American Journal of Computational Linguistics

The TARGET Project's Interactive Computerized Mullilingual Dictionary

John Burge
Departments of Modern Languages and Computer Science
Carnegie -Melkon University, Pittsburgh, Pa. 15213

Summary:

Abstract

This document is a brief introduction to Carnegie-Mellon University's interactive computerized multilingual dictionary. It describes the use of Ahis dictionary both by translators in the course of their work and by the termunologests responsible for updating and maintaining it. This discussion is placed in the context of the overall effort (known as the Target Project) to provide alds to translators. A final section presents the solution to the problem of representation of term equivalence adopted in Target.

1. The Target Project

Target is an interdisciplinary research project undertaken jointly by the Translation Center and the Department of Computer Science at Carnegie-Mellon University to investigale and develop computer aids for language translation.

Since high quality automatic translation does not seem to be immediately realizable, our efforts at introducing computerization into the translation lask have been directed towards providing practical aids for translators. Working with the assumption that each translator can be provided with a slandard video terminal connected by a dial-up line to a remote computing facility, ${ }^{2}$ we are exploring primarily two aids. They are (1) an interactive multilingual dictioftary. and (2) an environment consisting of (1) plus text manipulation facilities within a windowed page editing environment. The latter research will be described in a future AJCL paper; this document justifies and describes only the former, how it is accessed and how it is built up and maintained.

[^0][^1]The primary folivation for the interactive dictionary is that a technical translator may spend up 1060% of his or her time simply looking up terms. This may include unsucressful searches in several dictionaries, partly because these dictionaries are out of date by the time they are published. An interactive computerized dictionary would provide effectively "ammediate" access to entries and moreover could be kept constantly updated at the central computing facility.

Currently the diclionary contans specialized terminology in English, French and German in a number of fields Spectalized terminology was chosen because this is often most helpful in practice to the professional translator and also because this is where the benefits of standardization could be most immediately apparent the languages were chosen because they are the most immediately useful in the local environment, as were the fields (mainly finance, business and iron, steel and mining fechnology).

The next section shows in some delall how a translator would access the dictionary and detormine a correct equivalent The section after that describes the facilities used to maintain and augment the dictionary the interface to the dictionary described in the next two sections represents the fruits of continual close cooperation over an extended period of time between researchers from the Computer Science Department and from the Department of Modern Languages Such cooperation, while it presents many problems initially, is a sine qua non of success in a venture such as Target.

While performing initial studies for the representation of equivalence between terms
the most central relation in a multilingual dictionary -- we have departed from the common practice of using an alingual set of concepts realized differently in different languagers Close examination showed that 'this could not accommodate some nuances of meaning in disparate languages and was not precise enough for making inferences when a particular equivalence was not already present in the dictionary. Moreover, it was found to be less efficient than another method which was investigated and ultimately adopted. Some arguments proposed for adopting this different method are set forth in the final section of this document

2. The TARGET Program

TARGET is also the name of the program used by translators to access the entries in the dictionary while doing their translation work This section describes how it is used. The illustrations are exact traces of the interaction between the program (in a roman font) and the translator (in an italic font).

We are first asked for the lerm names and the languages we wish to translate from (i.e. the source language) and To (i.e. the target language):

```
Term: bond
From Language: on
To Language: fr
```

Now, if there is only one equivalent for that term between those languages, we shall get that equivalent directly. In this case we have a choice to make:

```
    Term: bond
    From Language: en
    To Language: fr
bond Chemlsiry: Theoretical Chemistiy; (cha)
        The Nuclear Industry: Nuclear Energu: (a/6)
        Financlal Altairs - Tavation - Customs: (ll)
    Salect Code:
```

Let us say the article we are translating is in Chemistry. Then we fust rype the appropiate code. These are in parentheses in the example and are the same codes as used in the EEC's Eurodicautom system. Here we select a code:

```
    Terms bond
    From Language: en
    To Language: fr
bond Chemistry: Theoretlcal Chomistry; (cha)
        The Nuclear Industry: Nuclear Energy; (al6)
        Financial Allalrs - Taxalion - Customs; (fl)
Select Code: cha
```

and we shall get the appropriate fiche:

```
    Selecl Code: ch4
hond llaison (FR)
    Chemistry: Theoretical Chemistry;
    The Nuclear Industry: Nuclear Energy;
Reference Terms: bonding energy,
    Term:
```

We have been told that the ame equivalent is used for both chemical, and nuclear bonding Had there been further information, such as a usage sample, a definition or a note, we would have been asked whether we wanted to see it with the question More? Answering yes would show the information to us.

After this first use, Target arsumes that we are translating from Englisi to French Notice that it does not ask us the From and To questions:

Term: bond

```
hond Chemlsiry: Theorallcal Chmmisiryl (ch4)
    The Nuclear Industry: Hazards; (al8)
    Flnanclal Altairs - Taxation - Customs; (fl)
    Salact Code: |I
bond mprunl (FR)
    FInanclal Rllalrs - Taxation - Customs;
Raference Terms: governmant bond
    Term:
```

We can override the assumption by typing all on one lune the term name, the sourre language and the target language. Here we check on the equivalent just oblained:

```
    Term: emprunt fren
emprunt bond (EN)
    Financial Aftairs - Taxation - Customs;
    Term:
```

English and French now become the new anticipated source and larget languages, resperlively.

3. The TERMIN Program

IE?MIN is the name of the program used by terminologists to augment and maintain the dirthonaries. Clearly the faclities in TERMIN must be more varied than the simple retrieval facility which is TARGET; the facilities in TERMIN are accessed through a set of commands:

```
Holp (lo get instruction)
Create Entry (to enter a lorm)
Exit (lo leave TERMIN)
Rotrleve Entry (lo gei term and term informalion)
Edit Entry (to rovise or augment ontry)
Dalete Eniry (10 deleqg an enfly)
List Contents (lo list lerms in one language)
Target (to gel larget language equivalent)
Recold Transaction
Term Hardcopy
Dictlonary Hardcopy
Raqenerate
Recover Space (lo recover space used by deleted and updated entries)
Do (lo execute a command llia)
Stati (tostart using an Óption)
Slop (to stop using an Opition)
```

The TARGET program essentially just repeats the TERMIN command of the same name
Ihe rommands are the large functional units, in terms of which we interact with the dictionary. We use them when entoring new terms (Create Entry), editing existing terms (Edet Entry), printing dictionaries ${ }^{3}$. (Dictonary Hardcopy), etc. -- and in fact for everything we do with the dictionary. A short description of the use of each command follows

[^2]
31 Help

This provides on-line access to written comments on various aspects of the use of the TERMIN program by terminologists All of the twenty or so texts which may be accessed in this way were written by the terminologists (who also ordered the list of commands as above and provided the brief description beside each one).

```
shelp
    Help on: alterlng
ALTERING is a may to correct errors without lyping the whole line
again. You can use it by using the Opilon ALTERING before you use
the Command EDIT:
    >start altering
    >ed||
ALTERING wIII cortlnue untll you exlt from the program. It you want
to go bact to the reqular way ol ediling belore then, do
    >stop altoring
This is a summary ni ALTFR mode commands:
    <SPACE BAR>: advance the cursor by one character
    control-H: bark up one character lsame as rubout or 8s)
    D : Delefe the nevel character
    J:Join this line with the nexi, lo. delete the next
                carriage-relimin in the text
    H: Tupe this help terl
    L : Llst - typs tha whole string
    Q:Qult editing the siring and ignore all the changes made so
                far
    P: Primi siring, putilng the cursor bact to the same position
    T: Tramspose the neyt charactor whth the one after it
    V: Invert the case of all the characiens in the current
                word, starling with the noxt one
            FSC> : escapa from insert mode (=<ALT>)
        N = RETURN : lerminate efiting of the siring
        Ax : Adr tha next charactal to be lyped, ie. 'x' here
        Cx : Change the noxl charactar info 'x'
        Yx : F||l (|e. तelete) all characters unt|l the nex| 'x'
        Sx : Srip to the noxt occurrance of character ' }x\mathrm{ '
        1, Insart all chataciars typod in, slarling at the current
            posilion, untll an -ESC> is prossed
        Mx : Munch up charactars lill the next 'x', then go into
            Inser I mode
        R: Roplace - degote the noxt character and then start
                Insar ling.
    X : Extand - go the end of the siting and start inserting
```

Most of the texte provided in this way give hints and reminders in an informal manner, r ather than a detailed sequence of instructions on how to use the command.

32 Create Entry

Thic. command is used to creale now entries in the dictionary for terms which have not yef "been entered Let us suppose that we have prepared a fiche specifying the equivalent in French of the English term bond appropriate for the field of Chemistry. Space constrants prevent a detailed description of the interactions leading to the entry of this term into the dictionary, but the following is a trace of the process:

```
pcreate
    Term: bond
    l anguage: en
    Figld Classiflcallon: cha
    Equivalents: lla/son
        Language: fr
    Grammatlcal Categorlest nou
Select Usage Sample
            Definltion
            Reference Terms
            Note
            Symonyms? reference
    Reference Terms: "boridlng energy"
bond lialson (FR)
            CH4
Reference Terms: bonding energy
nou
    I New lerm "liaison" being entered in "FR"/
```

TERMIN does what it can to save us effort; here it has generated a small fiche to contan each equivalent which does not already exist. The minimal fiche it generated for leneson is this:
liaison bond (EN)

Chemetry: Theoretlcal Chamisiry;
This will usually need to be aupmented with other information, such as the prammatical category This is done by using the Edit Entry command (see below).

33 Exit

This is how we leave TERMIN:

```
sexit
EXIT
```

Ine urer is now no longer using the TERMIN program, but is using the TOPS-10 monitor.

3.4 Retrieve Entry

This command is used to print whole entries at our terminal. Here is bond:

```
sretrlove
    Tarm: bond
    language: on
bond lialson (FK)
    Chemlstry: Theoretlcal Chemisiry;
Rgierence Terms: bonding onergy
now
```

There is only one Equivalent, one Field Code and one Reference lerm for bond at this poinl. More complex entries, with more of the optional term information, will display all that information as well Retrieve Entry shows all the information there is for bond; only portions may be displayed with the Target and Edtt Entry commands.

35 Edit Entry

There is a number of reasons why il may be necessary to edit an entry. Perhaps the person who entered it mad a typo, perhaps it is necessary to extend an entry to include, say, a Usage Sample (or perhaps to replace the old one with a better one) or perhaps a new fiche must be entered for an existing term.

Update the Field Code. Suppose that further investigation of the term bond has revealed that the same French cativalent is also used for the "bond" holding the nucleus of atoms together as for the electronic bond which keeps different atoms
together. Had this been known when the original fiche was created, it would have contained two field codes, ch4 and at8. We need to update the original entry.

Add a New Fiche: The term bond is also used in financial and commercial circles (among others ${ }^{4}$), but here the equivalents in French are not liaison So we can enter a new fiche for this term.

Deletting a Fiche: It is occasionally necessary to delete a fiche within a term, but not the whole term.

Edit Entry is used to accomplish all these functions. It is the major lool used in maintaining the dictionaries.

36 Delete Entry

This is used to delete entire entries:

```
>delete
    Term: "blast off valve"
    Language: en
>
```

It will no longer be accessible

37 List Contents

This gives an alphabetical list of terms in a specified language. We can limit the list by specifiying the first one or two letters of the first and last term. It may be aborted by typing \curvearrowleft at any time, and will return us to the command level immediately.

Let us get a list of the English terms from bo through c:

```
|st
    Language: on
    From Letter: bo
    To Lettar: c
            'body centared qubic
            'bold'
            'bond'
            'bonding energy'
            'boom'
            'bors'
            'boring bar'
            'boundary position'
            'brackel'
```

[^3]```
'breakdown'
'breaking'
'bridge connection'
'broker'
'brokerage'
'buffer'
'burden'
'business'
'business profit'
'butlerfly valve'
'by means of'
'by-pass valve'
'by'x-ray diffraction'
'capacity'
'capital'
'capital and reserves'
'capital gain'
'capital ģoods'
'capital-intersive'
```


## 38 Targo.

Target is the command (or program) we use to find equivalents for a term The TERMIN command Target works identirally to the TARGET program (described above) with the exception that in TARGET if an abort character $\cap$ is typed in answer to the Term: prompt, the progam exits; in TERMIN, an $n$ at this point gets us back to the command prompt >

## 39 Record Transaction

This command is used to keep a record of the interaction between the program and the user it is used for s,turlying, how users interact with the system in order that it may hecome better talored to their needs (All of the examples in this document were drawn directly from records made in exactly this manner). Each interaction between the sys.lem and the user may also be timed in the record by using the Timung option. This provides an extra tool for studying how the system is used in practice. It is also useful for some purposes to be able to annotate a record while it is being produced. TERMIN will ignore any line beginning with a semi-colon:

[^4]
## 310 Term Hardeopy

This command is used to print a specific term in the same format as that of the terms in the Appendix

The file just generated contans formatting information as well as the term itself. It must be compled by the PUB document formatter

## 311 Dictionary Hardcopy

This is like Term Hardcopy, but the program will select the terms for us and put them in alphabetical order. We can choose the language, the initial two letters of the first and last terms, and can also restrict the fields for the terms, by specifying a set of field codes. This allows us to make selective microglossaries, choosing perhaps just those terms relevant to to the Petroleum Industry or Medicine. Here we illustrate obtainme, an entire dictionary One pape of it is reproduced as an Appendix.

```
dlctlonary
 Source Language: Ir
 From Letter: a
 To Letter: z
 Rostricted Fields? no
 ..
```



```
Please 5%e TEMP:FRENCH.PUB
```

This file must be formatled with the PUR document compiler. The title page of the hardcopy will describe any limits we may have imposed on its contents.

## 312 Regenerate

This command is used to re-establish the links between the various files which contan the dictionary. They can become incorrect when the computer crashes while certain operations are being performed, or when there are problems with the system.

## 313 Recover Space

When a term is stored after having been Eduted, a new entry is made for the new version of the term the old entry is, however, still there, and hence takes up space. The rame is true in the care of the Delote command. When a term is deleted, it actually only becomes macreseible -- and so it is taking up space. Every so often this "wasted" space (which actually provides the potential for some backupt is recovered using this command; it compacts the dictionary

### 3.14 Use of Commands

As can be seen from the foregoing, to use a command we type its name (e.g. help). Uppet case and lower case are equally acceptable. The program will then begin to prompt us for the further specifications neccessary to carry out the command. We may Type Ahead the res, ponses to these questions, in which case the prompt is not given Help is usually obtainable by typing? and any command can be aborted by typing (n) in response to any prompt

### 3.15 Conveniences of Interactions with User

One convenience in TERMIN is that it is often not necessary to type the whole of the response to a prompt In fact, all we need to type is an unambiguous abbreviation, thus:
for Retrieve Entry, for instance. If we type an ambiguous abbrevation, the system can help us out:

```
sre
3 re is amblguous:
 Retrleve Entry (to gei term and lerm information)
 Record Transaction
 (to record session)
 Regenerate
 Recover Space (to recover space (rom deleled terms)
 (to correct fauliy dictlonary)
sreco
2 reco Is amblguous:
 Record Transaction (lo record session)
 Recover Space lo recover space from deleled torms:
```

We can also be assisted when we make typing mistakes:
sisit
... did you matn LIST CONTENTS
(TO LISI TERHS IN ONE LANGUAGE) ?yes
As it happens, users of the system often rina mis kind of help confusing initially and so there is, an Opicon, called Helpful, to control it. Initially this option is furned off, but it can be furned on simply by typing:

```
start helplul
```

TERMIN can often anticipate the answer to one of its questions. For instance, if we
have just Retricued a term and then we issue an Edit command, the chances are that the term we just retrieved is the term we want to edit. The Defoulting Option makes similar assumptions to use this option, we type:

```
>start detault/ng
```

and then we can utilize it:

```
>>etr llalson fr
llaison bond (EN)
 The Nuclear. Indusiry. Nuclear energy;
 Chemisiry: Theoretical Chemistry;
Reference Tarms: l'energle de linison
nou mas
seadt
 Lerm: [||a|son]
 Lanquage: [FR]
```

(Note that we have accepted the default by simply striking the <RETURN> key.)
When accersing terms, we need not specify accents (unless they distinguish between two terms). This is a convenience to be used when accessing-fiches and their contents: when we type the tert in a fiche we must use the correct cases and accents.

## 4. Some Theorelical Issues

While designing the representation of terms and their interconnections within the dictionaries, researchers at the Targel Project discovered some difficulties with some of the methods adopled by other terminology banks. This section is a brief presentation of some of them.

When a sense in one language is transiated by a sense in another, they are said to be equmalents of each other This is what is crucial to the translation task, and what is undir discussion in this section is the representation of equivalence between senses.

Two methods for dong this will, he compared. In one, called the Intermediate Conernt Space Repicsentation (ICSR), there is held to be a language-independent set of concents which are realized in differing languager each with the appropriate term. Figure I shows some rquivalents, belween Schaufel (German), Aube (French) and Vane (F.nglisit), which are appropriate in the field of Astronautics. It must be noted that what wr have called "senses" aloove are represented by their term-names only both in the figures and in the text; this device is used merely for clarity of exposition.



Figure 2: 0E Representation of
VanesSchautel, SchauteleAube \& AubezYane

In an alternative method, the Derect Equiualent Representafion. (DER), there is no need for such an intermediate concept space. Each sense accesses its equivalents directly, as shown in Figure 2.

ICSR is attractive becaluce it olfers, a conceptual elegance absent from DER -- there is a unverse of objects, each of which has a different linguistic representation in each language. This is a hypothesic, ahout the nature of language which is known to be a misieading, oversimplification for everyday wage, but its proponents presumably hope that it could turn out to be aufficienlly true for the more restricted domains of rpecialized terminology

The fwo major ways of comparing there two alternatives are (1) in terms of the compuler space laken in holding, them and time taken in retrieving them, arid (2) in terms of their adequacy when the dictionary must be modified The former indicates that under some circumstances ICSR can be cheaper imferms of space, but the latter show, that DFR is resoundingly more adequate for the task of representing equivalence, and thus was chosen for Target.

### 4.1 Space and Time Analysis

Each of the lines in Figures 1 and $?$, whether between an Intermediate Concept and a sence (Figute 1) or belween two senser. (Figure 2), represents what is called in computer parlance a pointer. Pointers need rpare in the computer and -- perhaps more importantly -- take procesaing time when used. Thus to get from "vane" in English to its German equivalent (Schaufel) requires the use of two pointers in Figure 1 (ICSR), but only one in Figure ? (DER) This greater efficiency of DER is true for all pairs of equivalents.

Differencer, between DFR and ICSR so lar ar space is çoncerned depend upon the number of lanpuaper in the mulliturpual dictionary. If there are $N$ lanpuager attached to an Intemmediate Coneopt, there will be $N$ pomincs, one to each In the worst case for DER, earh of the $N$ will have, a pointer to all of the $(N-1)$ others, requiring $\{N \mid(N-1)) / 2$ pointers Since there are three languages in Figures 1 and 2 (English, French and German), $N$ is 3 and hence there is no advantage for ether DER or ICSR The larger $N$ become', above 3, the greater is the advantage for ICSR; for instance, if $N$ is 5 ; then in the worst care DER requiner, twire as many pointers as ICSR and if $N$ is 7, DER requires, 3 times as many in the worst case This worst cace occurs when equivalents are present in the dictionary for cucry language, which may not be so in practice, esperially while a dictionary is being compiled in the most favorable case, $N=2$ and

DIR hac the advantage by a factor of 2. Dictionaries prepared for American use may often be Englishox, so that $N-2$ and DER has a space advantage as well as the time advantige demonstrated above.

### 4.2 Modifiability

Irrespective of these considerations, a dictionary must remain functional while it is incomplete. To be realistic, it ir, piobably uncommon for a dictionary to be "finished", and all automated dichonaries mus.t be bult incrementally, equivalent by equivalent. There are important differencer helween ICSR and DER, hoth in processing when equivalences are entered and when itring an incomplete dictionary.

We need only consider as simple a case as the structures of Figures 1 and 2. Let us suppore that none of the equivalences vanr=Schaufel, vanesaube and Schaufel=aube have yei been inserted in the data-base and they must be inserted. After entering the equivalence vane Schaufel, ICSR will look. like Figure 3a and DER like Figure 3b:


Flgure 3a: Vane $=$ Schautel (ISCR)

Schautel


Flgure 3b: Vane三Schaufel (DER)
(Note that this is a case where $N-2$ in the space analysis above, and so -- at this point -- ICSF has two pointers and DER only one.)

Now the equivalence vane-aube is to be inserted. With ICSR, the terminologist has no choice but to determine whether autic is equivalent to Schnufel If they are, then Figure 1 is obtained. But suppose that they are nol; then Figure 4a would be obtained:


Note that for ICSR, the terminolopirt is forced to check every excsting equevatent of a term when addine another, a procedure whose complexity increases exponentially with the number of tanguages. The competence of the terminologist must extend to all the languagers in the database With DIR, on the contrary, no more need be done than simply adding the new equivalence as in Figure $4 b$. Only if there is a known noutualrace between Schaufrl and aube will the situation shown in Figure 2 be obtamed

A lempting, but incorrect, solution to this problem for ICSR is to assume that aube-schaufel, producing Figure? whether or not it is actually appropriate. This is a
kind of risky and uncontrolled infernnce which ICSR can naturally force upon the user. There may be subtle differences in meaning between languages, yet ICSR forces transitivity of the relation of equivalence between all langauges. There is an alternative approach within ICSR, in which this is not the assumption, but this will lead to precisely the pooliferation of censer, which ICSR was designed to avoid. Furthermore, the simplification of intermediate concepts which are found to be redundant will be a complicated procedure.

In cummary, the point so far is that the addition of an equivalence is a drastically more complex procedure in ICSR than in DER, and secondly that ICSR requires the termuologis, to be as multilingual ars the database, while DER does not. A further point may be made which concerns inferentug.
"Inferencing" means finding a near equivalent when an actual equivalent is not immediately obtainable of course, $t$ is to be hoped that an automated dictionary will usually have an immediate answer to a uset-request for an equivalent, in the selise that the requested equivalent has prevously been entered explicitly. However, rituations, will occur where an imnediate answer is not available In that case, some form of inforencung may help. With ICSR, thal inferencing has already been done in sotling up the intermedate senoe by means of the assumption above, and thus the information that it is an inference is, lost at retrieval time. With DER, the pointers must be followed throuph explicatly and thus the system can report to the user the extent of the tontativeness of the derived near equivalent

The disadyantage for the Intermediate Concept Space Representation, then, is that on the one hand finding an equivalent always takes two pointers, while Direct Fquivalent Representation nencts only one, and on the other -- more importantly -DFR is more able to represent nuances of meanng across languages and incomplete states of the dictionary Hence Target uses the Direct Equivalence Representation for term equivalence.

```
17.May 7B
CMII TARGET French Iictionary
fratse a fllater thread mill (EN)
 Iron Steel Industries: Machines and Apparatus;
nop
fratse conique countersink (FN)
 Iron Steel Industries. Machines and Apparatus;
nop
fratse-more hob (EN)
 Iron Steel Industries. Machines and Apparatus;
nou rem
fratses milfing cutters (EN)
 Machantcal Engtneering Machines for Moving and Processing Materials;
 Iron Stecl Industries: Machines and Apparatus;
nou fem plu
frats-fixes fixed costs (EN)
 Economics:
Reference Terms. Frais
nop mlu
Usage Sample ...une nouvelle augmentation des frais fixes... [Kre4376]
rrais genoraux guerhead charges (EN)
 Technoloqy and Industry In General;
 Financtal Affairs - Taxation - Customs;
nop
Usagn Sample . . . les frais generaux (frais administratifs, de personnel et de
 gestion des polices a assurance). [SGB6/77]
frittage fritting(IN)
 Iron Steel Indusiries. Pief Iron Production:
 Mining Preparation and Refining of Raw Materials From Mines:
nou mas
lleftnityon: roasting process in steelmaking [fr78]
frottcmnnt friction (EN)
 Iron Steel industries: Stress-relieving Deformation;
 General Terminoloqy:
nou mas
```


[^0]:    ${ }^{1}$ If is an amonded version of an informal description of the TARGET and TERMIN programs demonstrated at the Fereign Broadcast Information Serviceb saminar on Aids to Translatorb, Washington, DC, May, 1978

[^1]:    The configuration in daly use by the Tranglation Centor at Carnegie-Mellon University involves a Lear Siegler ADM-3 terminal connected by a 300 baud dal up line to a PDP- 10 pun under the TOPS- 10 operating system by the Computer Science Department and shared eimultaneously by users workine on many different profects

[^2]:    ${ }^{3}$ An example page is reproduced in on Appendix, exactly as il was prinled by our Xerox Graphics Prinier

[^3]:    ${ }^{4}$ Note that there is nothing to stop omerent innes for the same term sharing field codes A different fiche is needed whenevep, and only when, the equivalente are dislinct

[^4]:    si this shows that commonts get into the record

