
NileULex: A Phrase and Word Level Sentiment Lexicon for Egyptian and 
Modern Standard Arabic 

Samhaa R. El-Beltagy 
Nile University 

 Juhayna Square, Sheikh Zayed City 
Giza, Egypt 

E-mail: samhaa@computer.org  

Abstract  
This paper presents NileULex, which is an Arabic sentiment lexicon containing close to six thousands Arabic words and compound 
phrases. Forty five percent  of the terms and expressions in the lexicon are Egyptian or colloquial while fifty five percent are Modern 
Standard Arabic. The development of the presented lexicon has taken place over the past two years. While the collection of many of the 
terms included in the lexicon was done automatically, the actual addition of any term was done manually. One of the important 
criterions for adding terms to the lexicon, was that they be as unambiguous as possible. The result is a lexicon with a much higher 
quality than any translated variant or automatically constructed one. To demonstrate that a lexicon such as this can directly impact the 
task of sentiment analysis, a very basic machine learning based sentiment analyser that uses unigrams, bigrams, and lexicon based 
features was applied on two different Twitter datasets. The obtained results were compared to a baseline system that only uses 
unigrams and bigrams. The same lexicon based features were also generated using a publicly available translation of a popular 
sentiment lexicon. The experiments show that usage of the developed lexicon improves the results over both the baseline and the 
publicly available lexicon.  
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1. Introduction  
Sentiment lexicons are an essential component of many 
sentiment analysis tools. Because of their importance, 
many sentiment lexicons for the English language, as well 
as for other languages, have appeared over the years. The 
most commonly used English lexicons include  
SentiWordNet (Baccianella, Esuli, and Sebastiani 2010), 
Ben Liu’s opinion lexicon (Liu 2010),  the MPQA 
subjectivity lexicon (Wilson, Wiebe, and Hoffmann 
2005), and the NRC lexicon (Kiritchenko, Zhu, and 
Mohammad 2014). 
Over the past five years, the topic of Arabic Sentiment 
analysis and opinion mining has been gaining momentum, 
especially since the use of the Arabic language has been 
increasing consistently over various social media 
platforms, amongst which are twitter and Facebook (Neal 
2013)(“Facebook Statistics by Country” 2012)(Farid 
2013). However, publicly available Arabic sentiment 
lexicons are scarce. In fact, to the knowledge of the author 
the only publicly available Arabic sentiment lexicon is a 
translated version of the NRC word emotion association 
lexicon (EmoLex) (Mohammad and Turney 2013). In 
addition, most attempts to build Arabic lexicons have 
focused primarily on lexicons for Modern standard Arabic 
(Abdul-Mageed and Diab 2012)(Badaro et al. 
2014)(Mahyouba, Siddiquia, and Dahaba 2014) (the work 
presented in (Al-Sabbagh and Girju 2010) is a notable 
exception). With the exception of EmoLex, these lexicons 
also do not include compound phrases and idioms.  When 
analysing social media for sentiment, this can affect the 
results adversely since the language used on social media 
platforms, is predominantly colloquial Arabic where 
sentiment is sometimes expressed entirely using 

compound phrases or idioms (El-Beltagy and Ali 2013).   
This paper presents a phrase and word level sentiment 
lexicon for Egyptian and modern standard Arabic, and 
makes it publicly available. This paper also shows that the 
lexicon can be useful for the task of sentiment analysis 
through a series of experiments.  
The rest of this paper is organized as follows: section 2, 
provides a description of the built lexicon, section 3 
presents the experiments conducted in order to evaluate 
the usefulness of the lexicon, and section 4 concludes this 
paper and presents planned future work.  

2. The Lexicon  
The development of the NileULex lexicon has taken place 
over the past two years. The first version of the lexicon, 
emerged from the work presented in (El-Beltagy and Ali 
2013) and developed further in the work presented in 
(ElSahar and El-Beltagy 2014).  However, manual 
additions and re-validations have been conducted over the 
past two years. The revisions were made to ensure that 
terms in the lexicon are of  high quality and have  limited 
or no ambiguity. For example, in the first version of the 
lexicon, the term “الله”  was included as a positive term. 
The literal translation of the term “الله” is Allah or God. 
However, it is often used by people to express that they 
are in awe of something. In a way, it’s the English 
equivalent of the word “wow”.  It also often precedes 
phrases that could be either positive or negative like for 
example “الله يحرقك” (may you burn in hell) or “الله يباركلك” 
(God bless you).  To eliminate this ambiguity in the 
current version of the lexicon, this term has been deleted.  
Instead, many phrases that start with the term, were 
collected and added, each with its corresponding polarity.  
Even though, many of the terms contained in the lexicon 
were collected automatically, each of those entries was 
revised by the author. Since the author is a native speaker 
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pos جميل
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 اجهل neg

 حخلع neg
com ربنا يفتح عليك
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translating the original English version using Google 
translate2. 
 
In the final presented experiment,  EmoLex and NileULex 
were combined to examine how an aggregate of both 
would affect the results. The overlap between NileULex 
and EmoLex is 973 terms.  This represents 23.3% of the 
size of EmoLex and 16.5% of the size of NileULex.  

3.1 The Used Datasets 
The first of the two used datasets, is the Egyptian dialect 
dataset (NU_EG_Twitter_corpus).  The tweets for this 
dataset were collected in December 2014 using Twitter’s 
streaming API with Egypt’s latitude and longitude as a 
filter. Out of the 127,000 collected tweets, 6000 tweets 
were randomly chosen and filtered using cosine similarity 
to ensure that they are all unique. The 6000 tweets were 
divided into six groups; 1000 tweet per group. Each group 
was manually annotated by three different Nile University 
(NU) graduate students to one of six categories namely: 
positive, negative, neutral, mixed, sarcastic, and 
ambiguous. The final annotations were selected through 
majority voting, with tweets exhibiting annotation 
conflicts removed. This dataset was then further filtered 
so that tweets with only positive, negative, and neutral 
tags, were kept. The resulting dataset contains 3436 
unique tweets. To divide the dataset into training and 
testing sets, an eighty percent, twenty percent split was 
utilized. This resulted in a training set of   2746 tweets and 
a test set of 683 tweets, both randomly selected. The 
distribution of training tweets amongst polarity classes is: 
1046 positive, 976 negative, and 724 neutral. The 
distribution of the test dataset is:  263 positive, 228 
negative and 192 neutral. This dataset is available by 
request from the author of this paper. 
 
The second of the used datasets is one that was collected 
at a research center in Saudi Arabia under the supervision 
of Dr. Nasser Al-Biqami who thankfully made this dataset 
available to Nile University for research purposes. This 
particular dataset, is not a public one. The tweets for this 
dataset were downloaded in five rounds or stages during 
2014 and are mostly in Saudi dialect.  The center where 
these tweets were collected employed a very rigorous 
annotation process, where multiple annotators were first 
trained on the annotation process and then handed subsets 
of the dataset to annotate. Only instances where there was 
an inter-annotator agreement of more than two were 
included in the final dataset. We have used one of the 
rounds for testing (1414 tweets) and the others for training 
(9656 tweets). The training set consists of 2686 positive, 
3225 negative, and 3745 neutral tweets and the test set has 
403 positive, 367 negative, and 644 neutral tweets. 

3.2. Experiments and Results 
Experiments over two classes  

In this set of experiments, only the subset of positive and 
negative instances of datasets described in the previous 
sub-section, were used. The Egyptian dialect training 
subset was comprised of 2022 tweets of which 1046  were 
                                                            
2  
http://saifmohammad.com/WebPages/NRC-Emotion-Lexicon.htm 

positive and 976 were negative. The test set was 
comprised of 495 tweets of which 254 were positive and 
241 were negative.  The Saudi training subset was 
comprised of 5893 tweets of which 2680  were positive 
and 3213 were negative. The test set was comprised of 
768 tweets of which 402 were positive and 366 were 
negative.  For each dataset,  testing was carried out using 
10 fold cross validation on the training dataset as well as 
using this same dataset for training and the separate test 
dataset for testing.  The results of these experiments on 
each of the datasets are shown in tables 2 to 5. The best 
results are highlighted in the tables. The “improvement” 
column in the presented tables represents the percentage 
increase in the number of tweets correctly classified 
relative to the baseline. 
 
Lexicon 10 Fold Cross Validation

Accuracy 
(%) 

FScore 
(%) 

Improvement
(%) 

Baseline  (no 
lexicon) 

82.59 82.6 N/A

NileULex 85.4 85.4 3.97
EmoLex 84.22 84.2 2.53
Combined 84.57 84.6 2.95

 
Table 2:  10 fold cross validation results on the 2-class 

Egyptian dialect dataset 
 
Lexicon Test Data 

Accuracy 
(%) 

FScore 
(%) 

Improvement
(%) 

Baseline  (no 
lexicon) 

73.94 73.7 N/A

NileULex 77.58 77.6 4.92
EmoLex 76.77 76.8 3.83
Combined 77.98 78 5.47

 
Table 3: Test results on the 2-class Egyptian dialect 

dataset 
 
Lexicon 10 Fold Cross Validation

Accuracy 
(%) 

FScore 
(%) 

Improvement
(%) 

Baseline  (no 
lexicon)  88.7 88.7 N/A
NileULex 89.75 89.7 1.18
EmoLex 87.95 87.9  -0.84
Combined 89.17 89.2 0.54

 
Table 4: 10 fold cross validation results on the 2-class 

Saudi dialect dataset. 
 

Lexicon Test Data 
Accuracy 

(%) 
FScore 

(%) 
Improvement

(%) 
Baseline  (no 
lexicon)  79.17 79.1 N/A
NileULex 81.9 81.9 3.45
EmoLex 80.06 80.5 1.8
Combined 82.3 82.3 3.95

 
Table 5: Test results on the 2-class Saudi dialect dataset. 

 

2902



 
From these results it can be seen that using both NileULex 
and EmoLex improve the classification accuracy in both 
datasets, with a notable increase when carrying out 10 
fold cross validation over the Egyptian Dialect dataset. In 
both datasets, the combination of both lexicons seems to 
yield the best results over the test dataset.  

Experiments over three classes  
In this set of experiments, all three class labels (positive, 
negative, and neutral) were used. The results for each of 
the used datasets are presented in tables 6 through 9. 
 
Lexicon 10 Fold Cross Validation

Accuracy 
(%) 

FScore 
(%) 

Improvement
(%) 

Baseline  (no 
lexicon)   71.6 71.5 N/A
NileULex  73.56 73.3 2.7
EmoLex  71.52 71.3 -0.10
Combined  72.47 72.2 1.22

 
Table 6: 10 fold cross validation results on the 3-class 

Egyptian dialect dataset. 
 
Lexicon Test Data 

Accuracy 
(%) 

FScore 
(%) 

Improvement
(%) 

Baseline  (no 
lexicon)   56.22 55.7 N/A
NileULex  59.74 59.4 6.25
EmoLex  57.39 56.6 2.08
Combined  58.42 57.5 3.90

 
Table 7:  Test results on the 3-class Egyptian dialect 

dataset. 
 
Lexicon 10 Fold Cross Validation

Accuracy 
(%) 

FScore 
(%) 

Improvement
(%) 

Baseline  (no 
lexicon)   78.88 78.9 N/A
NileULex  79.02 79.0 0.17
EmoLex  77.81 77.8 -1.38
Combined  78.1 78.1 -1.0

 
Table 8:  10 fold cross validation results on the 3-class 

Saudi dialect dataset. 
 
Lexicon Test Data 

Accuracy 
(%) 

FScore 
(%) 

Improvement
(%) 

Baseline  (no 
lexicon)   68.82 68.6 N/A
NileULex  71.58 71.5 4.01
EmoLex  70.94 70.7 3.09
Combined  71.3 71.1 3.61

 
Table 9: Test results on the 3-class Saudi dialect dataset. 

 
As expected, the introduction of the neutral class causes 
the accuracy drops dramatically for both datasets. Unlike 
the experiments carried out over two classes, here  the use 

of EmoLex actually decreases the accuracy in both 
datasets when carrying out 10 fold cross validation (10 
FCV). The combined lexicon offers a slight improvement 
in the Egyptian dialect when carrying out 10 FCV, but 
decreases the accuracy in the Saudi dialect dataset for the 
same experiment.  All three lexicons, enhance the results 
over the test dataset, with NileULex consistently 
providing the best enhancements. 
 

Training dataset  
(9651 tweets) 

Test dataset 
(1411 tweets)

NileULex EmoLex  NileULex EmoLex
Tweets  that 
had 
sentiment3

7312 9038  939  1311

Total 
matches

17023 35982  1896  5259

Unique 
matches

2216 2146  733  980

Total 
negated 
terms

520 797  45  101

Avg 
sentiWords 
/tweet

1.76 3.73  1.34  3.73

Tweets  that 
had  no 
sentiment

2339 613  472  100

 
Table 10: Matches between tweets and entries in the 

lexicon for training and testing Saudi dialect datasets. 
 

Training dataset  
(2746 tweets) 

Test dataset     
 (683 tweets)

NileULex EmoLex  NileULex EmoLex
Tweets  that 
had 
sentiment

1879 2172  472  546

Total 
matches

3781 5990  903  1403

Unique 
matches

1324 1181  535  537

Total 
negated 
terms

148 170  39  42

Avg 
sentiWords 
/tweet

1.38 2.18  1.3  2.05

Tweets  that 
had  no 
sentiment

867 574  211  137

 
Table 11 Matches between tweets and entries in the 

lexicon for training and testing Egyptian dialect datasets. 
 
Tables 10 and 11, show statistics related to the number of 
matches between both NileULex and EmoLex, and the 
used datasets. These numbers reveal that on average, 
more entries from EmoLex matched with tweets in the 
used data sets than with NileULex. Intuitively, this should 
have had a positive impact on the overall results of the 
                                                            
3 Tweets that had at least one term matching with a lexicon entry. 
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experiments conducted used the EmoLex lexicon, but this 
was not always the case. In an attempt to understand the 
reason behind this, we examined a sample of words that 
matched with the lexicon. We discovered that some of 
these words were very generic and have double meanings. 
An example is the word: “حال”, which can sometimes 
mean “prevented”, but which more often means 
“situation”.   The fact that EmoLex was automatically 
translated could have easily resulted in the production of 
words that are not a very accurate translation of their 
English counter parts. In fact the lexicon comes with the 
following disclaimer: “some translations by Google 
Translate may be incorrect or they may simply be 
transliterations of the original English terms”. We found 
forty eight entries in the lexicon that have both negative 
and positive polarity. Given the size of the lexicon, this is 
not a big number, but it serves to illustrate that translations 
are not always that accurate. Another thing we noticed, is 
that the volume of matches from EmoLex that were 
negated, was also greater than negated entries from 
NileULex. In our simplified sentiment analysis system, 
the occurrence of a negator before a sentiment term 
results in the reversal of its polarity.  We have observed 
that in some cases, this is not necessarily valid. For 
example, the term  “لا حلو”, in which the negator “no” 
appears before the word “nice”, is actually used to affirm 
that something is nice.   We believe that proper handling 
of negations, elimination of noisy terms in EmoLex,  and 
combining EmoLex with NileULex, would probably lead 
to better results than those presented. The goal of the 
experiments however, was simply to illustrate that 
NileULex is capable of improving sentiment analysis 
results even in a very simple setting.  

4. Conclusion  
This paper has presented NileULex, a phrase and word 
level sentiment lexicon for Egyptian and Modern 
Standard Arabic. Through a series of experiments, the 
presented work has shown the potential of NileULex in 
enhancing the results of sentiment analysis. NileULex 
will be available online from the LREC Resource Map 
and can be obtained directly from the author. We believe 
that it can be a valuable resource for researchers carrying 
out work in the area of Arabic social media sentiment 
analysis.  Future work includes the expansion of the 
lexicon, and experimenting with other types of datasets. 
Specifically, we are currently working on assigning 
sentiment scores to the entries in the lexicon.  Early work 
on this task is presented in (El-Bletagy). We are also 
working on a new approach for automatically learning 
new phrases and terms with a high degree of accuracy.   
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