
The Problem of Logical-Form Equivalence

S t u a r t M. Sh ieber*
Harvard University

1. History of the Problem

This note discusses the problem of logical-form equivalence, a problem in natural
language generation first noted in print by Douglas Appelt (1987). Appelt describes the
problem, which we first came across in pursuing joint work on the GENESYS natural
language generation system, as a problem following from the goal of eliminating the
need for a strategic generation component to possess detailed grammatical knowledge.
In a paper describing the GENESYS tactical generation component (Shieber 1988), I
claimed that the problem was "AI-complete," in the sense that its resolution would
involve a solution to the general knowledge representation problem.

Since the publication of these two papers, several researchers have claimed to have
solved the problem of logical-form equivalence. In this paper, I review the problem
and attempt to highlight certain salient aspects of it that have been lost in the pursuing
of solutions, in order to reconcile the apparently contradictory claims of the problem's
intractability and its resolution.

2. Review of Natural Language Generation

In order to standardize on a particular context in which to view the problem of logical-
form equivalence, I review some concepts in natural language generation.

A grammar, for the purposes of the argument here, can be taken to be a formal
statement of a relation between strings of a natural language and representations of
their meanings in some logical or other artificial language. We will call such repre-
sentations logical forms. For each meaning of a string (recalling that strings may be
ambiguous), the grammar ought to pair the string with a logical form representing
that meaning. There may, in general, be several representations of any given meaning
in the logical-form language; the one paired with the string by the grammar will be
referred to as the canonical logical form for that string (under the given interpretation). It
is not necessary for the grammar to pair the string with all logical forms that happen
to represent the same meaning, and in fact, such a profligate approach would be un-
fortunate. It would make it more difficult, for instance, to determine whether a string
was truly ambiguous. 1

Under this view, the parsing problem involves computing the relation in the direc-
tion from string to meaning. In particular, from a string, the canonical logical form or

* Aiken Computation Laboratory, Harvard University, Cambridge, MA.
1 This problem is reminiscent of the "spurious ambiguity" problem noted for combinatory categorial

grammar (CCG). A number of distinct CCG analyses for a string may have identical semantics due to a
uniformly available choice between application and composition. Identical semantics can arise from
coincidental convergence of the meanings of two intrinsically distinct analyses as well. Thus, the
number of CCG analyses of a string is not a measure of the string's true ambiguity, nor is the number
of semantically distinct analyses.

(~) 1993 Association for Computational Linguistics

Computational Linguistics Volume 19, Number 1

forms are computed. The generation problem involves computing the relation in the
direction from meaning to string. More precisely, this is the tactical generation problem,
as opposed to the more difficult strategic generation problem (Thompson 1977)--the
problem of deciding what to say. I will assume that this latter problem is solved by
some other computational device, which I will refer to as a reasoner, that also manip-
ulates logical forms. The reasoner may be a strategic generator proper (as described
in the generation literature) or some more specialized program. All that is required
is that it be a computational artifact that needs the ability to construct utterances to
convey certain meanings, and that it supplies meaning representations, logical forms,
to a (tactical) generator for this purpose. See Section 4 for further discussion of these
assumptions.

3. Def in i t ion of the Prob lem

Given a logical form (presumably supplied by such a reasoner), a generator 2 must,
then, find a string with that meaning, that is, a string whose canonical logical form
means the same as the given one. This is the problem of logical-form equivalence, the problem
of constructing a generator that can generate not just from canonical logical forms but
from all logical forms that mean the same.

The notion of meaning identity of logical forms is thus crucial to the problem.
Meanings are something that we have a priori intuition of only for natural language
sentences, not logical forms; so meaning identity for logical forms must be predicated
on meaning identity for natural language sentences. Suppose there are two sentences
$1 and $2 with canonical logical forms L1 and L2. At minimum, the notion of meaning
identity for logical forms should be such that if $1 and $2 mean the same, then L1 and
L2 do, and conversely, if $1 and $2 do not mean the same, then neither do L1 and L2.
Any logical forms that are not the canonical form for any sentence are, in a sense, free
to mean the same as any other logical forms, but ideally, the logic (again, the term is
used broadly) from which the logical forms are taken should define meaning identity
in a consistent manner, as for example, through a uniform direct semantics for logical
forms, or proof-theoretically, or computationally. Indeed, the reasoner embodies some
such notion of meaning identity of logical forms implicitly in whatever computational
operations it performs on logical forms. It is natural, then, to take a notion of logical
equivalence for the logical form language as an approximation to meaning identity.
It is important to keep in mind, however, that the standard for meaning identity of
logical forms is consistency with natural language meaning identity, and it is mean-
ing identity, not logical equivalence, that is the basis for the problem of logical-form
equivalence.

One might be tempted to remove the requirement that a generator be able to
generate from noncanonical logical forms. The reason that it is not sufficient to generate
only from canonical logical forms comes from seeing a generator as it fits into a
larger computational context. Recall that a generator is a peripheral device for use by
some other computational mechanism, the reasoner, when it needs to utter a string to
convey a given meaning. If the generator required a canonical logical form as input,
the reasoner would be burdened with having to construct the canonical logical-form
representation for the meaning it wanted to convey, not merely some representation

2 Here and following, I will use the term "generator" for what is more strictly referred to by the term
"tactical generator." As should be clear from the foregoing discussion, our "reasoner" subsumes
"strategic generator."

180

Stuart M. Shieber The Problem of Logical-Form Equivalence

for the meaning. Which of the many logical forms representing a given meaning is
canonical is a grammatical issue, not a semantic one, and reasoners should not have
to truck with grammatical issues. It is only in the context of a generator's use by a
reasoner that the spirit of the logical-form equivalence problem can be seen. (It is no
coincidence that the problem first confronted us in the context of using the CL-PATR
generator with the KAMP reasoner in building the GENESY8 system.)

4. Scope of the Problem

The problem of logical-form equivalence is so called for historical reasons; the in-
terface between the KAMP planner and the CL-PATR generator used representations
referred to as logical forms. The problem itself holds for any generation system that
divides into a language-independent strategic reasoning component and a language-
dependent tactical generation component, whether this representation be sentences
of a logic narrowly construed or sentences of some other representation language
(semantic networks, a knowledge representation language, specialized interface lan-
guages, bundles of answers to systemic chooser questions, and so forth). Throughout
this paper, the term 'logical form" refers to the elements of whatever representation language serves
as the interface between the reasoner and generator. (The term language is to be construed
very broadly here as well.) As I will argue, for any such language, either the strategic
component will have to perform linguistic reasoning, or the interface representation
language together with the tactical component will constitute a solution to the AI
problem.

To further clarify the generality of the problem, note that the two components--
reasoner and generator--need not operate sequentially. The interface representation
may be communicated from the strategic to the tactical component in parts, and a sin-
gle representation need never exist at any one point in time. The sum total of inputs
driving the tactical generator constitutes a virtual logical form of the utterance. For
instance, the GENESYS system coroutined the KAMP planner and CL-PATR generator,
the logical form representation being communicated incrementally between the two.
At no point was a single logical representation ever used, or even constructed. Sim-
ilarly, the tactical component of a systemic generator may ask multiple questions of
a reasoner to drive the generation through choice points in the various systems. The
recursively structured bundle of answers to the various questions serves as a virtual
logical form for the system. See Sections 7 and 9 for further discussion of systemic
and functional approaches to generation.

On the other hand, there are restrictions on the scope of the problem. The problem
of logical-form equivalence relies on the distinction between a language-free reasoner
and a language-sensitive generator. If, as is often proposed, this distinction should
be eliminated, then the problem of logical-form equivalence disappears. However,
the single-component approach to generation does not thereby achieve an advantage,
for the single remaining component encompasses all of the reasoning and linguistic
aspects of generation, and is therefore at least as complex as the two components of
the model presupposed here. In fact, the elimination of the division opens the door
to greater complexity, modular systems with simple interfaces in general being more
constrained than nonmodular ones. Whether the elimination of the strategic/tactical
distinction is a useful move is, therefore, an independent, primarily empirical question,
one about which I am personally agnostic and about which this squib will have nothing
to contribute.

181

Computational Linguistics Volume 19, Number 1

5. Examples of the Problem

To construct some examples, we need to specify a particular logical-form language and
its relation to natural language sentences, thus imposing a notion of meaning identity
on the logical forms. Let us take the language to be a first-order logic and consider the
following pairings of strings and canonical logical forms that a hypothetical grammar
might induce.

(Item) String
Canonical Logical Form

(i) John threw a large red ball.
~x.throw(j~ x) A large(x) A red(x) A ball(x)

(ii) John threw a red ball that is large.
3x.throw(j~ x) A red(x) A ball(x) A large(x)

(iii) John threw a large ball that is red.
3x.throw(j, x) A large(x) A ball(x) A red(x)

Because these sentences mean the same (although they may differ in pragmatic effect)
while their logical forms differ in permutation of conjuncts, we will take meaning
identity for first-order logical forms to include commutativity and associativity of
conjunction. In fact, we can go further, by assuming (for the nonce) that meaning
identity is reasonably well approximated by the standard first-order-logic notion of
logical equivalence.

By the commutativity and associativity of conjunction, all three of these sentences
specify the same proposition. A generator confronted with a request to construct a sen-
tence conveying the proposition represented by, say, 3x.throw(j~ x) A ball(x) A large(x) A
red(x) ought to be able to generate all of these strings, or at least one of them. (Ideally,
further specification of the intended pragmatic effect ought to control which string is
generated, but such issues are incidental to the problem being discussed here.) Similar
equivalences based on logical properties of other operators--including associativity
and commutativity of disjunction, de Morgan's laws, laws of distributivity, equiva-
lence of quantifier prefixes, and so forth--all introduce instances of the problem for a
generator.

These considerations lead us to the reason for calling the problem of logical-form
equivalence a problem. Logical equivalence is in general not computable, even for
relatively inexpressive logics (like first-order logic). There are restricted cases in which
it is computable; for instance, propositional logic has a decidable equivalence problem.
However, even for such restricted logics, the problem is not effectively solved unless
the notion of canonical form implicit in the grammar corresponds exactly to a notion
of normal form for the logic (e.g., disjunctive normal form for propositional logic).
Otherwise, we cannot use the existence of a normal form to compute the canonical
form to drive the generator. Rather, all that can be done is to generate sentences blindly,
and test equivalence post facto, which is an extremely profligate approach. 3

As an approximation to meaning identity, the logical equivalence of first-order
logic is too fine-grained. Intuitively at least, more logical forms should be equivalent
than are provably equivalent by the laws of the logic alone. These further equivalences
can be captured through their statement in a theory, thereby forming a better approx-
imation to the meaning identity relation than logically valid equivalence alone. Not

3 However, see the later discussion of Levine's proposal that works exactly this way.

182

Stuart M. Shieber The Problem of Logical-Form Equivalence

surprisingly, such theory-relative equivalences can engender instances of the prob-
lem of logical-form equivalence, too. Suppose we are using a first-order language
augmented with some generalized quantifiers and equality to represent meanings. A
grammar might have the following pairings for a set of synonymous sentences: 4

(Item) String
Canonical Logical Form

(iv) Clapton was the leader of Derek and the Dominos.
the(x, leader-of(dd, x), c = x)

(v) The leader of Derek and the Dominos was Clapton.
the(x, leader-of(dd, x) , x = c)

(vi) Clapton led Derek and the Dominos.
led(c, dd)

It is a (presumably nonlogical) fact that

Vx, y.led(x, y) - leader-of(y, x).

Relative to this fact, along with certain logical equivalences concerning the referential
uniqueness induced by the quantifier the and substitution of equals for equals, the
(theory-relative) equivalence of all of these logical forms can be proved. As before, a
generator ought to be able to generate any of these strings from any of their logical
forms. And as before, the generator should also be taking into account pragmatic
issues such as focus and presupposition in guiding the generation. Thus, we should
be able to direct the generator to utter a sentence that means led(c, dd) while focusing
c and have it generate sentence (iv) above.

Above, we saw that the logical equivalence of first-order logic by itself is too fine-
grained a notion of equivalence. At the same time, it is too coarse-grained as well. For
example, consider conjoining a tautology with the logical form in (vi).

led(c, dd) A (rain V -.rain)

This formula is logically equivalent to (vi), but might well be the canonical logical
form for the sentence

(vii) Clapton led Derek and the Dominos and either it is raining or it is not
raining.

Certainly, one would not want a generator to produce (vi) and (vii) interchangeably;
they do not mean the same. This can serve as a reminder that the problem of logical-
form equivalence is concerned with logical notions of equivalence only insofar as these
aregood approximations to meaning identity. (Section 8 addresses this point in more detail.)
Many logics--relevance logics, for example--do not have these formulae as equivalent;
their notions of logical equivalence are presumably more appropriate, for this one case
at least, for building reasoners to interact with generators.

4 The example is derived from that encountered in the work on GENESYS and described by Appelt. The
reason that these particular logical forms are deemed the canonical ones for these sentences derives
from the relatively direct relation between the syntactic form of the sentences and the associated logical
form, as codified in a particular grammar.

183

Computational Linguistics Volume 19, Number 1

6. An Apparent Solution

The problem, in its barest form, may seem to be that a generator must be able to
"undo" all of the equivalences given by the axioms (logical and nonlogical) of the
logic that it uses to express logical forms. (This appearance of the problem comes about
exactly because of the confusion between the meaning identity relation and the logical
equivalence approximations thereto. We will purposefully indulge in this confusion
for the moment.) For sufficiently expressive logics (and logics as simple as first-order
logic are sufficiently expressive), computing whether two formulae are equivalent is
undecidable, and for decidable logics such as propositional logic, searching through
the infinite number of equivalents is, in any case, impractical.

An obvious method for resolving the problem of logical form equivalence, then,
would be to restrict the power of the logic. By doing so, the logical equivalence relation
becomes weaker, so that equivalence classes of logical forms are smaller, and searching
equivalents for those that are canonical should be that much easier, perhaps even
deterministic. In fact, both of the published claims of solution to the logical-form
equivalence problem are of this variety. The first such claim that has come to my
attention is due to Calder, Reape, and Zeevat (1989). They state that

We must generate all sentences whose semantic representations are
logically equivalent to the semantic representation being generated
under the rules of inference and axioms of the semantic representa-
tion language. 5 In the case of InL [their representation language], the
primary axioms are simply associativity and commutativity. However,
these two axioms alone give the equivalence problem factorial com-
plexity.

Since there are only a factorial number of equivalent logical forms, searching for the
canonical one is a finite (though, as the authors note elsewhere, still impractical) pro-
cess. John Levine (1990) reports on an interesting system called PRAGMA that in-
corporates an apparent solution to the logical-form equivalence problem based on
considering formulae identical if they have identical normal forms of a certain sort.
The normal form is constructed as a clause form with equalities removed and with
literals sorted in a standard way. Again, the notion of equivalence is weak, though
stronger than that of Calder, Reape, and Zeevat (1989).

It may be of some historical interest to describe the solution that was implemented
in the GENESY$ system, a solution that, to the best of my knowledge, has never be-
fore been described in published form. It, too, involved setting up a weak notion of
equivalence, but of an entirely different sort. We implemented a simple term rewriting
system that used a leftmost-outermost rewriting strategy, and specified rewrite rules
that attempted to rewrite the given logical form into its canonical equivalent. Some
rewrite rules implemented logical equivalences such as commutativity, others nonlog-
ical equivalences such as the led/leader-of type of relationship, and so forth. The use of
a rewriting system, and especially the leftmost-outermost strategy, gave us extremely
fine control over the notion of equivalence that the generator was able to operate
within, but the method was essentially ad hoc and thought of purely as an expedient,
as opposed to a true solution to the problem.

5 Note the authors' elegant statement of the original definition of the problem given in Section 3,
although they use logical equivalence as a replacement for meaning identity.--SMS

184

Stuart M. Shieber The Problem of Logical-Form Equivalence

In summary, the apparent solutions to the problem of logical-form equivalence
rest on the observation that the choice of logical equivalence is free. It can therefore
be chosen so as to make the task of the generator easier.

7. The Inadequacy of the Apparent Solution

There is a simple reductio against such apparent solutions to the logical-form equiv-
alence problem. The extreme version of this approach to a solution is to weaken the
notion of logical equivalence to one of syntactic identity. This notion of equivalence is
extremely easy to compute, so that a generator can easily produce all strings whose
canonical logical forms are equivalent to the given logical form. Nonetheless, there is
an overwhelming feeling that the question has not so much been solved as begged.

The reason is perhaps obvious. This notion of logical equivalence is not a good
approximation of meaning identity; it is far too intensional. But the entire basis for
pursuing the use of a logical equivalence relation was that it served as an approxima-
tion to meaning identity. Thus, such solutions that weaken the notion of equivalence
miss the spirit of the logical-form equivalence problem.

Such solutions do not unburden a reasoner from reasoning about canonicality of
logical forms. Any divergence between the logic defining equivalence for the generator
and the notion of meaning identity assumed by the reasoner implicitly embeds a claim:
that the reasoner makes insufficiently many semantic distinctions. These distinctions
are manifest in the meanings of natural language sentences, meanings that the reasoner
is reasoning about; therefore it should be cognizant of these distinctions. For instance,
if the generator logic eschews commutativity of conjunction, whereas the reasoner
incorporates it, the claim is thereby made that the properties conveyed by the nominals
"large red ball" and "large ball that is red" differ; this claim is much stronger than the
claim that they differ in pragmatic effect. In a similar vein, the notions of equivalence
implicit in the work of Calder, Reape, and Zeevat and in the work of Levine do not
conflate the logical forms (i), (ii), and (iii). The reasoner must choose the appropriate
one by looking ahead to the generation process.

Thus, Calder, Reape, and Zeevat and Levine solve an artificial variant of the
logical-form-equivalence problem; logical equivalence has become an end in itself,
rather than a means to an end. 6 They show that the notion of equivalence in the logic
used for the generator's logical forms is computable. But the actual problem would
require that the notion of logic be appropriate for the reasoner to use as well, that it
embody a notion of meaning identity. Without meaning identity to keep us honest,
we could take advantage of the divergence between the two notions of equivalence to
solve the problem by fiat.

In addition to the theoretic inadequacy due to divergence of the generator's equiv-
alence notion from true meaning identity, there is a practical problem in the particular
notions that Calder, Reape, and Zeevat and Levine choose. Although equivalence is
decidable in their schemes, it is still computationally extremely expensive. In Calder,
Reape, and Zeevat's logic, there are a factorial number of equivalent logical forms. To
directly incorporate their solution into a generator requires constructing the factorial
number of equivalents and generating separately from each of them. This is a suffi-
ciently expensive process that they do not actually implement the ability to generate

6 It should be emphasized that the work of Calder, Reape, and Zeevat and Levine is only incidentally
concerned with the logical-form-equivalence problem, and includes many other interesting ideas. The
discussion here is not intended to denigrate their research efforts in any way. I am merely using their
side discussions of the logical-form-equivalence problem to clarify some alternative conceptions.

185

Computational Linguistics Volume 19, Number 1

from noncanonical logical forms in their system, wisely preferring to direct their efforts
to defining notions of "semicanonicality" that admit of more efficient processing.

Levine's notion of equivalence is stronger (in that it finds more formulae to be
equivalent); so much so that generation of all logical equivalents is impossible--there
are infinitely many, in general. Levine states that "the problem of logical form equiva-
lence can be solved relatively easily for the sentence generator.., since it only attempts
to equate the goal logical form with the constructed logical form when tree formation
is complete." Thus, all that is necessary is a method for checking equivalence, not
generating equivalents, and this is efficiently computable. It does, however, mean that
the canonical logical form 'cannot itself be used to guide the generation process (since
the particular logical form that will serve that purpose is not known until "tree forma-
tion is complete"). The generation process is therefore not particularly goal-directed,
and many currently proposed tactical generation algorithms cannot be used. This pre-
sumably leads to less efficient generation, though Levine does not indicate any such
problem. Surprisingly, Levine states that "this process is guided by the syntactic fea-
tures attached to the sentence level node, but some semantic information from the
goal logical form is also used to cut down the search space," which seems to contra-
dict the idea of allowing divergence between the constructed and goal logical forms
throughout the generation process.

It might be thought that the problem rests in using logical notations for represent-
ing meanings. Systemic grammarians, for instance, might think that their methods are
immune to the problem of logical-form equivalence, because they do not represent the
meaning as such in a logical-form expression. Rather, to guide generation they must
merely query an oracle as to the answers to a definite set of questions. The answers
that the oracle provides control the choices in the grammar and lead to the genera-
tion of the utterance. This feeling of relief is illusory. At some point, the oracle must
answer questions on the basis of its representation of the situation to be described in
the utterance. (This representation is analogous to a logical form.) If it answers the
questions by direct lookup (as is done in the systemic generators I am aware of), then
it requires the representation of the described situation to be in a kind of canonical
form. If it answers the questions by reasoning from the representation, then we are
back to constructing a canonical form from a noncanonical one, and arbitrary reason-
ing might be needed. To the extent that the reasoning is constrained but the reasoner
is not burdened with grammatical issues, the problem of logical-form equivalence has
been solved. Thus, the use of a systemic grammar does not make the problem moot;
the problem is well defined in the systemic context. Furthermore, existing systemic
grammar generators do not, to my knowledge, solve the problem. 7

Solutions to the problem of logical-form equivalence are thus revealed to lie along
a continuum with respect to how close the match is between two notions of equiva-
lence: (i) the relation of meaning identity on logical forms and (ii) the notion of logical
equivalence that the generator is insensitive to (that is, the generator treats two logical
forms as equivalent in this sense if either can equally well serve as the input and
yield the same generated output). What is needed to solve the logical-form equiv-
alence problem then? Essentially, any semantic distinction in the logic that ramifies
in the syntax of the natural language must be somehow efficiently distinguishable
in the semantic representation, and any semantically distinguishable facet of the se-
mantic representation must have syntactic ramifications. The logical form language

7 It might be argued, however, that systemic or other functional approaches to language might have a
leg up on constructing a solution. I discuss this possibility in Section 9.

186

Stuart M. Shieber The Problem of Logical-Form Equivalence

must allow for the representation of all and only the semantic distinctions that ramify
syntactically, s It may make these distinctions by representing them explicitly or by
having them be efficiently computable (that is, not by arbitrary reasoning), but they
must be manifestable somehow.

It seems that a resolution of the logical-form equivalence problem must wait until
a representation language has been invented that characterizes exactly the semantic
distinctions that ramify in natural language syntax. But this, reiterating my previous
argument (Shieber 1988), is one manifestation of the AI knowledge representation
problem. There, I used the fact that the knowledge representation problem has not
been solved (and might be considered AI-complete) as a proof, by reduction so to
speak, of the AI-completeness of the logical-form equivalence problem. Certainly, the
argument is not a proof in principle, but merely one in practice; such a representation
has not been developed so far but perhaps one will be devised some day. Nonetheless,
I am not sanguine about the prospects.

8. Relations to Philosophy

One reason that ready solution of the problem of logical-form equivalence is not likely
is that it is essentially a philosophical problem, not a technological one. It may be that
this accounts for its intransigence. The problem centers on precisely specifying a notion
of meaning identity. This is a problem that has arisen in various notorious problems
in the philosophy of language over the last century. I list a few examples here.

Identity of predicates.

The question of when two predicates are identical ("mean the same") has
long been a thorny philosophical problem. Russell addresses it in his
philosophy of logical atomism (1983). It is a central question in the
theory of universals (Armstrong 1978). Typically, the question is phrased
as a concern over lexical predicates (e.g., renate/chordate). The problem
of logical-form equivalence is the syntactic construction counterpart to
this problem.

Substitution in opaque contexts.

It is widely acknowledged that Liebniz's law does not hold in certain
contexts (Frege 1892). Intensional verbs, for instance, disallow such
substitution. Thus, logical equivalence diverges from meaning identity
with respect to this test at least. Nonetheless, certain substitutions might
be allowed--which ones is a contentious topic--for instance,
substitutions based on commutativity of conjunction. The issue hinges
on examination of synonymy of sentences like the following:

John knows that Clapton led Derek and the Dominos.
John knows that Clapton was the leader of Derek and the
Dominos.
John knows that Clapton led Derek and the Dominos and either
it is raining or it is not raining.

8 This raises the interesting possibility, noted by Zellig Harris (1988), that the only language appropriate
for representing the semantics of natural language sentences are the sentences themselves.

187

Computational Linguistics Volume 19, Number 1

In a sense, generation is inherently an intensional process. If it were not,
then a generator could concern itself only with the truth value of the
logical form it was to generate from, uttering either "true" or "false" for
all inputs. One can think of the process of generation of an utterance as
implicitly incorporating an intensional context--something akin to "I tell
you that . . ." or "I want you to believe that " Indeed, all dialog works
this way. Russell (1940) expresses a similar sentiment: "In adult life, all
speech ... is, in intention, in the imperative mood. When it seems to be a
mere statement, it should be prefaced by the words 'know that'." It is
not surprising, then, that there is a close relationship between the
problem of logical-form equivalence and the philosophy of propositional
attitudes and other intensional phenomena.

Reducing meaning to truth.

Davidson (1984) attempts to build a theory of meaning on a theory of
truth, that is, on a characterization of Tarskian T-sentences such as

"Clapton led Derek and the Dominos" is true if and only if
Clapton led Derek and the Dominos.

Foster (1976) notes the need for excluding such T-sentences as

"Clapton led Derek and the Dominos" is true if and only if
Clapton led Derek and the Dominos and either it is raining
or it is not raining.

Although true, these sentences are undesirable in the enterprise of
characterizing the meaning of the sentence on the left-hand side.
Davidson's reply (1976) postulates the need, inter alia, for a canonical
proof procedure that maintains a "translation relationship" between the
left and right side of the biconditional in the T-sentences. Much of the
argument against Davidson's approach centers on the difficulty or
impossibility of constructing such a canonical proof procedure, and
counterarguments rest on the existence of such procedures. The question
remains open.

Any line of inquiry that requires a precise specification of the notion "means
the same as" is, not surprisingly, going to get itself ensnared in a fair amount of
philosophical flotsam.

9. Applicable Technology

It is important that researchers be aware of the philosophical nature of the problem,
so that they do not attempt to develop technological fixes to what is, at heart, not a
technological problem. Nonetheless, it may be that some technology can be useful in
developing approximate solutions to the problem of logical-form equivalence---logics
that come closer to embodying meaning identity or methods for characterizing certain
classes of meaning-identical logical forms. Some work that may be of potential use in
this program of research--but certainly not an exhaustive listing--is discussed in this
section.

Functional linguists, including those working in the systemic grammar tradition,
have done a great deal of work in codifying the distinctions between logically equiv-
alent sentences. By building on this work, better representational languages may be

188

Stuart M. Shieber The Problem of Logical-Form Equivalence

derivable. Of particular significance along these lines is the work of Hans Weigand
(1990) who has explored the idea of designing knowledge representation languages
on the basis of "linguistically motivated principles," based on the functional grammar
of Dik (1981). He is coming at the same problem, but from the opposite direction.

Some recent work by knowledge representation designers has concentrated on
low-power efficient knowledge representation languages. McAllester and Givan's work
on efficient inference systems based on analogies with natural language syntax (1989a,
1989b) is especially exciting in its potential application to the problem.

The lexical functions of Mel'~uk (1982) were originally proposed as a kind of
universal theory of lexical relationships. But they might also serve as a useful taxonomy
on which to build a notion of meaning identity. Although the functions that Mel'~uk
defines may or may not be exhaustive as far as meaning identity goes, they certainly go
a long way toward characterizing the most common such relationships. (For instance,
the relationship between (iv) and (vi) above is related to the lexical function $1 in
Mel'~uk's terminology.)

It will be interesting to see to what extent these or other approaches can aid in
approximating solutions to the problem of logical-form equivalence.

10. Summary

In summary, the problem of logical-form equivalence is really a problem of the diver-
gence between two notions of equivalence, one associated with a generator, a kind of
logical equivalence, and one associated with a reasoner, a notion of meaning identity.
The crucial role of the reasoner's notion of equivalence was not made clear in earlier
descriptions of the problem. Previous proposed solutions to the problem have, not
surprisingly therefore, addressed a weaker variant of the problem, defined solely in
terms of the generator's notion of equivalence, and consequently, have incorporated
weak solutions to the problem. I remain agnostic as to the possibility of a strong so-
lution to the problem of logical-form equivalence, but the relationships to difficult
problems in core AI and the philosophy of language cast a long shadow. Nonetheless,
approximate solutions based on certain techniques from computational linguistics and
AI may provide for some illumination.

Acknowledgments
I have benefited greatly from discussions
with Douglas Appelt, Barbara Grosz, David
Israel, David McDonald, Fernando Pereira,
James Pustejovsky, Jason Stanley, and David
Waltz on the topic of this paper. The
opinions expressed here are my own, and
are not necessarily shared by them, nor are
they responsible for any remaining errors of
form or substance.

References
Appelt, Douglas E. (1987). "Bidirectional

grammar and the design of natural
language generation systems." In
Proceedings, TINLAP-3, edited by Yorick
Wilks. Las Cruces, NM, January 7-9,
185-191. Reprinted (1989) in Theoretical
Issues in Natural Language Processing,
edited by Yorick Wilks, 199-205.

Lawrence Erlbaum Associates.
Armstrong, D. M. (1978). Universals and

Scientific Realism. Cambridge University
Press.

Calder, Jonathan; Reape, Mike; and Zeevat,
Henk (1989). "An algorithm for
generation in unification categorial
grammar." In Proceedings, 4th Conference of
the European Chapter of the Association for
Computational Linguistics. Manchester,
England, April 1989, 233-240.

Davidson, Donald (1984). "Truth and
meaning." In Inquiries into Truth and
Interpretation, 17-36. Oxford University
Press.

Davidson, Donald (1976). "Reply to Foster."
In Truth and Meaning: Essays in Semantics,
edited by Gareth Evans and John
McDowell, 33-41. Oxford University
Press.

189

Computational Linguistics Volume 19, Number 1

Dik, Simon C. (1981). Functional Grammar,
Volume 7 of Publications in Language
Sciences. Foris.

Foster, J. A. (1976). "Meaning and truth
theory." In Truth and Meaning: Essays in
Semantics, 1-32. Oxford University Press.

Frege, Gottlob (1892). "Ober Sinn und
Bedeutung." Zeitschrift far Philosophie und
Philosophische Kritik, volume 100,
number 1, pages 25-50. Reprinted as "On
sense and meaning" in Translations from
the Philosophical Writings of Gottlob Frege,
edited by Peter Geach and Max Black,
Basil Blackwell, 56-78.

Harris, Zellig (1988). Language and
Information. Columbia University Press.

Levine, John M. (1990). "PRAGMA--A
flexible bidirectional dialogue system." In
Proceedings, Eighth National Conference on
Artificial Intelligence, AAAI Press, 964-969.

McAllester, David, and Givan, Robert
(1989a). "Natural language syntax and
first order inference." AI Memo No. 1176,
Massachusetts Institute of Technology.

McAllester, David, and Givan, Robert
(1989b). "Taxonomic syntax for first order
inference." AI Memo No. 1134,
Massachusetts Institute of Technology.

Mel'~uk, Igor (1982). "Lexical functions in
lexicographic description." In Proceedings,
Eighth Annual Meeting of the Berkeley
Linguistics Society. Berkeley, California,
427-444.

Russell, Bertrand (1983). "The philosophy of
logical atomism. In The Philosophy of
Logical Atomism and Other Essays,
1914-1918, edited by John G. Slater,
155-244. George Allen and Unwin,
London.

Russell, Bertrand (1940). An Inquiry into
Meaning and Truth. George Allen and
Unwin, London.

Shieber, Stuart M. (1988). "A uniform
architecture for parsing and generation."
In Proceedings, 12th International Conference
on Computational Linguistics. Budapest,
Hungary, August, 614-619.

Thompson, Henry (1977). "Strategy and
tactics: A model for language
production." In Papers from the 13th
Regional Meeting, Chicago Linguistic Society,
Chicago, Illinois, 651-668.

Weigand, Hans (1990). Linguistically
Motivated Principles of Knowledge Base
Systems, Volume 12 of Functional Grammar
Series. Foris.

190

