
The Computational Complexity of the
Correct-Prefix Property for TAGs

Mark-Jan Nederhof*
German Research Center for Artificial
Intelligence

A new upper bound is presented for the computational complexity of the parsing problem for
TAGs, under the constraint that input is read from left to right in such a way that errors in the
input are observed as soon as possible, which is called the "correct-prefix property." The former
upper bound, O(n9), is now improved to O(n6), which is the same as that of practical parsing
algorithms for TAGs without the additional constraint of the correct-prefix property.

1. Introduction

Traditionally, parsers and recognizers for regular and context-free languages process
input from left to right. If a syntax error occurs in the input they often detect that
error immediately after its position is reached. The position of the syntax error can
be defined as the rightmost symbol of the shortest prefix of the input that cannot be
extended to be a correct sentence in the language L.

In formal notation, this prefix for a given erroneous input w ~ L is defined as the
string va, where w = vax, for some x, such that vy E L, for some y, but vaz ~ L, for
any z. (The symbols v, w denote strings, and a denotes an input symbol.) The
occurrence of a in w indicates the error position.

If the error is detected as soon as it is reached, then all prefixes of the input that
have been processed at preceding stages are correct prefixes, or more precisely, they are
prefixes of some correct strings in the language. Hence, we speak of the correct-prefix
property. 1

An important application can be found in the area of grammar checking: upon
finding an ungrammatical sentence in a document, a grammar checker may report to
the user the presumed position of the error, obtained from a parsing algorithm with
the correct-prefix property.

For context-free and regular languages, the correct-prefix property can be satis-
fied without additional costs of space or time. Surprisingly, it has been claimed by
Schabes and Waters (1995) that this property is problematic for the mildly context-
sensitive languages represented by tree-adjoining grammars (TAGs): the best practical
parsing algorithms for TAGs have time complexity Cg(n 6) (Vijay-Shankar and Joshi
[1985]; see Satta [1994] and Rajasekaran and Yooseph [1995] for lower theoretical upper
bounds), whereas the only published algorithm with the correct-prefix property--that
by Schabes and Joshi (1988)--has complexity O(n9).

In this paper we present an algorithm that satisfies the correct-prefix property and
operates in Cq(n 6) time. This algorithm merely recognizes input, but it can be extended

* DFKI, Stuhlsatzenhausweg 3, D-66123 Saarbriicken, Germany. E-mail: nederhof@dfki.de
1 We adopt this term from Sippu and Soisalon-Soininen (1988). In some publications, the term valid

prefix property is used.

(~) 1999 Association for Computational Linguistics

Computational Linguistics Volume 25, Number 3

to be a parsing algori thm with the ideas f rom Schabes (1994), which also suggest h o w
it can be extended to handle substitution in addit ion to adjunction. The complexi ty
results carry over to linear indexed grammars, combinatory categorial grammars, and
head grammars, since these formalisms are equivalent to TAGs (Vijay-Shanker and
Weir 1993, 1994).

We present the actual algori thm in Section 3, after the necessary notat ion has been
discussed in Section 2. The correctness proofs are discussed in Section 4, and the time
complexi ty in Section 5. The ideas in this paper give rise to a number of questions for
further research, as discussed in Section 6.

2. Definitions

Our definition of TAGs simplifies the explanation of the algorithm, but differs slightly
from standard t reatment such as that of Joshi (1987).

A tree-adjoining grammar is a 4-tuple (~, NT, L A), where ~ is the set of terminals ,
I is the set of initial trees, and A is the set of auxi l iary trees. We refer to the trees in
I U A as e lementa ry trees. The set NT, the set of nonterminals, does not p lay any role
in this paper.

We refer to the root of an e lementary tree t as Rt. Each auxiliary tree has exactly
one dist inguished leaf, which is called the foot. We refer to the foot of an auxiliary
tree t as Ft.

We use variables N and M to range over nodes in e lementary trees. We assume
that the sets of nodes belonging to distinct e lementary trees are pairwise disjoint.

For each leaf N in an e lementary tree, except w h en it is a foot, we define label(N)
to be the label of the node, which is either a terminal f rom ~ or the empty string e.
For all other nodes, label is undefined.

For each node N that is not a leaf or that is a foot, Adj(N) is the set of auxiliary trees
that can be adjoined at N, plus possibly the special e lement nil. For all other nodes,
Adj is undefined. If a set Adj(N) contains nil, then this indicates that adjunction at N
is not obligatory.

For each nonleaf node N we define children(N) as the (nonempty) list of daughter
nodes. For all other nodes, children is undefined. An example of a TAG is given in
Figure 1.

The language described by a TAG is given by the set of strings that are the yields
of der ived trees. A der ived tree is obtained from an initial tree by per forming the
following operat ion on each node N, except wh en it is a leaf: The tree is excised at N,
and between the two halves a fresh instance of an auxiliary tree, which is taken from
the set Adj(N), is inserted, or the element nil is taken from Adj(N), in which case no
new nodes are added to the tree. Insertion of the new auxiliary tree, which from now
on will be called adjunct ion, is done in such a way that the bot tom half of the excised
tree is connected to the foot of the auxiliary tree. The new nodes that are added to the
tree as a result are recursively subjected to the same operation. This process ends in a
complete der ived tree once all nodes have been treated.

An example of the derivat ion of a string is given in Figure 2. We start with initial
tree al and treat Ral, for which we find Adj(Ral) = {b2, nil}. We opt to select nil,
so that no new nodes are added. Howeve r in the figure we do split Ral in order to
mark it as having been treated. Next we treat Nail, and we opt to adjoin bl, taken
from Adj(N~I) = {bl, b3}. After another "ni l-adjunct ion" at Rbl, we adjoin b2 at N~I.
Note that this is an obligatory adjunction, since Adj(N~I) does not contain nil. Some
more nil-adjunctions lead to a der ived tree with yield acdb, which is therefore in the
language described by the TAG.

346

Nederhof Correct-Prefix Property for TAGs

Initial trees
(al) (a2)

@a/~ Ra l C ~ ~ @

b e e

Adj(Ral) = Adj(R,~2) =
{62, nil} {b3, nil}

Adj(N: ,) = Adj(g:~) =
{bl,b3} {bl,b2}

Adj (Y2~) =
{nil}

Figure 1
A tree-adjoining grammar.

Auxiliary trees
i

(bl) (b2)

Fbl OFb2 ~

C
Adj(nbl) = Adj(Rb2) =

{bl, b2, nil} {b3, nil}
Ady(NdI) = Adj(Fb~) =

{b~} {nil}
Adj(Fb~) =

{nil}

Initial t r e ~ / ~ Ral

b

nil-
adjunction

'~ adjoin
e a q bl at N~I

b

o . ~ adjoin
b2 at Nil

sl

C

¢-~

Derived o / ~
tree:

three nil-
adjunctions

4

¢.%

e

Figure 2
Derivation of the string acdb.

(b3)

l Rb3

"a" oFb3 N:3
b

Adj(Rb3) = {bl, nil}
Adj (N~) = (b2}
A~j (N~) = {b3, n i l }
Adj(Fb3) = (nil}

a

c b
J nil-

adjunction

a ~ F b l

c b

In order to avoid cluttering the picture with details, we have omitted the names
of nodes at which (nil-)adjunction has been applied. We will reintroduce these names
later. A further point worth mentioning is that here we treat the nodes in preorder: we
traverse the tree top-down and left-to-right, and perform adjunction at each node the
first time it is encountered. 2 Any other strategy would lead to the same set of derived
trees, but we chose preorder treatment since this matches the algorithm we present
below.

2 The tree that is be ing t raversed g rows in size du r ing the traversal, contrary to tradit ional usage of the
not ion of "traversal ."

347

Computational Linguistics Volume 25, Number 3

3. The Algorithm

The input to the recognition algori thm is given by the string a l a 2 . . • an, where n is the
length of the input. Integers i such that 0 < i < n will be used to indicate "posit ions"
in the input string. Where we refer to the input be tween positions i and j we mean
the string ai+l . . . aj.

The algori thm operates by means of least f ixed-point iteration: a table is gradual ly
filled with elements der ived from other elements, until no more new ones can be found.
A number of "steps" indicate how table elements are to be der ived from others. 3

For the description of the steps we use a pseudoformal notation. Each step consists
of a list of antecedents and a consequent. The antecedents are the conditions under
which an incarnation of the step is executed. The consequent is a new table e lement
that the step then adds to the parse table, unless of course it is a lready present. An
antecedent m a y be a table element, in which case the condit ion that it represents is
membership in the table.

The main table elements, or items, are 6-tuples [h, N --* c~ • t , i, j, f l , f2]. Here, N
is a node from some elementary tree t, and o~fl is the list of the daughter nodes of N.
The daughters in o~ together generate the input be tween positions i and j. The whole
e lementary tree generates input f rom position h onwards.

Internal to the e lementary tree, there may be adjunctions; in fact, the traversal of
the tree (implying (nil-)adjunctions at all nodes) has been completed up to the end
of c~. Furthermore, tree t may itself be an auxiliary tree, in which case it is adjoined
in another tree. Then, the foot may be domina ted by one of the daughters in a, and
the foot generates the part of the input be tween positions f l and f2. When the tree is
not an auxiliary tree, or when the foot is not domina ted by one of the daughters in c~,
then f l and f2 both have the d u m m y value " - "

Whether t is an initial or an auxiliary tree, it is par t of a der ived tree of which
everything to the left of the end of c~ generates the input be tween positions 0 and j.
The traversal has been completed up to the end of c~.

See Figure 3 for an illustration of the meaning of items. We assume Rt and Ft
are the root and foot of the e lementary tree t to which N belongs; Ft m ay not exist,
as explained above. R is the root of some initial tree. The solid lines indicate what
has been established; the dashed lines indicate what is merely predicted. If Ft ex-
ists, the subtree below Ft indicates the lower half of the der ived tree in which t was
adjoined.

The shaded areas labeled by I, II, and III have not yet been traversed. In part icular
it has not yet been established that these parts of the der ived tree together generate
the input be tween positions j and n.

For technical reasons, we assume an addit ional node for each e lementary tree t,
which we denote by T. This node has only one daughter, viz. the actual root node Rt.
We also assume an additional node for each auxiliary tree t, which we denote by 3_.
This is the unique daughter of the actual foot node Ft; we set children(Ft) = _1_.

In summary, an i tem indicates how a part of an e lementary tree contributes to the
recognition of some der ived tree.

Figure 4 illustrates the items needed for recognition of the der ived tree f rom the
running example. We have simplified the notat ion of items by replacing the names of
leaves (other than foot nodes) by their labels.

3 A "step" is more accurately called an "inference rule" in the literature on deductive parsing (Shieber,
Schabes, and Pereira 1995). For the sake of convenience we will apply the shorter term.

348

Nederhof Correct-Prefix Property for TAGs

0 h i f 1 f2 j

Figure 3
An item [h, N -* a . fl, i,], fl, f2].

0

1: [0, T - + , R a l , 0 , 0 , - , -] =
T 2: [0, R~I -+ • a N~I, 0, 0 , - , -] =

I , 23 3: [0, Ral -+ a • N~I , 0, 1, - , -] =
~Rnl 4: [1, T --+ • Rbl, 1, 1, - , -] =

~4T 212~ 1 5 : [I ' R b I - + • N d l F b l ' 1 ' 1 ' - ' -] =
6: [1, T - + •Rb2, 1,1,-- ,--] =

21 7: [1, Rb2 -+ • Fb2 d, 1, 1, - , -] =
~Rbl 8: [1, Fb2 -+ • 3-, 1, 1 , - , -] =

g~/ Rbl 9: [1, Nil --+ • c, 1, 1 , - , - 1 ----
a 1 ; ~ 2 0 10: [1,NIl -+ c •, 1 , 2 , - , -] =

Nbl:4 / ~Fbl 11: [1, Ub2 -+ 3_ •, 1,2,1,21 =
6,T14 yFbl 12: [1, Rb2 --~ Fb2 • d, 1, 2, 1, 2] =

~Rb2 16119 13: [1, Rb2 --+ Fb2 d •, 1, 3, 1, 2] = Rb2
7~,12~3 7~lN// 14: [1, T __+ Rb2 •, 1,3, 1,21 = u

52 I 8 15a: [N~I -+ c •, 1, 3 , - , -1 =
15: [1, Rbl ~ N~I " Fbl, 1, 3, --, -1 =

yFb2 d b 16: [1, Fbl -+ • 3_, 3, 3, --, --1 =
8-!-111 17: [0, Ni l --+ • b, 3, 3, ,] =
1 Nbl 18: [0, Nail -+ b •, 3, 4, - , -] =

19: [1,Ybl ~ ± •, 3,4,3,4] =
20: [1, Rbl --+ Ni l Fbl •, 1, 4, 3, 4] =

C 21: [1, T --+ Rbl •, 1, 4, 3, 4] =
a c d b 22a: [Nil -+ b •, 1, 4 , - , -] =

22: [0, R~I --+ a N~I •, 0 , 4 , - , -] =
1 2 3 4 23: [0, 7- -+ Ral ", 0, 4 , - , -] =

(In i t)
(P r e d 2)1
(S c a n 1)2
(P r e d 1)3
(P r e d 2)4
(P r e d 1)5
(P r e d 2)6
(P r e d 2)7
(P r e d 3)8 + 5
(Scan 1)9
(C o m p 1)10 + 8 + 5
(C o m p 2111 + 7
(Scan 1)12
(C o m p 2)13 + 6
(n d j 0)14 + 10
(Adj 2)15a + 5
(P r e d 2)15
(P r e d 3)16 + 3
(Scan 1)17
(C o m p 1)18 + 16 + 3
(C o m p 2)19 + 15
(C o m p 2)20 + 4
(Adj 0)21 + 18
(Adj 2)22a + 3
(C o m p 3)22 + 1

Figure 4
The items needed for recognition of a derived tree.

There is one special kind of item, with only five fields instead of six. This is
used as an intermediate result in the adjunctor steps to be discussed in Section
3.5.

349

Computational Linguistics Volume 25, Number 3

R

L x

0 n
Init

Figure 5
The initialization.

h i fl f2 J j+l
Scan 1

Figure 6
The first scanner step.

3.1 Initializer
The initializer step predicts initial trees t starting at position 0; see Figure 5.

t ¢ I

[0, 7----~ .Rt , O, O, ,]
(Init)

For the running example, item 1 in Figure 4 results from this step.

3.2 Scanner
The scanner steps try to shift the dot r ightward in case the next node in line is labeled
with a terminal or ¢, which means the node is a leaf but not a foot. Figure 6 sketches
the situation with respect to the input positions mentioned in the step. The depicted
structure is part of at least one derived tree consistent with the input between positions
0 and j + 1, as explained earlier.

[h, N Mg, i, j, A, ;Ca],
label(M) = aj+l

[h, N --* ccM . fl, i, j + l , A , f2]
(Scan 1)

[h, N - - * c ~ , M f l , i, j, f l , f2],
label(M) = ¢

[h, N --* a M . fl, i, j, A, f2]
(Scan 2)

For the running example in Figure 4, Scan 1 derives, among others, i tem 3 from
item 2, and item 13 from item 12.

350

Nederhof Correct-Prefix Property for TAGs

",,, ",,,,

h i h i j
Pred 1 Pred 2

Figure 7
The three predictor steps.

i!~, "', "',," / / / / ,~, , : , , ' , ,,',,
/ / / / / J M ' i ~,', ,,, ,
/ / / / / I ~ ,i <, ,,', ,
/ // / /~ '__~_, i~ ~,;, ,, ,,
/ f f t~___:~L~_~__',

h i j
Pred 3

3.3 Predictor
The first predictor step predicts a fresh occurrence of an auxiliary tree t, indicated in
Figure 7. The second predicts a list of daughters "7 lower down in the tree, abstaining
from adjunction at the current node M. The third predicts the lower half of a tree in
which the present tree t was adjoined.

[h, N --~ a . Mfl , i, j, f l , f2],

t E Adj(M) (Pred 1)
~', T ~ . R , , j, j, - , -]

[h, N - - + a . M f l , i, j, A, f2],
nil E Adj(M),
children(M) = "7

(Pred 2)
[h,M--+ *"7, j, j, - , -]

~, ~ , ~ . ± , k, k, - , -] ,
[h, N ---+ a . Mfl , i, j, f l , f2],
t E Adj(M),
children(M) = "7

(Pred 3)
[h, M--+ ."7, k, k, - , -]

For the running example, Pred 1 derives item 4 from item 3 and item 6 from
item 5. Pred 2 derives, among others, item 5 from item 4. Pred 3 derives item 9 from
items 8 and 5, and item 17 from items 16 and 3.

3.4 Completer
The first completer step completes recognition of the lower half of a tree in which an
auxiliary tree t was adjoined, and asserts recognition of the foot of t; see Figure 8. The
second and third completer steps complete recognition of a list of daughter nodes '7,
and initiate recognition of the list of nodes fl to the right of the mother node of %

[h, M--* '7 . , k, l , f~ , fd] ,
t E Adj(M),
~, Ft--~ ,_L, k, k, - , -] ,
[h, N - + a . M f l , i, j, f~, f2]

~, F t ---+ l . , k, l, k, I] (Comp 1)

351

Computational Linguistics Volume 25, Number 3

L

h i j k l
Comp 1

Figure 8

h i j

Two of the completer steps.

f2 k
Comp 2

[h, M--*3"°, j, k, f l , f2],
[h, N --~ c~oMfl, i, j, - , -] ,
M dominates foot of tree

[h, N - - , c ~ M ° f l , i, k, f l , f2]
(Comp 2)

[h, M--~ ' , / . , j, k, - , -],
[h, N---~c~°Mfl, i, j, f l , f2]
[h, N -* c~M ° fl, i, k, A, f2]

(Comp 3)

See Figure 4 for use of these three steps in the running example.

3.5 Adjunctor
The adjunctor steps perform the actual recognition of an adjunction of an auxiliary
tree t in another tree at some node M. The first adjunctor step deals with the case in
which the other tree is again adjoined in a third tree (the two darkly shaded areas in
Figure 9) and M dominates the foot node. The second adjunctor step deals with the
case in which the other tree is either an initial tree, or has its foot elsewhere, i.e., not
dominated by M.

The two respective cases of adjunction are realized by step Adj 0 plus step Adj 1,
and by step Adj 0 plus step Adj 2. The auxiliary step Adj 0 introduces items of a
somewhat different form than those considered up to now, viz. [M ~ 3' o, j, k, f~, f~].
The interpretation is suggested in Figure 10: at M a tree has been adjoined. The ad-
joined tree and the lower half of the tree that M occurs in together generate the input
from j to k. The depicted structure is part of at least one derived tree consistent with
the input be tween positions 0 and k. In the case in which M dominates a foot node,
as suggested in the figure, f~ and fd have a value other than " - "

~, T---~ R t . , j, k, f l , f2],
[h, M--*3",, f~, f2, f~, fd],
t E Adj(M)

[M --~ 3' °, j, k, f~, f2] (Adj 0)

352

Nederhof Correct-Prefix Property for TAGs

h i j f~ f (f ; f 2
Adj 1

Figure 9

~ M 3 ' ,

h i fl 4 k
Adj 2

The two adjunctor steps, implicitly combined with Adj 0.

[M--* 7°, j, k , f~ , fd] ,
M dominates foot of tree t',
[h, F t, --+ ± o, f~, f~, f~, f~],
[h, N--+ c~oMfl, i, j, - , -]
[h, N - - . c ~ M ° f l , i, k, f~, f~]

(Adj 1)

[M ~ - y o , j, k, - , -] ,
[h, N - - * c ~ . M f l , i, j, f~, f~]
[h, N --~ a M . fl, i, k, f~, f~] (Adj 2)

For the running example, Adj 0 derives the intermediate item 15a from items 14
and 10 and from this and item 5, Adj 2 derives item 15. Similarly, Adj 0 and Adj 2
together derive item 22. There are no applications of Adj 1 in this example.

An alternative formulation of the adjunctor steps, without Adj 0, could be the
following:

~, T--* R t . , j, k, f l , d2],
[h, M ~ , , fl, fa, f~, fd],
t C Adj(M),
M dominates foot of tree t',
[h, Ft, ~ ± . , f~, fd, f~, f~l,
[h, N--~ c~ °Mfl , i, j, - , -1
[h, N --* a M ° fl, i, k, f~, fd] (Adj 1')

~, T"+ at° , j, k, f~, fal,
[h, M - - ~ 7 , , fl , f2, - , -1,
t 6 Adj(M),
[h, N---~a,Mf l , i, j, f~, fd]
[h, N ~ a M , f l , i, k, f~, f~]

(Adj 2')

353

Computational Linguistics Volume 25, Number 3

M

J f l ' ~ ' k

Figure 10
An item [M --~ 3' ", j, k, fi, fd].

That this formulation is equivalent to the original combination of the three steps
Adj 0, Adj 1, and Adj 2 can be argued in two stages.

First, the h in [h, M --~ "7 , , A , f2, f~, f~] or [h, M --+ 31 , , A , f2, - , -] occurring as
second antecedent of Adj I t or Adj 2 ~, respectively, can be replaced by a fresh variable
h ~ without affecting the correctness of the algorithm. In particular, the occurrence of h
in the second antecedent of Adj 1 ~ is redundant because of the inclusion of the fifth
antecedent [h, Ft, --+ J- , , f~, f~, f~, f~]. Note that, conversely, this fifth antecedent is
redundant with respect to the second antecedent, since existence of an item [h, M --+
"7 ", f l , f2, f~, fd], such that M dominates the foot of a tree t', implies the existence of
an item [h, Ft, ~ _L , , f~, f~, f~, f~]. For further explanation, see Section 4.

Second, the first three antecedents of Adj 1 ~ and Adj 2 ~ can be split off to obtain
Adj 0, Adj 1, and Adj 2, justified by principles that are the basis for optimization of
database queries (Ullman 1982).

The rationale for the original formulation of the adjunction steps as opposed to
the alternative formulation by Adj 1 ~ and Adj 2 ~ lies in the consideration of time
complexity, as will be discussed in Section 5.

4. Properties

The first claim we make about the algorithm pertains to its correctness as a recognizer:

Claim
After completion of the algorithm, the item [0, T --* a t e , 0, n, - , -], for some t E L
is in the table if and only if the input is in the language described by the grammar.

Note that the input is in the language if and only if the input is the yield of a
derived tree.

The idea behind the proof of the "if" part is that for any derived tree constructed
from the grammar we can indicate a top-down and left-to-right tree traversal that is
matched by corresponding items that are computed by steps of the algorithm. The
tree traversal and the corresponding items are exemplified by the numbers 1 ,23
in Figure 4.

For the "only if" part, we can show for each step separately that the invariant
suggested in Figure 3 is preserved. To simplify the proof one can look only at the last
five fields of items [h, N --+ c~, fl, i, j, fl, f2], h being irrelevant for the above claim.
We do, however, need h for the proof of the following claim:

354

Nederhof Correct-Prefix Property for TAGs

0 h i d
(a)

Figure 11
Pred 1 preserves the invariant.

0 h i d

(b)

Claim
The algorithm satisfies the correct-prefix property, provided the grammar is reduced.

A TAG is reduced if it does not contain any elementary trees that cannot be part
of any derived tree. (One reason w h y an auxiliary tree might not be a part of any
derived tree is that at some node it may have obligatory adjunction of itself, leading
to "infinite adjunction.")

Again, the proof relies on the invariant sketched in Figure 3. The invariant can be
proven correct by verifying that if the items in the antecedents of some step satisfy
the invariant, then so does the item in the consequent.

A slight technical problem is caused by the obligatory adjunctions. The shaded
areas in Figure 3, for example, represent not merely subtrees of elementary trees, but
subtrees of a derived tree, which means that at each node either adjunction or nil-
adjunction has been performed.

This issue arises when we prove that Pred 1 preserves the invariant. Figure 11(a)
represents the interpretation of the first antecedent of this step, [h, N --+ e~ • M f l , i, j , f l ,

f2]; wi thout loss of generality we only consider the case that f l = f2 = - . We may
assume that below M some subtree exists, and that at M itself either adjunction with
auxiliary tree t ~ or nil-adjunction has been applied; the figure shows the former case.

In order to justify the item from the consequent, ~, T --* • Rt, j, j, - , -] , we
construct the tree in Figure 11(b), which is the same as that in Figure 11(a), except
that t ~ is replaced by auxiliary tree t, which has been traversed so that at all nodes
either adjunction or nil-adjunction has been applied, including the nodes introduced
recursively through adjunctions. Such a finite traversal must exist since the grammar
is reduced.

For the other steps we do not need the assumption that the grammar is reduced
in order to prove that the invariant is preserved. For example, for Adj 1 we may
reason as follows: The item [M --+ ~, •, j, k, f~, f~], the first antecedent, informs us of
the existence of the structure in the shaded area of Figure 12(a). Similarly, the items
[h, Ft, --~ / • , jc~, jcd, f~, fd] and [h, N ~ c~ • M f l , i, j, - , -] provide the shaded areas
of Figures 12(b) and 12(c). Note that in the case of the first or third item, we do not
use all the information that the item provides. In particular, the information that the
structures are part of a derived tree consistent with the input between positions 0 and
k (in the case of (a)) or j (in the case of (c)) is not needed.

355

Computational Linguistics Volume 25, Number 3

M

J fl' f2' kO

"" """ / ",i ",
h fl' .f2' h i j

(a) (b) (c)

Rt~"""

' '!\

0 h i j fl fl" f2' f2 k

Figure 12
Adj 1 preserves the invariant.

(d)

The combined information from these three items ensures the existence of the
derived tree depicted in Figure 12(d), which justifies the consequent of Adj 1, viz.
[h, N --* a M . fl, i, k, f~, fd].

The other steps can be proven to preserve the invariant in similar ways.
Now the second claim follows: if the input up to position j has been read resulting

in an item of the form [h, N --* aa * fl, i, j, fl, f2], then there is a string y such that
a l . . . ajy is in the language. This y is the concatenation of the yields of the subtrees
labeled I, II, and III in Figure 3.

The full proofs of the two claims above are straightforward but tedious. Further-
more, our new algorithm is related to many existing recognition algorithms for TAGs
(Vijay-Shankar and Joshi 1985; Schabes and Joshi 1988; Lang 1988; Vijay-Shanker and
Weir 1993; Schabes and Shieber 1994; Schabes 1994), some of which were published

356

Nederhof Correct-Prefix Property for TAGs

together with proofs of correctness. Therefore, including full proofs for our new algo-
rithm does not seem necessary.

5. Complexity

The steps presented in pseudoformal notation in Section 3 can easily be composed
into an actual algorithm (Shieber, Schabes, and Pereira 1995). This can be done in such
a way that the order of the time complexity is determined by the maximal number of
different combinations of antecedents per step. If we restrict ourselves to the order of
the time complexity expressed in the length of the input, this means that the complexity
is given by O(nP), where p is the largest number of input positions in any step.

However, a better realization of the algorithm exists that allows us to exclude
the variables for input positions that occur only once in a step, which we will call
irrelevant input positions. This realization relies on the fact that an intermediate step

I

may be applied that reduces an item I with q input positions to another item I' with
q' < q input positions, omitting those that are irrelevant. That reduced item I' then
takes the place of I in the antecedent of the actual step. This has a strong relationship
to optimization of database queries (Ullman 1982).

For example, there are nine variables in Comp 1, of which i,fl,f2,f~,f~ are all
irrelevant, since they occur only once in that step. An alternative formulation of this
step is therefore given by the combination of the following three steps:

[h, M ~ ') , . , k, l, f{, f~]
[h, M--* 'y . , k, l, ?, ?]

(Omit 5-6)

[h, N ---* c~. Mfl, i, j, A , f2]

[h, N--* o~ .Mf l , ?, j, ?, ?]
(Omit 3-5-6)

[h, M--~'y . , k, 1, ?, ?],
t E Adj(M),
~,Ft---+ - ± , k, k , - , -] ,
[h, N--* o~. Mfl, ?, j, ?, ?1

~, F t - - ~ l . , k, l, k, I]
(Comp 1')

The question marks indicate omitted input positions. Items containing question
marks are distinguished from items without them, and from items with question marks
in different fields.

In Comp 1' there are now only four input positions left. The contribution of this
step to the overall time complexity is therefore O(n 4) rather than C9(n9). The contribu-
tion of Omit 5-6 and Omit 3-5-6 to the time complexity is O(n5).

For the entire algorithm, the maximum number of relevant input positions per
step is six. Thereby, the complexity of left-to-right recognition for TAGs under the
constraint of the correct-prefix property is CO(n6). There are five steps that contain six
relevant input positions, viz. Comp 2, Comp 3, Adj 0, Adj 1, and Adj 2.

357

Computational Linguistics Volume 25, Number 3

In terms of the size of the grammar G, the complexity is (Q(IG[2), since at most
two elementary trees are simultaneously considered in a single step. Note that in
some steps we address several parts of a single elementary tree, such as the two parts
represented by the items [h, Ft, ---+ 3_. , f i , f~, f~, f~] and [h, N ~ c~, Mf l , i, j, - , -]
in Adj 1. However, the second of these items uniquely identifies the second field of
the first item, and therefore this pair of items amounts to only one factor of IG] in the
time complexity.

The complexity of (.9(n 6) that we have achieved depends on two ideas: first, the
use of Adj 0, Adj 1, and Adj 2 instead of Adj 1 / and Adj 2 I, and second, the exclusion
of irrelevant variables above. Both are needed. The exclusion of irrelevant variables
alone, in combination with Adj 1 t and Adj 2 t, leads to a complexity of O(n8). Without
excluding irrelevant variables, we obtain a complexity of 0(//9) due to Comp 1, which
uses nine input positions.

The question arises where the exact difference lies between our algorithm and
that of Schabes and Joshi (1988), and whether their algorithm could be improved to
obtain the same time complexity as ours, using techniques similar to those discussed
above. This question is difficult to answer precisely because of the significant difference
between the types of items that are used in the respective algorithms. However, some
general considerations suggest that the algorithm from Schabes and Joshi (1988) is
inherently more expensive.

First, the items from the new algorithm have five input positions, which implies
that storage of the parse table requires a space complexity of O(n5). The items from the
older algorithm have effectively six input positions, which leads to a space complexity
of 0(/76).

Second, the "Right Completor" from Schabes and Joshi (1988), which roughly
corresponds with our adjunctor steps, has nine relevant input positions. This step can
be straightforwardly broken up into smaller steps that each have fewer relevant input
positions, but it seems difficult to reduce the maximal number of positions to six.

A final remark on Schabes and Joshi (1988) concerns the time complexity in terms
of the size of the grammar that they report, viz. O(]GI2). This would be the same upper
bound as in the case of the new algorithm. However, the correct complexity seems to
be O(]G]3), since each item contains references to two nodes of the same elementary
tree, and the combination in "Right Completor" of two items entails the simultaneous
use of three distinct nodes from the grammar.

6. Further Research

The algorithm in the present paper operates in a top-down manner, being very similar
to Earley's algorithm (Earley 1970), which is emphasized by the use of the "dotted"
items. As shown by Nederhof and Satta (1994), a family of parsing algorithms (top-
down, left-corner, PLR, ELR, and LR parsing [Nederhof 1994]) can be carried over
to head-driven parsing. An obvious question is whether such parsing techniques can
also be used to produce variants of left-to-right parsing for TAGs. Thus, one may
conjecture, for example, the existence of an LR-like parsing algorithm for arbitrary
TAGs that operates in (_9(n 6) and that has the correct-prefix property.

Note that LR-like parsing algorithms were proposed by Schabes and Vijay-Shanker
(1990) and Nederhof (1998). However, for these algorithms the correct-prefix property
is not satisfied.

Development of advanced parsing algorithms for TAGs with the correct-prefix
property is not at all straightforward. In the case of context-free grammars, the addi-
tional benefit of LR parsing, in comparison to, for example, top-down parsing, lies in

358

Nederhof Correct-Prefix Property for TAGs

the ability to process multiple g rammar rules simultaneously. If this is to be carried
over to TAGs, then multiple e lementary trees mus t be handled simultaneously. This
is difficult to combine with the mechanism we used to satisfy the correct-prefix prop-
erty, which relies on filtering out hypotheses with respect to "left context." Filtering
out such hypotheses requires detailed investigation of that left context, which, how-
ever, precludes treating multiple e lementary trees simultaneously. An exception m ay
be the case when a TAG contains many, almost identical, e lementary trees. It is not
clear whether this case occurs often in practice.

Therefore, further research is needed not only to precisely define advanced parsing
algorithms for TAGs with the correct-prefix property, but also to determine whether
there are any benefits for practical grammars.

Acknowledgments
Most of the presented research was carried
out within the framework of the Priority
Programme Language and Speech
Technology (TST) while the author was
employed at the University of Groningen.
The TST-Programme is sponsored by NWO
(Dutch Organization for Scientific Research).
An error in a previous version of this paper
was found and corrected with the help of
Giorgio Satta.

References
Earley, Jay. 1970. An efficient context-free

parsing algorithm. Communications of the
ACM, 13(2):94-102, February.

Joshi, Aravind K. 1987. An introduction to
tree adjoining grammars. In Alexis
Manaster-Ramer, editor, Mathematics of
Language. John Benjamins Publishing
Company, Amsterdam, pages 87-114.

Lang, Bernard. 1988. The systematic
construction of Earley parsers:
Application to the production of C9(n 6)
Earley parsers for tree adjoining
grammars. Unpublished paper, December.

Nederhof, Mark-Jan. 1994. An optimal
tabular parsing algorithm. In Proceedings
of the 32nd Annual Meeting, pages 117-124,
Las Cruces, NM, June. Association for
Computational Linguistics.

Nederhof, Mark-Jan. 1998. An alternative
LR algorithm for TAGs. In COLING-ACL
'98 36th Annual Meeting o/the Association/or
Computational Linguistics and 17th
International Conference on Computational
Linguistics, volume 2, pages 946-952,
Montreal, Quebec, Canada, August.

Nederhof, Mark-Jan and Giorgio Satta. 1994.
An extended theory of head-driven
parsing. In Proceedings o/the 32nd Annual
Meeting, pages 210-217, Las Cruces, NM,
June. Association for Computational
Linguistics.

Rajasekaran, Sanguthevar and Shibu

Yooseph. 1995. TAL recognition in
O(M(n2)) time. In Proceedings of the 33rd
Annual Meeting, pages 166-173,
Cambridge, MA, June. Association for
Computational Linguistics.

Satta, Giorgio. 1994. Tree-adjoining
grammar parsing and Boolean matrix
multiplication. Computational Linguistics,
20(2):173-191.

Schabes, Yves. 1994. Left to right parsing of
lexicalized tree-adjoining grammars.
Computational Intelligence, 10(4):506-524.

Schabes, Yves and Aravind K. Joshi. 1988.
An Earley-type parsing algorithm for tree
adjoining grammars. In Proceedings o/the
26th Annual Meeting, pages 258-269,
Buffalo, NY, June. Association for
Computational Linguistics.

Schabes, Yves and Stuart M. Shieber. 1994.
An alternative conception of
tree-adjoining derivation. Computational
Linguistics, 20(1):91-124.

Schabes, Yves and K. Vijay-Shanker. 1990.
Deterministic left to right parsing of tree
adjoining languages. In Proceedings o/the
28th Annual Meeting, pages 276-283,
Pittsburgh, PA, June. Association for
Computational Linguistics.

Schabes, Yves and Richard C. Waters. 1995.
Tree insertion grammar: A cubic-time,
parsable formalism that lexicalizes
context-free grammar without changing
the trees produced. Computational
Linguistics, 21(4):479-513.

Shieber, Stuart M., Yves Schabes, and
Fernando C. N. Pereira. 1995. Principles
and implementation of deductive parsing.
Journal o/Logic Programming, 24:3-36.

Sippu, Seppo and Eljas Soisalon-Soininen.
1988. Parsing Theory, Vol. h Languages and
Parsing. Volume 15 of EATCS Monographs
on Theoretical Computer Science.
Springer-Verlag.

Ullman, Jeffrey D. 1982. Principles o/Database
Systems. Computer Science Press.

Vijay-Shankar, K. and Aravind K. Joshi.

359

Computational Linguistics Volume 25, Number 3

1985. Some computational properties of
tree adjoining grammars. In Proceedings of
the 23rd Annual Meeting, pages 82-93,
Chicago, IL, July. Association for
Computational Linguistics.

Vijay-Shanker, K. and David J. Weir. 1993.
Parsing some constrained grammar

formalisms. Computational Linguistics,
19(4):591-636.

Vijay-Shanker, K. and David J. Weir. 1994.
The equivalence of four extensions of
context-free grammars. Mathematical
Systems Theory, 27:511-546.

360

