
SRI: Description of the JV-FASTUS System Used for MUC-5

Douglas E. Appelt, Jerry R. Hobbs, John Bear

David Israel, Megumi Kameyama, Mabry Tyso n

Artificial Intelligence Center, SRI International

333 Ravenswood Ave ., Menlo Park, CA 94025

INTRODUCTION AND BACKGROUN D

SRI International developed an information extraction system called FASTUS', a permuted acrony m

standing for "Finite State Automata-based Text Understanding System . The choice of acronym is some-

what misleading, however, because FASTUS is a system for information extraction, not text understanding .

The former problem is much simpler and more tractable, characterized by a relatively straightforward spec-

ification of information to be extracted from the text, only a fraction of which is relevant to the extraction

task, and with the author's underlying goals and nuances of meaning of little interest . In contrast, a tex t

understanding task is to recover all of the information in a text, including that which is only implicit in what

is actually written . All the richness of natural language becomes fair game, including metaphor, metonymy ,

discourse structure, and the recognition of the author's underlying intentions, and the full interplay between

language and world knowledge becomes central to the task .

Text understanding is extremely difficult, and presents a number of research problems that have no t

yet been adequately solved . On the other hand, the relative simplicity of the information extraction tas k

means that the full complexity of natural language need not be confronted head-on . In fact, much simple r

mechanisms can be successfully employed to solve the more constrained problem, and in a computationall y

efficient and conceptually elegant way. It was this insight that led to the development of FASTUS fo r

extracting information from articles about terrorism in Latin America for the MUC-4 evaluation [2] [1] .

In contrast to natural-language processing systems designed for text understanding applications, FASTU S

does not do a complete syntactic and semantic analysis of each sentence . Instead, sentences are processed by

a sequence of nondeterministic finite-state transducers . The output of each level of transducers becomes th e

input to the next level . Each level of processing produces some new linguistic structure, and discards som e

information that is irrelevant to the information extraction task . The nondeterminism of the transducers

makes it possible to produce local analyses of fragments of the input that can be combined into a complet e

analysis . There is no need to determine the complete structure of each sentence when such an effort has littl e

payoff for the task at hand . The nondeterminism can also be exploited to produce competing analyses o f

portions of the text . These alternatives can be compared, and the best analysis can be selected for processin g

at subsequent levels, reducing the combinatoric complexity of the subsequent levels .

' FASTUS is a trademark of SRI International .

221

When the transducer for the final level enters a final state, the result is a "raw template" that is unified

with other raw templates from the current and previous sentences . At the final stage, a postprocessor

transforms the raw templates into the form required by the specifications of the task .

The basic architecture of the MUC-5 FASTUS system has evolved from the MUC-4 FASTUS system i n

only minor ways . The primary difference is the addition of a user interface to facilitate rapid developments o f

the system in a new domain . When we developed the MUC-4 FASTUS system, we had extensive experienc e

working in the terrorist domain for the MUC-3 TACITUS system. Before this year, two open question s

existed : (1) Does the FASTUS system provide the basic tools necessary to develop a new information

extraction system from scratch in a short period of time? (2) Does the FASTUS approach succeed wit h

languages significantly different from English? We believe that our MUG5 experience enables us to answe r

both of these questions with a confident "yes ."

In the following discussion, we will refer to the English Joint Venture FASTUS system as EJV-FASTUS ,

and the Japanese system as JJV-FASTUS .

RESULTS OF THE EVALUATIO N

The EJV-FASTUS system achieved an error rate per slot fill of 0 .70 and richness-normalized error of 0 .82 .

The error rate was the third-best result reported, and was exceeded only by systems that had significantly

longer domain-specific development time . The richness-normalized error was the second best of all systems

reported . This error rate corresponds to a recall of 34%, a precision of 56%, and an equally weighted F-metri c

of 42 .67 .

The JJV-FASTUS system achieved an error rate per slot fill of 0 .70 and richness-normalized error of

0 .79 . This was also the third-best error rate of all sites reported, and was exceeded only by systems that ha d

significantly longer development time . This error rate corresponds to a recall of 34%, a precision of 62% ,

and an equally weighted F-meteric of 44 .21 .

After the MUC-4 conference, SRI embarked on an effort to rationalize our MUC-4 system, refine it s

overall architecture, and add a user interface to facilitate defining and maintaining the finite-state transducer s

comprising the system . With the exception of a very skeletal system for English joint ventures based on a

corpus of about 10 articles extracted by hand from current issues of the Wall Street Journal, which was used a s

the basis of a demonstration at the ARPA Human Language Technology (HLT) meeting, no domain-specifi c

development was undertaken until the beginning of April 1993 . The first end-to-end test of EJV-FASTU S

on 100 texts was conducted on April 30, with the result of an unimpressive error rate of 0 .93 (F-measure

6 .02)

A month later, at the end of May, we ran the first end-to-end test of JJV-FASTUS on 100 texts, with an

equally unimpressive error rate of 0 .93 (F-measure 12 .69) . Although we had developed a version of FASTU S

called MIMI (a Japanese word for "ears") for information extraction from Japanese spoken dialogues [3] ,

M I M I's base system is really the same as the English system, since it operates on a Romaji encoding of speec h

rather than on Kanji characters . It was also in the domain of conference room scheduling . JJV-FASTUS

was thus developed from scratch on an entirely new character basis and a new domain .

We succeeded in raising the system performance from this baseline to our reported results in 3 month s

222

Asci i
Text

Tokens
TOKENIZER PREPROCESSO R

Lexical Item s

PHRASE
PARSER

Phrases PHRASE
COMBINER

Phrases DOMAI N
PATTER N

RECOGNIZE R

	RawTemplates

MERGER
Raw

Templates
POST

PROCESSOR
Fina l

Templates

Figure 1 : The EJV-FASTUS Flow of Contro l

of work . We feel that this experience confirms the adequacy of the tools provided by JV-FASTUS for the

rapid development of information extraction systems in new domains and in new languages . We stopped

development of the English system at approximately 3 :00 p .m. on August 1 . At that time, our improvemen t

curve was still extremely steep . Work during the morning of August 1 resulted in a 0 .5 point improvement

in F-measure . We had not even attempted to produce revenue objects, and our treatment of times an d

facilities was extremely sketchy . The improvement curve of the Japanese system was even steeper . When

we stopped development at about 7 :00 p .m., the F-measure had climbed 2 .8 points in one day of work on

fixing the postprocessing routine .

SYSTEM ARCHITECTURE

The basic architecture of the EJV-FASTUS system is illustrated in Figure 1 . The text is input to the

cascade of transducers as a stream of ASCII characters . This amounts to a decision to treat all text a s

unformatted, which for the English joint ventures texts is not unreasonable, since these texts contain ver y

little relevant formatted data such as tables, and when they do occur, their format is idiosyncratic . The firs t

transducer is the TOKENIZER, which produces symbolic and numeric tokens as output . These symbolic

tokens are given to the PREPROCESSOR, which recognizes multiword lexical items, and some company and

personal names, and produces lexical items as output . The PHRASE PARSER then breaks the input stream

into Noun Groups (the part of the noun phrase consisting of determiner, prenominal modifiers and head noun)

Verb Groups (auxiliaries, intervening adverbs, with main verb) and particles (single lexical items, including

conjunctions, prepositions, subordinating conjunctions, and relative pronouns) . The PHRASE PARSE R

also identifies the head of each constituent, which, with some minor exceptions, is the only component of th e

constituent that influences subsequent processing . The PHRASE COMBINER takes the phrases output b y

the PHRASE PARSER and combines them into larger phrases of the same type . For example, adjacent nou n

groups may be merged into appositives, certain prepositional phrases are attached to their noun groups, an d

conjunctions of both verb groups and noun groups are combined . The combined phrases are input to th e

DOMAIN PATTERN RECOGIZER, which nondeterministically matches the sentence against patterns tha t

are relevant to the information to be extracted . The by-product of the match is partially instantiated raw

templates that are merged by the MERGER. Finally a POSTPROCESSOR puts the raw templates int o

223

final form for printing .

The EJV Walkthrough Example

We were dismayed to see that our system did not produce a template in response to the walkthroug h

text . Closer inspection, however, revealed that the system had in fact produced a reasonable analysis for this

text, but the analysis was discarded by the POSTPROCESSOR because it failed a basic consistency check :

the joint venture company had to be distinct from all of its parent entities . Experience has shown that a

failure to satisfy this condition usually arises due to a failure in the merging process, and it turns out tha t

the score is usually improved by discarding what is likely to be a spurious template . Unfortunately, in this

case the strategy resulted in discarding basically correct information . We turned off the filter, and reran th e

example, producing the output listed in Appendix I .

The TOKENIZE R

The TOKENIZER is a simple transducer that accepts ASCII characters as input and produces a stream

of tokens as output . The tokenizer performs the following functions :

• Groups characters into "words . "

• Computes value of numeric tokens .

• Detects abbreviations and determines sentence boundaries .

• Normalizes corporate prefixes and suffixes such as P .T. and Inc .

In case of ambiguity, the ambiguity is resolved in favor of the longest token that can be formed starting a t

the current position in the input stream.

The walkthrough text does not present any unusual difficulties for the TOKENIZER .

The PREPROCESSO R

The PREPROCESSOR accepts the tokens produced by the TOKENIZER as input and produces lexica l

items as output . A lexical item is defined as a token or sequence of tokens that has an entry in the

system's lexicon. During this phase, multiwords are recognized. Proper names of individuals, locations, an d

corporations are considered lexical items, and the PREPROCESSOR makes the first attempt to recogniz e

them .

Case is very important for disambiguating proper and common nouns in English. In texts with both

upper- and lowercase characters, capitalization provides very useful information about which words can o r

cannot be parts of names ; this is not available in uppercase-only texts . Therefore, the PREPROCESSO R

uses separate transducers for recognizing personal and corporate names for mixed-case and uppercase-only

texts .

There are three basic transducers for corporate names . One transducer, which operates on both uppercase-

only and mixed-case texts, recognizes company names that do not appear with a standard suffix like "Inc," o r

"GmbH." A recognizer for mixed-case-text corporate names basically accepts all capitalized words precedin g

224

a suffix like "Inc," with some heuristics to avoid including capitalized words, at the beginning of a sentence ,

that are not part of the name. Uppercase-only texts present more of a problem, because the simple expedient ,

of accepting any noun group preceding the corporate suffix leads to overgeneration of company names, par-

ticularly in cases of lexical ambiguity of the words involved. For example, a sentence like "ALI3ION IRO N

& METAL SAW AN INCREASE IN PROFITS THIS YEAR" would probably result in "ALIHON IRON R•

METAL SAW " as the name of the company, because "saw" can be a noun as well as a verb . To prevent thi s

kind of overgeneration of company names, we restrict the words that can combine to form company name s

to be members of a list of product words that are likely to occur in names . "Iron" and "metal" occur on

this list, while "saw" does not .

This heuristic for recognizing company names in uppercase-only texts caused the most serious proble m

we encountered in the walkthrough example . The first sentence of this example i s

BRIDGESTONE SPORTS CO . SAID FRIDAY IT HAS SET UP A JOINT VENTURE I N

TAIWAN WITH A LOCAL CONCERN AND A JAPANESE TRADING HOUSE TO PRODUCE GOL F

CLUBS TO BE SHIPPED TO JAPAN .

It turns out that "BRIDGESTONE" is known in the lexicon to be the name of a company ; however ,

"SPORTS " was not on the list of product words . Therefore, the system recognized "BRIDGESTONE" as a

company name and as the subject of the sentence, and ignored "SPORTS CO . " as an apositive .

When a company name is recognized, it is entered into the lexicon for the duration of the text, togethe r

with any possible aliases that can be predetermined . The lexicon is restored to its initial state at the end of a

text so any mistakes or perverse company names will have no effect on subsequent processing . For example ,

if an article mentions "Next, Inc . " it is important to recognize "Next" as a company name for the duration

of the text, but that could obviously cause havoc with other texts .

In summary, the preprocessor performs the following functions :

• Groups of words comprising multiword lexical items are collected together .

• Company names that are in the system's lexicon, or composed from lexical entries by systematic rule s

are identified .

• Names of people are identified and grouped by title .

• Groups of words that might, or might not, be companies, are flagged as possible company names .

In case of ambiguity, the longest phrase beginning at the current point in the input string is selected .

The PHRASE PARSER

The next phase accepts the lexical items combined by the preprocessor as input and produces a sequenc e

of phrases as output. The head of each phrase is identified, and if the head of the phrase corresponds t o

an object in the domain for which a template object is defined, then an object of the appropriate type i s

associated with the phrase . For example, if the noun group is "the Japanese company," this noun group is

associated with an ENTITY object whose NATIONALITY slot is Japan .

225

The phrase parser constructs phrases that can be reliably described as a regular language . Attachment

ambiguities are preserved for later phases where they will either be ignored as irrelevant, or combined o n

the basis of domain-specific patterns when the combination can be done reliably .

The basic grammar of English used in this phase is a superset of that used in the MUC-4 FASTU S

system. The main differences involve more detailed processing of numbers consisting of mixed numeri c

and symbolic parts (e .g ., 3 million), currency phrases (e .g ., DM 2500), and the recognition of bank names.

Possible companies are treated as proper nouns and can be combined to form noun groups in the same wa y

as other proper nouns referring to locations, companies, or people .

Lexical ambiguity can lead to multiple analyses at the end of the parsing phase . In general, longer

phrases are preferred to shorter ones . In mixed-case texts, nominals with proper noun heads are preferre d

to other analyses if they are capitalized . In uppercase-only texts, company names are preferred to othe r

analyses because of the central role that companies play in the joint venture domain . However, in uppercase-

only texts, common nouns and verbs are preferred to location names when ambiguity arises, because of th e

relatively large number of locations in the gazetteer that overlap with ordinary English words .

The PHRASE PARSER analyzes the first sentence of the walkthrough example as follows :

CN : "BRIDGESTONE " (0,1) Head : BRIDGESTON E
NG : "SPORTS " (1,2) Head : SPORTS
ACTIVE/PASSIVE : "SAID " (3,4) Head : SAI D
NG : "FRIDAY " (4,5) Head : FRIDAY
NG : "IT " (5,6) Head : IT
ACTIVE : "HAS SET " (6,8) Head : SET
PREP : "UP " (8,9) Head : U P
NG : "JOINT-VENTURE" (9,12) Head : JOINT-VENTURE
PREP : "IN " (12,13) Head : IN
LOC : "TAIWAN " (13,14) Head : TAIWA N
PREP : "WITH " (14,15) Head : WITH
NG : "LOCAL CONCERN " (15,18) Head : CONCERN
CONJ : "AND " (18,19) Head : AND
NG : "JAPANESE TRADING HOUSE " (19,23) Head : HOUSE
INF : "TO PRODUCE " (23,25) Head : PRODUCE
NG : "GOLF CLUBS " (25,27) Head : CLUBS
INF : "TO BE " (27,29) Head : B E
ACTIVE/PASSIVE : "SHIPPED " (29,30) Head : SHIPPED
PREP : "TO " (30,31) Head : T O
LOC : "JAPAN " (31,32) Head : JAPA N

At this point the system has entity objects representing a company named "BRIDGESTONE," a "JOINT -

VENTURE" and a "LOCAL CONCERN ." The local concern has a location of "TAIWAN" because tha t

was the most recently mentioned location . The system did not realize that a noun group with the head

"HOUSE" could refer to a company, so no entity is created for "JAPANESE TRADING HOUSE . "

The PHRASE COMBINE R

The PHRASE COMBINER attempts to simplify the job of the final domain pattern recognizer by

combining phrases from the initial parse into larger phrases whenever this is feasible . This combination

takes place in a hierarchy of stages, so that various combination operations can be prioritized . For example ,

the attachment of certain prepositional phrases is performed before conjunction combination, so conjunctio n

can apply to noun groups with prepositional phrases attached .

226

Each level of the phrase combination phase has two subphases : a defeat subphase, and a pattern matchin g

subphase . If a pattern in the defeat subphase matches the input, then that string is prevented from matchin g

any pattern in the matching subphase . For example, in general, "for" and "of" prepositions attach almos t

always to their closest noun group . These attachments are routinely made except in two cases : (1) a verb

explicitly subcategorizes for a "for" or "of" complement, or (2) the subject and object of the prepositio n

form an important domain pattern that is recognized during the next phase (e .g ., "the production of gol f

clubs") . In these cases, defeat patterns are written to match the input and prevent the PP-attachment rule

from operating .

The PHRASE COMBINER performs the following tasks :

• Adjacent location noun groups are merged when the result of the merger is consistent with the infor-

mation in the gazetteer (e .g ., Palo Alto, California) .

• Noun groups with company words as heads are combined with appositives, genitives, and preposition s

to provide further information about the entity (e .g ., Foobarco, the California company, Japan's Kob e

Steel, or Aerospatiale of France) . If any of the company names in the input are only possible companie s

(like Foobarco), matching one of these patterns will cause the possible company to be recognized as a

company for the duration of the text .

• Appositives and prepositions that associate people with titles and companies are combined, and thei r

semantics processed (e .g ., John Smith, president and CEO of Foobarco) . Any possible company tha t

matches the pattern is promoted to an actual company.

• Conjunctions of company names are combined (e .g ., IBM, General Motors, and Foobarco) . Again ,

possible companies can be promoted if they match the pattern .

• Certain patterns that can reliably be used to promote possible companies to actual companies are

recognized, even though they do not directly contribute any information to template slots (e .g., the

board of directors of Foobarco) .

• Conjoined verb groups are recognized, as are certain phrases that can be treated by subsequent analysis

as complex verb groups (e.g ., manufacture and market, planning to set up, announced a plan to form) .

• Finally, "of" and "for" prepositions are attached to their adjacent noun groups, and conjoined noun

groups are combined, unless this is overridden by defeat patterns .

As an example of the operation of the PHRASE COMBINER, consider the system 's processing of the

second sentence of the walkthrough text :

CN : "JOINT-VENTURE BRIDGESTONE " (0,5) Head : BRIDGESTON E
NG : "SPORTS " (5,6) Head : SPORT S

LOC: "TAIWAN " (6,7) Head : TAIWAN

ACTIVE/PASSIVE : "CAPITALIZED " (9,10) Head : CAPITALIZED

PREP : "AT " (10,11) Head : AT
NG : "20 MILLION NEW TAIWAN DOLLARS" (11,16) Head: DOLLARS
ACTIVE : "WILL START " (17,19) Head: START
NG : "PRODUCTION " (19,20) Head : PRODUCTIO N
PREP : "IN " (20,21) Head : I N
NG : "JANUARY 1990 " (21,23) Head : -DATE-
PREP : "WITH " (23,24) Head : WITH

NG: "PRODUCTION " (24,25) Head: PRODUCTION

227

PREP : "OF " (25,26) Head : O F

NG : "20000 IRON AND METAL WOOD CLUBS " (26,32) Head : CLUB S
NG : " MONTH " (32,34) Head : MONTH

The PHRASE COMBINER combined two noun groups in this sentence . The combination producing

"20000 IRON AND METAL WOOD CLUBS" was correct . Unfortunately, because of the problem cite d

above with the word "SPORTS , " the system did not correctly recognize the joint venture company name, an d

the combiner formed the appositive "JOINT VENTURE BRIDGESTONE" and assigned BRIDGESTON E

the role as the joint venture company . Of course, BRIDGESTONE was already identified as one of th e

parent entities, so this was the source of the mistake that led to discarding the entire analysis of this text .

In addition, because the previous sentence said that the joint venture was "in Taiwa n" we identified Taiwan

as the location of Bridgestone .

The DOMAIN PATTERN RECOGNIZER

The DOMAIN PATTERN RECOGNIZER does the most critical work of the system by recognizin g

phrases that establish the most important relationships to be extracted . The DOMAIN PATTERN REC-

OGNIZER takes the output of the PHRASE COMBINER as input, and produces raw templates as output .

The PATTERN RECOGNIZER of the MUC-4 system had only one subphase, but it was recognized tha t

because of the limited development time available we could not possibly account for all the possible way s

joint venture relationships could be expressed . Therefore, it was decided to implement the JV-FASTU S

PATTERN RECOGNIZER as a multiphase process . The outputs of the earlier phases would be kept by the

system only as long as they were consistent with outputs found in the later phases . Thus, the earlier phase s

of the PATTERN RECOGNIZER could be used to implement extremely general, loose patterns that coul d

serve as defaults that could be defeated by the output of more precise, specific patterns at higher levels .

Inspection of the corpus revealed that there are three basic, general patterns that indicate joint ventur e

relationships with surprisingly high reliability . They are

• <company-name>++ "joint venture" <company-name >

• <company-name> "joint venture " <company-name>++

• <company-name>* "joint venture" <company-name> *

The first pattern means that at least two occurrences of company names precede the words "joint venture"

(ignoring all other words) and a single company name follows the words "joint venture ." The parent entitie s

are the first set of companies, and the joint venture entity is the singular one . Typical instances of thi s

pattern are "The Toyota - General Motors joint venture, NUMMI . . . " and "IBM and Intel formed a joint

venture called Foobarco ." The second pattern is the "passive" variant of the first (although verb groups an d

their properties are completely ignored), which matches sentences like "Foobarco is a joint venture forme d

by IBM and Intel . " Finally, the third pattern matches sentences that do not meet the number constraints of

the above pattern . In that case, all of the entities are parents . An example is "IBM formed a joint venture

with Intel to produce mainframes in Timbuktu."

It is, of course, easy to think of counterexamples to the above patterns . The patterns help recall much

more than they hurt precision, however, because they are only defaults that can be defeated by more precis e

228

information . We were initially skeptical that the inclusion of such vague patterns would actually enhanc e

system performance . However, a test showed that they improved the system's F-metric by approximately 6

points .

We eventually settled on three levels for the PATTERN RECOGNIZER . The first level consisted of the

above patterns, the second level consisted of a very general pattern for recognizing ownership percentage s

with active verbs (which, like the above patterns, never actually examined the verbs or their properties) ,

and the third level included a similar pattern for passive ownership percentages (which is more constrained

because of the frequent use of the preposition "by ") together with more obviously motivated patterns for

joint ventures and products .

In the walkthrough example in the first sentence, the system recognized the pattern "BRIDGESTON E

. . . SAID IT HAS SET UP A JOINT VENTURE . . . WITH A LOCAL CONCERN ." This pattern led to a

tie-up relationship with Bridgestone and a company as parent entities . The adverbial "IN TAIWAN" wa s

recognized nondeterministically by a different pattern that caused "TAIWAN " to be recorded as a defaul t

location for the joint venture, and to provide a referent for "local" in "LOCAL CONCERN . " As mentione d

previously, the system did not realize that "JAPANESE TRADING HOUSE " was a company .

The MERGER

The MERGER operates at the end of each sentence in two steps : first all the raw templates found in a

single sentence are merged to the extent possible, and then the remaining templates are merged with an y

templates from previous sentences .

There are two types of merge operations : full merges on templates of like types, and default merges

on templates of different types . Full merges are like unification operations, merging each slot of the two

templates recursively, each time determining the best alignment for elements of a slot when the slots ca n

contain multiple fills .

Default merges involve templates of different types . If it is possible for the template of one type to fill a

slot, or merge with the slot contents of one of the slots in the other template, and certain other condition s

are satisfied, then the merger is accomplished by filling in the appropriate slot . Default merging allows the

combination of information from disparate parts of the text into a single tie-up schema. Default merges ar e

allowed as long as the parts occur reasonably near each other in the text . We have found the best result s

with allowing default merges over a distance of two sentences.

In the walkthrough example, as previously mentioned, the entity for Bridgestone was merged with th e

joint venture company because of the appositive, and because the company name was incorrectly recognized .

Then, the pattern recognizer recognizes the sequences "BRIDGESTONE . . . CAPITALIZED AT 20 MIL-

LION NEW TAIWAN DOLLARS" , leading to an instantiation of a tie-up relationship with the joint ventur e

company BRIDGESTONE, and an OWNERSHIP object giving the capitalization, and "PRODUCTION O F

2000 IRON AND "METAL WOOD " CLUBS" as an activity and industry with appropriate industry-typ e

and product/service slot fills . The tie-up relationship combines in a full merge with the tie-up relationship

from the previous sentence, and since nearness constraints are satisfied, the activity object is attached t o

the tie-up relationship at this time .

229

The next sentence partially matches the passive-ownership pattern ; however, full recognition of the pat -

tern was blocked by the failure to correctly recognize the company name "UNION PRECISION CASTIN G

CO . " and the erroneous attachment of "AND THE REMAINDER" to the previous noun group as a con-

junction . The result was a tie-up relationship with an ownership template attributing 75% ownership t o

Bridgestone, which merged in a full merge with the previously found tie-up relationship and ownership . This

example illustrates the crucial importance of recognizing company names in this domain . If the compan y

names had been correctly recognized here, the system's output would have been nearly perfect . As a direct

result of name recognition failure, compounded errors led to a much less satisfactory result .

Finally, spurious activity and industry templates are produced from the next sentence, which recognize s

"PRODUCTION OF GOLF CLUB PARTS " and attaches it to the tie-up relationship in a default merge,

because nearness constraints are satisfied.

The POSTPROCESSO R

The output of the PATTERN RECOGNIZER is raw templates . These templates match the structure o f

the officially specified templates rather closely, but they contain enough differences to require normalizatio n

of the output before printing so they will meet the specifications of the task . This task falls to the POST-

PROCESSOR . The POSTPROCESSOR is a rather complicated and task-specific piece of code that perform s

several, mostly uninteresting functions . The following tasks are assigned to the POSTPROCESSOR :

• ENTITY RELATIONSHIP objects are generated for entities involved in joint ventures . (Subordinat e

ENTITY RELATIONSHIPs are generated as a result of patterns recognized when the text is processed .)

• Ordered pair slots are constructed where required. (The system treats ordered-pair fills as full ob-

jects, as they were in the original TIPSTER specifications, because this makes the merging algorith m

simpler .)

• String fills are extracted from the original text, rather than printed in the normalized, uppercase for m

used liy JV-FASTUS .

• Company names are extracted from the original text and normalized to ensure compliance with th e

specific ations .

• Locations are disambiguated and normalized using information from the gazetteer .

• SIC codes for product-service strings are generated . Associating these codes with strings is really blac k

magic, and the keys are very inconsistent, and in some cases clearly wrong . We fill them in for those

cases where we feel•we can guess the right answer at least 50 percent of the time .

• Dates are normalized and printed according to specifications .

JAPANESE JV-FASTU S

The JJV-FASTUS architecture is largely the same as that of EJV-FASTUS except that a public-domai n

morphological analyzer, Kyoto University's JUMAN, replaces both the TOKENIZER and the LEXICON i n

the English system . Although the remaining flow of control starting from the PREPROCESSOR and endin g

with the POSTPROCESSOR is the same, operations performed at each phase do not always coincide .

230

The JJV Walkthrough Example

In the initial run, the system recognized two tie-up relationships, but not exactly correctly . The secon d

one lacked two of the three companies involved . No industries or activities were recognized . After the fe w

minor changes described below, all relevant companies were correctly recognized, and the relevant activitie s

and industries started showing up . The output is listed in Appendix II .

JUMAN

JUMAN is both the TOKENIZER and LEXICON in JJV-FASTUS . We customized JUMAN's approx-

imately 16,000-word lexicon in two ways : (1) eliminating words that contain numerical information (e .g . ,

touka `the 10th day (of the month)) so that numerical information can be independently computed, an d

(2) dividing proper names into three categories, syamei `company name', chimei `location name', and jinmei

`person name' . This lexicon then became the JJV-FASTUS lexicon .

An entire text is first input into JUMAN as a character stream . JUMAN outputs a sequence of morpheme s

with morphological categories . We let the preference heuristics internal to JUMAN choose the single bes t

segmentation . We estimate the accuracy of this process to be about 95% . Higher accuracy may be gaine d

by obtaining "all possible" segmentations from JUMAN and having FASTUS choose among them . One of

JUMAN's categories is MITEIGIGO `undefined word ' for anything not found in the lexicon . This turned

out to be a useful category. Since the basic vocabulary was already covered, these unknown words wer e

mostly names or parts of names . It also made the system robust . There was no need to keep adding words

to the lexicon in order cover unrestricted texts . The "jumanized" text, a sequence of morphemes with thei r

categories, is then passed on to the subsequent phases one sentence at a time .

The PREPROCESSOR

The PREPROCESSOR 's role is relatively small in the Japanese system . Its main job is to assign

numerical information on all incarnations of numerical characters, both Chinese and Roman, includin g

interpreting a big fat circle "O " to be "zero" . Most morphemes are simply passed on to the next phase .

The PHRASE PARSER

The PHRASE PARSER takes a sequence of morphemes with JUMAN categories as input, and outputs a

sequence of small phrases in three major categories — Noun Group, Verb Group, and Particle, each of whic h

is further subcatgorized into useful categories such as COMPANY, PERSON, and COUNTRY . The head of

each phrase is recognized, and domain objects such as ENTITY, LOCATION, and FACILITY are created

in association with the referring phrases . The following is the PHRASE PARSER analysis of the first hal f

of the second sentence in the walkthrough example . Each line lists the category, phrase string, span of wor d

count, and the phrase head .

COMPANY : " He

	

id--h

	

" (0,4) Head : HWrAltf t
COMMA: ", " (4,5) Head : ,
COMPANY : "IBJ attLE

	

" (5,6) Head : Isl fll ti l
ADNOMPTL : "v) " (6,7) Head : 0'
NOUN : "i ±" (7,8) Head : ME

231

HEADNGPTL : "Y2 " (8,9) Head : I
COMPANY : "Ill — " (9,10) Head : W-
TO'PTL: " t " (10,11) Head :
GERUND : "M1v-C " (11,12) Head : tfalv-C

NOUN : "If �it ag, " (12,15) Head : tra n

HEADNGPTL : "k " (15,16) Head : '
TIME : "A(" (16,17) Head : jam (

COMMA: ", " (17,18) Head : ,
FINITE : "Wjl # " (18,20) Head : *YE
NOUN : "I " (20,21) Head : 1-9

The PHRASE PARSER attempts the initial recognition of company names. Since there is no upper -

lowercase distinction in Japanese, name recognition is often a guess, sensitive to the local linguistic context .

This is perhaps analogous to the uppercase-only texts in English. The plausible company names recog-

nized at this phase are basically ANYTHING followed by sya `company' , guruupu `group ' , or one or more

INDUSTRY TYPE NOUNs .

Each proposed company name is checked to see if it could be (1) an alias of a previously recognize d

company name, (2) the full name of an existing shorter name, or (3) a brand new name. After this decision ,

ENTITY objects for the given text are updated accordingly . In the above example, three companies ar e

recognized, the first of which is a sequence of four common nouns and the last three of which are INDUS-

TRYTYPE NOUNs . The other two are company names in the lexicon .

A plausible alias is determined as follows . Given two names X and Y, X is an alias of Y if (1) X is two o r

more characters long and is a proper initial substring of Y (e .g .,	 	 h. for 1' :

	

A`$c̀'

	

), (2) X end s

with a company ending a, and without the company ending is a proper initial substring of Y (this substrin g

can be only one character long) (e .g ., *a for * A 1•a), (3) X is three or more characters long and is a

noninitial substring of Y that contains a dot (typically for a foreign name) (e .g ., 71'-n A- for 7 Sty. •

a), or (4) X ends with a company ending, and without the company ending matches criterion (3) (e .g ., 71-

-z)4± for T 3t 1. • ~]--:A-a) .

In the walkthrough example, we see two spurious aliases, gAXiLE and El for ENTITY p Pik

XE . These appear to be the names of possible companies recognized during parsing this long nam e

and were picked up by the longest name as possible aliases .

The PHRASE COMBINE R

The PHRASE COMBINER forms longer noun phrases. One of the most complex graphs is dedicated

to the parenthetical information about the headquarters location, personnel, and so forth that typicall y

comes immediately after the first mention of a company — for instance, f Q) :i

	

7

9 ± (*t-:' -775-1

	

.(:i$) 'West German engineering company, Mellow Compan y

(headquarters Wurzburg City, president Mr . Eberlein)' . Conjunctions of companies are also packed together

here — for instance, the first five phrases in the above output are combined into one longer phrase El i k

R- RIAt ±

	

o~ lth with category COMPANY .

Whenever a pattern calls for a phrase of category COMPANY in this and subsequent phases, one o f

category UNKNOWN, NAME, or NOUN could also make the transition . When the latter succeeds into a

final state, it is `promoted' to a COMPANY. This is analogous to the treatment of `possible ' versus `actual '

companies in EJV-FASTUS .

232

The DOMAIN PATTERN RECOGNIZE R

Once COMPANY phrases are clearly recognized, the key patterns reporting tie-up relationships can b e

captured at a higher level such as : (1) COMPANY1 wa/ga COMPANY2 to TIE-UP-VERB . . ., (2) COM-

PANY1 to TIE-UP-VERB COMPANY2 wa/ga . . . Phrases of UNKNOWN, NAME, and NOUN subcategorie s

of Noun Group are also considered as potential COMPANYs in these patterns . The current system actually

overgenerates company entities .

The ambiguities in tie-up relationships in the second sentence of the walkthrough example are not rec-

ognized in JJV-FASTUS. It simply places all three companies as partners in one tie-up .

Patterns for activities and industries were harder to define for a number of reasons, including :

• There is a wide variety of sentence patterns, often lacking explicit subject noun phrases .

• Indeterminacy — since verbs come at the end of the sentence, relevance cannot be known early in th e

sentence .

• Relations to particular companies and tie-up relationships are often unclear in the given sentence o r

in the previous sentence .

In the initial run of the walkthrough example, no industries were recognized, because the key verbs, uridashita

` started selling' and hatsubai sum `start selling ' , were not part of the known INDUSTRY VERBs . Simply

by adding them to the list, two SALES industries (not FINANCE as in the keys) and associated activitie s

were recognized .

The MERGER and POSTPROCESSOR operations in JJV-FASTUS were basically the same as in the

English system . Throughout the cascade of transducers, JJV-FASTUS used the same preference heuristic s

as EJV-FASTUS, namely, the preference for the longest string .

In summary, despite the extreme dissimilarity starting from character sets all the way up to where to

put the negation in the sentence, the English and Japanese JV-FASTUS systems share the same basi c

architecture, design philosophy, preference heuristics, three major phrase categories (Noun Group, Ver b

Group, and Particle), and merging strategies . They were developed in an equally short time, and achieve d

an equally competitive performance level .

CONCLUSION

Our experience with the MUC-5 evaluation leaves us believing more strongly than ever that the FASTU S

system is the best approach to the text information extraction problem, and that the technology is now rip e

for application to real-world problems . Our experience has shown that

• Information can be extracted from text very rapidly .

• It is possible to bring a system up to a high level of performance very quickly given the right set o f

tools . FASTUS provides us with the tools we need .

• The system architecture can be straightforward, conceptually simple, and easily understood .

Future research in this area should be directed toward the application of this technology to increasin g

analyst productivity. Open questions are how a generic information extraction system like FASTUS ca n

233

he customized to a particular application like JV-FASTUS without extensive intervention from its original
developers . Interesting ideas to investigate are how a system can automatically acquire information from a

corpus of related texts, or from learning and generalizing from observing analysts annotating texts .

References

[1] Appelt, Douglas, Jerry Hobbs, John Bear, David Israel, and Mabry Tyson . FASTUS: a finite-state

processor for information extraction from real-world text . In the Proceedings of the International Join t

Conference on Artificial Intelligence, 1993 .

[2] Hobbs, Jerry, Douglas Appelt, John Bear, David Israel, and Mabry Tyson. FASTUS: a system for

extracting information from natural-language text . Technical Note No . 519 . SRI International Artificial

Intelligence Center . 1992 .

[3] Kameyama, Megumi, and Isao Arima. A minimalist approach to information extraction from spoken dia-

logues . In Proceedings of the International Symposium on Spoken Dialogue (ISSD-9.9), Waseda University,
Tokyo, November 10-12, 1993 .

Appendix I

The output produced by EJV-FASTUS on the walkthrough text, with consistency filtering turned off :
<TEMPLATE-0592-1> : =

DOC NR : 0592

DOC DATE : 24118 9

CONTENT : <TIE_UP_RELATIONSHIP-592-35>

<TIE_UP_RELATIONSHIP-592-35> : _

TIE-UP STATUS : EXISTING

ENTITY : <ENTITY-592-7 >

<ENTITY-592-1 >

JOINT VENTURE CO : <ENTITY-592-1 >

OWNERSHIP : <OWNERSHIP-592-13>

ACTIVITY : <ACTIVITY-592-22>

<ACTIVITY-592-11>

<ENTITY-592-7> : _

TYPE : COMPANY

ENTITY RELATIONSHIP : <ENTITY_RELATIONSHIP-592-2 >

<ENTITY-592-1> : _

NAME : BRIDGESTONE

LOCATION : Taiwan (COUNTRY)

TYPE : COMPANY

ENTITY RELATIONSHIP : <ENTITY_RELATIONSHIP-592-2 >

<OWNERSHIP-592-13> : _

TOTAL-CAPITALIZATION : 20000000 TWD

OWNED : <ENTITY-592-1 >

OWNERSHIP-'. : (<ENTITY-592-1> 75)

<ACTIVITY-592-22> : =

INDUSTRY : <INDUSTRY-592-22 >

ACTIVITY-SITE : (Taiwan (COUNTRY) -)

<ACTIVITY-592-11> : _

INDUSTRY: <INDUSTRY-592-11 >

ACTIVITY-SITE : (Taiwan (COUNTRY) -)

<ENTITY_RELATIONSHIP-592-2> : =

ENTITY1 : <ENTITY-592-7 >

<ENTITY-592-1 >

ENTITY2 : <ENTITY-592-1 >

REL OF ENTITY2 TO ENTITY1 : CHILD

STATUS : CURRENT

<INDUSTRY-592-22> :=

INDUSTRY-TYPE : PRODUCTIO N

PRODUCT/SERVICE : (- "GOLF CLUB PARTS")

<INDUSTRY-592-11> :=

INDUSTRY-TYPE : PRODUCTION

PRODUCT/SERVICE : (- "20,000 IRON AND "METAL WOOD" CLUBS")

234

Appendix II

The output produced by JJV-FASTUS on the walkthrough text .

<T v 7 L - 1, -0002-2> : _

a'G

	

000 2

Ef f'SP Q : 85010 8

M : <Mg-2-4>

<, -2-2>

< , -2-4> : =

s' ,f 74– : <s :/T45-4--2-9>

<s :/5- 5- - -2-8>

	

<,.x. :/5- 4

	

- -2-10>

ROME : <,

	

►j -2-2>

< tlj -2-2> .

: <

	

-2-1>

SR : (- <sVT4T4--2-9>)

< -2-1> . _

26$11 :
CAA • "9--

	

: (50 ~~

	

Ap tz-4 Y ")

< .= ;/T45-4--2-10> . _

s%745-4-C :

s. :/5- 4 5- 4 –SU :
s/T4T4-P. : <.=/T474-I -2-1>

<•= Y5- 4

	

–W -2-1> : =

sY5- 4 5- 4 –Z : <s :/T 4 5-4- -2-9>

<s :/5- 4T4--2-8>

<s ;/T ,f 4 -.2-10 >

Ff7, : "– 1 -

tta:

.r y T4T4- : QMfAP. "

DlZ :
„ El MtACkit. .l; .,

•' BfAt

sy T4T4-Dl : I

z/5- 7 4 - { <. =v 5-4 4 -RI -2-1>

<s :/ TTT4 --2-9>

.z. :/5- 4 T t

s%5-4 5- 4

	

ILA
Z

	

-f 5- 4 -Dg% -2-1 >

<, -2-2> : =

s iT~f -f - : <s

	

45--

<-=Y5-45-4- -2-2>

iult lj <ffYfiulJ -2-1>

<,

	

ttnb -2-1> : =

: <

	

-2-1>

S1 f : (- <X :/T45-4--2-1>)

<s ;' 4 4 - -2-2> : =

s/T45-4–M: <sv5-474--NI%-2-2 >

<-==/t ,f t-. 4 –ga% -2-2> : =

s :/4(54--Z. : <s :'T4 4--2-1>

<s ;/T4T4--2-2>

IfI ttZlA : it- 1- * -

<s v 5- 4 5-4 - -2-1> : =

x ;/5- 45-4 – :

	

ICft

$ilk : ,.

s ;/5-4 T 4 -SQ:

=- :/t- 45--'4 – {A :

	

t- ' 4 –N% -2-2>

235

