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A class of algebraic parsing techniques for context-free 

languages is presented. A grammar is used to characterize 
a parsing homomorphism which maps terminal strings to a 

polynomial semiring. The image of a string under an 

appropriate homomorphism contains terms which specify all 

derivations of the string. T h e  work describes a spectzum 

of pa r s ing  techniques f o r  each context-free grammar, ranging 

from a form of bottom-up to top-down procedures. 



A L G E B M I C  PARSING OF CONTEXT-FREE LANGUAGES 

I. Introduction 

For many years  syntactic analysis and the theor;- of formal 

languages have deve loped  in a parallel, but not closely r e l - t e d ,  

fashion. The work described here is an effort t.0 re la te  these 

areas by applying the tools of formal power series to the p-iroblem 

OF parsing. 

This paper presents an algebraic technique for parsing a b r o a d  

class of context-free grammars. By parsing we mean the process of 

determining whether a string of terminal symbols ,  1, is a m e m b e r  

of the language generated by grarnmar G i . . ,  is x e L ( G ) ? )  and, 

if it is, finding all derivations of x from the starting symbol 

of G. We hope that posing the parsing problem i n  purely algebraic 

terms will provide a basis for examination and comparison of parsfng 

algorithms and grammar classes. 

Section 11 presents an  overview of t h e  a lgeb ra i c  pa r s ing  process. 

It provides a general notion of how the method works w i t h o u t  going 

into detail. Section 111 contains the algebraic preliminaries and 

n o t a t i o n a l  eonventions needed in order to describe the parsing method 

precisely. The formal presentation of the parsing method and the 

proof of correctness form Section IVI Section V contains some 

interesting special cases of the theorem and presents some examples 

0-f parses .  



11. - Overview of t h e  a l g e b r a i c  p a r s i n g ,  p recess 

The a l g e b r a i c  p a r s i n g  formalism d e s c r i b e d  here i s  a p p l i c a b l e  

to a l l  c o n t e x t - f r e e  grammars G = <vN, vT9 P ,  S >  except  those  t h a t  

c o n t a i n  p r o d u c t i ~ n s  ~f the form A B where A and B are b o t h  

n o n t e r m i n a l s ,  o r  e r a s i n g  rules such as A -p e .  The p a r s i n g  process 

c o n s i s t s  first of constructing (on the b a s i s  of t h e  grammar G); a 

polynomial  and a f u n c t i o n  d e f i n e d  on polynomials .  A p a r s e  of x is  

o b t a i n e d  by r epea ted  a p p l i c a t i o n s  of the f u n c t i o n  t o  a polynomial  

P(x). The p r o c e s s  has t w o  features worthy of note .  First, i t  

produces  a l l  parses of x i n  p a r a l l e l .  Second, t he  p r o c e s s  of 

c o h v e r t i n g  a grammar into the r e q u i r e d  a l g e b r a i c  form is s t r a i g h t -  

forward and does not  alter the s t r u c t u r e  of the  grammar. This 

p r o p e r t y ,  the  p r e s e r v a t i o n  of grammatical s t r u c t u r e ,  i s  p a r t i c u l a r l y  

i m p o r t a n t  i n  areas such a s  n a t u r a l  language a n a l y s i s  where t h e  

s t r u c t u r e  t h a t  a grammar p rov ides  is as impor t an t  as the language 

i t  g e n e r a t e s .  

The polynomials  w e  w i l l  u s e  have t e r m s  of t h e  form ( Z , A ) ,  where 

Z is a string aver  a a  extended a l p h a b e t  and A represents a  sequence 

of p r o d u c t i o n s  of G. T h e  process b e g i n s  w i th  a polynomial  of ordered 

p a i r s  r e p r e s e n t i n g  X ,  t h e  s t r i n g  t o  be pa r sed .  A f u n c t i o n  i s  

r e p e a t e d l y  applied t o  t h e  poJvnomia1; t h e  number of a p p l i c a t i o n s  

nacessary is  bounded by. the i n p u t  l e n g t h .  I f  the r e s u l t i n g  polynomial  

c o n t a i n s  a t e r m  ( S , A )  w h e r e  S i s  t h e  s t a r t i n g  symbol i n  G ,  then A 

r epLresen t s  t h e  p r o d u c t i o n  sequence used i n  g e n e r a t i n g  x E s o m  S .  I f  

no such p a i r  occur s ,  then x is not i n  L(G) ,  and i f  multiple pa i r s  



I 
occur (S h l )  , ( 5  ' A 2 )  . . . then x is ambiguous and the A s s p e c i f y  

the several parses .  A precise formulation of the polynomial and the 

operations on it is given b e l a w .  

111. Algebraic preliminaqies, and notation 

A semigroup is formally defined as an ordered pair < S , - i  where 

S is a set ( the  carrier) znd ' is an associative binary operation. 

Similarly, a monoid is  a t r i p l e  c o n s i s t i n g  of a set, an operation 

and a two-sided identity (e.g., s , )  We will feel free to 

denote a monoid or semigroup by its c e r r i e r .  

* 
For  any set V ,  V denotes the f r e e  monoid generated by V; 

* * + 
V = <V ,concatenation,n>. Similarly, V d e n o t e s  the -- free semigroup 

+ 
generated by. r; V+ = <V , concatenat ion). We denote the length of a 

* + 
string X in 7 or V by 1x1. 

For an arbitrary alphabet V, we define = E;~V~VI. The f r e e  

half-group genera ted  by V ,  H ( V ) ,  is def ined t o  be the monoid 

generated by V u 9 together'with the relation aa = 1, where 1 is 

the monoid identity and a s any element of V. N o t e  that i n  H(V) 

the elements of 7 are left inverses but not right inverses of t he  

co.rresponding e l e m e n t s  of V. W e  denote the extended  a lphabet  

If T = <~,*,1> and Q = <~,+,0> are monoids,  we deno.te by 

T Q the product  monoid <T y Q,@, (1;0)>. The carrier of T Q 

is the cartesian produc t  T Q and the  operation @ is  de f ined  t o  be 

the component-wise operation of T and 0: 



A semi r ing  i s  an alzebraic system < S , + ,  ,O> such t h a t  

< S , + , O >  is a commutative monoid, 

<S,m> is a semigroup, 

and t h e  o p e r a t i o n  d i s t r i b u t e s  over  +: 
am.(b+c) = a * b  + aec, 

(a+b)*c = a-c + b * c .  

A semiring i s  commutative i f  t h e  o p e r a t i o n  is  commutative, 

A semiring with i d e n t i t y  is  a system <~,+;,0,1> w h e r e  < s , + ; , O )  is 

a monoid. The semirings used in this paper are commutati~re and have 

i d e n t i t i e s .  Furthermore, i n  each case the additive i d e n t i t y  is a 

m u l t i p l i c a t i v e  zero: 

0 - x  = x - 0  = 0 .  

The boolean  sem%ring B c o n s i s t s  of t h e  carrier  {0,1] under the 

c o m r n ~ t a t ~ v e  o p e r a t i o n s  + and * ,  where 1-1 = l+x  = I. and 0+0 = O*x = 0 

for a l l  x E I0,l). 

For an arbitrary monoid M we denote  by R(M) the b a n i r i n g  of 

polynomials described as follows : 

1) Each tern i s  of the form ca where c E B (the 

boolean serniring of coefficients) and rx E M. 

2 )  Each polynomial is  a formula sum (under +) of 

a finite number of terms. 

3) Addi t ion  and m u l t i p l i c a t i o n  of terms is def ined  as fo l lows  : 

a) bu + crx = (b -f- c) a 

b) (ba) (cB) = (be) b P ) .  

4 )  Addition a,nd multiplication of polynomials  is  pe r fo rmed  

i n  the usual manner c o n s i s t e n t  with 3). 



Note that all coef iicients of R(M) arc either 1 or 0. We wi 11 

adopt the usual convention of not explicitly writing 1 for the terms 

with that coefficient and omitting telms with a coefficient of 0. 

A --- context-free grammar is a system G = <VN, VT, P, S> where VN 

and V are finite, disjoint, non erlpty sets denoted non-terminal and 
T 

terminal symbols respectively. We denote by V the set V : I  VT. The N 

symbol S is the distinguished nonterminal from which all derivations 

begin,  and P 2s  the set of productions of G. A context-free grammer 

is proper if it does not contain productions of thz form A -+ c 

(erasures) or A B where A and E are both nonterminals. 

It can easily be shown that the set of Languages generated by 

proper context-free grammars is exactly the set of context-free 

languages. In addition, an arbitrary context-free grammar can be 

made proper by a straightforward method which alters the structure 

of the grammar very little. In this study we will deal with only 

proper .context-free grammars. This guarantees that all terminal 

strings have a finite number of derivations i n  C-, and thus makes 

possible our goal of finding all derivations of an input. 

i Productibns of G will be indexed by integers. Thus A M denotes 

th 
that A -+ >I is the i production in P. We will deal only with l e f t -  

most deriyations. A leftmost derivation is completely specifzed by the 

initial sentential form and the sequence of production indices. If- 

* 
A c_ 1 is the sequence of production indices in the leftmost derivation. 

+ + C 
of N 6 -  V from M c V , we  rite ?I -N. The length of a derivation D - 

is denoted by I ,  and is equal to the number of production indices in L .  

We will use, but not formally define, the notion of height of a 



d e r i v a t i o n ' ,  meaning the height of the cor responding  d e r i v a t i o n  t r e e  

o r  t h e  l e n g t h  of the longest path from the r o o t  t o  the frontier of t h e  

tree. T h e  h e i g h t  of a d e r i v a t i o n  C w i l l  be denoted  by h ( C )  . 
' S i n c e  d e r i v a t i o n '  w i l l  always mean ' l e f  tmos t d e r i v a t i o n 1  i n  the 

s e q u e l ,  the f o l l o w i n g  assertions ho ld :  

Assertion 1: A d e r i v a t i o n  i s  of h e i g h t  0 if and only if it is of 

length 0 .  A d e r i v a t i o n  is of h e i g h t  1 if and only if i t  is of length 1. 

A s s e r t i o n  21 Let  G b e  a proper c o n t e x t - f r e e  grammar, and 

G 
A -9M 

where IGliO. Then A i s  of h e i g h t  less t h a n  o r  equal  t o  ] M I .  

Assertion 3: L e t  G = <VN, VT-, P ,  S> be  a c o n t e x t - f r e e  grammar, I an 

th 
index  s e t  fo r  P ,  and l e t  the j p r ~ d u c t i o n  of G b e  

L e t  -jr b e  a d e r i v a t i o n  

jr 
A - P i  

of h e i g h t  n + 1. Then 

and 

and for a l l  i, 1 i " m ,  



is a derivation of height n or less. 

The algebraic structure used in this work is the semiring of 

polynomials R(H - I*) where H = H (v) I t he  free half -group generated 

by V, and I is the in'dex set of the set of proJuctions P. We will. 

use an initial segment of the n a t u r a l  numbers, 2 3,. . , , as 
the index set I. Each t e r m  of a polynomial from R ( H  * I*) consists 

of an element from H I* t c g e t h e r  w i t h  a coefficient from t h e  

boolean semiring B. The elements of H - I* will be the  basis f o r  

calculating the parses of a string A .  The elements of H will inter- 

act t o  determine i f  a product of t e r m s  c h a r a c t e r i z e s  a derivation. 

If so, the associated element og I *  3 s  t h e  sequence of production 

indices or" the derivation. 

The following notational conventions will be observed. 

i, j, k m, n E - N, (set of natural numbers)* 

I S ,  g ,  , v will denote functions. F a r  t h e  f u n c t i o n  g, 



IV. An algebraic pars ing  theorem 

Theorem (vers ion  - 1): Let G = <VN, vT , S, P) be a proper context- 

free grammar. Then there exist homomorphisms L,, g ,  and (5,  

2" * 
and a special polynomial p E R r I ) such that for every 

T 

X cz VT' X = XI --• X,. Xi ' VT, 

contains a term A if and only if A is a leftmost d e r i v a t i m  

of x f r o m  S .  

Construction for the proof: 

Let V = v1 
IJ Vg b e  an  a r b i t r a r y  exhaustive division of V: 

T h e  c o n s t r u c t i o n  i s  most economfcal w h e n  V and V are d i s j o i n t ,  but 1 2 

th$s is n o t  r e q u i r e d .  

T h e  f u n c t i o n  v i s  t h e  homomorphism induced by the fo l lowing:  

* 
v(a) = ( a , A ) ,  a E V and fl is  t h e  i d e n t i t y  i n  I . 
Since v is a homomorphism, v(A)  = A .  



The function g is the  homomorphism induced by defi-ning 

g on the generators of the domain as follows: 

2i g (a, A )  contains t h e  term (a, A )  ; a c V 

th 2 i i .  If A -+ abl ... b is the i production 
n 

of P and a E V then g ( a , A )  contains 
1 

2 i i i .  There are no other  terns in ga(a,L) . 
Note t h a t  because g is  a hombmorphism, g ( A )  = 4, w h e r e  .?. 

* * 
is t h e  identity of the monoid (X I ) 

T h e  function 6 i s  the canonical h o m o m o r p h i s m  w h ' i c h  

* * 
coalesces a product i n  (C T ) into a single ordered 

pair by component-wi se mcltiplicati3n of t h e  first 

entries ( t hus  allowing cancellation in H) and 

catenation of the second entries. For e x a m p l e ,  

* 3% 

d. The ~olynomial p is an element of ( ..' I: ) defined 

as follows : 

1.- p contains the summand A;  

2. If a c V p  and A -+ ab ... b is t h e  j th 
1 r~ production 

of P then p contains the summand 

3. p contains no other summands. 



k 
We adopt the convention that p = A for k ' 0. 

k 
Note that since p contains X, p contains A as w e l l  

as a l l  summands of pJ for j ' k. 

For notational convenience w e  adopt the followiag conventions. 
* * 

First; where no ambiguity can resul t ,  products i n  R(T: T ) of 

the form 

will be abbreviated as: 

N o  cancellation is  i m p l i e d  by t h i s  notation s ince cancellation cannot 
* * 

occur in R(c I ) . Second, we d e f i n e  the function 'Yk as follows: 

where ai E V and p is  the polynpmial d e f i n e d  above. Note that. if 

k < 0 ,  then y (a a ... an) = v(ala2 ,.. a ) and Y ~ ( A )  = A.  Using 
k 1 2  n 

this  notation, we can re-state the theorem as follows: 

Theorem (version 2) - : Let C = <VN, v~ ' P, S >  be  a proper context-free 

grammar. Then there exist ms2s Y, g and 6 such t h i t  



+ 
such that for every x E V x = xlxZ ... T' X,r xi E v T' 5gny n (X)  

A 
conta ins  a t e r m  ( S , A )  if'and only if S --- X. 

T h e  proof of  the  theorem rests on three lemmas. - Lernma I 

i m p l i e l ;  t h e  " i f "  p a r t  of the  theorem; Lemma 111 i m p l i e s  the "only i f "  

p a r t .  Lemma 11 is used in the proof of Lemma 111. 

+ 
Lemma J: Let M E V , n 

A E V, and A -M. Then f o r  a l l  k ' h ( A ) ,  

k 
6g \Ykcm) conta ins  (A ,A)  . 

Proof (by induction on h(A), t h e  h e i g h t  of the  de r iva t ion  A ) :  

k Basis:  If h(A) = 0, then A = A and f l  = A.  Then Y ~ ( A )  = p (A,Ei) .  

Since A is a summand of p, it follows that (A,A)  is a summand of 

k k p ( A , A ) ,  and t h e r e f o r e  A ,  i s  a summand of 6 g  B k ( A , h ) .  Thus the 

A k 
d e r i v a t i o n  A A is represented in 6 g  Y (A) by ( A , A ) ,  which 

k 

es tab l i shes  the bas i s .  

A 
Induction: L e t  A be a derivation of height n + 1, A - Y. By 

a s s e r t i o n  3, 

where 

and 

where h(ri) n. 



k 
then by the induc t ion  hypothesis, b g  Y (M ) contains the summand 

k j 
k 

a j , r j )  Consider the  t e r m  of g 'Y (M ) which cancels t o  (a I? ) in k 1 1' 1 * ? 

R ( H  'I T ) .  T h i s  t e r m  must b e  of t h e  form (a I' )T, where r is 
1' 1 1 

E i t h e r a  e V  o r a  c V p  . T h e  sum 6g k+ly 
a p r e f i x  of  r 1' 1 1 1 (v 1 k+l 1 

k 1 

contains 6gg Y k ( M 1 ) ,  which contains 6 g ( a  1' I' 1 )T. If al c V1, then 

g(al ,rl) .contains (Aa2ag: . . a , j rl) , and Gg(al , r l ) T  cbnta ins  r 

(ha2a3.. .a , j r l ) .  O n  the o t h e r  hand, t h e  sum bg k+lg 
r (M ) a l s o  k+l 1 

contains dpgny (M ) If a E V q ,  then (Aala2.. . a  , j) is  a sumand  k 1 i r 
1 -- 

of p, and therefore bp(a I' )T contains (Aa a 1 1  2 3" . a , j r Thus in r 
k+l ( M )  contains the summand (AaZag=.-a jrl) and either case, 6g Yk+l r' 

k 
since every. summand of 6g (M ) is a summand of 6g k+ly 

k j  
. it k + l  1 

k+l 
fol lows t h a t  6g k+l (M) contains 

This c o m p l e t e s  the p r o o f .  

* k 
Lemma 11: L e t  a E V ,  I' f 1 . For k 2 8 ,  all terms of g (a,l") 

- 
are of the form (b,aJ') (S ,A). . . (GI , A )  where b c V, c e 7 ,  m 2 0,  

m i 

For nota t ional .  convenience w e  abbreviate c c by N; Ilence we 1 m 
- 

denote  (b , ~ r )  (c , A ) .  . . (cl,A) by ( b N , A T ) .  
m 

Proof by induction on k ,  the number of applications of g .  By 

0 
definition, g (a,I ')  = ( I )  w h i c h  e s t a b l i s h e s  the  a s se r t i on  f o r  the 



va lue  k = 0 .  

n+l n 
Assume t h e  a s s e r t i o n  holds  f o r  k < n and consider  g a ,  = gq (a ,? ' ) .  

By the induc t ion  hypothes i s ,  a l l  terms of $(a,T') a r e  of t h e  form 

8 
( b f i , ~ ~ ' )  where b aN. Hence terms of gnf l (a , r )  are of the form 

g(bE,Or).  Since g l i m i t e d  t o  is t h e  identity. . g ( b i , ~ ~ )  = [g(b,bT ) ] (i,,~). 

By d e f i n i t i o n  of g ,  g(b ,Or ) conta ins  only terms of the i'orm (cG, j 9 1  ) 

j n't-1 
w h e r e  C + blf i s  a product ion.  Therefore t e r m s  of g (a,I') a re  of 

t h e  form 

j F )  j Q 
and s i n c e  C - h  b?l and b =s, aN i t  fo l lows that C aNM. 

k - 
c o r o l l a r y :  A l l  terms of g (&r)  a r e  of t h e  form ( ~ N M , A T ) .  

k A 
Lemma 111: If 6 g ,  yk(M) conta ins  ( A ~ , A ) ,  then  A - MN. 
Proof by--induction on the length  of M: 

Basis : L e t  a. E V and assume 

k 
6g Yk(a) con ta ins  (G>A). 

If pi r ep re sen t s  an  a r b i t r a r y  summand of p other than  PL, then every 

k t e r m  of g Y (a) can be  represented  i n  t he  form 
k 

where 0 r n < k and n denotes t h e  number of n o n t r i v i a l  summands of p 

which are f a c t o r s  of t h e  term. 



By const~uction, every summand of p is either  A - o r  of the form 

+ 
( B  .F , j i) where Bi I: VN, P c V , j i F - T  

I. i i 

.I i 
and B -* P is a production in G. i i 

k 
By Lemma. 11. every term of g ( B .  , j i) is of t h e  f o r m :  

I i 

C - * * 
(C .M.P ,I' . j ..) where Ci Vi, Mi,  P c V , T i  t l  
~ r i  1 1  i 

k 
By t he  same lemma, it follows that every term of g (a,A) is of the 

form 

- .  

I' 
(Cn+lMn+19 n+l ) where C E V, M 3 ll *+I c 1.- n+l n+l 

k 
H e n c e  every t e r m  of g Y- (a) is of the form k 

r 

L 

riji I n+l 
where C -----" P . M .  for 1 r i r n and C - M i 1 1  n+l nC1 

k 
By assumption there is a tern1 t of g Bk(a) such t h a t  6 [ k ]  = ( A ~ , A ) ;  

t must be in the form indicated above. In o r d e r  f o r  t to cancel under 

4,  the following must be true: 

C1 
= A since C cannot cancel from t, 

1 

- - 
P = Q C  for 1 i I n since C 2 -  acn+l must all cancel from t. i i i+l 

Therefore 



This cancels to (i,~) as required w i t h  

= I  Q M Q  M . Q M 
n+l n n n-1 n-1 1 1  

Then by (19, 

C - C  Q M  it1 i i' 1 5  i 5 n, and 
i 

Hence-, since C = *A,  1 

and thus 

a 
A . N. 

This establishes the basis . 
* 

Induction; Assume t h a t  for all M V such chat I M  I n, if 

k a 
6g Y k ( w )  contains (AN,A)  then A =-. MN. L e t  fi = Ma be a string 

k5 
such tha t  I ~ a i  = n+l and 6g y (Ma) c o n t a k s  (AN,&). Because 6 g k 

and Y are hmornorphisms, 



k k 
Then 6 g  W (K) must con ta in  a t e r m  (T A ) and 6g Y (a) must con ta in  

k is 1 k 

a t e r m  (T A ) such t h a t  T T = AN and h = 2 '  2 1 2  81A2 

I n  order  f 6 r  t h i s  tc occur,  T2 must be of tahe form (BE*) r ~ h p r e  

* - - 
B c ( V ,  N2 r V , and TI j u s t , b e  of the form (ANIB) where1 A E V, - 

* I - 
N1 E V , and N = fi1i2. ( I f  T and T w e r e  no t  of t h i s  form, 

1 2 
k c a n c e l l a t i o n  t o  ~ would be imposs ible . )  Thus 6 g  Yk(M) con ta ins  

- 
(AN R , A l ) . ,  and by t h e  induction hypothes is  

1 

k A l s o  6 g  Y (a) conta ins  ( B & > , A ~ )  and by t h e  bas i s  
k 

It fol lows that 

and s i n c e  A = M a  and N = 
N2N1' 

which completes- t h e  p r o o f .  

The theorem now f o l l o w s  from Lemmas 1 and I I 1  and A s ~ e r t i o n  2.  

The ' i f '  p a r t  fol lows from Lemma I and Asser t ior i  2 ,  and t h e  'only i f '  

part fol lows kminediately from Lemma I11 f o r  the s p e c i a l  case  of N = A .  

A s  w e  have s t a t e d  the theorem, the l e n g t h  of x i s  used t o  

determine a s u f f i c i e n t  number of a p p l i c a t i o n s  of g and Y .  A l t e r n a t i v e l y ,  

the theorem could be foxmulated i n  t e r m s  of the heights of d e r i v a t i o n s  



of X; if A is a derivation of x of h e i g h t  k, t hen  f o r  every n 2 k, 

the  t e r m  (S , A )  w i l l  b e  i n  the polynomia l  . s ~ " Y  (x)  . Fur thermore ,  it 
n 

f o l l o w s  f r o m  L e m m a  111 t h a t  no harm i s  done by choos ing  t h e  value of 

n too large, i - e . ,  no 'false' d e r i v a t i o n  t e r m s  will occur .  

In t h e  flrst statement of t h e  theorem, the d e r i v a t i o n  t e r m s  
n 

n n 
are o b t a i n e d  from the polynomial B g  Tl,p v ( x . )  which can be re- 

written in the form 

Although w e  have used a c o n s t a n t  v a l u e  of  n ( e q u a l  t o  the l e n g t h  of 

X) f o r  both t h e  powers of  the map g and the polynomial  p ,  some 

economy can be ga ined  in t h i s  respect. In fact, the poweYs 5f g and 

p can  decrease f r o m  left t o  r i g h t  s o  long- as they remain large 

enough t o  p e r f o r m  the a p p r o p r i a t e  computat ions  on t h e  suffix s t r i r l g s  

of X. Thus, the theorem is t r u e  ( b ~ t  considerably mora difficult to 

prove) i f , o n e  i n s t e a d  uses a pars ing p o l y n o m i a l  of t h e  form 

V. S p e c i a l  c a s e s  of t h e  thedrem 

A number of i n t d e s t i n g  special cases occur based cln the choice 

of V1 and V 
2 '  

C a s e  1. V1 = VT. 

The func t ion  g handles all product ions  of the  form 



while p handles productions of the  f o r m  

No t i ce  that since g i s  n o n t r i v i a l  on on ly  V g need be used  only 
T ' 

once; i-e., 

The parsing polynomial  i s  then 

The s p e c i a l  case 01 V = VT and,V2 = VN 1 resul ts  in a particularly 

simple form if t h e  grammar is in Greibach no m a 1  f o r m .  The polynomial 

p = ( A , A )  and therefore has 110 effect. Since g need on ly  be  applied 

once, a l l  derivations are found i n  one s t e p .  

E x a m p l e  1: 

G = < ~ , A , B > ,  {-a,b), S ,  P> 

P = 1 .  s - i - a h  

2 ,  A + A B  

3.  A f A  

4.  B - t b  

For the  s t r i n g  x = aabb, t h e  parsing polynomial g [ Y  (x)] then contains  k 

( a m o n g  other t h i n g s )  for a l l  k 2 2, 



T h i s  contains : 

[w(S,l)  (h,h) ]  [ ( A , 2 )  (:,A) ( x . ~ )  ( A , a )  ( i , ~ )  ( x , ~ ) ]  [ ( A , 3 ) 1  ( B , 4 )  1 [ ( B , 4 ) 1  

Applying 6 w e  g e t  

Case 2. V1 = V. 

The en t i r e  job of parsing is now done by g ,  since t h e  polynomial 

p is equal t o  ( A ,  .'I) . Hence t h e  pa r s ing  polynomial is 

Example 2: We use t he  s a m e  grammar and i n p u t  s t r i r i g  as above. 

V1 = is, A ,  B ,  a ,  b). 

v2 = 9 '  

g ( S , P - )  = (%A) 

g ( A , A )  = (A,A) + (A ,? )  (&A)  

g ( B , A >  = 

g(a, / . )  = a ,  + (~,1) (A,A) + @ , 3 )  

The parsing polynomial for  azbb is 

For k 2 3,  t h i s  conta ins  



which i n  t u r n  c o n t a i n s  

2 
[ ( s , I . ) ( H , A > ] [ ~  ( A , 3 ) ] [ ( B , 4 ) ] [ ( B , 4 ) ]  a f t e r  one a p p l i c a t i o n  of g ,  

[(S,l)(A,~>][(A,223)(B,h)(B,h)] [ ( B , 4 ) ] [ ( , 4  a f t e r  t h r e e .  

Applying 8 r e s u l t s  i n  (S  ,122344) as b e f o r e .  

C a s e  3 .  Vl = 0. 

N.ow the e n t i r e  p a r s e  is  handled bp p .  The p a r s i n g  polynomial 

becomes 

V I  .. Observa t ions  

+he m a j  o r  theorem p r e s e n t e d  here shows how c o n t e x t - f r e e  

p a r s i n g  may b e  c a r r i e d  out by p u r e l y  a l g e b r a i c  means. A l l  parses 

of an i n p u t  s t r i n g  are developed i n  p a r a l l e l  and t h e  p rocess  i s  

guaran teed  t o  terminate- .  A s  w e  have d e s c r i b e d  t h e  p r o c e s s ,  t h e  

+ 
number of terms of a pa rs ing  polynomial  f o r  a s t r i n g  x c V is T 

unreasonably  large. %lowever, m o s t  of the t e r m s  i n  such a polynomial  

are n o t  a s s o c i a t e d  w i t h  a d e r i v a t i o n  i n  t h e  grammar, and method; 

exis t  f o r  r9duc ing  t h e  computat ion by d i s r e g a r d i n 4  dead-end t e r m s  

before they  are completely e v a l u a t e d .  By a p p l y i n g  such t e c h n i q u e s  i n  

a s t r a i g h t f o r w a r d  f a s h i o n ,  and choosing V and V2 i n  v a r i o u s  ways, 
1 



the  algebraic method can be  associated i n  n a t u r a l  w a y s  w i t h  c l a s s i c a l  

parsing techniques. For  example, the a lgebra ic  process i n  case 1 

above 5s  a goal d i r e c t e d  top-dawn apptoach simflar to t he  p r e d i c t i v e  

analyzer.  Case 2 i s  the a l g e b r a i c  version of generalized bcttorn-up. 

Pa r s ing  algorithms are typically so d i f g  erent one from another  

that they are incomparable. B u t  u s i n g  techniques desc r ibed  above, 

m a n y  parsing algorithms m a y  be posed  in a single a lgebra ic  f r a m e w o r k .  

T h i s  m a y  f a c i l i t a t e  the  comparison and evaluation of parsers  and 

of various classes of g r a m m a r s .  
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