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We describe an approach to unification grammars that integrates two paradigms: the object- 
oriented approach, which offers multiple inheritance, complex objects with role-value restrictions 
and role-values equality, querying as subsumption; the relational programming approach, which 
offers declarativity, logical variables, nondeterminism with backtracking, and existential queries. 
This approach is embodied in a constraint-based object-oriented formalism. The interpreter of the 
formalism is described as a term rewriting system based on unification of typed feature structures. 

The grammar writer organizes unification grammars as inheritance networks of typed feature 
structures. Complex linguistic structures are described by means of recursive type constraints. We 
illustrate the use of inheritance networks with two examples: an HPSG example where implication 
(as used for "principles") is modeled using inheritance and an example of bilingual transfer where 
the minimal amount of information needed for the translation is specified at different levels of 
generalization. 

1. I n t r o d u c t i o n  

Ideally, a linguistic formalism combining the best of the object-oriented approach and 
the unification-based approach would  be realized in a constraint-based architecture for 
an object-oriented language based on inheritance, feature structures, and unification. 

The Typed Feature Structure language (TFS) is an a t tempt  to provide  a synthesis 
of several key concepts s temming from unification-based grammar  formalisms (fea- 
ture structure: Kay 1984) knowledge  representat ion languages (inheritance), and logic 
p rogramming  (narrowing). The formalism supports  an object-oriented style based on 
abstraction and generalization through inheritance; it is a fully declarative formalism 
based on unification of typed feature structures. It is flexible and has enough expres- 
sive power  to suppor t  various kinds of linguistic theories, not  necessarily based on 
constituencyL 

The use of an object-oriented methodology  for natural  language processing is 
very  attractive, and the use of inheritance offers a number  of advantages such as ab- 
straction and generalization, information sharing and default  reasoning, and modular-  
ity and reusability (Daelemans 1990). Inheritance-based descriptions are already used 
in computat ional  linguistics: linguistic theories such as Systemic Functional Gram- 
mar  (Halliday 1985), Word Grammar  (Fraser and Hudson  1990), or HPSG (Pollard 
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and Sag 1987) make use of inheritance to describe linguistic structures at the lexical, 
morphological, syntactic, or semantic (conceptual) levels. These theories are usually 
directly implemented in object-oriented programming languages (e.g., LOOM in the 
case of the PENMAN system [Mann and Matthiessen 1985]), but there is a growing 
number of linguistic formalisms used for specific purposes, e.g., DATR (Evans and 
Gazdar 1989) for the lexicon. 

On the other hand, current linguistic theories such as LFG, UCG, HPSG, and some 
formalisms for linguistic description such as FUG or PATR-II are based on the notion 
of partial information: linguistic structures are described using feature structures that 
give partial information about the object being modeled, a linguistic structure being 
described by a set of feature structures that mutually constrain the description. Feature 
structures are partially ordered according to a subsumption ordering interpreted as an 
ordering on the amount of conveyed information; the combination of information is 
defined as the unification of feature structures. Formalisms based on feature structure 
and unification are declarative, and they can be given a sound formal semantics. 

Combining object-oriented approaches to linguistic description with unification- 
based grammar formalisms, as in HPSG, is very attractive. On one hand, we gain the 
advantages of the object-oriented approach: abstraction and generalization through 
the use of inheritance. On the other hand, we gain a fully declarative framework, 
with all the advantages of logical formalisms: expressive power, simplicity, and sound 
formal semantics. To arrive at such a result, we have to enrich the formalism of feature 
structures with the notion of inheritance and abandon some of the procedural features 
of object-oriented languages in order to gain referential transparency. 

Referential transparency is one of the characteristic properties of declarative lan- 
guages (Stoy 1977), where the meaning of each language construct is given by a few 
simple and general rules. For example, the value of a variable should be independent 
from its position within the scope of its declaration. This is true for PROLOG variables 
inside a clause, but not for PASCAL or LIsP variables that make use of assignment. A 
higher level example is the meaning of a procedure: it is not transparent if the pro- 
cedure makes use of global variables that are set by some other procedure. Similarly, 
the meaning of a PROLOG predicate should be transparent because there is no global 
variable, but a predicate definition might be modified during execution by imperative 
predicates such as a s s e r t  and r e t r a c t ,  thus destroying the referential transparency 
of pure PROLOG. 

Clearly, most of the object-oriented languages lack referential transparency in sev- 
eral ways, using for example procedural attachments for object methods. Another 
example is the use of nonmonotonic inheritance, which is advocated in computa- 
tional linguistics by, for example, Evans and Gazdar 1989; Bouma 1990; De Smedt and 
de Graaf 1990; and Fraser and Hudson 1990. Nonmonotonic inheritance is seen as 
a practical device designed to deal with exceptions, but such a feature goes against 
generality and referential transparency. Furthermore, as expressed by Etherington et 
al. 1989, a still unresolved issue in nonmonotonic reasoning is the issue of 

... scaling formal non-monotonic theories up to real problems (merely 
a formality?). Most existant theories are intractable some don't have 
even a proof theory--and it is often difficult to tell how large bodies 
of information will (or even should) interact. 

Given the complexity of the state of the art in nonmonotonic reasoning and the lack of 
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a basic commonly  agreed formalization, a the issue of nonmonotonic i ty  is not  addressed 
in the work described in this article. 

Knowledge representat ion languages are evolving toward more  declarativity, as 
exemplified by the evolution from KL-ONE (Brachman and Schmolze 1985) to lan- 
guages such as GLASSIC (Borgida et al. 1989) or LOOM (MacGregor 1988, 1990). The 
terminological component  describing the objects (the data model  of object-oriented 
database systems) has always been more declarative than the assertional component  
(procedural at tachment or methods),  and the current  trend is to integrate those two 
components  more closely, where  the assertional component  is some kind of rule-based 
system, as in LOOM (Yen, Neches, and MacGregor 1988). 

Typed feature structures are very  similar to structured objects of object-oriented 
languages and to conceptual  structures of knowledge representat ion languages. Thus, 
typed feature structures have the potential  to act as a lingua franca for both compu-  
tational linguistics and artificial intelligence, and this should ease the communicat ion 
between those two worlds. Since conceptual  structures are used for example in text 
generation (Bourbeau et al. 1990) or knowledge-based machine translation (Nirenburg 
et al. 1992), typed feature structures provide  an attractive alternative to current  proce- 
dural  implementations.  

In Section 2, we present  a language that combines the notions of partial information 
and inheritance in a fully declarative framework.  It is based on feature structures 
augmented  with the notion of types, which are organized into an inheritance network.  
Using types, it is possible to define structured domains of feature structures and to 
classify feature structures. Logical conditions are attached to types, akin to method  
attachment,  but  in a fully declarative framework.  Recursivity is an integral part  of 
the language, giving the necessary expressive power  for describing complex recursive 
linguistic structures. We end the section by an overview of the TFS abstract rewrite 
machine used for comput ing  descriptions of the meaning of typed feature structures. 3 

Section 3 describes the use of inheritance in two examples of unification grammars  
using the TFS formalism: an HPSG grammar  for a f ragment  of English and an LFG- 
style transfer g rammar  for a small machine translation problem between English and 
French. 

2. Inheritance Networks of Typed Feature Structures 

Assume the existence of an (abstract) informational domain  U, for example, the set 
of linguistic objects. Feature structures describe objects of this universe by specifying 
values for attributes of objects and equality constraints between some values. More 
precisely, as feature structures can provide only partial information about  the objects 
they describe, a feature structure denotes a set of objects in this universe. This set 
could be a singleton set, for example, in the case of atomic feature structures. Feature 
structures are ordered by a subsumption relation: a feature structure fl subsumes 
another  feature structure f2 iff fl provides  the same or less information than f2: fl _> f2. In 
our  universe, this means that the set described by fl is a superset of the set described 
by f2. Note that there can be feature structures that cannot consistently describe the 

2 The KR logic (Rounds and Kasper 1986), from which most of other logic formalizations of feature 
structures are derived, plays this role in formal accounts of feature structures. 

3 This formalism is fully implemented. An interpreter for the TFS rewrite machine has been 
implemented at the University of Stuttgart by Martin Emele and the author and has been used to test 
several linguistic models such as DCG, LFG, HPSG, and SFG [Emele and Zajac 1990b; Emele et al. 
1990; Zajac 1990a; Bateman and Momma 1991]. 
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same objects. For example, a feature structure describing verb phrases and a feature 
structure describing noun phrases are not consistent: the intersection of the sets they 
denote is usually empty. 

As different sets of attribute-value pairs make sense for different kinds of objects, 
we also divide our feature structures into different types. These types are ordered by 
a subtype relation: a type t2 is a subtype of another type tl if t2 provides at least as much 
information as tl. For example, assuming that a verb phrase is a phrase, then the set 
of verb phrases is included in the set of phrases. Using types to model this taxonomic 
hierarchy, the type symbol VP denotes the set of verb phrases, the symbol PH denotes 
the set of phrases, and we define VP as a subtype of I'H. 

This description implies that, if we know that a linguistic object is a verb phrase, 
we can deduce that it is a phrase. This deduction mechanism is expressed in our 
type system as type inheritance. Furthermore, with each type we associate constraints 
expressed as feature structures, thereby defining an inheritance network of typed fea- 
ture structures: if a feature structure is of type t and tlhere exist supertypes of t, then t 
inherits all the attribute-value pairs and equality constraints of the feature structures 
associated with all the supertypes of t. 

Computation is performed by a typed feature structure machine capable of check- 
ing a set of type constraints defined as an inheritance network of typed feature struc- 
tures. Given a typed feature structure inheritance network, we query the machine by 
asking if some feature structure satisfies the constraints defined by the network. To 
produce the answer, the system proceeds by gradually adding the constraints that 
should be satisfied by the query: an answer will be a set of feature structures where 
each feature structure is subsumed by the query and where all the type constraints of 
the network hold on all substructures of the elements of the answer. The answer is the 
empty set when the query does not satisfy the constraints defined by the network. 

Related work. 
The basic approach described in this section is based on original work by Ait-Kaci 
(1984, 1986) on the KBL language and has also been influenced by the work on HPSG 
by Pollard and Sag (1987) and Pollard and Moshier (1990). Among the growing lit- 
erature on the semantics of feature structures, many relevant results and techniques 
have been published by Smolka (1988, 1989), Smolka and A'/t-Kaci (1988), and Ait- 
Kaci and Podelski (1991). Based on Pollard and Sag (1987), Pollard (1990), and Pollard 
and Moshier (1990), a computational formalism, very close to the TFS formalism, is 
currently under design at CMU for implementing HPSG (Carpenter 1990, Franz 1990). 

The early work presented in Emele and Zajac (1989a) was an attempt to directly 
implement the ideas presented in Ait-Kaci (1984, 1986); Emele and Zajac (1989b) was 
already a departure from Ait-Kaci's KBL language, implementing a different evalua- 
tion strategy that allowed the use of cyclic feature structures. Compared with the KBL 
language, the current TFS language 

• allows the use of cyclic feature structures, 

• has a simple operational semantics implementing an inheritance rule and 
a specialization rule, 

• uses a lazy evaluation scheme for the evaluation of constraints, 

• implements static coherence checks, 

• has a simple syntax distinguishing the definition of the partial order on 
type symbols, and the definition of constraints associated to types. 
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2.1 Types 
In the following presentation, we adopt an algebraic approach based on lattice theory 
(Birkoff 1984; Ait-Kaci 1984). Alternative presentations could be developed as well; for 
example, a proof-theoretical approach using an adaptation of a feature logic (Rounds 
and Kasper 1986; Smolka 1988). It is possible to prove formally the equivalence of 
these different models, as this is done for the LIFE language in Ait-Kaci and Podelski 
(1991). The presentation is nevertheless rather informal, and a more technical account 
can be found in Emele and Zajac (1990a) and Zajac (1990b). 

The universe of feature structures is structured in an inheritance network that 
defines a partial ordering on kinds of available information. The backbone of the 
network is defined by a finite set of type symbols T together with a partial ordering 
< on T: the partially ordered set (poset) (T, -</- The ordering _ defines the subtype 
relation: for A, B E T we read A < B as "A is a subtype of B." We call the smallest 
types of T the minimal types. 

To have a well-behaved type hierarchy, we require that (T, _<) be such that: 

• T contains the symbols T and _1_, where T is the greatest element and _1_ 
is the least element of 7-.4 

any two type symbols A and B of T have a greatest common lower 
bound written glb(A, B}. A poset where greatest common lower bounds 
exist is a meet semi-lattice: we introduce a new operation 
A A B = glb(A, B}, where A A B is called the meet of A and B. 

Since we allow the user to specify any finite poset, a technicality arises when 
two types do not have a unique greatest common lower bound: in that case, the set 
of greatest common lower bounds is interpreted disjunctively using the following 
powerlattice construction, which preserves the ordering and the existing meets. 

The poset (T, <) is embedded in (crowns(T), C-H). The set crowns(T) is the set 
of all nonempty subsets of incomparable elements of T (the "crowns" of T). These 
subsets are partially ordered by the Hoare ordering GH: VX, Y E crowns(T), X GH Y 
iff Vx E X, 3y C Y such that x < y. 

The canonical injection of T in crowns(T), which takes any element x of T into 
the singleton {x} trivially preserves the ordering: {x} GH {y} iff x ~ y. 

The meet between two elements X and Y of crowns(T), X ~ Y, is defined as the 
union of the intersection of each of the principal ideals generated by the elements of X 
with each of the principal ideals generated by the elements of Y and then extracting the 
maximal elements. It is easy to see that existing meets are preserved: {z} -- {x} ~ {y} 
i f f z = x A y .  

Some meets are added, as in the following example. Let ({a, b, c, d}, _<) be a poset 
where d < b, d < a, c < b, and c < a (this poset is represented using a Hasse diagram 
in Figure 1). The meet a A b does not exist, but {a} R {b} -~ {c, d}, and this meet is 
interpreted disjunctively. 

The join between two elements X and Y of crowns(T), X U Y, is defined as the set 
of maximal elements of the union of X and Y. It can be shown that, equipped with 
R and U, (crowns(T), ~-H/is a distributive lattice. This construction is carried over to 
typed feature structures, with the property that this definition of the join does not lose 
information, contrary to the strict generalization of feature structures: this definition of 

4 T represents underspecified information, and ± represents inconsistent information. 
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b {a, c, d 

c d {el 

[b, c, d} 

[d} 

Figure 1 
A poset and the set of the principal ideals generated by the elements of the poset ordered by 

set inclusion. 

the join is appropriate  to represent  disjunctive information as, for example,  generated 
by  a nondeterminist ic  computat ion (see Section 2.4). 

This powerlatt ice construction is completely t ransparent  to the user, and to sim- 
plify the presentation, we will assume in the following that (T, ~) is a meet  semi- 
lattice. 

2.2 Feature Structures 
We use the attribute-value matrix (AVM) notat ion for feature structures, and we write 
the type symbol  for each feature structure in front of the opening square bracket of the 
AVM. In the remainder  of this section, we shall implicitly refer to some given signature 
(T, <, .T / where  (T, ~, ) is a type hierarchy and ~" is a set of feature symbols,  and we 
shall also assume a set of variables V. 

A typed feature structure t is then an expression of the form tl] 
[]A . . .  

: tn 

where  []  is a variable in a set of variables V, A is a type symbol in T,  f l , . . . ,  fn (with 
n _> 0) are features in ~-, and h , . - . ,  tn are typed  feature structures. 

We have to add some restrictions that capture propert ies  commonly  associated 
with feature structures: 

1. A feature is a selector that gives access to a substructure: it has to be 
unique  for a given feature structure. 

2. 3_ represents inconsistent information: it is not al lowed in a feature 
structure. 

3. A variable is used to capture equality constraints ("reentrancy") in the 
feature structure, and the shared value is represented only once: there is 
at most  one occurrence of a variable [ ]  that is the root of a structure 
different from []T. 

Given a signature (T, _<,/T), feature structures are partially ordered  by  a subsump-  
tion relation. This captures the intuitive notion that a feature structure t ~ containing 
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more information than a feature structure t is more specific than t. A feature structure 
t subsumes a structure {, t > t' iff: 

1. all paths in t are in t~; 

2. all equality constraints in t hold in t'. 

3. for a given path in t, its type isgreater  or equal than the corresponding 
type in tq 

Since we have a partial order on feature structures, the meet operation between 
two feature structures t and t r is defined in the usual way as the greatest common 
lower bound of t and tq It is computed using a typed unification algorithm. A feature 
structure is represented as a graph where each node has a type, an equivalence class 
used to represent equational constraints ("co-references"), and a set of outgoing arcs. 
The unification algorithm uses the un ion / f ind  procedure on an inverted set represen- 
tation of the equivalence classes adapted by Ait-Kaci (1984) after Huet  (1976). The 
actual algorithm used in the system is optimized using several different techniques to 
minimize copying and to behave as efficiently as a pattern-matcher in cases when one 
of the feature structures subsumes the other (Emele 1991). 

2.3 Inheritance Network of Feature Structures 
The template mechanism (as, for example, in PATR-II [Shieber 1986]) already provides 
a simple inheritance mechanism used to organize lexical descriptions. In comparison, 
networks of typed feature structures are more expressive and provide a more general 
and more powerful inheritance mechanism, which allows the use of recursive type 
definitions, whereas recursivity is forbidden in templates since they are expanded 
statically using a macro-expansion mechanism. Furthermore, typing provides a no- 
tion of well-formedness that is used to implement a type-discipline and consistency 
checks, giving the user the means of checking statically the coherence of a set of type 
definitions. 

2.3.1 Type Discipline. As different combinations of attribute value pairs make sense 
for different kinds of objects, we divide our feature structures into different classes 
by associating with a type a certain class of feature structures. Each type defines a 
specific collection of features that are appropriate for it, restrictions on their possible 
values, and equality constraints between values. The definition of a type A is def(A), 
expressed as a feature structure (of type A). A type symbol that does not have any 
definition is called an atomic type. A type that has a definition is called a complex 
type. 

The association of types and feature structures allows the definition of well- 
formedness conditions for feature structures using the following two typing rules: 

Typing 

Typing 

Rule 1: 
A feature appearing in a feature structure has always to be declared as 
appropriate for some type. The user cannot introduce arbitrary features: 
one must  declare all the features that one will use. All features that are 
not explicitly declared as being appropriate for some type are by default 
defined as being appropriate for _L. 

rule 2: 
A feature structure cannot have a feature that is not appropriate for its 
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type or for one of the supertypes. Thus, any feature structure with a fea- 
ture f has to belong to some type for which f is appropriate. 

These well-formedness conditions are enforced at compile-time using a type in- 
ference procedure which infers for each feature structure its possible minimal types. If 
the inferred type is _l_, an error is reported indicating that the respective feature struc- 
ture does not obey the typing rules. The internal representation built by the compiler 
uses these inferred minimal types to ensure that it is not possible to add an arbitrary 
feature to a feature structure during computation, but only those declared for the type 
of the structure, thus preserving well-formedness. 

2.3.2 Inheritance and Generalization. Since types are organized in an inheritance 
network, a type inherits all the features, value restrictions, and equality constraints 
from all its super-types monotonically: the constraints expressed as feature structures 
are conjoined using typed unification. The compiler makes sure that the user has 
specified an inheritance network, building an internal representation where for every 
two types such that A < B we have def(A) < def(B). 5 If there is a type A such that 
A # _1_ and def(A) = 3_, the network is inconsistent and an error is reported. The 
compiler also has a generalization step where all constraints common to all subtypes 
of a given type are also defined for that type. 

2.3.3 Interpreting an Inheritance Network. The constraints expressed as an inher- 
itance network are interpreted as follows. For a given typed feature structure t = 
GIA[...], the feature structure t belongs to the domain of A (i.e., it satisfies the con- 
straints associated with A) if and only if: 

Inheritance Rule: 
t satisfies the constraints specified by the definition of A and by the defi- 
nitions of all the supertypes of A; 

Specialization Rule: 
t satisfies the constraints specified by the definitions of at least one of 
the subtypes of A. 

The inheritance rule states the necessary conditions for a feature structure of type A 
to satisfy the constraints associated with A. The specialization rule states the sufficient 
conditions and implements a kind of closed-world assumption: a type is exhaustively 
covered by its subtypes. For example, a feature structure of type LIST can be an 
empty list (type NIL) or a nonempty list (CONS), but nothing else. These two rules are 
implemented by the TFS interpreter described in Section 2.4. 

Example. A simple example of an inheritance network of feature structures is dis- 
played in Figure 2 using Hasse diagrams. The subnetwork on the right defines a 
domain of lists expressed as feature structures: the set of all possible lists is defined 
by the type LIST, which has no associated constraints. This type has two subtypes: 

• NIL is an atomic type and represents the empty list; 

• CONS is a complex type and represents the set of all possible nonempty 
lists and defines the following constraints, ik feature structure of type 

5 Inheritance is pre-computed statically: A G B =~ def(A) = def(A) A def(B). 
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1: LIST 1 LIST 

, [,o1 APPEND0[2: []]LIST I APPENDli2:  ~]LIST :- APPEND 2: [ ]  

t3:  J /3: 

Figure 2 
Type hierarchy for LIST and APPEND (T and 3_ omitted). 

CONS has only two features (first typing rule): first, whose value is the 
first element of the list and can be anything, and rest, whose value is 
constrained to be a list. 6 Note that this latter constraint is recursive. 

The subnetwork  on the left defines the domain  of the APPEND relation, encoded 
using feature structures. The constraints associated with the super type  APPEND say 
that it has three arguments,  identified by  the features 1, 2, and 3, and that the values 
of all arguments  should be in the LIST domain.  The subtypes APPEND0 and APPEND1 
encode the two cases where the first a rgument  is the empty  list (APPEND0), and the 
nonempty  list (APPEND1), in a way  similar to the classical PROLOC encoding. As 
shown for the type APPEND1, it is possible to have additional constraints that are 
not represented in the feature structure proper: they are introduced by  the ' : - '  sign. 7 
These conditions can be inherited and are conjoined using the logical and operation. 
For APPEND1, the condition states the recursive constraint on the concatenation of the 
lists, which is expressed as a feature structure of type APPEND. 

2.4 The TFS Abstract Rewrite Machine  
The meaning (denotation) of a typed feature structure t in a universe U defined by  
an inheritance network is represented by  the largest set of feature structures St = 
{ h , . . . ,  tn} such that, for all ti 

1. ti <_ t, and 

2. for all substructures u = [XIA[...] of ti, type A is a minimal type and 
u ~ def(A) .  

The first condition says that all the elements of St satisfy the constraints expressed 
by t. The second condition says that all the elements of ,St satisfy the constraints defined 

6 Conversely, using the second typing rule, we  can deduce that CONS is a possible type for 
[first : M a r y ,  rest : T], since the combination of first and rest is defined as appropriate for C O N S .  

7 This construction provides room for future evolution of the formalism by adding  new kinds of 
constraints that cannot be directly expressed in the AVM format e.g., negation. A definition 
"X : - Y, Z." is read "X such that Y and Z." 
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LIST 

LIST 

[!: APPEND : LIST] 

: LIST.] 

APPEND : LIST[ 
: LIST] 

NIL 

CONSIfirst: T 
Lrest: LIS'[ 

APPEND0/2: m L: ~T 

rst:N 
CO lSLrest: []  

APPEND1 [] LIST 

: CONS[ first:N 
[rest:IN 

Figure 3 
Rewrite rules for LIST and APPEND. 

by  the network.  If St is empty, the feature structure t is inconsistent (modulo the 
constraints of the inheritance network).  St can be finite, e.g. in the case of a dictionary, 
but  it can also be infinite in the case of recursive types: for example,  the set of feature 
structures subsumed by  LIST is the (infinite) set of all possible lists represented as 
feature structures, s 

In this section, we describe an abstract rewrite machine for comput ing  the repre- 
sentation of the denotat ion of typed feature structures given an inheritance network.  
The rewrite mechanism is based on a variant of narrowing 9 adapted  to feature struc- 
tures. 

An inheritance ne twork  of feature structures is compiled into a rewriting system 
as follows: each direct link between a type A and a subtype B generates a rewrite rule 
of the form A[a] --* B[b] where  A[a] and B[b] are the definitions of A and B, respectively. 
Figure 3 shows the rewrite rules corresponding to the ne twork  of Figure 2. 

The interpreter is given a "query"  (formulated as a typed  feature structure) to 
evaluate. The first step is to check that the feature structure respects the two typing 
rules (Section 2.3.1). The idea is then to try to satisfy all the constraints defined by  
the inheritance network by  incrementally adding more  constraints to the query using 
the rewrite rules (nondeterministically) to get closer to the solution step by step. The 
rewriting process stops when  conditions 1 and 2 described above hold. 

A rewrite step for a structure t is defined as follows: if u is a substructure of t at 
path p and u is of type A, and there exists a rewrite rule A[a] --, B[b] such that 

• A[a] A u • 3_, and 

• A[a] A u < A[a] 

then the r ight-hand side B[b] is unified with the substructure u at path p, giving a new 
structure t' that is more  specific than t (Figure 4). 

8 See A'ff-Kaci (1984), Pollard and Moshier (1990), and Emele and Zajac (1990a) for fixed-point 
characterizations of the denotation of typed feature structures. 

9 Narrowing uses unification instead of pattern-matching for checking the applicability of the l.h.s, of a 
rule. Narrowing is used in the logic programming paradigm (e.g., as an alternative to resolution for 
implementing PROLOG interpreters). Pattern-matching is used in the functional programming 
paradigm. 
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Figure 4 
A rewrite step. 

The first condition checks that the rule is applicable: the 1.h.s. has to be consistent 
with the substructure. The implementat ion factorizes common 1.h.s., avoiding the DNF 
expansion: if a 1.h.s. l of a rule l --* r is not  consistent with the substructure,  this 
computat ion branch is a failure branch, and all rules u ~ v where u < I are discarded 
in one step wi thout  further  computation.  

The second condition implements  a lazy rewriting strategy: if A[aJ A u is equal to 
A[a], all rules A[a] --* B[b] could be applied with success, and failure could come only 
from the rewriting of some other substructures after the exploration of all choices for 
u. To avoid the exploration of failure branches as much as possible, the evaluation of 
the substructure u is suspended until the evaluation of some other substructure having 
some part  in common with u makes u more specific, narrowing the set of potential  
choices for the subtypes of A for u. Thus, the search space is explored "intelligently," 
postponing the evaluation of branches of computat ion that would  correspond for ex- 
ample to uninstantiated PROLOC goals (see for example van Hentenryck  and Dincbas 
[1987], van Hentenryck  [1989] on evaluation techniques in constraint logic program- 
ming). 

Rewrite steps are applied nondeterminist ically everywhere  in the structure until 
no further  rule is applicable. 1° 

The choice of which substructure to rewrite is only part ly determined by the 
availability of information (using the lazy rewriting rule). When there are several 
substructures that could be rewritten, the computat ion rule is to choose one of the 
outermost  ones, i.e., one closest to the root of the feature structure (innermost strategies 
are usually nonterminating).  This outermost  rewrit ing strategy is similar to hyper-  
resolution in logic programming.  In comparison, PROLOG uses a leftmost computat ion 
rule. 

For a given substructure, the choice of which rule to apply  is done nondetermin-  
istically, and the search space is explored depth-first using a backtracking scheme. Al- 
though this strategy is not complete (a complete breadth-first search strategy could be 
used for debugging purposes),  the use of the outermost  rule has favorable termination 

10 Conditions do not change this general scheme (they are evaluated using the same rewriting 
mechanism) and are omitted from the presentation here for the sake of simplicity. See for example 
Dershowitz and Plaisted (1988) and Klop (1990) for a survey on rewriting. 
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properties when compared to PROLOG'S leftmost rule: there are problems where a TFS 
computation will terminate when the corresponding logic program implemented in 
PROLOG will not; for example, for left-recursive rules in naive PROLOG implementa- 
tions of DCGs. 

3. Inheritance and Constraint-Based Grammars 

3.1 Related Approaches 
In the constraint-based framework, a grammar is regarded as a set of constraints to be 
satisfied by a given linguistic object: parsing and generation differ only in the nature 
of the "input," and use the same constraint evaluation mechanism. The properties of 
a computational framework for implementing constraint-based grammars are: 

• A unique general constraint solving mechanism is used: grammars 
define constraints on the set of acceptable linguistic structures. 

• As a consequence, there is no formal distinction between "input" and 
"output." For example, the same kind of data structure could be used to 
encode both the string and the structural description, and, as for the 
HPSG sign (Pollard and Sag 1987), they could be embedded into a single 
data structure that represents the relation between the string and the 
associated linguistic structure. 

• Specific mapping properties, based on constituency, linear precedence, or 
functional composition, are not part of the formalism itself, but can be 
encoded explicitly in the formalism. 

An approach that uses a unique deductive mechanism for parsing and generation 
is described in Dymetman and Isabelle (1988). Within this approach, a lazy evaluation 
mechanism based on the specification of input /output  arguments is implemented (in 
PROLOG), and the evaluation is completely data-driven: the same program parses or 
generates, depending only on the form of the input structure. 

A constraint-based grammar does not need a context-free mechanism to build 
up constituent structures for parsing or generation: Dymetman, Isabelle, and Perrault 
(1990) describe a class of reversible grammars ("Lexical Grammars") based on a few 
composition rules that are very reminiscent of categorial grammars. Other kinds of 
approaches have been proposed, e.g., using a dependency structure and linear prece- 
dence relations (Reape 1990; see also Pollard and Sag [1987]). In Saint-Dizier (1991), 
linear precedence rules are defined as constraints in a language based on typed feature 
structures and SLD-resolution, which is used to experiment with GB theory. 

In the following sections, we describe two examples of constraint-based grammars: 
an HPSG grammar for a fragment of English, and an LFG-style transfer grammar for 
a small machine translation problem between English and French. 

3.2 Head-Driven Phrase Structure Grammar 
In general, a grammar describes the relation between strings of words and linguistic 
structures. To implement a constraint-based grammar in TFS, we have to encode both 
kinds of structures using the same data structure provided by the TFS language: typed 
feature structures. A linguistic structure will be encoded using features and values. 
Conditions that constrain the set of valid linguistic structures have to be declared ex- 
plicitly. A string of words will be encoded as a list of word forms, using the same kind 
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[sYH I Loc f SuBcAT ~ ] 
[DTRS headed..~trueture[ ] ]:~'[DTRs[HEAD-DTR I SYN ] LOC l SUBCAT append(ID,l~)] J [ [COMP-DTRS ~] 

P H R A S E  < SUBCAT-FP. 

t dtrs: [comp-dtm: ~[~ [3: ~J 

Figure 5 
The HSPG subcategorization principle and its TFS encoding. 

of definitions as in Figure 2.11 HPSG is so far the only formal linguistic theory based 
on the notion of typed feature structures (Pollard 1990), and is thus a good candidate 
to illustrate the possibilities of the TFS formalism. The following presentation is based 
on Emele (1988) and Emele and Zajac (1990b). 

The basic linguistic object in HPSG (Pollard and Sag 1987) is a complex linguistic 
structure, the "sign," with four levels of description: phonology, constituent structure, 
syntax, and semantics. In HPSG, there is no distinction between "input" and "output:" 
the relation between a string and a linguistic structure is encoded as a single feature 
structure representing the "sign." 

HPSG "principles" are encoded using inheritance: a feature structure of type 
PHRASE inherits the constraints associated with types SUBCAT-FP, HEAD-FP, and 
SEM-FP. For example, the HPSG subcategorization principle is encoded in TFS us- 
ing inheritance to model implication, and the TFS APPEND relation to encode the 
functional constraint on concatenation (Figure 5). In a similar way, HEAD-FP encodes 
the HPSG Head Feature Principle and SEM-FP encodes the Semantics Principle. 

The type SIGN is divided into several subtypes corresponding to different map- 
pings between a string and a linguistic structure. We first have the basic distinction 
between phrases and words. The definition of a phrase recursively relates subphrases 
and substrings, and defines the phrase as a composition of subphrases and the string 
as the concatenation of substrings. Since the formalism itself does not impose any con- 
straints on how the relations between phrases and strings are defined, the grammar 
writer has to define them explicitly. In HPSG (Pollard and Sag 1987), the ordering 
of phrases is defined using linear precedence relations: the order in which the sub- 
strings associated with subphrases are concatenated to give the string associated with 
a phrase are guided by these linear precedence relations (Reape 1990). 

In the example given below (Figure 6), we make simplifying assumptions: the 
LOCAL feature is not used and there are two possible orderings for complements. The 
type IDP1 encodes Grammar Rule 1 (Pollard and Sag 1987, pp. 149-155), which says 
that a "saturated phrasal sign," i.e., a feature structure with [syn : [subcat : (>]], is the 
combination of an unsaturated phrasal head with one phrasal complement on the left. 
For example, for structures like S ~ NP VP, S is the "saturated phrasal sign," NP is 

11 We will use a more condensed notation for lists with angle brackets provided by the TFS language: a 
list 

C0NS[first: Mary, rest: CONS [first : sings, rest: NIL]] is writtenas <Mary sings>. 
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SUBCAT-FP HEAD-FP SEM-:FP 

• •  Fphon: B ] 
/syn: [subcat: (SIGN)] ] ,  J 

[phon: [sl~Dubcat: 0 ] ] IDP2/. [hea(l-dtz: WOl~D[phon: m ] 
L 

Lcomp-dt~s: (SXGN[phon: El]) JJ 

:- APPEND : 
L3: ~J 

.'~ APPEND : 

Figure 6 
Part of the HPSG PHRASE hierarchy: PHRASE inherits from "principles" (given here without 

their definitions) and is subdivided into two subtypes corresponding to different complement 
orderings. 

the left phrasal complement and VP is the unsaturated phrasal head. Furthermore, the 
string (the value of the phon feature) of the IDP1 phrase is the concatenation of the 
string of the complement with the string of the head. 

The type IDP2 encodes Grammar Rule 2 and states that an "unsaturated phrasal 
sign," i.e., a feature structure with [syn:[subcat:lSIGNI] ], is the combination of a 
lexical head with any number of complements on the r~ht  (e.g., for VP --* V XP*): the 
string associated with IDP2 is the concatenation of the string of the head with the 
concatenation of the strings of the complements, where the relation ORDER-COMP 
defines in which order the complements strings are concatenated. 

The difference between the parsing and the generation problem is then only in the 
form of the structure given to the interpreter for evaluation. A query for the parsing 
problem is an underspecified structure where only the string is given; conversely, 
a query for the generation problem is an underspecified structure where only the 
semantic form is given (Figure 7). 

In both cases, the interpreter uses the same set of rewrite rules to fill in "missing 
information" according to the type definitions. The result in both cases is exactly the 
same: a fully specified structure containing the string, the full semantic form, and also 
all other syntactic information such as the constituent structure (Figure 8). 

3.3 Bi-directional Transfer in Machine  Translation 
We have sketched above a very general framework for specifying mappings between 
a linguistic structure, encoded as a feature structure, and a string, also encoded as a 
feature structure. We apply a similar technique for specifying transfer rules for machine 
translation, which we prefer to call "contrastive rules" since there is no directionality 
involved (Zajac 1989; 1990a). 
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Query for parsing 

PHILASE[phon: (Elm ate every cookie)] 

Query for generation 

Paa.asz : |~gl:~,-d:[r,~tr:[n~e: KXM]]] _] 
/ g2:|spec: EVERY [ Li.a: [r--tr:[ra": COOKm]]] ] 

Figure 7 
Queries for parsing and generation. 

IDP1 

phon: (Kim ate every cookie) 

L subcat: 0 J 
__[comp-dtrs: ( . . .)  

dtrs: TR~:~[head.dtr: IDP2..,  
'zeln: EAT 

[m h°r 111 rein: NAMING 
m lr,.,r" • / / / 

sem: 2ARG-REL [ kname: KIM J J J 

Figure 8 
The common solution to the parsing and generation problems. 

The idea is rather simple: assume we are working with linguistic structures simi- 
lar to LFG's functional structures for English and French as proposed in Kaplan et al. 
(1989). We define a translation relation as a type TAU-LEX with two features, eng for 
the English structure and fr for the French structure. This "bilingual sign" is defined 
on the lexical structure: each subtype of TAU-LEX defines a lexical correspondence 
between a partial English structure and a partial French structure for a given lexical 
equivalence. Such a lexical contrastive definition for a verb also has to pair the argu- 
ments recursively. This is expressed in the condition part of the definition (Figure 9) 
by a recursive condition TAU-LEX on the arguments. The translation of syntactic and 
semantic features, like tense or determination, is also specified in the condition part, 
and these contrastive definitions can and should be defined separately from the lexical 
definitions as different subnetworks. 

Inheritance is used here to capture generalizations over relations: all the informa- 
tion in the example of Figure 9 can be unpacked and redefined as follows. We have 
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TAU-LEX-FALL ~ TAU-LEX-ITV. 

/eng:/subj: 
l [tense: 

TAU-LEX-FALL ] ipred: TOMBEI 1 . 
I~: [subj: ~ 
L L tense: 

Figure 9 
A transfer rule. 

TAU 
/ \  

TAU-LEX... TAU-TENSE... 

U L /Feng:rtense le'tea*el U eng 

~ r e n g  subj ~ eng 

~ r e n g  pred FALL] 

Figure 10 
Part of an inheritance network of transfer relations for verbs. 

three levels of generalization for the translation of verbs: TAU-LEX-V is subdivided into 
several relations for translating, for example, transitive verbs (TAU-LEX-TV), intransi- 
tive verbs (TAU-LEX-ITV), etc. The condition that specifies the translation of tenses is 
defined for the whole class of verbs TAU-LEX-V. The condition that specifies the trans- 
lation relation between subjects is defined for intransitive verbs (TAU-LEX-ITV), but 
cannot be specified for all verbs since it does not apply to, e.g., impersonal verbs. This 
leaves only the translation of predicates to be defined at the leaves of the hierarchy 
(Figure 10). Thus, at each level of generalization, we specify the minimal amount of 
information needed for translation. The same kind of organization can be used for 
nouns, where syntactic features such as determination are associated with the higher 
types, and where the minimal types define the equivalences between lexical forms of 
nouns themselves. 
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Query 

FA '. 11 
/ rPre(l: STUDENT ] / / 

TAU eng: isubj: / B,ea: A 1 / / /  
/ Ln"":  s GJJ [ / 
Ltense: E-PRES J J 

Answer 

TAU-LEX-FALL 

PrecI: FALL ] 
] rPre(i: STUDENT 11 

o-s:/,.bj: ! [p,~: A ] / !  
/ L*~:: L,,,,m: ~_s~JJ / 
Ltense: F-PRES J 
rp,ed: TOMBER ] 
[ rp,ed: ETUDIANT ] [ 

~: [subj: [ [pred:UN "1// 
i L='>~:: L"u": F'S~GJ J / 
Ltense: F-PRES J 

Figure 11 
Query and answer for the translation of "A student falls." 

The transfer problem for each direction is then stated in the same way as for 
parsing or generation: the input structure is an underspecified "bilingual sign" where 
only the structure for the source language is given. Using the contrastive grammar, 
the interpreter fills in missing information and builds a bilingual sign 12 (Figure 11). 

It is not necessary to specify in the contrastive definitions all monolingual con- 
straints that have to be satisfied by the English structure and by the French structure. 
We can assume that we have monolingual grammars that define the appropriate map- 
pings between the set of English sentences and the set of associated English structures, 
and similarily for French. Using these monolingual constraints in addition to the con- 
trastive grammar, the TFS interpreter would build the fully specified monolingual 
structures, implementing a constraint-based translation system. 

3.4 Termination Problems 
For parsing and generation, since no constraints are imposed on the kind of mapping 
between the string and the semantic form, termination has to be proved for each class 
of grammar and for the particular mechanism used for either parsing or generation 
with this grammar. If we restrict ourselves to classes of grammars for which termi- 
nating evaluation algorithms are known, we can implement those directly in TFS. 
However, the TFS evaluation strategy allows more naive implementations of gram- 
mars, and the outermost rewriting of "sub-goals" terminates on a strictly larger class 
of programs than for corresponding logic programs implemented in PROLO~. Further- 
more, the grammar writer does not need, and actually should not, be aware of the 
control that follows the shape of the input rather than a fixed strategy, thanks to the 
lazy evaluation mechanism. 

12 See also Reape (1990) for another approach to MT using feature structures and based on Whitelock 
(1990). 
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For HPSG-style grammars, completeness and coherence as defined for LFG, and 
extended to the general case by Wedekind (1988), are implemented in HPSG using the 
"subcategorization feature principle" (Johnson 1987): for the TFS implementation of 
HPSG, termination is guaranteed, at least for the simplified version containing only 
head-complement structures, described in Section 3.2. Termination conditions for pars- 
ing are well understood in the framework of context-free grammars. For generation 
using feature structures, one of the problems is that the input could be "extended" 
during processing, i.e., arbitrary feature structures could be introduced in the semantic 
part of the input by unification with the semantic part of a rule. However, if the seman- 
tic part of the input is fully specified according to a set of type definitions describing 
the set of well-formed semantic structures (and this condition is easy to check), this 
cannot arise in a type-based system since it is not possible to add arbitrary features to 
a typed feature structure. 

A more general approach is described in Dymetman, Isabelle, and Perrault (1990), 
who define sufficient termination properties for parsing and generation for the class 
of "Lexical Grammars." These termination properties are conditions on the existence 
of "conservative guides" for parsing and generation and seem generalizable to other 
classes of grammars as well, and are also applicable to TFS implementations. Since 
Lexical Grammars are implemented in PROLOG, lefbrecursion must be eliminated for 
parsing and for generation, but this does not apply to TFS implementations. The idea 
of conservative guides is relatively simple and says that for parsing, each rule must 
consume a nonempty part of the string, and for generation, each rule must consume 
a nonempty part of the semantic form. These conditions seem to be equivalent as 
to require the existence of a well-founded relation on strings (for parsing) and of 
a well-founded relation on semantic forms (for generation). The existence of such 
well-founded relations is actually a necessary condition for proving the termination 
of parsing and generation (see Deville [1990] for a more general discussion on well- 
founded relations in the context of logic programming). 

Termination for reversible transfer grammars is discussed in van Noord (1990). 
One of the problems mentioned there is the extension of the "input," as in generation, 
and the answer is similar (see above). However, properties similar to the "conservative 
guides" of Dymetman, Isabelle, and Perrault (1990) have to hold in order to ensure 
termination. 

4. Conclus ion 

The TFS system has been developed to provide a computational environment for the 
design and the implementation of formal models of natural language. The TFS formal- 
ism is designed as a specification language that can be used to design and implement 
formal linguistic models. It is not a programming language: it does not offer means 
of defining control information that would make execution more efficient (but less 
general), as it would be needed if it would be envisaged to use the system in an 
application-oriented environment (e.g., as a parser in a natural language interface to a 
database system). From formal linguistic models developed in TFS, it could be envis- 
aged to develop programs, i.e., parsers or generators, that would efficiently implement 
the declarative knowledge contained in the formal specifications. 13 

13 See for example in Biggerstaff and Perlis (1989) the papers on the development of programs from 
specifications, a very important issue in software engineering. See also Ait-Kaci and Meyer (1990) for a 
programming language based on typed feature structures. 
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The TFS system is implemented using rewriting techniques in a constraint-based 
architecture adapted to feature structures: 

• The language is a logical language directly based on typed feature 
structures, and supports an object-oriented style based on multiple 
inheritance. 

• Grammars  are expressed as inheritance networks of typed feature 
structures. They define constraints on the set of acceptable linguistic 
structures. As a consequence, there is no formal distinction between 
"input" and "output."  

• A unique general constraint solving mechanism is used. Specific 
mapping properties, based on constituency, linear precedence or 
functional composition, are not part of the formalism itself, but can be 
encoded explicitly using the formalism. 

Although the current implementation is very much at the level of an experimental 
prototype, and is still evolving, it has validated the basic concepts of the language 
and of the implementation, and has been used to test different linguistic models and 
formalisms such as LFG, DCG, HPSG, and SFG on small examples. From these var- 
ious experimentations, we have defined extensions and improvements,  both on the 
language and on the implementation, that are needed for scaling up the system. 

On the language side, more expressivity is needed. For example, disjunctions over 
feature structures, various kinds of negation (Ait-Kaci 1986), and sets of feature struc- 
tures (Pollard and Moshier 1990) are necessary to formalize, e.g., nontrivial semantic 
structures. Some types together with a specific syntax and associated operations could 
be conveniently added to the system as libraries of built-in types, e.g., characters, 
strings, and trees. 

On the implementation side, the use of implementation techniques adapted from 
PROLOG implementations, constraint satisfaction languages, and object-oriented lan- 
guages can be beneficial to the implementation of typed feature structure-based sys- 
tems and have to be more thoroughly explored.14One of the major efficiency issues in 
the current implementation is the lack of an efficient indexing scheme for typed fea- 
ture structures. For example, since the dictionaries are accessed using unification only, 
each entry is tried one after the other, leading to an extremely inefficient behavior with 
large dictionaries. Thus, the use of a general indexing scheme based on a combination 
of methods used in PROLOG implementations and in object-oriented database systems 
is necessary and will be implemented in a future version of the system. 
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Appendix: Syntax of the TFS Language 

In the TFS language, there are two kinds of comments. In-line comments begin with 
a semicolon and end with the end of line. These comments can appear anywhere  
where a white space character is allowed in the syntax. They are skipped during 
reading. Syntactic comments begin and end with the % character. These comments can 
appear only where specified in the BNF syntax specification. They are attached to the 
structure produced by the reader and can be displayed if the appropriate printer option 
is set. Identifiers are case-sensitive. Macros are expanded statically by the compiler. 
The operator ~ is interpreted as the meet (unification). 

The following extensions of the BNF notation are used: 

• [X] denotes the optional element X (zero or one occurrence). 

• X* denotes the free iteration of element X (zero, one or more 
occurrences). 

• X + denotes the iteration of element X (one or more occurrences). 

• Symbols in t y p e w r i t e r  font denote symbols of the TFS syntax. 

<ent i ty> ::= <query>  I <definit ion> 
<query>  ::-- .9 <expression> . 
<definit ion> ::= <po-definit ion> I <macro-definition> ] <type-definit ion> 
<po-definit ion> ::= <type-symbol> < <type-symbol> . 
<macro-definition> ::= <identifier> "=  <expression> . 
<type-definit ion> ::-- <type-symbol> <expression> : -  <condit ions> . 
<condit ions> ::= <expression> [ , <condit ions> ] 
<expression> ::= <feature-structure> [ & <expression> ] 
<feature-structure> ::= <comments>  <tagged-feature-structure> 
<tagged-feature-structure> ::= < tag> [ = <typed-feature-structure> ] I 

<typed-feature-structure> 
<typed-feature-structure> ::-- <type-symbol> [ <attribute-value-matrix> ] I 

<attribute-value-matrix > I 
<list> 

<attribute-value-matrix> ::= [ [ <attribute-value-pairs> ] ] 
<attribute-value-pairs> ::= <attribute-value-pair> [ , <attribute-value-pairs> ] 
<attribute-value-pair> ::= <attr ibute> : <expression> 
<list> ::= < <expression>* [ . <expression> ] > 
< tag> ::= #<ident i f ier> 
<type-symbol> ::= <identifier> 
<attr ibute> ::= <identifier> 

Example 1: the textual definitmns ~r F~u~ 2. 
NIL < LIST. 

CONS < LIST. 
CONS[first:  T, r e s t :  LIST]. 

APPEND[I: LIST, 2: LIST, 3: LIST]. 

181 



Computational Linguistics Volume 18, Number 2 

APPENDO< APPEND. 

APPENDO[I: NIL, 2: #I=LIST, 3: #i]. 

APPEND1 < APPEND. 

APPEND1[1: <#x #ii>, 2: #12, 3: <#x . #13>] 

• -APPEND[I: #ii, 2: #12, 3: #13]. 

Example 2: the textual definitions ~r F~ure 10. 
TAU-LEX < TAU. 

TAU-LEX-V < TAU-LEX. 

TAU-LEX-V[eng: [tense: #e-tense], 

fr: [tense: #f-tense]] 

:- TAU-TENSE[eng: #e-tense, fr: #f-tense]. 

TAU-LEX-ITV < TAU-LEX-V. 

TAU-LEX-V[eng: [subj: #e-subj], 

fr: [subj: #f-subj]] 

• - TAU-LEX[eng: #e-subj, fr: #f-subj]. 

TAU-LEX-FALL < TAU-LEX-ITV. 

TAU-LEX-FALL[eng: [pred: FALL], 

fr: [pred: TOMBER]] 
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