bin in a document’s histogram, with all
the other possible combinations of bin values taken
from each of the remaining histograms, and assign-
ing the result to the average bin for each combina-

8Note that we do not take the coherence of extracts into ac-
count, i.e. the sentences in an extract do not need to be sorted
in order of their appearance in the original document. We also
do not change the position of the words in a sentence.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 100 200 300 400 500 600 700 800 900 1000

"AP890323-0218.dat"

Figure 1: The normalized histogram̂h of ROUGE-1 re-
call scores for the newswire document AP890323-0218.

tion. This can be done iteratively by keeping a mov-
ing average. We illustrate this procedure in Algo-
rithm 1, whereK represents the number of docu-
ments in a domain.

Algorithm 1 Combinêhi’s for i = 1, . . . , K to cre-
atehd, the histogram for domaind.

1: hd := {}
2: for i = 1 to N do
3: hd[i] := ĥ1[i]
4: end for
5: for i = 2 to K do
6: ht = {}
7: for j = 1 to N do
8: for k = 1 to N do
9: a = round(((k ∗ (i− 1)) + j)/i)

10: ht[a] = ht[a] + (hd[k] ∗ ĥi[j])
11: end for
12: end for
13: hd := ht

14: end for

The resulting histogramhd, when normalized us-
ing Equation 1, is an approximation to the pdf for
domaind. Furthermore, we used theround() func-
tion in line 9, which rounds a number to the nearest
integer, as the bins are indexed by integers. Note
that this rounding introduces an error, which is dis-
tributed uniformly due to the nature of theround()
function. It is also possible to lower the affect of this
error with higher resolutions (i.e. larger number of
bins). In Figure 2, we show a samplehd, obtained
by combining 10 documents from the newswire do-

906

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

"newswire_10-ROUGE-1.dat"

Figure 2: An example pdf obtained by combining 10 doc-
ument histograms of ROUGE-1 recall scores from the
newswire domain. The x-axis is normalized to [0,1].

main.

Recall from Section 4 that the documents in
the literary, legal, and scientific domains are di-
vided into sections either by using the given section
boundaries or by applying a text segmentation al-
gorithm, and the extracts of each section are then
evaluated individually. Hence for these domains, we
first calculate the histogram of each section individ-
ually, and then combine them to find the histogram
of a document. The combination procedure for the
section histograms is similar to Algorithm 1, except
that in this case we do not keep a moving average,
but rather sum up the bins of the sections. Note
that when bini andj are added, the resulting val-
ues should be expected to be half the times in bin
i + j, and half the times ini + j − 1.

7 Calculating Percentile Ranks

Given a pdf for a domain, the success of a system
having a ROUGE recall score ofS could be sim-
ply measured by finding the area bounded byS.
This gives us the percentile rank of the system in
the overall distribution. Assuming0 ≤ S ≤ 1, let
Ŝ = ⌊N ×S⌋, then the formula to calculate the per-
centile rank can be simply given as:

PR(S) =
100

N

bS∑

i=1

ĥd[i] (2)

ROUGE-1
Domain µ σ max min

Newswire 39.39 0.87 65.70 20.20
Literary 45.20 0.47 63.90 28.40
Scientific 45.99 0.68 71.90 24.20
Legal 72.82 0.28 82.40 62.80

ROUGE-2
Domain µ σ max min

Newswire 11.57 0.79 37.40 1.60
Literary 5.41 0.34 16.90 1.80
Scientific 10.98 0.60 33.30 1.30
Legal 28.74 0.29 40.90 19.60

ROUGE-SU4
Domain µ σ max min

Newswire 15.33 0.69 38.10 6.40
Literary 13.28 0.30 24.30 6.90
Scientific 16.13 0.50 35.80 6.20
Legal 35.63 0.25 45.70 28.70

Table 2: Statistical properties of the pdfs

8 Results

The ensemble distributions of ROUGE-1 recall
scores per document are shown in Figure 3. The
ensemble distributions tell us that the performance
of the extracts, especially for the news and the sci-
entific domains, are mostly uniform for each docu-
ment. This is due to the fact that documents in these
domains, and their corresponding summaries, are
written with a certain conventional style. There is
however a little scattering in the distributions of the
literary and the legal domains. This is an expected
result for the literary domain, as there is no specific
summarization style for these documents, but some-
how surprising for the legal domain, where the effect
is probably due to the different types of legal docu-
ments in the data set.

The pdf plots resulting from the ROUGE-1 recall
scores are shown in Figure 4.9 In order to analyze
the pdf plots, and better understand their differences,
Table 2 lists the mean (µ) and the standard deviation
(σ) measures of the pdfs, as well as the average min-
imum and maximum scores that an extractive sum-
marization system can get for each domain.

By looking at the pdf plots and the minimum and
maximum columns from Table 2, we notice that for

9Similar pdfs are obtained for ROUGE-2 and ROUGE-SU4,
even if at a different scale.

907

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 5 10 15 20 25 30 35 40 45 50

"Ensemble-Newswire-50-ROUGE-1.dat"

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

"Literary-50-Ensemble-ROUGE-1.dat"

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

"Medical-50-Ensemble-ROUGE-1.dat"

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

"Legal-50-Ensemble-ROUGE-1.dat"

Figure 3: ROUGE-1 recall score distributions per document for Newswire, Literary, Scientific and Legal Domains,
respectively from left to right.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0.36 0.38 0.4 0.42 0.44

"Newswire-50-ROUGE-1.dat"

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5

"Literary-50-ROUGE-1.dat"

 0

 10

 20

 30

 40

 50

 60

 70

 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5

"Medical-50-ROUGE-1.dat"

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0.7 0.72 0.74 0.76 0.78 0.8

"Legal-50-ROUGE-1.dat"

Figure 4: Probability Density Functions of ROUGE-1 recall scores for the Newswire, Literary, Scientific and Legal
Domains, respectively from left to right. The resolution ofthe x-axis is increased to 0.1.

all the domains, the pdfs are long-tailed distribu-
tions. This immediately implies that most of the
extracts in a summary space are clustered around
the mean, which means that for automatic summa-
rization systems, it is very easy to get scores around
this range. Furthermore, we can judge the hardness
of each domain by looking at the standard devia-
tion values. A lower standard deviation indicates a
steeper curve, which implies that improving a sys-
tem would be harder. From the table, we can in-
fer that the legal domain is the hardest while the
newswire is the easiest.

Comparing Table 2 with the values in Table 1,
we also notice that the compression ratio affects the
performance differently for each domain. For ex-
ample, although the scientific domain has the high-
est compression ratio, it has a higher mean than
the literary and the newswire domains for ROUGE-
1 and ROUGE-SU4 recall scores. This implies
that although the abstracts of the medical journals
are highly compressed, they have a high overlap
with the document, probably caused by their writ-
ing style. This was in fact confirmed earlier by the
experiments in (Kupiec et al., 1995), where it was
found out that for a data set of 188 scientific arti-
cles, 79% of the sentences in the abstracts could be
perfectly matched with the sentences in the corre-
sponding documents.

Next, we confirm our experiments by testing three

different extractive summarization systems on our
data set. The first system that we implement is called
Random, and gives a random score between1 and
100 to each sentence in a document, and then se-
lects the top scoring sentences. The second system,
Lead, implements the lead baseline method which
takes the firstk sentences of a document until the
length limit is reached. Finally, the last system that
we implement isTextRank, which uses a variation of
the PageRank graph centrality algorithm in order to
identify the most important sentences in a document
(Page et al., 1999; Erkan and Radev, 2004; Mihalcea
and Tarau, 2004). We selected TextRank as it has a
performance competitive with the top systems par-
ticipating in DUC ’02 (Mihalcea and Tarau, 2004).
We would also like to mention that for the literary,
scientific, and legal domains, the systems apply the
algorithms for each section and each section is eval-
uated independently, and their resulting recall scores
are summed up. This is needed in order to be con-
sistent with our exhaustive search experiments.

The ROUGE recall scores of the three systems are
shown in Table 3. As expected, for the literary and
legal domains, theRandom, and theLead systems
score around the mean. This is due to the fact that
the leading sentences for these two domains do not
indicate any significance, hence theLeadsystem just
behaves likeRandom. However for the scientific and
newswire domains, the leading sentences do have

908

ROUGE-1
Domain Random Lead TextRank

Newswire 39.13 45.63 44.43
Literary 45.39 45.36 46.12
Scientific 45.75 47.18 49.26
Legal 73.04 72.42 74.82

ROUGE-2
Domain Random Lead TextRank

Newswire 11.39 19.60 17.99
Literary 5.33 5.41 5.92
Scientific 10.73 12.07 12.76
Legal 28.56 28.92 31.06

ROUGE-SU4
Domain Random Lead TextRank

Newswire 15.07 21.58 20.46
Literary 13.21 13.28 13.81
Scientific 15.92 17.12 17.85
Legal 35.41 35.55 37.64

Table 3: ROUGE recall scores of the Lead baseline, Tex-
tRank, and Random sentence selector across domains

importance so theLeadsystem consistently outper-
forms Random. Furthermore, althoughTextRankis
the best system for the literary, scientific, and legal
domains, it gets outperformed by theLead system
on the newswire domain. This is also an expected re-
sult as none of the single-document summarization
systems were able to achieve a statistically signifi-
cant improvement over the lead baseline in the previ-
ous Document Understanding Conferences (DUC).

The ROUGE scoring scheme does not tell us how
much improvement a system achieved over another,
or how far it is from the upper bound. Since we now
have access to the pdf of each domain in our data set,
we can find this information simply by calculating
the percentile rank of each system using the formula
given in Equation 2.

The percentile ranks of all three systems for each
domain are shown in Table 4. Notice how different
the gap is between the scores of each system this
time, compared to the scores in Table 3. For ex-
ample, we see in Table 3 thatTextRankon scientific
domain has only a 3.51 ROUGE-1 score improve-
ment over a system that randomly selects sentences
to include in the extract. However, Table 4 tells us
that this improvement is in fact 57.57%.

From Table 4, we see that bothTextRankand
the Lead system are in the 99.99% percentile of

ROUGE-1
Domain Random Lead TextRank

Newswire %39.18 %99.99 %99.99
Literary %62.89 %62.89 %97.90
Scientific %42.30 %95.56 %99.87
Legal %79.47 %16.19 %99.99

ROUGE-2
Domain Random Lead TextRank

Newswire %39.57 %99.99 %99.99
Literary %42.20 %54.32 %94.34
Scientific %35.6 %96.03 %99.79
Legal %36.68 %75.38 %99.99

ROUGE-SU4
Domain Random Lead TextRank

Newswire %40.68 %99.99 %99.99
Literary %46.39 %46.39 %96.84
Scientific %36.37 %97.69 %99.94
Legal %23.53 %42.00 %99.99

Table 4: Percentile rankings of the Lead baseline, Tex-
tRank, and Random sentence selector across domains

the newswire domain although the systems have
1.20, 1.61, and 1.12 difference in their ROUGE-1,
ROUGE-2, and ROUGE-SU4 scores respectively.
The high percentile for theLead system explains
why it was so hard to improve over these baseline in
previous evaluations on newswire data (e.g., see the
evaluations from the Document Understanding Con-
ferences). Furthermore, we see from Table 2 that the
upper bounds corresponding to these scores are 65.7,
37.4, and 38.1 respectively, which are well above
both theTextRankand theLead systems. There-
fore, the percentile rankings of theLeadand theTex-
tRanksystems for this domain do not seem to give
us clues about how the two systems compare to each
other, nor about their actual distance from the up-
per bounds. There are two reasons for this: First,
as we mentioned earlier, most of the summary space
consists ofeasyextracts, which make the distribu-
tion long-tailed.10 Therefore even though we have
quite a bit of systems achieving high scores, their
number is negligible compared to the millions of ex-
tracts that are clustered around the mean. Secondly,
we need a higher resolution (i.e. larger number of
bins) in constructing the pdfs in order to be able to

10This also accounts for the fact that even though we might
have two very close ROUGE scores that are not statistically sig-
nificant, their percentile rankings might differ quite a bit.

909

see the difference more clearly between the two sys-
tems. Finally, when comparing two successful sys-
tems using percentile ranks, we believe the use of
error reduction would be more beneficial.

As a final note, we also randomly sampled ex-
tracts from documents in the scientific and legal do-
mains, but this time without considering the section
boundaries and without performing any segmenta-
tion. We kept the number of samples for each doc-
ument equal to the number of extracts we generated
from the same document using a divide-and-conquer
approach. We evaluated the samples using ROUGE-
1 recall scores, and obtained pdfs for each domain
using the same strategy discussed earlier in the pa-
per. The resulting pdfs, although they exhibit simi-
lar characteristics, they have mean values (µ) around
10% lower than the ones we listed in Table 2, which
supports the findings from earlier research that seg-
mentation is useful for text summarization.

9 Conclusions and Future Work

In this paper, we described a study that explores the
search space of extractive summaries across four dif-
ferent domains. For the news domain we generated
all possible extracts of the given documents, and
for the literary, scientific, and legal domains we fol-
lowed a divide-and-conquer approach by chunking
the documents into sections, handled each section
independently, and combined the resulting scores at
the end. We then used the distributions of the eval-
uations scores to generate the probability density
functions (pdfs) for each domain. Various statistical
properties of these pdfs helped us asses the difficulty
of each domain. Finally, we introduced a new scor-
ing scheme for automatic text summarization sys-
tems that can be derived from the pdfs. The new
scheme calculates a percentile rank of the ROUGE-
1 recall score of a system, which gives scores in the
range [0-100]. This lets us see how far each sys-
tem is from the upper bound, and thus make a better
comparison among the systems. The new scoring
system showed us that while there is a 20.1% gap
between the upper bound and the lead baseline for
the news domain, closing this gap is difficult, as the
percentile rank of the lead baseline system, 99.99%,
indicates that the system is already very close to the
upper bound.

Furthermore, except for the literary domain, the
percentile rank of theTextRanksystem is also very
close to the upperbound. This result does not sug-
gest that additional improvements cannot be made
in these domains, but that making further improve-
ments using only extractive summarization will be
considerably difficult. Moreover, in order to see
these future improvements, a higher resolution (i.e.
larger number of bins) will be needed when con-
structing the pdfs.

In all our experiments we used the ROUGE
(Lin, 2004) evaluation package and its ROUGE-
1, ROUGE-2, and ROUGE-SU4 recall scores. We
would like to note that since ROUGE performs its
evaluations based on the n-gram overlap between
the peer and the model summary, it does not take
other summary quality metrics such as coherence
and cohesion into account. However, our goal in this
paper was to analyze the topic-identification stage
only, which concentrates on selecting the right con-
tent from the document to include in the summary,
and the ROUGE scores were found to correlate well
with the human judgments on assessing the content
overlap of summaries.

In the future, we would like to apply a similar ex-
haustive search strategy, but this time with differ-
ent compression ratios, in order to see the impact
of compression ratios on the pdf of each domain.
Furthermore, we would also like to analyze the
high scoring extracts found by the exhaustive search,
in terms of coherence, position and other features.
Such an analysis would allow us to see whether these
extracts exhibit certain properties which could be
used in training machine learning systems.

Acknowledgments
The authors would like to thank the anonymous re-
viewers of NAACL-HLT 2010 for their feedback.

The work of the first author has been partly sup-
ported by an award from Google, Inc. The work of
the fourth and fifth authors has been supported by an
FPI grant (BES-2007-16268) from the Spanish Min-
istry of Science and Innovation, under the project
TEXT-MESS (TIN2006-15265-C06-01) funded by
the Spanish Government, and the project PROME-
TEO Desarrollo de Tcnicas Inteligentes e Interacti-
vas de Minera de Textos (2009/119) from the Valen-
cian Government.

910

References

Hakan Ceylan and Rada Mihalcea. 2009. The decompo-
sition of human-written book summaries. InCICLing
’09: Proceedings of the 10th International Conference
on Computational Linguistics and Intelligent Text Pro-
cessing, pages 582–593, Berlin, Heidelberg. Springer-
Verlag.

Robert L. Donaway, Kevin W. Drummey, and Laura A.
Mather. 2000. A comparison of rankings produced
by summarization evaluation measures. InNAACL-
ANLP 2000 Workshop on Automatic summarization,
pages 69–78, Morristown, NJ, USA. Association for
Computational Linguistics.

G. Erkan and Dragomir R. Radev. 2004. Lexrank:
Graph-based centrality as salience in text summariza-
tion. Journal of Artificial Intelligence Research, 22.

Eduard H. Hovy and Chin Yew Lin. 1999. Automated
text summarization in summarist. In Inderjeet Mani
and Mark T. Maybury, editors,Advances in Automatic
Text Summarization, pages 81–97. MIT Press.

Hongyan Jing. 2002. Using hidden markov modeling to
decompose human-written summaries.Comput. Lin-
guist., 28(4):527–543.

Julian Kupiec, Jan Pedersen, and Francine Chen. 1995.
A trainable document summarizer. InSIGIR ’95: Pro-
ceedings of the 18th annual international ACM SI-
GIR conference on Research and development in infor-
mation retrieval, pages 68–73, New York, NY, USA.
ACM.

Chin-Yew Lin and Eduard Hovy. 2003. The potential
and limitations of automatic sentence extraction for
summarization. InProceedings of the HLT-NAACL 03
on Text summarization workshop, pages 73–80, Mor-
ristown, NJ, USA. Association for Computational Lin-
guistics.

Chin-Yew Lin. 1999. Training a selection function for
extraction. InCIKM ’99: Proceedings of the eighth
international conference on Information and knowl-
edge management, pages 55–62, New York, NY, USA.
ACM.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Stan Szpakowicz Marie-
Francine Moens, editor,Text Summarization Branches
Out: Proceedings of the ACL-04 Workshop, pages 74–
81, Barcelona, Spain, July. Association for Computa-
tional Linguistics.

Daniel Marcu. 1999. The automatic construction of
large-scale corpora for summarization research. In
SIGIR ’99: Proceedings of the 22nd annual interna-
tional ACM SIGIR conference on Research and devel-
opment in information retrieval, pages 137–144, New
York, NY, USA. ACM.

Rada Mihalcea and Hakan Ceylan. 2007. Explorations in
automatic book summarization. InProceedings of the
2007 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Natu-
ral Language Learning (EMNLP-CoNLL), pages 380–
389, Prague, Czech Republic, June. Association for
Computational Linguistics.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into texts. InConference on Empirical
Methods in Natural Language Processing, Barcelona,
Spain.

Yoshio Nakao. 2000. An algorithm for one-page sum-
marization of a long text based on thematic hierarchy
detection. InACL ’00: Proceedings of the 38th An-
nual Meeting on Association for Computational Lin-
guistics, pages 302–309, Morristown, NJ, USA. Asso-
ciation for Computational Linguistics.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry
Winograd. 1999. The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford
InfoLab.

Karen Sparck-Jones. 1999. Automatic summarising:
Factors and directions. In Inderjeet Mani and Mark T.
Maybury, editors,Advances in Automatic Text Summa-
rization, pages 1–13. MIT Press.

Simone Teufel and Marc Moens. 1997. Sentence ex-
traction as a classification task. InProceedings of the
ACL’97/EACL’97 Workshop on Intelligent Scallable
Text Summarization, Madrid, Spain, July.

Masao Utiyama and Hitoshi Isahara. 2001. A statistical
model for domain-independent text segmentation. In
In Proceedings of the 9th Conference of the European
Chapter of the Association for Computational Linguis-
tics, pages 491–498.

Min yen Kan, Judith L. Klavans, and Kathleen R. McK-
eown. 1998. Linear segmentation and segment sig-
nificance. InIn Proceedings of the 6th International
Workshop of Very Large Corpora, pages 197–205.

911

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 912–920,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Multi-document Summarization via
Budgeted Maximization of Submodular Functions

Hui Lin
Dept. of Electrical Engineering

University of Washington
Seattle, WA 98195, USA

hlin@ee.washington.edu

Jeff Bilmes
Dept. of Electrical Engineering

University of Washington
Seattle, WA 98195, USA

bilmes@ee.washington.edu

Abstract

We treat the text summarization problem as
maximizing a submodular function under a
budget constraint. We show, both theoretically
and empirically, a modified greedy algorithm
can efficiently solve the budgeted submodu-
lar maximization problem near-optimally, and
we derive new approximation bounds in do-
ing so. Experiments on DUC’04 task show
that our approach is superior to the best-
performing method from the DUC’04 evalu-
ation on ROUGE-1 scores.

1 Introduction

Automatically generating summaries from large text
corpora has long been studied in both information
retrieval and natural language processing. There
are several types of text summarization tasks. For
example, if an input query is given, the generated
summary can be query-specific, and otherwise it is
generic. Also, the number of documents to be sum-
marized can vary from one to many. The constituent
sentences of a summary, moreover, might be formed
in a variety of different ways — summarization can
be conducted using either extraction or abstraction,
the former selects only sentences from the origi-
nal document set, whereas the latter involves natu-
ral language generation. In this paper, we address
the problem of generic extractive summaries from
clusters of related documents, commonly known as
multi-document summarization.

In extractive text summarization, textual units
(e.g., sentences) from a document set are extracted
to form a summary, where grammaticality is as-
sured at the local level. Finding the optimal sum-

mary can be viewed as a combinatorial optimiza-
tion problem which is NP-hard to solve (McDon-
ald, 2007). One of the standard methods for
this problem is called Maximum Marginal Rele-
vance (MMR) (Dang, 2005)(Carbonell and Gold-
stein, 1998), where a greedy algorithm selects the
most relevant sentences, and at the same time avoids
redundancy by removing sentences that are too sim-
ilar to already selected ones. One major problem
of MMR is that it is non-optimal because the deci-
sion is made based on the scores at the current it-
eration. McDonald (2007) proposed to replace the
greedy search of MMR with a globally optimal for-
mulation, where the basic MMR framework can be
expressed as a knapsack packing problem, and an
integer linear program (ILP) solver can be used to
maximize the resulting objective function. ILP Al-
gorithms, however, can sometimes either be expen-
sive for large scale problems or themselves might
only be heuristic without associated theoretical ap-
proximation guarantees.

In this paper, we study graph-based approaches
for multi-document summarization. Indeed, several
graph-based methods have been proposed for extrac-
tive summarization in the past. Erkan and Radev
(2004) introduced a stochastic graph-based method,
LexRank, for computing the relative importance of
textual units for multi-document summarization. In
LexRank the importance of sentences is computed
based on the concept of eigenvector centrality in
the graph representation of sentences. Mihalcea and
Tarau also proposed an eigenvector centrality algo-
rithm on weighted graphs for document summariza-
tion (Mihalcea and Tarau, 2004). Mihalcea et al.
later applied Google’s PageRank (Brin and Page,
1998) to natural language processing tasks ranging

912

from automatic keyphrase extraction and word sense
disambiguation, to extractive summarization (Mi-
halcea et al., 2004; Mihalcea, 2004). Recent work
in (Lin et al., 2009) presents a graph-based approach
where an undirected weighted graph is built for the
document to be summarized, and vertices represent
the candidate sentences and edge weights represent
the similarity between sentences. The summary ex-
traction procedure is done by maximizing a submod-
ular set function under a cardinality constraint.

Inspired by (Lin et al., 2009), we perform summa-
rization by maximizing submodular functions under
a budget constraint. A budget constraint is natural
in summarization task as the length of the summary
is often restricted. The length (byte budget) limita-
tion represents the real world scenario where sum-
maries are displayed using only limited computer
screen real estate. In practice, the candidate tex-
tual/linguistic units might not have identical costs
(e.g., sentence lengths vary). Since a cardinality
constraint is a special case (a budget constraint with
unity costs), our approach is more general than (Lin
et al., 2009). Moreover, we propose a modified
greedy algorithm (Section 4) and both theoretically
(Section 4.1) and empirically (Section 5.1) show that
the algorithm solves the problem near-optimally,
thanks to submodularity. Regarding summarization
performance, experiments on DUC’04 task show
that our approach is superior to the best-performing
method in DUC’04 evaluation on ROUGE-1 scores
(Section 5).

2 Background on Submodularity

Consider a set function f : 2V → R, which maps
subsets S ⊆ V of a finite ground set V to real num-
bers. f(·) is called normalized if f(∅) = 0, and
is monotone if f(S) ≤ f(T) whenever S ⊆ T .
f(·) is called submodular (Lovasz, 1983) if for any
S, T ⊆ V , we have

f(S ∪ T) + f(S ∩ T) ≤ f(S) + f(T). (1)

An equivalent definition of submodularity is the
property of diminishing returns, well-known in the
field of economics. That is, f(·) is submodular if for
any R ⊆ S ⊆ V and s ∈ V \ S,

f(S ∪ {s})− f(S) ≤ f(R ∪ {s})− f(R). (2)

Eqn. 2 states that the “value” of s never increases
in the contexts of ever larger sets, exactly the prop-
erty of diminishing returns. This phenomenon arises
naturally in many other contexts as well. For ex-
ample, the Shannon entropy function is submodu-
lar in the set of random variables. Submodular-
ity, moreover, is a discrete analog of convexity (Lo-
vasz, 1983). As convexity makes continuous func-
tions more amenable to optimization, submodular-
ity plays an essential role in combinatorial optimiza-
tion.

Many combinatorial optimization problems can
be solved optimally or near-optimally in polynomial
time only when the underlying function is submod-
ular. It has been shown that any submodular func-
tion can be minimized in polynomial time (Schri-
jver, 2000)(Iwata et al., 2001). Maximization of sub-
modular functions, however, is an NP-complete op-
timization problem but fortunately, some submod-
ular maximization problems can be solved near-
optimally. A famous result is that the maximization
of a monotone submodular function under a cardi-
nality constraint can be solved using a greedy al-
gorithm (Nemhauser et al., 1978) within a constant
factor (0.63) of being optimal. A constant-factor ap-
proximation algorithm has also been obtained for
maximizing monotone submodular function with a
knapsack constraint (see Section 4.2). Feige et.al.
(2007) studied unconstrained maximization of a ar-
bitrary submodular functions (not necessarily mono-
tone). Kawahara et.al. (2009) proposed a cutting-
plane method for optimally maximizing a submod-
ular set function under a cardinality constraint, and
Lee et.al. (2009) studied non-monotone submodu-
lar maximization under matroid and knapsack con-
straints.

3 Problem Setup

In this paper, we study the problem of maximizing a
submodular function under budget constraint, stated
formally below:

max
S⊆V

{
f(S) :

∑
i∈S

ci ≤ B

}
(3)

where V is the ground set of all linguistic units (e.g.,
sentences) in the document, S is the extracted sum-
mary (a subset of V), ci is the non-negative cost of

913

selecting unit i and B is our budget, and submodular
function f(·) scores the summary quality.

The budgeted constraint arises naturally since of-
ten the summary must be length limited as men-
tioned above. In particular, the budget B could be
the maximum number of words allowed in any sum-
mary, or alternatively the maximum number of bytes
of any summary, where ci would then be either num-
ber of words or the number of bytes in sentence i.

To benefit from submodular optimization, the
objective function measuring the summary quality
must be submodular. In general, there are two ways
to apply submodular optimization to any application
domain. One way is to force submodularity on an
application, leading to an artificial and poorly per-
forming objective function even if it can be opti-
mized well. The alternative is to address applica-
tions where submodularity naturally applies. We are
fortunate in that, like convexity in the continuous do-
main, submodularity seems to arise naturally in a va-
riety of discrete domains, and as we will see below,
extractive summarization is one of them. As men-
tioned in Section 1, our approach is graph-based,
not only because a graph is a natural representation
of the relationships and interactions between textual
units, but also because many submodular functions
are well defined on a graph and can naturally be used
in measuring the summary quality.

Suppose certain pairs (i, j) with i, j ∈ V are sim-
ilar and the similarity of i and j is measured by a
non-negative value wi,j . We can represent the en-
tire document with a weighted graph (V, E), with
non-negative weights wi,j associated with each edge
ei,j , e ∈ E. One well-known graph-based submod-
ular function that measures the similarity of S to the
remainder V \ S is the graph-cut function:

fcut(S) =
∑

i∈V \S

∑
j∈S

wi,j . (4)

In multi-document summarization, redundancy is a
particularly important issue since textual units from
different documents might convey the same infor-
mation. A high quality (small and meaningful) sum-
mary should not only be informative about the re-
mainder but also be compact (non-redundant). Typ-
ically, this goal is expressed as a combination of
maximizing the information coverage and minimiz-
ing the redundancy (as used in MMR (Carbonell and

Goldstein, 1998)). Inspired by this, we use the fol-
lowing objective by combining a λ-weighted penalty
term with the graph cut function:

fMMR(S) =
∑

i∈V \S

∑
j∈S

wi,j−λ
∑

i,j∈S:i̸=j

wi,j , λ ≥ 0.

Luckily, this function is still submodular as both the
graph cut function and the redundancy term are sub-
modular. Neither objective, however, is monotone,
something we address in Theorem 3. Although sim-
ilar to the MMR objective function, our approach is
different since 1) ours is graph-based and 2) we for-
malize the problem as submodular function maxi-
mization under the budget constraint where a simple
greedy algorithm can solve the problem guaranteed
near-optimally.

4 Algorithms

Algorithm 1 Modified greedy algorithm
1: G← ∅
2: U ← V
3: while U ̸= ∅ do
4: k ← arg maxℓ∈U

f(G∪{ℓ})−f(G)
(cℓ)r

5: G ← G ∪ {k} if
∑

i∈G ci + ck ≤ B and
f(G ∪ {k})− f(G) ≥ 0

6: U ← U \ {k}
7: end while
8: v∗ ← arg maxv∈V,cv≤B f({v})
9: return Gf = arg maxS∈{{v∗},G} f(S)

Inspired by (Khuller et al., 1999), we propose
Algorithm 1 to solve Eqn. (3). The algorithm se-
quentially finds unit k with the largest ratio of ob-
jective function gain to scaled cost, i.e., (f(G ∪
{ℓ})− f(G))/cr

ℓ , where r > 0 is the scaling factor.
If adding k increases the objective function value
while not violating the budget constraint, it is then
selected and otherwise bypassed. After the sequen-
tial selection, set G is compared to the within-budget
singleton with the largest objective value, and the
larger of the two becomes the final output.

The essential aspect of a greedy algorithm is
the design of the greedy heuristic. As discussed
in (Khuller et al., 1999), a heuristic that greedily se-
lects the k that maximizes (f(G∪{k})− f(G))/ck

has an unbounded approximation factor. For ex-
ample, let V = {a, b}, f({a}) = 1, f({b}) = p,

914

ca = 1, cb = p + 1, and B = p + 1. The solution
obtained by the greedy heuristic is {a} with objec-
tive function value 1, while the true optimal objec-
tive function value is p. The approximation factor
for this example is then p and therefore unbounded.

We address this issue by the following two mod-
ifications to the naive greedy algorithms. The first
one is the final step (line 8 and 9) in Algorithm 1
where set G and singletons are compared. This step
ensures that we could obtain a constant approxima-
tion factor for r = 1 (see the proof in the Appendix).

The second modification is that we introduce a
scaling factor r to adjust the scale of the cost. Sup-
pose, in the above example, we scale the cost as
ca = 1r, cb = (p+1)r, then selecting a or b depends
also on the scale r, and we might get the optimal so-
lution using a appropriate r. Indeed, the objective
function values and the costs might be uncalibrated
since they might measure different units. E.g., it is
hard to say if selecting a sentence of 15 words with
an objective function gain of 2 is better than select-
ing sentence of 10 words with gain of 1. Scaling
can potentially alleviate this mismatch (i.e., we can
adjust r on development set). Interestingly, our the-
oretical analysis of the performance guarantee of the
algorithm also gives us guidance about how to scale
the cost for a particular problem (see Section 4.1).

4.1 Analysis of performance guarantee
Although Algorithm 1 is essentially a simple greedy
strategy, we show that it solves Eqn. (3) globally and
near-optimally, by exploiting the structure of sub-
modularity. As far as we know, this is a new result
for submodular optimization, not previously stated
or published before.

Theorem 1. For normalized monotone submodular
function f(·), Algorithm 1 with r = 1 has a constant
approximation factor as follows:

f(Gf) ≥
(
1− e−

1
2

)
f(S∗), (5)

where S∗ is an optimal solution.

Proof. See Appendix.

Note that an α-approximation algorithm for an
optimization problem is a polynomial-time algo-
rithm that for all instances of the problem produces
a solution whose value is within a factor of α of the

value of the an optimal solution. So Theorem 1 ba-
sically states that the solution found by Algorithm 1
can be at least as good as (1 − 1/

√
e)f(S∗) ≈

0.39f(S∗) even in the worst case. A constant ap-
proximation bound is good since it is true for all in-
stances of the problem, and we always know how
good the algorithm is guaranteed to be without any
extra computation. For r ̸= 1, we resort to instance-
dependent bound where the approximation can be
easily computed per problem instance.

Theorem 2. With normalized monotone submodu-
lar f(·), for i = 1, . . . , |G|, let vi be the ith unit
added into G and Gi is the set after adding vi. When
0 ≤ r ≤ 1,

f(Gi) ≥

(
1−

i∏
k=1

(
1−

cr
vk

Br|S∗|1−r

))
f(S∗)

(6)

≥

(
1−

i∏
k=1

(
1−

cr
vk

Br|V |1−r

))
f(S∗) (7)

and when r ≥ 1,

f(Gi) ≥

(
1−

i∏
k=1

(
1−

(cvk

B

)r))
f(S∗). (8)

Proof. See Appendix.

Theorem 2 gives bounds for a specific instance of
the problem. Eqn. (6) requires the size |S∗|, which
is unknown, requiring us to estimate an upper bound
of the cardinality of the optimal set S∗. Obviously,
|S∗| ≤ |V |, giving us Eqn. (7). A tighter upper
bound is obtained, however, by sorting the costs.
That is, let c[1], c[2], . . . , c[|V |] be the sorted sequence
of costs in nondecreasing order, giving |S∗| < m
where

∑m−1
k=1 c[i] ≤ B and

∑m
k=1 c[i] > B. In this

case, the computation cost for the bound estimation
is O(|V | log |V |), which is quite feasible.

Note that both Theorem 1 and 2 are for mono-
tone submodular functions while our practical ob-
jective function, i.e. fMMR, is not guaranteed every-
where monotone. However, our theoretical results
still holds for fMMR with high probability in prac-
tice. Intuitively, in summarization tasks, the sum-
mary is usually small compared to the ground set
size (|S| ≪ |V |). When |S| is small, fMMR is

915

monotone and our theoretical results still hold. Pre-
cisely, assume that all edge weights are bounded:
wi,j ∈ [0, 1] (which is the case for cosine simi-
larity between non-negative vectors). Also assume
that edges weights are independently identically dis-
tributed with mean µ, i.e. E(wi,j) = µ. Given a
budget B, assume the maximum possible size of a
solution is K. Let α = 2λ + 1, and β = 2K − 1.
Notice that β ≪ |V | for our summarization task. We
have the following theorem:

Theorem 3. Algorithm 1 solves the summarization
problem near-optimally (i.e. Theorem 1 and Theo-
rem 2 hold) with high probability of at least

1− exp
{
−2(|V | − (α + 1)β)2µ2

|V |+ (α2 − 1)β
+ lnK

}
Proof. Omitted due to space limitation.

4.2 Related work

Algorithms for maximizing submodular function
under budget constraint (Eqn. (3)) have been stud-
ied before. Krause (2005) generalized the work by
Khuller et al.(1999) on budgeted maximum cover
problem to the submodular framework, and showed
a 1

2(1 − 1/e)-approximation algorithm. The algo-
rithm in (Krause and Guestrin, 2005) and (Khuller
et al., 1999) is actually a special case of Algorithm 1
when r = 1, and Theorem 1 gives a better bound
(i.e., (1− 1/

√
e) > 1

2(1− 1/e)) in this case. There
is also a greedy algorithm with partial enumerations
(Sviridenko, 2004; Krause and Guestrin, 2005) fac-
tor (1− 1/e). This algorithm, however, is too com-
putationally expensive and thus not practical for real
world applications (the computation cost is O(|V |5)
in general). When each unit has identical cost, the
budget constraint reduces to cardinality constraint
where a greedy algorithm is known to be a (1−1/e)-
approximation algorithm (Nemhauser et al., 1978)
which is the best that can be achieved in polyno-
mial time (Feige, 1998) if P ̸= NP. Recent work
(Takamura and Okumura, 2009) applied the maxi-
mum coverage problem to text summarization (with-
out apparently being aware that their objective is
submodular) and studied a similar algorithm to ours
when r = 1 and for the non-penalized graph-cut
function. This problem, however, is a special case
of constrained submodular function maximization.

5 Experiments

We evaluated our approach on the data set of
DUC’04 (2004) with the setting of task 2, which
is a multi-document summarization task on English
news articles. In this task, 50 document clusters
are given, each of which consists of 10 documents.
For each document cluster, a short multi-document
summary is to be generated. The summary should
not be longer than 665 bytes including spaces and
punctuation, as required in the DUC’04 evaluation.
We used DUC’03 as our development set. All docu-
ments were segmented into sentences using a script
distributed by DUC. ROUGE version 1.5.5 (Lin,
2004), which is widely used in the study of summa-
rization, was used to evaluate summarization perfor-
mance in our experiments 1. We focus on ROUGE-
1 (unigram) F-measure scores since it has demon-
strated strong correlation with human annotation
(Lin, 2004).

The basic textual/linguistic units we consider in
our experiments are sentences. For each document
cluster, sentences in all the documents of this cluster
forms the ground set V . We built semantic graphs
for each document cluster based on cosine similar-
ity, where cosine similarity is computed based on
the TF-IDF (term frequency, inverse document fre-
quency) vectors for the words in the sentences. The
cosine similarity measures the similarity between
sentences, i.e., wi,j .

Here the IDF values were calculated using all the
document clusters. The weighted graph was built
by connecting vertices (corresponding to sentences)
with weight wi,j > 0. Any unconnected vertex was
removed from the graph, which is equivalent to pre-
excluding certain sentences from the summary.

5.1 Comparison with exact solution
In this section, we empirically show that Algo-
rithm 1 works near-optimally in practice. To deter-
mine how much accuracy is lost due to approxima-
tions, we compared our approximation algorithms
with an exact solution. The exact solutions were ob-
tained by Integer Linear Programming (ILP). Solv-
ing arbitrary ILP is an NP-hard problem. If the size
of the problem is not too large, we can sometimes
find the exact solution within a manageable time

1Options used: -a -c 95 -b 665 -m -n 4 -w 1.2

916

using a branch-and-bound method. In our experi-
ments, MOSEK was used as our ILP solver.

We formalize Eqn. (3) as an ILP by introducing
indicator (binary) variables xi,j , yi,j , i ̸= j and zi

for i, j ∈ V . In particular, zi = 1 indicates that
unit i is selected, i.e., i ∈ S, xi,j = 1 indicates that
i ∈ S but j /∈ S, and yi,j = 1 indicates both i and
j are selected. Adding constraints to ensure a valid
solution, we have the following ILP formulation for
Eqn. (3) with objective function fMMR(S):

max
∑

i̸=j,i,j∈V

wi,jxi,j − λ
∑

i̸=j,i,j∈V

wi,jyi,j

subject to:
∑
i∈V

cizi ≤ B,

xi,j − zi ≤ 0, xi,j + zj ≤ 1, zi − zj − xi,j ≤ 0,

yi,j − zi ≤ 0, yi,j − zj ≤ 0, zi + zj − yi,j ≤ 1,

xi,j , yi,j , zi ∈ {0, 1},∀i ̸= j, i, j ∈ V

Note that the number of variables in the ILP for-
mulation is O(|V |2). For a document cluster with
hundreds of candidate textual units, the scale of the
problem easily grows involving tens of thousands
of variables, making the problem very expensive to
solve. For instance, solving the ILP exactly on a
document cluster with 182 sentences (as used in Fig-
ure 1) took about 17 hours while our Algorithm 1
finished in less than 0.01 seconds.

We tested both approximate and exact algorithms
on DUC’03 data where 60 document clusters were
used (30 TDT document clusters and 30 TREC doc-
ument clusters), each of which contains 10 docu-
ments on average. The true approximation factor
was computed by dividing the objective function
value found by Algorithm 1 over the optimal ob-
jective function value (found by ILP). The average
approximation factors over the 58 document clus-
ters (ILP on 2 of the 60 document clusters failed to
finish) are shown in Table 1, along with other statis-
tics. On average Algorithm 1 finds a solution that is
over 90% as good as the optimal solution for many
different r values, which backs up our claim that
the modified greedy algorithm solves the problem
near-optimally, even occasionally optimally (Figure
1 shows one such example).

The higher objective function value does not al-
ways indicate higher ROUGE-1 score. Indeed,

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12

op mal

r=0

r=0.5

r=1

r=1.5

number of sentences in the summary

O
b

je
ct

iv
e

 f
u

n
ct

io
n

 v
a

lu
e

exact solution

Figure 1: Application of Algorithm 1 when summariz-
ing document cluster d30001t in the DUC’04 dataset with
summary size limited to 665 bytes. The objective func-
tion was fMMR with λ = 2. The plots show the achieved
objective function as the number of selected sentences
grows. The plots stop when in each case adding more
sentences violates the budget. Algorithm 1 with r = 1
found the optimal solution exactly.

rather than directly optimizing ROUGE, we opti-
mize a surrogate submodular function that indicates
the quality of a summary. Optimality in the submod-
ular function does not necessary indicate optimality
in ROUGE score. Nevertheless, we will show that
our approach outperforms several other approaches
in terms of ROUGE. We note that ROUGE is itself
a surrogate for true human-judged summary quality,
it might possibly be that fMMR is a still better surro-
gate — we do not consider this possibility further in
this work, however.

5.2 Summarization Results

We used DUC’03 (as above) for our development
set to investigate how r and λ relate to the ROUGE-
1 score. From Figure 2, the best performance is
achieved with r = 0.3, λ = 4. Using these settings,
we applied our approach to the DUC’04 task. The
results, along with the results of other approaches,
are shown in Table 2. All the results in Table 2 are
presented as ROUGE-1 F-measure scores. 2

We compared our approach to two other well-

2When the evaluation was done in 2004, ROUGE was still in
revision 1.2.1, so we re-evaluated the DUC’04 submissions us-
ing ROUGE v1.5.5 and the numbers are slightly different from
the those reported officially.

917

Table 1: Comparison of Algorithm 1 to exact algorithms
on DUC’03 dataset. All the numbers shown in the ta-
ble are the average statistics (mean/std). The “true” ap-
proximation factor is the ratio of objective function value
found by Algorithm 1 over the ILP-derived true-optimal
objective value, and the approximation bounds were esti-
mated using Theorem 2.

Approx. factor ROUGE-1
true bound (%)

exact 1.00 - 33.60/5.05
r = 0.0 0.65/0.15 ≥0.19/0.08 33.50/5.94
r = 0.1 0.71/0.15 ≥0.24/0.08 33.68/6.03
r = 0.3 0.88/0.11 ≥0.37/0.06 34.77/5.49
r = 0.5 0.96/0.04 ≥0.48/0.05 34.33/5.94
r = 0.7 0.98/0.02 ≥0.56/0.05 34.08/5.41
r = 1.0 0.98/0.02 ≥0.65/0.04 33.32/5.14
r = 1.2 0.97/0.02 ≥0.48/0.05 32.54/4.69

32.0%

32.5%

33.0%

33.5%

34.0%

34.5%

35.0%

0 5 10 15

r=0

r=0.3

r=0.5

r=0.7

r=1

R
O

U
G

E
-1

 F
-m

e
a

s
u

re

Figure 2: Different combinations of r and λ for fMMR
related to ROUGE-1 score on DUC’03 task 1.

known graph-based approaches, LexRank and
PageRank. LexRank was one of the participat-
ing system in DUC’04, with peer code 104. For
PageRank, we implemented the recursive graph-
based ranking algorithm ourselves. The importance
of sentences was estimated in an iterative way as
in (Brin and Page, 1998)(Mihalcea et al., 2004).
Sentences were then selected based on their impor-
tance rankings until the budget constraint was vi-
olated. The graphs used for PageRank were ex-
actly the graphs in our submodular approaches (i.e.,
an undirected graph). In both cases, submodu-
lar summarization achieves better ROUGE-1 scores.
The improvement is statistically significant by the

Wilcoxon signed rank test at level p < 0.05. Our
approach also outperforms the best system (Conroy
et al., 2004), peer code 65 in the DUC’04 evalua-
tion although not as significant (p < 0.08). The rea-
son might be that DUC’03 is a poor representation
of DUC’04 — indeed, by varying r and λ over the
ranges 0 ≤ r ≤ 0.2 and 5 ≤ λ ≤ 9 respectively, the
DUC’04 ROUGE-1 scores were all > 38.8% with
the best DUC’04 score being 39.3%.

Table 2: ROUGE-1 F-measure results (%)

Method ROUGE-1 score
peer65 (best system in DUC04) 37.94

peer104 (LexRank) 37.12
PageRank 35.37

Submodular (r = 0.3, λ = 4) 38.39

6 Appendix
We analyze the performance guarantee of Algorithm 1.
We use the following notation: S∗ is the optimal solu-
tion; Gf is the final solution obtained by Algorithm 1;
G is the solution obtained by the greedy heuristic (line
1 to 7 in Algorithm 1); vi is the ith unit added to G,
i = 1, . . . , |G|; Gi is the set obtained by greedy algorithm
after adding vi (i.e., Gi = ∪i

k=1{vk}, for i = 1, . . . , |G|,
with G0 = ∅ and G|G| = G); f(·) : 2V → R is a
monotone submodular function; and ρk(S) is the gain of
adding k to S, i.e., f(S ∪ {k})− f(S).

Lemma 1. ∀X, Y ⊆ V ,

f(X) ≤ f(Y) +
∑

k∈X\Y

ρk(Y). (9)

Proof. See (Nemhauser et al., 1978)

Lemma 2. For i = 1, . . . , |G|, when 0 ≤ r ≤ 1,

f(S∗)− f(Gi−1) ≤
Br|S∗|1−r

cr
vi

(f(Gi)− f(Gi−1)),

(10)

and when r ≥ 1,

f(S∗)− f(Gi−1) ≤
(
B
cvi

)r

(f(Gi)− f(Gi−1))

(11)

Proof. Based on line 4 of Algorithm 1, we have

∀u ∈ S∗ \Gi−1,
ρu(Gi−1)

cr
u

≤ ρvi(Gi−1)
cr
vi

.

918

Thus when 0 ≤ r ≤ 1,∑
u∈S∗\Gi−1

ρu(Gi−1) ≤
ρvi(Gi−1)

cr
vi

∑
u∈S∗\Gi−1

cr
u

≤ ρvi(Gi−1)
cr
vi

|S∗ \Gi−1|

(∑
u∈S∗\Gi−1

cu

|S∗ \Gi−1|

)r

≤ ρvi(Gi−1)
cr
vi

|S∗|1−r

 ∑
u∈S∗\Gi−1

cu

r

≤ ρvi(Gi−1)
cr
vi

|S∗|1−rBr,

where the second inequality is due to the concavity of
g(x) = xr, x > 0, 0 ≤ r ≤ 1. The last inequality uses
the fact that

∑
u∈S∗ cu ≤ B. Similarly, when r ≥ 1,

∑
u∈S∗\Gi−1

ρu(Gi−1) ≤
ρvi(Gi−1)

cr
vi

∑
u∈S∗\Gi−1

cr
u

≤ ρvi(Gi−1)
cr
vi

 ∑
u∈S∗\Gi−1

cu

r

≤ ρvi(Gi−1)
cr
vi

Br.

Applying Lemma 1, i.e., let X = S∗ and Y = Gi−1, the
lemma immediately follows.

The following is a proof of Theorem 2.

Proof. Obviously, the theorem is true when i = 1 by
applying Lemma 2.

Assume that the theorem is true for i−1, 2 ≤ i ≤ |G|,
we show that it also holds for i. When 0 ≤ r ≤ 1,

f(Gi) = f(Gi−1) + (f(Gi)− f(Gi−1))

≥ f(Gi−1) +
cr
vi

Br|S∗|1−r
(f(S∗)− f(Gi−1))

=
(

1−
cr
vi

Br|S∗|1−r

)
f(Gi−1) +

cr
vi

Br|S∗|1−r
f(S∗)

≥
(

1−
cr
vi

Br|S∗|1−r

)(
1−

i−1∏
k=1

(
1−

cr
vk

Br|S∗|1−r

))

f(S∗) +
cr
vi

Br|S∗|1−r
f(S∗)

=

(
1−

i∏
k=1

(
1−

cr
vk

Br|S∗|1−r

))
f(S∗).

The case when r ≥ 1 can be proven similarly.

Now we are ready to prove Theorem 1.

Proof. Consider the following two cases:
Case 1: ∃v ∈ V such that f({v}) > 1

2f(S∗). Then it
is guaranteed that f(Gf) ≥ f({v})) > 1

2f(S∗) due line
9 of Algorithm 1.

Case 2: ∀v ∈ V , we have f({v}) ≤ 1
2f(S∗). We

consider the following two sub-cases, namely Case 2.1
and Case 2.2:

Case 2.1: If
∑

v∈G cv ≤ 1
2B, then we know that

∀v /∈ G, cv > 1
2B since otherwise we can add a v /∈ G

into G to increase the objective function value without
violating the budget constraint. This implies that there is
at most one unit in S∗ \ G since otherwise we will have∑

v∈S∗ cv > B. By assumption, we have f(S∗ \ G) ≤
1
2f(S∗). Submodularity of f(·) gives us:

f(S∗ \G) + f(S∗ ∩G) ≥ f(S∗),

which implies f(S∗ ∩G) ≥ 1
2f(S∗). Thus we have

f(Gf) ≥ f(G) ≥ f(S∗ ∩G) ≥ 1
2
f(S∗),

where the second inequality follows from monotonicity.
Case 2.2: If

∑
v∈G cv > 1

2B, for 0 ≤ r ≤ 1, using
Theorem 2, we have

f(G) ≥

1−
|G|∏
k=1

(
1−

cr
vk

Br|S∗|1−r

) f(S∗)

≥

1−
|G|∏
k=1

1−
cr
vk
|S∗|r−1

2r
(∑|G|

k=1 cvk

)r

 f(S∗)

≥

(
1−

(
1− |S

∗|r−1

2r|G|r

)|G|)
f(S∗)

≥
(

1− e
− 1

2

“

|S∗|
2|G|

”r−1)
f(S∗)

where the third inequality uses the fact (provable using
Lagrange multipliers) that for a1, . . . , an ∈ R+ such that∑n

i=1 ai = α, function

1−
n∏

i=1

(
1− βar

i

αr

)
achieves its minimum of 1 − (1 − β/nr)n when a1 =
· · · = an = α/n for α, β > 0. The last inequality follows
from e−x ≥ 1− x.

In all cases, we have

f(Gf) ≥ min
{

1
2
, 1− e

− 1
2

“

|S∗|
2|G|

”r−1}
f(S∗)

In particular, when r = 1, we obtain the constant approx-
imation factor, i.e.

f(Gf) ≥
(
1− e−

1
2

)
f(S∗)

919

Acknowledgments

This work is supported by an ONR MURI grant
(No. N000140510388), the Companions project
(IST programme under EC grant IST-FP6-034434),
and the National Science Foundation under grant
IIS-0535100. We also wish to thank the anonymous
reviewers for their comments.

References
S. Brin and L. Page. 1998. The anatomy of a large-scale

hypertextual Web search engine. Computer networks
and ISDN systems, 30(1-7):107–117.

Jaime Carbonell and Jade Goldstein. 1998. The use of
MMR, diversity-based reranking for reordering docu-
ments and producing summaries. In Proc. of SIGIR.

J.M. Conroy, J.D. Schlesinger, J. Goldstein, and D.P.
O’leary. 2004. Left-brain/right-brain multi-document
summarization. In Proceedings of the Document Un-
derstanding Conference (DUC 2004).

H.T. Dang. 2005. Overview of DUC 2005. In Proceed-
ings of the Document Understanding Conference.

2004. Document understanding conferences (DUC).
http://www-nlpir.nist.gov/projects/duc/index.html.

G. Erkan and D.R. Radev. 2004. LexRank: Graph-
based Lexical Centrality as Salience in Text Summa-
rization. Journal of Artificial Intelligence Research,
22:457–479.

U. Feige, V. Mirrokni, and J. Vondrak. 2007. Maximiz-
ing non-monotone submodular functions. In Proceed-
ings of 48th Annual IEEE Symposium on Foundations
of Computer Science (FOCS).

U. Feige. 1998. A threshold of ln n for approximating set
cover. Journal of the ACM (JACM), 45(4):634–652.

G. Goel, , C. Karande, P. Tripathi, and L. Wang.
2009. Approximability of Combinatorial Problems
with Multi-agent Submodular Cost Functions. FOCS.

S. Iwata, L. Fleischer, and S. Fujishige. 2001. A
combinatorial strongly polynomial algorithm for min-
imizing submodular functions. Journal of the ACM,
48(4):761–777.

Yoshinobu Kawahara, Kiyohito Nagano, Koji Tsuda, and
Jeff Bilmes. 2009. Submodularity cuts and appli-
cations. In Neural Information Processing Society
(NIPS), Vancouver, Canada, December.

S. Khuller, A. Moss, and J. Naor. 1999. The budgeted
maximum coverage problem. Information Processing
Letters, 70(1):39–45.

A. Krause and C. Guestrin. 2005. A note on the bud-
geted maximization of submodular functions. Techni-
cal Rep. No. CMU-CALD-05, 103.

J. Lee, V.S. Mirrokni, V. Nagarajan, and M. Sviridenko.
2009. Non-monotone submodular maximization un-
der matroid and knapsack constraints. In Proceedings
of the 41st annual ACM symposium on Symposium on
theory of computing, pages 323–332. ACM New York,
NY, USA.

Hui Lin, Jeff Bilmes, and Shasha Xie. 2009. Graph-
based submodular selection for extractive summariza-
tion. In Proc. IEEE Automatic Speech Recognition
and Understanding (ASRU), Merano, Italy, December.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summarization
Branches Out: Proceedings of the ACL-04 Workshop.

L. Lovasz. 1983. Submodular functions and convexity.
Mathematical programming-The state of the art,(eds.
A. Bachem, M. Grotschel and B. Korte) Springer,
pages 235–257.

R. McDonald. 2007. A study of global inference al-
gorithms in multi-document summarization. Lecture
Notes in Computer Science, 4425:557.

R. Mihalcea and P. Tarau. 2004. TextRank: bringing or-
der into texts. In Proceedings of EMNLP, Barcelona,
Spain.

R. Mihalcea, P. Tarau, and E. Figa. 2004. PageRank on
semantic networks, with application to word sense dis-
ambiguation. In Proceedings of the 20th International
Conference on Computational Linguistics (COLING-
04).

R. Mihalcea. 2004. Graph-based ranking algorithms for
sentence extraction, applied to text summarization. In
Proceedings of the ACL 2004 (companion volume).

2006. Mosek.
G.L. Nemhauser, L.A. Wolsey, and M.L. Fisher. 1978.

An analysis of approximations for maximizing sub-
modular set functions I. Mathematical Programming,
14(1):265–294.

A. Schrijver. 2000. A combinatorial algorithm mini-
mizing submodular functions in strongly polynomial
time. Journal of Combinatorial Theory, Series B,
80(2):346–355.

M. Sviridenko. 2004. A note on maximizing a submod-
ular set function subject to a knapsack constraint. Op-
erations Research Letters, 32(1):41–43.

H. Takamura and M. Okumura. 2009. Text summariza-
tion model based on maximum coverage problem and
its variant. In Proceedings of the 12th Conference of
the European Chapter of the Association for Compu-
tational Linguistics, pages 781–789. Association for
Computational Linguistics.

920

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 921–929,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Cross-lingual Induction of Selectional Preferences
with Bilingual Vector Spaces

Yves Peirsman
QLVL, University of Leuven

Research Foundation – Flanders (FWO)
yves.peirsman@arts.kuleuven.be

Sebastian Padó
IMS, University of Stuttgart

pado@ims.uni-stuttgart.de

Abstract

We describe a cross-lingual method for the in-
duction of selectional preferences for resource-
poor languages, where no accurate monolin-
gual models are available. The method uses
bilingual vector spaces to “translate” foreign
language predicate-argument structures into
a resource-rich language like English. The
only prerequisite for constructing the bilin-
gual vector space is a large unparsed corpus
in the resource-poor language, although the
model can profit from (even noisy) syntactic
knowledge. Our experiments show that the
cross-lingual predictions correlate well with
human ratings, clearly outperforming monolin-
gual baseline models.

1 Introduction

Selectional preferences capture the empirical observa-
tion that not all words are equally good arguments to
a given verb in a particular argument position (Wilks,
1975; Resnik, 1996). For instance, the subjects of
the English verb to shoot are generally people, while
the direct objects can be people or animals. This is
reflected in speakers’ intuitions. Table 1 shows that
the combination the hunter shot the deer is judged
more plausible than the deer shot the hunter. Selec-
tional preferences do not only play an important role
in human sentence processing (McRae et al., 1998),
but are also helpful for NLP tasks like word sense
disambiguation (McCarthy and Carroll, 2003) and
semantic role labeling (Gildea and Jurafsky, 2002).

Computational models of selectional preferences
predict such plausibilities for triples of a predicate p,
an argument position a, and a head word h, such as

Predicate Relation Noun Plausibility
shoot subject hunter 6.9
shoot object hunter 2.8
shoot subject deer 1.0
shoot object deer 6.4

Table 1: Predicate-relation-noun triples with human plau-
sibility judgments on a 7-point scale (McRae et al., 1998)

(shoot,object,hunter). All recent models take a two-
step approach: (1), they extract all triples (p, a, h)
from a large corpus; (2), they apply some type of
generalization to make predictions for unseen items.
Clearly, the accuracy of these models relies crucially
on the quality and coverage of the extracted triples,
and thus on the syntactic analysis of the corpus. Un-
fortunately, corpora that are both large enough and
have a very good syntactic analysis are only available
for a handful of Western and Asian languages, which
leaves all other languages without reliable selectional
preference models.

In this paper, we propose a cross-lingual knowl-
edge transfer approach to this problem: We automat-
ically translate triples (p, a, h) from resource-poor
languages into English, where large and high-quality
parsed corpora are available and we can compute a
reliable plausibility estimate. The translations are
extracted from a bilingual semantic space, which can
be constructed via bootstrapping from large unparsed
corpora in the two languages, without the need for
parallel corpora or bilingual lexical resources.
Structure of the paper. Section 2 reviews models
for selectional preferences. In Section 3, we describe
our approach. Section 4 introduces our experimental
setup, and Sections 5 and 6 present and discuss our
experiments. Section 7 wraps up.

921

2 Selectional Preferences

The first broad-coverage model of selectional prefer-
ences was developed by Resnik (1996). To estimate
the plausibility of a triple (p, a, h), Resnik first ex-
tracted all head words seen with predicate p in posi-
tion a, Seena(p), from a corpus. He then used the
WordNet hierarchy to generalize over the head words
and to create predictions for unseen ones. A number
of studies has followed the same approach, exploring
different ways of using the structure of WordNet (Abe
and Li, 1996; Clark and Weir, 2002). While these
approaches show good results, they can only make
predictions for argument heads that are covered by
WordNet. This is already a problem for English, and
much more so in other languages, where comparable
resources are often much smaller or entirely absent.

A promising alternative approach is to derive
the generalizations from distributional informa-
tion (Prescher et al., 2000; Padó et al., 2007; Bergsma
et al., 2008). For example, the Padó et al. (2007)
model computes vector space representations for all
head words h and defines the plausibility of the triple
(p, a, h) as a weighted mean of the vector space simi-
larities between h and all h′ in Seena(p):

Pl(p, a, h) =
∑

h′∈Seena(p)

w(h′)· sim(h, h′)∑
h′ w(h′)

(1)

where w(h′) is a weight, typically frequency.
In this model, the generalization is provided by dis-

tributional similarity, which can be computed from a
large corpus, without the need for additional lexical
resources. Padó et al. found it to outperform Resnik’s
approach in an evaluation against human plausibility
judgments. However, note that competitive results
are only obtained by representing the head words in
“syntactic” vector spaces whose dimensions consist
of context words with their syntactic relation to the
target rather than just context words. This is not sur-
prising: Presumably, hunter and deer share a domain
and are likely to have similar word-based context
distributions, even though they differ with regard to
their plausibility for particular predicate-argument
positions. Only when the vector space can capture
their different syntactic co-occurrence patterns can
the model predict different plausibilities.

English tripleGerman triple
(schießen,obj,Hirsch)

monolingual
selectional
preference

model

monolingual
selectional
preference

model

(shoot,obj,deer)bilingual
vector space

deer
Hirsch

schießen
shoot

Figure 1: Predicting selectional preferences for a source
language (e.g. German) by translating into a target lan-
guage (e.g. English) with a bilingual vector space.

3 Cross-lingual selectional preferences

In order to compute reliable selectional preference
representations, distributional models need to see
at least some head words for each (p, a) combina-
tion. Manually annotated treebank corpora, which
are becoming available for an increasing number of
languages, are too small for this task. We therefore
explore the idea of predicting the selectional pref-
erences for such languages by taking advantage of
large corpora with high-quality syntactic analyses in
resource-rich languages like English. This idea falls
into the general approach of cross-lingual knowledge
transfer (see e.g. Hwa et al., 2005). The application
to selectional preferences was suggested by Agirre et
al. (2003), who demonstrated its feasibility by man-
ual translation between Basque and English. We
extend their experiments to an automatic model that
predicts plausibility judgments in a resource-poor
language (source language) by exploiting a model in
a resource-rich language (target language).

Figure 1 sketches our method. We assume that
there is not enough high-quality data to build a mono-
lingual selectional preference model for the source
language (shown by dotted lines). However, we can
use a bilingual vector space, that is, a semantic space
in which words of both the source and the target
language are represented, to translate each source
language word s into the target language by identify-
ing its nearest (most similar) target word tr(s):

tr(s) = argmaxt sim(s, t) (2)

Now we can use a target language selectional prefer-
ence model to obtain plausibilities for source triples:

Pls(p, a, h) = Plt(tr(p), a, tr(h)) (3)

where the superscript indicates the language.

922

Eq. (3) gives rise to three questions: (1), How can
we construct the bilingual space to model tr? (2), Is
translating actually the appropriate way of transfer-
ring selectional preferences? (3), Is it reasonable to
retain the source language argument positions like
subject or object? The following subsections discuss
(1) and (2); we will address (3) in Sections 5 and 6.

3.1 Bilingual Vector Spaces
Bilingual vector spaces are vector spaces in which
words from two languages are represented (cf. Fig. 2).
The dimensions of this space are labeled with bilin-
gual context word pairs (like secretly/heimlich and
rifle/Gewehr for German–English) that are mutual
translations. By treating such context word pairs as
single dimensions, the vector space can represent tar-
get words from both languages, counting the target
words’ co-occurrences with the context words from
the respective language. In other words, a source-
target word pair (s, t) will be assigned similar vectors
in the semantic space if the context words of s are
translations of the context words of t. Cross-lingual
semantic similarity between words can be measured
using standard vector space similarity (Lee, 1999).

Importantly, bilingual vector spaces can be built
on the basis of co-occurrences drawn from two un-
related corpora for the source and target languages.
Their construction does not require resources such
as parallel corpora or bilingual translation lexicons,
which might not be available for resource-poor source
languages. Where parallel corpora exist, they often
cover specific domains (e.g., politics), while many
bilingual lexicons are prone to ambiguity problems.

The main challenge in constructing bilingual vec-
tor spaces is determining the set of dimensions,
i.e., bilingual word pairs, using as little knowledge as
possible. Most often, such pairs are extracted from
small bilingual lexicons (Fung and McKeown, 1997;
Rapp, 1999; Chiao and Zweigenbaum, 2002). As
mentioned above, such resources might not be avail-
able. We thus follow an alternative approach by using
frequent cognates, words that are shared between the
two languages (Markó et al., 2005). Cognates can
be extracted by simple string matching between the
corpora, and mostly share their meaning (Koehn and
Knight, 2002). However, they account for (at most) a
small percentage of all interesting translation pairs.

To extend the set of dimensions available for the

shoothit

stalk

rifle/
Gewehr

secretly/
heimlich

schießen

anschleichen

Figure 2: Sketch of a bilingual vector space for English
(solid dots) and German (empty circles).

bilingual space, we use these cognates merely as a
starting point for a bootstrapping process: We build
a bilingual vector space with the initial word pairs as
dimensions, and identify nearest neighbors between
the two languages in the space. These are added as
dimensions of the bilingual space, and the process
is repeated. Since the focus is on identifying reli-
able source-target word pairs rather than complete
coverage as in Eq. (2), we adopt a symmetrical defi-
nition of translation that pairs up only mutual nearest
neighbors, and allows words to remain untranslated:1

trsym(s) = t iff tr(s) = t and tr(t) = s (4)

From the second iteration onward, this process intro-
duces dimensions that are not identical graphemes,
such as Kind–child and Geschwindigkeit–speed, and
is iterated until convergence. Since each word of
either language can only participate in at most one
dimension, dimensions acquired in later steps can cor-
rect wrong pairs from previous steps, like the “false
friend” German Kind ‘child’ – English kind, which
is part of the initial set of cognates.

3.2 Translation and Selectional Preferences
As Figure 1 shows, the easiest way of exploiting a
bilingual semantic space is to identify for each source
word the target language word with the highest se-
mantic similarity. For example, in Figure 2, the best
translation of German schießen is its English nearest
neighbor, shoot. However, it is risky to rely on the
single nearest neighbor – it might simply be wrong.
Even if it is correct, data sparsity is an issue: The
translations may be infrequent in the target language,
or the two translations of p and h may form unlikely
collocates for target language-internal reasons (like

1To avoid unreliable vectors, we also adopt only the 50%
most frequent of the trsym pairs. Frequency is defined as the
geometric mean of the two words’ monolingual frequencies.

923

difference in register) that do not reflect plausibility.
A third issue are monolingual semantic phenomena
like polysemy and idioms: The implausible German
triple (schießen,obj,Brise) will be judged as very plau-
sible due to the English idiom to shoot the breeze.

A look at the broader neighborhood of schießen
suggests that its second and third-best English neigh-
bors, hit, and stalk, can be used to smooth plausibility
estimates for schießen. Instead of translating source
language words by their single nearest neighbor, we
will take its k nearest neighbors into account. This
is defensible also from a more fundamental point of
view, which suggests that the cross-lingual transfer of
selectional preferences does not require literal trans-
lation in order to work. First, ontological models
like Resnik’s assume that synonymous words behave
similarly with respect to selectional preferences. Sec-
ond, recent work by Chambers and Jurafsky (2009)
has induced “narrative chains”, i.e., likely sequences
of events, by their use of similar head words. Thus,
we expect that all k nearest neighbors of a source
predicate s are informative for the selectional prefer-
ences of s (like schießen) as long as they are either
synonyms of its literal translation (shoot/hit) or come
from the same narrative chain (stalk/kill/. . .).

It is also clear that smoothing does not always
equate better predictions. Closeness in a word-based
vector space can also just reflect semantic association.
For example, Spanish tenista ‘tennis player’ is highly
associated with English tennis, but is a bad translation
in terms of selectional preferences. We assume that
this problem is more acute for nouns than for verbs:
The context of verbs is dominated by their arguments,
which is not true for nouns. Consequently, close
nouns in vector space can differ widely in ontological
type, while close verbs generally have one or more
similar argument slots. In our model, we will thus
consider several verb translations, but just the best
head word translation. For details, see Section 5.

4 Experimental Setup

Our evaluation uses English as the target language
and two source languages: German (as a very close
neighbor of English) and Spanish (as a more distant
one). Neither of these languages are really resource-
poor, but they allow us to compare our cross-lingual
model against monolingual models, to emulate dif-

ferent levels of “resource poorness” and to examine
the model’s learning curve.

Plausibility Data. For German, we used the plau-
sibility judgments collected by Brockmann (2002).
The dataset contains human judgments for ninety
triples sampled from the manually annotated 1 mil-
lion word TiGer corpus (Brants et al., 2002): ten
verbs with three argument positions (subject [SUBJ],
direct object [DOBJ], and oblique (prepositional) ob-
ject [POBJ]) combined with three head words. Mod-
els are evaluated against such datasets by correlating
predicted plausibilities with the (not normally dis-
tributed) human judgments using Spearman’s ρ, a
non-parametric rank-order correlation coefficient.

We constructed a similar 90-triple data set for
Spanish by sampling triples from two Spanish cor-
pora (see below) using Brockmann’s (2002) crite-
ria. Human judgments for the triples were collected
through the Amazon Mechanical Turk (AMT) crowd-
sourcing platform (Snow et al., 2008). We asked
native speakers of Spanish to rate the plausibility of
a simple sentence with the relevant verb-argument
combination on a five-point Likert scale, obtaining
between 12 and 17 judgments for each triple. For
each datapoint, we removed the single lowest and
highest judgments and computed the mean. We as-
sessed the reliability of our data by replicating Brock-
mann’s experiment for German with our AMT setup.
With a Spearman ρ of almost .90, our own judgments
correlate very well with Brockmann’s original data.

Monolingual Prior Work and Baselines. For
German, Brockmann and Lapata (2003) evaluated
ontology-based models trained on TiGer triples and
the GermaNet ontology. The results in Table 2 show
that while both models are able to predict the data
significantly, neither of the models can predict all of
the data. We attribute this to the small size of TiGer.2

To gauge the limits of monolingual knowledge-
lean approaches, we constructed two monolingual
distributional models for German and Spanish ac-
cording to the Padó et al. (2007) model (Eq. (1)).
Recall that this model performs generalization in a
syntax-based vector space model. We computed vec-
tor spaces from dependency-parsed corpora for the

2For each of the three argument positions and “all”, Brock-
mann and Lapata report the results for the best parametrization
of the models, which explains the apparently inconsistent results.

924

Resnik Clark & Weir
SUBJ .408* .268
DOBJ .430* .611***
POBJ .330 .597***
all .374*** .232*

Table 2: Monolingual baselines 1. Spearman correla-
tions for ontology-based models in German as reported by
Brockmann and Lapata (2003). *: p < .05; ***: p < .001

Lang. German Spanish
Corpus Schulte’s HGC AnCora Encarta

ρ Cov. ρ Cov. ρ Cov.
SUBJ .34† 90% .44* 80% .14 100%
DOBJ .51** 97% .29 83% -.05 100%
POBJ .41* 93% -.03 100% — —3

all .33** 93% .16 88% .11 67%

Table 3: Monolingual baselines 2. Spearman correlation
and coverage for distributional models. † : p < .1; *: p <
.05; **: p < .01.

two languages, using the 2,000 most frequent lemma-
dependency relation pairs as dimensions and adopt-
ing the popular pointwise mutual information metric
as co-occurrence statistic. For German, we used
Schulte im Walde’s verb frame resource (Schulte im
Walde et al., 2001), which contains the frequency of
triples calculated from probabilistic parses of 30M
words from the Huge German Corpus (HGC) of
newswire. For Spanish, we consulted two syntac-
tically analyzed corpora: the AnCora (Taulé et al.,
2008) and the Encarta corpus (Calvo et al., 2005). At
0.5M words, the AnCora corpus is small, but man-
ually annotated, whereas the larger, automatically
parsed Encarta corpus amounts to over 18M tokens.

Table 3 shows the results for the distributional
monolingual models. For German, we get significant
correlations for DOBJ and POBJ, an almost signif-
icant correlation for SUBJs, and high significance
for the complete dataset (p < 0.01). These figures
rival the performance of the ontological models (cf.
Table 2), without using ontological information. For
Spanish, the only significant correlation with human
judgments is obtained for subjects, the most frequent
argument position, with the clean AnCora data. An-
Cora is presumably too sparse for the other argument
positions. The large Encarta corpus, in turn, is very
noisy, supporting our concerns from Section 2.

3Since the Encarta data consists of individual dependency

n noun adj verb all
German 7340 .61 .57 .43 .56
Spanish 4143 .62 .67 .41 .58

Table 4: First-translation accuracy for German-English
and Spanish-English translation (n: size of gold standard).

Cross-lingual Selectional Preferences. Our archi-
tecture for the cross-lingual prediction of selectional
preferences shown in Figure 1 consists of two com-
ponents, namely the bilingual vector space and a
selectional preference model in the target language.

As our English selectional preference model, we
again use the Padó et al. (2007) model, trained on
a version of the BNC parsed with MINIPAR (Lin,
1993). The parameters of the syntactic vector space
were the same as for the monolingual baseline mod-
els. The bilingual vector spaces were constructed
from three large, unparsed, comparable monolin-
gual corpora. For German, we used the HGC de-
scribed above. For Spanish, we obtained a corpus
with around 100M words, consisting of 2.5 years of
crawled text from two major Spanish newspapers.
For English, we used the BNC.

We first constructed initial sets of bilingual labels.
For German–English, we identified 1064 graphem-
ically identical word pairs that occurred more than
4 times per million words. Due to the larger lex-
ical distance between Spanish and English, there
are fewer graphemically identical tokens for this lan-
guage pair. We therefore applied a Porter stemmer
and found 2104 identical stems, at a higher risk of
“false friends”. We then applied the bootstrapping
cycle from Section 3.1. The set of dimensions con-
verged after around five iterations.

We evaluated the (asymmetric) nearest neighbor
pairs from the final spaces, (s, tr(s)), against two
online dictionaries.4 Table 4 shows that 55% to 60%
of the pairs are listed in the dictionaries, with parallel
tendencies for both language pairs. The bilingual
space performs fairly well for nouns and adjectives,
but badly for verbs, which is a well-known weakness
of distributional models (Peirsman et al., 2008).

Even taking into account the incompleteness of
dictionaries, this looks like a negative result: more

relations rather than trees, we could not model the POBJ data.
4DE-EN: www.dict.cc; ES-EN: www.freelang.net.

Pairs (s, tr(s)) were only evaluated if the dictionary listed s.

925

than half of all verb translations are incorrect. How-
ever, following up on our intuitions from Section 3.2,
we performed an analysis of the “incorrect” transla-
tions. It revealed that many of the errors in Table 4
are informative, semantically related words. Near-
est neighbor target language verbs in particular tend
to represent the same event type and take the same
kinds of arguments as the source verb. Examples
are German gefährden ‘threaten’ – English affect,
and German Neugier ‘curiosity’ – English enthusi-
asm. We concluded that literal translation quality is
a misleading figure of merit for our task.

Experimental rationale. Section 3 introduced one
major design decision of our model: the question of
how to treat the argument position, which cannot
be translated by the bilingual vector space, in the
cross-lingual transfer. We present two experiments
that investigate the model’s behavior in the absence
and presence of knowledge about argument positions.
Experiment 1 uses no syntactic knowledge about the
source language whatsoever. In this situation, the
best we can do is to assume that source language
argument positions like SUBJ will correspond to the
same argument position in the target language. Exper-
iment 2 attempts to identify, for each source language
argument position, the “best fit” position in the target
language. This results in better plausibility estimates,
but also means that we need at least some syntac-
tic information about the source language. In both
experiments, we vary the number of translations we
consider for each verb.

5 Exp. 1: Induction without syntactic
knowledge in the source language

This experiment assumes that argument positions
simply carry over between languages. While this
assumption clearly simplifies linguistic reality, it has
the advantage of not needing any syntactic informa-
tion about the source language. We thus model Ger-
man and Spanish SUBJ relations by English SUBJ
relations and DOBJs by DOBJs. In the case of (lex-
icalized) POBJs, where we cannot assume identity,
we compute plausibility scores for all English POBJs
that account for at least 10% of the predicate’s ar-
gument tokens, and select the PP with the highest
plausibility estimate. The k best “translations” of the
predicate p, trk(p), are turned into a single prediction

using maximization, yielding the final model:

Plsnosyn(p, a, h) = max
pt∈trk(p)

Plt(pt, a, tr(h)) (5)

Note that this model does not use any source lan-
guage information, except the bilingual vector space.

The results of Experiment 1 are given in Table 5
(coverage always 100%). For German, all predictions
correlate significantly with human ratings, and most
even at p < 0.01, despite our naive assumption about
the cross-lingual argument position identity. The
results exceed both monolingual model types (onto-
logical, Tab. 2, and distributional, Tab. 3), notably
without the use of syntactic data. In particular, the
results for the POBJs, notoriously difficult to model
monolingually, are higher than for SUBJs or DOBJs.
We attribute this to the cross-lingual generalization
which takes all prepositional arguments into account.

The Spanish dataset is harder to model overall.
We obtain significantly high correlations for SUBJ,
but non-significant results for DOBJ and POBJ. This
corresponds well to the patterns for the monolingual
AnCora corpus (Table 3). However, we outperform
AnCora on the complete dataset, where it did not
achieve significance, while the cross-lingual model
does at p < 0.01 — again, even without the use of
syntactic analyses. We attribute the overall lower
results compared to German to systematic syntactic
differences between English and Spanish. For exam-
ple, animate direct objects in Spanish are realized
as POBJs headed by the preposition a. Estimating
the plausibility of such objects by looking at English
POBJs is unlikely to yield good results. The use of
a larger number of verb translations yields a clear
increase in correlation for the German data, but in-
conclusive results for Spanish.

6 Exp. 2: Induction with syntactic
knowledge in the source language

As discussed in Section 3.2, verbs that are semanti-
cally similar in the bilingual vector space may very
well realize their (semantic) argument positions dif-
ferently in the surface syntax. For example, German
teilnehmen is correctly translated to English attend,
but the crucial event argument is realized differently,
namely as a POBJ headed by an in German and as
a DOBJ in English. To address this problem, we

926

DE 1-best 2-best 3-best 4-best 5-best
SUBJ .44* .47** .45* .47** .54**
DOBJ .39* .39* .52** .54** .55**
POBJ .58** .61** .61** .61** .62**
all .35** .37** .37** .38** .40**

ES 1-best 2-best 3-best 4-best 5-best
SUBJ .58** .64** .64** .58** .58**
DOBJ .13 .16 .11 .07 .07
POBJ .13 .13 .09 .14 .14
all .34** .36** .34** .32** .32**

Table 5: Exp.1: Spearman correlation between syntaxless
cross-lingual model and human judgments for k best verb
translations. Best k for each argument position marked in
boldface. Coverage of all models: 100%.

learn a mapping function m that identifies the argu-
ment position at of a target language predicate pt

that corresponds best to an argument position a of a
predicate p in the source language. Our simple model
is in the same spirit as the cross-lingual plausibility
model itself: It returns the argument position at of
pt for which the seen head words of (p, a) are most
plausible when translated into the target language:5

m(p, a, pt) = argmax
at

∑
h∈Seena(p)

Plt(pt, at, tr(h))

Parallel to Eq. (5), the cross-lingual model is now:

Plssyn(p, a, h) = max
pt∈trk(p)

Plt(pt,m(p, a, pt), tr(h))

(6)
This model can recover English argument positions
that correspond better to the original ones than the
identity mapping. For example, on our data, it discov-
ers the mapping for teilnehmen an/attend discussed
above. A second example concerns the incorrect, but
informative translation of stagnieren ‘stagnate’ as
boost. Here the model recognizes that the SUBJ of
stagnieren (the stagnating entity) corresponds to the
DOBJ of boost.

Establishing m requires syntactic information in
the source language, in order to obtain the set of
seen head words Seenas(ps). For this reason, Exp. 2
uses the parsed subset of the HGC (German), and the
AnCora and Encarta corpora (Spanish). The results
are shown in Table 6. We generally improve over

5To alleviate sparse data, we ignore argument positions of
English verbs that represent less than 10% of its argument tokens.

DE 1-best 2-best 3-best 4-best 5-best
SUBJ .55** .59** .49** .52** .54**
DOBJ .52** .52** .66** .66** .68**
POBJ .61** .68** .70** .69** .70**
all .41** .44** .44* .46** .48**

ES-A 1-best 2-best 3-best 4-best 5-best
SUBJ .52** .47* .42* .41* .42*
DOBJ .52*c .64**c .54*c .42*c .42*c

POBJ .32† .18 .13 .13 .24
all .47** .41** .36** .33** .37**

ES-E 1-best 2-best 3-best 4-best 5-best
SUBJ .40* .42* .39* .39* .41*
DOBJ .21 .02 .06 .13 .20

Table 6: Exp.2: Spearman correlation between syntax-
aware cross-lingual model and human judgments for k
best verb translations. ES-A: AnCora corpus, ES-E: En-
carta corpus. Best k for each argument position in bold-
face. Coverage of all models: 100%, except c: 60%.

Exp. 1. For German, every single model now corre-
lates highly significantly with human judgments (p
< 0.01), and the correlation for the complete dataset
increases from .40 to .48. For Spanish, we see very
good results for the AnCora corpus. Compared to
Exp. 1, we see a slight degradation for the SUBJs;
however, the correlations remain significant for all
values of k. Conversely, all predictions for DOBJs
are now significant,6 and the POBJs have improved at
least numerically, which validates our analysis of the
problems in Exp. 1. The best correlation for the com-
plete dataset improves from .36 to .47. The results
for the Encarta corpus disappoint, though. SUBJs
are significant, but worse than for AnCora, and the
DOBJs remain non-significant throughout. With re-
gard to increasing the number of verb translations,
Exp. 2 shows an almost universal benefit for Ger-
man, but still mixed results for Spanish, which may
indicate that verb translations for Spanish are still
“looser” than the German ones.

In fact, most remaining poor judgments are the
result of problematic translations, which stem from
three main sources. The first one is sparse data. Infre-
quent German and Spanish words often receive unre-
liable vector representations. Some examples are the

6Note, however, that AnCora has an imperfect coverage for
DOBJs (60%). This is because our Spanish dataset contains
verbs sampled from Encarta that do not occur in AnCora.

927

German Tau (‘dew’, frequency of 180 in the HGC),
translated as alley, and Reifeprüfung (German SAT,
frequency 120), translated as affiliation. Both of these
may also be due to the difference in genre between
the HGC and the BNC. A second problem is formed
by nearest neighbors that are ontologically dissimi-
lar, as in the tenista ‘tennis player’/tennis example
from above. A final issue relates to limitations of the
Padó et al. (2007) model, whose architecture is sus-
ceptible to polysemy-related problems. For instance,
the Spanish combination (excavar, obj, terreno) was
judged by speakers as very plausible, but its English
equivalent (excavate, obj, land) is assigned a very
low score by the model. This might be due to the
fact that in the BNC, land occurs often in its political
meaning, and forms an outlier among the head words
for (excavate,obj).

How much syntactic information is necessary?
The syntax-aware model requires syntactic infor-
mation about the source language, which seems to
run counter to our original motivation of developing
methods for resource-poor languages. To address this
point, we analyzed the behavior of the syntax-aware
model for small syntactically analyzed corpora that
contained only at most m occurrences for each pred-
icate. We obtained the m occurrences by sampling
from the syntactically analyzed part of the HGC; if
fewer than m occurrences were present in the corpus,
we simply used these. Figure 3 shows the training
curve with 1 verb translation, averaged over n rounds
(n = 10 for 5 arguments, n = 5 for 10 arguments,
n = 4 for 20, 50 and 100 arguments). The general
picture is clear: most of the benefit of the syntactic
data is drawn form the first five occurrences for each
argument position. This shows that a small amount of
targeted syntactic annotation can improve the cross-
lingual model substantially.

7 Conclusions

In this article, we have presented a first unsuper-
vised cross-lingual model of selectional preferences.
Our model proceeds by automatically translating
(predicate, argument position, head word) triples for
resource-poor source languages into a resource-rich
target language, where accurate selectional prefer-
ence models are available. The translation is based on
a bilingual vector space, which can be bootstrapped

●

●
●

●

● ●

number of observed heads

S
pe

ar
m

an
's

 r
ho

● SUBJ
DOBJ
POBJ
all

0 5 10 20 50 100

0.
3

0.
4

0.
5

0.
6

0.
7

Figure 3: Training curve for the bilingual German–English
model as a function of the number of observed head words
per argument position in the source language.

from large unparsed corpora in the two languages.
Our results indicate that bilingual methods can go

a long way towards the modeling of selectional pref-
erences in resource-poor languages, where bilingual
lexicons, parallel corpora, or ontologies might not be
available. Our experiments have looked at German
and Spanish, where the cross-lingual models rival
and even exceed monolingual methods that typically
have to rely on small, clean “treebank”-style corpora
or large, very noisy, automatically parsed corpora.
We have also demonstrated that noisy syntactic data
from the source language can be integrated in our
model, where it helps improve the cross-lingual han-
dling of argument positions. The linguistic distance
between the languages can impact (1) the ability to
find accurate translations and (2) the degree of syntac-
tic overlap; nevertheless, as Agirre et al. (2003) show,
the transfer is possible even for unrelated languages.

In this paper, we have instantiated the selectional
preference model in the target language (English)
with the distributional model by Padó et al. (2007).
However, our approach is modular and can be com-
bined with any other selectional preference model.
We see two main avenues for future work: (1), The
construction of properly bilingual models where
source language information can also help to fur-
ther improve the target language model (Diab and
Resnik, 2002); (2), The extension of our cross-lingual
mapping for the argument position to mappings that
hold across multiple predicates as well as argument-
dependent mappings like the Spanish direct objects,
whose realization depends on their animacy.

928

References

Naoki Abe and Hang Li. 1996. Learning word association
norms using tree cut pair models. In Proc. ICML, pages
3–11, Bari, Italy.

Eneko Agirre, Izaskun Aldezabal, and Eli Pociello. 2003.
A pilot study of English selectional preferences and
their cross-lingual compatibility with Basque. In Proc.
TSD, pages 12–19, Brno, Czech Republic.

Shane Bergsma, Dekang Lin, and Randy Goebel. 2008.
Discriminative learning of selectional preference from
unlabeled text. In Proc. EMNLP, pages 59–68, Hon-
olulu, HI.

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang
Lezius, and George Smith. 2002. The TIGER tree-
bank. In Proc. Workshop on Treebanks and Linguistic
Theories, Sozopol, Bulgaria.

Carsten Brockmann and Mirella Lapata. 2003. Evaluating
and combining approaches to selectional preference
acquisition. In Proc. EACL, pages 27–34, Budapest,
Hungary.

Carsten Brockmann. 2002. Evaluating and combining ap-
proaches to selectional preference acquisition. Master’s
thesis, Universität des Saarlandes, Saarbrücken.

Hiram Calvo, Alexander Gelbukh, and Adam Kilgarriff.
2005. Distributional thesaurus vs. wordnet: A compari-
son of backoff techniques for unsupervised PP attach-
ment. In Proc. CICLing, pages 177–188, Mexico City,
Mexico.

Nathanael Chambers and Dan Jurafsky. 2009. Unsuper-
vised learning of narrative schemas and their partici-
pants. In Proc. ACL, pages 602–610, Singapore.

Yun-Chuang Chiao and Pierre Zweigenbaum. 2002.
Looking for candidate translational equivalents in spe-
cialized, comparable corpora. In Proc. COLING, pages
1–5, Taipei, Taiwan.

Stephen Clark and David Weir. 2002. Class-based proba-
bility estimation using a semantic hierarchy. Computa-
tional Linguistics, 28(2):187–206.

Mona Diab and Philip Resnik. 2002. An unsupervised
method for word sense tagging using parallel corpora.
In Proc. ACL, pages 255–262, Philadelphia, PA.

Pascale Fung and Kathleen McKeown. 1997. Finding
terminology translations from non-parallel corpora. In
Proc. 3rd Annual Workshop on Very Large Corpora,
pages 192–202, Hong Kong.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic
labeling of semantic roles. Computational Linguistics,
28(3):245–288.

Rebecca Hwa, Philipp Resnik, Amy Weinberg, Clara
Cabezas, and Okan Kolak. 2005. Bootstrapping
parsers via syntactic projection across parallel texts.
Natural Language Engineering, 11(3):311–325.

Philipp Koehn and Kevin Knight. 2002. Learning a
translation lexicon from monolingual corpora. In Proc.
ACL-02 Workshop on Unsupervised Lexical Acquisi-
tion, pages 9–16, Philadelphia, PA.

Lillian Lee. 1999. Measures of distributional similarity.
In Proc. ACL, pages 25–32, College Park, MD.

Dekang Lin. 1993. Principle-based parsing without over-
generation. In Proc. ACL, pages 112–120.

Kornél Markó, Stefan Schulz, Olena Medelyan, and Udo
Hahn. 2005. Bootstrapping dictionaries for cross-
language information retrieval. In Proc. SIGIR, pages
528–535, Seattle, WA.

Diana McCarthy and John Carroll. 2003. Disambiguat-
ing nouns, verbs and adjectives using automatically
acquired selectional preferences. Computational Lin-
guistics, 29(4):639–654.

Ken McRae, Michael Spivey-Knowlton, and Michael
Tanenhaus. 1998. Modeling the influence of thematic
fit (and other constraints) in on-line sentence compre-
hension. Journal of Memory and Language, 38:283–
312.

Sebastian Padó, Ulrike Padó, and Katrin Erk. 2007. Flex-
ible, corpus-based modelling of human plausibility
judgements. In Proc. EMNLP-CoNLL, pages 400–409,
Prague, Czech Republic.

Yves Peirsman, Kris Heylen, and Dirk Geeraerts. 2008.
Size matters. Tight and loose context definitions in
English word space models. In Proc. ESSLLI Workshop
on Lexical Semantics, pages 9–16, Hamburg, Germany.

Detlef Prescher, Stefan Riezler, and Mats Rooth. 2000.
Using a probabilistic class-based lexicon for lexical
ambiguity resolution. In Proc. COLING, pages 649–
655, Saarbrücken, Germany.

Reinhard Rapp. 1999. Automatic identification of word
translations from unrelated English and German cor-
pora. In Proc. ACL, pages 519–526, College Park, MD.

Philip Resnik. 1996. Selectional constraints: An
information-theoretic model and its computational real-
ization. Cognition, 61:127–159.

Sabine Schulte im Walde, Helmut Schmid, Mats Rooth,
Stefan Riezler, and Detlef Prescher. 2001. Statistical
Grammar Models and Lexicon Acquisition. In Linguis-
tic Form and its Computation, pages 389–440. CSLI
Publications, Stanford, CA.

Rion Snow, Brendan O’Connor, Daniel Jurafsky, and An-
drew Ng. 2008. Cheap and fast – but is it good?
Evaluating non-expert annotations for natural language
tasks. In Proc. EMNLP, pages 254–263, Honolulu, HI.

Mariona Taulé, M. Antònia Martí, and Marta Recasens.
2008. Ancora: Multilevel annotated corpora for Cata-
lan and Spanish. In Proc. LREC, Marrakech, Morocco.

Yorick Wilks. 1975. Preference semantics. In E. Keenan,
editor, Formal Semantics of Natural Language. Cam-
bridge University Press.

929

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 939–947,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Unsupervised Induction of Semantic Roles

Joel Lang and Mirella Lapata
School of Informatics, University of Edinburgh
10 Crichton Street, Edinburgh EH8 9AB, UK

J.Lang-3@sms.ed.ac.uk, mlap@inf.ed.ac.uk

Abstract
Datasets annotated with semantic roles are
an important prerequisite to developing high-
performance role labeling systems. Unfortu-
nately, the reliance on manual annotations,
which are both difficult and highly expen-
sive to produce, presents a major obstacle to
the widespread application of these systems
across different languages and text genres. In
this paper we describe a method for induc-
ing the semantic roles of verbal arguments di-
rectly from unannotated text. We formulate
the role induction problem as one of detecting
alternations and finding a canonical syntactic
form for them. Both steps are implemented in
a novel probabilistic model, a latent-variable
variant of the logistic classifier. Our method
increases the purity of the induced role clus-
ters by a wide margin over a strong baseline.

1 Introduction
Semantic role labeling (SRL, Gildea and Jurafsky
2002) is the task of automatically classifying the ar-
guments of a predicate with roles such as Agent, Pa-
tient or Location. These labels capture aspects of the
semantics of the relationship between the predicate
and the argument while abstracting over surface syn-
tactic configurations. SRL has received much atten-
tion in recent years (Surdeanu et al., 2008; Màrquez
et al., 2008), partly because of its potential to im-
prove applications that require broad coverage se-
mantic processing. Examples include information
extraction (Surdeanu et al., 2003), question answer-
ing (Shen and Lapata, 2007), summarization (Melli
et al., 2005), and machine translation (Wu and Fung,
2009).

Given sentences (1-a) and (1-b) as input, an SRL
system would have to identify the verb predicate

(shown in boldface), its arguments (Michael and
sandwich) and label them with semantic roles (Agent
and Patient).

(1) a. [Michael]Agent eats [a sandwich]Patient.
b. [A sandwich]Patient is eaten [by

Michael]Agent.

Here, sentence (1-b) is an alternation of (1-a).
The verbal arguments bear the same semantic role,
even though they appear in different syntactic posi-
tions: sandwich is the object of eat in sentence (1-a)
and its subject in (1-b) but it is in both instances as-
signed the role Patient. The example illustrates the
passive alternation. The latter is merely one type
of alternation, many others exist (Levin, 1993), and
their computational treatment is one of the main
challenges faced by semantic role labelers.

Most SRL systems to date conceptualize semantic
role labeling as a supervised learning problem and
rely on role-annotated data for model training. Prop-
Bank (Palmer et al., 2005) has been widely used for
the development of semantic role labelers as well as
FrameNet (Fillmore et al., 2003). Under the Prop-
Bank annotation framework (which we will assume
throughout this paper) each predicate is associated
with a set of core roles (named A0, A1, A2, and so
on) whose interpretations are specific to that pred-
icate1 and a set of adjunct roles (e.g., Location or
Time) whose interpretation is common across predi-
cates. In addition to large amounts of role-annotated
data, SRL systems often make use of a parser to ob-
tain syntactic analyses which subsequently serve as
input to a pipeline of components concerned with

1More precisely, A0 and A1 have a common interpreta-
tion across predicates as proto-agent and proto-patient (Dowty,
1991).

939

identifying predicates and their arguments (argu-
ment identification) and labeling them with semantic
roles (argument classification).

Supervised SRL methods deliver reasonably good
performance (a system will recall around 81% of the
arguments correctly and 95% of those will be as-
signed a correct semantic role; see Màrquez et al.
2008 for details). Unfortunately, the reliance on la-
beled training data, which is both difficult and highly
expensive to produce, presents a major obstacle
to the widespread application of semantic role la-
beling across different languages and text genres.
And although corpora with semantic role annota-
tions exist nowadays in other languages (e.g., Ger-
man, Spanish, Catalan, Chinese, Korean), they tend
to be smaller than their English equivalents and of
limited value for modeling purposes. Moreover, the
performance of supervised systems degrades consid-
erably (by 10%) on out-of-domain data even within
English, a language for which two major annotated
corpora are available. Interestingly, Pradhan et al.
(2008) find that the main reason for this are errors
in the assignment of semantic roles, rather than the
identification of argument boundaries. Therefore, a
mechanism for inducing the semantic roles observed
in the data without additional manual effort would
enhance the robustness of existing SRL systems and
enable their portability to languages for which anno-
tations are unavailable or sparse.

In this paper we describe an unsupervised ap-
proach to argument classification or role induction2

that does not make use of role-annotated data. Role
induction can be naturally formalized as a cluster-
ing problem where argument instances are assigned
to clusters. Ideally, each cluster should contain argu-
ments corresponding to a specific semantic role and
each role should correspond to exactly one cluster. A
key insight in our approach is that many predicates
are associated with a standard linking. A linking is
a deterministic mapping from semantic roles onto
syntactic functions such as subject, or object. Most
predicates will exhibit a standard linking, i.e., they
will be predominantly used with a specific map-
ping. Alternations occur when a different linking
is used. In sentence (1-a) the predicate eat is used
with its standard linking (the Agent role is mapped
onto the subject function and the Patient onto the
object), whereas in sentence (1-b) eat is used with

2We use the term role induction rather than argument clas-
sification for the unsupervised setting.

its passive-linking (the Patient is mapped onto sub-
ject and the Agent appears as a prepositional phrase).
When faced with such alternations, we will attempt
to determine for each argument the syntactic func-
tion it would have had, had the standard linking been
used. We will refer to this function as the arguments’
canonical function, and use the term canonicaliza-
tion to describe the process of inferring these canon-
ical functions in the case of alternations. So, in sen-
tence (1-b) the canonical functions of the arguments
by Michael and sandwich are subject and object, re-
spectively.

Since linkings are injective, i.e., no two seman-
tic roles are mapped onto the same syntactic func-
tion, the canonical function of an argument uniquely
references a specific semantic role. We define a
probabilistic model for detecting non-standard link-
ings and for canonicalization. The model specifies a
distribution p(F) over the possible canonical func-
tions F of an argument. We present an extension of
the logistic classifier with the addition of latent vari-
ables which crucially allow to learn generalizations
over varying syntactic configurations. Rather than
using manually labeled data, we train our model on
observed syntactic functions which can be obtained
automatically from a parser. These training instances
are admittedly noisy but readily available and as
we show experimentally a useful data source for
inducing semantic roles. Application of the model
to a benchmark dataset yields improvements over a
strong baseline.

2 Related Work

Much previous work on SRL relies on supervised
learning methods for both argument identification
and argument classification (see Màrquez et al. 2008
for an overview). Most systems use manually anno-
tated resources to train separate classifiers for dif-
ferent SRL subtasks (e.g., Surdeanu et al. 2008).
A few approaches adopt semi-supervised learning
methods. The idea here is to to alleviate the data
requirements for semantic role labeling by extend-
ing existing resources through the use of unlabeled
data. Swier and Stevenson (2004) induce role la-
bels with a bootstrapping scheme in which the set
of labeled instances is iteratively expanded using
a classifier trained on previously labeled instances.
Padó and Lapata (2009) project role-semantic anno-
tations from an annotated corpus in one language
onto an unannotated corpus in another language.
And Fürstenau and Lapata (2009) propose a method

940

in which annotations are projected from a source
corpus onto a target corpus, however within the
same language.

Unsupervised approaches to SRL have been few
and far between. Early work on lexicon acquisition
focuses on identifying verbal alternations rather than
their linkings. This is often done in conjunction with
hand-crafted resources such as a taxonomy of possi-
ble alternations (McCarthy and Korhonen, 1998) or
WordNet (McCarthy, 2002). Lapata (1999) proposes
a corpus-based method that is less reliant on taxo-
nomic resources, however focuses only on two spe-
cific verb alternations. Other work attempts to clus-
ter verbs into semantic classes (e.g., Levin 1993) on
the basis of their alternation behavior (Schulte im
Walde and Brew, 2002).

More recently, Abend et al. (2009) propose an
unsupervised algorithm for argument identifica-
tion that relies only on part-of-speech annotations,
whereas Grenager and Manning (2006) focus on
role induction which they formalize as probabilis-
tic inference in a Bayesian network. Their model
defines a joint probability distribution over the par-
ticular linking used together with a verb instance
and for each verbal argument, its lemma, syntactic
function as well as semantic role. Parameters in this
model are estimated using the EM algorithm as the
training instances include latent variables, namely
the semantic roles and linkings. To make inference
tractable they limit the set of linkings to a small
number and do not distinguish between different
types of adjuncts. Our own work also focuses on
inducing the semantic roles and the linkings used
by each verb. Our approach is conceptually sim-
pler and computationally more tractable. Our model
is a straightforward extension of the logistic classi-
fier with latent variables applied to all roles not just
coarse ones.

3 Problem Formulation

We treat role induction as a clustering problem.
The goal is to assign argument instances (i.e., spe-
cific arguments, occurring in an input sentence) into
clusters such that each cluster contains instances
with the same semantic role, and each semantic
role is found in exactly one cluster. As we as-
sume PropBank-style roles (Palmer et al., 2005),
our model will allocate a separate set of clusters for
each predicate and assign the arguments of a specific
predicate to one of the clusters associated with it.

As mentioned earlier (Section 1) a linking is a de-

A0 A1 TMP MNR
SBJ 54514 19684 15 7
OBJ 3359 51730 93 54

ADV 162 3506 976 2308
TMP 5 60 15167 22

PMOD 2466 4860 142 62
OPRD 37 5554 1 36

LOC 17 145 43 157
DIR 0 178 15 6

MNR 5 48 13 3312
PRP 9 50 11 6
LGS 2168 36 2 2
PRD 413 830 31 38

NMOD 422 388 25 59
EXT 0 20 2 12
DEP 18 150 25 65
SUB 3 84 4 2

CONJ 198 331 22 8
ROOT 62 147 84 2

64517 88616 16803 6404

Table 1: Contingency table between syntactic func-
tion and semantic role for two core roles Agent (A0)
and Patient (A1) and two adjunct roles, Time (TMP)
and Manner (MNR). Only syntactic functions occur-
ring more than 1000 times are listed. Counts were
obtained from the CoNLL 2008 training dataset us-
ing gold standard parses (the marginals in the bottom
row also include counts of unlisted co-occurrences).

terministic mapping from semantic roles onto syn-
tactic functions. Table 1 shows how frequently in-
dividual semantic roles map onto certain syntactic
functions. The frequencies were obtained from the
CoNLL 2008 dataset (see Surdeanu et al. 2008 for
details) and constitute an aggregate across predi-
cates. As can be seen, there is a clear tendency for
a semantic role to be mapped onto a single syntac-
tic function. This is true across predicates and even
more so for individual predicates. For example, A0
is commonly mapped onto subject (SBJ), whereas
A1 is often realized as object (OBJ). There are two
reasons for this. Firstly, a predicate is often asso-
ciated with a standard linking which is most fre-
quently used. Secondly, the alternate linkings of a
given predicate often differ from the standard link-
ing only with respect to a few roles. Importantly, we
do not assume that a single standard linking is valid

941

for all predicates. Rather, each predicate has its own
standard linking. For example, in the standard link-
ing for the predicate fall, A1 is mapped onto subject
position, whereas in the standarad linking for eat,
A1 is mapped onto object position.

When an argument is attested with a non-standard
linking, we wish to determine the syntactic func-
tion it would have had if the standard linking had
been used. This canonical function of the argument
uniquely references a specific semantic role, i.e., the
semantic role that is mapped onto the function under
the standard linking. We can now specify an indi-
rect method for partitioning argument instances into
clusters:

1. Detect arguments that are linked in a non-
standard way (detection).

2. Determine the canonical function of these argu-
ments (canonicalization). For arguments with
standard linkings, their syntactic function cor-
responds directly to the canonical function.

3. Assign arguments to a cluster according to their
canonical function.

We distinguish between detecting non-standard link-
ings and canonicalization because in principle two
separate models could be used. In our probabilis-
tic formulation, both detection and canonicaliza-
tion rely on an estimate of the probability distribu-
tion p(F) over the canonical function F of an ar-
gument. When the most likely canonical function
differs from the observed syntactic function this in-
dicates that a non-standard linking has been used
(detection). This most likely canonical function can
be taken as the canonical function of the argument
(canonicalization).

Arguments are assigned to clusters based on
their inferred canonical function. Since we assume
predicate-specific roles, we induce a separate clus-
ter for each predicate. Given K clusters, we use the
following scheme for determining the mapping from
functions to clusters:

1. Order the functions by occurrence frequency.
2. For each of the K− 1 most frequent functions

allocate a separate cluster.
3. Assign all remaining functions to the K-th clus-

ter.

4 Model

The detection of non-standard linkings and canon-
icalization both rely on a probabilistic model p(F)
which specifies the distribution over the canonical

functions F of an argument. As is the case with most
SRL approaches, we assume to be given a syntactic
parse of the sentence from which we can extract la-
beled dependencies, corresponding to the syntactic
functions of arguments. To train the model we ex-
ploit the fact that most observed syntactic functions
will correspond to canonical functions. This enables
us to use the parser’s output for training even though
it does not contain semantic role annotations.

Critically, the features used to determine the
canonical function must be restricted so that they
give no cues about possible alternations. If they
would, the model could learn to predict alternations,
and therefore produce output closer to the observed
syntactic rather than canonical function of an argu-
ment. To avoid this pitfall we only use features at
or below the node representing the argument head in
the parse tree apart from the predicate lemma (see
Section 5 for details).

Given these local argument features, a simple so-
lution would be to use a standard classifier such as
the logistic classifier (Berger et al., 1996) to learn
the canonical function of arguments. However, this
is problematic, because in our setting the training
and application of the classifier happen on the same
dataset. The model will over-adapt to the observed
targets (i.e., the syntactic functions) and fail to learn
appropriate canonical functions. Lexical sparsity is
a contributing factor: the parameters associated with
sparse lexical features will be unavoidably adjusted
so that they are highly indicative of the syntactic
function they occur with.

One way to improve generalization is to incor-
porate a layer of latent variables into the logistic
classifier, which mediates between inputs (features
defined over parse trees) and target (the canonical
function). As a result, inputs and target are no longer
directly connected and the information conveyed by
the features about the target must be transferred via
the latent layer. The model is shown in plate notation
in Figure 1a. Here, Xi represents the observed in-
put features, Y the observed target, and Z j the latent
variables. The number of latent variables influences
the generalization properties of the model. With too
few latent variables too little information will be
transferred via the latent variables, whereas with too
many latent variables generalization will degrade.

The model defines a probability distribution over
the target variable Y and the latent variables Z, con-

942

Y

Z j

M

Xi

N

Y

Z1 Z2

X2X1 X3

(a) (b)

Figure 1: The logistic classifier with latent variables
(shaded nodes) illustrated as a graphical model using
(a) plate notation and (b) in unrolled form for M = 2
and N = 3.

ditional on the input variables X :

p(y,z|x,θ) =
1

P(x,θ)
exp

(
∑
k

θkφk(x,y,z)

)
(1)

We will assume that the latent variables Zi are bi-
nary. Each of the feature functions φk is associated
with a parameter θk. The partition function normal-
izes the distribution:

P(x,θ) = ∑
y

∑
z

exp

(
∑
k

θkφk(x,y,z)

)
(2)

Note that this model is a special case of a conditional
random field with latent variables (Sutton and Mc-
Callum, 2007) and resembles a neural network with
one hidden layer (Bishop, 2006).

Let (c,d) denote a training set of inputs and corre-
sponding targets. The maximum-likelihood parame-
ters can then be obtained by finding the θ maximiz-
ing:

l(θ) = log p(d|c)
= ∑i log∑z p(di,z|ci)
= ∑i log ∑z exp(∑k θkφk(ci,di,z))

P(ci,θ)

(3)

And the gradient is given by:

(∇l)k = ∂

∂θk
l(θ)

= ∑i ∑z p(z|di,ci)φk(ci,di,z)
−∑i ∑y,z p(y,z|ci)φk(ci,y,z)

(4)

where the first term is the conditional expected fea-
ture count and the second term is the expected fea-
ture count.

Thus far, we have written the equations in a
generic form for arbitrary conditional random fields
with latent variables (Sutton and McCallum, 2007).
In our model we have two types of pairwise suffi-
cient statistics: β(x,z) : R×{0,1}→ R, between a
single input variable and a single latent variable, and
γ(y,z) : Y ×{0,1}→ R, between the target and a la-
tent variable. Then, we can more specifically write
the gradient component of a parameter associated
with a sufficient statistic β(x j,zk) as:

∑
i
∑
zk

p(zk|di,ci)β(ci, j,zk)−∑
i
∑
zk

p(zk|ci)β(ci, j,zk) (5)

And the gradient component of a parameter associ-
ated with a sufficient statistic γ(y,zk) is:

∑
i

∑
zk

p(zk|di,ci)γ(di,zk)−∑
i

∑
y,zk

p(y,zk|ci)γ(y,zk) (6)

To obtain maximum-a-posteriori parameter esti-
mates we regularize the equations. Like for the stan-
dard logistic classifier this results in an additional
term of the target function and each component
of the gradient (see Sutton and McCallum 2007).
Computing the gradient requires computation of the
marginals which can be performed efficiently using
belief propagation (Yedidia et al., 2003). Note that
due to the fact, that there are no edges between the
latent variables, the inference graph is tree structured
and therefore inference yields exact results. We use
a stochastic gradient optimization method (Bottou,
2004) to optimize the target. Optimization is likely
to result in a local maximum, as the likelihood func-
tion is not convex due to the latent variables.

5 Experimental Design

In this section we discuss the experimental design
for assessing the performance of the model de-
scribed above. We give details on the dataset, fea-
tures and evaluation measures employed and present
the baseline methods used for comparison with our
model.

943

Figure 2: Dependency graph (simplified) of a sample sentence from the corpus.

Data Our experiments were carried out on the
CoNLL 2008 (Surdeanu et al., 2008) training dataset
which contains both verbal and nominal predicates.
However, we focused solely on verbal predicates,
following most previous work on semantic role la-
beling (Màrquez et al., 2008). The CoNLL dataset
is taken form the Wall Street Journal portion of
the Penn Treebank corpus (Marcus et al., 1993).
Role semantic annotations are based on PropBank
and have been converted from a constituent-based
to a dependency-based representation (see Surdeanu
et al. 2008). For each argument of a predicate only
the head word is annotated with the correspond-
ing semantic role, rather than the whole constituent.
In this paper we are only concerned with role in-
duction, not argument identification. Therefore, we
identify the arguments of each predicate by consult-
ing the gold standard.

The CoNLL dataset also supplies an automatic
dependency parse of each input sentence obtained
from the MaltParser (Nivre et al., 2007). The target
and features used in our model are extracted from
these parses. Syntactic functions occurring more
than 1,000 times in the gold standard are shown
in Table 1 (for more details we refer the interested
reader to Surdeanu et al. 2008). Syntactic func-
tions were further modified to include prepositions if
specified, resulting in a set of functions with which
arguments can be distinguished more precisely. This
was often the case with functions such as ADV,
TMP, LOC, etc. Also, instead of using the prepo-
sition itself as the argument head, we used the ac-
tual content word modifying the preposition. We
made no attempt to treat split arguments, namely in-
stances where the semantic argument of a predicate
has several syntactic heads. These are infrequent in
the dataset, they make up for less than 1% of all ar-
guments.

Model Setup The specific instantiation of the
model used in our experiments has 10 latent vari-
ables. With 10 binary latent variables we can en-

code 1024 different target values, which seems rea-
sonable for our set of syntactic functions which
comprises around 350 elements.

Features representing argument instances were
extracted from dependency parses like the one
shown in Figure 2. We used a relatively small feature
set consisting of: the predicate lemma, the argument
lemma, the argument part-of-speech, the preposition
involved in dependency between predicate and argu-
ment (if there is one), the lemma of left-most/right-
most child of the argument, the part-of-speech of
left-most/right-most child of argument, and a key
formed by concatenating all syntactic functions of
the argument’s children. The features for the argu-
ment maker in Figure 2 are [sell, maker, NN, –, the,
auto, DT, NN, NMOD+NMOD]. The target for this
instance (and observed syntactic function) is SBJ.

Evaluation Evaluating the output of our model
is no different from other clustering problems. We
can therefore use well-known measures from the
clustering literature to assess the quality of our
role induction method. We first created a set of
gold-standard role labeled argument instances which
were obtained from the training partition of the
CoNLL 2008 dataset (corresponding to sections
02–21 of PropBank). We used 10 clusters for each
predicate and restricted the set of predicates to those
attested with more than 20 instances. This rules out
simple cases with only few instances relative to the
number of clusters, which trivially yield high scores.

We compared the output of our method against
the gold-standard using the following common mea-
sures. Let K denote the number of clusters, ci the set
of instances in the i-th cluster and g j the set of in-
stances having the j-th gold standard semantic role
label. Cluster purity (PU) is defined as:

PU =
1
K ∑

i
max

j
|ci∩g j| (7)

We also used cluster accuracy (CA, Equation 8),

944

PU CA CP CR CF1
Mic Mac Mic Mac Mic Mac Mic Mac Mic Mac

SyntFunc 73.2 75.8 82.0 80.9 67.6 65.3 55.7 50.1 61.1 56.7
LogLV 72.5 74.0 81.1 79.4 64.3 60.6 59.7 56.3 61.9 58.4
UpperBndS 94.7 96.1 96.9 97.0 97.4 97.6 90.4 100 93.7 93.8
UpperBndG 98.8 99.4 99.9 99.9 99.7 99.9 100 100 99.8 100

Table 2: Clustering results using our model (LogLV) against the baseline (SyntFunc) and upper bounds
(UpperBndS and UpperBndG).

cluster precision (CP, Equation 9), and cluster recall
(CR, Equation 9). Cluster F1 (CF1) is the harmonic
mean of precision and recall.

CA =
T P+T N

T P+FP+T N +FN
(8)

CP =
T P

T P+FP
CR =

T P
T P+FN

(9)

Here T P is the number of pairs of instances which
have the same role and are in the same cluster, T N is
the number of pairs of instances which have different
roles and are in different clusters, FP is the number
of pairs of instances with different roles in the same
cluster and FN the number of pairs of instances with
the same role in different clusters.

Baselines and Upper Bound We compared our
model against a baseline that assigns arguments to
clusters based on their syntactic function. Here, no
attempt is made to correct the roles of arguments in
non-standard linkings. We would also like to com-
pare our model against a supervised system. Unfor-
tunately, this is not possible, as we are using the des-
ignated CoNLL training set as our test set, and any
supervised system trained on this data would achieve
unfairly high scores. Therefore, we approximate the
performance of a supervised system by clustering in-
stances according to their gold standard role after
introducing some noise. Specifically, we randomly
selected 5% of the gold standard roles and mapped
them to an erroneous role. This roughly corresponds
to the clustering which would be induced by a state-
of-the-art supervised system with 95% precision. Fi-
nally, we also report the results of the true upper
bound obtained by clustering the arguments, based
on their gold standard semantic role (again using 10
clusters per verb).

6 Results

Our results are summarized in Table 2. We report
cluster purity, accuracy, precision, recall, and F1 for
our latent variable logistic classifier (LogLV) and a
baseline that assigns arguments to clusters accord-
ing to their syntactic function (SyntFunc). The table
also includes the gold standard upper bound (Up-
perBndG) and its supervised proxy (UpperBndS).
We report micro- and macro-average scores.3

Model scores are quite similar to the baseline,
which might suggest that the model is simply repli-
cating the observed data. However, this is not the
case: canonical functions differ from observed func-
tions for approximately 27% of the argument in-
stances. If the baseline treated these instances cor-
rectly, we would expect it to outperform our model.
The fact that it does not, indicates that the baseline
error rate is higher precisely on these instances. In
other words, the model can help in detecting alter-
nate linkings and thus baseline errors.

We further analyzed our model’s ability to de-
tect alternate linkings. Specifically, if we assume a
standard linking where model and observation agree
and an alternate linking where they disagree, we
obtain the following. The number of true positives
(correctly detected alternate linkings) is 27,606, the
number of false positives (incorrectly marked al-
ternations) is 32,031, the number of true negatives
(cases where the model correctly did not detect an
alternate linking) is 132,556, and the number of false
negatives (alternate linkings that the model should
have detected but did not) is 32,516.4. The analysis
shows that 46% of alternations (baseline errors) are
detected.

3Micro-averages are computed over instances while macro-
averages are computed over verbs.

4Note that the true/false positives/negatives here refer to al-
ternate linkings, not to be confused with the true/false positives
in equations (8) and (9).

945

PU CA CP CR CF1
Mic Mac Mic Mac Mic Mac Mic Mac Mic Mac

SyntFunct 73.9 77.8 82.1 81.3 68.0 66.5 55.9 50.3 61.4 57.3
LogLV 82.6 83.7 87.4 85.5 79.1 74.5 73.3 68.5 76.1 71.4

Table 3: Clustering results using our model to detect alternate linkings (LogLV) against the baseline (Synt-
Func).

We can therefore increase cluster purity by clus-
tering only those instances where the model does
not indicate an alternation. The results are shown
in Table 3. Using less instances while keeping the
number of clusters the same will by itself tend to
increase performance. To compensate for this, we
also report results for the baseline on a reduced
dataset. The latter was obtained from the origi-
nal dataset by randomly removing the same num-
ber of instances.5 By using the model to detect al-
ternations, scores improve over the baseline across
the board. We observe performance gains for pu-
rity which increases by 8.7% (micro-average; com-
pare Tables 2 and 3). F1 also improves considerably
by 13% (micro-average). These results are encour-
aging indicating that detecting alternate linkings is
an important first step towards more accurate role
induction.

We also conducted a more detailed error analysis
to gain more insight into the behavior of our model.
In most cases, alternate linkings where A1 occurs in
subject position and A0 in object position are canon-
icalized correctly (with 96% and 97% precision, re-
spectively). Half of the detected non-standard link-
ings involve adjunct roles. Here, the model has much
more difficulty with canonicalization and is success-
ful approximately 25% of the time. For example, in
the phrase occur at dawn the model canonicalizes
LOC to ADV, whereas TMP would be the correct
function. About 75% of all false negatives are due to
core roles and only 25% due to adjunct roles. Many
false negatives are due to parser errors, which are
reproduced by the model. This indicates overfitting,
and indeed many of the false negatives involve in-
frequent lexical items (e.g., juxtapose or Odyssey).

Finally, to put our evaluation results into context,
we also wanted to compare against Grenager and
Manning’s (2006) related system. A direct compar-
ison is somewhat problematic due to the use of dif-

5This was repeated several times to ensure that the results
are stable across runs.

ferent datasets and the fact that we induce labels for
all roles whereas they collapse adjunct roles to a sin-
gle role. Nevertheless, we made a good-faith effort
to evaluate our system using their evaluation setting.
Specifically, we ran our system on the same test set,
Section 23 of the Penn Treebank (annotated with
PropBank roles), using gold standard parses with six
clusters for each verb type. Our model achieves a
cluster purity score of 90.3% on this dataset com-
pared to 89.7% reported in Grenager and Manning.

7 Conclusions
In this paper we have presented a novel framework
for unsupervised role induction. We conceptualized
the induction problem as one of detecting alternate
linkings and finding their canonical syntactic form,
and formulated a novel probabilistic model that per-
forms these tasks. The model extends the logis-
tic classifier with latent variables and is trained on
parsed output which is used as a noisy target for
learning. Experimental results show promise, alter-
nations can be successfully detected and the quality
of the induced role clusters can be substantially en-
hanced.

We argue that the present model could be use-
fully employed to enhance the performance of other
models. For example, it could be used in an active
learning context to identify argument instances that
are difficult to classify for a supervised or semi-
supervised system and would presumably benefit
from additional (manual) annotation. Importantly,
the framework can incorporate different probabilis-
tic models for detection and canonicalization which
we intend to explore in the future. We also aim to
embed and test our role induction method within a
full SRL system that is also concerned with argu-
ment identification. Eventually, we also intend to re-
place the treebank-trained parser with a chunker.

946

References

Abend, O., R. Reichart, and A. Rappoport. 2009. Un-
supervised Argument Identification for Semantic Role
Labeling. In Proceedings of ACL-IJCNLP. Singapore,
pages 28–36.

Berger, A., S. Della Pietra, and V. Della Pietra. 1996.
A Maximum Entropy Approach to Natural Language
Processing. Computational Linguistics 22(1):39–71.

Bishop, C. 2006. Pattern Recognition and Machine
Learning. Springer.

Bottou, L. 2004. Stochastic Learning. In Advanced Lec-
tures on Machine Learning, Springer Verlag, Lecture
Notes in Artificial Intelligence, pages 146–168.

Dowty, D. 1991. Thematic Proto Roles and Argument
Selection. Language 67(3):547–619.

Fillmore, C. J., C. R. Johnson, and M. R. L. Petruck.
2003. Background to FrameNet. International Journal
of Lexicography 16:235–250.

Fürstenau, H. and M. Lapata. 2009. Graph Aligment
for Semi-Supervised Semantic Role Labeling. In Pro-
ceedings of EMNLP. Singapore, pages 11–20.

Gildea, D. and D. Jurafsky. 2002. Automatic Label-
ing of Semantic Roles. Computational Linguistics
28(3):245–288.

Grenager, T. and C. Manning. 2006. Unsupervised Dis-
covery of a Statistical Verb Lexicon. In Proceedings
of EMNLP. Sydney, Australia, pages 1–8.

Lapata, M. 1999. Acquiring Lexical Generalizations
from Corpora: A Case Study for Diathesis Alterna-
tions. In Proceedings of the 37th ACL. pages 397–404.

Levin, B. 1993. English Verb Classes and Alternations: A
Preliminary Investigation. The University of Chicago
Press.

Marcus, M., B. Santorini, and M. Marcinkiewicz. 1993.
Building a Large Annotated Corpus of English: the
Penn Treebank. Computational Linguistics 19(2):313–
330.

Màrquez, L., X. Carreras, K. Litkowski, and S. Steven-
son. 2008. Semantic Role Labeling: an Introduc-
tion to the Special Issue. Computational Linguistics
34(2):145–159.

McCarthy, D. 2002. Using Semantic Preferences to Iden-
tify Verbal Participation in Role Switching Alterna-
tions. In Proceedings of the 1st NAACL. Seattle, WA,
pages 256–263.

McCarthy, D. and A. Korhonen. 1998. Detecting Verbal
Participation in Diathesis Alternations. In Proceed-
ings of COLING/ACL. Montréal, Canada, pages 1493–
1495.

Melli, G., Y. Wang, Y. Liu, M. M. Kashani, Z. Shi,
B. Gu, A. Sarkar, and F. Popowich. 2005. Descrip-
tion of SQUASH, the SFU Question Answering Sum-
mary Handler for the DUC-2005 Summarization Task.

In Proceedings of the HLT/EMNLP Document Under-
standing Workshop. Vancouver, Canada.

Nivre, J., J. Hall, J. Nilsson, G. Eryigit A. Chanev,
S. Kübler, S. Marinov, and E. Marsi. 2007. Malt-
Parser: A Language-independent System for Data-
driven Dependency Parsing. Natural Language Engi-
neering 13(2):95–135.

Padó, S. and M. Lapata. 2009. Cross-lingual Annotation
Projection of Semantic Roles. Journal of Artificial In-
telligence Research 36:307–340.

Palmer, M., D. Gildea, and P. Kingsbury. 2005. The
Proposition Bank: An Annotated Corpus of Semantic
Roles. Computational Linguistics 31(1):71–106.

Pradhan, S. S., W. Ward, and J. H. Martin. 2008. Towards
Robust Semantic Role Labeling. Computational Lin-
guistics 34(2):289–310.

Schulte im Walde, S. and C. Brew. 2002. Inducing
German Semantic Verb Classes from Purely Syntac-
tic Subcategorisation Information. In Proceedings of
the 40th ACL. Philadelphia, PA, pages 223–230.

Shen, D. and M. Lapata. 2007. Using Semantic Roles to
Improve Question Answering. In Proceedings of the
EMNLP-CoNLL. Prague, Czech Republic, pages 12–
21.

Surdeanu, M., S. Harabagiu, J. Williams, and P. Aarseth.
2003. Using Predicate-Argument Structures for Infor-
mation Extraction. In Proceedings of the 41st ACL.
Sapporo, Japan, pages 8–15.

Surdeanu, M., R. Johansson, A. Meyers, and L. Màrquez.
2008. The CoNLL-2008 Shared Task on Joint Parsing
of Syntactic and Semantic Dependencies. In Proceed-
ings of the 12th CoNLL. Manchester, England, pages
159–177.

Sutton, C. and A. McCallum. 2007. An Introduction to
Conditional Random Fields for Relational Learning.
In L. Getoor and B. Taskar, editors, Introduction to
Statistical Relational Learning, MIT Press, pages 93–
127.

Swier, R. and S. Stevenson. 2004. Unsupervised Se-
mantic Role Labelling. In Proceedings of EMNLP.
Barcelona, Spain, pages 95–102.

Wu, D. and P. Fung. 2009. Semantic Roles for SMT:
A Hybrid Two-Pass Model. In Proceedings of
NAACL HLT 2009: Short Papers. Boulder, Colorado,
pages 13–16.

Yedidia, J., W. Freeman, and Y. Weiss. 2003. Understand-
ing Belief Propagation and its Generalizations. Mor-
gan Kaufmann Publishers Inc., pages 239–269.

947

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 948–956,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Probabilistic Frame-Semantic Parsing
Dipanjan Das Nathan Schneider Desai Chen Noah A. Smith

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA

{dipanjan@cs,nschneid@cs,desaic@andrew,nasmith@cs}.cmu.edu

Abstract

This paper contributes a formalization of
frame-semantic parsing as a structure predic-
tion problem and describes an implemented
parser that transforms an English sentence
into a frame-semantic representation. It finds
words that evoke FrameNet frames, selects
frames for them, and locates the arguments
for each frame. The system uses two feature-
based, discriminative probabilistic (log-linear)
models, one with latent variables to permit
disambiguation of new predicate words. The
parser is demonstrated to significantly outper-
form previously published results.

1 Introduction

FrameNet (Fillmore et al., 2003) is a rich linguistic
resource containing considerable information about
lexical and predicate-argument semantics in En-
glish. Grounded in the theory of frame semantics
(Fillmore, 1982), it suggests—but does not formally
define—a semantic representation that blends word-
sense disambiguation and semantic role labeling.

In this paper, we present a computational and
statistical model for frame-semantic parsing, the
problem of extracting from text semantic predicate-
argument structures such as those shown in Fig. 1.
We aim to predict a frame-semantic representation
as a structure, not as a pipeline of classifiers. We
use a probabilistic framework that cleanly integrates
the FrameNet lexicon and (currently very limited)
available training data. Although our models often
involve strong independence assumptions, the prob-
abilistic framework we adopt is highly amenable to
future extension through new features, relaxed in-
dependence assumptions, and semisupervised learn-
ing. Some novel aspects of our current approach
include a latent-variable model that permits disam-
biguation of words not in the FrameNet lexicon, a
unified model for finding and labeling arguments,

TRANSITIVE_
ACTION

Agent

Patient

Event

Cause

Place

Time

CAUSE_TO_
MAKE_NOISE

Agent

Sound_maker

Cause

Place

Time

MAKE_NOISE

Noisy_event

Sound

Sound_source

Place

Time

cough.v, gobble.v,
ring.v, yodel.v, ...

blare.v, play.v,
ring.v, toot.v, ...—

Inheritance relation Causative_of relation
Excludes relation

Purpose

Figure 2. Partial illustration of frames, roles, and LUs
related to the CAUSE TO MAKE NOISE frame, from the
FrameNet lexicon. “Core” roles are filled ovals. 8 addi-
tional roles of CAUSE TO MAKE NOISE are not shown.

and a precision-boosting constraint that forbids ar-
guments of the same predicate to overlap. Our parser
achieves the best published results to date on the
SemEval’07 FrameNet task (Baker et al., 2007).

2 Resources and Task

We consider frame-semantic parsing resources.

2.1 FrameNet Lexicon
The FrameNet lexicon is a taxonomy of manu-
ally identified general-purpose frames for English.1

Listed in the lexicon with each frame are several
lemmas (with part of speech) that can denote the
frame or some aspect of it—these are called lexi-
cal units (LUs). In a sentence, word or phrase to-
kens that evoke a frame are known as targets. The
set of LUs listed for a frame in FrameNet may not
be exhaustive; we may see a target in new data that
does not correspond to an LU for the frame it evokes.
Each frame definition also includes a set of frame el-
ements, or roles, corresponding to different aspects
of the concept represented by the frame, such as par-
ticipants, props, and attributes. We use the term ar-

1Like the SemEval’07 participants, we used FrameNet v. 1.3
(http://framenet.icsi.berkeley.edu).

948

bell.n
ring.v

there be.v
enough.a

LU

NOISE_MAKERS

SUFFICIENCY

Frame

EXISTENCE

CAUSE_TO_MAKE_NOISE

.bells

N_m

more than six of the eight

Sound_maker
Enabled_situation

ringtoringers

Item

enough

Entity

Agent

n'tarestillthereBut

Figure 1. A sentence from PropBank and the SemEval’07 training data, and a partial depiction of gold FrameNet
annotations. Each frame is a row below the sentence (ordered for readability). Thick lines indicate targets that evoke
frames; thin solid/dotted lines with labels indicate arguments. “N m” under bells is short for the Noise maker role of
the NOISE MAKERS frame. The last row indicates that there. . . are is a discontinuous target. In PropBank, the verb
ring is the only annotated predicate for this sentence, and it is not related to other predicates with similar meanings.

FRAMENET LEXICON V. 1.3
lexical exemplars
entries counts coverage
8379 LUs 139K sentences, 3.1M words 70% LUs
795 frames 1 frame annotation / sentence 63% frames
7124 roles 285K overt arguments 56% roles

Table 1. Snapshot of lexicon entries and exemplar sen-
tences. Coverage indicates the fraction of types attested
in at least one exemplar.

gument to refer to a sequence of word tokens anno-
tated as filling a frame role. Fig. 1 shows an exam-
ple sentence from the training data with annotated
targets, LUs, frames, and role-argument pairs. The
FrameNet lexicon also provides information about
relations between frames and between roles (e.g.,
INHERITANCE). Fig. 2 shows a subset of the rela-
tions between three frames and their roles.

Accompanying most frame definitions in the
FrameNet lexicon is a set of lexicographic exemplar
sentences (primarily from the British National Cor-
pus) annotated for that frame. Typically chosen to il-
lustrate variation in argument realization patterns for
the frame in question, these sentences only contain
annotations for a single frame. We found that using
exemplar sentences directly to train our models hurt
performance as evaluated on SemEval’07 data, even
though the number of exemplar sentences is an order
of magnitude larger than the number of sentences in
our training set (§2.2). This is presumably because
the exemplars are neither representative as a sample
nor similar to the test data. Instead, we make use of
these exemplars in features (§4.2).

2.2 Data

Our training, development, and test sets consist
of documents annotated with frame-semantic struc-
tures for the SemEval’07 task, which we refer to col-

FULL-TEXT SemEval’07 data
ANNOTATIONS train dev test
Size (words sentences documents)

all 43.3K1.7K 22 6.3K 251 4 2.8K 120 3

ANC (travel) 3.9K 154 2 .8K 32 1 1.3K 67 1

NTI (bureaucratic) 32.2K1.2K 15 5.5K 219 3 1.5K 53 2

PropBank (news) 7.3K 325 5 0 0 0 0 0 0

Annotations (frames/word overt arguments/word)
all 0.23 0.39 0.22 0.37 0.37 0.65

Coverage of lexicon (% frames % roles % LUs)
all 64.1 27.4 21.0 34.0 10.2 7.3 29.3 7.7 4.9

Out-of-lexicon types (frames roles LUs)
all 14 69 71 2 4 2 39 99 189

Out-of-lexicon tokens (% frames % roles % LUs)
all 0.7 0.9 1.1 1.0 0.4 0.2 9.8 11.2 25.3

Table 2. Snapshot of the SemEval’07 annotated data.

lectively as the SemEval’07 data.2 For the most
part, the frames and roles used in annotating these
documents were defined in the FrameNet lexicon,
but there are some exceptions for which the annota-
tors defined supplementary frames and roles; these
are included in the possible output of our parser.

Table 2 provides a snapshot of the SemEval’07
data. We randomly selected three documents from
the original SemEval training data to create a devel-
opment set for tuning model hyperparameters. No-
tice that the test set contains more annotations per
word, both in terms of frames and arguments. More-
over, there are many more out-of-lexicon frame,
role, and LU types in the test set than in the training
set. This inconsistency in the data results in poor re-
call scores for all models trained on the given data
split, a problem we have not sought to address here.

2http://framenet.icsi.berkeley.edu/
semeval/FSSE.html

949

Preprocessing. We preprocess sentences in our
dataset with a standard set of annotations: POS
tags from MXPOST (Ratnaparkhi, 1996) and depen-
dency parses from the MST parser (McDonald et al.,
2005) since manual syntactic parses are not available
for most of the FrameNet-annotated documents. We
used WordNet (Fellbaum, 1998) for lemmatization.
We also labeled each verb in the data as having AC-
TIVE or PASSIVE voice, using code from the SRL
system described by Johansson and Nugues (2008).

2.3 Task and Evaluation
Automatic annotations of frame-semantic structure
can be broken into three parts: (1) targets, the words
or phrases that evoke frames; (2) the frame type,
defined in the lexicon, evoked by each target; and
(3) the arguments, or spans of words that serve to
fill roles defined by each evoked frame. These cor-
respond to the three subtasks in our parser, each
described and evaluated in turn: target identifica-
tion (§3), frame identification (§4, not unlike word-
sense disambiguation), and argument identification
(§5, not unlike semantic role labeling).

The standard evaluation script from the
SemEval’07 shared task calculates precision,
recall, and F1-measure for frames and arguments;
it also provides a score that gives partial credit
for hypothesizing a frame related to the correct
one. We present precision, recall, and F1-measure
microaveraged across the test documents, report
labels-only matching scores (spans must match
exactly), and do not use named entity labels. More
details can be found in Baker et al. (2007). For our
experiments, statistical significance is measured us-
ing a reimplementation of Dan Bikel’s randomized
parsing evaluation comparator.3

2.4 Baseline
A strong baseline for frame-semantic parsing is
the system presented by Johansson and Nugues
(2007, hereafter J&N’07), the best system in the
SemEval’07 shared task. For frame identifica-
tion, they used an SVM classifier to disambiguate
frames for known frame-evoking words. They used
WordNet synsets to extend the vocabulary of frame-
evoking words to cover unknown words, and then

3http://www.cis.upenn.edu/˜dbikel/
software.html#comparator

TARGET IDENTIFICATION P R F1

Our technique (§3) 89.92 70.79 79.21
Baseline: J&N’07 87.87 67.11 76.10

Table 3. Target identification results for our system and
the baseline. Scores in bold denote significant improve-
ments over the baseline (p < 0.05).

used a collection of separate SVM classifiers—one
for each frame—to predict a single evoked frame for
each occurrence of a word in the extended set.

J&N’07 modeled the argument identification
problem by dividing it into two tasks: first, they
classified candidate spans as to whether they were
arguments or not; then they assigned roles to those
that were identified as arguments. Both phases used
SVMs. Thus, their formulation of the problem in-
volves a multitude of classifiers—whereas ours uses
two log-linear models, each with a single set of
weights, to find a full frame-semantic parse.

3 Target Identification

Target identification is the problem of deciding
which word tokens (or word token sequences) evoke
frames in a given sentence. In other semantic role
labeling schemes (e.g. PropBank), simple part-of-
speech criteria typically distinguish predicates from
non-predicates. But in frame semantics, verbs,
nouns, adjectives, and even prepositions can evoke
frames under certain conditions. One complication
is that semantically-impoverished support predi-
cates (such as make in make a request) do not
evoke frames in the context of a frame-evoking,
syntactially-dependent noun (request). Further-
more, only temporal, locative, and directional senses
of prepositions evoke frames.

We found that, because the test set is more com-
pletely annotated—that is, it boasts far more frames
per token than the training data (see Table 2)—
learned models did not generalize well and achieved
poor test recall. Instead, we followed J&N’07 in us-
ing a small set of rules to identify targets.

For a span to be a candidate target, it must ap-
pear (up to morphological variation) as a target in the
training data or the lexicon. We consider multiword
targets,4 unlike J&N’07 (though we do not consider

4There are 629 multiword LUs in the lexicon, and they cor-
respond to 4.8% of the targets in the training set; among them
are screw up.V, shoot the breeze.V, and weapon of mass de-

950

FRAME IDENTIFICATION exact frame matching partial frame matching
(§4) targets P R F1 P R F1

Frame identification (oracle targets) ∗ 60.21 60.21 60.21 74.21 74.21 74.21
Frame identification (predicted targets) auto §3 69.75 54.91 61.44 77.51 61.03 68.29
Baseline: J&N’07 auto 66.22 50.57 57.34 73.86 56.41 63.97

Table 4. Frame identification results. Precision, recall, and F1 were evaluated under exact and partial frame matching;
see §2.3. Bold indicates statistically significant results with respect to the baseline (p < 0.05).

discontinuous targets). Using rules from §3.1.1 of
J&N’07, we further prune the list, with two modi-
fications: we prune all prepositions, including loca-
tive, temporal, and directional ones, but do not prune
support verbs. This is a conservative approach; our
automatic target identifier will never propose a target
that was not seen in the training data or FrameNet.

Results. Table 3 shows results on target identifica-
tion; our system gains 3 F1 points over the baseline.

4 Frame Identification

Given targets, the parser next identifies their frames.

4.1 Lexical units
FrameNet specifies a great deal of structural infor-
mation both within and among frames. For frame
identification we make use of frame-evoking lexical
units, the (lemmatized and POS-tagged) words and
phrases listed in the lexicon as referring to specific
frames. For example, listed with the BRAGGING

frame are 10 LUs, including boast.N, boast.V, boast-
ful.A, brag.V, and braggart.N. Of course, due to pol-
ysemy and homonymy, the same LU may be associ-
ated with multiple frames; for example, gobble.V is
listed under both the INGESTION and MAKE NOISE

frames. All targets in the exemplar sentences, and
most in our training and test data, correspond to
known LUs (see Table 2).

To incorporate frame-evoking expressions found
in the training data but not the lexicon—and to avoid
the possibility of lemmatization errors—our frame
identification model will incorporate, via a latent
variable, features based directly on exemplar and
training targets rather than LUs. Let L be the set of
(unlemmatized and automatically POS-tagged) tar-
gets found in the exemplar sentences of the lexi-
con and/or the sentences in our training set. Let
Lf ⊆ L be the subset of these targets annotated as

struction.N. In the SemEval’07 training data, there are just 99
discontinuous multiword targets (1% of all targets).

evoking a particular frame f . Let Ll and Ll
f de-

note the lemmatized versions of L and Lf respec-
tively. Then, we write boasted.VBD ∈ LBRAGGING

and boast.VBD ∈ Ll
BRAGGING to indicate that this in-

flected verb boasted and its lemma boast have been
seen to evoke the BRAGGING frame. Significantly,
however, another target, such as toot your own horn,
might be used in other data to evoke this frame. We
thus face the additional hurdle of predicting frames
for unknown words.

The SemEval annotators created 47 new frames
not present in the lexicon, out of which 14 belonged
to our training set. We considered these with the 795
frames in the lexicon when parsing new data. Pre-
dicting new frames is a challenge not yet attempted
to our knowledge (including here). Note that the
scoring metric (§2.3) gives partial credit for related
frames (e.g., a more general frame from the lexicon).

4.2 Model

For a given sentence x with frame-evoking targets t,
let ti denote the ith target (a word sequence). Let tli
denote its lemma. We seek a list f = 〈f1, . . . , fm〉
of frames, one per target. In our model, the set of
candidate frames for ti is defined to include every
frame f such that tli ∈ Ll

f —or if tli 6∈ Ll, then every
known frame (the latter condition applies for 4.7%
of the gold targets in the development set). In both
cases, we let Fi be the set of candidate frames for
the ith target in x.

To allow frame identification for targets whose
lemmas were seen in neither the exemplars nor the
training data, our model includes an additional vari-
able, `i. This variable ranges over the seen targets
in Lfi

, which can be thought of as prototypes for
the expression of the frame. Importantly, frames are
predicted, but prototypes are summed over via the
latent variable. The prediction rule requires a prob-
abilistic model over frames for a target:

fi ← argmaxf∈Fi

∑
`∈Lf

p(f, ` | ti,x) (1)

951

We adopt a conditional log-linear model: for f ∈ Fi

and ` ∈ Lf , pθ(f, ` | ti,x) =

expθ>g(f, `, ti,x)∑
f ′∈Fi

∑
`′∈Lf ′

expθ>g(f ′, `′, ti,x)
(2)

where θ are the model weights, and g is a vector-
valued feature function. This discriminative formu-
lation is very flexible, allowing for a variety of (pos-
sibly overlapping) features; e.g., a feature might re-
late a frame type to a prototype, represent a lexical-
semantic relationship between a prototype and a tar-
get, or encode part of the syntax of the sentence.

Previous work has exploited WordNet for better
coverage during frame identification (Johansson and
Nugues, 2007; Burchardt et al., 2005, e.g., by ex-
panding the set of targets using synsets), and others
have sought to extend the lexicon itself (see §6). We
differ in our use of a latent variable to incorporate
lexical-semantic features in a discriminative model,
relating known lexical units to unknown words that
may evoke frames. Here we are able to take advan-
tage of the large inventory of partially-annotated ex-
emplar sentences.

Note that this model makes a strong independence
assumption: each frame is predicted independently
of all others in the document. In this way the model
is similar to J&N’07. However, ours is a single
conditional model that shares features and weights
across all targets, frames, and prototypes, whereas
the approach of J&N’07 consists of many separately
trained models. Moreover, our model is unique in
that it uses a latent variable to smooth over frames
for unknown or ambiguous LUs.

Frame identification features depend on the pre-
processed sentence x, the prototype ` and its
WordNet lexical-semantic relationship with the tar-
get ti, and of course the frame f . Our model instan-
tiates 662,020 binary features; see Das et al. (2010).

4.3 Training
Given the training subset of the SemEval’07 data,
which is of the form

〈
〈x(j), t(j), f (j),A(j)〉

〉N
j=1

(N = 1663 is the number of sentences), we dis-
criminatively train the frame identification model by
maximizing the following log-likelihood:5

5We found no benefit on development data from using an L2

regularizer (zero-mean Gaussian prior).

max
θ

N∑
j=1

mj∑
i=1

log
∑

`∈L
f
(j)
i

pθ(f
(j)
i , ` | t(j)i ,x(j)) (3)

Note that the training problem is non-convex be-
cause of the summed-out prototype latent variable
` for each frame. To calculate the objective func-
tion, we need to cope with a sum over frames and
prototypes for each target (see Eq. 2), often an ex-
pensive operation. We locally optimize the function
using a distributed implementation of L-BFGS. This
is the most expensive model that we train: with 100
CPUs, training takes several hours. (Decoding takes
only a few minutes on one CPU for the test set.)

4.4 Results
We evaluate the performance of our frame identifi-
cation model given gold-standard targets and auto-
matically identified targets (§3); see Table 4.

Given gold-standard targets, our model is able
to predict frames for lemmas not seen in training,
of which there are 210. The partial-match evalua-
tion gives our model some credit for 190 of these,
4 of which are exactly correct. The hidden vari-
able model, then, is finding related (but rarely exact)
frames for unknown target words. The net effect of
our conservative target identifier on F1 is actually
positive: the frame identifier is far more precise for
targets seen explicitly in training. Together, our tar-
get and frame identification outperform the baseline
by 4 F1 points. To compare the frame identification
stage in isolation with that of J&N’07, we ran our
frame identification model with the targets identified
by their system as input. With partial matching, our
model achieves a relative improvement of 0.6% F1

over J&N’07 (though this is not significant).
While our frame identification model thus per-

forms on par with the current state of the art for
this task, it improves upon J&N’s formulation of
the problem because it requires only a single model,
learns lexical-semantic features as part of that model
rather than requiring a preprocessing step to expand
the vocabulary of frame-evoking words, and is prob-
abilistic, which can facilitate global reasoning.

5 Argument Identification

Given a sentence x = 〈x1, . . . , xn〉, the set of tar-
gets t = 〈t1, . . . , tm〉, and a list of evoked frames

952

f = 〈f1, . . . , fm〉 corresponding to each target, ar-
gument identification is the task of choosing which
of each fi’s roles are filled, and by which parts of x.
This task is most similar to the problem of semantic
role labeling, but uses frame-specific labels that are
richer than the PropBank annotations.

5.1 Model

Let Rfi
= {r1, . . . , r|Rfi

|} denote frame fi’s roles
(named frame element types) observed in an exem-
plar sentence and/or our training set. A subset of
each frame’s roles are marked as core roles; these
roles are conceptually and/or syntactically necessary
for any given use of the frame, though they need
not be overt in every sentence involving the frame.
These are roughly analogous to the core arguments
A0–A5 and AA in PropBank. Non-core roles—
analogous to the various AMs in PropBank—loosely
correspond to syntactic adjuncts, and carry broadly-
applicable information such as the time, place, or
purpose of an event. The lexicon imposes some
additional structure on roles, including relations to
other roles in the same or related frames, and se-
mantic types with respect to a small ontology (mark-
ing, for instance, that the entity filling the protag-
onist role must be sentient for frames of cogni-
tion). Fig. 2 illustrates some of the structural ele-
ments comprising the frame lexicon by considering
the CAUSE TO MAKE NOISE frame.

We identify a set S of spans that are candidates for
filling any role r ∈ Rfi

. In principle, S could con-
tain any subsequence of x, but in this work we only
consider the set of contiguous spans that (a) contain
a single word or (b) comprise a valid subtree of a
word and all its descendants in the dependency parse
produced by the MST parser. This covers 81% of ar-
guments in the development data. The empty span
is also included in S, since some roles are not ex-
plicitly filled; in the development data, the average
number of roles an evoked frame defines is 6.7, but
the average number of overt arguments is only 1.7.6

In training, if a labeled argument is not a valid sub-

6In the annotated data, each core role is filled with one of
three types of null instantiations indicating how the role is con-
veyed implicitly. E.g., the imperative construction implicitly
designates a role as filled by the addressee, and the correspond-
ing filler is thus CNI (constructional null instantiation). In this
work we do not distinguish different types of null instantiations.

tree of the dependency parse, we add its span to S .
Let Ai denote the mapping of roles in Rfi

to
spans in S. Our model makes a prediction for each
Ai(rk) (for all roles rk ∈ Rfi

) using:

Ai(rk)← argmaxs∈S p(s | rk, fi, ti,x) (4)

We use a conditional log-linear model over spans for
each role of each evoked frame:

pψ(Ai(rk) = s | fi, ti,x) = (5)

expψ>h(s, rk, fi, ti,x)∑
s′∈S expψ>h(s′, rk, fi, ti,x)

Note that our model chooses the span for each
role separately from the other roles and ignores all
frames except the frame the role belongs to. Our
model departs from the traditional SRL literature by
modeling the argument identification problem in a
single stage, rather than first classifying token spans
as arguments and then labeling them. A constraint
implicit in our formulation restricts each role to have
at most one overt argument, which is consistent with
96.5% of the role instances in the training data.

Out of the overt argument spans in the training
data, 12% are duplicates, having been used by some
previous frame in the sentence (supposing some ar-
bitrary ordering of frames). Our role-filling model,
unlike a sentence-global argument detection-and-
classification approach,7 permits this sort of argu-
ment sharing among frames. The incidence of span
overlap among frames is much higher; Fig. 1 illus-
trates a case with a high degree of overlap. Word
tokens belong to an average of 1.6 argument spans
each, including the quarter of words that do not be-
long to any argument.

Features for our log-linear model (Eq. 5) depend
on the preprocessed sentence x; the target t; a
role r of frame f ; and a candidate argument span
s ∈ S. Our model includes lexicalized and unlexi-
calized features considering aspects of the syntactic
parse (most notably the dependency path in the parse
from the target to the argument); voice; word order-
ing/overlap/distance of the argument with respect to
the target; and POS tags within and around the argu-
ment. Many features have a version specific to the
frame and role, plus a smoothed version incorporat-
ing the role name, but not the frame. These features

7J&N’07, like us, identify arguments for each target.

953

are fully enumerated in (Das et al., 2010); instanti-
ating them for our data yields 1,297,857 parameters.

5.2 Training

We train the argument identification model by:

max
ψ

N∑
j=1

mj∑
i=1

|R
f
(j)
i

|∑
k=1

log pψ(A(j)
i (rk) | f

(j)
i , t

(j)
i ,x(j))

(6)
This objective function is concave, and we globally
optimize it using stochastic gradient ascent (Bottou,
2004). We train this model until the argument iden-
tification F1 score stops increasing on the develop-
ment data. Best results on this dataset were obtained
with a batch size of 2 and 23 passes through the data.

5.3 Approximate Joint Decoding

Naı̈ve prediction of roles using Eq. 4 may result
in overlap among arguments filling different roles
of a frame, since the argument identification model
fills each role independently of the others. We want
to enforce the constraint that two roles of a single
frame cannot be filled by overlapping spans. We dis-
allow illegal overlap using a 10000-hypothesis beam
search; the algorithm is given in (Das et al., 2010).

5.4 Results

Performance of the argument identification model
is presented in Table 5. The table shows how per-
formance varies given different types of perfect in-
put: correct targets, correct frames, and the set of
correct spans; correct targets and frames, with the
heuristically-constructed set of candidate spans; cor-
rect targets only, with model frames; and ultimately,
no oracle input (the full frame parsing scenario).

The first four rows of results isolate the argu-
ment identification task from the frame identifica-
tion task. Given gold targets and frames and an ora-
cle set of argument spans, our local model achieves
about 87% precision and 75% recall. Beam search
decoding to eliminate illegal argument assignments
within a frame (§5.3) further improves precision by
about 1.6%, with negligible harm to recall. Note
that 96.5% recall is possible under the constraint that
roles are not multiply-filled (§5.1); there is thus con-
siderable room for improvement with this constraint
in place. Joint prediction of each frame’s arguments

is worth exploring to capture correlations not en-
coded in our local models or joint decoding scheme.

The 15-point drop in recall when the heuristically-
built candidate argument set replaces the set of true
argument spans is unsurprising: an estimated 19% of
correct arguments are excluded because they are nei-
ther single words nor complete subtrees (see §5.1).
Qualitatively, the problem of candidate span recall
seems to be largely due to syntactic parse errors.8

Still, the 10-point decrease in precision when using
the syntactic parse to determine candidate spans sug-
gests that the model has trouble discriminating be-
tween good and bad arguments, and that additional
feature engineering or jointly decoding arguments of
a sentence’s frames may be beneficial in this regard.

The fifth and sixth rows show the effect of auto-
matic frame identification on overall frame parsing
performance. There is a 22% decrease in F1 (18%
when partial credit is given for related frames), sug-
gesting that improved frame identification or joint
prediction of frames and arguments is likely to have
a sizeable impact on overall performance.

The final two rows of the table compare our full
model (target, frame, and argument identification)
with the baseline, showing significant improvement
of more than 4.4 F1 points for both exact and partial
frame matching. As with frame identification, we
compared the argument identification stage with that
of J&N’07 in isolation, using the automatically iden-
tified targets and frames from the latter as input to
our model. With partial frame matching, this gave us
an F1 score of 48.1% on the test set—significantly
better (p < 0.05) than 45.6%, the full parsing re-
sult from J&N’07. This indicates that our argument
identification model—which uses a single discrim-
inative model with a large number of features for
role filling (rather than argument labeling)—is more
powerful than the previous state of the art.

6 Related work

Since Gildea and Jurafsky (2002) pioneered statis-
tical semantic role labeling, a great deal of com-

8Note that, because of our labels-only evaluation scheme
(§2.3), arguments missing a word or containing an extra word
receive no credit. In fact, of the frame roles correctly predicted
as having an overt span, the correct span was predicted 66% of
the time, while 10% of the time the predicted starting and end-
ing boundaries of the span were off by a total of 1 or 2 words.

954

ARGUMENT IDENTIFICATION exact frame matching
targets frames spans decoding P R F1

Argument identifica-
tion (oracle spans)

∗ ∗ ∗ naı̈ve 86.61 75.11 80.45
∗ ∗ ∗ beam §5.3 88.29 74.77 80.97

Argument identifica-
tion (full)

∗ ∗ model §5 naı̈ve 77.43 60.76 68.09 partial frame matching
∗ ∗ model §5 beam §5.3 78.71 60.57 68.46 P R F1

Parsing (oracle targets) ∗ model §4 model §5 beam §5.3 49.68 42.82 46.00 57.85 49.86 53.56
Parsing (full) auto §3 model §4 model §5 beam §5.3 58.08 38.76 46.49 62.76 41.89 50.24
Baseline: J&N’07 auto model model N/A 51.59 35.44 42.01 56.01 38.48 45.62

Table 5. Argument identification results. ∗ indicates that gold-standard labels were used for a given pipeline stage.
For full parsing, bolded scores indicate significant improvements relative to the baseline (p < 0.05).

putational work has investigated predicate-argument
structures for semantics. Briefly, we highlight some
relevant work, particularly research that has made
use of FrameNet. (Note that much related research
has focused on PropBank (Kingsbury and Palmer,
2002), a set of shallow predicate-argument annota-
tions for Wall Street Journal articles from the Penn
Treebank (Marcus et al., 1993); a recent issue of CL
(Màrquez et al., 2008) was devoted to the subject.)

Most work on frame-semantic role labeling has
made use of the exemplar sentences in the FrameNet
corpus (see §2.1), each of which is annotated for a
single frame and its arguments. On the probabilis-
tic modeling front, Gildea and Jurafsky (2002) pre-
sented a discriminative model for arguments given
the frame; Thompson et al. (2003) used a gener-
ative model for both the frame and its arguments;
and Fleischman et al. (2003) first used maximum
entropy models to find and label arguments given
the frame. Shi and Mihalcea (2004) developed a
rule-based system to predict frames and their argu-
ments in text, and Erk and Padó (2006) introduced
the Shalmaneser tool, which employs Naı̈ve Bayes
classifiers to do the same. Other FrameNet SRL
systems (Giuglea and Moschitti, 2006, for instance)
have used SVMs. Most of this work was done on an
older, smaller version of FrameNet.

Recent work on frame-semantic parsing—in
which sentences may contain multiple frames to be
recognized along with their arguments—has used
the SemEval’07 data (Baker et al., 2007). The LTH
system of Johansson and Nugues (2007), our base-
line (§2.4), performed the best in the SemEval’07
task. Matsubayashi et al. (2009) trained a log-
linear model on the SemEval’07 data to evaluate
argument identification features exploiting various

types of taxonomic relations to generalize over roles.
A line of work has sought to extend the coverage
of FrameNet by exploiting VerbNet, WordNet, and
Wikipedia (Shi and Mihalcea, 2005; Giuglea and
Moschitti, 2006; Pennacchiotti et al., 2008; Tonelli
and Giuliano, 2009), and projecting entries and an-
notations within and across languages (Boas, 2002;
Fung and Chen, 2004; Padó and Lapata, 2005;
Fürstenau and Lapata, 2009). Others have applied
frame-semantic structures to question answering,
paraphrase/entailment recognition, and information
extraction (Narayanan and Harabagiu, 2004; Shen
and Lapata, 2007; Padó and Erk, 2005; Burchardt,
2006; Moschitti et al., 2003; Surdeanu et al., 2003).

7 Conclusion

We have provided a supervised model for rich
frame-semantic parsing, based on a combination
of knowledge from FrameNet, two probabilistic
models trained on SemEval’07 data, and expedi-
ent heuristics. Our system achieves improvements
over the state of the art at each stage of process-
ing and collectively, and is amenable to future ex-
tension. Our parser is available for download at
http://www.ark.cs.cmu.edu/SEMAFOR.

Acknowledgments
We thank Collin Baker, Katrin Erk, Richard Johansson,
and Nils Reiter for software, data, evaluation scripts, and
methodological details. We thank the reviewers, Alan
Black, Ric Crabbe, Michael Ellsworth, Rebecca Hwa,
Dan Klein, Russell Lee-Goldman, Dan Roth, Josef Rup-
penhofer, and members of the ARK group for helpful
comments. This work was supported by DARPA grant
NBCH-1080004, NSF grant IIS-0836431, and computa-
tional resources provided by Yahoo.

955

References

C. Baker, M. Ellsworth, and K. Erk. 2007. SemEval-
2007 Task 19: frame semantic structure extraction. In
Proc. of SemEval.

H. C. Boas. 2002. Bilingual FrameNet dictionaries for
machine translation. In Proc. of LREC.

L. Bottou. 2004. Stochastic learning. In Advanced Lec-
tures on Machine Learning. Springer-Verlag.

A. Burchardt, K. Erk, and A. Frank. 2005. A WordNet
detour to FrameNet. In B. Fisseni, H.-C. Schmitz,
B. Schröder, and P. Wagner, editors, Sprachtech-
nologie, mobile Kommunikation und linguistische Re-
sourcen, volume 8. Peter Lang.

A. Burchardt. 2006. Approaching textual entailment
with LFG and FrameNet frames. In Proc. of the Sec-
ond PASCAL RTE Challenge Workshop.

D. Das, N. Schneider, D. Chen, and N. A. Smith.
2010. SEMAFOR 1.0: A probabilistic frame-semantic
parser. Technical Report CMU-LTI-10-001, Carnegie
Mellon University.

K. Erk and S. Padó. 2006. Shalmaneser - a toolchain for
shallow semantic parsing. In Proc. of LREC.

C. Fellbaum, editor. 1998. WordNet: an electronic lexi-
cal database. MIT Press, Cambridge, MA.

C. J. Fillmore, C. R. Johnson, and M. R.L. Petruck. 2003.
Background to FrameNet. International Journal of
Lexicography, 16(3).

C. J. Fillmore. 1982. Frame semantics. In Linguistics in
the Morning Calm, pages 111–137. Hanshin Publish-
ing Co., Seoul, South Korea.

M. Fleischman, N. Kwon, and E. Hovy. 2003. Maximum
entropy models for FrameNet classification. In Proc.
of EMNLP.

P. Fung and B. Chen. 2004. BiFrameNet: bilin-
gual frame semantics resource construction by cross-
lingual induction. In Proc. of COLING.

H. Fürstenau and M. Lapata. 2009. Semi-supervised se-
mantic role labeling. In Proc. of EACL.

D. Gildea and D. Jurafsky. 2002. Automatic labeling of
semantic roles. Computational Linguistics, 28(3).

A.-M. Giuglea and A. Moschitti. 2006. Shallow
semantic parsing based on FrameNet, VerbNet and
PropBank. In Proc. of ECAI 2006.

R. Johansson and P. Nugues. 2007. LTH: semantic struc-
ture extraction using nonprojective dependency trees.
In Proc. of SemEval.

R. Johansson and P. Nugues. 2008. Dependency-based
semantic role labeling of PropBank. In Proc. of
EMNLP.

P. Kingsbury and M. Palmer. 2002. From TreeBank to
PropBank. In Proc. of LREC.

M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini.
1993. Building a large annotated corpus of English:
the Penn Treebank. Computational Linguistics, 19(2).

L. Màrquez, X. Carreras, K. C. Litkowski, and S. Steven-
son. 2008. Semantic role labeling: an introduction to
the special issue. Computational Linguistics, 34(2).

Y. Matsubayashi, N. Okazaki, and J. Tsujii. 2009. A
comparative study on generalization of semantic roles
in FrameNet. In Proc. of ACL-IJCNLP.

R. McDonald, K. Crammer, and F. Pereira. 2005. Online
large-margin training of dependency parsers. In Proc.
of ACL.

A. Moschitti, P. Morărescu, and S. M. Harabagiu. 2003.
Open-domain information extraction via automatic se-
mantic labeling. In Proc. of FLAIRS.

S. Narayanan and S. Harabagiu. 2004. Question answer-
ing based on semantic structures. In Proc. of COLING.

S. Padó and K. Erk. 2005. To cause or not to cause:
cross-lingual semantic matching for paraphrase mod-
elling. In Proc. of the Cross-Language Knowledge In-
duction Workshop.

S. Padó and M. Lapata. 2005. Cross-linguistic projec-
tion of role-semantic information. In Proc. of HLT-
EMNLP.

M. Pennacchiotti, D. De Cao, R. Basili, D. Croce, and
M. Roth. 2008. Automatic induction of FrameNet
lexical units. In Proc. of EMNLP.

A. Ratnaparkhi. 1996. A maximum entropy model for
part-of-speech tagging. In Proc. of EMNLP.

D. Shen and M. Lapata. 2007. Using semantic roles
to improve question answering. In Proc. of EMNLP-
CoNLL.

L. Shi and R. Mihalcea. 2004. An algorithm for open
text semantic parsing. In Proc. of Workshop on Robust
Methods in Analysis of Natural Language Data.

L. Shi and R. Mihalcea. 2005. Putting pieces together:
combining FrameNet, VerbNet and WordNet for ro-
bust semantic parsing. In Computational Linguis-
tics and Intelligent Text Processing: Proc. of CICLing
2005. Springer-Verlag.

M. Surdeanu, S. Harabagiu, J. Williams, and P. Aarseth.
2003. Using predicate-argument structures for infor-
mation extraction. In Proc. of ACL.

C. A. Thompson, R. Levy, and C. D. Manning. 2003. A
generative model for semantic role labeling. In Proc.
of ECML.

S. Tonelli and C. Giuliano. 2009. Wikipedia as frame
information repository. In Proc. of EMNLP.

956

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 957–965,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Expected Sequence Similarity Maximization

Cyril Allauzen 1, Shankar Kumar1, Wolfgang Macherey1, Mehryar Mohri 2,1 and Michael Riley1

1Google Research, 76 Ninth Avenue, New York, NY 10011
2Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012

Abstract

This paper presents efficient algorithms for
expected similarity maximization, which co-
incides with minimum Bayes decoding for a
similarity-based loss function. Our algorithms
are designed for similarity functions that are
sequence kernels in a general class of posi-
tive definite symmetric kernels. We discuss
both a general algorithm and a more efficient
algorithm applicable in a common unambigu-
ous scenario. We also describe the applica-
tion of our algorithms to machine translation
and report the results of experiments with sev-
eral translation data sets which demonstrate a
substantial speed-up. In particular, our results
show a speed-up by two orders of magnitude
with respect to the original method of Tromble
et al. (2008) and by a factor of 3 or more
even with respect to an approximate algorithm
specifically designed for that task. These re-
sults open the path for the exploration of more
appropriate or optimal kernels for the specific
tasks considered.

1 Introduction

The output of many complex natural language pro-
cessing systems such as information extraction,
speech recognition, or machine translation systems
is a probabilistic automaton. Exploiting the full in-
formation provided by this probabilistic automaton
can lead to more accurate results than just using the
one-best sequence.

Different techniques have been explored in the
past to take advantage of the full lattice, some based
on the use of a more complex model applied to
the automaton as in rescoring, others using addi-
tional data or information for reranking the hypothe-
ses represented by the automaton. One method for
using these probabilistic automata that has been suc-
cessful in large-vocabulary speech recognition (Goel
and Byrne, 2000) and machine translation (Kumar
and Byrne, 2004; Tromble et al., 2008) applications

and that requires no additional data or other com-
plex models is the minimum Bayes risk (MBR) de-
coding technique. This returns that sequence of the
automaton having the minimum expected loss with
respect to all sequences accepted by the automaton
(Bickel and Doksum, 2001). Often, minimizing the
loss functionL can be equivalently viewed as max-
imizing a similarity functionK between sequences,
which corresponds to a kernel function when it is
positive definite symmetric (Berg et al., 1984). The
technique can then be thought of as anexpected se-
quence similarity maximization.

This paper considers this expected similarity max-
imization view. Since different similarity functions
can be used within this framework, one may wish to
select the one that is the most appropriate or relevant
to the task considered. However, a crucial require-
ment for this choice to be realistic is to ensure that
for the family of similarity functions considered the
expected similarity maximization is efficiently com-
putable. Thus, we primarily focus on this algorith-
mic problem in this paper, leaving it to future work
to study the question of determining how to select
the similarity function and report on the benefits of
this choice.

A general family of sequence kernels including
the sequence kernels used in computational biology,
text categorization, spoken-dialog classification, and
many other tasks is that ofrational kernels(Cortes
et al., 2004). We show how the expected similarity
maximization can be efficiently computed for these
kernels. In section 3, we describe more specifically
the framework of expected similarity maximization
in the case of rational kernels and the correspond-
ing algorithmic problem. In Section 4, we describe
both a general method for the computation of the ex-
pected similarity maximization, and a more efficient
method that can be used with a broad sub-family
of rational kernels that verify a condition of non-
ambiguity. This latter family includes the class of
n-gram kernels which have been previously used to

957

apply MBR to machine translation (Tromble et al.,
2008). We examine in more detail the use and ap-
plication of our algorithms to machine translation
in Section 5. Section 6 reports the results of ex-
periments applying our algorithms in several large
data sets in machine translation. These experiments
demonstrate the efficiency of our algorithm which
is shown empirically to be two orders of magnitude
faster than Tromble et al. (2008) and more than 3
times faster than even an approximation algorithm
specifically designed for this problem (Kumar et al.,
2009). We start with some preliminary definitions
and algorithms related to weighted automata and
transducers, following the definitions and terminol-
ogy of Cortes et al. (2004).

2 Preliminaries

Weighted transducersare finite-state transducers in
which each transition carries some weight in addi-
tion to the input and output labels. The weight set
has the structure of a semiring.

A semiring(K,⊕,⊗, 0, 1) verifies all the axioms
of a ring except from the existence of a negative el-
ement−x for eachx ∈ K, which it may verify or
not. Thus, roughly speaking, a semiring is a ring
that may lack negation. It is specified by a set of
valuesK, two binary operations⊕ and⊗, and two
designated values0 and1. When⊗ is commutative,
the semiring is said to becommutative.

The real semiring(R+, +,×, 0, 1) is used when
the weights represent probabilities. Thelog
semiring (R ∪ {−∞, +∞},⊕log, +,∞, 0) is iso-
morphic to the real semiring via the negative-
log mapping and is often used in practice
for numerical stability. Thetropical semiring
(R∪, {−∞, +∞}, min, +,∞, 0) is derived from
the log semiring via theViterbi approximationand
is often used in shortest-path applications.

Figure 1(a) shows an example of a weighted
finite-state transducer over the real semiring
(R+, +,×, 0, 1). In this figure, the input and out-
put labels of a transition are separated by a colon
delimiter and the weight is indicated after the slash
separator. A weighted transducer has a set of initial
states represented in the figure by a bold circle and
a set of final states, represented by double circles. A
path from an initial state to a final state is an accept-
ing path.

The weight of an accepting path is obtained by
first ⊗-multiplying the weights of its constituent

0 a:b/1

1

a:b/2

2/1
a:b/4

3/8

b:a/6

b:a/3

b:a/5

0 b/1

1

b/2

2/1
b/4

3/8

a/6

a/3

a/5

(a) (b)

Figure 1: (a) Example of weighted transducerT over the
real semiring(R+,+,×, 0, 1). (b) Example of weighted
automatonA. A can be obtained fromT by projection on
the output andT (aab, bba) = A(bba) = 1× 2× 6× 8 +
2× 4× 5× 8.

transitions and⊗-multiplying this product on the left
by the weight of the initial state of the path (which
equals1 in our work) and on the right by the weight
of the final state of the path (displayed after the slash
in the figure). The weight associated by a weighted
transducerT to a pair of strings(x, y) ∈ Σ∗ ×Σ∗ is
denoted byT (x, y) and is obtained by⊕-summing
the weights of all accepting paths with input labelx
and output labely.

For any transducerT , T−1 denotes itsinverse,
that is the transducer obtained fromT by swapping
the input and output labels of each transition. For all
x, y ∈ Σ∗, we haveT−1(x, y) = T (y, x).

Thecompositionof two weighted transducersT1

andT2 with matching input and output alphabetsΣ,
is a weighted transducer denoted byT1 ◦ T2 when
the semiring is commutative and the sum:

(T1 ◦ T2)(x, y) =
∑

z∈Σ∗

T1(x, z)⊗ T2(z, y) (1)

is well-defined and inK for all x, y (Salomaa and
Soittola, 1978).

Weighted automatacan be defined as weighted
transducersA with identical input and output labels,
for any transition. Since only pairs of the form(x, x)
can have a non-zero weight associated to them by
A, we denote the weight associated byA to (x, x)
by A(x) and call it theweight associated byA to
x. Similarly, in the graph representation of weighted
automata, the output (or input) label is omitted. Fig-
ure 1(b) shows an example of a weighted automa-
ton. WhenA andB are weighted automata,A ◦ B
is called theintersectionof A andB. Omitting the
input labels of a weighted transducerT results in a
weighted automaton which is said to be theoutput
projection ofT .

958

3 General Framework

Let X be a probabilistic automaton representing the
output of a complex model for a specific query input.
The model may be for example a speech recognition
system, an information extraction system, or a ma-
chine translation system (which originally motivated
our study). For machine translation, the sequences
accepted byX are the potential translations of the
input sentence, each with some probability given by
X.

Let Σ be the alphabet for the task considered, e.g.,
words of the target language in machine translation,
and letL : Σ∗ × Σ∗ → R denote a loss function
defined over the sequences on that alphabet. Given
a reference or hypothesis setH ⊆ Σ∗, minimum
Bayes risk (MBR) decoding consists of selecting a
hypothesisx ∈ H with minimum expected loss with
respect to the probability distributionX (Bickel and
Doksum, 2001; Tromble et al., 2008):

x̂ = argmin
x∈H

E
x′∼X

[L(x, x′)]. (2)

Here, we shall consider the case, frequent in prac-
tice, where minimizing the lossL is equivalent to
maximizing a similarity measureK : Σ∗×Σ∗ → R.
When K is a sequence kernel that can be repre-
sented by weighted transducers, it is arational ker-
nel (Cortes et al., 2004). The problem is then equiv-
alent to the followingexpected similarity maximiza-
tion:

x̂ = argmax
x∈H

E
x′∼X

[K(x, x′)]. (3)

When K is a positive definite symmetric rational
kernel, it can often be rewritten asK(x, y) = (T ◦
T−1)(x, y), whereT is a weighted transducer over
the semiring(R+∪{+∞}, +,×, 0, 1). Equation (3)
can then be rewritten as

x̂ = argmax
x∈H

E
x′∼X

[(T ◦ T−1)(x, x′)] (4)

= argmax
x∈H

‖A(x) ◦ T ◦ T−1 ◦X‖, (5)

where we denote byA(x) an automaton accepting
(only) the stringx and by‖·‖ the sum of the weights
of all accepted paths of a transducer.

4 Algorithms

4.1 General method

Equation (5) could suggest computingA(x) ◦ T ◦
T−1 ◦ X for each possiblex ∈ H. Instead, we

can compute a composition based on an automa-
ton accepting all sequences inH, A(H). This leads
to a straightforward method for determining the se-
quence maximizing the expected similarity having
the following steps:

1. compute the compositionX ◦ T , project on
the output and optimize (epsilon-remove, de-
terminize, minimize (Mohri, 2009)) and letY2

be the result;1

2. compute the compositionY1 = A(H) ◦ T ;

3. computeY1 ◦ Y2 and project on the input, letZ
be the result;2

4. determinizeZ;

5. find the maximum weight path with the label of
that path givinĝx.

While this method can be efficient in various scenar-
ios, in some instances the weighted determinization
yielding Z can be both space- and time-consuming,
even though the input is acyclic. The next two sec-
tions describe more efficient algorithms.

Note that in practice, for numerical stability, all
of these computations are done in the log semiring
which is isomorphic to(R+∪{+∞}, +,×, 0, 1). In
particular, the maximum weight path in the last step
is then obtained by using a standard single-source
shortest-path algorithm.

4.2 Efficient method for n-gram kernels

A common family of rational kernels is the family
of n-gram kernels. These kernels are widely use as
a similarity measure in natural language processing
and computational biology applications, see (Leslie
et al., 2002; Lodhi et al., 2002) for instance.

Then-gram kernelKn of ordern is defined as

Kn(x, y) =
∑

|z|=n

cx(z)cy(z), (6)

wherecx(z) is the number of occurrences ofz in
x. Kn is a positive definite symmetric rational ker-
nel since it corresponds to the weighted transducer
Tn ◦ T−1

n where the transducerTn is defined such
thatTn(x, z) = cx(z) for all x, z ∈ Σ∗ with |z| = n.

1Equivalent to computingT−1 ◦ X and projecting on the
input.

2Z is then the projection on the input ofA(H)◦T ◦T−1◦X.

959

0

a:ε
b:ε

1a:a
b:b

2a:a
b:b

a:ε
b:ε

0

1a/0.5

2

b/0.5

3
b/1

4
b/1

5
a/1

6
a/1

7a/0.4

8

b/0.6

b/1

9/1

b/1

a/1

(a) (b)

0

1a

2

b

3
b

4
b

5
a

6
a

7a

8

b

b

9

b

a
0

1a/1

2

b/1 3/1

a/0.2

b/1.5

a/1.8

b/0.5

(c) (d)

ε

a/0
a/0

b/0
b/0

a/0.2

b/1.5

a/1.8

b/0.5

0

1a/0

2

b/0

3
b/1.5

4
b/0.5

5
a/1.8

6
a/1.8

7a/0.2

8

b/1.5

b/0.5

9/0

b/1.5

a/1.8

(e) (f)

Figure 2: Efficient method for bigram kernel: (a) Counting transducerT2 for Σ = {a, b} (over the real semiring). (b)
Probabilistic automatonX (over the real semiring). (c) The hypothesis automatonA(H) (unweighted). (d) Automaton
Y2 representing the expected bigram counts inX (over the real semiring). (e) AutomatonY1: the context dependency
model derived fromY2 (over the tropical semiring). (f) The compositionA(H) ◦ Y1 (over the tropical semiring).

The transducerT2 for Σ = {a, b} is shown in Fig-
ure 2(a).

Taking advantage of the special structure ofn-
gram kernels and of the fact thatA(H) is an un-
weighted automaton, we can devise a new and sig-
nificantly more efficient method for computinĝx
based on the following steps.

1. Compute the expectedn-gram counts inX: We
compute the compositionX ◦T , project on out-
put and optimize (epsilon-remove, determinize,
minimize) and letY2 be the result. Observe that
the weighted automatonY2 is a compact repre-
sentation of the expectedn-gram counts inX,
i.e. for ann-gramw (i.e. |w| = n):

Y2(w) =
∑

x∈Σ∗

X(x)cx(w)

= E
x∼X

[cx(w)] = cX(w).
(7)

2. Construct a context-dependency model:We
compute the weighted automatonY1 over the
tropical semiring as follow: the set of states is
Q = {w ∈ Σ∗| |w| ≤ n andw occurs inX},
the initial state beingǫ and every state being fi-

nal; the set of transitionsE contains all 4-tuple
(origin, label, weight, destination) of the form:

• (w, a, 0, wa) with wa ∈ Q and|w| ≤ n−
2 and

• (aw, b, Y2(awb), wb) with Y2(awb) 6= 0
and|w| = n− 2

wherea, b ∈ Σ and w ∈ Σ∗. Observe that
w ∈ Q whenwa ∈ Q and thataw, wb ∈ Q
whenY2(awb) 6= 0. Given a stringx, we have

Y1(x) =
∑

|w|=n

cX(w)cx(w). (8)

Observe thatY1 is a deterministic automaton,
henceY1(x) can be computed inO(|x|) time.

3. Compute x̂: We compute the composition
A(H) ◦ Y1. x̂ is then the label of the accepting
path with the largest weight in this transducer
and can be obtained by applying a shortest-path
algorithm to−A(H) ◦ Y1 in the tropical semir-
ing.

The main computational advantage of this method
is that it avoids the determinization ofZ in the

960

0 1
a/1

2/1
a/c1
b/c2

0 1
a

2/c1
a

3/c2

b

0

b

1
a

2/c1

a

3/c2

b

b

a

b
a

0

b/0

1
a/0

2

a/0

3
b/0

2’/0b/0 a/0
ε /c1

3’/0
ε /c2

b/0

a/0

(a) (b) (c) (d)

Figure 3: Illustration of the construction ofY1 in the unambiguous case. (a) Weighted automatonY2 (over the real
semiring). (b) Deterministic tree automatonY ′

2 accepting{aa, ab} (over the tropical semiring). (c) Result of deter-
minization ofΣ∗Y ′

2 (over the tropical semiring). (d) Weighted automatonY1 (over the tropical semiring).

(+,×) semiring, which can sometimes be costly.
The method has also been shown empirically to be
significantly faster than the one described in the pre-
vious section.

The algorithm is illustrated in Figure 2. The al-
phabet isΣ = {a, b} and the counting transducer
corresponding to the bigram kernel is given in Fig-
ure 2(a). The evidence probabilistic automatonX
is given in Figure 2(b) and we use as hypothesis
set the set of strings that were assigned a non-zero
probability byX; this set is represented by the deter-
ministic finite automatonA(H) given in Figure 2(c).
The result of step 1 of the algorithm is the weighted
automatonY2 over the real semiring given in Fig-
ure 2(d). The result of step 2 is the weighted au-
tomatonY1 over the tropical semiring is given in
Figure 2(e). Finally, the result of the composition
A(H) ◦ Y1 (step 3) is the weighted automaton over
the tropical semiring given in Figure 2(f). The re-
sult of the expected similarity maximization is the
string x̂ = ababa, which is obtained by applying
a shortest-path algorithm to−A(H) ◦ Y1. Observe
that the stringx with the largest probability inX is
x = bbaba and is hence different from̂x = ababa in
this example.

4.3 Efficient method for the unambiguous case

The algorithm presented in the previous section for
n-gram kernels can be generalized to handle a wide
variety of rational kernels.

Let K be an arbitrary rational kernel defined by a
weighted transducerT . Let XT denote the regular
language of the strings output byT . We shall as-
sume thatXT is a finite language, though the results
of this section generalize to the infinite case. Let
Σ denote a new alphabet defined byΣ = {#x : x ∈
XT } and consider the simple grammarG of context-

dependent batch rules:

ǫ → #x/x ǫ. (9)

Each such rule inserts the symbol#x immediately
after an occurrencex in the input string. For batch
context-dependent rules, the context of the applica-
tion for all rules is determined at once before their
application (Kaplan and Kay, 1994). Assume that
this grammar isunambiguousfor a parallel applica-
tion of the rules. This condition means that there is
a unique way of parsing an input string using the
strings ofXT . The assumption holds forn-gram
sequences, for example, since the rules applicable
are uniquely determined by then-grams (making the
previous section a special case).

Given an acyclic weighted automatonY2 over the
tropical semiring accepting a subset ofXT , we can
construct a deterministic weighted automatonY1 for
Σ∗L(Y2) when this grammar is unambiguous. The
weight assigned byY1 to an input string is then the
sum of the weights of the substrings accepted byY2.
This can be achieved using weighted determiniza-
tion.

This suggests a new method for generalizing Step
2 of the algorithm described in the previous section
as follows (see illustration in Figure 3):

(i) use Y2 to construct a deterministic weighted
tree Y ′

2 defined on the tropical semiring ac-
cepting the same strings asY2 with the same
weights, with the final weights equal to the to-
tal weight given byY2 to the string ending at
that leaf;

(ii) let Y1 be the weighted automaton obtained by
first adding self-loops labeled with all elements
of Σ at the initial state ofY ′

2 and then deter-
minizing it, and then inserting new transitions
leaving final states as described in (Mohri and
Sproat, 1996).

961

Step (ii) consists of computing a deterministic
weighted automaton forΣ∗Y ′

2 . This step corre-
sponds to the Aho-Corasick construction (Aho and
Corasick, 1975) and can be done in time linear in
the size ofY ′

2 .
This approach assumes that the grammarG of

batch context-dependent rules inferred byXT is un-
ambiguous. This can be tested by constructing the
finite automaton corresponding to all rules inG. The
grammarG is unambiguous iff the resulting automa-
ton is unambiguous (which can be tested using a
classical algorithm). An alternative and more ef-
ficient test consists of checking the presence of a
failure or default transition to a final state during
the Aho-Corasick construction, which occurs if and
only if there is ambiguity.

5 Application to Machine Translation

In machine translation, the BLEU score (Papineni et
al., 2001) is typically used as an evaluation metric.
In (Tromble et al., 2008), a Minimum Bayes-Risk
decoding approach for MT lattices was introduced.3

The loss function used in that approach was an ap-
proximation of the log-BLEU score by a linear func-
tion of n-gram matches and candidate length. This
loss function corresponds to the following similarity
measure:

KLB(x, x′) = θ0|x
′|+

∑

|w|≤n

θ|w|cx(w)1x′(w).

(10)
where1x(w) is 1 if w occurs inx and 0 otherwise.

(Tromble et al., 2008) implements the MBR de-
coder using weighted automata operations. First,
the set of n-grams is extracted from the lat-
tice. Next, the posterior probabilityp(w|X) of
eachn-gram is computed. Starting with the un-
weighted latticeA(H), the contribution of eachn-
gram w to (10) is applied by iteratively compos-
ing with the weighted automaton corresponding to
w(w/(θ|w|p(w|X))w)∗ wherew = Σ∗ \ (Σ∗wΣ∗).
Finally, the MBR hypothesis is extracted as the best
path in the automaton. The above steps are carried
out onen-gram at a time. For a moderately large lat-
tice, there can be several thousands ofn-grams and
the procedure becomes expensive. This leads us to
investigate methods that do not require processing
then-grams one at a time in order to achieve greater
efficiency.

3Related approaches were presented in (DeNero et al., 2009;
Kumar et al., 2009; Li et al., 2009).

0

1ε:ε

2

ε:ε

b:ε

3

a:a

a:ε b:b

a:ε
b:ε

Figure 4: TransducerT 1 over the real semiring for the
alphabet{a, b}.

The first idea is to approximate theKLB similar-
ity measure using a weighted sum ofn-gram ker-
nels. This corresponds to approximating1x′(w) by
cx′(w) in (10). This leads us to the following simi-
larity measure:

KNG(x, x′) = θ0|x
′|+

∑

|w|≤n

θ|w|cx(w)cx′(w)

= θ0|x
′|+

∑

1≤i≤n

θiKi(x, x′)

(11)
Intuitively, the larger the length ofw the less likely
it is that cx(w) 6= 1x(w), which suggests comput-
ing the contribution toKLB(x, x′) of lower-order
n-grams (|w| ≤ k) exactly, but using the approxima-
tion byn-gram kernels for the higher-ordern-grams
(|w| > k). This gives the following similarity mea-
sure:

Kk
NG(x, x′) = θ0|x

′|+
∑

1≤|w|≤k

θ|w|cx(w)1x′(w)

+
∑

k<|w|≤n

θ|w|cx(w)cx′(w)

(12)
Observe thatK0

NG = KNG andKn
NG = KLB.

All these similarity measures can still be com-
puted using the framework described in Section 4.
Indeed, there exists a transducerTn over the real
semiring such thatTn(x, z) = 1x(z) for all x ∈ Σ∗

andz ∈ Σn. The transducerT 1 for Σ = {a, b} is
given by Figure 4. Let us define the similarity mea-
sureKn as:

Kn(x, x′) = (Tn◦T
−1

n)(x, x′) =
∑

|w|=n

cx(w)1x′(w).

(13)
Observe that the framework described in Section 4
can still be applied even thoughKn is not symmet-
ric. The similarity measuresKLB, KNG andKk

NG

962

zhen aren

nist02 nist04 nist05 nist06 nist08 nist02 nist04 nist05 nist06 nist08

no mbr 38.7 39.2 38.3 33.5 26.5 64.0 51.8 57.3 45.5 43.8
exact 37.0 39.2 38.6 34.3 27.5 65.2 51.4 58.1 45.2 45.0
approx 39.0 39.9 38.6 34.4 27.4 65.2 52.5 58.1 46.2 45.0
ngram 36.6 39.1 38.1 34.4 27.7 64.3 50.1 56.7 44.1 42.8
ngram1 37.1 39.2 38.5 34.4 27.5 65.2 51.4 58.0 45.2 44.8

Table 1: BLEU score (%)

zhen aren

nist02 nist04 nist05 nist06 nist08 nist02 nist04 nist05 nist06 nist08

exact 3560 7863 5553 6313 5738 12341 23266 11152 11417 11405
approx 168 422 279 335 328 504 1296 528 619 808
ngram 28 72 34 70 43 85 368 105 63 66
ngram1 58 175 96 99 89 368 943 308 167 191

Table 2: MBR Time (in seconds)

can then be expressed as the relevant linear combi-
nation ofKi andKi.

6 Experimental Results

Lattices were generated using a phrase-based MT
system similar to the alignment template system de-
scribed in (Och and Ney, 2004). Given a source sen-
tence, the system produces a word latticeA that is a
compact representation of a very largeN -best list of
translation hypotheses for that source sentence and
their likelihoods. The latticeA is converted into a
lattice X that represents a probability distribution
(i.e. the posterior probability distribution given the
source sentence) following:

X(x) =
exp(αA(x))∑

y∈Σ∗ exp(αA(y))
(14)

where the scaling factorα ∈ [0,∞) flattens the dis-
tribution whenα < 1 and sharpens it whenα > 1.
We then applied the methods described in Section 5
to the latticeX using as hypothesis setH the un-
weighted lattice obtained fromX.

The following parameters for then-gram factors
were used:

θ0 =
−1

T
andθn =

1

4Tprn−1
for n ≥ 1. (15)

Experiments were conducted on two language
pairs Arabic-English (aren) and Chinese-English
(zhen) and for a variety of datasets from the NIST
Open Machine Translation (OpenMT) Evaluation.4

The values ofα, p andr used for each pair are given
4http://www.nist.gov/speech/tests/mt

α p r

aren 0.2 0.85 0.72
zhen 0.1 0.80 0.62

Table 3: Parameters used for performing MBR.

in Table 3. We used the IBM implementation of the
BLEU score (Papineni et al., 2001).

We implemented the following methods using the
OpenFst library (Allauzen et al., 2007):

• exact: uses the similarity measureKLB based
on the linearized log-BLEU, implemented as
described in (Tromble et al., 2008);

• approx: uses the approximation toKLB from
(Kumar et al., 2009) and described in the ap-
pendix;

• ngram: uses the similarity measureKNG im-
plemented using the algorithm of Section 4.2;

• ngram1: uses the similarity measureK1
NG

also implemented using the algorithm of Sec-
tion 4.2.

The results from Tables 1-2 show thatngram1
performs as well asexacton all datasets5 while be-
ing two orders of magnitude faster thanexactand
overall more than 3 times faster thanapprox.

7 Conclusion

We showed that for broad families of transducers
T and thus rational kernels, the expected similar-

5We consider BLEU score differences of less than 0.4% not
significant (Koehn, 2004).

963

ity maximization problem can be solved efficiently.
This opens up the option of seeking the most appro-
priate rational kernel or transducerT for the spe-
cific task considered. In particular, the kernelK
used in our machine translation applications might
not be optimal. One may well imagine for exam-
ple that somen-grams should be further emphasized
and others de-emphasized in the definition of the
similarity. This can be easily accommodated in the
framework of rational kernels by modifying the tran-
sition weights ofT . But, ideally, one would wish
to select those weights in an optimal fashion. As
mentioned earlier, we leave this question to future
work. However, we can offer a brief look at how
one could tackle this question. One method for de-
termining an optimal kernel for the expected sim-
ilarity maximization problem consists of solving a
problem similar to that of learning kernels in classi-
fication or regression. LetX1, . . . , Xm bem lattices
with Ref(X1), . . . ,Ref(Xm) the associated refer-
ences and let̂x(K, Xi) be the solution of the ex-
pected similarity maximization for latticeXi when
using kernelK. Then, the kernel learning optimiza-
tion problem can be formulated as follows:

min
K∈K

1

m

m∑

i=1

L(x̂(K, Xi), Ref(Xi))

s. t.K = T ◦ T−1 ∧ Tr[K] ≤ C,

whereK is a convex family of rational kernels and
Tr[K] denotes the trace of the kernel matrix. In
particular, we could chooseK as a family of linear
combinations of base rational kernels. Techniques
and ideas similar to those discussed by Cortes et al.
(2008) for learning sequence kernels could be di-
rectly relevant to this problem.

A Appendix

We describe here the approximation of theKLB

similarity measure from Kumar et al. (2009). We
assume in this section that the latticeX is determin-
istic in order to simplify the notations. The posterior
probability ofn-gramw in the latticeX can be for-
mulated as:

p(w|X) =
∑

x∈Σ∗

1x(w)P (x|s) =
∑

x∈Σ∗

1x(w)X(x)

(16)
wheres denotes the source sentence. When using
the similarity measureKLB defined Equation (10),

Equation (3) can then be reformulated as:

x̂ = argmax
x′∈H

θ0|x
′|+

∑

w

θ|w|cx′(w)p(w|X). (17)

The key idea behind this new approximation algo-
rithm is to rewrite then-gram posterior probability
(Equation 16) as follows:

p(w|X) =
∑

x∈Σ∗

∑

e∈EX

f(e, w, πx)X(x) (18)

where EX is the set of transitions ofX, πx is
the unique accepting path labeled byx in X and
f(e, w, π) is a score assigned to transitione on path
π containingn-gramw:

f(e, w, π) =

1 if w ∈ e, p(e|X) > p(e′|X),
ande′ precedese onπ

0 otherwise.
(19)

In other words, for each pathπ, we count the tran-
sition that contributesn-gramw and has the highest
transition posterior probability relative to its prede-
cessors on the pathπ; there is exactly one such tran-
sition on each lattice pathπ.

We note thatf(e, w, π) relies on the full pathπ
which means that it cannot be computed based on
local statistics. We therefore approximate the quan-
tity f(e, w, π) with f∗(e, w, X) that counts the tran-
sitione with n-gramw that has the highest arc poste-
rior probability relative to predecessors in the entire
latticeX. f∗(e, w, X) can be computed locally, and
then-gram posterior probability based onf∗ can be
determined as follows:

p(w|G) =
∑

x∈Σ∗

∑

e∈EX

f∗(e, w, X)X(x)

=
∑

e∈Ex

1w∈ef
∗(e, w, X)

∑

x∈Σ∗

1πx
(e)X(x)

=
∑

e∈EX

1w∈ef
∗(e, w, X)P (e|X),

(20)
whereP (e|X) is the posterior probability of a lat-
tice transitione ∈ EX . The algorithm to perform
Lattice MBR is given in Algorithm 1. For each state
t in the lattice, we maintain a quantity Score(w, t)
for eachn-gramw that lies on a path from the initial
state tot. Score(w, t) is the highest posterior prob-
ability among all transitions on the paths that termi-
nate ont and containn-gramw. The forward pass
requires computing then-grams introduced by each
transition; to do this, we propagaten-grams (up to
maximum order−1) terminating on each state.

964

Algorithm 1 MBR Decoding on Lattices
1: Sort the lattice states topologically.
2: Compute backward probabilities of each state.
3: Compute posterior prob. of eachn-gram:
4: for each transitione do
5: Compute transition posterior probabilityP (e|X).
6: Computen-gram posterior probs.P (w|X):
7: for eachn-gramw introduced bye do
8: Propagaten − 1 gram suffix tohe.
9: if p(e|X) > Score(w, T (e)) then

10: Update posterior probs. and scores:
p(w|X) +=p(e|X) − Score(w, T (e)).
Score(w, he) = p(e|X).

11: else
12: Score(w, he) = Score(w, T (e)).
13: end if
14: end for
15: end for
16: Assign scores to transitions (given by Equation 17).

17: Find best path in the lattice (Equation 17).

References

Alfred V. Aho and Margaret J. Corasick. 1975. Efficient
String Matching: An Aid to Bibliographic Search.
Communications of the ACM, 18(6):333–340.

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Woj-
ciech Skut, and Mehryar Mohri. 2007. OpenFst: a
general and efficient weighted finite-state transducer
library. In CIAA 2007, volume 4783 ofLNCS, pages
11–23. Springer. http://www.openfst.org.

Christian Berg, Jens Peter Reus Christensen, and Paul
Ressel. 1984. Harmonic Analysis on Semigroups.
Springer-Verlag: Berlin-New York.

Peter J. Bickel and Kjell A. Doksum. 2001.Mathemati-
cal Statistics, vol. I. Prentice Hall.

Corinna Cortes, Patrick Haffner, and Mehryar Mohri.
2004. Rational Kernels: Theory and Algorithms.
Journal of Machine Learning Research, 5:1035–1062.

Corinna Cortes, Mehryar Mohri, and Afshin Ros-
tamizadeh. 2008. Learning sequence kernels. InPro-
ceedings of MLSP 2008, October.

John DeNero, David Chiang, and Kevin Knight. 2009.
Fast consensus decoding over translation forests. In
Proceedings of ACL and IJCNLP, pages 567–575.

Vaibhava Goel and William J. Byrne. 2000. Minimum
Bayes-risk automatic speech recognition.Computer
Speech and Language, 14(2):115–135.

Ronald M. Kaplan and Martin Kay. 1994. Regular mod-
els of phonological rule systems.Computational Lin-
guistics, 20(3).

Philipp Koehn. 2004. Statistical Significance Tests
for Machine Translation Evaluation. InEMNLP,
Barcelona, Spain.

Shankar Kumar and William J. Byrne. 2004. Minimum
Bayes-risk decoding for statistical machine transla-
tion. In HLT-NAACL, Boston, MA, USA.

Shankar Kumar, Wolfgang Macherey, Chris Dyer, and
Franz Och. 2009. Efficient minimum error rate train-
ing and minimum bayes-risk decoding for translation
hypergraphs and lattices. InProceedings of the Asso-
ciation for Computational Linguistics and IJCNLP.

Christina S. Leslie, Eleazar Eskin, and William Stafford
Noble. 2002. The Spectrum Kernel: A String Kernel
for SVM Protein Classification. InPacific Symposium
on Biocomputing, pages 566–575.

Zhifei Li, Jason Eisner, and Sanjeev Khudanpur. 2009.
Variational decoding for statistical machine transla-
tion. In Proceedings of ACL and IJCNLP, pages 593–
601.

Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello
Cristianini, and Chris Watskins. 2002. Text classifica-
tion using string kernels.Journal of Machine Learning
Research, 2:419–44.

Mehryar Mohri and Richard Sproat. 1996. An Efficient
Compiler for Weighted Rewrite Rules. InProceedings
of ACL ’96, Santa Cruz, California.

Mehryar Mohri. 2009. Weighted automata algorithms.
In Manfred Droste, Werner Kuich, and Heiko Vogler,
editors,Handbook of Weighted Automata, chapter 6,
pages 213–254. Springer.

Franz J. Och and Hermann Ney. 2004. The align-
ment template approach to statistical mchine transla-
tion. Computational Linguistics, 30(4):417–449.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2001. Bleu: a Method for Automatic
Evaluation of Machine Translation. Technical Report
RC22176 (W0109-022), IBM Research Division.

Arto Salomaa and Matti Soittola. 1978.Automata-
Theoretic Aspects of Formal Power Series. Springer.

Roy W. Tromble, Shankar Kumar, Franz J. Och, and
Wolfgang Macherey. 2008. Lattice minimum Bayes-
risk decoding for statistical machine translation. In
Proceedings of the 2008 Conference on Empirical
Methods in Natural Language Processing, pages 620–
629.

965

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 966–974,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Accurate Non-Hierarchical Phrase-Based Translation

Michel Galley and Christopher D. Manning

Computer Science Department

Stanford University

Stanford, CA 94305

{mgalley,manning}@cs.stanford.edu

Abstract

A principal weakness of conventional (i.e.,

non-hierarchical) phrase-based statistical machine

translation is that it can only exploit continuous

phrases. In this paper, we extend phrase-based

decoding to allow both source and target phrasal

discontinuities, which provide better generalization

on unseen data and yield significant improvements

to a standard phrase-based system (Moses).

More interestingly, our discontinuous phrase-

based system also outperforms a state-of-the-art

hierarchical system (Joshua) by a very significant

margin (+1.03 BLEU on average on five Chinese-

English NIST test sets), even though both Joshua

and our system support discontinuous phrases.

Since the key difference between these two systems

is that ours is not hierarchical—i.e., our system

uses a string-based decoder instead of CKY, and it

imposes no hard hierarchical reordering constraints

during training and decoding—this paper sets

out to challenge the commonly held belief that

the tree-based parameterization of systems such

as Hiero and Joshua is crucial to their good

performance against Moses.

1 Introduction

Phrase-based machine translation models (Och and

Ney, 2004) advanced the state of the art by extend-

ing the basic translation unit from words to phrases.

By conditioning translations on more than a sin-

gle word, a statistical machine translation (SMT)

system benefits from the larger context of a phrase

pair to properly handle multi-word units and lo-

cal reorderings. Experimentally, it was found that

longer phrases yield better MT output (Koehn et al.,

2003). However, while it is computationally feasi-

ble at training time to extract phrase pairs of nearly

unbounded size (Zhang and Vogel, 2005; Callison-

Burch et al., 2005), phrase pairs applicable at test

time tend to be fairly short. Indeed, data sparsity

often forces conventional phrase-based systems to

segment test sentences into small phrases, and there-

fore to translate dependent words (e.g., the French

ne . . . pas) separately instead of jointly.

We present a solution to this sparsity problem by

going beyond using only continuous phrases, and

instead define our translation unit as any subset of

words of a sentence, i.e., a discontinuous phrase.

We generalize conventional multi-beam string-based

decoding (Koehn, 2004) to allow variable-size dis-

continuities in both source and target phrases. Since

each sentence pair can be more flexibly decomposed

into translation units, it is possible to exploit the rich

context of longer (possibly discontinuous) phrases

to improve translation quality. Our decoder provides

two extensions to Moses (Koehn et al., 2007): (a) to

cope with source gaps, we follow (Lopez, 2007) to

efficiently find all discontinuous phrases in the train-

ing data that also appear in the input sentence; (b) to

enable target discontinuities, we augment transla-

tion hypotheses to not only record the current par-

tial translation, but also a set of subphrases that may

be appended to the partial translation at some later

stages of decoding. With these enhancements, our

best discontinuous system outperforms Moses with

lexicalized reordering by 0.77 BLEU and 1.53 TER

points on average.

We also show that our approach compares favor-

ably to binary synchronous context-free grammar

(2-SCFG) systems such as Hiero (Chiang, 2007),

even though 2-SCFG systems also allow phrasal dis-

continuities. Part of this difference may be due to a

difference of expressiveness, since 2-SCFG models

impose hard hierarchical constraints that our mod-

els do not impose. Recent work (Wellington et

al., 2006; Søgaard and Kuhn, 2009; Søgaard and

966

ai

ak am

bj

bl bn

ai akbj

bl bnam

source: ai ckbj dl

bm apdn cttarget:

(iii)(ii)(i)

Figure 1: 2-SCFG systems such as Hiero are unable to in-

dependently generate translation units a, b, c, and d with

the following types of alignments: (i) inside-out (Wu,

1997); (ii) cross-serial DTU (Søgaard and Kuhn, 2009);

(iii) “bonbon” (Simard et al., 2005). Standard phrase-

based decoders cope with (i), but not (ii) and (iii). Our

phrase-based decoder handles all three cases.

Wu, 2009) has questioned the empirical adequacy of

2-SCFG systems, which are unable to perform any

of the transformations shown in Fig. 1. For instance,

using manually-aligned bitexts for 12 European lan-

guages pairs, Søgaard and Kuhn found that inside-

out and cross-serial discontinuous translation units

(DTU) account for 1.6% (Danish-English) to 18.6%

(French-English) of all translation units. The em-

pirical adequacy of 2-SCFG models would presum-

ably be lower with automatically-aligned texts and if

the study also included non-European languages. In

contrast, phrase-based systems can properly handle

inside-out alignments when used with a reasonably

large distortion limit, and all configurations in Fig. 1

are accounted for in our system. In our experiments,

we show that our discontinuous phrase-based sys-

tem outperforms Joshua (Li et al., 2009), a reimple-

mentation of Hiero, by 1.03 BLEU points and 1.19

TER points on average. A final compelling advan-

tage of our decoder is that it preserves the compu-

tational efficiency of Moses (i.e., time complexity is

linear when a distortion limit is used), while SCFG

decoders have a running time that is at least cubic

(Huang et al., 2005).

2 Discontinuous Phrase Extraction

In this section, we introduce the extraction of dis-

continuous phrases for phrase-based MT. We will

describe a decoder that can handle such phrases

in the next section. Formally, we define the dis-

continuous phrase-based translation problem as fol-

lows. We are given a source sentence f = fJ
1 =

f1, . . . , fj, . . . , fJ , which is to be translated into a

target sentence e = eI
1 = e1, . . . , ei, . . . , fI . Un-

like (Och and Ney, 2004), in this work, a sentence

pair may be segmented into phrases that are not con-

Hiero:

This work:

ne veux plus X

je ne veux plus X

do not want X anymore

I do not want X anymore

veux

ne ... plus

je ne ... plus

ne veux plus

je ne veux plus

veux ... jouer

do ... want

not ... anymore

I ... not ... anymore

do not want ... anymore

I do not want ... anymore

do ... want to play

je

ne

veux

plus

jouer

I

do

not

want

to

play

anymore

Figure 2: Due to hierarchical constraints, Hiero only ex-

tracts two discontinuous phrases from the alignment on

the left, but our system extracts 11 (only 6 are shown).

tinuous, so each phrase is characterized by a cover-

age set, i.e., a set of word indices. Assuming that

the sentence pair (f , e) is decomposed into K dis-

continuous phrases, we use s = (s1, . . . , sK) and

t = (t1, . . . , tK) to respectively represent the de-

composition of the source and target sentence into

K word subsets that are complementary and non-

overlapping. A pair of coverage sets (sk, tk) is said

to be consistent with the word alignment A if the

following condition holds:

∀(i, j) ∈ A : i ∈ sk ←→ j ∈ tk (1)

For continuous phrases, finding all phrase pairs

that satisfy this condition can be done in O(nm3)
time (Och and Ney, 2004), where n is the length of

the sentence and m is the maximum phrase length.

The set of discontinuous phrases is exponential in

the maximum span length, so phrase extraction must

be tailored to a specific text (e.g., a given test sen-

tence) for relatively large m values. Lopez (2007)

presents an efficient solution using suffix arrays for

finding all discontinuous phrases of the training data

that are relevant to a given test sentence or test set.

A complete overview of this technique is beyond

the scope of this paper, though we will mention

that it solves a phrase collocation problem by effi-

ciently identifying collocated continuous phrases of

the training data that also happen to be collocated in

the test sentence. While this technique was primar-

ily designed for extracting hierarchical phrases for

Hiero (Chiang, 2007), it can readily be applied to

the problem of finding all discontinuous phrases for

our phrase-based system. Indeed, the suffix-array

technique gives us for each input sentence a list of

relevant source coverage sets. For each such sk, we

can easily enumerate each tk satisfying Eq. 1. The

967

!!"! !!# $% & ' ()* +, -.!!

he said are to this

one access

make arrangements

he said are ... for this

visit

arrangements ... made

he said

oo-------

score = -1.3

are

for this | made

ooooo--oo

score = -4.8

arrangements

made

oo-----oo

score = -3.2

made

for this

ooooo--oo

score = -6.1

for this

ooooo--oo

score = -7.2

visit

ooooooooo

score = -8.5

source:

translation

options

(subset):

state

expansions:

* *

Figure 3: A particular decoder search path for the input shown at the top. Note that this example contains a cross-serial

DTU (which interleaves arrangements ... made with are ... for this), a structure Hiero can’t handle.

key difference between Hiero-style extraction and

our work is that Eq. 1 is the only constraint.1 Since

our decoder doesn’t impose hierarchical constraints,

we exploit all discontinuous phrase pairs consis-

tent with the word alignment, which often includes

sound translations not captured by Hiero (e.g., ne . . .

plus translating to not . . . anymore in Fig. 2).

3 Decoder

The core engine of our phrase-based system, Phrasal

(Cer et al., 2010), is a multi-stack decoder similar to

Moses (Koehn, 2004), which we extended to sup-

port variable-size gaps in the source and the target.

In Moses, partial translation hypotheses are arranged

into different stacks according to the total number of

input words they cover. At every translation step,

stacks are pruned using partial translation cost and a

lower bound on the estimated future cost. Pruning

is implemented using both threshold and histogram

pruning, and Moses allows for hypothesis recombi-

nation between hypotheses that are indistinguishable

according to the underlying models.

The key difference between Moses and our sys-

tem is that, in order to account for target disconti-

nuities, phrases that contains gaps in the target are

appended to a partial translation hypothesis in mul-

tiple steps. Specifically, each translation hypothesis

in our decoder is not only represented as a transla-

tion prefix and a coverage set as in Moses, but it also

contains a set of isolated phrases (shown in italic in

Fig. 3) that must be added to the translation at some

later time. For instance, the figure shows how the

1In order to keep the number of phrases manageable, we

additionally require that each (maximal) contiguous substring

of sk and tk be connected with at least one word alignment.

Beam search algorithm.

1 create initial hypothesis H∅; add it to S
g
0

2 for j = 0 to J

3 if j > 0 then

4 for n = 1 to N

5 for each Hnew in consolidate(Hc
jn)

6 add Hnew to S
g
j

7 if j < J then

8 for n = 1 to N

9 Hold := H
g
jn

10 u := first uncovered source word of Hold

11 for m = u to u + distortionLimit

12 for each (sk, tk) in translation options(m)
13 if source sk does not overlap Hold then

14 Hnew :=combine(Hold, sk, tk)
15 add Hnew to Sc

j+l, where l = |sk|

16 return arg max(Sg
J)

Table 1: Discontinuous phrase-based MT.

phrase pair (\ú��, arrangements ... made) is be-

ing added to a partial translation. The prefix (ar-

rangements) is immediately appended to form the

hypothesis (he said arrangements), and the isolated

phrase (made) is stored for later use.

A beam search algorithm for discontinuous

phrase-based MT is shown in Table 1. Pruning is

done implicitly in the table to avoid cluttering the

pseudo-code. The algorithm handles 2J + 1 stacks

S
g
0
, S

g
1
, . . . , S

g
J and Sc

1, . . . , S
c
J , where each stack

may contain up to N hypotheses Hj1, . . . ,HjN .

The main loop of the algorithm alternates two

stages: grow (lines 7–15) and consolidate (lines 3–

6).2 The grow stage is similar to standard phrase-

2The distinction between S
g
i and S

c
i stacks ensures that the

consolidate operation does not read and write hypotheses on the

same stack. While it may seem effective to store hypotheses in

968

based MT: we take a hypothesis H
g
jn from S

g
j and

combine it with a translation option (sk, tk), which

yields a new hypothesis that is added to stack Sc
j+l

(where l = |sk|). The second stage, consolidate, lets

the decoder select any number of isolated phrases

(not necessarily all, and possibly zero) and append

them in any order at the end of the current trans-

lation.3 Consolidation operations are marked with

stars in the figure (for simplicity, the figure does

not display consolidations that keep hypotheses un-

changed). We limit the number of isolated phrases

to 4, which is generally enough to account for most

transformations seen in the data. Any hypothesis in

the last beam S
g
J is automatically discarded if it con-

tains any isolated phrase.

One last difference with standard decoders is

that we also handle source discontinuities. This

problem is a known instance of MT by pattern

matching (Lopez, 2007), which we already men-

tioned in the previous section. The function transla-

tion options(m) of Table 1 returns the set of options

applicable at position m using this pattern match-

ing algorithm. Since this function is invoked a large

number of times, it is important to precompute its

return values for each m prior to decoding.

4 Features

Our system incorporates the same eight baseline fea-

tures of Moses: two relative-frequency phrase trans-

lation probabilities p(e|f) and p(f |e), two lexically-

weighted phrase translation probabilities (Koehn et

al., 2003) lex(e|f) and lex(f |e), a language model

probability, word penalty, phrase penalty, and linear

distortion, and we optionally add 6 lexicalized re-

ordering features as computed in Moses.

Our computation of linear distortion is different

from the one in Moses, since we need to account

for discontinuous phrases. We found that it is

crucial to penalize discontinuous phrases that have

relatively long gaps. Hence, in our computation of

different stacks depending on the number of isolated phrases,

we have not found various implementations of this idea to work

better than the algorithm described here.
3We let isolated phrases be reordered freely, with only three

constraints: (1) the internal word order must be preserved, i.e., a

phrase may not be split or reordered. (2) isolated phrases drawn

from the same discontinuous phrase must appear in the specified

order (i.e., the phrase A ... B ... C may not yield the translation

A ... C ... B). (3) Empty gaps are forbidden.

Figure 4: Linear distortion computed using both continu-

ous and discontinuous phrase.

linear distortion, we treat continuous subphrases

of each discontinuous phrase as if they were

continuous phrases on their own. Specifically,

let s̄ = (s̄1, . . . , s̄L) be the list of L (maximal)

continuous subphrases of the K source phrases

(L ≥ K) selected for a given translation hypothesis.

Subphrases in s̄ are enumerated according to their

order in the target language, which may be different

from the source-side ordering. We then compute

the linear distortion between pair of successive

elements (s̄i, s̄i+1) as follows:

d(̄s) = s̄
first
1

+
L

∑

i=2

∣

∣

∣

s̄last
i−1 + 1− s̄

first
i

∣

∣

∣

where the superscripts first and last respectively

refer to source position of the first and last word

of a given subphrase. Fig. 4 shows an example of

how distortion is computed for phrases (s1, s2, s3),
including the discontinuous phrase s2 split into three

continuous subphrases. In practice, we compute

intra-phrase (shown with thin arrows in the figure)

and inter-phrase linear distortion separately in order

to produce two distinct features, since translation

tends to improves when the intra-phrase cost has a

lower feature weight.

Finally, we add two features that are not present

in Moses. First, we penalize target discontinuities

by including a feature that is the sum of the lengths

of all target gaps. The second feature is the count

of discontinuous phrases that are in configurations

(cross-serial DTU (Søgaard and Kuhn, 2009) and

“bonbon” (Simard et al., 2005)) that can’t be han-

dled by 2-SCFG systems. The advantage of such

features is two-fold. First, similarly to hierarchi-

cal systems, they prevent many distorted reorderings

that are unlikely to correspond to quality transla-

tions. Second, it imposes soft rather than hard con-

straints, which means that the decoder is entirely

free to violate hierarchical constraints when these

violations are supported by other features.

969

5 Experimental Setup

Three systems are evaluated in this paper: Moses

(Koehn et al., 2007), Joshua (Li et al., 2009) – a

reimplementation of Hiero, and our phrase-based

system. We made our best attempts to make our sys-

tem comparable to Moses. That is, when no discon-

tinuous phrases are provided to our system, it gener-

ates an output that is almost identical to Moses (only

about 1% of translations differ on average). In both

systems, we use the default settings of Moses, i.e.,

we set the beam size to 200, the distortion limit to 6,

we limit to 20 the number of target phrases that are

loaded for each source phrase, and we use the same

default eight features of Moses. We use version 1.3

of Joshua with its default settings. Both Moses and

our system are evaluated with and without lexical-

ized reordering (Tillmann, 2004).4 We believe it

to be fair to compare Joshua against phrase-based

systems that exploit lexicalized reordering, since Hi-

ero’s hierarchical rules are also lexically sensitive.5

The language pair for our experiments is Chinese-

to-English. The training data consists of about 28

million English words and 23.3 million Chinese

words drawn from various news parallel corpora dis-

tributed by the Linguistic Data Consortium (LDC).

In order to provide experiments comparable to previ-

ous work, we used the same corpora as (Wang et al.,

2007). We performed word alignment using a cross-

EM word aligner (Liang et al., 2006). For this, we

ran two iterations of IBM Model 1 and two HMM

iterations. Finally, we generated a symmetric word

alignment from cross-EM Viterbi alignment using

the Moses grow-diag heuristic in the case Moses and

our system. In the case of Joshua, we used the grow-

diag-final heuristic since this gave better results.

In order to train a competitive baseline given our

computational resources, we built a large 5-gram

language model using the Xinhua and AFP sections

4We use Moses’ default orientations: monotone, swap, and

discontinuous. As far as this reordering model is concerned,

we treat discontinuous phrases as continuous, i.e., we simply

ignore what lies within gaps to determine phrase orientation.
5(Tillmann, 2004) learns for each phrase a tendency to ei-

ther remain monotone or to swap with other phrases. As noted

in (Lopez, 2008), Hiero can represent the same information

with hierarchical rules of the form uX, Xu, and XuX. Hi-

ero actually models lexicalized reordering patterns that (Till-

mann, 2004) does not account for, e.g., a transformation from

X1uX2v to X2u
′
v

′
X1.

of the Gigaword corpus (LDC2007T40) in addition

to the target side of the parallel data. This data rep-

resents a total of about 700 million words. We man-

ually removed documents of Gigaword that were re-

leased during periods that overlap with those of our

development and test sets. The language model was

smoothed with the modified Kneser-Ney algorithm

as implemented in SRILM (Stolcke, 2002), and we

only kept 4-grams and 5-grams that occurred at least

three times in the training data.

For tuning and testing, we use the official NIST

MT evaluation data for Chinese from 2003 to 2008

(MT03 to MT08), which all have four English ref-

erences for each input sentence. We used the 1664

sentences of MT06 for tuning and development and

all other sets for testing. Parameter tuning was

done with minimum error rate training (Och, 2003),

which was used to maximize IBM BLEU-4 (Pap-

ineni et al., 2001). Since MERT is prone to search

errors, especially with large numbers of parameters,

we ran each tuning experiment four times with dif-

ferent initial conditions. We used n-best lists of size

200. In the final evaluations, we report results using

both TER version 0.7.25 (Snover et al., 2006) and

BLEU-4 (both uncased).

6 Results

We start by comparing some translations generated

by the best configurations of Joshua, Moses, and our

phrase-based decoder, systems we will empirically

evaluate later in this section. Fig. 5 shows trans-

lations of our development set MT06, which were

selected because our system makes a crucial use of

discontinuous phrases. In the first example, the Chi-

nese input contains S ... ö, which typically trans-

lates as when. Lacking an entry for the input phraseS�}C«e:ö in its phrase table, Moses is

unable to translate this segment appropriately, and

must instead split this phrase to generate the trans-

lation when the right was deprived of, where ö is

translated into of. This is evidently a poor transla-

tion. Conversely, our system uses a discontinuous

phrase to translate S ... ö, and translates the inter-

vening words separately.

The remaining three translations all contain cross-

serial DTUs (Søgaard and Kuhn, 2009) and thus

would be difficult to generate using 2-SCFG sys-

tems. The second example motivates the idea

970

MT06 — segment 1589

Reference: Under such cir-

cumstances, when the right

of existence was deprived,

the only way remaining was

to overthrow the existing

dynasty by force and try to

replace it.

Joshua: Under such cir-

cumstances, when life be

deprived, can only resort to

violence to overthrow the

current dynasty, trying to re-

place,

Moses: Under such circum-

stances, when the right was

deprived of, can only adopt

the means of violence, in

an attempt to overthrow the

present dynasty replaced,

This work: Under such cir-

cumstances, when he was de-

prived of the right to life, it

can only resort to violence in

an attempt to overthrow the

current dynasty replaced,

in this kind case when life right was deprive when only can use violence of means(Ù Í Åµ � , S �} C « e: ö , ê ý ÇÖ ´� � Kµ ...

under such circumstances , when he was deprived of the right to life , it can only resort to violence ...

MT06 — segment 1044

Reference: CCP organi-

zation ministry demands

to further enlarge strength

of supervision of leading

cadres and cadre selection

and appointment

Joshua: Department de-

mands further intensify su-

pervision over the work

of selecting and appointing

leading cadres, and inten-

sify

Moses: The central organi-

zation department, called on

leading cadres, further in-

crease the intensity of super-

vision over work of selecting

and appointing cadres.

This work: The central orga-

nization department has called

for further increase the inten-

sity of supervision of leading

cadres and the work of select-

ing and appointing cadres.

CCP request further increase to leading cadres and cadre selection appointment work of supervision intensity-Äè �B Û�e ' ù �ü rè � rè 	Ô û(å\ � Ñ ��
the central organization department has called for further increase the intensity of supervision of leading cadres and

MT06 — segment 559

Reference: The government

will take all possible mea-

sures to prevent similar inci-

dents from happening in the

future.

Joshua: Government will

take all measures to prevent

the re-occurrence of similar

incidents in the future.

Moses: The government will

take all measures to prevent

the occurrence of similar inci-

dents in the future.

This work: The government

will take all measures to pre-

vent similar incidents from

happening again in the future.

government will take all measure to prevent future again happen similar of incidents?� � � ÇÖ �� ª½ e 2b ÊÆ � Ñ� {< � �ö �
the government will take all measures to prevent similar incidents from happening again in the future .

MT06 — segment 769

Reference: He also said that

the arrangements are being

made now for the visits.

Joshua: He also said that

now is making arrange-

ments for this visit.

Moses: He also said that the

current visit is to make ar-

rangements.

This work: He also said that

the current arrangements are

made for the visit.

he also said now are for this one visit make arrangementsÖ Ø � °((: Ù � ¿î \ú �� �
he also said that the current arrangements are made for the visit .

Figure 5: Actual translations produced by Joshua, Moses, and our system. For our system, we also display phrase

alignments, including discontinuous phrase alignments. Results for these three systems here are displayed in rows 2,

4, and 8 of Table 2. The thick blue arrows represent alignments between discontinuous phrases, while red segmented

arrows align continuous phrases.

971

MT06 (tune) MT03 MT04 MT05 MT08 ALL

System Gaps LexR BLEU TER BLEU TER BLEU TER BLEU TER BLEU TER BLEU TER

1 hierarchical

(Joshua)

src yes 33.55 58.04 33.25 59.73 36.03 58.92 32.03 61.11 26.30 61.30 31.70 58.21

2 src+tgt yes 33.84 58.11 33.47 59.85 36.10 58.82 32.17 61.20 26.61 61.21 31.90 58.22

3 phrase-based

(Moses)

no no 33.17 59.24 32.60 60.80 35.38 59.55 31.15 62.43 25.56 61.98 31.08 59.14

4 no yes 34.25 58.23 33.72 60.42 36.37 59.18 32.49 61.80 26.70 61.48 32.16 58.56

5
discontinuous

phrase-based

(this work)

src no 33.77 58.56 33.20 60.42 36.17 59.13 31.75 61.62 25.99 61.47 31.68 58.60

6 tgt no 33.27 58.98 32.95 60.42 35.41 59.35 31.08 62.45 25.69 61.71 31.17 58.93

7 src+tgt no 33.86 58.26 33.32 60.02 36.36 58.56 31.87 61.35 26.13 61.29 31.81 58.25

8 src+tgt yes 35.00 56.85 34.96 57.97 37.44 57.61 33.39 59.92 26.74 60.51 32.93 57.03

Improvement over hierarchical +1.16 −1.26 +1.49 −1.88 +1.34 −1.21 +1.22 −1.28 +0.13 −0.70 +1.03 −1.19

Improvement over phrase-based +0.75 −1.38 +1.24 −2.45 +1.07 −1.57 +0.90 −1.88 +0.04 −0.97 +0.77 −1.53

Number of sentences 1664 919 1788 1082 1357 6810

Table 2: Our system compared again conventional and hierarchical phrase-based MT (Moses and Joshua). using

uncased BLEUr4n4[%] and TER[%]. LexR indicates whether lexicalized reordering is enabled or not. We use ran-

domization tests (Riezler and Maxwell, 2005) to determine significance of our best results (row 8) against Joshua (row

2) and Moses (row 4): differences marked in bold are significant at the p ≤ .01 level.

that larger translation units, including discontinuous

phrases, lead to better translations. The reference in-

cludes the translation enlarge strength of supervision

of leading cadres, and our system is able to produce

a translation that is almost identical (increase the in-

tensity of supervision of leading cadres) using only

two phrases, pulling together input words that are

fairly far apart in the sentence. The third Chinese

sentence has a word order quite different from En-

glish, but our decoder flexibly reorders it in a manner

that can’t be handled with SCFG decoders to give

a word order (prevent similar events from happen-

ing) that matches the one in the reference. The last

Chinese sentence includes the topicalization word: (for), which indicates the input sentence has no

subject. One way to properly handle this translation

is to turn the sentence into a passive in English (as

in the reference), a transformation our system does,

thanks to its support for complex reorderings.

Our main results are displayed in Table 2. First,

Joshua systematically outperforms the Moses base-

line (+0.82 BLEU point and −0.92 TER point on

average), but performance of the two is about the

same when Moses incorporates lexicalized reorder-

ing. This finding is consistent with previous work

(Lopez, 2008). The results of our system displayed

in rows 5–8 demonstrate that our system consis-

tently outperforms Moses, whether they both use

lexicalized reordering or not. The performance of

our best system—i.e., with lexicalized reordering

and both source and target gaps—is significantly

better than the best Moses system (+0.77 BLEU

and −1.53 TER). While the performance of our sys-

tem without lexicalized reordering is close to that of

Joshua, our system with lexicalized reordering sig-

nificantly outperforms Joshua (p ≤ .01) in 9 out of

10 evaluations. The single experiment where our im-

provement over Hiero is insignificant (i.e., BLEU on

MT08) is mainly affected by a discrepancy of length

(our brevity penalty on MT08 is 0.92).

It is interesting to notice that our system allowing

phrasal discontinuities only on the source (row 5)

performs almost as well as the system that allows

them on both sides (row 7). For instance, while

source discontinuities improve performance by 0.7

BLEU point on MT06, further enabling target dis-

continuities only raises performance by a mere 0.09

BLEU point. This naturally raises the question of

whether our support for target gaps is ineffective,

or whether target-discontinuous phrases are some-

what superfluous to the MT task. While it is cer-

tainly difficult to either confirm or deny the latter

hypothesis, we can at least compare our handling of

target-discontinuous phrases with hierarchical sys-

tems. In one additional set of experiments, we re-

moved target-discontinuous phrases in Joshua prior

to MERT and test time. Specifically, we removed

all hierarchical phrases whose target side has the

form uXv, uXvX, XuXv, and uXvXw, and only

allowed rules whose target side has the form uX,

Xu, XuX, XXu, or uXX. After this filtering,

we found that target-discontinuous phrases in Joshua

are also not crucial to its performance, since their re-

moval only caused a drop of 0.2 BLEU point (row 1)

and almost no change in terms of TER. We speculate

that using target discontinuous phrases is more diffi-

972

1 2 3 4 5 6 7
0

5000

10000

15000

of English words per phrase

w
o

rd
 m

a
s
s

Moses

this work

Figure 6: Phrase length histogram for MT06.

cult, since it represents a generation rather than just

a matching problem.

In this paper, we have also argued that a main

benefit of discontinuous phrases—and particularly

source-discontinuous phrases—is that the decoder is

allowed to use larger translation units than when re-

stricted to continuous phrases. This claim is con-

firmed in Fig. 6. We find that our decoder makes

effective use of the extended set of translation op-

tions at its disposal: While the Moses baseline trans-

lates MT06 with an average 1.73 words per phrase,

adding support for discontinuities increases this av-

erage to 2.16, and reduces by 43% the use of sin-

gle word phrases. On MT06, 53% of the translated

sentences produced by our best system use at least

one source-discontinuous phrase, and 9% of them

exploit one or more target-discontinuous phrases.

7 Related Work

The main goal of this paper is to show that discontin-

uous phrases can greatly improve the performance

of phrase-based systems. While some of the most

recent phrase-based systems (Chiang, 2007; Watan-

abe et al., 2006) exploit context-free decoding algo-

rithms (CKY, Earley, etc.) to cope with discontinu-

ities, our system preserves the simplicity and speed

of conventional phrase-based decoders, and in par-

ticular does not build any intermediate tree structure,

does not impose any hard reordering constraints

other than the distortion limit, and still achieves

translation performance that is superior to that of a

state-of-the-art hierarchical system.

A few previous non-hierarchical systems have

also exploited phrasal discontinuities. The most no-

table previous attempt to incorporate gaps is de-

scribed in (Simard et al., 2005). Simard et al.

presents an extension to Moses that allows gaps in

both source and target phrases, though each of their

gap symbols must span exactly one word. This fact

makes decoding simpler, since the position of all tar-

get words in a translation hypothesis is known as

soon as the hypothesis is laid down, but fixed-size

discontinuous phrases are less general and increase

sparsity. By comparison, our gaps may span any

number of words, so we have an increased ability to

flexibly match the input sentence effectively. (Crego

and Yvon, 2009) also handles gaps, though this work

is applicable to an n-gram-based SMT framework

(Mariòo et al., 2006), which is fairly different from

the phrase-based framework.

8 Conclusions

In this paper, we presented a generalization of con-

ventional phrase-based decoding to handle discon-

tinuities in both source and target phrases. Our

system significantly outperforms Moses and Joshua,

two standard implementations of conventional and

hierarchical phrase-based decoding. We found that

allowing discontinuities in the source is more use-

ful than target discontinuities in our system, though

we found that this turns out to also be the case with

the hierarchical phrases of Joshua. In future work,

we plan to extend the parameterization of phrase-

based lexicalized reordering models to be sensitive

to these discontinuities, and we will also consider

adding syntactic features to our models to penal-

ize discontinuities that are not syntactically moti-

vated (Marton and Resnik, 2008; Chiang et al.,

2009). The discontinuous phrase-based MT system

described in this work is part of Phrasal, an open-

source phrase-based system available for download

at http://nlp.stanford.edu/software/phrasal.

Acknowledgements

The authors thank three anonymous reviewers, Dan

Jurafsky, Spence Green, Steven Bethard, Daniel Cer,

Chris Callison-Burch, and Pi-Chuan Chang for their

helpful comments. This paper is based on work

funded by the Defense Advanced Research Projects

Agency through IBM. The content does not neces-

sarily reflect the views of the U.S. Government, and

no official endorsement should be inferred.

973

References

Chris Callison-Burch, Colin Bannard, and Josh

Schroeder. 2005. Scaling phrase-based statistical

machine translation to larger corpora and longer

phrases. In Proc. of ACL, pages 255–262.

Daniel Cer, Michel Galley, Dan Jurafsky, and Christo-

pher Manning. 2010. Phrasal: A statistical machine

translation toolkit for exploring new model features.

In Proc. of NAACL-HLT, Demonstration Session.

David Chiang, Kevin Knight, and Wei Wang. 2009.

11,001 new features for statistical machine translation.

In Proc. of NAACL, pages 218–226.

David Chiang. 2007. Hierarchical phrase-based transla-

tion. Computational Linguistics, 33(2):201–228.

Josep Crego and François Yvon. 2009. Gappy transla-

tion units under left-to-right SMT decoding. In Proc.

of EAMT.

Liang Huang, Hao Zhang, and Daniel Gildea. 2005. Ma-

chine translation as lexicalized parsing with hooks. In

Proc. of the Ninth International Workshop on Parsing

Technology, pages 65–73.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.

2003. Statistical phrase-based translation. In Proc.

of NAACL, pages 48–54.

Philipp Koehn, Hieu Hoang, Alexandra Birch Mayne,

Christopher Callison-Burch, Marcello Federico,

Nicola Bertoldi, Brooke Cowan, Wade Shen,

Christine Moran, Richard Zens, Chris Dyer, Ondrej

Bojar, Alexandra Constantin, and Evan Herbst. 2007.

Moses: Open source toolkit for statistical machine

translation. In Proc. of ACL, Demonstration Session.

Philipp Koehn. 2004. Pharaoh: a beam search decoder

for phrase-based statistical machine translation mod-

els. In Proc. of AMTA, pages 115–124.

Zhifei Li, Chris Callison-Burch, Chris Dyer, Juri Gan-

itkevitch, Sanjeev Khudanpur, Lane Schwartz, Wren

N. G. Thornton, Jonathan Weese, and Omar F. Zaidan.

2009. Joshua: an open source toolkit for parsing-

based MT. In Proc. of WMT.

Percy Liang, Ben Taskar, and Dan Klein. 2006. Align-

ment by agreement. In Proc. of HLT-NAACL, pages

104–111.

Adam Lopez. 2007. Hierarchical phrase-based transla-

tion with suffix arrays. In Proc. of EMNLP-CoNLL,

pages 976–985.

Adam Lopez. 2008. Tera-scale translation models via

pattern matching. In Proc. of COLING.

José B. Mariòo, Rafael E. Banchs, Josep M. Crego, Adrià

de Gispert, Patrik Lambert, José A. R. Fonollosa, and

Marta R. Costa-jussà. 2006. N-gram-based machine

translation. Computational Linguistics, 32(4):527–

549.

Yuval Marton and Philip Resnik. 2008. Soft syntactic

constraints for hierarchical phrased-based translation.

In Proc. of ACL, pages 1003–1011.

Franz Josef Och and Hermann Ney. 2004. The align-

ment template approach to statistical machine transla-

tion. Computational Linguistics, 30(4):417–449.

Franz Josef Och. 2003. Minimum error rate training for

statistical machine translation. In Proc. of ACL.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-

Jing Zhu. 2001. BLEU: a method for automatic eval-

uation of machine translation. In Proc. of ACL.

Stefan Riezler and John T. Maxwell. 2005. On some pit-

falls in automatic evaluation and significance testing

for MT. In Proc. of Workshop on Evaluation Mea-

sures, pages 57–64.

Michel Simard, Nicola Cancedda, Bruno Cavestro, Marc

Dymetman, Eric Gaussier, Cyril Goutte, Kenji Ya-

mada, Philippe Langlais, and Arne Mauser. 2005.

Translating with non-contiguous phrases. In Proc. of

HLT-EMNLP, pages 755–762.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-

nea Micciulla, and John Makhoul. 2006. A study of

translation edit rate with targeted human annotation.

In Proc. of AMTA, pages 223–231.

Anders Søgaard and Jonas Kuhn. 2009. Empirical lower

bounds on alignment error rates in syntax-based ma-

chine translation. In Proc. of the Third Workshop on

Syntax and Structure in Statistical Translation (SSST-

3) at NAACL HLT 2009, pages 19–27.

Anders Søgaard and Dekai Wu. 2009. Empirical lower

bounds on translation unit error rate for the full class

of inversion transduction grammars. In Proc. of IWPT,

pages 33–36.

Andreas Stolcke. 2002. SRILM – an extensible language

modeling toolkit. In Proc. of ICSLP, pages 901–904.

Christoph Tillmann. 2004. A unigram orientation model

for statistical machine translation. In Proc. of HLT-

NAACL, pages 101–104.

Chao Wang, Michael Collins, and Philipp Koehn. 2007.

Chinese syntactic reordering for statistical machine

translation. In Proc. of EMNLP-CoNLL.

Taro Watanabe, Hajime Tsukada, and Hideki Isozaki.

2006. Left-to-right target generation for hierarchical

phrase-based translation. In Proc. of ACL.

Benjamin Wellington, Sonjia Waxmonsky, and I. Dan

Melamed. 2006. Empirical lower bounds on the

complexity of translational equivalence. In Proc. of

COLING-ACL, pages 977–984.

Dekai Wu. 1997. Stochastic inversion transduction

grammars and bilingual parsing of parallel corpora.

Computational Linguistics, 23(3):377–404.

Ying Zhang and Stephan Vogel. 2005. An efficient

phrase-to-phrase alignment model for arbitrarily long

phrase and large corpora. In Proc. of EAMT.

974

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 975–983,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Model Combination for Machine Translation

John DeNero, Shankar Kumar, Ciprian Chelba, and Franz Och
UC Berkeley Google, Inc.

denero@berkeley.edu {shankarkumar,ciprianchelba,och}@google.com

Abstract

Machine translation benefits from two types
of decoding techniques: consensus decoding
over multiple hypotheses under a single model
and system combination over hypotheses from
different models. We present model combina-
tion, a method that integrates consensus de-
coding and system combination into a uni-
fied, forest-based technique. Our approach
makes few assumptions about the underly-
ing component models, enabling us to com-
bine systems with heterogenous structure. Un-
like most system combination techniques, we
reuse the search space of component models,
which entirely avoids the need to align trans-
lation hypotheses. Despite its relative sim-
plicity, model combination improves trans-
lation quality over a pipelined approach of
first applying consensus decoding to individ-
ual systems, and then applying system combi-
nation to their output. We demonstrate BLEU
improvements across data sets and language
pairs in large-scale experiments.

1 Introduction

Once statistical translation models are trained, a de-
coding approach determines what translations are fi-
nally selected. Two parallel lines of research have
shown consistent improvements over the standard
max-derivation decoding objective, which selects
the highest probability derivation. Consensus de-
coding procedures select translations for a single
system by optimizing for model predictions about
n-grams, motivated either as minimizing Bayes risk
(Kumar and Byrne, 2004), maximizing sentence
similarity (DeNero et al., 2009), or approximating a
max-translation objective (Li et al., 2009b). System
combination procedures, on the other hand, generate
translations from the output of multiple component

systems (Frederking and Nirenburg, 1994). In this
paper, we present model combination, a technique
that unifies these two approaches by learning a con-
sensus model over the n-gram features of multiple
underlying component models.

Model combination operates over the compo-
nent models’ posterior distributions over translation
derivations, encoded as a forest of derivations.1 We
combine these components by constructing a linear
consensus model that includes features from each
component. We then optimize this consensus model
over the space of all translation derivations in the
support of all component models’ posterior distribu-
tions. By reusing the components’ search spaces,
we entirely avoid the hypothesis alignment problem
that is central to standard system combination ap-
proaches (Rosti et al., 2007).

Forest-based consensus decoding techniques dif-
fer in whether they capture model predictions
through n-gram posteriors (Tromble et al., 2008;
Kumar et al., 2009) or expected n-gram counts
(DeNero et al., 2009; Li et al., 2009b). We evaluate
both in controlled experiments, demonstrating their
empirical similarity. We also describe algorithms for
expanding translation forests to ensure that n-grams
are local to a forest’s hyperedges, and for exactly
computing n-gram posteriors efficiently.

Model combination assumes only that each trans-
lation model can produce expectations of n-gram
features; the latent derivation structures of compo-
nent systems can differ arbitrarily. This flexibility
allows us to combine phrase-based, hierarchical, and
syntax-augmented translation models. We evaluate
by combining three large-scale systems on Chinese-
English and Arabic-English NIST data sets, demon-
strating improvements of up to 1.4 BLEU over the

1In this paper, we use the terms translation forest and hyper-
graph interchangeably.

975

I ... telescope

Yo vi al hombre con el telescopio

I ... saw the ... man with ... telescope

the ... telescope
0.4

“saw the”

“man with”

0.6

“saw the”

1.0

“man with”

Step 1: Compute Single-Model N-gram Features

Step 2: Construct a Search Space

Step 3: Add Features for the Combination Model

Step 4: Model Training and Inference

Phrase-based system Hierarchical system

......

R

Rpb Rh

R

Rpb Rh

“saw the”:
[
v2
pb = 0.7, v2

h = 1.0
]

[αpb = 1] [αh = 1]

v2
pb(“saw the”) = 0.7

green witch was here

blue witch

green witch was here

blue witch was here

was here

green witch was here

blue witch was here

green witch blue witch

v2
h(“saw the”) = 1.0

w = arg max
w

BLEU

({
arg max
d∈D(f)

sw(d)

}
; e

)

d∗ = arg max
d∈D

sw(d)

I ... telescope

Yo vi al hombre con el telescopio

I ... saw the ... man with ... telescope

the ... telescope
0.6

“saw the”

1.0

“man with”

I ... man

0.4

“telescope the”

0.3

“saw with”
I ... telescope

“I saw the man with the telescope”

“I saw with the telescope the man” Step 1: Compute Combination Features

Step 2: Construct a Search Space

Step 3: Add Features for the Combination Model

Step 4: Model Training and Inference

Phrase-based model Hierarchical model

......

R

Rpb Rh

[αpb = 1] [αh = 1]

w = arg max
w

BLEU

({
arg max
d∈D(f)

sw(d)

}
; e

)

d∗ = arg max
d∈D

sw(d)

v2
h(“saw the”) = 0.7v2

pb(“saw the”) = 0.9

“saw the”:
[
v2
pb = 0.9, v2

h = 0.7
]

applied rule

rule root

rule leaves

n !→ P (n)

Figure 1: An example translation forest encoding two
synchronous derivations for a Spanish sentence: one solid
and one dotted. Nodes are annotated with their left and
right unigram contexts, and hyperedges are annotated
with scores θ · φ(r) and the bigrams they introduce.

best single system max-derivation baseline, and con-
sistent improvements over a more complex multi-
system pipeline that includes independent consensus
decoding and system combination.

2 Model Combination

Model combination is a model-based approach to se-
lecting translations using information from multiple
component systems. Each system provides its poste-
rior distributions over derivations Pi(d|f), encoded
as a weighted translation forest (i.e., translation hy-
pergraph) in which hyperedges correspond to trans-
lation rule applications r.2 The conditional distribu-
tion over derivations takes the form:

Pi(d|f) =
exp

[∑
r∈d θi · φi(r)

]∑
d′∈D(f) exp

[∑
r∈d′ θi · φi(r)

]
whereD(f) is the set of synchronous derivations en-
coded in the forest, r iterates over rule applications
in d, and θi is the parameter vector for system i. The
feature vector φi is system specific and includes both
translation model and language model features. Fig-
ure 1 depicts an example forest.

Model combination includes four steps, described
below. The entire sequence is illustrated in Figure 2.

2Phrase-based systems produce phrase lattices, which are in-
stances of forests with arity 1.

2.1 Computing Combination Features
The first step in model combination is to com-
pute n-gram expectations from component system
posteriors—the same quantities found in MBR, con-
sensus, and variational decoding techniques. For an
n-gram g and system i, the expectation

vn
i (g) = EPi(d|f) [h(d, g)]

can be either an n-gram expected count, if h(d, g)
is the count of g in d, or the posterior probability
that d contains g, if h(d, g) is an indicator function.
Section 3 describes how to compute these features
efficiently.

2.2 Constructing a Search Space
The second step in model combination constructs a
hypothesis space of translation derivations, which
includes all derivations present in the forests con-
tributed by each component system. This search
space D is also a translation forest, and consists of
the conjoined union of the component forests. Let
Ri be the root node of component hypergraph Di.
For all i, we include all of Di in D, along with an
edge from Ri to R, the root of D. D may contain
derivations from different types of translation sys-
tems. However, D only contains derivations (and
therefore translations) that appeared in the hypothe-
sis space of some component system. We do not in-
termingle the component search spaces in any way.

2.3 Features for the Combination Model
The third step defines a new combination model over
all of the derivations in the search space D, and then
annotates D with features that allow for efficient
model inference. We use a linear model over four
types of feature functions of a derivation:

1. Combination feature functions on n-grams
vn
i (d) =

∑
g∈Ngrams(d) vn

i (g) score a deriva-
tion according to the n-grams it contains.

2. Model score feature function b gives the model
score θi · φi(d) of a derivation d under the sys-
tem i that d is from.

3. A length feature ` computes the word length of
the target-side yield of a derivation.

4. A system indicator feature αi is 1 if the deriva-
tion came from system i, and 0 otherwise.

976

All of these features are local to rule applications
(hyperedges) in D. The combination features pro-
vide information sharing across the derivations of
different systems, but are functions of n-grams, and
so can be scored on any translation forest. Model
score features are already local to rule applications.
The length feature is scored in the standard way.
System indicator features are scored only on the hy-
peredges from Ri to R that link each component for-
est to the common root.

Scoring the joint search space D with these fea-
tures involves annotating each rule application r (i.e.
hyperedge) with the value of each feature.

2.4 Model Training and Inference

We have defined the following combination model
sw(d) with weights w over derivations d from I dif-
ferent component models:

I∑
i=1

[
4∑

n=1

wn
i vn

i (d) + wα
i αi(d)

]
+wb·b(d)+w`·`(d)

Because we have assessed all of these features on
local rule applications, we can find the highest scor-
ing derivation d∗ = arg max

d∈D
sw(d) using standard

max-sum (Viterbi) inference over D.
We learn the weights of this consensus model us-

ing hypergraph-based minimum-error-rate training
(Kumar et al., 2009). This procedure maximizes the
translation quality of d∗ on a held-out set, according
to a corpus-level evaluation metric B(·; e) that com-
pares to a reference set e. We used BLEU, choosing
w to maximize the BLEU score of the set of transla-
tions predicted by the combination model.

3 Computing Combination Features

The combination features vn
i (d) score derivations

from each model with the n-gram predictions of the
others. These predictions sum over all derivations
under a single component model to compute a pos-
terior belief about each n-gram. In this paper, we
compare two kinds of combination features, poste-
rior probabilities and expected counts.3

3The model combination framework could incorporate ar-
bitrary features on the common output space of the models, but
we focus on features that have previously proven useful for con-
sensus decoding.

I ... telescope

Yo vi al hombre con el telescopio

I ... saw the ... man with ... telescope

the ... telescope
0.4

“saw the”

“man with”

0.6

“saw the”

1.0

“man with”

Step 1: Compute Single-Model N-gram Features

Step 2: Construct a Search Space

Step 3: Add Features for the Combination Model

Step 4: Model Training and Inference

Phrase-based system Hierarchical system

......

R

Rpb Rh

R

Rpb Rh

“saw the”:
[
v2
pb = 0.7, v2

h = 1.0
]

[αpb = 1] [αh = 1]

v2
pb(“saw the”) = 0.7

green witch was here

blue witch

green witch was here

blue witch was here

was here

green witch was here

blue witch was here

green witch blue witch

v2
h(“saw the”) = 1.0

w = arg max
w

BLEU

({
arg max
d∈D(f)

sw(d)

}
; e

)

d∗ = arg max
d∈D

sw(d)

I ... telescope

Yo vi al hombre con el telescopio

I ... saw the ... man with ... telescope

the ... telescope
0.6

“saw the”

1.0

“man with”

I ... man

0.4

“telescope the”

0.3

“saw with”
I ... telescope

“I saw the man with the telescope”

“I saw with the telescope the man” Step 1: Compute Combination Features

Step 2: Construct a Search Space

Step 3: Add Features for the Combination Model

Step 4: Model Training and Inference

Phrase-based model Hierarchical model

......

R

Rpb Rh

[αpb = 1] [αh = 1]

w = arg max
w

BLEU

({
arg max
d∈D(f)

sw(d)

}
; e

)

d∗ = arg max
d∈D

sw(d)

v2
h(“saw the”) = 0.7v2

pb(“saw the”) = 0.9

“saw the”:
[
v2
pb = 0.9, v2

h = 0.7
]

applied rule

rule root

rule leaves

n !→ P (n)

Figure 2: Model combination applied to a phrase-based
(pb) and a hierarchical model (h) includes four steps. (1)
shows an excerpt of the bigram feature function for each
component, (2) depicts the result of conjoining a phrase
lattice with a hierarchical forest, (3) shows example hy-
peredge features of the combination model, including bi-
gram features vn

i and system indicators αi, and (4) gives
training and decoding objectives.

Posterior probabilities represent a model’s be-
lief that the translation will contain a particular n-
gram at least once. They can be expressed as
EP (d|f) [δ(d, g)] for an indicator function δ(d, g)
that is 1 if n-gram g appears in derivation d. These
quantities arise in approximating BLEU for lattice-
based and hypergraph-based minimum Bayes risk
decoding (Tromble et al., 2008; Kumar et al., 2009).
Expected n-gram counts EP (d|f) [c(d, g)] represent
the model’s belief of how many times an n-gram g
will appear in the translation. These quantities ap-
pear in forest-based consensus decoding (DeNero et
al., 2009) and variational decoding (Li et al., 2009b).

977

Methods for computing both of these quantities ap-
pear in the literature. However, we address two out-
standing issues below. In Section 5, we also com-
pare the two quantities experimentally.

3.1 Computing N -gram Posteriors Exactly
Kumar et al. (2009) describes an efficient approx-
imate algorithm for computing n-gram posterior
probabilities. Algorithm 1 is an exact algorithm that
computes all n-gram posteriors from a forest in a
single inside pass. The algorithm tracks two quanti-
ties at each node n: regular inside scores β(n) and
n-gram inside scores β̂(n, g) that sum the scores of
all derivations rooted at n that contain n-gram g.

For each hyperedge, we compute b̄(g), the sum of
scores for derivations that do not contain g (Lines 8-
11). We then use that quantity to compute the score
of derivations that do contain g (Line 17).

Algorithm 1 Computing n-gram posteriors
1: for n ∈ N in topological order do
2: β(n)← 0
3: β̂(n, g)← 0, ∀g ∈ Ngrams(n)
4: for r ∈ Rules(n) do
5: w ← exp [θ · φ(r)]
6: b← w
7: b̄(g)← w, ∀g ∈ Ngrams(n)
8: for ` ∈ Leaves(r) do
9: b← b× β(`)

10: for g ∈ Ngrams(n) do
11: b̄(g)← b̄(g)×

(
β(`)− β̂(`, g)

)
12: β(n)← β(n) + b
13: for g ∈ Ngrams(n) do
14: if g ∈ Ngrams(r) then
15: β̂(n, g)← β̂(n, g)+b
16: else
17: β̂(n, g)← β̂(n, g)+b− b̄(g)
18: for g ∈ Ngrams(root) (all g in the HG) do
19: P (g|f)← β̂(root,g)

β(root)

This algorithm can in principle compute the pos-
terior probability of any indicator function on local
features of a derivation. More generally, this algo-
rithm demonstrates how vector-backed inside passes
can compute quantities beyond expectations of local
features (Li and Eisner, 2009).4 Chelba and Maha-
jan (2009) developed a similar algorithm for lattices.

4Indicator functions on derivations are not locally additive

3.2 Ensuring N -gram Locality

DeNero et al. (2009) describes an efficient algorithm
for computing n-gram expected counts from a trans-
lation forest. This method assumes n-gram local-
ity of the forest, the property that any n-gram intro-
duced by a hyperedge appears in all derivations that
include the hyperedge. However, decoders may re-
combine forest nodes whenever the language model
does not distinguish between n-grams due to back-
off (Li and Khudanpur, 2008). In this case, a forest
encoding of a posterior distribution may not exhibit
n-gram locality in all regions of the search space.
Figure 3 shows a hypergraph which contains non-
local trigrams, along with its local expansion.

Algorithm 2 expands a forest to ensure n-gram lo-
cality while preserving the encoded distribution over
derivations. Let a forest (N,R) consist of nodes N
and hyperedges R, which correspond to rule appli-
cations. Let Rules(n) be the subset of R rooted by
n, and Leaves(r) be the leaf nodes of rule applica-
tion r. The expanded forest (Ne, Re) is constructed
by a function Reapply(r, L) that applies the rule of r
to a new set of leaves L ⊂ Ne, forming a pair (r′, n′)
consisting of a new rule application r′ rooted by n′.
P is a map from nodes in N to subsets of Ne which
tracks how N projects to Ne. Two nodes in Ne are
identical if they have the same (n−1)-gram left and
right contexts and are projections of the same node
in N . The symbol

⊗
denotes a set cross-product.

Algorithm 2 Expanding for n-gram locality
1: Ne ← {}; Re ← {}
2: for n ∈ N in topological order do
3: P (n)← {}
4: for r ∈ Rules(n) do
5: for L ∈

⊗
`∈Leaves(r) [P (`)] do

6: r′, n′ ← Reapply(r, L)
7: P (n)← P (n) ∪ {n′}
8: Ne ← Ne ∪ {n′}
9: Re ← Re ∪ {r′}

This transformation preserves the original distri-
bution over derivations by splitting states, but main-
taining continuations from those split states by du-
plicating rule applications. The process is analogous

over the rules of a derivation, even if the features they indicate
are local. Therefore, Algorithm 1 is not an instance of an ex-
pectation semiring computation.

978

I ... telescope

Yo vi al hombre con el telescopio

I ... saw the ... man with ... telescope

the ... telescope
0.4

“saw the”

“man with”

0.6

“saw the”

1.0

“man with”

Step 1: Compute Single-Model N-gram Features

Step 2: Construct a Search Space

Step 3: Add Features for the Combination Model

Step 4: Model Training and Inference

Phrase-based system Hierarchical system

......

R

Rpb Rh

R

Rpb Rh

“saw the”:
[
v2
pb = 0.7, v2

h = 1.0
]

[αpb = 1] [αh = 1]

v2
pb(“saw the”) = 0.7

green witch was here

blue witch

green witch was here

blue witch was here

was here

green witch was here

blue witch was here

green witch blue witch

v2
h(“saw the”) = 1.0

w = arg max
w

BLEU

({
arg max
d∈D(f)

sw(d)

}
; e

)

d∗ = arg max
d∈D

sw(d)

I ... telescope

Yo vi al hombre con el telescopio

I ... saw the ... man with ... telescope

the ... telescope
0.6

“saw the”

1.0

“man with”

I ... man

0.4

“telescope the”

0.3

“saw with”
I ... telescope

“I saw the man with the telescope”

“I saw with the telescope the man” Step 1: Compute Combination Features

Step 2: Construct a Search Space

Step 3: Add Features for the Combination Model

Step 4: Model Training and Inference

Phrase-based model Hierarchical model

......

R

Rpb Rh

[αpb = 1] [αh = 1]

w = arg max
w

BLEU

({
arg max
d∈D(f)

sw(d)

}
; e

)

d∗ = arg max
d∈D

sw(d)

v2
h(“saw the”) = 0.7v2

pb(“saw the”) = 0.9

“saw the”:
[
v2
pb = 0.9, v2

h = 0.7
]

applied rule

rule root

rule leaves

n !→ P (n)

Figure 3: Hypergraph expansion ensures n-gram locality
without affecting the distribution over derivations. In the
left example, trigrams “green witch was” and “blue witch
was” are non-local due to language model back-off. On
the right, states are split to enforce trigram locality.

to expanding bigram lattices to encode a trigram his-
tory at each lattice node (Weng et al., 1998).

4 Relationship to Prior Work

Model combination is a multi-system generaliza-
tion of consensus or minimum Bayes risk decod-
ing. When only one component system is included,
model combination is identical to minimum Bayes
risk decoding over hypergraphs, as described in Ku-
mar et al. (2009).5

4.1 System Combination
System combination techniques in machine trans-
lation take as input the outputs {e1, · · · , ek} of k
translation systems, where ei is a structured transla-
tion object (or k-best lists thereof), typically viewed
as a sequence of words. The dominant approach in
the field chooses a primary translation ep as a back-
bone, then finds an alignment ai to the backbone for
each ei. A new search space is constructed from
these backbone-aligned outputs, and then a voting
procedure or feature-based model predicts a final
consensus translation (Rosti et al., 2007). Model
combination entirely avoids this alignment problem
by viewing hypotheses as n-gram occurrence vec-
tors rather than word sequences.

Model combination also requires less total com-
putation than applying system combination to

5We do not refer to model combination as a minimum Bayes
risk decoding procedure despite this similarity because risk im-
plies a belief distribution over outputs, and we now have mul-
tiple output distributions that are not necessarily calibrated.
Moreover, our generalized, multi-model objective (Section 2.4)
is motivated by BLEU, but not a direct approximation to it.

consensus-decoded outputs. The best consensus de-
coding methods for individual systems already re-
quire the computation-intensive steps of model com-
bination: producing lattices or forests, computing n-
gram feature expectations, and re-decoding to max-
imize a secondary consensus objective. Hence, to
maximize the performance of system combination,
these steps must be performed for each system,
whereas model combination requires only one for-
est rescoring pass over all systems.

Model combination also leverages aggregate
statistics from the components’ posteriors, whereas
system combiners typically do not. Zhao and He
(2009) showed that n-gram posterior features are
useful in the context of a system combination model,
even when computed from k-best lists.

Despite these advantages, system combination
may be more appropriate in some settings. In par-
ticular, model combination is designed primarily for
statistical systems that generate hypergraph outputs.
Model combination can in principle integrate a non-
statistical system that generates either a single hy-
pothesis or an unweighted forest.6 Likewise, the pro-
cedure could be applied to statistical systems that
only generate k-best lists. However, we would not
expect the same strong performance from model
combination in these constrained settings.

4.2 Joint Decoding and Collaborative Decoding

Liu et al. (2009) describes two techniques for com-
bining multiple synchronous grammars, which the
authors characterize as joint decoding. Joint de-
coding does not involve a consensus or minimum-
Bayes-risk decoding objective; indeed, their best
results come from standard max-derivation decod-
ing (with a multi-system grammar). More impor-
tantly, their computations rely on a correspondence
between nodes in the hypergraph outputs of differ-
ent systems, and so they can only joint decode over
models with similar search strategies. We combine a
phrase-based model that uses left-to-right decoding
with two hierarchical systems that use bottom-up de-
coding — a scenario to which joint decoding is not
applicable. Though Liu et al. (2009) rightly point
out that most models can be decoded either left-to-

6A single hypothesis can be represented as a forest, while an
unweighted forest could be assigned a uniform distribution.

979

right or bottom-up, such changes can have substan-
tial implications for search efficiency and search er-
ror. We prefer to maintain the flexibility of using dif-
ferent search strategies in each component system.

Li et al. (2009a) is another related technique for
combining translation systems by leveraging model
predictions of n-gram features. K-best lists of par-
tial translations are iteratively reranked using n-
gram features from the predictions of other mod-
els (which are also iteratively updated). Our tech-
nique differs in that we use no k-best approxima-
tions, have fewer parameters to learn (one consensus
weight vector rather than one for each collaborating
decoder) and produce only one output, avoiding an
additional system combination step at the end.

5 Experiments

We report results on the constrained data track of the
NIST 2008 Arabic-to-English (ar-en) and Chinese-
to-English (zh-en) translation tasks.7 We train on all
parallel and monolingual data allowed in the track.
We use the NIST 2004 eval set (dev) for optimiz-
ing parameters in model combination and test on
the NIST 2008 evaluation set. We report results
using the IBM implementation of the BLEU score
which computes the brevity penalty using the clos-
est reference translation for each segment (Papineni
et al., 2002). We measure statistical significance us-
ing 95% confidence intervals computed using paired
bootstrap resampling. In all table cells (except for
Table 3) systems without statistically significant dif-
ferences are marked with the same superscript.

5.1 Base Systems

We combine outputs from three systems. Our
phrase-based system is similar to the alignment tem-
plate system described by Och and Ney (2004).
Translation is performed using a standard left-
to-right beam-search decoder. Our hierarchical
systems consist of a syntax-augmented system
(SAMT) that includes target-language syntactic cat-
egories (Zollmann and Venugopal, 2006) and a
Hiero-style system with a single non-terminal (Chi-
ang, 2007). Each base system yields state-of-the-art
translation performance, summarized in Table 1.

7http://www.nist.gov/speech/tests/mt

BLEU (%)
ar-en zh-en

Sys Base dev nist08 dev nist08
PB MAX 51.6 43.9 37.7 25.4
PB MBR 52.4∗ 44.6∗ 38.6∗ 27.3∗

PB CON 52.4∗ 44.6∗ 38.7∗ 27.2∗

Hiero MAX 50.9 43.3 40.0 27.2
Hiero MBR 51.4∗ 43.8∗ 40.6∗ 27.8
Hiero CON 51.5∗ 43.8∗ 40.5∗ 28.2
SAMT MAX 51.7 43.8 40.8∗ 28.4
SAMT MBR 52.7∗ 44.5∗ 41.1∗ 28.8∗

SAMT CON 52.6∗ 44.4∗ 41.1∗ 28.7∗

Table 1: Performance of baseline systems.

BLEU (%)
ar-en zh-en

Approach dev nist08 dev nist08
Best MAX system 51.7 43.9 40.8 28.4
Best MBR system 52.7 44.5 41.1 28.8∗

MC Conjoin/SI 53.5 45.3 41.6 29.0∗

Table 2: Performance from the best single system for
each language pair without consensus decoding (Best
MAX system), the best system with minimum Bayes risk
decoding (Best MBR system), and model combination
across three systems.

For each system, we report the performance of
max-derivation decoding (MAX), hypergraph-based
MBR (Kumar et al., 2009), and a linear version of
forest-based consensus decoding (CON) (DeNero et
al., 2009). MBR and CON differ only in that the first
uses n-gram posteriors, while the second uses ex-
pected n-gram counts. The two consensus decoding
approaches yield comparable performance. Hence,
we report performance for hypergraph-based MBR
in our comparison to model combination below.

5.2 Experimental Results

Table 2 compares model combination (MC) to the
best MAX and MBR systems. Model combination
uses a conjoined search space wherein each hyper-
edge is annotated with 21 features: 12 n-gram poste-
rior features vn

i computed from the PB/Hiero/SAMT
forests for n ≤ 4; 4 n-gram posterior features vn

computed from the conjoined forest; 1 length fea-
ture `; 1 feature b for the score assigned by the base
model; and 3 system indicator (SI) features αi that
select which base system a derivation came from.
We refer to this model combination approach as MC

980

BLEU (%)
ar-en zh-en

Strategy dev nist08 dev nist08
Best MBR system 52.7 44.5 41.1 28.8
MBR Conjoin 52.3 44.5 40.5 28.3
MBR Conjoin/feats-best 52.7 44.9 41.2 28.8
MBR Conjoin/SI 53.1 44.9 41.2 28.9
MC 1-best HG 52.7 44.6 41.1 28.7
MC Conjoin 52.9 44.6 40.3 28.1
MC Conjoin/base/SI 53.5 45.1 41.2 28.9
MC Conjoin/SI 53.5 45.3 41.6 29.0

Table 3: Model Combination experiments.

Conjoin/SI. Model combination improves over the
single best MAX system by 1.4 BLEU in ar-en and
0.6 BLEU in zh-en, and always improves over MBR.

This improvement could arise due to multiple rea-
sons: a bigger search space, the consensus features
from constituent systems, or the system indicator
features. Table 3 teases apart these contributions.

We first perform MBR on the conjoined hyper-
graph (MBR-Conjoin). In this case, each edge is
tagged with 4 conjoined n-gram features vn, along
with length and base model features. MBR-Conjoin
is worse than MBR on the hypergraph from the
single best system. This could imply that either
the larger search space introduces poor hypotheses
or that the n-gram posteriors obtained are weaker.
When we now restrict the n-gram features to those
from the best system (MBR Conjoin/feats-best),
BLEU scores increase relative to MBR-Conjoin.
This implies that the n-gram features computed over
the conjoined hypergraph are weaker than the corre-
sponding features from the best system.

Adding system indicator features (MBR Con-
join+SI) helps the MBR-Conjoin system consider-
ably; the resulting system is better than the best
MBR system. This could mean that the SI features
guide search towards stronger parts of the larger
search space. In addition, these features provide a
normalization of scores across systems.

We next do several model-combination experi-
ments. We perform model combination using the
search space of only the best MBR system (MC
1best HG). Here, the hypergraph is annotated with
n-gram features from the 3 base systems, as well as
length and base model features. A total of 3 × 4 +
1 + 1 = 14 features are added to each edge. Sur-

BLEU (%)
ar-en zh-en

Approach Base dev nist08 dev nist08
Sent-level MAX 51.8∗ 44.4∗ 40.8∗ 28.2∗

Word-level MAX 52.0∗ 44.4∗ 40.8∗ 28.1∗

Sent-level MBR 52.7+ 44.6∗ 41.2 28.8+

Word-level MBR 52.5+ 44.7∗ 40.9 28.8+

MC-conjoin-SI 53.5 45.3 41.6 29.0+

Table 4: BLEU performance for different system and
model combination approaches. Sentence-level and
word-level system combination operate over the sentence
output of the base systems, which are either decoded to
maximize derivation score (MAX) or to minimize Bayes
risk (MBR).

prisingly, n-gram features from the additional sys-
tems did not help select a better hypothesis within
the search space of a single system.

When we expand the search space to the con-
joined hypergraph (MC Conjoin), it performs worse
relative to MC 1-best. Since these two systems are
identical in their feature set, we hypothesize that
the larger search space has introduced erroneous hy-
potheses. This is similar to the scenario where MBR
Conjoin is worse than MBR 1-best. As in the MBR
case, adding system indicator features helps (MC
Conjoin/base/SI). The result is comparable to MBR
on the conjoined hypergraph with SI features.

We finally add extra n-gram features which are
computed from the conjoined hypergraph (MC Con-
join + SI). This gives the best performance although
the gains over MC Conjoin/base/SI are quite small.
Note that these added features are the same n-gram
features used in MBR Conjoin. Although they are
not strong by themselves, they provide additional
discriminative power by providing a consensus score
across all 3 base systems.

5.3 Comparison to System Combination

Table 4 compares model combination to two sys-
tem combination algorithms. The first, which we
call sentence-level combination, chooses among the
base systems’ three translations the sentence that
has the highest consensus score. The second, word-
level combination, builds a “word sausage” from
the outputs of the three systems and chooses a path
through the sausage with the highest score under
a similar model (Macherey and Och, 2007). Nei-

981

BLEU (%)
ar-en zh-en

Approach dev nist08 dev nist08
HG-expand 52.7∗ 44.5∗ 41.1∗ 28.8∗

HG-noexpand 52.7∗ 44.5∗ 41.1∗ 28.8∗

Table 5: MBR decoding on the syntax augmented system,
with and without hypergraph expansion.

ther system combination technique provides much
benefit, presumably because the underlying systems
all share the same data, pre-processing, language
model, alignments, and code base.

Comparing system combination when no consen-
sus (i.e., minimum Bayes risk) decoding is utilized
at all, we find that model combination improves
upon the result by up to 1.1 BLEU points. Model
combination also performs slightly better relative to
system combination over MBR-decoded systems. In
the latter case, system combination actually requires
more computation compared to model combination;
consensus decoding is performed for each system
rather than only once for model combination. This
experiment validates our approach. Model combina-
tion outperforms system combination while avoid-
ing the challenge of aligning translation hypotheses.

5.4 Algorithmic Improvements

Section 3 describes two improvements to comput-
ing n-gram posteriors: hypergraph expansion for n-
gram locality and exact posterior computation. Ta-
ble 5 shows MBR decoding with and without expan-
sion (Algorithm 2) in a decoder that collapses nodes
due to language model back-off. These results show
that while expansion is necessary for correctness, it
does not affect performance.

Table 6 compares exact n-gram posterior compu-
tation (Algorithm 1) to the approximation described
by Kumar et al. (2009). Both methods yield identical
results. Again, while the exact method guarantees
correctness of the computation, the approximation
suffices in practice.

6 Conclusion

Model combination is a consensus decoding strat-
egy over a collection of forests produced by multi-
ple machine translation systems. These systems can

BLEU (%)
ar-en zh-en

Posteriors dev nist08 dev nist08
Exact 52.4∗ 44.6∗ 38.6∗ 27.3∗

Approximate 52.5∗ 44.6∗ 38.6∗ 27.2∗

Table 6: MBR decoding on the phrase-based system with
either exact or approximate posteriors.

have varied decoding strategies; we only require that
each system produce a forest (or a lattice) of trans-
lations. This flexibility allows the technique to be
applied quite broadly. For instance, de Gispert et al.
(2009) describe combining systems based on mul-
tiple source representations using minimum Bayes
risk decoding—likewise, they could be combined
via model combination.

Model combination has two significant advan-
tages over current approaches to system combina-
tion. First, it does not rely on hypothesis alignment
between outputs of individual systems. Aligning
translation hypotheses accurately can be challeng-
ing, and has a substantial effect on combination per-
formance (He et al., 2008). Instead of aligning hy-
potheses, we compute expectations of local features
of n-grams. This is analogous to how BLEU score is
computed, which also views sentences as vectors of
n-gram counts (Papineni et al., 2002) . Second, we
do not need to pick a backbone system for combina-
tion. Choosing a backbone system can also be chal-
lenging, and also affects system combination perfor-
mance (He and Toutanova, 2009). Model combina-
tion sidesteps this issue by working with the con-
joined forest produced by the union of the compo-
nent forests, and allows the consensus model to ex-
press system preferences via weights on system in-
dicator features.

Despite its simplicity, model combination pro-
vides strong performance by leveraging existing
consensus, search, and training techniques. The
technique outperforms MBR and consensus decod-
ing on each of the component systems. In addition,
it performs better than standard sentence-based or
word-based system combination techniques applied
to either max-derivation or MBR outputs of the indi-
vidual systems. In sum, it is a natural and effective
model-based approach to multi-system decoding.

982

References
Ciprian Chelba and M. Mahajan. 2009. A dynamic

programming algorithm for computing the posterior
probability of n-gram occurrences in automatic speech
recognition lattices. Personal communication.

David Chiang. 2007. Hierarchical phrase-based transla-
tion. Computational Linguistics.

A. de Gispert, S. Virpioja, M. Kurimo, and W. Byrne.
2009. Minimum bayes risk combination of translation
hypotheses from alternative morphological decompo-
sitions. In Proceedings of the North American Chapter
of the Association for Computational Linguistics.

John DeNero, David Chiang, and Kevin Knight. 2009.
Fast consensus decoding over translation forests. In
Proceedings of the Association for Computational Lin-
guistics and IJCNLP.

Robert Frederking and Sergei Nirenburg. 1994. Three
heads are better than one. In Proceedings of the Con-
ference on Applied Natural Language Processing.

Xiaodong He and Kristina Toutanova. 2009. Joint opti-
mization for machine translation system combination.
In Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing.

Xiaodong He, Mei Yang, Jianfeng Gao, Patrick Nguyen,
and Robert Moore. 2008. Indirect-hmm-based hy-
pothesis alignment for combining outputs from ma-
chine translation systems. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing.

Shankar Kumar and William Byrne. 2004. Minimum
Bayes-risk decoding for statistical machine transla-
tion. In Proceedings of the North American Chapter
of the Association for Computational Linguistics.

Shankar Kumar, Wolfgang Macherey, Chris Dyer, and
Franz Och. 2009. Efficient minimum error rate train-
ing and minimum bayes-risk decoding for translation
hypergraphs and lattices. In Proceedings of the Asso-
ciation for Computational Linguistics and IJCNLP.

Zhifei Li and Jason Eisner. 2009. First- and second-order
expectation semirings with applications to minimum-
risk training on translation forests. In Proceedings of
the Conference on Empirical Methods in Natural Lan-
guage Processing.

Zhifei Li and Sanjeev Khudanpur. 2008. A scalable
decoder for parsing-based machine translation with
equivalent language model state maintenance. In ACL
Workshop on Syntax and Structure in Statistical Trans-
lation.

Mu Li, Nan Duan, Dongdong Zhang, Chi-Ho Li, and
Ming Zhou. 2009a. Collaborative decoding: Partial
hypothesis re-ranking using translation consensus be-
tween decoders. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing.

Zhifei Li, Jason Eisner, and Sanjeev Khudanpur. 2009b.
Variational decoding for statistical machine transla-
tion. In Proceedings of the Association for Compu-
tational Linguistics and IJCNLP.

Yang Liu, Haitao Mi, Yang Feng, and Qun Liu. 2009.
Joint decoding with multiple translation models. In
Proceedings of the Association for Computational Lin-
guistics and IJCNLP.

Wolfgang Macherey and Franz Och. 2007. An empirical
study on computing consensus translations from mul-
tiple machine translation systems. In EMNLP, Prague,
Czech Republic.

Franz J. Och and Hermann Ney. 2004. The Alignment
Template Approach to Statistical Machine Translation.
Computational Linguistics, 30(4):417 – 449.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A method for automatic eval-
uation of machine translation. In Proceedings of the
Association for Computational Linguistics.

Antti-Veikko I. Rosti, Necip Fazil Ayan, Bing Xiang,
Spyros Matsoukas, Richard Schwartz, and Bonnie J.
Dorr. 2007. Combining outputs from multiple ma-
chine translation systems. In Proceedings of the North
American Chapter of the Association for Computa-
tional Linguistics.

Roy Tromble, Shankar Kumar, Franz J. Och, and Wolf-
gang Macherey. 2008. Lattice minimum Bayes-risk
decoding for statistical machine translation. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing.

Fuliang Weng, Andreas Stolcke, and Ananth Sankar.
1998. Efficient lattice representation and generation.
In Intl. Conf. on Spoken Language Processing.

Yong Zhao and Xiaodong He. 2009. Using n-gram based
features for machine translation system combination.
In Proceedings of the North American Chapter of the
Association for Computational Linguistics.

Andreas Zollmann and Ashish Venugopal. 2006. Syntax
augmented machine translation via chart parsing. In
Proceedings of the NAACL 2006 Workshop on statisti-
cal machine translation.

983

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 984–992,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Detecting Emails Containing Requests for Action

Andrew Lampert †‡
†CSIRO ICT Centre

PO Box 76
Epping 1710

Australia
andrew.lampert@csiro.au

Robert Dale
‡Centre for Language Technology

Macquarie University 2109
Australia

rdale@science.mq.edu.au

Cecile Paris
CSIRO ICT Centre

PO Box 76
Epping 1710

Australia
cecile.paris@csiro.au

Abstract

Automatically finding email messages that
contain requests for action can provide valu-
able assistance to users who otherwise strug-
gle to give appropriate attention to the ac-
tionable tasks in their inbox. As a speech
act classification task, however, automatically
recognising requests in free text is particularly
challenging. The problem is compounded by
the fact that typical emails contain extrane-
ous material that makes it difficult to isolate
the content that is directed to the recipient of
the email message. In this paper, we report
on an email classification system which iden-
tifies messages containing requests; we then
show how, by segmenting the content of email
messages into different functional zones and
then considering only content in a small num-
ber of message zones when detecting requests,
we can improve the accuracy of message-level
automated request classification to 83.76%, a
relative increase of 15.9%. This represents
an error reduction of 41% compared with the
same request classifier deployed without email
zoning.

1 Introduction

The variety of linguistic forms that can be used
to express requests, and in particular the frequency
with which indirect speech acts are used in email, is
a major source of difficulty in determining whether
an email message contains one or more requests.
Another significant problem arises from the fact that
whether or not a request is directed at the recipient of
the email message depends on where in the message

the request is found. Most obviously, if the request is
part of a replied-to message that is contained within
the current message, then it is perhaps more likely
that this request was directed at the sender of the
current message. However, separating out content
intended for the recipient from other extraneous con-
tent is not as simple as it might appear. Segmenting
email messages into their different functional parts
is hampered by the lack of standard syntax used by
different email clients to indicate different message
parts, and by the ad hoc ways in which people vary
the structure and layout of messages.

In this paper, we present our results in classifying
messages according to whether or not they contain
requests, and then show how a separate classifier
that aims to determine the nature of the zones that
make up an email message can improve upon these
results. Section 2 contains some context and moti-
vation for this work before we briefly review rele-
vant related work in Section 3. Then, in Section 4,
we describe a first experiment in request classifica-
tion using data gathered from a manual annotation
experiment. In analysing the errors made by this
classifier, we found that a significant number of er-
rors seemed to arise from the inclusion of content in
parts of a message (e.g., quoted reply content) that
were not authored by the current sender, and thus
were not relevant other than as context for interpret-
ing the current message content. Based on this anal-
ysis, we hypothesised that segmenting messages into
their different functional parts, which we call email
zones, and then using this information to consider
only content from certain parts of a message for re-
quest classification, would improve request classifi-

984

cation performance.
To test this hypothesis, we developed an SVM-

based automated email zone classifier configured
with graphic, orthographic and lexical features; this
is described in more detail in (Lampert et al., 2009).
Section 5 describes how we improve request classi-
fication performance using this email zone classifier.
Section 6 summarises the performance of our re-
quest classifiers, with and without automated email
zoning, along with an analysis of the contribution of
lexical features to request classification, discussion
of request classification learning curves, and a de-
tailed error analysis that explores the sources of re-
quest classification errors. Finally, in Section 7, we
offer pointers to future work and some concluding
remarks.

2 Background and Motivation

Previous research has established that users rou-
tinely use email for managing requests in the work-
place — e.g., (Mackay, 1988; Ducheneaut and Bel-
lotti, 2001). Such studies have highlighted how
managing multiple ongoing tasks through email
leads to information overload (Whittaker and Sid-
ner, 1996; Bellotti et al., 2003), especially in the
face of an ever-increasing volume of email. The
result is that many users have difficulty giving ap-
propriate attention to requests hidden in their email
which require action or response. A particularly lu-
cid summary of the requirements placed on email
users comes from work by Murray (1991), whose
ethnographic research into the use of electronic mes-
saging at IBM highlighted that:

[Managers] would like to be able to track
outstanding promises they have made,
promises made to them, requests they’ve
made that have not been met and requests
made of them that they have not fulfilled.

This electronic exchange of requests and commit-
ments has previously been identified as a fundamen-
tal basis of the way work is delegated and com-
pleted within organisations. Winograd and Flores
were among the first to recognise and attempt to
exploit this with their Coordinator system (Wino-
grad and Flores, 1986). Their research into organ-
isational communication concluded that “Organisa-

tions exist as networks of directives and commis-
sives”. It is on this basis that our research explores
the use of requests (directive speech acts) and com-
mitments (commissive speech acts) in email. In this
paper, we focus on requests; feedback from users
of the request and commitment classifier plug-in for
Microsoft Outlook that we have under development
suggests that, at least within the business context of
our current users, requests are the more important of
the two phenomena.

Our aim is to create tools that assist email users
to identify and manage requests contained in incom-
ing and outgoing email. We define a request as an
utterance that places an obligation on an email re-
cipient to schedule an action; perform (or not per-
form) an action; or to respond with some speech
act. A simple example might be Please call when
you have a chance. A more complicated request is
David will send you the latest version if there have
been any updates. If David (perhaps cc’ed) is a re-
cipient of an email containing this second utterance,
the utterance functions as a (conditional) request for
him, even though it is addressed as a commitment to
a third-party. In real-world email, requests are fre-
quently expressed in such subtle ways, as we discuss
in Section 4.

A distinction can be drawn between message-
level identification—i.e., the task of determining
whether an email message contains a request —
and utterance-level identification—i.e., determin-
ing precisely where and how the request is ex-
pressed. In this paper, we focus on the task of
message-level identification, since utterance-level
identification is a significantly more problematic
task: it is often the case that, while we might agree
that a message contains a request or commitment,
it is much harder to determine the precise extent of
the text that conveys this request (see (Lampert et
al., 2008b) for a detailed discussion of some of the
issues here).

3 Related Work

Our request classification work builds on influential
ideas proposed by Winograd and Flores (1986) in
taking a language/action perspective and identifying
speech acts in email. While this differs from the ap-
proach of most currently-used email systems, which

985

routinely treat the content of email messages as ho-
mogeneous bags-of-words, there is a growing body
of research applying ideas from Speech Act Theory
(Austin, 1962; Searle, 1969) to analyse and enhance
email communication.

Khosravi and Wilks (1999) were among the first
to automate message-level request classification in
email. They used cue-phrase based rules to clas-
sify three classes of requests: Request-Action,
Request-Information and Request-Permission. Un-
fortunately, their approach was quite brittle, with the
rules being very specific to the computer support do-
main from which their email data was drawn.

Cohen, Carvalho and Mitchell (2004) developed
machine learning-based classifiers for a number of
email speech acts. They performed manual email
zoning, but didn’t explore the contribution this made
to the performance of their various speech act clas-
sifiers. For requests, they report peak F-measure of
0.69 against a majority class baseline accuracy of
approximately 66%. Cohen, Carvalho and Mitchell
found that unweighted bigrams were particularly
useful features in their experiments, out-performing
other features applied. They later applied a series of
text normalisations and n-gram feature selection al-
gorithms to improve performance (Carvalho and Co-
hen, 2006). We apply similar normalisations in our
work. While difficult to compare due to the use of a
different email corpus that may or may not exclude
annotation disagreements, our request classifier per-
formance exceeds that of the enhanced classifier re-
ported in (Carvalho and Cohen, 2006).

Goldstein and Sabin (2006) have also worked on
related email classification tasks. They use verb
classes, along with a series of hand-crafted form-
and phrase-based features, for classifying what they
term email genre, a task which overlaps signifi-
cantly with email speech act classification. Their
results are difficult to compare since they include a
mix of form-based classifications like response with
more intent-based classes such as request. For re-
quests, the results are rather poor, with precision of
only 0.43 on a small set of personal mail.

The SmartMail system (Corston-Oliver et al.,
2004) is probably the most mature previous work
on utterance-level request classification. SmartMail
attempted to automatically extract and reformulate
action items from email messages for the purpose of

adding them to a user’s to-do list. The system em-
ployed a series of deep linguistic features, including
phrase structure and semantic features, along with
word and part-of-speech n-gram features. The au-
thors found that word n-grams were highly predic-
tive for their classification task, and that there was
little difference in performance when the more ex-
pensive deep linguistic features were added. Based
on this insight, our own system does not employ
deeper linguistic features. Unfortunately, the re-
sults reported reveal only the aggregate performance
across all classes, which involves a mix of both
form-based classes (such as signature content ad-
dress lines and URL lines), and intent-based classes
(such as requests and promises). It is thus very dif-
ficult to directly compare the results with our sys-
tem. Additionally, the experiments were performed
over a large corpus of messages that are not avail-
able for use by other researchers. In contrast, we
use messages from the widely-available Enron email
corpus (Klimt and Yang, 2004) for our own experi-
ments.

While several of the above systems involve man-
ual processes for removing particular parts of mes-
sage bodies, none employ a comprehensive, auto-
mated approach to email zoning.

We focus on the combination of email zoning
and request classification tasks and provide details
of how email zoning improves request classification
— a task not previously explored. To do so, we re-
quire an automated email zone classifier. We exper-
imented with using the Jangada system (Carvalho
and Cohen, 2004), but found similar shortcomings
to those noted by Estival et al. (2007). In particular,
Jangada did not accurately identify forwarded or re-
ply content in email messages from the email Enron
corpus that we use. We achieved much better perfor-
mance with our own Zebra zone classifier (Lampert
et al., 2009); it is this system that we use for email
zoning throughout this paper.

4 Email Request Classification

Identifying requests requires interpretation of the in-
tent that lies behind the language used. Given this, it
is natural to approach the problem as one of speech
act identification. In Speech Act Theory, speech
acts are categories like assertion and request that

986

capture the intentions underlying surface utterances,
providing abstractions across the wide variety of dif-
ferent ways in which instances of those categories
might be realised in linguistic form. In this paper
we focus on the speech acts that represent requests,
where people are placing obligations upon others via
actionable content within email messages.

The task of building automated classifiers is dif-
ficult since the function of conveying a request does
not neatly map to a particular set of language forms;
requests often involve what are referred to as indi-
rect speech acts. While investigating particular sur-
face forms of language is relatively unproblematic,
it is widely recognised that “investigating a collec-
tion of forms that represent, for example, a partic-
ular speech act leads to the problem of establish-
ing which forms constitute that collection” (Archer
et al., 2008). Email offers particular challenges as
it has been shown to exhibit a higher frequency of
indirect speech acts than other media (Hassell and
Christensen, 1996). We approach the problem by
gathering judgments from human annotators and us-
ing this data to train supervised machine learning al-
gorithms.

Our request classifier works at the message-level,
marking emails as requests if they contain one or
more request utterances. As noted earlier, we define
a request as an utterance from the email sender that
places an obligation on a recipient to schedule an
action (e.g., add to a calendar or task list), perform
an action, or respond. Requests may be conditional
or unconditional in terms of the obligation they im-
pose on the recipient. Conditional requests require
action only if a stated condition is satisfied. Previous
annotation experiments have shown that conditional
requests are an important phenomena and occur fre-
quently in email (Scerri et al., 2008; Lampert et al.,
2008a). Requests may also be phrased as either a
direct or indirect speech act.

Although some linguists distinguish between
speech acts that require a physical response and
those that require a verbal or information response,
e.g., (Sinclair and Coulthard, 1975), we follow
Searle’s approach and make no such distinction. We
thus consider questions requiring an informational
response to be requests, since they place an obliga-

tion on the recipient to answer.1

Additionally, there are some classes of request
which have been the source of systematic human
disagreement in our previous annotation experi-
ments. One such class consists of requests for
inaction. Requests for inaction, sometimes called
prohibitives (Sadock and Zwicky, 1985), prohibit
action or request negated action. An example is:
Please don’t let anyone else use the computer in the
office. As they impose an obligation on the sender,
we consider requests for inaction to be requests.
Similarly, we consider that meeting announcements
(e.g., Today’s Prebid Meeting will take place in
EB32c2 at 3pm) and requests to read, open or oth-
erwise act on documents attached to email messages
(e.g., See attached) are also requests.

Several complex classes of requests are particu-
larly sensitive to the context for their interpretation.
Reported requests are one such class. Some reported
requests, such as Paul asked if you could put to-
gether a summary of your accomplishments in an
email, clearly function as a request. Others do not
impose an obligation on the recipient, e.g., Sorry for
the delay; Paul requested your prize to be sent out
late December. The surrounding context must be
used to determine the intent of utterances like re-
ported requests. Such distinctions are often difficult
to automate.

Other complex requests include instructions.
Sometimes instructions are of the kind that one
might ‘file for later use’. These tend to not be
marked as requests. Other instructions, such as Your
user id and password have been set up. Please fol-
low the steps below to access the new environment,
are intended to be executed more promptly. Tem-
poral distance between receipt of the instruction and
expected action is an important factor to distinguish
between requests and non-requests. Another influ-
encing property is the likelihood of the trigger event
that would lead to execution of the described ac-
tion. While the example instructions above are likely
to be executed, instructions for how to handle sus-
pected anthrax-infected mail are (for most people)
unlikely to be actioned.

Further detail and discussion of these and other
1Note, however, that not all questions are requests. Rhetori-

cal questions are perhaps the most obvious class of non-request
questions.

987

challenges in defining and interpreting requests in
email can be found in (Lampert et al., 2008b). In
particular, that paper includes analysis of a series of
complex edge cases that make even human agree-
ment in identifying requests difficult to achieve.

4.1 An Email Request Classifier

Our request classifier is based around an SVM clas-
sifier, implemented using Weka (Witten and Frank,
2005). Given an email message as input, complete
with header information, our binary request classi-
fier predicts the presence or absence of request ut-
terances within the message.

For training our request classifier, we use email
from the database dump of the Enron email corpus
released by Andrew Fiore and Jeff Heer.2 This ver-
sion of the corpus has been processed to remove du-
plicate messages and to normalise sender and recipi-
ent names, resulting in just over 250,000 email mes-
sages. No attachments are included.

Our request classifier training data is drawn from
a collection of 664 messages that were selected at
random from the Enron corpus. Each message was
annotated by three annotators, with overall kappa
agreement of 0.681. From the full dataset of 664
messages, we remove all messages where annota-
tors disagreed for training and evaluating our request
classifier, in order to mitigate the effects of annota-
tion noise, as discussed in (Beigman and Klebanov,
2009). The unanimously agreed data set used for
training consists of 505 email messages.

4.2 Request Classification Features

The features we use in our request classifier are:

• message length in characters and words;
• number and percentage of capitalised words;
• number of non alpha-numeric characters;
• whether the subject line contains markers of

email replies or forwards (e.g. Re:, Fw:);
• the presence of sender or recipient names;
• the presence of sentences that begin with a

modal verb (e.g., might, may, should, would);
• the presence of sentences that begin with a

question word (e.g, who, what, where, when,
why, which, how);

2http://bailando.sims.berkeley.edu/enron/enron.sql.gz

• whether the message contains any sentences
that end with a question mark; and
• binary word unigram and word bigram fea-

tures for n-grams that occur at least three times
across the training set.

Before generating n-gram features, we normalise
the message text as shown in Table 1, in a manner
similar to Carvalho and Cohen (2006). We also add
tokens marking the start and end of sentences, de-
tected using a modified version of Scott Piao’s sen-
tence splitter (Piao et al., 2002), and tokens marking
the start and end of the message.

Symbol Used Pattern

numbers Any sequence of digits
day Day names or abbreviations
pronoun-object Objective pronouns: me, her, him, us, them
pronoun-subject Subjective pronouns: I, we, you, he, she, they
filetype .doc, .pdf, .ppt, .txt, .xls, .rtf
multi-dash 3 or more sequential ‘-’ characters
multi-underscore 3 or more sequential ‘ ’ characters

Table 1: Normalisation applied to n-gram features

Our initial request classifier achieves an accuracy of
72.28%. Table 2 shows accuracy, precision, recall
and F-measure results, calculated using stratified 10-
fold cross-validation, compared against a majority
class baseline. Given the well-balanced nature of
our training data (52.08% of messages contain a re-
quest), this is a reasonable basis for comparison.

Majority Baseline No Zoning Classifier

Request Non-Request Request Non-Request

Accuracy 52.08% 72.28%
Precision 0.521 0.000 0.729 0.716

Recall 1.000 0.000 0.745 0.698
F-Measure 0.685 0.000 0.737 0.707

Table 2: Request classifier results without email zoning

An error analysis of the predictions from our initial
request classifier uncovered a series of classification
errors that appeared to be due to request-like sig-
nals being picked up from parts of messages such as
email signatures and quoted reply content. It seemed
likely that our request classifier would benefit from
an email zone classifier that could identify and ig-
nore such message parts.

988

5 Improving Request Classification with
Email Zoning

Requests in email do not occur uniformly across the
zones that make up the email message. There are
specific zones of a message in which requests are
likely to occur.

Unfortunately, accurate classification of email
zones is difficult, hampered by the lack of standard
syntax used by different email clients to indicate dif-
ferent message parts, and by the ad hoc ways in
which people vary the structure and layout of their
messages. For example, different email clients indi-
cate quoted material in a variety of ways. Some pre-
fix every line of the quoted message with a character
such as ‘>’ or ‘|’, while others indent the quoted
content or insert the quoted message unmodified,
prefixed by a message header. Sometimes the new
content is above the quoted content (a style known
as top-posting); in other cases, the new content may
appear after the quoted content (bottom-posting) or
interleaved with the quoted content (inline reply-
ing). Confounding the issue further is that users are
able to configure their email client to suit their in-
dividual tastes, and can change both the syntax of
quoting and their quoting style (top, bottom or in-
line replying) on a per message basis.

Despite the likelihood of some noise being in-
troduced through mis-classification of email zones,
our hypothesis was that even imperfect information
about the functional parts of a message should im-
prove the performance of our request classifier.

Based on this hypothesis, we integrated Zebra
(Lampert et al., 2009), our SVM-based email zone
classifier, to identify the different functional parts of
email messages. Using features that capture graphic,
orthographic and lexical information, Zebra classi-
fies and segments the body text into nine different
email zones: author content (written by the cur-
rent sender), greetings, signoffs, quoted reply con-
tent, forwarded content, email signatures, advertis-
ing, disclaimers, and automated attachment refer-
ences. Zebra has two modes of operation, classi-
fying either message fragments — whitespace sepa-
rated sets of contiguous lines — or individual lines.
We configure Zebra for line-based zone classifica-
tion, and use it to extract only lines classified as au-
thor, greeting and signoff text. We remove the con-

tent of all other zones before we evaluate features
for request classification.

6 Results and Discussion

Classifying the zones in email messages and ap-
plying our request classifier to only relevant mes-
sage parts significantly increases the performance
of the request classifier. As noted above, without
zoning, our request classifier achieves accuracy of
72.28% and a weighted F-measure (weighted be-
tween the F-measure for requests and non-requests
based on the relative frequency of each class) of
0.723. Adding the zone classifier, we increase the
accuracy to 83.76% and the weighted F-measure to
0.838. This corresponds to a relative increase in
both accuracy and weighted F-measure of 15.9%,
which in turn corresponds to an error reduction of
more than 41%. Table 3 shows a comparison of
the results of the non-zoning and zoning request
classifiers, generated using stratified 10-fold cross-
validation. In a two-tailed paired t-test, run over ten
iterations of stratified 10-fold cross-validation, the
increase in accuracy, precision, recall and f-measure
were all significant at p=0.01.

No Zoning With Zoning

Request Non-Request Request Non-Request

Accuracy 72.28% 83.76%*
Precision 0.729 0.716 0.849* 0.825*

Recall 0.745 0.698 0.837* 0.839*
F-Measure 0.737 0.707 0.843* 0.832*

Table 3: Request classifier results with and without email
zoning (* indicates a statistically significant difference at
p=0.01)

6.1 Lexical Feature Contribution
As expected, lexical information is crucial to re-
quest classification. When we experimented with re-
moving all lexical (n-gram) features, the non-zoning
request classifier accuracy dropped to 57.62% and
the zoning request classifier accuracy dropped to
61.78%. In contrast, when we apply only n-gram
features, we achieve accuracy of 71.49% for the
non-zoning classifier and 83.36% for the zoning
classifier. Clearly, lexical information is critical for
accurate request classification, regardless of whether
email messages are zoned.

989

Using Information Gain, we ranked the n-gram
features in terms of their usefulness. Table 4 shows
the top-10 unigrams and bigrams for our non-zoning
request classifier. Using these top-10 n-grams (plus
our non-n-gram features), we achieve only 66.34%
accuracy. These top-10 n-grams do not seem to
align well with linguistic intuitions, illustrating how
the noise from irrelevant message parts hampers per-
formance. In particular, there were several similar,
apparently automated messages that were annotated
(as non-requests) which appear to be the source of
several of the top-10 n-grams. This strongly sug-
gests that without zoning, the classifier is not learn-
ing features from the training set at a useful level of
generality.

Word Unigrams Word Bigrams
Word 1 Word 2

pronoun-object let pronoun-object
please pronoun-object know

iso start-sentence no
pronoun-subject start date

hourahead hour :
attached ; hourahead

let hourahead hour
westdesk start-sentence start
parsing westdesk /

if iso final

Table 4: Top 10 useful n-grams for our request classifier
without zoning, ranked by Information Gain

In contrast, once we add the zoning classifier, the
top-10 unigrams and bigrams appear to correspond
much better with linguistic intuitions about the lan-
guage of requests. These are shown in Table 5. Us-
ing these top-10 n-grams (plus our non-n-gram fea-
tures), we achieve 80% accuracy. This suggests that,
even with our relatively small amount of training
data, the zone classifier helps the request classifier
to extract fairly general n-gram features.

Interestingly, although lexical features are very
important, the top three features ranked by Informa-
tion Gain are non-lexical: message length in words,
the number of non-alpha-numeric characters in the
message and the number of capitalised words in the
message.

Word Unigrams Word Bigrams
Word 1 Word 2

please ? end-sentence
? pronoun-object know

pronoun-object let pronoun-object
if start-sentence please

pronoun-subject if pronoun-subject
let start-sentence thanks
to please let

know pronoun-subject have
thanks thanks comma

do start date

Table 5: Top 10 useful n-grams for our request classifier
with zoning, ranked by Information Gain

6.2 Learning Curves
Figure 1 shows a plot of accuracy, precision and
recall versus the number of training instances
used to build the request classifier. These re-
sults are calculated over zoned email bodies, us-
ing the average across ten iterations of stratified
10-fold cross-validation for each different sized
set of training instances, implemented via the
FilteredClassifier with the Resample fil-
ter in Weka. Given our pool of 505 agreed mes-
sage annotations, we plot the recall and precision for
training instance sets of size 50 to 505 messages.

There is a clear trend of increasing performance
as the training set size grows. It seems reasonable to
assume that more data should continue to facilitate
better request classifier performance. To this end,
we are annotating more data as part of our current
and future work.

6.3 Error Analysis
To explore the errors made by our request classifier,
we examined the output of our zoning request clas-
sifier using our full feature set, including all word
n-grams.

Approximately 20% of errors relate to requests
that are implicit, and thus more difficult to detect
from surface features. Another 10% of errors are
due to attempts to classify requests in inappropri-
ate genres of email messages. In particular, both
marketing messages and spam frequently include
request-like, directive utterances which our annota-
tors all agreed would not be useful to mark as re-

990

Figure 1: Learning curve showing recall, accuracy and
precision versus the number of training instances

quests for an email user. Not unreasonably, our clas-
sifier is sometimes confused by the content of these
messages, mistakenly marking requests where our
annotators did not. We intend to resolve these classi-
fication errors by filtering out such messages before
we apply the request classifier.

Another 5% of errors are due to request content
occurring in zones that we ignore. The most com-
mon case is content in a forwarded zone. Sometimes
email senders forward a message as a form of task
delegation; because we ignore forwarded content,
our request classifier misses such requests. We did
experiment with including content from forwarded
zones (in addition to the author, greeting and sig-
noff zones), but found that this reduced the perfor-
mance of our request classifier, presumably due to
the additional noise from irrelevant content in other
forwarded material. Forwarded messages are thus
somewhat difficult to deal with. One possible ap-
proach would be to build sender-specific profiles that
might allow us to deal with forwarded content (and
potentially content from other zones) differently for
different users, essentially learning to adapt to the
different styles of different email users.

A further 5% of errors involve errors in the zone
classifier, which leads to incorrect zone labels be-
ing applied to zone content that we would wish to
include for our request classifier. Examples include
author content being mistakenly identified as signa-
ture content. In such cases, we incorrectly remove

relevant content from the body text that is passed
to our request classifier. Improvements to the zone
classifier would resolve these issues.

As part of our annotation task, we also asked
coders to mark the presence of pleasantries. We
define a pleasantry as an utterance that could be a
request in some other context, but that does not func-
tion as a request in the context of use under consid-
eration. Pleasantries are frequently formulaic, and
do not place any significant obligation on the recip-
ient to act or respond. Variations on the phrase Let
me know if you have any questions are particularly
common in email messages. The context of the en-
tire email message needs to be considered to distin-
guish between when such an utterance functions as
a request and when it should be marked as a pleas-
antry. Of the errors made by our request classifier,
approximately 5% involve marking messages con-
taining only pleasantries as containing a request.

The remaining errors are somewhat diverse.
Close to 5% involve errors interpreting requests as-
sociated with attached files. The balance of almost
50% of errors involve a wide range of issues, from
misspellings of key words such as please to a lack
of punctuation cues such as question marks.

7 Conclusion

Request classification, like any form of automated
speech act recognition, is a difficult task. Despite
this inherent difficulty, the automatic request clas-
sifier we describe in this paper correctly labels re-
quests at the message level in 83.76% of email mes-
sages from our annotated dataset. Unlike previous
work that has attempted to automate the classifi-
cation of requests in email, we zone the messages
without manual intervention. This improves accu-
racy by 15.9% relative to the performance of the
same request classifier without the assistance of an
email zone classifier to focus on relevant message
parts. Although some zone classification errors are
made, error analysis reveals that only 5% of errors
are due to zone misclassification of message parts.
This suggests that, although zone classifier perfor-
mance could be further improved, it is likely that
focusing on improving the request classifier using
the existing zone classifier performance will lead to
greater performance gains.

991

References
Dawn Archer, Jonathan Culpeper, and Matthew Davies,

2008. Corpus Linguistics: An International Hand-
book, chapter Pragmatic Annotation, pages 613–642.
Mouton de Gruyter.

John L Austin. 1962. How to do things with words. Har-
vard University Press.

Eyal Beigman and Beata Beigman Klebanov. 2009.
Learning with annotation noise. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th IJCNLP, pages 280–287, Singapore.

Victoria Bellotti, Nicolas Ducheneaut, Mark Howard,
and Ian Smith. 2003. Taking email to task: The
design and evaluation of a task management centred
email tool. In Computer Human Interaction Confer-
ence, CHI, pages 345–352, Ft Lauderdale, Florida.

Vitor R Carvalho and William W Cohen. 2004. Learning
to extract signature reply lines from email. In Pro-
ceedings of First Conference on Email and Anti-Spam
(CEAS), Mountain View, CA, July 30-31.

Vitor R. Carvalho and William W. Cohen. 2006. Improv-
ing email speech act analysis via n-gram selection. In
Proceedings of HLT/NAACL 2006 - Workshop on Ana-
lyzing Conversations in Text and Speech, pages 35–41,
New York.

William W. Cohen, Vitor R. Carvalho, and Tom M.
Mitchell. 2004. Learning to classify email into
”speech acts”. In Conference on Empirical Meth-
ods in Natural Language Processing, pages 309–316,
Barcelona, Spain.

Simon H. Corston-Oliver, Eric Ringger, Michael Gamon,
and Richard Campbell. 2004. Task-focused summa-
rization of email. In ACL-04 Workshop: Text Summa-
rization Branches Out, pages 43–50.

Nicolas Ducheneaut and Victoria Bellotti. 2001. E-mail
as habitat: an exploration of embedded personal infor-
mation management. Interactions, 8(5):30–38.

Dominique Estival, Tanja Gaustad, Son Bao Pham, Will
Radford, and Ben Hutchinson. 2007. Author profiling
for English emails. In Proceedings of the 10th Con-
ference of the Pacific Association for Computational
Linguistics, pages 263–272, Melbourne, Australia.

Jade Goldstein and Roberta Evans Sabin. 2006. Using
speech acts to categorize email and identify email gen-
res. In Proceedings of the 39th Hawaii International
Conference on System Sciences, page 50b.

Lewis Hassell and Margaret Christensen. 1996. Indi-
rect speech acts and their use in three channels of com-
munication. In Proceedings of the First International
Workshop on Communication Modeling - The Lan-
guage/Action Perspective, Tilburg, The Netherlands.

Hamid Khosravi and Yorick Wilks. 1999. Routing email
automatically by purpose not topic. Journal of Natural
Language Engineering, 5:237–250.

Bryan Klimt and Yiming Yang. 2004. Introducing the
Enron corpus. In Proceedings of the Conference on
Email and Anti-Spam (CEAS).

Andrew Lampert, Robert Dale, and Cécile Paris. 2008a.
The nature of requests and commitments in email mes-
sages. In Proceedings of EMAIL-08: the AAAI Work-
shop on Enhanced Messaging, pages 42–47, Chicago.

Andrew Lampert, Robert Dal e, and Cécile Paris. 2008b.
Requests and commitments in email are more complex
than you think: Eight reasons to be cautious. In Pro-
ceedings of Australasian Language Technology Work-
shop (ALTA2008), pages 55–63, Hobart, Australia.

Andrew Lampert, Robert Dale, and Cécile Paris. 2009.
Segmenting email message text into zones. In Pro-
ceedings of Empirical Methods in Natural Language
Processing, pages 919–928, Singapore.

Wendy E. Mackay. 1988. More than just a communica-
tion system: Diversity in the use of electronic mail. In
ACM conference on Computer-supported cooperative
work, pages 344–353, Portland, Oregon, USA.

Denise E. Murray. 1991. Conversation for Action: The
Computer Terminal As Medium of Communication.
John Benjamins Publishing Co.

Scott S L Piao, Andrew Wilson, and Tony McEnery.
2002. A multilingual corpus toolkit. In Proceedings
of 4th North American Symposium on Corpus Linguis-
tics, Indianapolis.

Jerry M. Sadock and Arnold Zwicky, 1985. Language
Typology and Syntactic Description. Vol.I Clause
Structure, chapter Speech act distinctions in syntax,
pages 155–96. Cambridge University Press.

Simon Scerri, Myriam Mencke, Brian David, and
Siegfried Handschuh. 2008. Evaluating the ontology
powering smail — a conceptual framework for seman-
tic email. In Proceedings of the 6th LREC Conference,
Marrakech, Morocco.

John R. Searle. 1969. Speech Acts: An Essay in the
Philosophy of Language. Cambridge University Press.

John Sinclair and Richard Malcolm Coulthard. 1975. To-
wards and Analysis of Discourse - The English used by
Teachers and Pupils. Oxford University Press.

Steve Whittaker and Candace Sidner. 1996. Email over-
load: exploring personal information management of
email. In ACM Computer Human Interaction confer-
ence, pages 276–283. ACM Press.

Terry Winograd and Fernando Flores. 1986. Under-
standing Computers and Cognition. Ablex Publishing
Corporation, Norwood, New Jersey, USA, 1st edition.
ISBN: 0-89391-050-3.

Ian Witten and Eiba Frank. 2005. Data Mining: Prac-
tical machine learning tools and techniques. Morgan
Kaufmann, San Francisco, 2nd edition.

992

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 993–1001,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Evaluating Hierarchical Discourse Segmentation

Lucien Carroll
Linguistics Dept.

UC San Diego
San Diego, CA 92093

lucien@ling.ucsd.edu

Abstract

Hierarchical discourse segmentation is a use-
ful technology, but it is difficult to eval-
uate. I propose an error measure based
on the word error rate of Beeferman et al.
(1999). I then show that this new measure
not only reliably distinguishes baseline seg-
mentations from lexically-informed hierarchi-
cal segmentations and more informed segmen-
tations from less informed segmentations, but
it also offers an improvement over previous
linear error measures.

1 Introduction

Discourse segmentation is the task of identifying co-
herent clusters of sentences and the points of transi-
tion between those groupings. Discourse segmenta-
tion can be viewed as shallow parsing of discourse
structure. The segments and the relations between
them are left unlabeled, focusing instead on the
boundaries between the segments (i.e., the bracket-
ing).

Discourse segmentation is thought to facilitate
automatic summarization (Angheluta et al., 2002;
Boguraev and Neff, 2000), information retrieval
(Kaszkiel and Zobel, 1997), anaphora resolution
(Walker, 1997) and question answering (Chai and
Jin, 2004). Automatic discourse segmentation, as
shallow annotation of discourse structure, also pro-
vides a testing grounds for linguistic theories of dis-
course (Passonneau and Litman, 1997) and provides
a natural unit of measure in linguistic corpora (Biber
et al., 2004).

1.1 The structure of discourse

Research in discourse structure theory (Hobbs,
1985; Grosz and Sidner, 1986; Mann and Thomp-
son, 1988; Kehler, 2002; Asher and Lascarides,
2003; Webber, 2004) and discourse parsing (Marcu,
2000; Forbes et al., 2003; Polanyi et al., 2004;
Baldridge et al., 2007) has variously defined dis-
course structure in terms of communicative inten-
tion, attention, topic/subtopic structure, coherence
relations, and cohesive devices. There is much dis-
agreement about the units and elementary relations
of discourse structure, but they agree that the struc-
tures are hierarchical, most commonly trees (Marcu,
2000), while others have argued for directed acyclic
graphs (Danlos, 2004), or general graphs (Wolf and
Gibson, 2004). In contrast, most of the segmentation
research to date has focused on linear segmentation,
in which segments are non-overlapping and sequen-
tial, and it has been argued that this sequence model
is sufficient for many purposes (Hearst, 1994). I fo-
cus here on tree discourse segmentation, in which
larger segments are composed of sequences of sub-
segments. This is potentially more informative and
more faithful to linguistic theory than linear dis-
course segmentation is, but it poses a more challeng-
ing evaluation problem.

1.2 Hierarchical segmentation

Four studies have described hierarchical discourse
segmentation algorithms, but none of them rigor-
ously evaluated the segmentation in its hierarchi-
cal form. Yaari (1997) used a hierarchical cluster-
ing algorithm for hierarchical discourse segmenta-
tion, and to evaluate it, he linearized the tree (tak-
ing all boundaries equally) and compared the result-

993

ing precision and recall to contemporary linear seg-
mentation algorithms. Slaney and Ponceleon (2001)
used scale-space segmentation (an image segmen-
tation algorithm) on the discourse’s trajectory in a
Latent Semantic Indexing (LSI) space (Landauer et
al., 1998). They evaluated the algorithm by visual
comparison with the heading-subheading structure
of the text. Angheluta et al. (2002) applied a linear
discourse segmentation algorithm recursively, seg-
menting each major segment into a sequence of sub-
segments. They used the result in a summariza-
tion system, and they evaluated the summarization
system but not the segmentation itself. Eisenstein
(2009) used a Bayesian latent topic model to find
a hierarchical segmentation, and he comes the clos-
est to quantitative evaluation of the whole segmen-
tation. He evaluated it against three recursive seg-
mentation algorithms on a corpus that had just two
levels of segment depth and considers these two lev-
els as separate and equally important. While each of
these studies offers some insight into the validity of
the hierarchical segmentation, none of these evalua-
tion methods directly and quantitatively assesses the
hierarchical segmentation as a whole.

Many state-of-the-art linear discourse segmenta-
tion algorithms also use hierarchical frameworks,
making them applicable to hierarchical discourse
segmentation with only trivial modification. For ex-
ample, the C99 algorithm (Choi, 2000) applies con-
trast enhancement and divisive clustering to a ma-
trix of lexical vector cosine similarities. The CWM
algorithm (Choi et al., 2001) applies the same pro-
cedure to a similarity matrix of LSI vectors. Using
these algorithms for hierarchical discourse segmen-
tation simply requires keeping record of the bound-
ary ranking, but until now they have only been used
for linear segmentation.

1.3 The Beeferman error measure

Studies of linear discourse segmentation have re-
vealed that discourse boundaries are inherently
fuzzy. Human annotators demonstrate frequent dis-
agreement about the number of segments and ex-
actly where the transitions between segments oc-
cur, while still demonstrating statistically significant
agreement (Passonneau and Litman, 1997). Because
of this, conventional precision and recall measures
penalize ‘near misses’ when they should be treated

much the same as complete matches. The crossing-
bracket measure (Carbone et al., 2004) is more for-
giving, but still over-penalizes near misses and fa-
vors sparse bracketings. An error measure Pk pro-
posed by Beeferman et al. (1999) compensates for
the variation in boundary locations. It considers a
moving window of width k equal to half the aver-
age segment length in the reference segmentation,
where distances are measured in words or sentences,
depending on whether word boundaries or sentence
boundaries are considered possible discourse seg-
ment boundaries. The error is the average disagree-
ment, between the reference segmentation and the
evaluated segmentation, about whether the two ends
of the window are in the same segment. Formally,

Pk =
1

N− k

N−k

∑
i=1

δ (δ (ri,ri+k),δ (hi,hi+k))

where N is the total number of atoms (words or sen-
tences) in the document, and k is the window width.
The arguments ri and hi are the indices of the seg-
ments that contain atom i in the reference and hy-
pothesized segmentations, respectively, and δ is the
discrete delta function, evaluating to 1 if its argu-
ments are equal and to 0 otherwise. Pevzner and
Hearst (2001) proposed WindowDiff, a modification
of Pk that indicates the average disagreement about
how many boundaries lie within the window, replac-
ing the inner δ functions with the count of segment
boundaries between the two atoms. It is as sensitive
to false positives as it is to false negatives, whereas
Pk is more sensitive to false negatives.

There are still a few problems with these er-
ror measures. In penalizing false negatives and
false positives equally, WindowDiff actually favors
sparse segmentations. Whereas Pk scores the base-
line strategies of no boundaries and all possible
boundaries as within a few percent of 50% error,
WindowDiff scores the all-boundaries baseline at
100% error for typical reference segmentations. Fur-
thermore, in running the summation from i = 1 to
i = N−k, both error measures count boundaries near
the edges of the text less than boundaries near the
middle of the text. A boundary that is j < k atoms
from the beginning or end of the text has weight j

k
relative to boundaries in the middle of the text. Fi-
nally, because of the hierarchical structure of many

994

texts, it is quite possible that a reference segmen-
tation might not include legitimate but fairly unim-
portant boundaries that a hypothesized segmentation
does include. These unimportant boundaries should
not count against the hypothesized segmentation,
but in the linear segmentation paradigm, they nec-
essarily do. The ideal error measure should distin-
guish more-informed algorithms from less-informed
algorithms, treating equally uninformed baselines
the same, and it should treat boundary placement er-
rors according to the prominence of the boundaries,
and not according to their positions within the text.

Building on work in evaluating linear segmenta-
tion, this study considers the evaluation of tree seg-
mentations. I propose an error measure, derived
from Beeferman et al.’s Pk (1999), for evaluating the
alignment of a tree segmentation to a reference seg-
mentation. I first show that this error measure is ad-
vantageous even for evaluating linear segmentations,
and then I evaluate four hierarchical segmentation
algorithms against a gold standard derived from en-
cyclopedia articles.

2 A hierarchical measure

The proposed error measure is based on the intu-
ition that prominent boundaries count more than less
prominent boundaries. The hierarchical atom error
rate EPk is the mean of Beeferman errors calculated
over all linearizations of the segmentation tree (see
Fig. 1). Assume a set R of reference boundaries and
a set H of hypothesized boundaries each in rank or-
der (prominent boundaries precede less prominent

Figure 1: Sequential linearizations in computing hierar-
chical word error rate. The heights of the vertical lines
represent the prominences of boundaries, and each hori-
zontal line is one linearization. In the first step, only the
highest boundary is used, producing just two segments.
Each following step includes one more boundary.

ones). The error is calculated as

EPk =
1
|R|∑i

ciPk(Ri,Hi)

where
Ri = {b j : b j ∈ R∧ j ≤ i}

The elements of Hi are chosen such that |Hi| = |Ri|
and no bn ∈ H \ Hi is more prominent than any
b j ∈ Hi. If the reference boundaries are completely
ordered, then ci = 1 for all ranks i, but if some ref-
erence boundaries share ranks, one Pk term is calcu-
lated for each rank level in the reference segmenta-
tion, and weighted (ci) by the number of boundaries
that were at that level. In the degenerate case of lin-
ear segmentation, all segments have the same rank,
and EPk reduces to the original Pk.

When hypothesized boundaries share ranks, each
affected term in the summation is theoretically the
average over all combinations (n boundaries at the
next rank Choose r boundaries to complete Hi). But
when the number of combinations is large, the com-
putational complexity of the calculation can be re-
duced without sacrificing much accuracy by using a
representative sampling of the combinations, as this
closely approximates the average.

When the set of hypothesized boundaries is
smaller than the set of reference boundaries, we
could simply permit Hi to be smaller than Ri for
large values of i, but that unnecessarily penalizes
the hypothesized segmentation. The set of possi-
ble boundaries (word or sentence boundaries) which
were not marked as segment boundaries can be un-
derstood to be segment boundaries of a baseline low
ranking. Adding these unmarked boundaries to H,
all at a single low rank, prevents incurring an unde-
served penalty for false negatives.

In order to avoid undercounting boundaries near
the beginning and end of the text, I consider the pos-
sibility of wrapping the window around from the be-
ginning to the end of the text. In calculating Pk, the
sum is understood to run from i = 1 to i = N, rather
than stopping at N − k, and the atom index of the
leading edge of the window (i + k) generalizes to
((i+ k) mod N).

3 Hierarchical replication of Choi et al.

As a preliminary test of the error measure, I eval-
uated two algorithms from Choi et al. (2001) on

995

the standard segmentation data set that Choi (2000)
compiled. Each file in that data is composed of
10 random portions of texts from the Brown Cor-
pus (Francis and Kucera, 1979). The following re-
sults are based on the T3−11 subset, in which text
segment lengths are uniformly distributed between
3 and 11 sentences. Since each file is composed of
a sequence of text portions, the reference segmenta-
tion is linear, not hierarchical. Nevertheless, I evalu-
ate hierarchical segmentation algorithms with the hi-
erarchical measure, to show that treating linear seg-
mentation as a special case of hierarchical segmen-
tation solves the issue of unequal treatment of false
positives and false negatives, and running the Win-
dowDiff sum to N (wrapping the window around to
the beginning) solves the problem of undercounting
the boundaries near the text edges.

3.1 Segmentation algorithms

The C99 (Choi, 2000) and CWM (Choi et al., 2001)
algorithms were evaluated. While these were de-
signed and originally evaluated as linear segmenta-
tion algorithms, the hierarchical clustering they use
makes hierarchical segmentation a trivial matter of
retaining the order of the cluster splits. I refer to the
hierarchical versions of these algorithms as HC99
and HCWM. The HC99 implementation used here is
built directly from the C99 code which Choi released
for educational use, and the HCWM implementa-
tion is based off that. The implementation uses
a document-based LSI space built with Infomap-
NLP1 from the British National Corpus (Aston and
Burnard, 1998), whereas the original CWM used
sentence-based and paragraph-based LSI spaces de-
rived from the Brown Corpus. Because of these
differences, the implementation of HCWM reported
here differs somewhat from the implementation of
CWM reported by Choi et al. (2001).

The C99 and CWM algorithms include a criterion
for optional automatic determination of the number
of segments, but the hierarchical error measure does
not penalize a segmentation for having more seg-
ments (defined by lower ranking boundaries) than
the reference segmentation, so I used a constant
number of segments, greater than in the reference
segmentation, for the results reported here.

1Software available at http://infomap-nlp.sourceforge.net

One baseline (BIN) was constructed by a recur-
sive bisection of segments, and another baseline
(NONE) consisted of only the implicit boundaries
at the beginning and end of the discourse, and all the
possible intermediate boundaries (sentence breaks)
are implicitly at one unmarked lower rank.

3.2 Results and Discussion

The calculated EPk error rates are displayed in
Fig. 2.2 The error for HC99 in Fig. 2a (12.5%)
matches what Choi et al. (2001) reported (12%),
while the error for HCWM (12.1%) is higher than
that reported for the version with a paragraph-based
500-dimension LSI space (9%) but appears com-
parable to their sentence-based 400-dimension LSI
space. (They do not report results for the sentence-
based spaces on this T3−11 data set, but based on the
results they report for a larger data set, it would ap-
pear to be about 12% for the T3−11 set.) The result
for BIN (43.9%) is slightly lower than what Choi et
al. (2001) reported for their equal-size segment base-
line (45%). Since BIN would be an equal-segment
baseline if there were only 8 segments per text, BIN
should be similar to Choi et al’s equal-size baseline.
And the result for NONE (46.1%) agrees with Choi
et al. (2001)’s results for their NONE (46%) base-
line.

Comparison of graphs (a) and (b) in Fig. 2 shows
that continuing the sum to wrap the window around
to the beginning of the text generally lowers the
measured error, to the greatest extent for BIN and
least for HCWM. The average segment length in the
reference segmentation is 7 sentences, so the win-
dow size k is usually 3 or 4 sentences, comparable
to the minimum segment length (3). As a result,
a boundary very rarely falls within k sentences of
the text ends, and fully including these sentences in
the sum leads to a lower error for segmentations like
BIN that don’t hypothesize boundaries near the text
ends.

The EWD hierarchical error rates (calculated ac-
cording to WindowDiff) are consistently higher
(Fig. 2c, d) than the corresponding EPk . WindowDiff

2The error rates in this section are calculated using the word-
error rate for comparison with Choi’s results, but since the can-
didate boundaries are actually the line breaks, the line-error rate
would be more appropriate. Line error rates are 1% to 2%
higher.

996

(a)

●

●
●

●
●

H
C

99

H
C

W
M

B
IN

N
O

N
E

0.0

0.2

0.4

0.6

0.8

µ=
12

.5
±0

.9
%

µ=
12

.1
±0

.9
%

µ=
43

.9
±0

.9
%

µ=
46

.1
±0

.2
%

(b)

●
● ●

●
● ●

H
C

99

H
C

W
M

B
IN

N
O

N
E

0.0

0.2

0.4

0.6

0.8

µ=
12

.1
±0

.8
%

µ=
12

.1
±0

.9
%

µ=
42

.1
±0

.9
%

µ=
45

.5
±0

.2
%

(c)

●● ●

● ●●

H
C

99

H
C

W
M

B
IN

N
O

N
E

0.0

0.2

0.4

0.6

0.8

µ=
13

.8
±0

.9
%

µ=
14

.1
±1

.0
%

µ=
45

.0
±0

.9
%

µ=
49

.9
±0

.1
%

(d)

●
● ●●

●

H
C

99

H
C

W
M

B
IN

N
O

N
E

0.0

0.2

0.4

0.6

0.8

µ=
13

.3
±0

.9
%

µ=
13

.9
±1

.0
%

µ=
43

.1
±0

.8
%

µ=
49

.1
±0

.1
%

Figure 2: Distributions of EPk (a, b) and EWD (c, d) for each of the hypothesized and baseline segmentation algorithms.
The data in graphs (a) and (c) are calculated with sums that stop at N− k (when the window reaches the end of the
text), whereas (b) and (d) are calculated with sums that run to N (wrapping the window back to the beginning). The
boxes indicate the quartiles, and the means with 95% confidence intervals are written above.

scores are never lower than Pk scores, because in or-
der to count as in agreement, the two segmentations
must agree about the number of boundaries within
the window rather than just about whether there are
boundaries within the window. But these scores are
not much higher than EPk either, even though the
original linear WindowDiff measure sometimes as-
signs much higher scores. Under the original Win-
dowDiff measure, with reference and hypothesized
boundary sets of unequal size, the NONE baseline
scores 43.8% (cf. Pk=43.5% for sum to N), while
an ALL baseline scores 99.2% (cf. Pk=51.1% for
sum to N). WindowDiff was designed to penalize
false positives even when two boundaries are close
together, a condition that Pk underpenalizes. When a
hypothesized segmentation has more segments than
the reference segmentation, the extra boundaries in-
cur false positive penalties without corresponding
false negative penalties, and WindowDiff assigns an
error rate that is higher than the Pk error rate and
sometimes even higher than the NONE baseline.
But with the hierarchical EWD error, extra bound-
aries are sampled or ignored, and so every false pos-

itive has a corresponding false negative, which limits
the divergence between EWD and EPk and keeps the
EWD error of informed segmentations below base-
line errors. As with EPk , continuing the sum to N
(Fig. 2d), has only a slight effect on the error, but
the effect is most pronounced on BIN, reflecting the
fact that BIN, like the reference segmentation sys-
tematically does not place boundaries near the text
ends.

3.3 Conclusion

We have seen here that treating linear segmentations
as a special case of hierarchical segmentations, hav-
ing just one rank of marked boundaries but having
implicit higher ranking boundaries at the text ends
and implicit lower ranking boundaries at all ‘non-
boundaries’, resolves the outstanding issues of un-
equal sensitivity that Pk and WindowDiff have. Fur-
thermore, in sampling hypothesized boundaries to
match the number of reference boundaries, the hi-
erarchical conception of the error metric smoothly
adapts to segmentations that overestimate or under-
estimate the number of segments. A segmentation

997

can not do much worse than 50% (at chance) just
by hypothesizing fewer or more segments than the
reference segmentation ‘knows’ about. The major
remaining strength of WindowDiff over the Pk met-
ric is that Pk still undercounts errors when there are
segments much smaller than the average size.

For these reasons, I adopt a version of EWD that
continues the sum to wrap the window around the
end of the text. In addition, when I refer to the lin-
ear error measure in the following sections, I mean
the special case of EWD in which the information in
the reference segmentation about the ranking of the
marked boundaries is ignored, but boundary ranking
information in the hypothesized segmentation (both
marked and unmarked boundaries) is still used to se-
lect as many segment boundaries as are in the refer-
ence segmentation.

4 Wikipedia Evaluation

In this section, I compare the same two algorithms
and baselines with two additional hierarchical seg-
mentation algorithms, using a hierarchical reference
segmentation. The reference segmentation corpus is
derived from encyclopedia articles, and I use the hi-
erarchical error measure developed in the previous
sections. I also constrast the hierarchical error rates
with measurements that ignore the boundary ranking
information in the hypothesized or reference seg-
mentations in order to highlight the difference be-
tween the performance on boundary position and the
performance on boundary ranking.

4.1 Corpus and Algorithms

The evaluation corpus is derived from the 2006
Wikipedia CD release.3 The html pages were con-
verted to flat text, removing boilerplate, naviga-
tion, info-boxes, and image captions. Heading text
was replaced with a boundary marker, indicating the
heading depth. The subcorpus used for this evalua-
tion consists of articles with a heading depth of four
(i.e. having html elements h2 through h5), a total of
66 articles. The texts were reformatted with an au-
tomatic sentence detector4 to have one sentence per

3Available from http://schools-wikipedia.
org/2006/.

4From Ratnaparkhi’s ‘jmx’ (ftp://ftp.cis.upenn.
edu/pub/adwait/jmx/jmx.tar.gz).

line, and then tokenized.5

In addition to the HC99 and HCWM algorithms
used in the previous section, I use two algorithms
described by Eisenstein (2009). The HIERBAYES

algorithm (here, HBT) uses a multi-level latent topic
model to perform joint inference over the locations
and prominences of topic change boundaries. The
GREEDY-BAYES algorithm (here, GBEM) uses a
single-level latent topic model to find a linear seg-
mentation, and recursively divides each of the seg-
ments.6 Both algorithms internally decide the num-
ber of hypothesized boundaries, sometimes underes-
timating it and sometimes overestimating.7

4.2 Results and Discussion

The EWD error rates for each of the hypothesized
segmentations are presented in Fig. 3. As with the
Choi data, the NONE baseline has an error rate
at chance (50%), while the lexical algorithms per-
form better than that (highly statistically signifi-
cantly (p < .0001) less than 50%, according to indi-
vidual two-sided one-sample t-tests). However, they
perform much worse than they did on the Choi data.

In spite of the relatively high error rates, the dis-
criminating power of the evaluation measure is re-
vealed by comparison of the fully hierarchical er-
ror rates (Fig. 3a) with the error rates that ignore
the ranking information in the reference (Fig. 3b) or
hypothesized (Fig. 3c) segmentations. For each of
the lexical algorithms that were originally designed
as linear segmentation algorithms (HC99, HCWM,
and GBEM), the mean error is less in Fig. 3b
against the linear standard (when reference segmen-
tation boundary prominences are ignored) than in
Fig. 3a under the fully hierarchical measure (two-
tailed paired t-tests, each p < .0001). In contrast,
HBT, designed as a hierarchical segmentation algo-
rithm, obtains a lower error rate under the fully hier-
archical EWD measure (though the difference does

5The evaluation code and corpus can be downloaded from
http://idiom.ucsd.edu/˜lucien/segmentation

6Both algorithms are part of the HBayesSeg pack-
age, available at http://people.csail.mit.edu/
jacobe/naacl09.html

7Options for HBT were set to produce 3 levels of text-
internal boundary prominence. Attempts to obtain more bound-
aries and more depth levels lead to deteriorated performance,
because the search space grows geometrically with the number
of levels (Eisenstein, p.c.)

998

(a)

●

●

●

●

●

●

H
C

99

H
C

W
M

H
B

T

G
B

E
M

B
IN

N
O

N
E

0.0

0.2

0.4

0.6

0.8

µ=
45

.1
±1

.4
%

µ=
43

.9
±1

.5
%

µ=
41

.0
±1

.5
%

µ=
40

.6
±1

.1
%

µ=
51

.4
±0

.9
%

µ=
49

.8
±0

.3
%

(b)

●

●

●

●

●

H
C

99

H
C

W
M

H
B

T

G
B

E
M

B
IN

N
O

N
E

0.0

0.2

0.4

0.6

0.8

µ=
42

.5
±1

.7
%

µ=
42

.1
±1

.8
%

µ=
41

.9
±1

.5
%

µ=
38

.4
±1

.5
%

µ=
50

.0
±1

.0
%

µ=
50

.0
±0

.5
%

(c)

●

●●

●

H
C

99

H
C

W
M

H
B

T

G
B

E
M

B
IN

N
O

N
E

0.0

0.2

0.4

0.6

0.8

µ=
49

.0
±0

.4
%

µ=
49

.0
±0

.5
%

µ=
42

.3
±1

.3
%

µ=
41

.2
±1

.0
%

µ=
50

.0
±0

.3
%

µ=
49

.9
±0

.3
%

Figure 3: EWD error rates for each of the segmentation algorithms. (a) Hierarchical error (b) Linear error (ignoring
reference segmentation prominences) (c) Hierarchical error ignoring hypothesized segmentation prominences. Boxes
show quantiles and means are written above, with 95% confidence intervals.

not reach significance: p = 0.1, two-tailed paired
t-test). When instead the hypothesized boundary
prominences are ignored (Fig. 3c), reducing them
to linear segmentations but still evaluating against
the hierarchical standard, the error rates of all the
lexical algorithms are raised (in two-tailed paired t-
tests, each p < .0001), but HBT and GBEM are only
slightly affected, whereas HC99 and HCWM are al-
most raised to chance. While HBT and GBEM hy-
pothesize about the same number of boundaries as
the reference segmentation (13 and 22 text-internal
boundaries on average, compared to 22 text-internal
boundaries in the reference corpus), the HC99 and
HCWM algorithms were made to hypothesize 54
boundaries for each text. The difference between
their error rates in (Fig. 3a) and (Fig. 3c) shows that
the HC99 and HCWM boundaries given the highest
prominences corresponded much more closely to the
reference boundaries than the hypothesized bound-
aries given the lowest prominences.

The mean scores for the BIN baseline are over
50% on the encyclopedia data. In contrast, the mean
score for BIN on the Choi standard data (Fig. 2)
was 45% for the linear measure and 43% for the

hierarchical measure. Why did BIN do so poorly
here when it performed well above chance on the
Choi data? The difference is in the distributions of
segment lengths. As seen in Fig. 4, the Choi data
segment lengths are well-defined by their mean, be-
cause they were constructed with uniform distribu-
tions of segment length. On the other hand, the dis-
tribution of segment lengths in the encyclopedia data
is more skewed, with many quite short segments and
a few quite long segments.

The error rates for both HC99 and HCWM are
much higher on the encyclopedia data than they
are on the Choi data, and the error rates for HBT
and GBEM are not much better. Choi’s evalua-
tion corpus was specifically designed to have obvi-
ous boundaries, whereas the boundaries in these dis-
course samples are much less obvious. As discussed
by Kauchak and Chen (2005), even algorithms that
obtain low error rates on newsfeed do not perform
well on more fluid discourse, and while Ji and Zha
(2003) reported quite low error on an expository text
sample (Pk = 12%), Kauchak and Chen (2005) re-
port a best error rate of Pk = 38.5% on the encyclo-
pedia corpus they used, and Malioutov and Barzi-

999

(a)
Ratio of Segment Lengths to Mean

F
re

qu
en

cy

0 1 2 3 4 5 6 7

0
20

0
40

0

(b)
Ratio of Segment Lengths to Mean

F
re

qu
en

cy

0 1 2 3 4 5 6 7

0
50

15
0

Figure 4: Distribution of sentences per segment for (a) Choi standard data (b) Wikipedia data

lay (2006) obtained Pk error rates between 30% and
40% on the lecture data they used, comparable to
human annotator pairwise Pk ranging from 24% to
42%. C99 and CWM—like the other algorithms
that make use of hierarchical representations of the
text, such as Ji and Zha (2003) and Fragkou et al.
(2004)—depend completely on lexical information.
Another strand of research, including Galley et al.
(2003) and Kauchak and Chen (2005), make use of
a wide variety of linguistic and orthographic cues.
And the discourse parsing systems take advantage
of even more linguistic cues. The ideal segmenta-
tion algorithm needs to combine the advantages of
each of these approaches, but the frameworks are not
straightforwardly compatible. The Bayesian frame-
work explored by Eisenstein and Barzilay (2008) is
a potential route to a richer model, and they found
their richer model beneficial for a meetings corpus
but not for a textbook. The HBT and GBEM al-
gorithms, which were based on that work, do not
attempt to go beyond lexical cohesion, but it does
provide a framework for hierarchical segmentation
algorithms that take advantage of other cues.

5 Conclusions

In Section 2, I introduced a modification of the er-
ror measure developed by Beeferman et al. (1999)
and Pevzner and Hearst (2001). I then showed that
this modification, directed at evaluating hierarchical
segmentations, also produces a more robust evalu-
ation of linear segmentations as well. And applied
to hierarchical segmentations, it successfully dis-
tinguishes lexically-informed segmentations from

baseline segmentations, and it distinguishes hierar-
chical segmentations from segmentations composed
of the same boundaries but without the boundary
ranking information. As a more reliable evaluation
of both linear and hierarchical segmentation algo-
rithms, this error measure will facilitate the devel-
opment of more richly informed segmentation algo-
rithms.

Acknowledgments

In this research, I have benefited from resources at
both San Diego State University and UC San Diego.
This work has been enriched by the questions and
advice of many people, including Eniko Csomay,
Rob Malouf, Lara Taylor, Rebecca Colavin, Andy
Kehler, and the NAACL anonymous reviewers. I
am also grateful to Freddy Choi and Jacob Eisen-
stein for making their code and data available, and
to Jacob for additional help running his code. All
errors are my own.

References
Roxana Angheluta, Rik De Busser, and Marie-Francine

Moens. 2002. The use of topic segmentation for auto-
matic summarization. In DUC 2002.

Nicholas Asher and Alex Lascarides. 2003. Logics of
Conversation. Cambridge University Press.

Guy Aston and Lou Burnard. 1998. The BNC Hand-
book: Exploring the British National Corpus with
SARA. Edinburgh University Press.

Jason Baldridge, Nicholas Asher, and Julie Hunter. 2007.
Annotation for and robust parsing of discourse struc-
ture of unrestricted texts. Zeitschrift für Sprachwis-
senschaft, 26(213):239.

1000

Doug Beeferman, Adam Berger, and John D. Lafferty.
1999. Statistical models for text segmentation. Ma-
chine Learning, 34(1-3):177–210.

Douglas Biber, Eniko Csomay, James K. Jones, and
Casey Keck. 2004. A corpus linguistic investigation
of vocabulary-based discourse units in university reg-
isters. Language and Computers, 20:53–72.

Branimir Boguraev and Mary S. Neff. 2000. Discourse
segmentation in aid of document summarization. In
33rd HICSS.

Marco Carbone, Ya’akov Gal, Stuart Shieber, and Bar-
bara Grosz. 2004. Unifying annotated discourse hi-
erarchies to create a gold standard. In Proceedings of
4th SIGDIAL Workshop on Discourse and Dialogue.

Joyce Y. Chai and Rong Jin. 2004. Discourse struc-
ture for context question answering. In HLT-NAACL
2004 Workshop on Pragmatics of Question Answering,
pages 23–30.

Freddy Choi, Peter Wiemer-Hastings, and Johanna
Moore. 2001. Latent semantic analysis for text seg-
mentation. In Proceedings of 6th EMNLP, pages 109–
117.

Freddy Choi. 2000. Advances in domain independent
linear text segmentation. In Proceedings of NAACL-
00, pages 26–33.

Laurence Danlos. 2004. Discourse dependency struc-
tures as constrained DAGs. In Proceedings of 5th SIG-
DIAL Workshop on Discourse and Dialogue, pages
127–135.

Jacob Eisenstein and Regina Barzilay. 2008. Bayesian
unsupervised topic segmentation. In Proceedings of
EMNLP 2008.

Jacob Eisenstein. 2009. Hierarchical text segmentation
from multi-scale lexical cohesion. In Proceedings of
NAACL09.

Katherine Forbes, Eleni Miltsakaki, Rashmi Prasad,
Anoop Sarkar, Aravind Joshi, and Bonnie Webber.
2003. D-LTAG system: Discourse parsing with a lex-
icalized tree-adjoining grammar. Journal of Logic,
Language and Information, 12(3):261–279, June.

P. Fragkou, V. Petridis, and Ath. Kehagias. 2004. A dy-
namic programming algorithm for linear text segmen-
tation. Journal of Int Info Systems, 23:179–197.

W. Nelson Francis and Henry Kucera. 1979. BROWN
Corpus Manual. Brown University, third edition.

Michael Galley, Kathleen McKeown, Eric Fossler-
Lussier, and Hongyan Jing. 2003. Discourse segmen-
tation of multi-party conversation. In 41st ACL.

Barbara J. Grosz and Candace L. Sidner. 1986. Atten-
tion, intentions, and the structure of discourse. Com-
putational Linguistics, 12(3):175–204.

Marti Hearst. 1994. Multi-paragraph segmentation of
expository text. In 32nd ACL, pages 9 – 16, New Mex-
ico State University, Las Cruces, New Mexico.

Jerry R Hobbs. 1985. On the coherence and structure of
discourse. In CSLI 85-37.

Xiang Ji and Hongyuan Zha. 2003. Domain-independent
text segmentation using anisotropic diffusion and dy-
namic programming. In SIGIR’03.

Marcin Kaszkiel and Justin Zobel. 1997. Passage re-
trieval revisited. In Proceedings of 20th ACM SIGIR,
pages 178–185.

David Kauchak and Francine Chen. 2005. Feature-based
segmentation of narrative documents. In Proceedings
of the ACL Workshop on Feature Engineering for Ma-
chine Learning in NLP.

Andrew Kehler. 2002. Coherence, reference and the the-
ory of grammar. CSLI Publications.

Thomas K. Landauer, Peter W. Foltz, and Darrell La-
ham. 1998. An introduction to latent semantic analy-
sis. Discourse Processes, 25:259–284.

Igor Malioutov and Regina Barzilay. 2006. Minimum
cut model for spoken lecture segmentation. In Pro-
ceedings of the 21st International Conference on Com-
putational Linguistics and 44th Annual Meeting of the
ACL, pages 25–32.

William Mann and Sandra Thompson. 1988. Rhetorical
structure theory: Towards a functional theory of text
organization. Text, 8(3):243–281.

Daniel Marcu. 2000. The theory and practice of dis-
course parsing and summarization. MIT Press.

Rebecca J. Passonneau and Diane J. Litman. 1997. Dis-
course segmentation by human and automated means.
Computational Linguistics, 23(1):103–139.

Lev Pevzner and Marti Hearst. 2001. A critique and
improvement of an evaluation metric for text segmen-
tation. Computational Linguistics, 16(1).

Livia Polanyi, Chris Culy, Martin van den Berg,
Gian Lorenzo Thione, and David Ahn. 2004. A rule
based approach to discourse parsing. In Proceedings
of SIGDIAL.

Malcolm Slaney and Dulce Ponceleon. 2001. Hierar-
chical segmentation: Finding changes in a text sig-
nal. Proceedings of SIAM 2001 Text Mining Work-
shop, pages 6–13.

Marilyn A. Walker. 1997. Centering, anaphora resolu-
tion, and discourse structure. In Aravind K. Joshi Mar-
ilyn A. Walker and Ellen F. Prince, editors, Centering
in Discourse. Oxford University Press.

Bonnie Webber. 2004. D-LTAG: extending lexicalized
TAG to discourse. Cognitive Science, 28:751–779.

Florian Wolf and Edward Gibson. 2004. Representing
discourse coherence: A corpus-based analysis. In 20th
COLING.

Yaakov Yaari. 1997. Segmentation of expository texts by
hierarchical agglomerative clustering. In Proceedings
of RANLP’97.

1001

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 1002–1010,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Reformulating Discourse Connectives for Non-Expert Readers

Advaith Siddharthan Napoleon Katsos
Department of Computing Science Research Centre for English and Applied Linguistics

University of Aberdeen University of Cambridge
advaith@abdn.ac.uk nk248@cam.ac.uk

Abstract

In this paper we report a behavioural ex-
periment documenting that different lexico-
syntactic formulations of the discourse rela-
tion of causationare deemed more or less ac-
ceptable by different categories of readers. We
further report promising results for automati-
cally selecting the formulation that is most ap-
propriate for a given category of reader using
supervised learning. This investigation is em-
bedded within a longer term research agenda
aimed at summarising scientific writing for lay
readers using appropriate paraphrasing.

1 Introduction
There are many reasons why a speaker/writer would
want to choose one formulation of a discourse rela-
tion over another; for example, maintaining thread
of discourse, avoiding shifts in focus and issues of
salience and end weight. There are also reasons to
use different formulations for different audiences;
for example, to account for differences in reading
skills and domain knowledge. In this paper, we
present a psycholinguistic experiment designed to il-
luminate the factors that determine the appropriate-
ness of particular realisations of discourse relations
for different audiences. The second part of this pa-
per focuses on training a natural language generation
system to predict which realisation choices are more
felicitous than others for a given audience. Our para-
phrases include eight different constructions. Con-
sider 1a.–d. below:

(1) a. Tom atebecausehe was hungry.

b. Tom atebecause ofhis hunger.
c. Tom’s hungercausedhim to eat.
d. Thecauseof Tom’s eating was his hunger.

These differ in terms of the lexico-syntactic prop-
erties of the discourse marker (shown in bold font).
Indeed the discourse markers here are conjunctions,

prepositions, verbs and nouns. As a consequence
the propositional content is expressed either as a
clause or a noun phrase (“he was hungry” vs “his
hunger”, etc.). Additionally, the order of presenta-
tion of propositional content can be varied to give
four more lexico-syntactic paraphrases:

(1) e. BecauseTom was hungry, he ate.
f. Because ofhis hunger, Tom ate.
g. Tom’s eatingwas caused byhis hunger.
h. Tom’s hunger was thecauseof his eating.

It is clear that some formulations of this propo-
sitional content are more felicitous than others; for
example, 1a. seems preferable to 1d., but for a
different propositional content, other formulations
might be more felicitous (for instance, example 4,
section 3.1, where the passive seems in fact prefer-
able). While discourse level choices based on infor-
mation ordering play a role in choosing a formula-
tion, it is of particular interest to us that some de-
contextualised information orderings within a sen-
tence are deemed unacceptable. Any summarisation
task that considers discourse coherence should not
introduce sentence-level unacceptability.

We now summarise our main research questions:

1. Are some formulations of a discourse relation more
felicitous than others, given the same propositional
content?

2. Does the reader’s level of domain expertise affect
their preferred formulation?

3. What linguistic features determine which formula-
tions are acceptable?

4. How well can a natural language generator be
trained to predict the most appropriate formulation
for a given category of reader?

In this paper, we focus on causal relations because
these are pervasive in science writing and are inte-
gral to how humans conceptualise the world. The
8 formulations selected are 2 information orderings

1002

of 4 different syntactic constructs; thus we explore a
fairly broad range of constructions.

With regard to genre, we have a particular in-
terest in scientific writing, specifically biomedical
texts. Reformulating such texts for lay audiences is
a highly relevant task today and many news agen-
cies perform this service; e.g., Reuters Health sum-
marises medical literature for lay audiences and
BBC online has a Science/Nature section that re-
ports on science. These services rely either on press
releases by scientists and universities or on special-
ist scientific reporters, thus limiting coverage of a
growing volume of scientific literature in a digital
economy. Thus, reformulating technical writing for
lay audiences is a research area of direct relevance to
information retrieval, information access and sum-
marisation systems.

At the same time, while there are numerous stud-
ies about the effect of text reformulation on people
with different literacy levels or language deficits (see
section 2), the issue of expert vs lay audiences has
received less attention. Further, most studies focus
on narrative texts such as news or history. However,
as Linderholm et al. (2000) note, results from studies
of causality in narrative texts might not carry over to
scientific writing, because inferences are made more
spontaneously during the reading of narrative than
expository texts. Thus comparing expert vs lay read-
ers on the comprehension of causal relations in sci-
entific writing is a most timely investigation.

In section 2, we relate our research to the exist-
ing linguistic, psycholinguistic and computational
literature. Then in section 3, we describe our psy-
cholinguistic experiment that addresses our first two
research questions and in section 4 we present a
computational approach to learning felicitous para-
phrases that addresses the final two questions.

2 Background and related work

2.1 Expressing causation

Linguists generally consider five different compo-
nents of meaning (Wolff et al., 2005) in causal ex-
pressions: (a) occurrence of change in patient, (b)
specification of endstate, (c) tendency and concor-
dance, (d) directness and (e) mechanism. The ex-
pressions we consider in this paper, “because” (con-
junction), “because of” (preposition) and “cause”
as noun or verb (periphrastic causatives) express

(a), (b) and in some instances, (c). This is in contrast
to affect verbsthat only express (a),link verbs that
express (a–b),lexical causativesthat express (a–d)
and resultatives that express (a–e). These distinc-
tions are illustrated by the sentences in example 2:

(2) a. Sarakicked the door. (affect verb – end
state not specified)

b. The door’sbreaking was linked to Sara.
(link verb – end state specified, but un-
clear that door has a tendency to break)

c. Saracaused the door to break. / The
door brokebecause ofSara. (periphrastic
/ preposition – indirect; the door might
have a tendency to break)

d. Sarabroke the door. (lexical causative –
directness of action is specified)

e. Sarabroke the dooropen. (resultative –
end state is “open”)

There is much literature on how people prefer
one type of causative over the other based on these
five components of meaning (e.g. see Wolff et al.
(2005)). What is less understood is how one selects
between various expressions that carry similar se-
mantic content. In this paper we consider four con-
structs “because of”, “because”, and “cause” as a
verb and a noun. These express the components of
meaning (a–c) using different syntactic structures.
By considering only these four lexically similar con-
structs, we can focus on the role of the lexis and of
syntax in determining the most felicitous expression
of causation for a given propositional content.

2.2 Discourse connectives and comprehension

Previous work has shown that when texts have been
manually rewritten to make discourse relations such
ascausationexplicit, reading comprehension is sig-
nificantly improved in middle/high school students
(Beck et al., 1991). Further, connectives that permit
pre-posed adverbial clauses have been found to be
difficult for third to fifth grade readers, even when
the order of mention coincides with the causal (and
temporal) order; for instance, 3b. is more accessible
than 3a. (e.g. from Anderson and Davison (1988)).

(3) a. BecauseMexico allowed slavery, many
Americans and their slaves moved to
Mexico during that time.

b. Many Americans and their slaves moved
to Mexico during that time,because
Mexico allowed slavery.

1003

Such studies show that comprehension can be im-
proved by reformulating text; e.g., making causal
relations explicit had a facilitatory effect for read-
ers with low reading skills (Linderholm et al., 2000;
Beck et al., 1991) and for readers with low levels of
domain expertise (Noordman and Vonk, 1992). Fur-
ther, specific information orderings were found to be
facilitatory by Anderson and Davison (1988).

However, it has not been investigated whether
readers with different levels of domain expertise are
facilitated by any specific lexico-syntactic formula-
tion among the many possible explicit realisations of
a relation. This is a novel question in the linguistics
literature, and we address it in section 3.

2.3 Connectives and automatic (re)generation

Much of the work regarding (re)generation of text
based on discourse connectives aims to simplify
text in certain ways, to make it more accessible
to particular classes of readers. The PSET project
(Carroll et al., 1998) considered simplifying news
reports for aphasics. The PSET project focused
mainly on lexical simplification (replacing difficult
words with easier ones), but more recently, there
has been work on syntactic simplification and, in
particular, the way syntactic rewrites interact with
discourse structure and text cohesion (Siddharthan,
2006). Elsewhere, there has been renewed interest in
paraphrasing, including the replacement of words
(especially verbs) with their dictionary definitions
(Kaji et al., 2002) and the replacement of idiomatic
or otherwise troublesome expressions with simpler
ones. The current research emphasis is on auto-
matically learning paraphrases from comparable or
aligned corpora (Barzilay and Lee, 2003; Ibrahim et
al., 2003). The text simplification and paraphrasing
literature does not address paraphrasing that requires
syntactic alterations such as those in example 1 or
the question of appropriateness of different formula-
tions of a discourse relation.

Some natural language generation systems in-
corporate results from psycholinguistic studies to
make principled choices between alternative formu-
lations. For example, SkillSum (Williams and Re-
iter, 2008) and ICONOCLAST (Power et al., 2003)
are two contemporary generation systems that allow
for specifying aspects of style such as choice of dis-
course marker, clause order, repetition and sentence

and paragraph lengths in the form of constraints that
can be optimised. However, to date, these systems
do not consider syntactic reformulations of the type
we are interested in. Our research is directly rele-
vant to such generation systems as it can help such
systems make decisions in a principled manner.

2.4 Corpus studies and treebanking

There are two major corpora that mark up discourse
relations – the RST Discourse Treebank based on
Rhetorical Structure Theory (Mann and Thompson,
1988), and the Penn Discourse Treebank (Webber et
al., 2005). Neither is suitable for studies on the fe-
licity of specific formulations of a discourse relation.
As part of this research, we have created a corpus of
144 real text examples, reformulated in 8 ways, giv-
ing 1152 sentences in total.

There have been numerous corpus studies of dis-
course connectives, such as studies on the discourse-
role disambiguation of individual cue-phrases in
spoken and written corpora (e.g., Hirschberg and
Litman (1993)), the substitutability of discourse
connectives (e.g., Hutchinson (2005)), and indeed
corpus studies as a means of informing the choice
of discourse relations to consider in a theory (e.g.,
Knott and Dale (1994); Knott (1996)). A distin-
guishing feature of our approach relative to previ-
ous ones is an in-depth study of syntactic variations;
in contrast, for example, Knott’s taxonomy of dis-
course relations is based on the use of a substitution
text that precludes variants of the same relation hav-
ing different syntax.

3 Linguistic acceptability study

3.1 Dataset creation

We have constructed a dataset that can be used to
gain insights into differences between different real-
isations of discourse relations. In the following, we
will illustrate such rewriting situations using an ex-
ample from a medical article. As mentioned previ-
ously, we are particularly interested in complex syn-
tactic reformulations; in example 4 below, a. is from
the original text and b.–h. are reformulations. There
are two examples each of formulations using “be-
cause”, “ because of”, the verb “cause” and the noun
“cause” with different ordering of propositional con-
tent. This provides us with 8 formulations per exam-
ple sentence; for example:

1004

(4) a. Fructose-induced hypertensionis caused
by increased salt absorption by the intes-
tine and kidney.[causep]

b. Increased salt absorption by the intestine
and kidneycausesfructose-induced hy-
pertension.[causea]

c. Fructose-induced hypertension occurs
because ofincreased salt absorption by
the intestine and kidney.[a becof b]

d. Because ofincreased salt absorption by
the intestine and kidney, fructose-induced
hypertension occurs.[becof ba]

e. Fructose-induced hypertension occurs
becausethere is increased salt absorption
by the intestine and kidney.[a bec b]

f. Becausethere is increased salt absorp-
tion by the intestine and kidney, fructose-
induced hypertension occurs.[bec ba]

g. Increased salt absorption by the intes-
tine and kidney is thecause offructose-
induced hypertension.[b causeofa]

h. Thecause offructose-induced hyperten-
sion is increased salt absorption by the in-
testine and kidney.[causeofab]

Our corpus contains 144 such examples from three
genres (see below), giving 1152 sentences in total.
These 144 examples contain equal numbers of orig-
inal sentences (18) of each of the 8 types. The man-
ual reformulation is formulaic, and it is part of our
broader research effort to automate the process using
transfer rules and a bi-directional grammar. The ex-
ample above is indicative of the process. To make a
clause out of a noun phrase (examples 4c.–f.), we in-
troduce either the copula or the verb “occur”, based
on a subjective judgement of whether this is an event
or a continuous phenomenon. Conversely, to create
a noun phrase from a clause, we use a possessive and
a gerund; for example (simplified for illustration):

(5) a. Irwin had triumphed because he was so
good a man.

b. The cause of Irwin’s having triumphed
was his being so good a man.

Clearly, there are many different possibilities for
this reformulation; for example:

(5) b’. The cause of Irwin’striumphwas his be-
ing so good a man.

b”. The cause of Irwin’striumphwas hisex-
ceptional goodness asa man.

As part of our wider research agenda, we are ex-
ploring automatic reformulation using transfer rules

and a bi-directional grammar. In this context, given
our immediate interest is in the discourse markers,
we restrict our reformulation method to only gener-
ate sentences such as 5b. This not only makes au-
tomation easier, but also standardises data for our
experiment by removing an aspect of subjectivity
from the manual reformulation.

We used equal numbers of sentences from three
different genres1:

• PubMed Abstracts: Technical writing from the
Biomedical domain

• BNC World : Article from the British National Cor-
pus tagged as World News

• BNC Natural Science: Article from the British Na-
tional Corpus tagged as Natural Science. This cov-
ers popular science writing in the mainstream media

There were 48 example sentences chosen ran-
domly from each genre, such that there were 6 ex-
amples of each of the 8 types of formulation)

3.2 Experimental setup

Human judgements for acceptability for each of the
1152 sentences in our corpus were obtained using
the WebExp package (Keller et al., 2008 to appear).2

We investigated acceptability because it is a measure
which reflects both ease of comprehension and sur-
face well-formedness.

The propositional content of 144 sentences was
presented in 8 formulations. Eight participant
groups (A–H) consisting of 6 people each were pre-
sented with exactly one of the eight formulations
of each of 144 different sentences, as per a Latin
square design. Thus, while each participant read
an equal number of sentences in each formulation
type, they never read more than one formulation of
the same propositional content. Each group saw 18
original and 126 reformulated sentences in total, 48
from each genre. This experimental design allows
all statistical comparisons between the eight types
of causal formulations to be within-participants.

Acceptability judgements were elicited on the
sentences without presenting the preceding context

1PubMed URL: http://www.ncbi.nlm.nih.gov/pubmed/
The British National Corpus, version 3 (BNC XML Edition).
2007. Distributed by Oxford University Computing Serviceson
behalf of the BNC Consortium. http://www.natcorp.ox.ac.uk

2Note that the reformulations are, strictly speaking, gram-
matical according to the authors’ judgement. We are testing
violations of acceptability, rather than grammaticality per se.

1005

from the original text. The participants were Univer-
sity of Cambridge students (all native English speak-
ers with different academic backgrounds). Post ex-
perimentally we divided participants in two groups
based on having a Science or a non-Science back-
ground3. Rather than giving participants a fixed
scale (e.g. 1–7), we used the magnitude estimation
paradigm, which is more suitable to capture robust
or subtle differences between the relative strength of
acceptability or grammaticality violations (see Bard
et al. (1996); Cowart (1997); Keller (2000)).

3.3 Magnitude estimation

Participants were asked to score how acceptable a
modulus sentence was, using any positive number.
They were then asked to score other sentences rel-
ative to this modulus, using any positive number,
even decimals, so that higher scores were assigned
to more acceptable sentences. The advantage of
Magnitude estimation is that the researcher does
not make any assumptions about the number of lin-
guistic distinctions allowed. Each subject makes as
many distinctions as they feel comfortable. Scores
were normalised to allow comparison across partic-
ipants, following standard practice in the literature
by using the z-score: For each participant, each sen-
tence score was normalised so that the mean score is
0 and the standard deviation is 1:

zih =
xih − µh

σh

wherezih is participanth’s z-score for the sentence
i when participanth gave a magnitude estimation
score ofxih to that sentence.µh is the mean and
σh the standard deviation of the set of magnitude
estimation scores for userh.

3.4 Results

42 out of 48 participants (19 science students and
23 non-science students) completed the experiment,
giving us 3–6 ratings for each of the 1152 sentences.
Figure 1 shows the average z-scores with standard

3Participants provided subject of study prior to participa-
tion in the experiment. Our classification of Science con-
sists of Life Sciences(Genetics/Biology/etc), Chemistry, Envi-
ronmental Science, Engineering, Geology, Physics, Medicine,
Pharmacology, Veterinary Science and Zoology. Non-Science
consists of Archaeology, Business, Classics, Education, Liter-
ature&Languages, International Relations, Linguistics,Maths,
Music, Politics and Theology.

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

Original Reformulated All

Non-S Science

Non-S Science
Non-S Science

BNC-World
BNC-NatSci

Pubmed

Figure 1: Preferences by Field of Study –Scienceor
Non-Science.

error bars for Science and non-Science students for
each of the three genres. The first six columns
show the scores for only the 144 Original Sentences.
Note that science students find PubMed sentences
most acceptable (significantly more than BNC Nat-
ural Science; t-test,p < .005), while among non-
science students there is a numerical tendency to find
the world news sentences most acceptable. Both cat-
egories of participants disprefer sentences from the
popular science genre. Columns 7–12 show the av-
erage z-scores for the 1008 reformulated sentences.
Let us note that these are significantly lower than for
the originals (t-test,p < .001).

Some of these results are as expected. With regard
to genre preferences, scientists might find the style
of technical writing acceptable because of familiar-
ity with that style of writing. Second, with regard
to the average score for original and reformulated
sentences, some reformulations just don’t work for
a given propositional content. This pulls the aver-
age for reformulated sentences down. However, on
average 2 out of 7 reformulations score quite high.

It is interesting that the popular science genre is
least preferred by both groups. This suggests that
reformulating technical writing for lay readers is not
a trivial endeavour, even for journalists.

Now consider Figure 2, which shows the aver-
age z-scores for only PubMed sentences for science
and non-science students as a function of sentence
type. For non-science students reading PubMed sen-
tences, three formulations are strongly dispreferred
– “a is caused by b”, “because b, a” and “b is the

1006

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Science Not-Science

a-bec-b
a-becof-b

b-causeof-a
causeof-ab

bec-ba
becof-ba
cause-a
cause-p

Figure 2: PubMed type preferences

cause of a”. The last two are significantly lower than
“a because b”, “a because of b” and “because of b, a”
(t-test,.005 < p < .01). On the contrary, there are
no strong preferences among the science students
and all the error bars overlap. Let us now look at
some specific differences between science and non-
science students:

1. Science students prefer sentences in the passive
voice, while these are strongly dispreferred by non-
science students. While active voice is the canon-
ical form in English, much of science is written in
the passive by convention. This difference can thus
be explained by different levels of exposure.

2. Non-science students disprefer the use of “cause”
as a noun while science students don’t (columns 3–
4 and 11–12).

3. Non-science students prefer “because of b, a” to
“because b, a” while science students show the op-
posite preference.

The lack of strongly dispreferred formulations in
the Science students is most likely due to two fac-
tors: (a) the group’s familiarity with this genre and
(b) their expert knowledge compensates for accept-
ability even for relatively odd formulations. In the
absence of exposure and background knowledge, the
non-Science students display clear preferences.4

Note that these preferences are not surprising.
The preference for canonical constructs such as ac-
tive voice and conjunction in infix position are well
documented. Our claim however, is that blindly

4While we only show the averages for all sentences, the dis-
tributions for original and reformulated sentences look remark-
ably similar.

Selection Method Av. z
Always select original sentence .61
Replace cause-p, b-causeof-a and causeof-ab

with cause-a & bec-ba with a-bec-b
.48

Replace cause-p with cause-a, b-causeof-a
with causeof-ab & bec-ba with a-bec-b

.47

Always select most preferred type (a-becof-b).27

Table 1: Selecting a formulation of PubMed sentences for
non-science students using their global preferences.

rewriting all instances of globally dispreferred con-
structs with globally preferred constructs is counter-
productive because not all formulations are accept-
able for any given propositional content. This claim
is easily verified. Table 1 shows the average z-scores
of non-science students when one formulation of
each of the PubMed sentences is selected based only
on the global preferences in Figure 2. Such rewriting
invariably makes matters worse. In the next section
we present a more intelligent approach.

4 Machine learning experiment

The first question we address is: for a given propo-
sitional content, which formulations are acceptable
and which are not? This is a useful question for mul-
tiple reasons. In this paper, our interest stems from
our desire to selectively rewrite causation based on
the properties of the sentence as well as global pref-
erences of categories of users. More generally, this
information is important for summarisation tasks,
where sentences might appear in different contexts
and different information orderings might be de-
sirable for reasons of coherence. Knowing which
formulations are acceptable in isolation for a given
propositional content is thus important.

Since Magnitude estimation scores are freescale,
we first need to determine how high a score needs to
be for that formulation to be considered acceptable.
Our solution is to (a) treat the original formulation
as acceptable and (b) treat any reformulations with
a higher average z-score than the original as also ac-
ceptable. We find that roughly 3 formulations (the
original and another two) out of 8 are acceptable on
average. Our data is summarised below:

• 1152 Sentences in total (144 originals, 1008 refor-
mulations)

– 361 labelled as acceptable (31%; 144 origi-
nals, 217 reformulations)

1007

– 791 labelled as unacceptable (69%; 791 refor-
mulations)

4.1 Features
We use shallow features derived from the sentence,
as well as the textual genre. Sentences were parsed
using the RASP parser (Briscoe and Carroll, 2002).
The features we extract are as follows:

1. Type (8 values: causea, causep, a becb, becba,
a becofb, becofba, acauseofb, causeofba)

2. Genre (3 values: pubmed, bnc-world, bnc-natsci)

3. Complexity: As an indication of the complexity of
the propositional content, we use the following:

(a) Length Features
• length (in words) of the sentence and each

clause
• length (as proportion of total length) of

each clause

(b) Whether the causative is embedded in a rela-
tive clause or other construct

(c) The presence or absence of copula in each
clause (e.g., “because there is...”)

(d) Whether the causation is quantified (e.g., “a
major cause of...”)

The only feature that varies between the eight for-
mulations of the same sentence is the “type” feature;
the “genre” and “complexity” features are constant
across reformulations. The reason for using 3(c–d)
as features is that expressions such as “because there
is” might be better formulated as “because of” and
that it is hard to find an exact reformulation when
quantifiers are present (e.g., “a major cause of” is
not equivalent to “often because of”).

Machine performance on this task is not very
good (First Run, Table 2). The problem is that some
propositional content is harder to formulate than oth-
ers. Therefore good formulations of some proposi-
tional content might have much lower scores than
even mediocre formulations of other propositional
content. This makes it hard to learn a function that
distinguishes good from bad formulations for any
particular propositional content. To overcome this,
we run the classifier twice. Given 8 formulations
of 144 sentencesSi=1..144,j=1..8, the first run gives
us 1152 probabilitiespweka1(Sij) for the acceptabil-
ity of each sentence, independent of propositional
content (these are test-set probabilities using 10-fold
cross-validation). We then run the machine learner
again, with this new featurerelative:

Classifier Accuracy Kappa
Baseline .69 0
First Run .72 .23
Second Run .85 .65

Only PubMed .89 .73

Table 2: Accuracy and Agreement of classifier relative to
human judgement.

Genre Class P R F
All Genres Good .72 .78 .75

Bad .91 .89 .90

Only PubMed Good .89 .89 .89
Bad .89 .97 .92

Table 3: Precision, Recall and F-measure of classifier
(second run) relative to human judgement.

• The ratio of the test-set probability (from the first
run) to the highest of the 8 test-set probabilities for
the different formulations of that sentence:

relativei=a,j=b =
pweka1(Si=a,j=b)

maxi=a,j=1..8(pweka1(Si=a,j))

Thus probabilities for acceptability are nor-
malised such that the best score for a given proposi-
tional content is 1 and the other 7 formulations score
less than or equal to 1. The second classifier uses
these relative probabilities as an extra feature.

4.2 Results

Our results are summarised in Table 2 (accu-
racy and agreement) and Table 3 (f-measure).
We experimented with the Weka toolkit (Wit-
ten and Frank, 2000) and report results using
“weka.classifiers.trees.J48 -C 0.3 -M 3” and 10-fold
cross-validation for both runs.5

Table 2 shows that the first run performs at around
baseline levels, but the second run performs signifi-
cantly better (using z-test, p=0.01 on % Accuracy),
with acceptable agreement ofκ = 0.656. This in-
creases to 89% (κ = .73) when we only consider
technical writing (PubMed genre). Table 3 shows
that precision, recall and f-measure are also around
.90 for PubMed sentences.

5J48 outperformed other Weka classifiers for this task.
6Following Carletta (1996), we measure agreement inκ,

which follows the formulaK =

P (A)−P (E)
1−P (E)

where P(A) is ob-
served, and P(E) expected agreement.κ ranges between -1 and
1. κ=0 means agreement is only as expected by chance. Gener-
ally, κ of 0.8 are considered stable, andκ of 0.69 as marginally
stable, according to the strictest scheme applied in the field.

1008

Left out feature First Run Second Run
Acc κ Acc κ

Length .71 -.01 .78 .33
Quantified .71 .20 .75 .36
Embedded .69 .15 .78 .37
Copula Present .72 .20 .79 .44

Table 4: Accuracy and Kappa of classifier when com-
plexity features are left out.

All our context features proved useful for the clas-
sification task, with the length features being the
most useful. Table 4 shows the performance of the
classifier when we leave out individual features.

It thus appears that we can determine the accept-
able formulations of a sentence with high accuracy.
The next question is how this information might be
used to benefit a text regeneration system. To evalu-
ate this, we combined our predictions with the user
preferences visible in figure 2 as follows:

• We calculate a priorprior j for each formulation of
typej using the z-score distribution for non-science
students in Figure 2.

• We calculateprior j=b.pweka2(Si=a,j=b) for each
formulation Si=a,j=b of sentencea and typeb,
wherepweka2(Si=a,j=b) is the probability returned
by the classifier (second run) for formulationb of
sentencea.

• Selectively Reformulate: We reformulate only
the four dispreferred constructs (causep, becba,
causeofab, bcauseofa) using the formulation for
which the prior times the classifier probability
is the maximum; i.e, for sentencea, we select
max i=a,j=1..8(prior j .pweka2(Si=a,j)).

Table 5 shows the impact this reformulation has
on the acceptability of the sentences. Our algorithm
selects one formulation of each PubMed sentence
based on our prior knowledge of the preferences of
non-science students, and the Weka-probabilities for
acceptability of each formulation of a sentence. Our
selective reformulation increases the average z-score
from .613 to .713. This is now comparable with the
acceptability ratings of non-scientists for sentences
from the world news genre. Note that reformulation
only using priors resulted in worse results (Table 1).

However there remains scope for improvement. If
we had an oracle that selected the best formulation
of each sentence (as scored by non-scientists), this
would result in an average score of 1.04.

Genre Version z-score
PubMed Randomly Selected –.17
PubMed Original Sentences .61
PubMed Selectively Reformulate .71
PubMed Selected by Oracle 1.04

BNC World Original Sentences .70

Table 5: Average z-scores for non-science students. Se-
lective reformulation increases the acceptability scoresof
sentences drawn from technical writing to levels com-
parable to acceptability scores of sentences drawn from
news reports on world news (their most preferred genre).

5 Conclusions and future work

In this investigation we report that science and
non-science university students have different global
preferences regarding which formulations of causa-
tion are acceptable. Using surface features that re-
flect propositional complexity, a machine classifier
can learn which of 8 formulations of a discourse
relation are acceptable (with Accuracy= .89 and
Kappa= .73 for sentences from the PubMed genre).
Using the global preferences of non-science students
as priors, and combining these with machine clas-
sifier predictions of acceptability, we have demon-
strated that it is possible to selectively rewrite sen-
tences from PubMed in a manner that is personalised
for non-science students. This boosts the average z-
score for acceptability from .613 to .713 on PubMed
sentences, a level similar to scores of non-scientists
for sentences from their most preferred World News
genre. We have thus shown that there is potential for
reformulating technical writing for a lay audience –
differences in preferences for expressing a discourse
relation do exist between lay and expert audiences,
and these can be learnt.

While in this paper we focus on the discourse re-
lation of causation, other discourse relations com-
monly used in scientific writing can also be realised
using markers with different syntactic properties; for
instance,contrast can be expressed using markers
such as “while”, “unlike”, “but”, “compared to”, “in
contrast to” or “the difference between”. As part of
our wider goals, we are in the process of extending
the number of discourse relations considered. We
are also in the process of developing a framework
within which we can use transfer rules and a bi-
directional grammar to automate such complex syn-
tactic reformulation.

1009

Acknowledgements

This work was supported by the Economic and So-
cial Research Council (Grant Number RES-000-22-
3272). We would also like to thank Donia Scott,
Simone Teufel and Ann Copestake for many dis-
cussions that influenced the scope of this work, and
John Williams and Theodora Alexopoulou for their
suggestions on experimental design.

References

R.C. Anderson and A. Davison. 1988. Conceptual and
empirical bases of readibility formulas. In Alice Davi-
son and G. M. Green, editors,Linguistic Complexity
and Text Comprehension: Readability Issues Recon-
sidered. Lawrence Erlbaum Associates, Hillsdale, NJ.

E.G. Bard, D. Robertson, and A. Sorace. 1996. Magni-
tude estimation for linguistic acceptability.Language,
72(1):32–68.

R. Barzilay and L. Lee. 2003. Learning to paraphrase:
An unsupervised approach using multiple-sequence
alignment. InHLT-NAACL 2003, pp 16–23.

I.L. Beck, M.G. McKeown, G.M. Sinatra, and J.A. Lox-
terman. 1991. Revising social studies text from a text-
processing perspective: Evidence of improved com-
prehensibility. Reading Research Quarterly, pp 251–
276.

E.J. Briscoe and J. Carroll. 2002. Robust accurate sta-
tistical annotation of general text. InProc. of the 3rd
International Conference on Language Resources and
Evaluation, pp 1499–1504, Gran Canaria.

J. Carletta. 1996. Assessing agreement on classification
tasks: The kappa statistic.Computational Linguistics,
22(2):249–254.

J. Carroll, G. Minnen, Y. Canning, S. Devlin, and J. Tait.
1998. Practical simplification of English newspaper
text to assist aphasic readers. InProc. of AAAI98
Workshop on Integrating Artificial Intelligence and As-
sistive Technology, pp 7–10, Madison, WI.

W. Cowart. 1997.Experimental Syntax: applying objec-
tive methods to sentence judgement. Thousand Oaks,
CA: Sage Publications.

J. Hirschberg and D. Litman. 1993. Empirical studies
on the disambiguation of cue phrases.Computational
Linguistics, 19(3):501–530.

B. Hutchinson. 2005. Modelling the substitutability
of discourse connectives. InACL ’05: Proc. of the
43rd Annual Meeting on Association for Computa-
tional Linguistics, pp 149–156, Morristown, NJ, USA.
Association for Computational Linguistics.

A. Ibrahim, B. Katz, and J. Lin. 2003. Extracting para-
phrases from aligned corpora. InProc. of The Second
International Workshop on Paraphrasing.

N. Kaji, D. Kawahara, S. Kurohash, and S. Sato. 2002.
Verb paraphrase based on case frame alignment. In
Proc. of the 40th Annual Meeting of the Association
for Computational Linguistics (ACL’02), pp 215–222,
Philadelphia, USA.

F. Keller, S. Gunasekharan, N. Mayo, and M. Corley.
2008, to appear. Timing accuracy of web experiments:
A case study using the webexp software package.Be-
havior Research Methods.

F. Keller. 2000.Gradience in Grammar: Experimental
and Computational Aspects of Degrees of Grammati-
cality. Ph.D. thesis, University of Edinburgh.

A. Knott and R. Dale. 1994. Using linguistic phenom-
ena to motivate a set of coherence relations.Discourse
Processes, 18(1):35–62.

A. Knott. 1996. A Data-Driven Methodology for Moti-
vating a Set of Discourse Relations. Ph.D. thesis, Ph.
D. thesis, Centre for Cognitive Science, University of
Edinburgh, Edinburgh, UK.

T. Linderholm, M.G. Everson, P. van den Broek,
M. Mischinski, A. Crittenden, and J. Samuels. 2000.
Effects of Causal Text Revisions on More-and Less-
Skilled Readers’ Comprehension of Easy and Difficult
Texts.Cognition and Instruction, 18(4):525–556.

W. C. Mann and S. A. Thompson. 1988. Rhetorical
Structure Theory: Towards a functional theory of text
organization.Text, 8(3):243–281.

L. G. M. Noordman and W. Vonk. 1992. Reader’s knowl-
edge and the control of inferences in reading.Lan-
guage and Cognitive Processes, 7:373–391.

R. Power, D. Scott, and N. Bouayad-Agha. 2003. Gen-
erating texts with style.Proc. of the 4 thInternational
Conference on Intelligent Texts Processing and Com-
putational Linguistics.

A. Siddharthan. 2006. Syntactic simplification and text
cohesion. Research on Language and Computation,
4(1):77–109.

B. Webber, A. Joshi, E. Miltsakaki, R. Prasad, N. Di-
nesh, A. Lee, and K. Forbes. 2005. A Short Intro-
duction to the Penn Discourse TreeBank.Treebanking
for discourse and speech: proceedings of the NODAL-
IDA 2005 special session on Treebanks for spoken lan-
guage and discourse.

S. Williams and E. Reiter. 2008. Generating basic skills
reports for low-skilled readers.Natural Language En-
gineering, 14(04):495–525.

I. Witten and E. Frank. 2000.Data Mining: Practical
Machine Learning Tools and Techniques with Java Im-
plementations. Morgan Kaufmann.

P. Wolff, B. Klettke, T. Ventura, and G. Song. 2005.
Expressing causation in English and other languages.
Categorization inside and outside the laboratory: Es-
says in honor of Douglas L. Medin, pp 29–48.

1010

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 1011–1019,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Tree Edit Models for Recognizing Textual Entailments, Paraphrases,
and Answers to Questions

Michael Heilman Noah A. Smith
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA

{mheilman,nasmith}@cs.cmu.edu

Abstract

We describe tree edit models for representing
sequences of tree transformations involving
complex reordering phenomena and demon-
strate that they offer a simple, intuitive, and
effective method for modeling pairs of seman-
tically related sentences. To efficiently extract
sequences of edits, we employ a tree kernel
as a heuristic in a greedy search routine. We
describe a logistic regression model that uses
33 syntactic features of edit sequences to clas-
sify the sentence pairs. The approach leads to
competitive performance in recognizing tex-
tual entailment, paraphrase identification, and
answer selection for question answering.

1 Introduction

Many NLP tasks involve modeling relations be-
tween pairs of sentences or short texts in the same
language. Examples include recognizing textual en-
tailment, paraphrase identification, and question an-
swering. Generic approaches are, of course, desir-
able; we believe such approaches are also feasible
because these tasks exhibit some similar semantic
relationships between sentences.

A popular method for such tasks is Tree Edit Dis-
tance (TED), which models sentence pairs by find-
ing a low or minimal cost sequence of editing oper-
ations to transform a tree representation of one sen-
tence (e.g., a dependency or phrase structure parse
tree) into a tree for the other. Unlike grammar-
based models and shallow-feature discriminative ap-
proaches, TED provides an intuitive story for tree
pairs where one tree is derived from the other by a
sequence of simple transformations.

The available operations in standard TED are the
following: insertion of a node, relabeling (i.e., re-
naming) of a node, and deletion (i.e., removal) of a

node. While the restriction to these three operations
permits efficient dynamic programming solutions
for finding a minimum-cost edit sequence (Klein,
1989; Zhang and Shasha, 1989), certain interesting
and prevalent phenomena involving reordering and
movement cannot be elegantly captured. For exam-
ple, consider the following sentence pair, which is
a simplified version of a true entailment (i.e., the
premise entails the hypothesis) in the development
data for the RTE-3 task.

Premise: Pierce built the home for his daughter off
Rossville Blvd, as he lives nearby.
Hypothesis: Pierce lives near Rossville Blvd.

In a plausible dependency tree representation of
the premise, live and Rossville Blvd would be in sep-
arate subtrees under built. In the hypothesis tree,
however, the corresponding nodes would be in a
grandparent-child relationship as part of the same
phrase, lives near Rossville Blvd. In general, one
would expect that short transformation sequences to
provide good evidence of true entailments. How-
ever, to account for the grandparent-child relation-
ship in the hypothesis, TED would produce a fairly
long sequence, relabeling nearby to be near, delet-
ing the two nodes for Rossville Blvd, and then re-
inserting those nodes under near.

We describe a tree edit approach that allows for
more effective modeling of such complex reordering
phenomena. Our approach can find a shorter and
more intuitive edit sequence, relabeling nearby to be
near, and then moving the whole subtree Rossville
Blvd to be a child of near, as shown in Figure 1.

A model should also be able to consider character-
istics of the tree edit sequence other than its overall
length (e.g., how many proper nouns were deleted).
Using a classifier with a small number of syntactic

1011

Pierce lives near Rossville Blvd.

Pierce built the home for his daughter off Rossville Blvd, as he lives nearby.

Pierce built the home for his daughter off Rossville Blvd, as he lives near.

built the home for his daughter off, as Pierce he lives near Rossville Blvd.

Pierce built the home for his daughter off, as he lives near Rossville Blvd.

RELABEL-NODE
(nearby)

MOVE-SUBTREE
(Rossville Blvd)

MOVE-SUBTREE
(Pierce)

multiple RELABEL-EDGE, DELETE-LEAF, DELETE-AND-MERGE edits

Figure 1: A tree edit sequence transforming a premise to an entailed hypothesis. Dependency types and parts of speech
are omitted for clarity.

features, our approach allows us to learn—from la-
beled examples—how different types of edits should
affect the model’s decisions (e.g., about whether two
sentences are paraphrases).

The structure of this paper is as follows. §2 in-
troduces our model and describes the edit opera-
tions that were implemented for our experiments.
§3 details the search-based procedure for extracting
edit sequences for pairs of sentences. §4 describes
the classifier for sentence pairs based on features of
their corresponding edit sequences. §5 describes and
presents the results of experiments involving recog-
nizing textual entailment (Giampiccolo et al., 2007),
paraphrase identification (Dolan et al., 2004), and an
answer selection task for question answering (Wang
et al., 2007). §6 addresses related work, and §7 pro-
vides concluding remarks.

2 Extended Tree Edit Sequences

This section defines a tree edit sequence and de-
scribes the operations used in our experiments.

We begin with some conventions. We use depen-
dency trees as the structure upon which the tree ed-
its will operate. The child nodes for a given parent
are represented in a head-outward fashion such that
the left and right children are separate lists, with the
left- and right-most elements as the last members of
their respective lists, as in most generative depen-
dency models (Eisner, 1996). Each node consists of
a lemmatized word token as its main label (hereafter,
lemma), a part of speech tag (POS), and a syntactic
relation label for the edge to its parent. We assume
the root node has a special dummy edge label ROOT.

Let Tc be a “current tree” that is being trans-
formed and let Tt be a “target tree” into which Tc

will ultimately be transformed. Let T (i) be a node

with an index i into the tree T , where the indices are
arbitrary (e.g., they could be word positions).

2.1 Definition
We define a tree edit sequence to be a series of edit
operations that transform a source tree (the initial
Tc) into a target tree Tt.1 While TED permits only
insert, relabel, and delete operations, edit sequences
may contain more complex operations, such as mov-
ing entire subtrees and re-ordering child nodes.

2.2 Implemented Operations
For our experiments, we used the types of edit op-
erations listed in Table 1.2 The first six operations
are straightforward extensions of the insert, rela-
bel and delete operations allowed in TED. The final
three operations, MOVE-SUBTREE, NEW-ROOT,
and MOVE-SIBLING, enable succinct edit se-
quences for complex transformations. For a given
current tree, there may be many instantiations of
each operation (e.g., DELETE-LEAF could be in-
voked to delete any of a number of leaf nodes). Note
that any tree can be transformed into any other sim-
ply by deleting all nodes from the one tree and in-
serting all the nodes in the other. However, our set
of tree edit operations permits more concise and in-
tuitive edit sequences.

3 Searching for Tree Edit Sequences

To model sentence pairs effectively, we seek a short
sequence of tree edits that transforms one tree into
another. The space of possible edit sequences, as
with TED and many other methods involving trees,

1Such a sequence is sometimes called a “script” for TED.
2We leave for future work the exploration of other opera-

tions (e.g., swapping parent and child nodes).

1012

Operation Arguments Description
INSERT-CHILD node index j, new lemma l, POS p,

edge label e, side s ∈ {left , right}
Insert a node with lemma l, POS p, and edge label e as the
last child (i.e., farthest from parent) on side s of T (j).

INSERT-PARENT non-root node index j, new lemma l,
new POS p, edge label e,
side s ∈ {left , right}

Create a node with lemma l, POS p, and edge label e. Make
T (j) a child of the new node on side s. Insert the new node
as a child of the former parent of T (j) in the same position.

DELETE-LEAF leaf node index j Remove the leaf node T (j).
DELETE-&-MERGE node index j

(s.t. T (j) has exactly 1 child)
Remove T (j). Insert its child as a child of T (j)’s former
parent in the same position.

RELABEL-NODE node index j, new lemma l, new POS p Set the lemma of T (j) to be l and its POS to be p.
RELABEL-EDGE node index j, new edge label e Set the edge label of T (j) to be e.
MOVE-SUBTREE node index j, node index k

(s.t. T (k) is not a descendant of T (j)),
side s ∈ {left , right}

Move T (j) to be the last child on the s side of T (k).

NEW-ROOT non-root node index j,
side s ∈ {left , right}

Make T (j) the new root node of the tree. Insert the former
root as the last child on the s side of T (j).

MOVE-SIBLING non-root node index j,
side s ∈ {left , right},
position r ∈ {first , last}

Move T (j) to be the r child on the s side of its parent.

Table 1: Possible operations in our extended tree edit implementation. All are described as operations to tree T .

is exponentially large in the size of the trees. How-
ever, while dynamic programming solutions exist
for TED (Klein, 1989; Zhang and Shasha, 1989),
it is unlikely that such efficient algorithms are avail-
able for our problem because of the lack of locality
restrictions on edit operations.3

3.1 Algorithm for Extracting Sequences

Rather than dynamic programming, we use greedy
best-first search (Pearl, 1984) to efficiently find sen-
sible (if not minimal) edit sequences. The distin-
guishing characteristic of greedy best-first search is
that its function for evaluating search states is sim-
ply a heuristic function that estimates the remaining
cost, rather than a heuristic function plus the cost
so far (e.g., number of edits), as in other types of
search.

Here, the initial search state is the source tree, the
current state is Tc, and the goal state is Tt. The func-
tion for generating the successors for a given state
returns returns trees for all possible specifications of
operations on Tc (§2.2), subject to the minimal con-
straints to be described in §3.3. The enumeration
order of the edits in the search procedure (i.e., the
order in which states are explored) follows the or-
der of their presentation in Table 1. In preliminary

3Gildea (2003) proposes a dynamic programming algorithm
for a related tree alignment problem, but it is still exponential in
the maximum number of children for a node.

experiments, varying this order had no effect on the
extracted transformations.

3.2 Tree Kernel Heuristic
In our greedy search approach, the evaluation func-
tion’s value for a state depends only on the heuristic
function’s estimate of how different the current tree
at that state is from the target tree. Using this func-
tion, at each step, the search routine chooses the next
state (i.e., edit) so as to minimize the difference be-
tween the current and target trees.

We use a tree kernel to define the heuristic func-
tion. A kernel is a special kind of symmetric func-
tion from a pair of objects to a real number. It
can be interpreted as the inner product of those ob-
jects represented in some real-valued feature space
(Schölkopf and Smola, 2001). A tree kernel, as pro-
posed by Collins and Duffy (2001), is a convolution
kernel4 whose input is a pair of trees and whose out-
put is a positive number indicating the similarity of
the sets of all their subtrees.

The dimensionality of the feature vector associ-
ated with a tree kernel is thus unbounded in general,
and larger trees generally lead to larger kernel val-
ues. Direct use as a search heuristic would lead to
the exploration of states for larger and larger trees,
even ones larger than the target tree. Thus, as in

4Haussler (1999) provides a proof, which can be extended
for our kernel, that tree kernels are valid kernel functions.

1013

Equation 1, the search heuristic H “normalizes” the
kernel K of the current tree Tc and target tree Tt

to unit range by dividing by the geometric mean of
the kernels comparing the individual trees to them-
selves.5 Also, the normalized value is subtracted
from 1 so as to make it a difference rather than a
similarity. The search routine will thus reach the
goal state when the heuristic reaches 0, indicating
that the current and target trees are identical.

H(Tc) = 1− K(Tc, Tt)√
K(Tc, Tc)×K(Tt, Tt)

(1)

Kernels are most commonly used in the efficient
construction of margin-based classifiers in the im-
plied representation space (e.g., Zelenko et al.,
2003). Here, however, the kernel helps to find a
representation (i.e., an edit sequence) for subsequent
modeling steps.

We are effectively mapping the source, current,
and target trees to points on the surface of a high-
dimensional unit sphere associated with the normal-
ized kernel. In this geometric interpretation, the
search heuristic in Equation 1 leads the search al-
gorithm to explore reachable trees along the surface
of this sphere, always choosing the one whose an-
gle with the target tree is smallest, until the angle is
0. The path on the sphere corresponds to an edit se-
quence, from which we will derive edit features in
§4 for classification.

Our kernel is based on the partial tree kernel
(PTK) proposed by Moschitti (2006). It considers
matches between ordered subsequences of children
in addition to the full sequences of children as in
Collins and Duffy (2001). This permits a very fine-
grained measure of tree pair similarity. Importantly,
if two nodes differ only by the presence or position
of a single child, they will still lead to a large ker-
nel function value. We also sum over the similarities
between all pairs of nodes, similar to (Collins and
Duffy, 2001).

Since the PTK considers non-contiguous subse-
quences, it is very computationally expensive. We
therefore restrict our kernel to consider only con-
tiguous subsequences, as in the contiguous tree ker-
nel (CTK) (Zelenko et al., 2003).

5This normalized function is also guaranteed to be a kernel
function (Schölkopf and Smola, 2001).

To define our kernel, we begin with a similarity
function for pairs of nodes n1 and n2 that depends
on their lemmas, POS tags, edge labels, and sides
with respect to their parents:6

s(n1, n2) =δ(l(n1), l(n2))

×
∑

f∈{l,e,p,s}

δ(f(n1), f(n2)) (2)

where δ returns 1 if its arguments are equivalent, 0
otherwise. l, e, p, and s are used here as functions
to select the lemma, edge label, POS, and side of
a node. Equation 2 encodes the linguistic intuition
that the primary indicator of node similarity should
be a lexical match between lemmas. If the lem-
mas match, then edge labels, POS, and the locations
(sides) relative to their parents are also considered.

The kernel is defined recursively (starting from
the roots), where ni is a node in the set of nodes
NTi in tree Ti:

K(T1, T2) =
∑

n1∈{NT1
}

∑
n2∈{NT2

}

∆(n1, n2) (3)

∆(n1, n2) = µ
(
λ2s(n1, n2) + (4)

∑
J1,J2,|J1|=|J2|

l(J1)∏
i=1

∆(cn1 [J1i], cn2 [J2i])

J1 = 〈J11, J12, J13, . . .〉 is an index sequence as-
sociated with any contiguous ordered sequence of
children cn1 of node n1 (likewise for J2). J1i and
J2i point to the ith children in the two sequences.
| · | returns the length of a sequence.

The kernel includes two decay factors: λ for the
length of child subsequences, as in Zelenko et al.
(2003) and Moschitti (2006); and µ for the height of
the subtree, as in Collins and Duffy (2001) and Mos-
chitti (2006). We set both to 0.25 in our experiments
to encourage the search to consider edits leading to
smaller matches (e.g., of individual parent-child de-
pendencies) before larger ones.7

6The side of a node relative to its parent in a dependency tree
is important: two parent nodes with the same children should
not be considered exact matches if children are on different
sides (e.g., defeated the insurgents and the insurgents defeated).

7From experiments with the paraphrase training set (§5.2),
performance does not appear sensitive to the decay parameters.
Settings of 0.1, 0.2, 0.3, and 0.4 led to 10-fold cross-validation

1014

The main difference between our kernel and the
CTK is that we sum over all pairs of subtrees
(Equation 3). In contrast, the CTK only consid-
ers only one pair of subtrees. When the CTK
is applied to relation extraction by Culotta and
Sorensen (2004), each subtree is the smallest com-
mon subtree that includes the entities between which
a relation may exist (e.g., the subtree for Texas-
based energy company Exxon Mobil when extract-
ing ORGANIZATION-LOCATION relations).

3.3 Constraints on the Search Space
For computational efficiency, we impose the follow-
ing three constraints to simplify the search space.
Note that the first two simply prune away obviously
unhelpful search states.

1. For INSERT-CHILD, INSERT-PARENT, and
RELABEL-NODE edits, the lemma and POS of
the node to insert must occur in the target tree.
Also, the pair consisting of the lemma for the
node to insert and the lemma for its prospective
parent must not appear more times in the result-
ing tree than in the target tree.

2. For MOVE-SUBTREE edits, the pair consisting
of the lemma for the node to move and the
lemma for its prospective parent must exist in the
target tree.

3. For INSERT-CHILD and INSERT-PARENT
edits, the edge labels attaching the newly in-
serted nodes to their parents are always the most
frequent edge label for the given POS.8 Further
edits can modify these edge labels.

3.4 Search Error and Failure
The search does not always find optimal edit se-
quences, but most sequences seem reasonable upon
inspection. However, for some cases, the search
does not find a sequence in a reasonable number
of iterations. We therefore set an upper limit of
maxIters = 200 on the number of iterations.9 In
accuracy values that were not significantly different from each
other. However, we did observe that increased search failure
(§3.4) resulted from settings above 0.5.

8Edge label frequencies for each POS were computed from
the training data for the MST parser (McDonald et al., 2005).

9maxIters = 400 for the textual entailment experiments to
account for multi-sentence premises. For all tasks, extracting
sequences took about 5 seconds on average per sentence pair
with 1 GB of RAM on a 3.0 GHz machine.

practice, this constraint is enforced a small fraction
of the time (e.g., less than 0.1% of the time for the
answer selection training data). If no goal state is
found after maxIters iterations, a special unknown
sequence feature is recorded.

4 Classification of Sequences

Given a training set of labeled sentence pairs, af-
ter extracting edit sequences, we train a logistic
regression (LR) classification model (Hastie et al.,
2001) on the labels and features of the extracted se-
quences.10 We optimize with a variant of Newton’s
method (le Cessie and van Houwelingen, 1997).

The tree edit models use a set of 33 features of
edit sequences to classify sentence pairs. We used
the training data for the paraphrase task (§5.2) to de-
velop this set. All features are integer-valued, and
most are counts of different types of edits. Five are
counts of the nodes in the source tree that were not
edited directly by any operations (though their an-
cestors or descendants may have been). Table 2 de-
scribes the features in detail.

5 Experiments

Experiments were conducted to evaluate tree edit
models for three tasks: recognizing textual entail-
ment (Giampiccolo et al., 2007), paraphrase identi-
fication (Dolan et al., 2004), and an answer selec-
tion task (Wang et al., 2007) for question answering
(Voorhees, 2004). The feature set and first tree edit
model were developed for paraphrase, and then ap-
plied to the other tasks with very few modifications
(all explained below) and no further tuning.11

5.1 Recognizing Textual Entailment
A tree edit model was trained for recognizing tex-
tual entailment (RTE). Here, an instance consists of

10In cross-validation experiments with the training data, we
found that unregularized LR outperformed SVMs (Vapnik,
1995) and `2-regularized LR, perhaps due to the small number
of features in our models.

11All datasets were POS-tagged using Ratnaparkhi’s (1996)
tagger and parsed for dependencies using the MST Parser
(McDonald et al., 2005). Features were computed from
POS and edge label information in the dependency parses.
The WordNet API (Miller et al., 1990) was used for
lemmatization only. An appendix with further experimen-
tal details is available at http://www.ark.cs.cmu.edu/
mheilman/tree-edit-appendix/.

1015

Feature Description
totalEdits # of edits in the sequence.
XEdits #s of X edits (where X is

one of the nine edit types in
Table 1).

relabelSamePOS,
relabelSameLemma,
relablePronoun,
relabelProper,
relabelNum

#s of RELABEL-NODE edits
that: preserve POS, preserve
lemmas, convert between
nouns and pronouns, change
proper nouns, change numeric
values by more than 5% (to
allow rounding), respectively.

insertVorN,
insertProper

#s of INSERT-CHILD or
INSERT-PARENT edits that:
insert nouns or verbs, insert
proper nouns, respectively.

removeVorN,
removeProper,
removeSubj,
removeObj,
removeVC,
removeRoot

#s of REMOVE-LEAF or
REMOVE-&-MERGE edits
that: remove nouns or verbs,
remove proper nouns, remove
nodes with subject edge la-
bels, remove nodes with object
edge labels, remove nodes
with verb complement edge
labels, remove nodes with
root edge labels (which may
occur after NEW-ROOT edits),
respectively.

relabelEdgeSubj,
relabeledgeObj,
relabelEdgeVC,
relabelEdgeRoot

#s of RELABEL-EDGE edits
that: change to or from subject
edge labels, change to or from
object edge labels, change to
or from verb complement edge
labels, change to or from root
edge labels, respectively.

uneditedNodes,
uneditedNum,
uneditedVerbs,
uneditedNouns,
uneditedProper

#s of unedited nodes: in total,
that are numeric values, that
are verbs, that are nouns, that
are proper nouns, respectively.

unknownSeq 1 if no edit sequence was
found and 0 otherwise (§3.4).

Table 2: Tree edit sequence classification features.

a “premise,” which is a sentence or paragraph about
a particular topic or event, and a “hypothesis,” which
is a single, usually short, sentence that may or may
not follow from the premise. The task is to de-
cide whether or not the hypothesis is entailed by the
premise (Giampiccolo et al., 2007).

Tree edit sequences were extracted in one direc-
tion, from premise to hypothesis.12 Since premises

12It is counter-intuitive to model adding information through
extensive insertions, for both entailment and answer selection.

System Acc. % Prec. % Rec. %
Harmeling, 2007 59.5 - -
de Marneffe et al., 2006 60.5 61.8 60.2
M&M, 2007 (NL) 59.4 70.1 36.1
M&M, 2007 (Hybrid) 64.3 65.5 63.9
Tree Edit Model 62.8 61.9 71.2

Table 3: Results for recognizing textual entailments. Pre-
cision and recall values are for the true entailment class.
Results for de Marneffe et al. (2006) were reported by
MacCartney and Manning (2008). Harmeling (2007)
only reported accuracy.

may consist of multiple sentences, we attach sen-
tences as children of dummy root nodes, for both
the premise and hypothesis. The model was trained
on the development set (i.e., training data) for RTE-
3 along with all the data from the RTE-1 and RTE-2
tasks. It was then evaluated on the RTE-3 test set.
We report precision and recall for true entailments,
and overall accuracy (i.e., percentage correct).

We compare to four systems that use syntactic de-
pendencies and lexical semantic information.13 De
Marneffe et al. (2006) described an RTE system
that finds word alignments and then classifies sen-
tence pairs based on those alignments. MacCart-
ney and Manning (2008) used an inference pro-
cedure based on Natural Logic, leading to a rela-
tively high-precision, low-recall system. MacCart-
ney and Manning (2008) also tested a hybrid of the
natural logic system and the complementary system
of de Marneffe et al. (2006) to improve coverage.
Harmeling (2007) took an approach similar to ours
involving classification based on transformation se-
quences, but with less general operations and a more
complex, heuristic procedure for finding sequences.

Table 3 presents RTE results, showing that the
tree edit model performs competitively. While it
does not outperform state-of-the-art RTE systems,
the tree edit model is simpler and less tailored to this
task than many other RTE systems based on similar
linguistic information.

13The top-performing RTE systems often involve significant
manual engineering for the RTE task. Also, many employ tech-
niques that make them not very comparable to our approach
(e.g., theorem proving). We also note that Kouylekov and
Magnini (2005) report 55% accuracy for RTE-2 using TED. See
Giampiccolo et al. (2007) for more RTE-3 results.

1016

System Acc. % Prec. % Rec. %
Wan et al., 2006 75.6 77 90
D&S, 2009 (QG) 73.9 74.9 91.3
D&S, 2009 (PoE) 76.1 79.6 86.0
Tree Edit Model 73.2 75.7 87.8

Table 4: Paraphrase identification results, with precision
and recall measures for true (positive) paraphrases. Wan
et al. (2006) report precision and recall values with only
two significant digits.

System MAP MRR
Punyakanok et al., 2004 0.3814 0.4462

+WN 0.4189 0.4939
Cui et al., 2005 0.4350 0.5569

+WN 0.4271 0.5259
Wang et al., 2007 0.4828 0.5571

+WN 0.6029 0.6852
Tree Edit Model 0.6091 0.6917

Table 5: Results for the task of answer selection for ques-
tion answering. +WN denotes use of WordNet features.

5.2 Paraphrase Identification
A tree edit model was trained and tested for para-
phrase identification using the the Microsoft Re-
search Paraphrase Corpus (Dolan et al., 2004). The
task is to identify whether two sentences convey es-
sentially the same meaning.

The standard training set was used to train the tree
edit classification model to distinguish between true
and false paraphrases. Since there is no predefined
direction for paraphrase pairs, we extracted two se-
quences for each pair (one in each direction) and
summed the feature values. The model was evalu-
ated with the standard test set.

We report accuracy, positive class precision (i.e.,
percentage of predicted positive paraphrases that
had positive gold-standard labels), and positive class
recall (i.e., percentage of positive gold-standard la-
bels that were predicted to be positive paraphrases).

We compare to two of the best performance ap-
proaches to paraphrase. One approach, by Wan et al.
(2006), uses an SVM classifier with features based
on syntactic dependencies, TED, unigram overlap,
and BLEU scores (Papineni et al., 2002). The other
system, by Das and Smith (2009), is based on a
quasi-synchronous grammar (QG; Smith and Eisner,
2006), a probabilistic model that allows loose align-
ments between trees but prefers tree isomorphism.
In addition to syntactic dependencies, the QG model

utilizes entity labels from BBN Identifinder (Bikel
et al., 1999) and lexical semantics knowledge from
WordNet. Das and Smith (2009) also use a product
of experts (PoE) (Hinton, 1999) to combine the QG
model with lexical overlap features.

Table 4 shows the test set results for all of the sys-
tems. While the tree edit model did not outperform
the other systems, it produced competitive results.
Moreover, the tree edit model does not make use
of BLEU scores (Wan et al., 2006), entity labeling
components, lexical semantics knowledge sources
such as WordNet (beyond lemmatization), or system
combination techniques (Das and Smith, 2009).

5.3 Answer Selection for Question Answering
A tree edit model was trained for answer selec-
tion in question answering (QA). In this task, an
instance consists of a short factual question (e.g.,
Who wrote the ‘Tale of Genji’?) and a candidate an-
swer sentence retrieved by the information retrieval
component of a question answering system. For a
positive instance, the text will correctly answer the
question—though perhaps indirectly. It may also
contain various extraneous information (e.g., Kano
script made possible the development of a secular
Japanese literature, beginning with such Late Heian
classics as Lady Murasaki’s “Tales of Genji.”). For
a given set of questions, the task here is to rank can-
didate answers (Wang et al., 2007).

The experimental setup is the same as in Wang
et al. (2007). We trained the tree edit model on
the manually judged positive and negative QA pairs
from previous QA tracks at the Text REtrieval Con-
ference (TREC-8 through TREC-12). The goal of
the task is to rank answer candidates rather than clas-
sify them; therefore, after training a logistic regres-
sion classifier, we rank the answer candidates for a
given question by their posterior probabilities of cor-
rectness according to the model.

We tested our model with QA pairs from TREC-
13. We report Mean Average Precision (MAP) and
Mean Reciprocal Rank (MRR), which are informa-
tion retrieval measures for ranked lists.

Tree edit sequences were extracted only in one di-
rection, from answer to question. We compare our
tree edit model to three other systems as they are re-
ported by Wang et al. (2007). Wang et al. use a QG
model, incorporating information from dependency

1017

trees, entity labels from BBN Identifinder (Bikel et
al., 1999), and lexical semantics knowledge from
WordNet (Miller et al., 1990). Cui et al. (2005) de-
veloped an information theoretic measure based on
dependency trees. Punyakanok et al. (2004) used a
generalization of TED to model the QA pairs. For
their experiments, Wang et al. also extended both of
the latter models to utilize WordNet.

Table 5 displays answer selection results, includ-
ing test set results for the baseline systems with and
without lexical semantic information from Word-
Net. The tree edit model, which does not use lex-
ical semantics knowledge, produced the best result
reported to date. The results for the tree edit model
are statistically significantly different (sign test, p <
0.01) from the results for all except the Wang et al.
(2007) system with WordNet (p > 0.05).

5.4 Discussion

The parameter settings learned for the features in Ta-
ble 2 were broadly similar for the three tasks. For
example, operations involving changes to subjects
and proper nouns tended to be associated with non-
paraphrases, false entailments, and incorrect an-
swers. We did not observe any interesting differ-
ences in the parameter values.

While the tree edit models perform competitively
in multiple tasks by capturing relevant syntactic phe-
nomena, it is clear that syntax alone cannot solve
these semantic tasks. Fortunately, this approach is
amenable to extensions, facilitated by the separa-
tion of the representation extraction and classifica-
tion steps. Richer edits could be included; lexical se-
mantics could be integrated into the classifier or the
search heuristic; or edit sequences might be found
for other types of trees, such as semantic parses.

6 Related Work

TED is a widely studied technique with many appli-
cations (Klein, 1989; Zhang and Shasha, 1989; Pun-
yakanok et al., 2004; Schilder and McInnes, 2006).
See Bille (2005) for a review. Chawathe and Garcia-
Molina (1997) describe a tree edit algorithm for
detecting changes in structured documents that in-
corporates edits for moving subtrees and reordering
children. However, they make assumptions unsuit-
able for natural language, such as the absence of re-

cursive syntactic rewrite rules. Bernard et al. (2008)
use EM to learn the costs for simple insert, relabel,
and delete edits, but they only discuss experiments
for digit recognition and a task using artificial data.

Much research has focused on modeling word re-
ordering phenomena and syntactic alignments (e.g.,
Gildea, 2003; Smith and Eisner, 2006; inter alia),
and such methods have been applied successfully to
semantic tasks (de Marneffe et al., 2006; Wang et
al., 2007; Das and Smith, 2009). While we not de-
scribe connections to such approaches in detail due
to space limitations, we note that theoretical con-
nections are possible between transformations and
alignments (Chawathe and Garcia-Molina, 1997).

Tree kernels have been applied to a variety of nat-
ural language tasks (Collins and Duffy, 2001; Ze-
lenko et al., 2003; Culotta and Sorensen, 2004). Of
particular interest, Zanzotto and Moschitti (2006)
describe a kernel for RTE that takes tree pairs, rather
than single trees, as input. To our knowledge, our
use of a tree kernel as a search heuristic is novel.

7 Conclusion

We described tree edit models that generalize TED
by allowing operations that better account for com-
plex reordering phenomena and by learning from
data how different edits should affect the models de-
cisions about output variables of interest (e.g., the
correctness of answers). They offer an intuitive
and effective method for modeling sentence pairs.
They led to competitive performance for three tasks:
paraphrase identification, recognizing textual entail-
ment, and answer selection for question answering.

Acknowledgments
We acknowledge partial support from the Institute of Ed-
ucation Sciences, U.S. Department of Education, through
Grant R305B040063 to Carnegie Mellon University; and
the National Science Foundation through a Graduate Re-
search Fellowship for the first author and grant IIS-
0915187 to the second author. We thank Mengqiu Wang
and Dipanjan Das for their help with the data, André Mar-
tins for his geometric interpretation of our search proce-
dure, and the anonymous reviewers for their comments.

References
M. Bernard, L. Boyer, A. Habrard, and M. Sebban. 2008.

Learning probabilistic models of tree edit distance.

1018

Pattern Recognition.
D. M. Bikel, R. Schwartz, and R. M. Weischedel. 1999.

An algorithm that learns what’s in a name. Machine
Learning, 34.

P. Bille. 2005. A survey on tree edit distance and related
problems. Theoretical Computer Science, 337.

S. Chawathe and H. Garcia-Molina. 1997. Meaningful
change detection in structured data. In Proc. of ACM
SIGMOD.

M. Collins and N. Duffy. 2001. Convolution kernels for
natural language. In Proc. of NIPS.

H. Cui, R. Sun, K. Li, M. Kan, , and T. Chua. 2005.
Question answering passage retrieval using depen-
dency relations. In Proc. of ACM-SIGIR.

A. Culotta and J. Sorensen. 2004. Dependency tree ker-
nels for relation extraction. In Proc. of ACL.

D. Das and N. A. Smith. 2009. Paraphrase identifica-
tion as probabilistic quasi-synchronous recognition. In
Proc. of ACL-IJCNLP.

M. de Marneffe, B. MacCartney, T. Grenager, D. Cer,
A. Rafferty, and C. D. Manning. 2006. Learning to
distinguish valid textual entailments. In Proc. of the
Second PASCAL Challenges Workshop.

B. Dolan, C. Quirk, and C. Brockett. 2004. Unsuper-
vised construction of large paraphrase corpora: Ex-
ploiting massively parallel news sources. In Proc. of
COLING.

J. Eisner. 1996. Three new probabilistic models for de-
pendency parsing: An exploration. In Proc. of COL-
ING.

D. Giampiccolo, B. Magnini, I. Dagan, and B. Dolan, ed-
itors. 2007. The third pascal recognizing textual en-
tailment challenge.

D. Gildea. 2003. Loosely tree-based alignment for ma-
chine translation. In Proc. of ACL.

S. Harmeling. 2007. An extensible probabilistic
transformation-based approach to the third Recogniz-
ing Textual Entailment challenge. In Proc. of ACL-
PASCAL Workshop on Textual Entailment and Para-
phrasing.

T. Hastie, R. Tibshirani, and J. Friedman. 2001. The Ele-
ments of Statistical Learning: Data Mining, Inference,
and Prediction. Springer.

D. Haussler. 1999. Convolution kernels on discrete
structures. Technical Report ucs-crl-99-10, University
of California Santa Cruz.

G. E. Hinton. 1999. Product of experts. In Proc. of
ICANN.

P. N. Klein. 1989. Computing the edit-distance between
unrooted ordered trees. In Proc. of European Sympo-
sium on Algorithms.

M. Kouylekov and B. Magnini. 2005. Recognizing tex-
tual entailment with tree edit distance algorithms. In
Proc. of the PASCAL RTE Challenge.

S. le Cessie and J. C. van Houwelingen. 1997. Ridge es-
timators in logistic regression. Applied Statistics, 41.

B. MacCartney and C. D. Manning. 2008. Modeling se-
mantic containment and exclusion in natural language
inference. In Proc. of COLING.

R. McDonald, F. Pereira, K. Ribarov, and J. Hajič. 2005.
Non-projective dependency parsing using spanning
tree algorithms. In Proc. of HLT-EMNLP.

G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and
K. J. Miller. 1990. WordNet: An on-line lexical
database. International Journal of Lexicography, 3(4).

A. Moschitti. 2006. Efficient convolution kernels for
dependency and constituent syntactic trees. In Proc.
of ECML.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. 2002.
BLEU: a method for automatic evaluation of machine
translation. In Proc. of ACL.

J. Pearl. 1984. Heuristics: intelligent search strategies
for computer problem solving. Addison-Wesley.

V. Punyakanok, D. Roth, and W. Yih. 2004. Mapping de-
pendencies trees: An application to question answer-
ing. In Proc. of the 8th International Symposium on
Artificial Intelligence and Mathematics.

A. Ratnaparkhi. 1996. A maximum entropy part-of-
speech tagger. In Proc. of EMNLP.

F. Schilder and B. T. McInnes. 2006. TLR at DUC
2006: approximate tree similarity and a new evalua-
tion regime. In Proc. of DUC.

B. Schölkopf and A. J. Smola. 2001. Learning with Ker-
nels. MIT Press.

D. A. Smith and J. Eisner. 2006. Quasi-synchronous
grammars: Alignment by soft projection of syntactic
dependencies. In Proc. of HLT-NAACL Workshop on
Statistical Machine Translation.

V. N. Vapnik. 1995. The Nature of Statistical Learning
Theory. Springer.

E. M. Voorhees. 2004. Overview of TREC 2004. In
Proc. of TREC.

S. Wan, M. Dras, R. Dale, and C. Paris. 2006. Using
dependency-based features to take the “para-farce” out
of paraphrase. In Proc. of the Australasian Language
Technology Workshop.

M. Wang, N. A. Smith, and T. Mitamura. 2007. What is
the Jeopardy model? A quasi-synchronous grammar
for QA. In Proc. of EMNLP-CoNLL.

F. M. Zanzotto and A. Moschitti. 2006. Automatic learn-
ing of textual entailments with cross-pair similarities.
In Proc. of COLING/ACL.

D. Zelenko, C. Aone, and A. Richardella. 2003. Kernel
methods for relation extraction. J. of Machine Learn-
ing Research, 3.

K. Zhang and D. Shasha. 1989. Simple fast algorithms
for the editing distance between trees and related prob-
lems. SIAM Journal of Computing, 18.

1019

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 1020–1028,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Syntactic/Semantic Structures for Textual Entailment Recognition

Yashar Mehdad
FBK-IRST, DISI

University of Trento
Povo (TN) - Italy
mehdad@fbk.eu

Alessandro Moschitti
DISI

University of Trento
Povo (TN) - Italy

moschitti@disi.unitn.it

Fabio Massimo Zanzotto
DISP

University of Rome “Tor Vergata”
Roma - Italy

zanzotto@info.uniroma2.it

Abstract

In this paper, we describe an approach based
on off-the-shelf parsers and semantic re-
sources for the Recognizing Textual Entail-
ment (RTE) challenge that can be generally
applied to any domain. Syntax is exploited
by means of tree kernels whereas lexical se-
mantics is derived from heterogeneous re-
sources, e.g. WordNet or distributional se-
mantics through Wikipedia. The joint syn-
tactic/semantic model is realized by means of
tree kernels, which can exploit lexical related-
ness to match syntactically similar structures,
i.e. whose lexical compounds are related. The
comparative experiments across different RTE
challenges and traditional systems show that
our approach consistently and meaningfully
achieves high accuracy, without requiring any
adaptation or tuning.

1 Introduction

Recognizing Textual Entailment (RTE) is rather
challenging as effectively modeling syntactic and
semantic for this task is difficult. Early deep seman-
tic models (e.g., (Norvig, 1987)) as well as more re-
cent ones (e.g., (Tatu and Moldovan, 2005; Bos and
Markert, 2005; Roth and Sammons, 2007)) rely on
specific world knowledge encoded in rules for draw-
ing decisions. Shallower models exploit matching
methods between syntactic/semantic graphs of texts
and hypotheses (Haghighi et al., 2005). The match-
ing step is carried out after the application of some
lexical-syntactic rules that are used to transform the
text T or the hypothesisH (Bar-Haim et al., 2009)

at surface form level. For all these methods, the ef-
fective use of syntactic and semantic information de-
pends on the coverage and the quality of the specific
rules. Lexical-syntactic rules can be automatically
extracted from plain corpora (e.g., (Lin and Pantel,
2001; Szpektor and Dagan, 2008)) but the quality
(also in terms of little noise) and the coverage is low.
In contrast, rules written at the semantic level are
more accurate but their automatic design is difficult
and so they are typically hand-coded for the specific
phenomena.

In this paper, we propose models for effectively
using syntactic and semantic information in RTE,
without requiring either large automatic rule acqui-
sition or hand-coding. These models exploit lexi-
cal similarities to generalize lexical-syntactic rules
automatically derived by supervised learning meth-
ods. In more detail, syntax is encoded in the form of
parse trees whereas similarities are defined by means
of WordNet simlilarity measures or Latent Seman-
tic Analysis (LSA) applied to Wikipedia or to the
British National Corpus (BNC). The joint syntac-
tic/semantic model is realized by means of novel tree
kernels, which can match subtrees whose leaves are
lexically similar (so not just identical).

To assess the benefit of our approach, we carried
out comparative experiments with previous work:
especially with the method described in (Zanzotto
and Moschitti, 2006; Zanzotto et al., 2009). This
constitutes our strong baseline as, although it can
only exploit lexical-syntactic rules, it has achieved
top accuracy in all RTE challenges. The results,
across different RTE challenges, show that our ap-
proach constantly and significantly improves the

1020

baseline model. Moreover, our approach does not
require any adaptation or tuning and uses a compu-
tation for the similarity function based on Wikipedia
which is faster than the computation of tools based
on WordNet or other resources (Basili et al., 2006).

The remainder of the paper is organized as fol-
lows: Section 2 critically reviews the previous work
by highlighting the need of generalizing lexico-
syntactic rules. Section 3 describes lexical similar-
ity approaches, which can serve the generalization
purpose. Section 4 describes how to integrate lex-
ical similarity in syntactic structures using syntac-
tic/semantic tree kernels (SSTK) whereas Section 5
shows how to use SSTK in a kernel-based RTE sys-
tem. Section 6 describes the experiments and re-
sults. Section 7 discusses the efficiency and accu-
racy of our system compared with other RTE sys-
tems. Finally, we draw the conclusions in Section
8.

2 Related work

Lexical-syntactic rules are largely used in textual en-
tailment recognition systems (e.g., (Bar-Haim et al.,
2007; Dinu and Wang, 2009)) as they conveniently
encode world knowledge into linguistic structures.
For example, to decide whether the simple sentences
are in the entailment relation:

T2 ⇒?H2

T2 “ In 1980 Chapman killed Lennon.”
H2 “John Lennon died in 1980.”

we need a lexical-syntactic rule such as:

ρ3 = X killedY → Y died

along with such rules, the temporal information
should be taken into consideration.

Given the importance of lexical-syntactic rules in
RTE, many methods have been proposed for their
extraction from large corpora (e.g., (Lin and Pantel,
2001; Szpektor and Dagan, 2008)). Unfortunately,
these unsupervised methods in general produce rules
that can hardly be used: noise and coverage are the
most critical issues.

Supervised approaches were experimented in
(Zanzotto and Moschitti, 2006; Zanzotto et al.,
2009), where lexical-syntactic rules were derived

from examples in terms of complex relational fea-
tures. This approach can easily miss some useful
information and rules. For example, given the pair
〈T2,H2〉, to derive the entailment value of the fol-
lowing case:

T4 ⇒?H4

T4 “ In 1963 Lee Harvey Oswald mur-
dered JFK”

H4 “JFK died in 1963”

we can only rely on this relatively interesting
lexical-syntactic rule (i.e. which is in common be-
tween the two examples):

ρ5 = (V P (V BZ)(NP X)) → (S(NP X)(V P (V BZ died)))

Unfortunately, this can be extremely misleading
since it also derives similar decisions for the follow-
ing example:

T6 ⇒?H6

T6 “ In 1956 JFK met Marilyn Monroe”
H6 “Marilyn Monroe died in 1956”

The problem is that the pairs〈T2,H2〉 and
〈T4,H4〉 share more meaningful features than the
rule ρ5, which should make the difference with re-
spect to the relation between the pairs〈T2,H2〉 and
〈T6,H6〉. Indeed, the word “kill ” is more semanti-
cally related to “murdered” than to “meet”. Using
this information, it is possible to derive more effec-
tive rules from training examples.

There are several solutions for taking this infor-
mation into account, e.g. by using FrameNet se-
mantics (e.g., like in (Burchardt et al., 2007)), it is
possible to encode a lexical-syntactic rule using the
KILLING and the DEATH frames, i.e.:

ρ7 =
KILLING(Killer : X ,

V ictim : Y)
→

DEATH(

Protagonist : Y)

However, to use this model, specific rules and a
semantic role labeler on the specific corpora are
needed.

3 Lexical similarities

Previous research in computational linguistics has
produced many effective lexical similarity mea-
sures based on many different resources or corpora.
For example, WordNet similarities (Pedersen et al.,
2004) or Latent Semantic Analysis over a large cor-
pus are widely used in many applications and for

1021

the definition of kernel functions, e.g. (Basili et al.,
2006; Basili et al., 2005; Bloehdorn et al., 2006).

In this section we present the main component of
our new kernel, i.e. a lexical similarity derived from
different resources. This is used inside the syntac-
tic/semantic tree kernel defined in (Bloehdorn and
Moschitti, 2007a; Bloehdorn and Moschitti, 2007b)
to enhance the basic tree kernel functions.

3.1 WordNet Similarities

WordNet similarities have been heavily used in pre-
vious NLP work (Chan and Ng, 2005; Agirre et al.,
2009). All WordNet similarities apply to pairs of
synonymy sets (synsets) and return a value indicat-
ing their semantic relatedness. For example, the fol-
lowing measures, that we use in this study, are based
on path lengths between concepts in the Wordnet Hi-
erarchy:

Path the measure is equal to the inverse of the
shortest path length (path length) between two
synsetsc1 andc2 in WordNet

SimPath =
1

path length(c1, c2)
(1)

WUP the Wu and Palmer (Wu and Palmer, 1994)
similarity metric is based on the depth of two given
synsetsc1 andc2 in the WordNet taxonomy, and the
depth of their least common subsumer (lcs). These
are combined into a similarity score:

SimWUP =
2× depth(lcs)

depth(c1) + depth(c2)
(2)

Wordnet similarity measures on synsets can be
extended to similarity measures between words as
follows:

κS(w1, w2) = max(c1,c2)∈C1×C2
SimS(c1, c2)

(3)
whereS is Path or WUP andCi is the set of the
synsets related to the wordwi.

3.2 Distributional Semantic Similarity

Latent Semantic Analysis (LSA) is one of the
corpus-based measure of distributional semantic
similarity, proposed by (Landauer et al., 1998).
Words ~wi are represented in a document space. Each
feauture is a document and its value is the frequency

of the word in the document. The similarity is gen-
erally computed as a cosine similarity:

κLSI(w1, w2) =
~w1 ~w2

|| ~w1|| × || ~w2||
(4)

In our approach we define a proximity matrix P
wherepi,j representsκLSI(wi, wj) The core of our
approach lies on LSI (Latent Semantic Indexing)
over a large corpus. We used singular value de-
composition (SVD) to build the proximity matrix
P = DDT from a large corpus, represented by its
word-by-document matrixD.

SVD decomposesD (weighted matrix of term
frequencies in a collection of text) into three matri-
cesUΣV T , whereU (matrix of term vectors) and
V (matrix of document vectors) are orthogonal ma-
trices whose columns are the eigenvectors ofDDT

andDT D respectively, andΣ is the diagonal matrix
containing the singular value of D.

Given such decomposition,P can be obtained as
UkΣ

2
kU

T
k , whereUk is the matrix containing the first

k columns ofU andk is the dimensionality of the
latent semantic space. This is efficiently used to re-
duce the memory requirements while retaining the
information. Finally we computed the term simi-
larity using the cosine measure in the vector space
model (VSM).

Generally, LSA can be observed as a way to over-
come some of the drawbacks of the standard vector
space model, such as sparseness and dimensionality.
In other words, the LSA similarity is computed in
a lower dimensional space, in which second-order
relations among words and documents are exploited
(Mihalcea et al., 2006).

It is worth mentioning that the LSA similarity
measure depends on the selected corpus but it ben-
efits from a higher computation speed in compari-
son to the construction of the similarity matrix based
on the WordNet Similarity package (Pedersen et al.,
2004).

4 Lexical similarity in Syntactic Tree
Kernels

Section 2 has shown that the role of the syntax is im-
portant in extracting generalized rules for RTE but it
is not enough. Therefore, the lexical similarity de-
scribed in the previous section should be taken into

1022

S

PP

IN

CD

1963

NP

NNP

Lee

NNP

Harvey

NNP

Oswald

VP

VBN

murdered

NNP

JFK

⇒

S

PP

IN

CD

NP VP

VBN

murdered

NNP

S

PP

IN

CD

NP VP

VBN NNP

S

PP

IN

NP VP

VBN NNP

VP

VBN

murdered

NNP

JFK

VP

VBN

murdered

NNP

VP

VBN NNP

JFK

VP

VBN

killed

NNP

Kennedy

Figure 1: A syntactic parse tree (on the left) along with someof its fragments. After the bar there is an important
fragment from a semantically similar sentence, which cannot be matched by STK but it is matched by SSTK.

account in the model definition. Since tree kernels
have been shown to be very effective for exploit-
ing syntactic information in natural language tasks, a
promising idea is to merge together the two different
approaches, i.e. tree kernels and semantic similari-
ties.

4.1 Syntactic Tree Kernel (STK)

Tree kernels compute the number of common sub-
structures between two treesT1 andT2 without ex-
plicitly considering the whole fragment space. The
standard definition of the STK, given in (Collins and
Duffy, 2002), allows for any set of nodes linked by
one or more entire production rules to be valid sub-
structures. The formal characterization is given in
(Collins and Duffy, 2002) and is reported hereafter:

Let F = {f1, f2, . . . , f|F|} be the set of tree
fragments andχi(n) be an indicator function,
equal to 1 if the targetfi is rooted at noden
and equal to 0 otherwise. A tree kernel func-
tion over T1 and T2 is defined asTK(T1, T2) =∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2), whereNT1
andNT2

are the sets of nodes inT1 andT2, respectively and
∆(n1, n2) =

∑|F|
i=1 χi(n1)χi(n2).

∆ function counts the number of subtrees rooted
in n1 andn2 and can be evaluated as follows:

1. if the productions atn1 and n2 are different
then∆(n1, n2) = 0;

2. if the productions atn1 andn2 are the same,
andn1 andn2 have only leaf children (i.e. they
are pre-terminal symbols) then∆(n1, n2) = λ;

3. if the productions atn1 andn2 are the same,
and n1 and n2 are not pre-terminals then
∆(n1, n2) = λ

∏l(n1)
j=1 (1 + ∆(cn1

(j), cn2
(j))),

where l(n1) is the number of children ofn1,
cn(j) is thej-th child of noden andλ is a de-
cay factor penalizing larger structures.

Figure 1 shows some fragments (out of the over-
all 472) of the syntactic parse tree on the left, which
is derived from the text T4. These fragments sat-
isfy the constraint that grammatical rules cannot be
broken. For example,(VP (VBN (murdered) NNP
(JFK))) is a valid fragment whereas(VP (VBN (mur-
dered))is not. One drawback of such kernel is that
two sentences expressing similar semantics but with
different lexicals produce structures which will not
be matched. For example, after the vertical bar
there is a fragment, extracted from the parse tree
of a semantically identical sentences:In 1963
Oswald killed Kennedy. In this case, much
less matches will be counted by the kernel function
applied to such parse trees and the one of T4. In par-
ticular, the complete VP subtree will not be matched.

To tackle this problem the Syntactic Semantic
Tree Kernel (SSTK) was defined in (Bloehdorn and
Moschitti, 2007a); hereafter, we report its definition.

4.2 Syntactic Semantic Tree kernels (SSTK)

An SSTK produces all the matches of STK. More-
over, the fragments, which are identical but for their
lexical nodes, produce a match proportional to the
product of the similarity between their correspond-
ing words. This is a sound definition. Indeed, since
the structures are the same, each word in positioni

of the first fragment can be associated with a word
located in the same positioni of the second frag-
ment. More formally, the fast evaluation of∆ for
STK can be used for computing the semantic∆ for
SSTK by simply adding the following step

0. if n1 andn2 are pre-terminals andlabel(n1) =
label(n2) then∆(n1, n2) = λκS(ch1

n1
, ch1

n2
),

where label(ni) is the label of nodeni and κS is
a term similarity kernel, e.g. based on Wikipedia,
Wordnet or BNC, defined in Section 3. Note that:
(a) sincen1 andn2 are pre-terminals of a parse tree

1023

they can have only one child (i.e.ch1
n1

and ch1
n2

)
and such children are words and (b) Step 2 of the
original ∆ evaluation is no longer necessary.

For example, the fragments:(VP (VBN (murdered)
NNP (JFK))) has a match with(VP (VBN (killed)
NNP (Kennedy)))equal to κS(murdered, kill) ×
κS(JFK,Kennedy).

Beside the novelty of taking into account tree
fragments that are not identical it should be noted
that the lexical semantic similarity is constrained
in syntactic structures, which limit errors/noise due
to incorrect (or, as in our case, not provided) word
sense disambiguation.

Finally, it should be noted that when a valid ker-
nel is used in place ofκS , SSTK is a valid kernel for
definition of convolution kernels (Haussler, 1999).
Since the matrixP derived by applying LSA pro-
duces a semi-definite matrix (see (Cristianini and
Holloway, 2001)) we can always use the similarity
matrix derived by LSA in SSTK. In case of Wordnet,
the validity of the kernel will depend of the kind of
similarity used. In our experiments, we have carried
out single value decomposition and we have verified
that our Wordenet matrices, Path and WUP, are in-
deed positive semi-definite.

5 Kernels for Textual Entailment
Recognition

In this section, we describe how we use the syntac-
tic tree kernel (STK) and the semantic/syntactic tree
kernel (SSTK) for modeling lexical-syntactic ker-
nels for textual entailment recognition. We build
on the kernel described in (Zanzotto and Moschitti,
2006; Zanzotto et al., 2009) that can model lexical-
syntactic rules with variables (i.e., first-order rules).

5.1 Anchoring and pruning

Kernels for modeling lexical-syntactic rules with
variables presuppose that words in textsT are ex-
plicitly related to words in hypothesesH. This cor-
relation is generally called anchoring and it is imple-
mented with placeholders that co-index the syntactic
trees derived fromT andH. Words and intermediate
nodes are co-indexed when they are equal or similar.
For example, in the pair:

T8 ⇒?H8

T8 “Lee Harvey Oswald was born in
New Orleans, Louisiana, and was
of English, German, French and
Irish ancestry. In 19631 Oswald
murdered JFK2 ”

H8 “JFK2 died in 19631”

Moreover, the set of anchors also allows us to
prune fragments of the textT that are irrelevant
for the final decision: we can discard sentences
or phrases uncovered by placeholders. For exam-
ple, in the pair〈T8,H8〉, we can infer that “Lee
H. . . ancestry” is not a relevant fragment and remove
it. This allows us to focus on the critical part for de-
termining the entailment value.

5.2 Kernels for capturing lexical-syntactic
rules

Once placeholders are available in the entailment
pairs, we can apply the model proposed in (Zan-
zotto et al., 2009). This derives the maximal simi-
larity between pairs ofT andH based on the lexico-
syntactic information encoded by the syntactic parse
trees ofT andH enriched with placeholders. More
formally, the original kernel is based on the follow-
ing equation:

maxSTK(〈T, H〉, 〈T ′, H ′〉) = maxc∈C (5)

(STK(t(T, c), t(T ′, i)) + STK(t(H, c), t(H ′, i)),

where: (i)C is the set of all bijective mappings be-
tween the placeholders (i.e., the possible variables)
from 〈T,H〉 into 〈T ′,H ′〉; (ii) c ∈ C is a substitu-
tion function, which implements such mapping; (iii)
t(·, c) returns the syntactic tree enriched with place-
holders replaced by means of the substitutionc; and
(iv) STK(τ1, τ2) is a tree kernel function.

The new semantic-syntactic kernel for lexical-
syntactic rules, maxSSTK, substitutes STK with
SSTK in Eq. 5 thus enlarging the coverage of the
matching between the pairs of texts and the pairs of
hypotheses.

6 Experiments

The aim of the experiments is to investigate if our
RTE system exploiting syntactic semantic kernels
(SSTK) can effectively derive generalized lexico-
syntactic rules. In more detail, first, we determine
the best lexical similarity suitable for the task, i.e.

1024

No Semantic Wiki BNC Path WUP
RTE2 j = 1 63.12 63.5 62.75 62.88 63.88

j = 0.9 63.38 64.75 62.26 63.88 64.25

RTE3 j = 1 66.88 67.25 67.25 66.88 66.5
j = 0.9 67.25 67.75 67.5 67.12 67.38

RTE5 j = 1 65.5 66.5 65.83 66 66
j = 0.9 65.5 66.83 65.67 66 66.33

Table 1: Accuracy of plain (WOK+STK+maxSTK) and Semantic Lexico-Syntactic (WOK+SSTK+maxSSTK) Ker-
nels. The latter according to different similarities

distributional vs. Wordnet-based approaches. Sec-
ond, we derive qualitative and quantitative proper-
ties, which justify the selection of one with respect
to the other.

For this purpose, we tested four different version
of SSTK, i.e. using Path, WUP, BNC and WIKI
lexical similarities on three different RTE datasets.
These correspond to the three different challenges in
which the development set was provided.

6.1 Experimental Setup

We used the data from three recognizing textual en-
tailment challenge: RTE2 (Bar-Haim et al., 2006),
RTE3 (Giampiccolo et al., 2007), and RTE5, along
with the standard split between training and test sets.
We did not use RTE1 as it was differently built from
the others and RTE4 as it does not contain the devel-
opment set.

We used the following publicly available tools:
the Charniak Parser (Charniak, 2000) for pars-
ing sentences and SVM-light-TK (Moschitti, 2006;
Joachims, 1999), in which we coded our new kernels
for RTE. Additionally, we used the Jiang&Conrath
(J&C) distance (Jiang and Conrath, 1997) com-
puted withwn::similarity package (Pedersen
et al., 2004) to measure the similarity betweenT and
H. This similarity is also used to define the text-
hypothesis word overlap kernel (WOK).

The distributional semantics is captured by means
of LSA: we used the java Latent Semantic Indexing
(jLSI) tool (Giuliano, 2007). In particular, we pre-
computed the word-pair matrices for RTE2, RTE3,
and RTE5. We built different LSA matrices from
the British National Corpus (BNC) and Wikipedia
(Wiki). The British National Corpus (BNC) is a bal-
anced synchronic text corpus containing 100 mil-
lion words with morpho-syntactic annotation. For

Wikipedia, we created a model from the 200,000
most visited Wikipedia articles, after cleaning the
unnecessary markup tags. Articles are our doc-
uments for creating the term-by-document matrix.
Wikipedia provides the largest coverage knowledge
resource developed by a community, besides the no-
ticeable coverage of named entities. This further
motivates the design of a similarity measure. We
also consider two typical WordNet similarities (i.e.,
Path and WUP, respectively) as described in Sec.
3.1.

The main RTE model that we consider is consti-
tuted by three main kernels:

• WOK, i.e. the kernel based on only the text-
hypothesis lexical overlapping words (this is an
intra-pair similarity);

• STK, i.e. the sum of the standard tree kernel
(see Section 4.1) applied to the two text parse-
trees and the two hypothesis parse trees;

• SSTK, i.e. the same as STK with the use of
lexical similarities as explained in Section 4.2;

• maxSTK and maxSSTK, i.e. the kernel for
RTE, illustrated in Section 5.2, where the lat-
ter exploits similarity since it uses SSTK in Eq.
5.

Note that the model presented in (Zanzotto et al.,
2009), our baseline, corresponds to the combination
kernel: WOK+maxSTK. In this paper, in addition to
the role of lexical similarities, we also study several
combinations (we just need to sum the separated ker-
nels), i.e. WOK+STK+maxSTK, SSTK+maxSSTK,
WOK+SSTK+maxSSTK and WOK+maxSSTK.

Finally, we measure the performance of our sys-
tem with the standard accuracy and then we deter-
mine the statistical significance by using the model

1025

STK SSTK maxSTK maxSSTK STK+maxSTK SSTK+maxSSTK ∅

RTE2 +WOK 61.5 61.12 63.88 64.12 63.12 63.50 60.62
52.62 52.75 61.25 59.38 61.25 58.75 -

RTE3 +WOK 66.38 66.5 66.5 67.0 66.88 67.25 66.75
53.25 54.5 62.25 64.38 63.12 63.62 -

RTE5 +WOK 62.0 62.0 64.83 64.83 65.5 66.5 60.67
54.33 57.33 63.33 62.67 61.83 62.67 -

Table 2: Comparing different lexico-syntactic kernels with Wiki-based semantic kernels

described in (Yeh, 2000) and implemented in (Padó,
2006).

6.2 Distributional vs. WordNet-based
Semantics

The first experiment compares the basic kernel, i.e.
WOK+STK+maxSTK, with the new semantic ker-
nel, i.e. WOK+SSTK+maxSSTK, where SSTK
and maxSSTK encode four different kinds of sim-
ilarities, BNC, WIKI, WUP and Path. The aim
is twofold: understanding if semantic similarities
can be effectively used to derive generalized lexico-
syntactic rules and to determine the best similarity
model.

Table 1 shows the results according to No Seman-
tics, Wiki, BNC, Path and WUP. The three pairs of
rows represent the results over the three different
datasets, i.e., RTE2, RTE3, and RTE5. For each
pair, we have two rows representing a differentj

parameter of SVM. An increase ofj augments the
weight of positive with respect to negative examples
and during learning it tunes-up the Recall/Precision
rate. We use two valuesj = 1 (the default value)
andj = 0.9 (selected during a preliminary experi-
ment on a validation set on RTE2).j = 0.9 was used
to minimally increase the Precision, considering that
the semantic model tends to improve the Recall.

The results show that:

• WIKI semantics constantly improves the basic
kernel (no Semantics) for any datasets or pa-
rameter.

• The distributional semantics is almost always
better than the WordNet-based one.

• In one case WUP improves WIKI, i.e. 63.88 vs
63.5 and in another case BNC reaches WIKI,
i.e. 67.25 but this happens for the default values

of the j parameters, i.e.j = 1, which was not
selected by our limited parameter validation.

Finally, the difference between the accuracy of the
best WIKI kernels and the No Semantic kernels are
statistically significant (p << 0.05).

6.3 Kernel Comparisons

The previous experiments (Sec. 6.2) show that
Wikipedia-based distributional semantics provides
an effective similarity to generalize lexico-syntactic
rules (features). As our RTE kernel is a composition
of other basic kernels, we experimented with dif-
ferent combinations to understand the role of each
component. Moreover, to obtain results independent
of parameterization we used the default parameterj.

Table 2 reports the accuracy of different kernels
and their combinations on different RTE datasets.
Each row describes the results for each dataset and
it is split in two according to the use of WOK or not
in the RTE model. In the each column, the different
kernels are reported. For example, the entry in the
4th column and the 2nd row refers to the accuracy of
SSTK in combination with WOK, i.e. WOK+SSTK
for the RTE2.

We observe that: first WOK produces a very high
accuracy in RTE challenges, i.e. 60.62, 66.75 and
60.67 and it is an essential component of RTE sys-
tems since its ablation always causes a large accu-
racy decrease. This is reasonable as the major source
of information to establish entailment between sen-
tences is their word overlap.

Second, STK and SSTK, when added to WOK,
improve it on RTE2 and RTE5 but do not improve
it on RTE3. This suggests a difficulty of exploiting
syntactic information for RTE3.

Third, maxSTK+WOK relevantly improves
WOK on RTE2 and RTE5 but fails in RTE3. Again,
the syntactic rules (with variables) which this kernel

1026

BNC WN WIKI
RTE2 0.55 0.42 0.83
RTE3 0.54 0.41 0.83
RTE5 0.45 0.34 0.82

Table 3: Coverage of the different resources for the words
of the three datasets

can provide are not enough general for RTE3. In
contrast, maxSSTK+WOK improves WOK on all
datasets thanks to its generalization ability.

Finally, STK and SSTK added to maxSTK+WOK
or to maxSSTK+WOK tend to produce an accuracy
increase, although not in every condition.

7 Discussion

7.1 Coverage and efficiency

As already mentioned, the practical use of
Wikipedia to design lexical similarities is motivated
by a large coverage. Deriving similarities from other
resources such as WordNet is more time-consuming.
To prove our claim, we performed an analysis on the
coverage and efficiency in computing the pair term
similarity.

Table 3 shows the coverage of the content words
of the three datasets. The coverage of Wikipedia is
about two times more than the other resources in all
experimented datasets.

Speed Milliseconds
LSA 0.54
WN with POS 5.3
WN without POS 15.2

Table 4: The comparison in terms of speed calculated
over 10000 pairs after loading the model.

Moreover, Table 4 shows that the computation
of the LSA matrix on Wikipedia is faster than us-
ing the WordNet similarity software (Pedersen et al.,
2004). Even if the accuracy of some WordNet mod-
els can reach the one based on Wikipedia, the latter
is preferable for the smaller computational cost.

7.2 Comparison with previous work

The results of our models show that lexical se-
mantics for building more effective lexical-syntactic
rules is promising. Here, we compare our ap-
proaches with other RTE systems to show that our

Average Acc. Our rank # participants
RTE2 59.8 3rd 23
RTE3 64.5 4th 26
RTE5 61.5 4th 20

Table 5: Comparison with other approaches to RTE

results are indeed state-of-the-art. Unfortunately,
deriving a reasonable accuracy value to represent the
state-of-the-art is extremely difficult as many fac-
tors can determine the final score. For example, the
best systems in RTE2 and RTE3 (Giampiccolo et al.,
2007) have an accuracy 10% higher than the others
but they generally use resources that are not publicly
available.

Table 5 shows the average accuracy of the partici-
pant systems, the rank of our system that we propose
in this paper and the number of participants. Our
model accuracy is absolutely above the average and
it is ranked at the top positions. We can also carry
out a finer comparison with respect to RTE2 (Bar-
Haim et al., 2006). Our system results are the best
when compared with systems using semantic mod-
els based on FrameNet, indeed the best ranked sys-
tem in this class, i.e., (Burchardt et al., 2007), scores
only 62.5. Among systems using logical inference,
our model is instead the 3rd out of 8 systems using
logical inference that perform worse than ours. Fi-
nally, it is the 2nd among systems using supervised
machine learning models.

8 Conclusion

In this paper we presented a model to effectively in-
clude semantics in lexical-syntactic features for tex-
tual entailment recognition. We have experimentally
shown that LSA-derived lexical semantics embed-
ded in syntactic structures is a promising approach.
The model that we have presented is one of the
best system in the RTE challenges. Additionally, in
contrast to many other methods it does not require
large sets of handcrafted or corpus extracted lexical-
syntactic rules.

Acknowledgements

The research of Alessandro Moschitti has been par-
tially supported by Trustworthy Eternal Systems via
Evolving Software, Data and Knowledge (EternalS,
project number FP7 247758).

1027

References

E. Agirre, E. Alfonseca, K. Hall, J. Kravalova, M. Paşca,
and A. Soroa. 2009. A study on similarity and re-
latedness using distributional and wordnet-based ap-
proaches. InNAACL ’09: Proc. HLT/NAACL.

R. Bar-Haim, I. Dagan, B. Dolan, L. Ferro, D. Giampic-
colo, and I. Magnini, B. Szpektor. 2006. The ii
PASCAL recognising textual entailment challenge. In
Proc. of the II PASCAL Challenges Workshop.

R. Bar-Haim, I. Dagan, I. Greental, and E. Shnarch.
2007. Semantic inference at the lexical-syntactic level.
In AAAI’07: Proc. of the 22nd national conference on
Artificial intelligence.

R. Bar-Haim, J. Berant, and I. Dagan. 2009. A com-
pact forest for scalable inference over entailment and
paraphrase rules. InProc. of EMNLP.

R. Basili, M. Cammisa, and A. Moschitti. 2005. Effec-
tive use of wordnet semantics via kernel-based learn-
ing. In CoNLL.

R. Basili, M. Cammisa, and A. Moschitti. 2006. A se-
mantic kernel to classify texts with very few training
examples. InInformatica.

S. Bloehdorn and A. Moschitti. 2007a. Combined syn-
tactic and semantic kernels for text classification. In
ECIR.

S. Bloehdorn and A. Moschitti. 2007b. Structure and se-
mantics for expressive text kernels. InProc. of CIKM
’07.

S. Bloehdorn, R. Basili, M. Cammisa, and A. Moschitti.
2006. Semantic kernels for text classification based on
topological measures of feature similarity. InProc. of
ICDM 06, Hong Kong, 2006.

J. Bos and K. Markert. 2005. Recognising textual entail-
ment with logical inference. InHLT ’05: Proc. of the
conference on HLT and EMNLP.

A. Burchardt, N. Reiter, S. Thater, and A. Frank. 2007.
Semantic Approach to Textual Entailment: System
Evaluation and Task Analysis. InProc. of the 3rd-
PASCAL Workshop on Textual Entailment, Prague.

Y. S. Chan and H. T. Ng. 2005. Word sense disambigua-
tion with distribution estimation. InProc. of IJCAI’05.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. InProc. of the 1st NAACL conference.

M. Collins and N. Duffy. 2002. New ranking algorithms
for parsing and tagging: kernels over discrete struc-
tures, and the voted perceptron. InProc. of ACL ’02.

N. Cristianini and R. Holloway. 2001. Latent semantic
kernels.

G. Dinu and R. Wang. 2009. Inference rules and their
application to recognizing textual entailment. InProc.
of the EACL ’09.

D. Giampiccolo, B. Magnini, Ido Dagan, and B. Dolan.
2007. The third pascal recognizing textual entailment
challenge. InProc. of the ACL-PASCAL Workshop on
Textual Entailment and Paraphrasing.

Claudio Giuliano. 2007. jLSI a for latent se-
mantic indexing.http://tcc.itc.it/research/textec/tools-
resources/jLSI.html.

A. D. Haghighi, A. Y. Ng, and C. D. Manning. 2005.
Robust textual inference via graph matching. InHLT
’05: Proc. of the conference on HLT and EMNLP.

David Haussler. 1999. Convolution kernels on discrete
structures. Technical report.

J. J. Jiang and D. W. Conrath. 1997. Semantic similarity
based on corpus statistics and lexical taxonomy. In
Proc. of the 10th ROCLING.

Thorsten Joachims. 1999. Making large-scale support
vector machine learning practical.

Landauer, Foltz, and Laham. 1998. Introduction to latent
semantic analysis. InDiscourse Processes 25.

D. Lin and P. Pantel. 2001. DIRT-discovery of inference
rules from text. InProc. of the ACM KDD-01.

R. Mihalcea, C. Corley, and C. Strapparava. 2006.
Corpus-based and knowledge-based measures of text
semantic similarity. InProc. of AAAI06.

Alessandro Moschitti. 2006. Making tree kernels practi-
cal for natural language learning. InProc. of EACL.

Peter Norvig. 1987. A unified theory of inference for
text understanding. Technical report, USA.

Sebastian Padó, 2006.User’s guide tosigf: Signifi-
cance testing by approximate randomisation.

T. Pedersen, S. Patwardhan, and J. Michelizzi. 2004.
Wordnet::similarity - measuring the relatedness of
concepts. InProc. of 5th NAACL.

D. Roth and M. Sammons. 2007. Semantic and logi-
cal inference model for textual entailment. InProc.
of the ACL-PASCAL Workshop on Textual Entailment
and Paraphrasing.

I. Szpektor and I. Dagan. 2008. Learning entailment
rules for unary templates. InProc. of COLING ’08.

M. Tatu and D. Moldovan. 2005. A semantic approach
to recognizing textual entailment. InHLT ’05: Proc.
of HLT/EMNLP.

Z. Wu and M. Palmer. 1994. Verb semantics and lexical
selection. InProc. of ACL.

Alexander Yeh. 2000. More accurate tests for the statis-
tical significance of result differences. InProc. of ACL
2000, Morristown, NJ, USA.

F. M. Zanzotto and A. Moschitti. 2006. Automatic learn-
ing of textual entailments with cross-pair similarities.
In Proc. of ACL ’06.

F. M. Zanzotto, M. Pennacchiotti, and A. Moschitti.
2009. A machine learning approach to textual en-
tailment recognition.NATURAL LANGUAGE ENGI-
NEERING.

1028

Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 1029–1037,
Los Angeles, California, June 2010. c©2010 Association for Computational Linguistics

Automatic Metaphor Interpretation as a Paraphrasing Task

Ekaterina Shutova
Computer Laboratory

University of Cambridge
15 JJ Thomson Avenue

Cambridge CB3 0FD, UK
Ekaterina.Shutova@cl.cam.ac.uk

Abstract

We present a novel approach to metaphor in-
terpretation and a system that produces lit-
eral paraphrases for metaphorical expressions.
Such a representation is directly transferable
to other applications that can benefit from a
metaphor processing component. Our method
is distinguished from the previous work in that
it does not rely on any hand-crafted knowl-
edge about metaphor, but in contrast employs
automatically induced selectional preferences.
Being the first of its kind, our system is capa-
ble of paraphrasing metaphorical expressions
with a high accuracy (0.81).

1 Introduction

Metaphors arise when one concept is viewed in
terms of the properties of the other. In other words
it is based on similarity between the concepts. Sim-
ilarity is a kind of association implying the presence
of characteristics in common. Here are some exam-
ples of metaphor.

(1) News travels fast. (Lakoff and Johnson, 1980)

(2) How can I kill a process? (Martin, 1988)

(3) And then my heart with pleasure fills,
And dances with the daffodils.1

In metaphorical expressions seemingly unrelated
features of one concept are associated with another

1taken from the verse “I wandered lonely as a cloud” written
by William Wordsworth in 1804.

concept. In the example (2) the computational pro-
cess is viewed as something alive and, therefore,
its forced termination is associated with the act of
killing.

Metaphorical expressions represent a great vari-
ety, ranging from conventional metaphors, which we
reproduce and comprehend every day, e.g. those in
(1) and (2), to poetic and largely novel ones, such
as (3). The use of metaphor is ubiquitous in natural
language text and it is a serious bottleneck in auto-
matic text understanding. In order to estimate the
frequency of the phenomenon, we conducted a cor-
pus study on a subset of the British National Corpus
(BNC) (Burnard, 2007) representing various genres.
We manually annotated metaphorical expressions in
this data and found that 241 out of 761 sentences
contained a metaphor or (rarely) an idiom. Due to
such a high frequency of their use, a system capa-
ble of interpreting metaphorical expressions in unre-
stricted text would become an invaluable component
of any semantics-oriented NLP application.

Automatic processing of metaphor can be clearly
divided into two subtasks: metaphor recognition
(distinguishing between literal and metaphorical
language in text) and metaphor interpretation (iden-
tifying the intended literal meaning of a metaphori-
cal expression). Both of them have been repeatedly
addressed in NLP.

To date the most influential account of metaphor
recognition has been that of Wilks (1978). Accord-
ing to Wilks, metaphors represent a violation of se-
lectional restrictions in a given context. Consider the
following example.

(4) My car drinks gasoline. (Wilks, 1978)

1029

The verb drink normally takes an animate subject
and a liquid object. Therefore, drink taking a car as
a subject is an anomaly, which may as well indicate
metaphorical use of drink.

Most approaches to metaphor interpretation rely
on task-specific hand-coded knowledge (Fass, 1991;
Martin, 1990; Narayanan, 1997; Narayanan, 1999;
Feldman and Narayanan, 2004; Barnden and Lee,
2002; Agerri et al., 2007) and produce interpreta-
tions in a non-textual format. However, the ultimate
objective of automatic metaphor processing is a type
of interpretation that can be directly embedded into
other systems to enhance their performance. Thus,
we define metaphor interpretation as a paraphrasing
task and build a system that automatically derives
literal paraphrases for metaphorical expressions in
unrestricted text.

In summary, our system (1) produces a list of
all possible paraphrases for a metaphorical expres-
sion (induced automatically from a large corpus);
(2) ranks the paraphrases according to their likeli-
hood derived from the corpus; (3) discriminates be-
tween literal and figurative paraphrases by detect-
ing selectional preference violation and outputs the
literal ones; and (4) disambiguates the sense of the
paraphrases using WordNet (Fellbaum, 1998) inven-
tory of senses.

We tested our system on a collection of metaphor-
ical expressions representing verb-subject and verb-
object constructions, where the verb is used
metaphorically. To compile this dataset we manually
annotated such phrases in a subset of the BNC using
the metaphor identification procedure (MIP) (Prag-
glejaz Group, 2007). We then evaluated the quality
of paraphrasing with the help of human annotators
and created a gold standard for this task.

2 Experimental Data

Since we focus on single-word metaphors expressed
by a verb, our annotation task can be viewed as
verb classification according to whether the verbs
are used metaphorically or literally. However, some
verbs have weak or no potential of being a metaphor
and, thus, our study is not concerned with them. We
excluded the following verb classes: (1) auxiliary
verbs; (2) modal verbs; (3) aspectual verbs (e.g. be-
gin, start, finish); (4) light verbs (e.g. take, give, put,

get, make).

2.1 The Corpus
Our corpus is a subset of the BNC. We sampled
texts representing various genres: literature, news-
paper/journal articles, essays on politics, interna-
tional relations and history, radio broadcast (tran-
scribed speech). The corpus contains 761 sentences
and 13642 words.

2.2 Annotation Scheme
The annotation scheme we use is based on the
principles of the metaphor identification procedure
(MIP) developed by Pragglejaz Group (2007). We
adopt their definition of basic sense of a word and
their approach to distinguishing basic senses from
the metaphorical ones. MIP involves metaphor an-
notation at the word level as opposed to identifying
metaphorical relations (between words) or source–
target domain mappings (between concepts or do-
mains). Such annotation can be viewed as a form
of word sense disambiguation with an emphasis on
metaphoricity.

In order to discriminate between the verbs used
metaphorically and literally we use the following
procedure as part of our guidelines:

1. For each verb establish its meaning in context
and try to imagine a more basic meaning of this
verb on other contexts. As defined in the frame-
work of MIP (Pragglejaz Group, 2007) basic
meanings normally are: (1) more concrete; (2)
related to bodily action; (3) more precise (as
opposed to vague); (4) historically older.

2. If you can establish the basic meaning that is
distinct from the meaning of the verb in this
context, the verb is likely to be used metaphor-
ically.

Consider the following example sentence:

(5) If he asked her to post a letter or buy some razor
blades from the chemist, she was transported
with pleasure.

In this sentence one needs to annotate four verbs that
are underlined. The first 3 verbs are used in their ba-
sic sense, i.e. literally (ask in the context of “a per-
son asking another person a question or a favour”;

1030

post in the context of “a person posting/sending a
letter”; buy in the sense of “making a purchase”).
Thus, they are tagged as literal. The verb trans-
port, however, in its basic sense is used in the con-
text of “goods being transported/carried by a vehi-
cle”. The context in this sentence involves “a per-
son being transported by a feeling”, which contrasts
the basic sense in that the agent of transporting is
an EMOTION as opposed to a VEHICLE. Thus, we
can infer that the use of transport in this sentence is
metaphorical.

2.3 Annotation Reliability

We tested reliability of this annotation scheme using
multiple annotators on a subset of the corpus. The
rest of the annotation was done by a single annota-
tor.
Annotators We had three independent volunteer an-
notators, who were all native speakers of English
and had some linguistics background.
Material and Task All of them received the same
text taken from the BNC containing 142 verbs to
annotate. They were asked to classify verbs as
metaphorical or literal.
Guidelines and Training The annotators received
written guidelines (2 pages) and were asked to do a
small annotation exercise (2 sentences containing 8
verbs in total). The goal of the exercise was to en-
sure they were at ease with the annotation format.
Interannotator Agreement We evaluate reliability
of our annotation scheme by assessing interannota-
tor agreement in terms of κ (Siegel and Castellan,
1988). The classification was performed with the
agreement of 0.64 (κ), which is considered reliable.
The main source of disagreement was the high con-
ventionality of some expressions, i.e. cases where
the metaphorical etymology could be clearly traced,
but the senses are highly lexicalized.

2.4 Phrase Selection

Only the phrases that were tagged as metaphorical
by all of the annotators were included in the test set.
Here are some examples of such phrases: memo-
ries were slipping away; hold the truth back; stirred
an unfathomable excitement; factors shape results;
mending their marriage; brushed aside the accusa-
tions etc. In order to avoid extra noise we placed
some additional criteria to select the test phrases:

(1) exclude phrases where subject or object referent
is unknown, e.g. containing pronouns such as in in
which they [changes] operated; (2) exclude phrases
whose metaphorical meaning is realised solely in
passive constructions (e.g. sociologists have been
inclined to [..]); (3) exclude phrases where the sub-
ject or object of interest are represented by a named
entity (e.g. Then Hillary leapt into the conversa-
tion); (4) exclude multiword metaphors (e.g. go on
pilgrimage with Raleigh or put out to sea with Ten-
nyson). The resulting test set contains 62 metaphor-
ical expressions.

3 The Method

The system takes phrases containing annotated
single-word metaphors (where a verb is used
metaphorically, its context is used literally) as in-
put. It generates a list of possible paraphrases that
can occur in the same context and ranks them ac-
cording to their likelihood derived from the cor-
pus. Subsequently it identifies shared features of the
paraphrases and the metaphorical verb using Word-
Net hierarchy of concepts and removes the unrelated
concepts. Among the related paraphrases it then
identifies the literal ones given the context relying on
the automatically induced selectional preferences.

3.1 The Model for Paraphrase Ranking
We model the likelihood of a particular paraphrase
as a joint probability of the following events: the
interpretation (another term to replace the one used
metaphorically) i co-occurring with the other lexi-
cal items from its context w1, ..., wN in the relations
r1, ..., rN respectively.

Li = P (i, (w1, r1), (w2, r2), ..., (wN , rN)), (1)

where w1, ..., wN and r1, ..., rN represent the fixed
context of the term used metaphorically in the sen-
tence. This context will be kept as part of the para-
phrase, and the term used metaphorically will be re-
placed.

We take each relation of the term in a phrase to be
independent from the other relations of this term in
this phrase. E.g. for a verb in the presence of both
the subject and the object the Verb-Subject and
Verb-Object relations would be considered to
be independent events within the model. This yields

1031

the following approximation:

P (i, (w1, r1), (w2, r2), ..., (wN , rN)) =
P (i) · P ((w1, r1)|i) · ... · P ((wN , rN)|i).

(2)

We can calculate the probabilities using maximum
likelihood estimation

P (i) =
f(i)∑
k f(ik)

, (3)

P (wn, rn|i) =
f(wn, rn, i)

f(i)
, (4)

where f(i) is the frequency of the interpretation on
its own,

∑
k f(ik) is the number of times this part

of speech is attested in the corpus and f(wn, rn, i)
- the frequency of the co-occurrence of the interpre-
tation with the context word wn in the relation rn.
By performing appropriate substitutions into (2) we
obtain

P (i, (w1, r1), (w2, r2), ..., (wN , rN)) =
f(i)∑
k f(ik)

· f(w1, r1, i)
f(i)

· ... · f(wN , rN , i)
f(i)

=∏N
n=1 f(wn, rn, i)

(f(i))N−1 ·
∑

k f(ik)
(5)

This model is then used to rank the possible re-
placements of the term used metaphorically in the
fixed context according to the data.

3.2 Parameter Estimation

The parameters of the model were estimated from
the British National Corpus that was parsed using
the RASP parser of Briscoe et al. (2006). We used
the grammatical relations (GRs) output of RASP
for BNC created by Andersen et al. (2008). The
same output of RASP was used to identify the GRs
in the metaphorical expressions themselves, as the
metaphor corpus from which they were extracted
is a subset of the BNC. To obtain the counts for
f(wn, rn, i) we extracted all the terms appearing in
the corpus in the relation rn with wn for each lexical
item - relation pair. The initial list of replacements
for the metaphorical term was constructed by taking
an overlap of the lists of terms for each lexical item
- relation pair.

3.3 Identifying Shared Meanings in WordNet

It should be noted that the context-based model
described in 3.1 overgenerates and hence there is
a need to further narrow the search space. It
is acknowledged in the linguistics community that
metaphor is to a great extent based on similarity be-
tween the concepts involved. We exploit this fact to
refine paraphrasing. After obtaining the initial list
of possible substitutes for the metaphorical term, we
filter out the terms whose meaning does not share
any common features with that of the metaphorical
term. Consider a Computer Science metaphor kill a
process, which stands for terminate a process. The
basic sense of kill implies an end or termination of
life. Thus, termination is the shared element of the
metaphorical verb and its literal interpretation.

Such overlap of features can be identified using
the hyponymy relations in the WordNet taxonomy.
Within the initial list of paraphrases we select the
terms that are a hypernym of the metaphorical term
or share a common hypernym with it2. To maxi-
mize the accuracy we restrict the hypernym search
to three level distance in the taxomomy. The filtered
lists of metaphorical verb replacements for some of
the phrases from our dataset together with their log-
likelihood are demonstrated in Table 1. Selecting
the highest ranked paraphrase from this list as a lit-
eral interpretation will serve as a baseline.

3.4 Filtering Based on Selectional Preferences

The obtained lists contain some irrelevant para-
phrases (e.g. contain the truth for hold back the
truth) and some paraphrases where the substitute is
used metaphorically again (e.g. suppress the truth).
However, the task is to identify the literal interpreta-
tion, therefore, these need to be removed.

One way of dealing with both problems at once
is to take into account selectional preferences of the
verbs in our list. The verbs used metaphorically are
likely to demonstrate strong semantic preference for
the source domain, e.g. suppress would select for
movements (political) rather than ideas, or truth, (the
target domain), whereas the ones used literally (e.g.,

2We excluded the expressions containing a term whose
metaphorical sense is included in WordNet from the test set,
to ensure that the system does not rely on this extra hand-coded
knowledge about metaphor.

1032

Log-likelihood Replacement
Verb-DirectObject
hold back truth:
-13.09 contain
-14.15 conceal
-14.62 suppress
-15.13 hold
-16.23 keep
-16.24 defend
stir excitement:
-14.28 create
-14.84 provoke
-15.53 make
-15.53 elicit
-15.53 arouse
-16.23 stimulate
-16.23 raise
-16.23 excite
-16.23 conjure
Subject-Verb
report leak:
-11.78 reveal
-12.59 issue
-13.18 disclose
-13.28 emerge
-14.84 expose
-16.23 discover

Table 1: The list of paraphrases with the initial ranking

conceal) would select for truth. This would poten-
tially allow us to filter out non-literalness, as well as
unrelated verbs, by selecting the verbs that the noun
in the metaphorical expression matches best.

We automatically acquired selectional preference
distributions of the verbs in the paraphrase lists
(for Verb-Subject and Verb-Object rela-
tions) from the BNC parsed by RASP. We first clus-
tered 2000 most frequent nouns in the BNC into 200
clusters using the algorithm of Sun and Korhonen
(2009). The obtained clusters formed our selectional
preference classes. We adopted the association mea-
sure proposed by Resnik (1993) and successfully ap-
plied to a number of tasks in NLP including word
sense disambiguation (Resnik, 1997). Resnik mod-
els selectional preference of a verb in probabilistic
terms as the difference between the posterior distri-
bution of noun classes in a particular relation with
the verb and their prior distribution in that syntac-
tic position regardless of the identity of the predi-
cate. He quantifies this difference using the relative
entropy (or Kullback-Leibler distance), defining the

Association Replacement
Verb-DirectObject
hold back truth:
0.1161 conceal
0.0214 keep
0.0070 suppress
0.0022 contain
0.0018 defend
0.0006 hold
stir excitement:
0.0696 provoke
0.0245 elicit
0.0194 arouse
0.0061 conjure
0.0028 create
0.0001 stimulate
≈ 0 raise
≈ 0 make
≈ 0 excite
Subject-Verb
report leak:
0.1492 disclose
0.1463 discover
0.0674 reveal
0.0597 issue
≈ 0 emerge
≈ 0 expose

Table 2: The list of paraphrases reranked using selec-
tional preferences

selectional preference strength as follows.

SR(v) = D(P (c|v)||P (c)) =∑
c

P (c|v) log
P (c|v)
P (c)

,
(6)

where P (c) is the prior probability of the noun class,
P (c|v) is the posterior probability of the noun class
given the verb and R is the grammatical relation in
question. Selectional preference strength measures
how strongly the predicate constrains its arguments.
In order to quantify how well a particular argument
class fits the verb, Resnik defines another measure
called selectional association:

AR(v, c) =
1

SR(v)
P (c|v) log

P (c|v)
P (c)

. (7)

We use this measure to rerank the paraphrases and
filter out those not well suited or used metaphor-
ically. The new ranking is demonstrated in Table
2. The expectation is that the paraphrase in the first
rank (i.e. the verb with which the noun in question

1033

has the highest association) represents the literal in-
terpretation.

3.5 Sense Disambiguation

Another feature of our system is that having identi-
fied literal interpretations, it is capable to perform
their word sense disambiguation (WSD). Disam-
biguated metaphorical interpretations are potentially
a useful source of information for NLP applications
dealing with word senses.

We adopt WordNet representation of a sense.
Disambiguation is performed by selecting WordNet
nodes containing those verbs that share a common
hypernym with the metaphorical verb. The list of
disambiguated interpretations for a random selection
of phrases from our dataset is demonstrated in Table
3. However, we did not evaluate the WSD of the
paraphrases at this stage.

4 Evaluation and Discussion

We evaluated the paraphrases with the help of hu-
man annotators in two different experimental set-
tings.
Setting 1: the annotators were presented with a set
of sentences containing metaphorical expressions
and their rank 1 paraphrases produced by the system
and by the baseline. They were asked to mark the
ones that have the same meaning as the term used
metaphorically and are used literally in the context
of the paraphrase expression as correct.

We had 7 volunteer annotators who were all na-
tive speakers of English (one bilingual) and had no
or sparse linguistic expertise. Their agreement on
the task was 0.62 (κ), whereby the main source
of disagreement was the presence of highly lexi-
calised metaphorical paraphrases. We then evalu-
ated the system performance against their judgments
in terms of accuracy. Accuracy measures the pro-
portion of correct literal interpretations among the
paraphrases in rank 1. The results are demonstrated
in Table 4, the final systems identifies literal para-
phrases with the accuracy of 0.81.
Setting 2: the annotators were presented with a set
of sentences containing metaphorical expressions
and asked to write down all suitable literal para-
phrases for the highlighted metaphorical verbs. We
had 5 volunteer subjects for this experiment (note

that these were people not employed in the previ-
ous setting); they were all native speakers of En-
glish and had some linguistics background. We then
compiled a gold standard by incorporating all of the
annotations. E.g. the gold standard for the phrase
brushed aside the accusations contains the verbs re-
jected, ignored, disregarded, dismissed, overlooked,
discarded.

We compared the system output against the gold
standard using mean reciprocal rank (MRR) as a
measure. MRR is traditionally used to evaluate the
performance of Question-Answering systems. We
adapted this measure in order to be able to assess
ranking quality beyond rank 1 and the recall of our
system. An individual metaphorical expression re-
ceives a score equal to the reciprocal of the rank at
which the first correct literal interpretation (accord-
ing to the human gold standard) is found among the
top five paraphrases, or 0 if none of the five para-
phrases contains a correct interpretation. Once the
individual reciprocal ranks of metaphorical expres-
sions are estimated their mean is computed across
the dataset. The MRR of our system equals 0.63
and that of the baseline is 0.55. However, it should
be noted that given that our task is open-ended, it
is hard to construct a comprehensive gold standard.
For example, for the phrase stir excitement most an-
notators suggested only one paraphrase create ex-
citement, which is found in rank 3. However, the top
ranks of the system output are occupied by provoke
and stimulate, which are more precise paraphrases,
although they have not occurred to the annotators.
Such examples result in the system’s MRR being
significantly lower than its accuracy at rank 1.

The obtained results are promising, the selec-
tional preference-based reranking yields a consider-
able improvement in accuracy (26%) over the base-
line. However, for one of the phrases in the dataset,
mend marriage, the new ranking overruns the cor-
rect top suggestion of the baseline, improve mar-
riage, and outputs repair marriage as the most likely
literal interpretation. This is due to both the conven-
tionality of some metaphorical senses (in this case
repair) and to the fact that some verbs, e.g. improve,
expose a moderate selectional preference strength,
i.e. they are equally associated with a large number
of classes. This demonstrates potential drawbacks of
the selectional preference-based solutions. Another

1034

Met. Expression Top Int. Its WordNet Sense
Verb-DirectObject
stir excitement provoke (arouse-1 elicit-1 enkindle-2 kindle-3 evoke-1 fire-7 raise-10 provoke-1) - call forth

(emotions, feelings, and responses): ”arouse pity”; ”raise a smile”; ”evoke sympathy”
inherit state acquire (get-1 acquire-1) - come into the possession of something concrete or abstract: ”She got

a lot of paintings from her uncle”; ”They acquired a new pet”
reflect concern manifest (attest-1 certify-1 manifest-1 demonstrate-3 evidence-1) - provide evidence for; stand

as proof of; show by one’s behavior, attitude, or external attributes: ”The buildings in
Rome manifest a high level of architectural sophistication”; ”This decision demonstrates
his sense of fairness”

brush aside accusation reject (reject-1) - refuse to accept or acknowledge: ”we reject the idea of starting a war”; ”The
journal rejected the student’s paper”

Verb-Subject
campaign surged improve (better-3 improve-2 ameliorate-2 meliorate-2) - to make better: ”The editor improved

the manuscript with his changes”
report leaked disclose (unwrap-2 disclose-1 let on-1 bring out-9 reveal-2 discover-6 expose-2 divulge-1

break-15 give away-2 let out-2) - make known to the public information that was pre-
viously known only to a few people or that was meant to be kept a secret: ”The auction
house would not disclose the price at which the van Gogh had sold”; ”The actress won’t
reveal how old she is”

tension mounted lift (rise-1 lift-4 arise-5 move up-2 go up-1 come up-6 uprise-6) - move upward: ”The fog
lifted”; ”The smoke arose from the forest fire”; ”The mist uprose from the meadows”

Table 3: Disambiguated paraphrases produced by the system

Relation Baseline System
Verb-DirectObject 0.52 0.79
Verb-Subject 0.57 0.83
Average 0.55 0.81

Table 4: Accuracy with the evaluation setting 1

controvertial example was the metaphorical expres-
sion tension mounted, for which the system pro-
duced a paraphrase tension lifted with the opposite
meaning. This error is likely to have been triggered
by the feature similarity component, whereby one of
the senses of lift would stem from the same node in
WordNet as the metaphorical sense of mount.

5 Related Work

According to Conceptual Metaphor Theory (Lakoff
and Johnson, 1980) metaphor can be viewed as an
analogy between two distinct domains - the target
and the source. Consider the following example:

(6) He shot down all of my arguments. (Lakoff and
Johnson, 1980)

A mapping of a concept of argument (target) to
that of war (source) is employed here. The idea of
such interconceptual mappings has been exploited in
some NLP systems.

One of the first attempts to identify and inter-
pret metaphorical expressions in text automatically
is the approach of Fass (1991). It originates in
the work of Wilks (1978) and utilizes hand-coded
knowledge. Fass (1991) developed a system called
met*, capable of discriminating between literal-
ness, metonymy, metaphor and anomaly. It does
this in three stages. First, literalness is distin-
guished from non-literalness using selectional pref-
erence violation as an indicator. In the case that non-
literalness is detected, the respective phrase is tested
for being a metonymic relation using hand-coded
patterns (such as CONTAINER-for-CONTENT). If
the system fails to recognize metonymy, it pro-
ceeds to search the knowledge base for a relevant
analogy in order to discriminate metaphorical re-
lations from anomalous ones. E.g., the sentence
in (4) would be represented in this framework as
(car,drink,gasoline), which does not satisfy the pref-
erence (animal,drink,liquid), as car is not a hy-
ponym of animal. met* then searches its knowl-
edge base for a triple containing a hypernym of
both the actual argument and the desired argument
and finds (thing,use,energy source), which repre-
sents the metaphorical interpretation.

Almost simultaneously with the work of Fass
(1991), Martin (1990) presents a Metaphor Inter-

1035

pretation, Denotation and Acquisition System (MI-
DAS). The idea behind this work is that the more
specific conventional metaphors descend from the
general ones. Given an example of a metaphor-
ical expression, MIDAS searches its database for
a corresponding metaphor that would explain the
anomaly. If it does not find any, it abstracts from
the example to more general concepts and repeats
the search. If it finds a suitable general metaphor, it
creates a mapping for its descendant, a more specific
metaphor, based on this example. This is also how
novel metaphors are acquired. MIDAS has been in-
tegrated with the Unix Consultant (UC), the system
that answers users questions about Unix.

Another cohort of approaches relies on perform-
ing inferences about entities and events in the source
and target domains for metaphor interpretation.
These include the KARMA system (Narayanan,
1997; Narayanan, 1999; Feldman and Narayanan,
2004) and the ATT-Meta project (Barnden and Lee,
2002; Agerri et al., 2007). Within both systems
the authors developed a metaphor-based reasoning
framework in accordance with the theory of concep-
tual metaphor. The reasoning process relies on man-
ually coded knowledge about the world and operates
mainly in the source domain. The results are then
projected onto the target domain using the concep-
tual mapping representation. The ATT-Meta project
concerns metaphorical and metonymic description
of mental states and reasoning about mental states
using first order logic. Their system, however, does
not take natural language sentences as input, but
logical expressions that are representations of small
discourse fragments. KARMA in turn deals with a
broad range of abstract actions and events and takes
parsed text as input.

Veale and Hao (2008) derive a “fluid knowledge
representation for metaphor interpretation and gen-
eration”, called Talking Points. Talking Points are a
set of characteristics of concepts belonging to source
and target domains and related facts about the world
which the authors acquire automatically from Word-
Net and from the web. Talking Points are then orga-
nized in Slipnet, a framework that allows for a num-
ber of insertions, deletions and substitutions in def-
initions of such characteristics in order to establish
a connection between the target and the source con-
cepts. This work builds on the idea of slippage in

knowledge representation for understanding analo-
gies in abstract domains (Hofstadter and Mitchell,
1994; Hofstadter, 1995). Consider the metaphor
Make-up is a Western burqa:

Make-up =>
≡ typically worn by women
≈ expected to be worn by women
≈ must be worn by women
≈ must be worn by Muslim women

Burqa <=

By doing insertions and substitutions the system ar-
rives from the definition typically worn by women to
that of must be worn by Muslim women, and thus es-
tablish a link between the concepts of make-up and
burqa. Veale and Hao (2008), however, did not eval-
uate to which extent their method is useful to inter-
pret metaphorical expressions occurring in text.

6 Conclusions

We presented a novel approach to metaphor interpre-
tation and a system that produces literal paraphrases
for metaphorical expressions. Such a representation
is directly transferable to other applications that can
benefit from a metaphor processing component. Our
method is distinguished from the previous work in
that it does not rely on any hand-crafted knowledge,
other than WordNet, but in contrast employs auto-
matically induced selectional preferences.

Our system is the first of its kind and it is capa-
ble of paraphrasing metaphorical expressions with a
high accuracy (0.81). Although we reported results
on a test set consisting of verb-subject and verb-
object metaphors only, we are convinced that the
described interpretation techniques can be similarly
applied to other parts of speech and a wider range
of syntactic constructions. Extending the system to
deal with more types of phrases is part of our future
work.

Acknowledgments

I am very grateful to Anna Korhonen, Simone
Teufel, Ann Copestake and the reviewers for their
helpful feedback on this work, Lin Sun for sharing
his noun clustering data and the volunteer annota-
tors. My studies and, thus, this research are funded
by generosity of Cambridge Overseas Trust.

1036

References
R. Agerri, J.A. Barnden, M.G. Lee, and A.M. Wallington.

2007. Metaphor, inference and domain-independent
mappings. In Proceedings of International Confer-
ence on Recent Advances in Natural Language Pro-
cessing (RANLP-2007), pages 17–23, Borovets, Bul-
garia.

O. E. Andersen, J. Nioche, E. Briscoe, and J. Carroll.
2008. The BNC parsed with RASP4UIMA. In
Proceedings of the Sixth International Language Re-
sources and Evaluation Conference (LREC’08), Mar-
rakech, Morocco.

J.A. Barnden and M.G. Lee. 2002. An artificial intelli-
gence approach to metaphor understanding. Theoria
et Historia Scientiarum, 6(1):399–412.

E. Briscoe, J. Carroll, and R. Watson. 2006. The second
release of the rasp system. In Proceedings of the COL-
ING/ACL on Interactive presentation sessions, pages
77–80.

L. Burnard. 2007. Reference Guide for the
British National Corpus (XML Edition).
URL=http://www.natcorp.ox.ac.uk/XMLedition/URG/.

D. Fass. 1991. met*: A method for discriminating
metonymy and metaphor by computer. Computational
Linguistics, 17(1):49–90.

J. Feldman and S. Narayanan. 2004. Embodied meaning
in a neural theory of language. Brain and Language,
89(2):385–392.

C. Fellbaum, editor. 1998. WordNet: An Electronic Lexi-
cal Database (ISBN: 0-262-06197-X). MIT Press, first
edition.

D. Hofstadter and M. Mitchell. 1994. The Copy-
cat Project: A model of mental fluidity and analogy-
making. In K.J. Holyoak and J. A. Barnden, editors,
Advances in Connectionist and Neural Computation
Theory, Ablex, New Jersey.

D. Hofstadter. 1995. Fluid Concepts and Creative
Analogies: Computer Models of the Fundamental
Mechanisms of Thought. HarperCollins Publishers.

G. Lakoff and M. Johnson. 1980. Metaphors We Live By.
University of Chicago Press, Chicago.

J. H. Martin. 1988. Representing regularities in the
metaphoric lexicon. In Proceedings of the 12th con-
ference on Computational linguistics, pages 396–401.

J. H. Martin. 1990. A Computational Model of Metaphor
Interpretation. Academic Press Professional, Inc., San
Diego, CA, USA.

S. Narayanan. 1997. Knowledge-based action represen-
tations for metaphor and aspect (KARMA). Technical
report, PhD thesis, University of California at Berke-
ley.

S. Narayanan. 1999. Moving right along: A computa-
tional model of metaphoric reasoning about events. In

In Proceedings of the National Conference on Artifi-
cial Intelligence (AAAI 99), pages 121–128, Orlando,
Florida.

Pragglejaz Group (P. Crisp, R. Gibbs, A. Cienki, G.
Low, G. Steen, L. Cameron, E. Semino, J. Grady, A.
Deignan and Z. Kovecses). 2007. MIP: A method for
identifying metaphorically used words in discourse.
Metaphor and Symbol, 22:1–39.

P. Resnik. 1993. Selection and Information: A Class-
based Approach to Lexical Relationships. Ph.D. the-
sis, Philadelphia, PA, USA.

P. Resnik. 1997. Selectional preference and sense disam-
biguation. In ACL SIGLEX Workshop on Tagging Text
with Lexical Semantics, Washington, D.C.

S. Siegel and N. J. Castellan. 1988. Nonparametric
statistics for the behavioral sciences. McGraw-Hill
Book Company, New York, USA.

L. Sun and A. Korhonen. 2009. Improving verb clus-
tering with automatically acquired selectional prefer-
ences. In Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing,
pages 638–647, Singapore, August.

T. Veale and Y. Hao. 2008. A fluid knowledge rep-
resentation for understanding and generating creative
metaphors. In Proceedings of the 22nd Interna-
tional Conference on Computational Linguistics (Col-
ing 2008), pages 945–952, Manchester, UK.

Y. Wilks. 1978. Making preferences more active. Artifi-
cial Intelligence, 11(3):197–223.

1037

Author Index

Agichtein, Eugene, 361
Agirre, Eneko, 373
Ahuja, Arun, 225
Allauzen, Cyril, 957
Alshawi, Hiyan, 751
Andreyev, Slava, 681
Androutsopoulos, Ion, 885

Baldwin, Timothy, 10, 100, 229
Bangalore, Srinivas, 55
Beigman Klebanov, Beata, 438
Beigman, Eyal, 438
Benajiba, Yassine, 709
Benedı́, José-Miguel, 653
Berg-Kirkpatrick, Taylor, 582
Bertoldi, Nicola, 412
Bhargava, Aditya, 693
Bhattacharyya, Pushpak, 420
Bhutada, Pravin, 840
Bies, Ann, 661
Bilmes, Jeff, 912
Bird, Steven, 267
Blair-Goldensohn, Sasha, 777
Blei, David M., 564
Blitzer, John, 127
Blunsom, Phil, 238
Bouchard-Côté, Alexandre, 582
Boudin, Florian, 822
Brockett, Chris, 145
Brody, Samuel, 804
Burkett, David, 127
Burstein, Jill, 681
Buzek, Olivia, 345

Cade, Whitney L., 669
Callison-Burch, Chris, 207, 369, 394
Carenini, Giuseppe, 894
Carpuat, Marine, 242
Carroll, Lucien, 993

Casacuberta, Francisco, 546
Cer, Daniel, 555
Cettolo, Mauro, 412
Ceylan, Hakan, 903
Chang, Ching-Yun, 591
Chang, Ming-Wei, 429
Charniak, Eugene, 28
Che, Wanxiang, 246
Chelba, Ciprian, 975
Chen, Desai, 948
Chen, Zheng, 285
Cherry, Colin, 172, 697
Chew, Peter A., 465
Chiang, David, 118, 447
Ciaramita, Massimiliano, 474
Clark, Stephen, 591
Cohen, Shay B., 564
Cohn, Trevor, 238

Dale, Robert, 984
Danescu-Niculescu-Mizil, Cristian, 365
Das, Dipanjan, 293, 948
Dawes, Martin, 822
De Bona, Fabio, 474
DeNero, John, 582, 975
Denkowski, Michael, 250
Diab, Mona, 242
Dolan, Bill, 172
Dorr, Bonnie, 305
Downey, Doug, 225
Dredze, Mark, 216
Drellishak, Scott, 254
Duan, Weisi, 627
Dunlop, Aaron, 600
Durrani, Nadir, 528
Dyer, Chris, 263, 858

El-Desoky, Amr, 701
Elhadad, Michael, 742

1039

Elhadad, Noemie, 804
Epstein, Susan L., 840

Federico, Marcello, 321, 412
Feldman, Jonathan, 285
Feng, Yansong, 91, 831
Filimonov, Denis, 216
Fosler-Lussier, Eric, 725
Foster, Jennifer, 381
Frank, Michael C., 501
Fraser, Alexander, 737

Gadde, Phani, 657
Galanis, Dimitrios, 885
Galley, Michel, 867, 966
Gamon, Michael, 163
Garcı́a-Varea, Ismael, 546
Gascó, Guillem, 653
Ge, Niyu, 849
Ghodke, Sumukh, 267
Gildea, Daniel, 769
Gimpel, Kevin, 293, 733
Goldberg, Yoav, 742
Goldsmith, John, 713
Goldwasser, Dan, 429
Gómez-Rodrı́guez, Carlos, 276
Gonzalez, Antonio, 285
Gordon, Joshua B., 840
Graehl, Jonathan, 447
Green, Spence, 867
Grieser, Karl, 100
Grishman, Ralph, 285
Guo, Yikun, 353
Guthrie, Louise, 289

Haertel, Robbie, 519
Haffari, Gholamreza, 930
Haghighi, Aria, 385
Hall, Keith, 456, 474
Hannan, Kerry, 777
Harper, Mary, 37
Hartmann, William, 725
Heilman, Michael, 609, 1011
Hepple, Mark, 289
Herdağdelen, Amaç, 474
Hillard, Dustin, 73
Holmqvist, Maria, 474

Hovy, Eduard, 618
Hu, Shen, 377
Huang, Minlie, 483
Huang, Zhongqiang, 37
Husain, Samar, 657
Hussain, Sarmad, 528
Hutchinson, Brian, 717
Hutton, Mark-Anthony, 685
Hwa, Rebecca, 301

Inui, Kentaro, 786

Jabbari, Sanaz, 289
Jelinek, Frederick, 190, 216
Ji, Heng, 285
Jiampojamarn, Sittichai, 697
Jindal, Karan, 657
Johnson, Mark, 28, 501, 665
Jones, Bevan K., 501
Jordan, Michael I., 573
Joshi, Mahesh, 293
Jurafsky, Daniel, 555, 751
Jyothi, Preethi, 725

Kalita, Jugal, 685
Katsos, Napoleon, 1002
Khapra, Mitesh M., 420, 492
Khudanpur, Sanjeev, 325
Klakow, Dietrich, 325, 795
Klapaftis, Ioannis P., 82
Klein, Dan, 118, 127, 385, 573, 582
Knight, Kevin, 118, 447
Koehn, Philipp, 537
Kok, Stanley, 145
Kondrak, Grzegorz, 693, 697
Kordoni, Valia, 10
Korkontzelos, Ioannis, 636
Kozareva, Zornitsa, 618
Kübler, Sandra, 705
Kuhlmann, Marco, 276
Kulick, Seth, 661
Kumar, Rohit, 677
Kumar, Shankar, 957, 975
Kumaran, A, 420
Kurohashi, Sadao, 786

Lampert, Andrew, 984

Lang, Joel, 939
Lapata, Mirella, 91, 831, 939
Lau, Jey Han, 100
Lavie, Alon, 250
Lavrenko, Victor, 181
Lee, Lillian, 365
Leggetter, Chris, 73
Lehman, Blair A., 669
Levenberg, Abby, 394
Li, Bin, 309
Li, Fangtao, 483
Li, Haizhou, 136
Li, Linlin, 297
Li, Yongqiang, 246
Liang, Percy, 573
Liberato, Frank, 301
Ligorio, Tiziana, 840
Lin, Hui, 912
Lin, Jimmy, 305
Liu, Feifan, 309
Liu, Jingjing, 64
Liu, Ting, 246, 377
Liu, Yang, 46, 309
Liu, Yudong, 930
Lloret, Elena, 903
Louis, Annie, 313
Lui, Marco, 229

Macherey, Wolfgang, 957
Madnani, Nitin, 305
Maletti, Andreas, 876
Manandhar, Suresh, 82, 636
Mann, Gideon, 456
Manning, Christopher D., 510, 555, 649, 867, 966
Markert, Katja, 357
Màrquez, Lluı́s, 373
Martinez, David, 10
Matsuzaki, Takuya, 645
McCallum, Andrew, 729
McClanahan, Peter, 519
McClosky, David, 28
McDonald, Ryan, 456, 777
McKeown, Kathleen, 317
Mehdad, Yashar, 321, 1020
Meyer, Timothy J., 345
Mihalcea, Rada, 903

Mishra, Taniya, 55
Mitchell, Margaret, 600
Mohamed, Emad, 705
Mohit, Behrang, 301
Mohri, Mehryar, 957
Momtazi, Saeedeh, 325
Mooney, Raymond J., 109
Moore, Coleman, 317
Morris, Jeremy, 725
Moschitti, Alessandro, 1020
Munro, Robert, 510
Murray, Gabriel, 894

Nakagawa, Tetsuji, 786
Negri, Matteo, 321
Nenkova, Ani, 313
Newman, David, 100
Ney, Hermann, 701
Ng, Raymond, 894
Nguyen, Hieu C., 345
Nicholson, Jeremy, 10
Nie, Jian-Yun, 822
Nivre, Joakim, 341
Novotney, Scott, 207

Och, Franz, 975
Olney, Andrew, 669
Ortiz-Martı́nez, Daniel, 546
Osborne, Miles, 181, 394
Ostendorf, Mari, 689, 717
Özertem, Umut, 903

Padó, Sebastian, 921
Palomar, Manuel, 903
Pang, Bo, 365
Parada, Carolina, 216
Paris, Cecile, 984
Passonneau, Rebecca, 840
Pauls, Adam, 118, 447
Pedersen, Ted, 329
Peirsman, Yves, 921
Petrov, Slav, 19
Petrović, Saša, 181
Piwek, Paul, 333
Poon, Hoifung, 813
Prabhavalkar, Rohit, 725

Qin, Bing, 377
Quirk, Chris, 403

Ramabhadran, Bhuvana, 190
Rambow, Owen, 337
Rastrow, Ariya, 190
Ravi, Sujith, 447
Reddy, Sravana, 713
Reisinger, Joseph, 109
Renals, Steve, 1
Resnik, Philip, 349, 858
Riedel, Sebastian, 729, 760
Riezler, Stefan, 474
Riley, Michael, 957
Ringger, Eric K., 519
Ritter, Alan, 172
Roark, Brian, 600
Rosé, Carolyn P., 673, 677
Rosenberg, Andrew, 721
Rosenthal, Sara, 317
Roth, Dan, 154, 429
Rozovskaya, Alla, 154

Saers, Markus, 341
Sánchez, Joan-Andreu, 653
Sangal, Rajeev, 657
Sarkar, Anoop, 930
Satta, Giorgio, 276
Sayeed, Asad B., 345
Schlüter, Ralf, 701
Schneider, Nathan, 948
Schütze, Hinrich, 737
Schwarck, Florian, 737
Seneff, Stephanie, 64
Sethy, Abhinav, 190
Setiawan, Hendra, 349
Sharifi, Beaux, 685
Sharma, Dipti Misra, 657
Shugrina, Maria, 198
Shutova, Ekaterina, 1029
Siddharthan, Advaith, 1002
Singh, Sameer, 73, 729
Smith, David A., 760
Smith, Jason R., 403
Smith, Noah A., 293, 564, 609, 733, 948, 1011
Spitkovsky, Valentin I., 751

Sporleder, Caroline, 297
Srikumar, Vivek, 429
Stevenson, Mark, 353
Stoyanchev, Svetlana, 333
Su, Fangzhong, 357
Surdeanu, Mihai, 373, 649

Temperley, David, 741
Tetreault, Joel, 681
Thadani, Kapil, 317
Toutanova, Kristina, 403
Tsujii, Jun’ichi, 645

Udupa, Raghavendra, 492
Upadhyay, Vivek, 285
Ural, Ahmet Engin, 665

Vanderwende, Lucy, 813
Velikovich, Leonid, 777

Wang, Dong, 309
Wang, Yi-Chia, 673
Wang, Yu, 361
Weinberg, Amy, 345
Wiegand, Michael, 795
Wilson, Andrew T., 465
Wu, Dekai, 341
Wu, Wei, 689, 717

Xie, Shasha, 46
Xiong, Deyi, 136

Yao, Limin, 729
Yates, Alexander, 627
Yatskar, Mark, 365

Zaidan, Omar F., 369
Zanzotto, Fabio Massimo, 1020
Zapirain, Beñat, 373
Zhang, Bin, 689, 717
Zhang, Min, 136
Zhang, Yao-zhong, 645
Zhang, Yi, 10
Zhao, Yanyan, 377
Zheng, Zhicheng, 483
Zhu, Xiaoyan, 483
Zitouni, Imed, 709
Zue, Victor, 64

	Conference Program
	Invited Talk: Recognition and Understanding of Meetings
	Chart Mining-based Lexical Acquisition with Precision Grammars
	Products of Random Latent Variable Grammars
	Automatic Domain Adaptation for Parsing
	Appropriately Handled Prosodic Breaks Help PCFG Parsing
	Using Confusion Networks for Speech Summarization
	Qme! : A Speech-based Question-Answering system on Mobile Devices
	Dialogue-Oriented Review Summary Generation for Spoken Dialogue Recommendation Systems
	Minimally-Supervised Extraction of Entities from Text Advertisements
	Taxonomy Learning Using Word Sense Induction
	Visual Information in Semantic Representation
	Automatic Evaluation of Topic Coherence
	Multi-Prototype Vector-Space Models of Word Meaning
	Unsupervised Syntactic Alignment with Inversion Transduction Grammars
	Joint Parsing and Alignment with Weakly Synchronized Grammars
	Learning Translation Boundaries for Phrase-Based Decoding
	Hitting the Right Paraphrases in Good Time
	Training Paradigms for Correcting Errors in Grammar and Usage
	Using Mostly Native Data to Correct Errors in Learners' Writing
	Unsupervised Modeling of Twitter Conversations
	Streaming First Story Detection with application to Twitter
	Unsupervised Model Adaptation using Information-Theoretic Criterion
	Formatting Time-Aligned ASR Transcripts for Readability
	Cheap, Fast and Good Enough: Automatic Speech Recognition with Non-Expert Transcription
	Contextual Information Improves OOV Detection in Speech
	Improved Extraction Assessment through Better Language Models
	Language Identification: The Long and the Short of the Matter
	Inducing Synchronous Grammars with Slice Sampling
	Task-based Evaluation of Multiword Expressions: a Pilot Study in Statistical Machine Translation
	Improving Semantic Role Labeling with Word Sense
	Extending the METEOR Machine Translation Evaluation Metric to the Phrase Level
	Testing a Grammar Customization System with Sahaptin
	Two monolingual parses are better than one (synchronous parse)
	Fast Query for Large Treebanks
	Efficient Parsing of Well-Nested Linear Context-Free Rewriting Systems
	Utility Evaluation of Cross-document Information Extraction
	Evaluation Metrics for the Lexical Substitution Task
	Movie Reviews and Revenues: An Experiment in Text Regression
	Using Gaussian Mixture Models to Detect Figurative Language in Context
	Improving Phrase-Based Translation with Prototypes of Short Phrases
	Putting the User in the Loop: Interactive Maximal Marginal Relevance for Query-Focused Summarization
	Improving Blog Polarity Classification via Topic Analysis and Adaptive Methods
	Creating Local Coherence: An Empirical Assessment
	Time-Efficient Creation of an Accurate Sentence Fusion Corpus
	Towards Cross-Lingual Textual Entailment
	A Comparative Study of Word Co-occurrence for Term Clustering in Language Model-based Sentence Retrieval
	Information Content Measures of Semantic Similarity Perform Better Without Sense-Tagged Text
	Generating Expository Dialogue from Monologue: Motivation, Corpus and Preliminary Rules
	The Simple Truth about Dependency and Phrase Structure Representations: An Opinion Piece
	Word Alignment with Stochastic Bracketing Linear Inversion Transduction Grammar
	Crowdsourcing the evaluation of a domain-adapted named entity recognition system
	Generalizing Hierarchical Phrase-based Translation using Rules with Adjacent Nonterminals
	The Effect of Ambiguity on the Automated Acquisition of WSD Examples
	Word Sense Subjectivity for Cross-lingual Lexical Substitution
	Query Ambiguity Revisited: Clickthrough Measures for Distinguishing Informational and Ambiguous Queries
	For the sake of simplicity: Unsupervised extraction of lexical simplifications from Wikipedia
	Predicting Human-Targeted Translation Edit Rate via Untrained Human Annotators
	Improving Semantic Role Classification with Selectional Preferences
	Generalizing Syntactic Structures for Product Attribute Candidate Extraction
	``cba to check the spelling'': Investigating Parser Performance on Discussion Forum Posts
	Coreference Resolution in a Modular, Entity-Centered Model
	Stream-based Translation Models for Statistical Machine Translation
	Extracting Parallel Sentences from Comparable Corpora using Document Level Alignment
	Statistical Machine Translation of Texts with Misspelled Words
	Everybody loves a rich cousin: An empirical study of transliteration through bridge languages
	Discriminative Learning over Constrained Latent Representations
	Some Empirical Evidence for Annotation Noise in a Benchmarked Dataset
	Bayesian Inference for Finite-State Transducers
	Distributed Training Strategies for the Structured Perceptron
	Term Weighting Schemes for Latent Dirichlet Allocation
	Learning Dense Models of Query Similarity from User Click Logs
	Learning to Link Entities with Knowledge Base
	Improving the Multilingual User Experience of Wikipedia Using Cross-Language Name Search
	Learning Words and Their Meanings from Unsegmented Child-directed Speech
	Subword Variation in Text Message Classification
	Automatic Diacritization for Low-Resource Languages Using a Hybrid Word and Consonant CMM
	Urdu Word Segmentation
	Enabling Monolingual Translators: Post-Editing vs. Options
	Online Learning for Interactive Statistical Machine Translation
	The Best Lexical Metric for Phrase-Based Statistical MT System Optimization
	Variational Inference for Adaptor Grammars
	Type-Based MCMC
	Painless Unsupervised Learning with Features
	Linguistic Steganography Using Automatically Generated Paraphrases
	Prenominal Modifier Ordering via Multiple Sequence Alignment
	Good Question! Statistical Ranking for Question Generation
	Not All Seeds Are Equal: Measuring the Quality of Text Mining Seeds
	Extracting Glosses to Disambiguate Word Senses
	Can Recognising Multiword Expressions Improve Shallow Parsing?
	A Simple Approach for HPSG Supertagging Using Dependency Information
	Ensemble Models for Dependency Parsing: Cheap and Good?
	Enlarged Search Space for SITG Parsing
	Improving Data Driven Dependency Parsing using Clausal Information
	A Treebank Query System Based on an Extracted Tree Grammar
	Reranking the Berkeley and Brown Parsers
	An Exploration of Off Topic Conversation
	Making Conversational Structure Explicit: Identification of Initiation-response Pairs within Online Discussions
	Engaging learning groups using Social Interaction Strategies
	Using Entity-Based Features to Model Coherence in Student Essays
	Summarizing Microblogs Automatically
	Automatic Generation of Personalized Annotation Tags for Twitter Users
	Language identification of names with SVMs
	Integrating Joint n-gram Features into a Discriminative Training Framework
	A Hybrid Morphologically Decomposed Factored Language Models for Arabic LVCSR
	Is Arabic Part of Speech Tagging Feasible Without Word Segmentation?
	Arabic Mention Detection: Toward Better Unit of Analysis
	An MDL-based approach to extracting subword units for grapheme-to-phoneme conversion
	Extracting Phrase Patterns with Minimum Redundancy for Unsupervised Speaker Role Classification
	Classification of Prosodic Events using Quantized Contour Modeling
	Investigations into the Crandem Approach to Word Recognition
	Constraint-Driven Rank-Based Learning for Information Extraction
	Softmax-Margin CRFs: Training Log-Linear Models with Cost Functions
	Bitext-Based Resolution of German Subject-Object Ambiguities
	Invited Talk: Music, Language, and Computational Modeling: Lessons from the Key-Finding Problem
	An Efficient Algorithm for Easy-First Non-Directional Dependency Parsing
	From Baby Steps to Leapfrog: How ``Less is More'' in Unsupervised Dependency Parsing
	Relaxed Marginal Inference and its Application to Dependency Parsing
	Optimal Parsing Strategies for Linear Context-Free Rewriting Systems
	The viability of web-derived polarity lexicons
	Dependency Tree-based Sentiment Classification using CRFs with Hidden Variables
	Convolution Kernels for Opinion Holder Extraction
	An Unsupervised Aspect-Sentiment Model for Online Reviews
	Joint Inference for Knowledge Extraction from Biomedical Literature
	Clinical Information Retrieval using Document and PICO Structure
	Topic Models for Image Annotation and Text Illustration
	Learning about Voice Search for Spoken Dialogue Systems
	A Direct Syntax-Driven Reordering Model for Phrase-Based Machine Translation
	Context-free reordering, finite-state translation
	Improved Models of Distortion Cost for Statistical Machine Translation
	Why Synchronous Tree Substitution Grammars?
	An extractive supervised two-stage method for sentence compression
	Interpretation and Transformation for Abstracting Conversations
	Quantifying the Limits and Success of Extractive Summarization Systems Across Domains
	Multi-document Summarization via Budgeted Maximization of Submodular Functions
	Cross-lingual Induction of Selectional Preferences with Bilingual Vector Spaces
	Latent SVMs for Semantic Role Labeling using LTAG Derivation Trees
	Unsupervised Induction of Semantic Roles
	Probabilistic Frame-Semantic Parsing
	Expected Sequence Similarity Maximization
	Accurate Non-Hierarchical Phrase-Based Translation
	Model Combination for Machine Translation
	Detecting Emails Containing Requests for Action
	Evaluating Hierarchical Discourse Segmentation
	Reformulating Discourse Connectives for Non-Expert Readers
	Tree Edit Models for Recognizing Textual Entailments, Paraphrases, and Answers to Questions
	Syntactic/Semantic Structures for Textual Entailment Recognition
	Automatic Metaphor Interpretation as a Paraphrasing Task

