one more step toward computer lexicometpy
NICHOLAS V. FINDLER and SHUl-HWA LEE
Department of Computer Science
State University of New York at Buffalo
4226 Ridge Lea Road
Amherst. New York 14226
ABSTRACT

We describe the continuation of an earlier work on the problem of lexical coverage. The objective is to prove experimentally certain mathematical conjectures concerning the relationship between the sizes of the covering and covered sets of words, and-the maximum length of dictionary definitions. The data base on which the experiments are carried out has been also extended to the full contents of an existing dictionary of computer terminology. The results of the previous and present work lay the foundations for quantitative studies on lexical valence and its relation to the frequency of usage and other principles of ${ }^{\prime \prime}$ dictionary selection.

Besides the inherent interest in these investigations, the concepts dealt with and the methods of cuantifying dictionary variables may eventually lead to more efficient dictionaries with respect to precision, compactness, and computer time and memory needed for processing.

INTRODUCTION

First, we shall introduce the problem define some basic terms and provide a brief historical account of past results. In order to render this paper fairly self-sufficient, 申 brief summary of the previous wark, Findler Viil (1974), will also have to be given.
A. monolingual dictionary may be considered economical and efficient if a small set of words are used to define a relatively large set of entries, Quantitative information as to what size vocabulary is needed to cover a given number of entries is very scarce and may be characterized by two "data points":

The New Method Enalish Dictionary puhlished by M.P. West and J.G. Endicott in 1961 uses 1,490 self-defined hasic words to explain some 18,000 words and 6,000 idioms, i.e. about 24,000 expressions. Thus, the size ratio is 0.062 .

Oqden's Basic English, published in 1933, involves 850 English words and 50 "international" words to define $20_{2} 000$ English words. The ratio of the covering and covered set sizes is 0.045 .

The basis of selection was the "usefulness" of the words employed in the definitions, as opposed to the freauency of their occurrence in some standard texts. However, neither this concept nor other principles of selection suggested by other researchers have ever been quantitatively analyzed and made use of. We shall discuss these issues later on.

In order to approach the problem in definite terms, Findler (1970) considered three basic variabies:
(i) the covering set, \underline{R}, af size ${\underline{R^{\prime}}}$
(ii) the covered set, \underline{S}, of size $\underline{V}_{S^{\prime}}$
(iii) the maximum definition leffoth, N, such that each word in $\underline{S}_{\text {s }}$ can be defined by at most \mathbb{N} ordered words from \underline{R}. The task was formulated to find
(a) \underline{v}_{R} as a function of \underline{v}_{S} at different parametric values of \underline{N}, and
(b) $\quad \underline{v}_{R}$ as a function of N at different parametric values of v_{S}
Calling $\Delta v_{R} / \Delta v_{S}$ increment ratio and v_{R} / v_{S} size ratio, the following conjectures vere made concernina the first task:
(a1) The,increment ratio is, in general, less than one.
(a2) The increment ratio, in general, decreases as vs increases.
(a3) For larce constant values of N, V_{R} approaches a limitince value asvmptotically as $\mathbf{v}_{\mathbf{S}}$ increases.
(a4) The increment ratio never exceeds the size ratio.
Two points need to be noted in this connection. An exception to ryles (a1) and (a2) would occur in a dictionary system, which does not treat polysemous words or homonyms as individual entries, every time a new word with many meanings or homonyms is introduced into the covered set. Second, the cited case is an exception to ruie (a1) but not to (a4). When $N=1$, the covering and the covered sets are of the same size, i.e. botn the increment ratio and the size ratio equal one. However, not every word is defined by itself only. If a new word is introduced that-al-
ready has a synonym in the covering set, it will be defined by that synonym. In this case, the increment ratio is 0 and the size ratio becomes less than 1 . (This will be clear with the description of the data base construction on page 11.)

For the second general task, (b) the following conjectures were also made:
(b1) $\quad V_{R}$ monotonically decreases as N increases.
(b2) For any fixed value of ${ }^{v_{S}}{ }^{\prime} V_{R}$ asymptoticallv approaches a lower limit as \underline{N} increases H thout bound.

It seems reasonable to state in a cualitative sense that in the process of aeneratina a dictionary smaller ${\underset{R}{R}}$ values mean smaller storage requirements whereas smaller N values tend to reduce processing time and output volume. In order to answer the question "What are the optimum values of \underline{v}_{R} and \underline{N} for a given v_{S} for a certain (family of) comouter applications on a machine with a given cost structure?' one has to consider the interrelation of the above three basic variables and to compute three entities: the semantic index (roughlv, the number of different meanings) of the elements in the covered set, the lexical valence (roughly the capability of being substituted for another word) of the el ements in the coverinc set, and the frequency of dccurence of the elements of both sets. Quantitative investigations of the last three dictionary variables are planned to follow the present, second stage of our study.

THE DATA BASE AND THE PROGRAM

We have extended the data base used in our previous work,

Findler and Viil (1.974). The whole contents of the alctionary on computer technolocy, Chandor (1970), is now included in the present study. Its structure, rather simple and uniform, is described below. First, some deneral principles of data hase construction are outlined.

Every element of the covered set is considered a single lexteal item, regardless of the number of vords the original dictionary entry consists of. Also, each word f.s coded as a strihe of at most 10 characters (containable in one CDC Cyber computer word). The ahbrevtations are still easy to read with relatively short practice.

Only the dominant meaning of polysemous terms was dealt with. Each entry has thus one meaning and one definition.

Terms in the definitions (elements of the covering set) are also considered lexical items, i.e. even multiword entities appear as a sincle unit and are represented by at most 10 characters.

The basic vocabulary, that is the covering set, consists of elements that also appear in the qovered set. In our particular case, they are non-technical words used to aefine the technical terms of the computer dictionarv. A definite distinction was made between content woras and function words (also called operators). The latter were not included in the covering set nor were they counted in determining the length of definitions. Hence, the covering set consists only of content words.

The function words indicate grammatical and loaical relationships between the words contributing to the content.

They belong to 11 categories:

1) prepositions, e.a. of, in, to;
2) conjunctions, e.g. and, or, if;
3) the relative pronoun which;
4) combinations of preposition and relative nronoun, e.t. in which, to which, by which;
5) present participles equivalent to a nreposition, e.g. using, containinc, representing;
6) combinatiens of participle and preposition, e.g. Consisting of, opposed to, applied to;
7) combinations of adjective and preposition, e.f. capable of, exclusive of, equal to;
8) combinations of noun and nreposition, e. O. part of set of, number of;
9) combinations of preposition, noun, and preposition, e. σ. in terms of, by means of, in the form of;
10) prepositional phrases associated with a following infinitive, e. \quad. used to, necessary to, in order to:
11) other freçuentlv used purely functional expressions, e.g. for example, namely, known as.
Actually, the function words were replaced by code numbers in the dictionary. The code numbers were assigned consecutively as the function words,were needed during the construction of the data base so that the order is purelv random. A complete list of the 121 function words used, tocether with their code numbers, is given in Table I.

INSERT TABLE I ABOUT HERE

The oriqinal definitions were somewhat simplified and standardized. In this process, articles were omitted (many languages do very well without them). On the other hand, implicit relationships were made expllat. Nouns are represented in singular, thus avoidine another dictionary entry for plural or, what would be worse, proaramina a "arammar". Likewise. finite verb forms are represented in third person plural present indicative active. Avoidino the third person singular eliminates. another dictionary entry, and avoiding the nassive voice eliminates a great many participles, which otherwise would have had to be entered. Of course, present and past participles (the former identical to gerund in form) could not always be avoided and had to be entered in the dictionary where needed. Auxiliary verbs were automatically eliminated by avoiding gompound tenses and the passive voice. Finally, "to do" associated with negation* was simply omitted.

Some examples will make the encodina process clear. Original dictionary entry:
aberration A defect in the electronic lens svstem of a cathode raỳ tube.

Definition in the data base:
DEFECT (in) SYSTEM (of) ELECTRONIC LENS (of) CATHRAYTUB

1. is equivalent to	62. if	50
2. of	63. among	
3. in	64. by	
4. in terms of	65. namely	
5. using	66. related to	
6. and	67. concerned with	
7. which	68. based on	
8. in which	69. constituting	
9. between	70. resulting from	
10. to	71. set of	
11. or	72. including	
12. from	73. followed by	
13. used to	74. provided by	
14. necessary to	75. developed by	
15. part of	76. assigned to	
16. consisting of	77. referred to	
17. containing	78. on whicn	
18. capable of	79. used as	
19. by means of	80. in the form of	
20, opposed to	81. from which	
21. when	82. into which	
22. on	83. number of	
23. so that	84. less	
24. in order to	85. defining	
25. exclusive of	86. known as	
26. for	87. performing	
27. pertaining to	88. performed by	
28. under	89. independent of	
29. as	90. cnosen by	
30. such as	91. for which	

31.	equal to	92.	at which
32.	into	93.	whether
33.	with	94.	used by
34.	according to	95.	about
35.	applied to	96.	before
36.	depending on	97.	per
37.	to which	98.	having
38.	whose	99.	formed by
39.	obtained by	100.	around
40.	inherent in	101.	after
41.	through	102.	since
42.	during	103.	against
43.	where	104.	until
44.	during which	105.	whereupon
45.	out of	106-	except
46.	at	107.	uecermined by
47.	by which	108.	over which
48.	used in	109.	in relation to
49.	without	110.	belonging to
50.	caused by	111.	corresponding to
51.	over	112.	due to
52.	not	113.	required far
53.	but	114.	type of
54.	extended to	115.	across
55.	so as to	116.	because
56.	for example	117.	desigried
57.	represented by	118.	indicating
58.	along which	119.	produced by
59.	representing	120.	outside
60.	against which	121.	towards
61.	similar to List	On Wor	rds

Note that "electronic lens system" (should be: electronic-lens system) means. "system of electronic lens" (as opposed to "electronic systen of lens"), and this relationshin is made explicit. Note also that "cathode fay tuke" is a single lexical item.

Original dictionary entry:
absolute coding Proqram instructions which, have been witten
in absolute code, and do not requjire further processing before beina intelligible to the computer.

Datambase entrv: ABSOCODINC Definition:

PROGRAM INSTRUCTIO (which) ONF PRITF (in) ABSOLITCODE (and which not) REOCIRE FURTHER. PROCESSING (before) INTELIGIBL (tō) COMPUTER

Note that the first predicate in the relative clause, thirn person plural perfect indicative passive, is represented by the singular indefinite pronoun "one" as subject, followed by the standard olural active verb. The duxiliary "do" has been omitted and the negation is represented by a function word. The virtually redundant "being" has also been left out. In qeneral, the conula is omitted (some languages do very well witrout it).

Original dictionary entry:
analytical function aenerator A function generator in which the function is a physical law. Also known as natural law function generator, natural function generator.

Data-base entry: ANLYTFNGEN Definition:

FUNCGENRTR (in-which) FUNCTION PHYSICAL LAW
Note also the omission of the gloss "Also known as . . ." The stylized definitions are easily understandable even to human readers as the printout of the dictionarv demonstrates. The data; base was constructed by selecting the first entry, then entering all the lexical items in its definition, subsequently entering all the lexical items in the definitions of these, etc. Words that were not defined in the original dictionary were entered and defined by themselves; they constitute the basic vocabulary. This procedure was continued until everything was defined, i.e. until all the terms in the covering set were also in the covered set. Then the next entry was selected from the dictionary, and the above process was repeated.

The dictionary was arranged in the form of a SLIP list, Findler et al. (1971). Fivery entry (element of the covered set) occupies four cells in this list: (1) entry word _ (as character data, usina FORTRAN format specifiéation A10), (2) definition length (an integer), (3) type of entry (an integer), sublist nafne.

Three types of entries were distinguished for programming convenience:-

1) code 0 indicates that the entry itself is not used in any definition i.e. it occurs only in the covered set and not in the covering set;
2) code 1 indicates that the entry occurs in both sets and is not an element of the basic vocabulary;
3) code 2 indicates that the entry is defined by itself, i.e. it belongs to the basic vocabulary.

The sublist the name of which is in the fourth cell for every entry in the main list, contains the definition. This arrangement conveniently separates the entry words from those in the definitions.

A cell in this second level contains either a wond (in Alo format), i.e. an element of the covering set, or a sublist name, The codes for function words (integers) are contained in the cells in the third lavel. This arranaement is convenient for bypassing che function words in processing when they are not needed. The ceneral dictionarv entry and an example thereof are illustrated in Fiạure 1.

INSERT FIGURE 1 ABOUT HERE

The fact that every dictionary entry owns a sublist is practical in another respect: useful information about the entry can be collected and deposited in a description list associated with the sublist. For example, if it were desired to evaluate the definition component of the lexical valence of each lexical item, a proaram could be developed that counts how manv times a particular item occurs in the definition of other items and stores this information in the description list created for that item. Investiaations of this nature rill be done subsequently. The task is to establish experimentally the relationship between N and v_{R} for fixed values of v_{S}. The program starts out with the values of some fixed data point obtained in the previous

Data Structure for a Dictionary Entry FIGURE 1a

An Exemplary Dictionary Entry
RUN =: PERFORHANCE Of ($=2$ ONE PROGRAM or ($=11$) ROUTINE Definition length: 4; Entry type: 1.

FIGURE 1b
aturv, Findler and rijl (1074), or one calculated for the extenced data hase the alze of the coverina set, v_{R} fa then avstematicallu reduced code 1 ture foris are renlaced hy pretr
 that such entries ere not defined k, ther aelves and occur rotr in the coverinc and the covered eet $)$ ffer the surstitutiore are made in all defynitiong and the worda are counted out of v_{h}, the correaronding N valuea are accertained., me nrocese is reneated
 conctant levels, for each run. (fe rote trat a ruantitativelr rore eatiafactory refjrerent could have heen added to the dictionarv-reduction frocram. Fach hasic rord roujd te compered with all the remaininc definitiona, and treke which do not arnear In an definition are to he elsminated. Thus a nasse nord vould occur in the dictionary only if it is needed in a definition, which $2 s$ the case in the unreduced dictionary. Thia rav, a more natural nroportion retween the hasic rords and others could be restored. Forever, in the nresent nrelumanars vort, re dja not i ish to pav the considerably hioher orice for such refinement.)

The procram $2 s$ verv comnley for two basic reasons. First, the definitions of words to te replaced mar themselves contain one or more words to ke replaced. Therefore, as many as necessarz Iterations of replacement have to he carried out in the process. Second, the huce data hase renresentinc the whole dictionary rad to he subdivided נnto files onlv one of which can he dealt with hy the nrocram at a time. The intermediate results of one run bave to re transferred to the sursecuent run, whioh reauires some triclv orocramman. A hrief description of
the multi-file handine is qiven in the Aprendix.
Figure 2, summarizea the results for four different levels of the covered set. Althnuah the nrocedure followed (leavinc one and then two files out of the nine, and adiusting for the hias introduced leada to ruantitative inaccuracies, the connectures listed in the Introduction are fully corroborated.

INSFPT FTCURF 2 ABOUT HFPF

FINAL COMMFNTS

The data hase encoded, some of the proorams used and, most of all, the experjence cained in dealino with dictionariea and their characteristic variahles will be useful in attactino the next set of problema. The latter rejate to the cuestion on what size vocabulary is needed to cover a aiven number of dictionary entries (without the uhimutous circular definitions). The answer should te oiven as a function of storaqe recuirements and processing time so that an optimum solution can he obtanned for a family of applications on a machine vith a ajven cost structure. Such studv will involve the semantic irdex of the elements of the covered set, the lexical valence of the elements of the covering set, and the frenuencr of occurrence of the elements of both sets.

ACKNOWLEDGEMENTS

We thanr H. Viil, who co-authored with one of us (N.r.F.) the first phase of this work, for manv ideac and stimulating discussions. Ve are also indebted to Pencuin Roors for their

Variation of Maximum Definition Length with the Size of Covering Set FIGURE 2
permission to use one of their publications as our data haso

PEFERENCES

Chandor, A. (1970). Dictjonary of Computers. Penquin Books. Harmondsworth, Fncland.

Findler, N.V. (1970). Some conjectures in computational lincuistics. Innousstics, No. 64, op. 5-9.

Findier, N. ${ }^{\text {F., J.L. Pfaltz }}$ and H.J. Bernstein (1972). Four Hiah-Ievel Extensions of FhPTRAN IV: SLIF, AMPPI-II, TPFETPAN and SYMBOLANG. Snartan Booka: New York.

Findler, N.T. and H. till (1974). A fer steps toward comnurer lexicometry. Aln. J. Comp. Iina., 1, 1, 4.

APPENDIX

In the following, we qive a brief description of the wav multi-file handing has been orcanized

It was noted before that the whole djctionary could not he fitted in the core memorv at one time and, therefore, the data Fase had to he surdjvfded into a fjles to he nrocessed separately. There was a need, however, for some flow of information hetween runs dealine with the different files. This was arranced ry adaitional filea constructed durina nrocessina time as vell as a few control varıahle valuea fejna read from cards at the beoinninc of runs auksecuent to the first one.

The varjahle KNTPPT indicates the section of the dictionary currentlv under studv. The variable INCONT is set to 0 for the very first run for each N value. This tells the procram to set up new lists for Covered Iist, Coverine I, ist, and so-called Naitino List. In all aubsecuent runs, ita value is 1 which indicates that the prooram must hrine these liata in from an additional, external file.

The nrocram examines the current aection of the dictionarv, entry by entro. If the entry ia an element of tre rasic vocabulary (tune 2), the procram byoasses it when it deala with the unreduced dictionary (it is hnund to he nrocessed as part of a defination later). Ctherivise, thas type of w od is immedately added to poth the Covered Iist and the Covering I ist (auch nord alwavs covera italf), since the definitions in ihech thev occur may rave reen elominated.

If a word is not found on the Covered Iist, it is nut there and the appronrjate counter is incremented. Then all the rords in the definjtion of the word in ouestion are nut on the faitina List, whech 15 suhsecuentlv processed. Thic is recessary hecause of the adonted rrurcirle that all the coverinc roris ruat themselvea he covered. (Takulated data are ripanincfill onlv If this condition is satisfjed.)

The nrocram eventuallv examines the Vaiting Inst word br vord. If the current word is already on the Conered Luet (Jt mav have recurred earliex in the rictoonary), the nrooram checra if It is also nn the Coverino iatat (ut mav not he recause it fac neti vet occurred in the definition of another ford). If not, it is put there and the annmonrate courter 25 increaced lil iorca on
the rasting list core from definitions and muat thereforf he added to the Coverine t_{13} at. After " "orc' has keen rrocessed, it 19 deleted from the Majtano I at (hut ita prosecaino mav have caused nev entries to annear on the "artine I 1 et).
if the current iord ia net on the covered jist, it must, of course, he nut there. mirst, herever, the proaram teate if the nord occurs in the section of the dictronary cyrrently in core memorv (its "numerscal value" 10 retween those of the ffrot and the last rord of the qection). If the rord la not there, ite processine $1 s$ nostroned and the next inne on the laitine Ilst la examsned hecause it $2 s$ more ponomjcal to nrocese "firet all the vords available in the dictronary section present than to raed in other sectuos of the ductionary as the roris dictate at (memorv swarpine us expensjve).

Then the hottor of a non-empty Waitinne list is reached, the "ords remainne there muat te in other sections of the dictionary. cunsecuent dictionary secticns are iroucht in, to replace the current one, in a ducluc manner untll all rrocesainc is completed.

