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Abstract
We present a novel and general approach for fast and efficient non-sequential browsing of sound in large archives that we know little or
nothing about, e.g. so called found data – data not recorded with the specific purpose to be analysed or used as training data. Our main
motivation is to address some of the problems speech and speech technology researchers see when they try to capitalise on the huge
quantities of speech data that reside in public archives. Our method is a combination of audio browsing through massively multi-object
sound environments and a well-known unsupervised dimensionality reduction algorithm (SOM). We test the process chain on four data
sets of different nature (speech, speech and music, farm animals, and farm animals mixed with farm sounds). The methods are shown to
combine well, resulting in rapid and readily interpretable observations. Finally, our initial results are demonstrated in prototype software
which is freely available.
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1. Introduction
1.1. Found data for speech technology
The availability of usable data becomes ever more impor-
tant as data-driven methods continue to dominate virtually
every field. Numerous organisations (e.g. the Wikime-
dia Foundation1, the World Wide Web Consortium2, and
the Open Data Institute3) push hard for Open Data. Al-
though language data, and speech data in particular, is rid-
dled with complex legally restricting considerations (Ed-
lund and Gustafson, 2016) and less likely to be ”non-
privacy-restricted” and ”non-confidential” as required of
Open Data, the use of data-driven methods in language
technology (LT) and speech technology (ST) is nothing less
than a modern success story. In the intersection of LT and
other fields, such as history and politics, social sciences and
health (Gregory and Ell, 2007; Sylwester and Purver, 2015;
Zhao et al., 2016; Pestian et al., 2017), traditional data-
driven methods play a significant role. Data is arguably yet
more crucial in ST, and for decades, funding agencies have
spent considerable resources on projects that record speech
data. These efforts have been dwarfed by the vast amounts
of user data that are being gathered by multinational corpo-
rate giants for the betterment of their proprietary technolo-
gies.
In contrast, comparable amounts of data are not available to
academia and smaller companies. As a result, at least when
it comes to the LT and ST tasks that are targeted by the
major commercial players, systems developed by smaller
entities do not have a chance to compete. This resource
gap raises concerns: what happens if the giants decide to
charge large sums for their solutions once we have grown
accustomed to getting them cheap? How does one conduct
research that requires solutions to work on tasks different
from those targeted by the giants? And how do we analyse
data recorded under entirely different circumstances? As it

1https://en.wikipedia.org/wiki/Wikidata
2https://www.w3.org/
3https://theodi.org/

stands, the truth is that without proprietary solutions, it is
difficult to achieve high-quality results.
A pressing question, then, is how can we make sufficiently
large and varied speech data sets available for research and
development? A stronger focus on collaboration and shar-
ing of new data, in particular data that has been gathered
using public resources, is likely to improve matters (Ed-
lund and Gustafson, 2016), as is crowdsourcing. Another
solution is found data – data not recorded for purposes
of ST research – and in particular speech found in pub-
lic archives. Data from public archives ticks many boxes
for speech and ST research: there are great quantities of
data to be found, in near endless supply. In Sweden alone,
the two largest archives (ISOF and KB) host 13000 hours
and 7 million hours of digitised audio and video record-
ings (with a current yearly growth well over half a million
hours), respectively. Additionally, the data comes from a
wide range of situations and time periods, making up a lon-
gitudinal record of speech. And though the speech archives
are routinely disregarded by archive researchers for practi-
cal reasons – listening through speech is simply too time
consuming and cumbersome – focus on better access to the
data will generate new research far beyond speech research
and technology (Berg et al., 2016).
This type of data is the rule rather than the exception in
LT. People are rarely asked to generate text in order to
create data. In ST, the reverse holds: creating data from
scratch is commonplace. The main reason is that speech
is so variable. Speech analysis has often been deemed in-
tractable without controlling for variables such as situation,
task, room acoustics, microphone, speaker (dialects, native
language, even personality type). Current speech analy-
sis methods are by-and-large created for known, relatively
clean speech data. Archive data is notoriously noisy and un-
predictable. In the majority of cases, the unknowns include
not only the hardware used or the recording environment
but also what was actually recorded. This is likely to cause
huge problems for standard speech analysis methods. Al-
though current commercial ASR performs impressively on
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the kind of data it was trained on, it rapidly deteriorates if it
encounters something as mundane as simultaneous speech
from more than one speaker. In phonetics, vowels are of-
ten analysed by extracting their formants, but this process
is notoriously sensitive to noisy data (De Wet et al., 2004).
Even a simple analysis, such as the division of speech data
into speech and silence is currently done using methods that
are either very sensitive to noise, or rely on special hard-
ware setups at capture-time (e.g. multiple microphones on
smartphones).

1.2. Speech technology for found data
We are facing a Catch-22: we need data to improve ST, and
better ST to get at the data. Without automatic analyses,
the sheer size of the data becomes an obstacle rather than
an asset. The 13000 hours of digitised recordings available
at ISOF would take one full time listener 1625 8-hour work
days just to get through the data. With a 5-day week, and no
vacations, this comes to 6.35 years. We have then allotted
zero time for taking notes or creating summaries. If we
instead consider the 7 million hours available at KB, we are
looking at 3 365 person years – no holidays included. As a
first step, we need a robust method to build an impression
of what the contents of any given large, unknown set of
recordings might be.
There are different ways to alleviate the situation. Us-
ing some intelligent sampling technique, we could listen
through a 1 percent sample of the ISOF data in just over 3
weeks of continuous listening. The sampling would have
to be very smart, however, for 1 percent to give good and
representative insights, and without prior knowledge of the
data, smart sampling is a hard task.
We suggest that by combining suitable automatic data min-
ing techniques with novel methods for acoustic visualisa-
tion and audio browsing, we can provide entry points to
these large and tangled sets of data. The proposal includes
humans in the analysis loop, but to an extent that is kept as
low and efficient as possible.
We have devised a listening method Massively Multi-
component Audio Environments and a proof-of-concept
implementation Cocktail (Edlund et al., 2010). A large
number (100+) of short sound snippets are played near-
simultaneously, while new snippets are added as the old
ones play out. The snippets are separated in space and lis-
tened to in stereo. The technique gives a strong impression
what the snippets are in a very short time. Proof-of-concept
studies showed that listeners could identify proportions of
sounds (e.g. a 40/60 gender division to the left, and a 60/40
to the right) quickly and accurately. The method allows us
to make quick statements about large quantities of sound
data. However, it is less efficient if we know nothing of
the data (the distribution in space will be random). For full
effect, we need to organise snippets in some non-random
order.
A number of data mining techniques organise high-
dimensional data in low-dimensional spaces. Typical ex-
amples include the popular t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) (van der Maaten and Hinton, 2008)
and the largely forgotten Self Organizing Map (SOM) (Ko-
honen, 1982). In an elegant online demonstration that in-

spired this work, Google AI Experiments visualise bird
sounds on a 2-dimensional map4 using t-SNE. SOMs have
also been used for sound. In (Kohonen et al., 1996), the
authors discuss the application of SOMs to speech. In line
with ST praxis, they recommend using cepstrum features
for speech, but they also point to single fast Fourier trans-
forms as an efficient feature extraction method. (Kohonen
et al., 1996) goes on to propose a system for speech recog-
nition that uses SOMs to create what they refer to as quasi-
phonemes, and uses these as input to a Hidden Markov
Model decoder. More recently, (Sacha et al., 2015) used
SOMs to analyse pitch contours. (Thill et al., 2008) used
SOMs and a clustering algorithm to visualise a large set of
dialectal pronunciation and lexical data. Their approach is
related to ours. Namely, their aim was to create a ’visual
data mining environment’ in which the analyst is interac-
tively involved and can explore a large number of variables
relevant to a sociolinguist: geographic and social correlates
of linguistic structures. One of the key characteristic of
SOMs, but not of t-SNE, is that SOMs tend to preserve the
topological properties of the input space. For this reason,
it is a great alternative for preliminary exploration of data
with many features. Our solution, then, is to conduct an ex-
periment very similar to Google AI Experiments’ bird visu-
alisation, but with the aim to distribute audio snippets that
are not necessarily known in 2-dimensional space and use
this distribution as input to a multi-component environment
for audio browsing purposes.

2. Method
2.1. Data
We are primarily interested in speech data. Found data,
however, may contain anything, and for our first explorative
investigation, we put together several data sets representing
a variety of characteristics. Two of the data sets contain
speech, and two contain animal sounds. Of each pair, one
set is more or less clean, while the other has other material
mixed in.
The first speech set is taken from the Waxholm corpus
(Bertenstam et al., 1995), which consists of simple Swedish
phrases captured in a human-machine context. The corpus
was recorded in a studio-like setting, and the audio quality
is largely good. The second dataset containing speech was
recorded for this work, in a calm office environment, using
a standard Samsung Galaxy S6 as the capture device. The
recording is done in one take, and contains (1) of a male
voice speaking in English, (2) acoustic guitar audio on its
own and (3) a segment of both voice and guitar sounding si-
multaneously. The data sets of animal sounds 5 consists of
independent recordings of birds, cows, sheep, and a lengthy
recording of mixed farm sounds (with very few animals,
and more wind, engines, and such). These four sessions are
recorded in different environments using different capture
devices.
For the first animal data set, we withhold the farm sounds,
to see the results applied to three distinct animal classes.
We created a second animal data set by including the mixed

4https://experiments.withgoogle.com/ai/bird-sounds
5Downloaded from https://freesound.org/
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farm sounds as well, to get a handle on the effect of adding
more heterogeneous data.
See Table 1 for further details regarding the audio datasets.

Audio Label Duration Sample Segments Source
Rate

Waxholm Men 279sec 16K 2748 Waxholm Corpus
Waxholm Women 294sec 16K 2949 Waxholm Corpus
Spring Birds 131sec 44.1K 1315 freesound.org
Cow & Calf 62sec 48K 620 freesound.org
Sheep & Lamb 119sec 48K 1195 freesound.org
Farm Noise 337sec 48K 3379 freesound.org
Male Speech 34sec 44.1K 336 Phone Recording
Guitar 25sec 44.1K 251 Phone Recording
Speech & Guitar 31sec 44.1K 307 Phone Recording

Table 1: Specifications of audio datasets used in this study.

2.2. Process
We kept preprocessing to an absolute minimum, in or-
der to not make any assumptions at this stage. Each
data set was used to produce a spectrogram (i.e. a
visual representation of a fast Fourier transform) using
the Sound EXchange Library6 (SOX), a standard library
used to handle sounds. SOX seamlessly handles vary-
ing frame rates and compression formats, which allowed
us to avoid making decisions that may affect the data.
The command line: sox soundfile -n spectrogram -l -r -m

-y Yresolution -X pixelpersec -o specfile generates 8-bit
greyscale spectrograms with a frequency range from 0 to
22000 Hz divided into 64 pixels along the Y-axis, and a
temporal resolution of 1000 pixels per second along the X-
axis. This format was used for all datasets.
The spectrogram and the corresponding audio recording
were then split into equal-sized frames. For the purposes
of this paper, a frame width of 100ms was used throughout,
giving each spectrogram a height of 64 pixels, a width of
100 pixels, and a depth of 256 shades.
The spectrogram frames were used to distribute the sound
snippets into hypothetically coherent regions in 2D space,
where similar things are closer to each other and dissimilar
things more apart. For this training we used a SOM im-
plementation in TensorFlow(Abadi et al., 2015), in which
the greyscale pixel values of the generated spectrograms are
treated as input vectors to the algorithm.
The output is a set of 2D coordinates that are mapped to
the audio segments. Each SOM was trained with 200 iter-
ations over a grid. The size of the grid changed depending
on the number of data points in each studied dataset, with
a minimum of 30x30. Note that we do not attempt to do
clustering on the output of the algorithm.
The resulting plot is amenable to sound browsing. In our
implementation, the framework generates a visible grid (see
Figure 1) where each datapoint is linked to its correspond-
ing audio snippet. The corresponding audio snippets are
played when the cursor hovers over a given datapoint, so
listeners can hover over different regions and listen to hy-
pothetically similar data in quick succession or simultane-
ously (Edlund et al., 2010)7.

6http://sox.sourceforge.net/
7The framework code is available for download8

For purposes of exploration, we used the interactive plots
to point out regions where it was possible to make a clear
judgment of (the majority) of the snippets, quickly and with
little effort. These human judgments constitute the last step
in our current process chain.

3. Results
The panels in Figure 1 represent the results of our method,
applied to four data sets. In each illustration, each data
point (spectrogram) has been plotted as a circle with an
opacity of 0.5, producing a darker effect where more than
one data point is positioned in the same grid space. This
visualises the SOMs. The areas marked with a black out-
line represent areas where audio browsing of sounds close
to each other in the SOM give a clear impression of the
sound’s characteristics. Each such area is labeled, and the
labels are used as references in the Discussion.
Figure 1a presents the visualisation of the studio recorded
speech. There are no obvious clusters or regions discernible
to the naked eye, except a darker area divided in two in the
lower right corner (labeled G). Figure 1c show three clear
regions that were coloured manually according to which
recording session the point is associated with. Each ses-
sions contains one animal type only, and is recorded on a
separate occasion. The SOM training has resulted in three
regions separated by empty grid cells (white regions) cor-
responding well to the three sessions present in the data. In
Figure 1d, we see five regions separated by strings of empty
cells. Apart from the blue (triangle) region, that represents
the added data, the other data is identical to that of the pre-
vious figure. We see a separation of two regions of the red
(cross) class, that is not present in the previous figure1c.
Finally, in Figure 1b, we have a similar situation as in 1a:
there are no obvious clusters. Instead, the data points seem
evenly distributed over the grid.
The black outlines represent areas for which listeners re-
ported that they could hear identifiable characteristics that
separated the area from the surrounding areas with ease.
The labels should read roughly as follows:
1a A: Vowels, resembles voice, can hear gender. high vol-
ume; 1a B: transitions from fricatives to vowels; 1a C: frica-
tives; 1a D: fricatives and quiet consonants; 1a E: short,
truncated vowels; 1a F: sharp, non-human click; 1a G: si-
lence/weak noises; 1a H: the arrow represents and overall
increase in intensity.
1b A: Consonants. Sometimes alone, sometimes with gui-
tar; 1b B: all voice; 1b C: very quiet, basically silence; 1b
D: all guitar; 1b E: intensity generally increases top to bot-
tom.
1c A: Very quiet, weak cow sounds; 1c B: calm soar of
bird chirping; 1c C: loud cow sounds; 1c D: only sheep,
loud at bottom and weaker sounds at top of region; 1c E:
high-pitched, specific and loud bird chirping; 1c F: inten-
sity generally increases top to bottom.
1d A: Pigs snorting; 1d B: roosters crowing; 1d C: windy
farm noise, no animal sounds; 1d D: pig snort, clicking
sound from farmer; 1d E: calm soar of bird chirping; 1d
F: high-pitched, specific and loud bird chirping; 1d G: very
quiet, weak cow sounds; 1d H: loud cow sounds, natural
transition to sheep; 1d I: only sheep, weak sounds to the
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(a) Speech (76x76) (b) Guitar and voice (30x30)

(c) Animals (56x56) (d) Animals with farm noise (81x81)

Figure 1: SOMs based on different sound recordings. The colour-coded informationwas not visible to, nor derived from the
process, but added manually for purposes of illustration: (red=birds; green=sheep; yellow=cows, blue=farm sounds). The
circled and labeled areas represent manual selections of perceptually clearly similar sounds, based on audio browsing.

left and louder to the right; 1d J: loud cow sounds; 1d K:
intensity generally increases left to right.

4. Discussion & future work
Although we have only taken first steps towards combin-
ing dimensionality reduction and visualisation techniques
with novel audio browsing techniques, our first results are
quite promising. For the speech only data in 1a, a listener
can quickly point out areas that are silent, that mainly con-
tain vowels, and several other typical speech features. The
next step here is to use the data in these relatively straight-
forward areas to train models. The silence, for example,
will let us model silence in the recording, which will make
it possible to segment the data on silence - something that
is not easily done in many recordings without spending an
inordinate amount of time labeling silent segments sequen-
tially and manually. The vowels may likewise be used to
train a vowel model, and separate vowels from other sound
of high intensity. We may also find oddities: the tapping
noise in F turns out to be the press of a space bar, upon
closer inspection of the original data. It turns out that the
recorded individuals were told to tap the space bar between
each utterance in this particular recording. For the gui-
tar+voice data (1b), we quickly find vicinities with nothing
but voice and nothing but guitar. Again, this information
can be used to create models or to inform a second clus-
tering, effectively creating a reinforcement learning setup.
For animals (1c and 1d), we see that sounds that differ in a
distinct manner indeed end up further apart. At this stage,
we cannot tell whether it is the recording conditions or the
animal noises, or both, that have the greatest influence, yet
it is clear that the method we propose would work fairly

well to separate different (but unknown) datasets.

Our main goal in this work is to find a way into large sets
of unknown data, and so far, we are encouraged by the re-
sults. The strength of the proposed method lies in its ability
to generalise over different kinds of audio data. As such it
has an advantage in the context of large collections of found
data to methods that are restricted to only cover a particu-
lar sound event. With that said, it should be noted that we
are aware of many of the general improvements that can
be made to our process, but most if not all of them carry
with them a certain amount of assumptions about the data.
For our purposes, we think it will be more fruitful to focus
on developing the the audio browsing techniques first. Our
next step will be to create a more robust listening environ-
ment. Listening to audio spatially distributed audio snip-
pets is surprisingly efficient, but we must find out how lis-
teners can best navigate to and point to different regions in
the soundscapes. With these methods in place, we can per-
form full-scale tests on the perception of non-sequentially
structured audio data. In the longer perspective, our goal
is to add several possible last steps to the process chain.
An obvious goal is to make the process iterative. The con-
tinuous influx of rapidly acquired human judgments to the
learning process is highly interesting. More specific pro-
cess chains are of equal interest. The silence modeling
mentioned above is one such possibility. We are further
interested in taking the listener annotations, or judgments,
and returning to the original sequential sounds. Simply la-
beling the frames with their inverted distance (in 2D-space)
to the centre of some human label and displaying that curve
above the diagonal sequential sound may be quite informa-
tive, showing roughly how much speech, silence, cows, or
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guitars some sequence contains. From this we get crude
labels for each sound segment that can be used in a num-
ber of applications, e.g. for search or as training data for
supervised machine learning tasks.
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