
Neural Models of Text Normalization for
Speech Applications

Hao Zhang
Google Inc.
Research & Machine Intelligence
haozhang@google.com

Richard Sproat
Google Inc.
Research & Machine Intelligence
rws@google.com

Axel H. Ng
Google Inc.
Research & Machine Intelligence
axelhng@google.com

Felix Stahlberg
University of Cambridge
Department of Engineering
fs439@cam.ac.uk

Xiaochang Peng
Facebook, Inc.
NLP Research
xiaochang@fb.com

Kyle Gorman
Google Inc.
Research & Machine Intelligence
kbg@google.com

Brian Roark
Google Inc.
Research & Machine Intelligence
roark@google.com

Submission received: 27 June 2018; revised version received: 18 January 2019; accepted for publication:
21 February 2019.

doi:10.1162/COLI a 00349

© 2019 Association for Computational Linguistics
Published under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
(CC BY-NC-ND 4.0) license

Computational Linguistics Volume 45, Number 2

Machine learning, including neural network techniques, have been applied to virtually every do-
main in natural language processing. One problem that has been somewhat resistant to effective
machine learning solutions is text normalization for speech applications such as text-to-speech
synthesis (TTS). In this application, one must decide, for example, that 123 is verbalized as one
hundred twenty three in 123 pages but as one twenty three in 123 King Ave. For this task,
state-of-the-art industrial systems depend heavily on hand-written language-specific grammars.

We propose neural network models that treat text normalization for TTS as a sequence-to-
sequence problem, in which the input is a text token in context, and the output is the verbalization
of that token. We find that the most effective model, in accuracy and efficiency, is one where the
sentential context is computed once and the results of that computation are combined with the
computation of each token in sequence to compute the verbalization. This model allows for a great
deal of flexibility in terms of representing the context, and also allows us to integrate tagging and
segmentation into the process.

These models perform very well overall, but occasionally they will predict wildly inappropri-
ate verbalizations, such as reading 3 cm as three kilometers. Although rare, such verbalizations
are a major issue for TTS applications. We thus use finite-state covering grammars to guide
the neural models, either during training and decoding, or just during decoding, away from such
“unrecoverable” errors. Such grammars can largely be learned from data.

1. Introduction

A key question in the use of machine learning components within applications is what
accuracy level is required in order for the learned models to be useful. The answer can
vary dramatically depending on the application. For example, predicting the preferred
internal heat for the passengers of a vehicle based on past preferences is likely useful
as long as the prediction is within a degree or two of the actual preference, and worse
performance on occasion is hardly catastrophic. The same cannot be said for the naviga-
tional systems of a self-driving vehicle, where even rare errors cannot be tolerated. Such
thresholds for usefulness have been at play in speech and language processing since
the earliest real-world applications. For example, Munteanu et al. (2006) attempted to
establish a maximum word-error rate at which automatic speech recognition transcrip-
tions are useful for tasks such as skimming online videos for content, concluding that
at 25% word-error rate the transcripts were still useful for such a task. The word-error
rate threshold for usefulness will be far lower for spoken assistant applications and
presumably lower still for spoken interfaces to navigation systems. Similarly, machine
translation may be found to be very useful when it comes to getting the gist of, say, a
newspaper article, but direct use of its output is risky, illustrated by menu translation
disasters. 1 The threshold of acceptable risk depends on the use of the system output,
much like the threshold for acceptable latency.

Text normalization is a ubiquitous pre-processing stage for a range of speech and
language processing applications, and its requirements depend quite heavily on the
application for which it is designed—one reason, perhaps, that general machine learn-
ing methods to address the problem are not quite as common as in other areas of

1 For example, http://languagelog.ldc.upenn.edu/nll/?p=4136.

294

http://languagelog.ldc.upenn.edu/nll/?p=4136

Zhang et al. Neural Models of Text Normalization

the field. Most text normalization methods will involve tokenization and matching of
tokens against an existing lexicon. Beyond that, the downstream application may re-
quire mapping of certain tokens to new token sequences, including such trivial changes
as de-casing to more complex mappings (e.g., expanding abbreviations or handling
non-standard spellings such as those found in social media). In this article, we focus
on text normalization for speech applications, such as sending text through a text-to-
speech synthesis engine to be read aloud. This use scenario has some characteristics
that make it different from text normalization scenarios that do not have a spoken
target. The handling of numbers, for example, is quite different. When normalizing
text for, say, syntactic parsing or other natural language algorithms operating solely
within the written domain, one common approach is to replace the numerical value
(e.g., 197) with one or more placeholder class labels (e.g., N) so that all numerical values
within a class are processed similarly by the parser. When normalizing text for speech
synthesis, however, the written numeric value must be mapped to its spoken form
(e.g., one hundred ninety seven or one nine seven), which is often called number naming.
Thus, in the parsing scenario the normalization is deterministic; in the speech synthesis
scenario it is contextually ambiguous. Number naming becomes especially tricky in
inflected languages, such as Russian, where numbers take on the case of their predicates.
Furthermore, writing long numbers out as they are spoken is not something people
tend to do, so training data must be curated (rather than harvested, as in machine
translation)—large, naturally occurring parallel corpora for this do not exist.

Text normalization for speech synthesis comes with some application demands
that dictate acceptable latencies and error rates. As it is heavily used in mobile and
spoken assistant applications, latency is a key consideration. Further, some errors are
catastrophic, impacting not only the naturalness of the voice but the accuracy of the
rendition. Inflecting number names incorrectly in, say, Russian does lead to a lack
of naturalness, but the result would be usable in most cases. However, producing
number names that are not value-preserving renders the result worse than unusable,
since the user would be grossly misinformed. For example, when reading a written
address (e.g., 197 Pine Ave.), if the numeric value is not preserved in the normalization
(nineteen hundred seven Pine Avenue), then a driver using spoken directions in a map
application may be led astray. Text normalization is thus a problem for which machine
learning holds promise for contextual disambiguation, but under some relatively strict
application demands.

In this article, we present several novel sequence-to-sequence architectures to ad-
dress this problem, which outperform standard Transformer-based methods heavily
used in neural machine translation (Vaswani et al. 2017). Further, some of the archi-
tectures exploit special characteristics of the problem to achieve significant further
speedups without sacrificing accuracy. In addition, we explore methods for avoiding
the kinds of catastrophic errors mentioned above (and presented in more detail subse-
quently) to which the neural methods are prone. We present methods for learning finite-
state covering grammars, which help avoid solutions that are catastrophic (e.g., not
value-preserving). Our approach represents a feasible combination of linguistic knowl-
edge and data-driven methods that yield efficient architectures that meet demanding
application performance requirements.

The specific contributions of this article include:

• The presentation of a large-scale, publicly available data set for this
problem.

295

Computational Linguistics Volume 45, Number 2

• Multiple new neural architectures that significantly improve upon the
accuracy and efficiency of the models presented in Sproat and Jaitly (2016,
2017), as well as a set of other baselines.

• New general methods for finite-state covering grammar induction from
data, used to avoid catastrophic errors, which extend the methods of
Gorman and Sproat (2016) to other kinds of input that require
normalization besides just numbers, such as dates or measure expressions.

• Extensive and informative evaluation of the models in a range of use
scenarios.

In the next section we provide more background on the problem of text normalization
before presenting our methods.

2. Text Normalization, and Why It Is Hard

Ever since the earliest invention of writing, in Mesopotamia over 5,000 years ago, people
have used various sorts of abbreviatory devices. In most ancient writing systems, num-
bers were almost exclusively written with numerical symbols, rather than with number
words representing the way one would say the number. Weights and measures often
had standard short representations, and ordinary words could also be abbreviated to
save space or time. That tradition has survived into modern writing systems. In English,
whereas there are prescriptive conventions on, say, writing the full words for numbers
when they begin a sentence (Seventy-two people were found . . . rather than 72 people were
found), there are nonetheless many things that would typically not be written out in
words. These include numbers whose verbalization requires many words, as well as
times, dates, monetary amounts, measure expressions, and so on. It is not so unusual to
find three million written out, but 3,234,987 is much easier to read and write as a digit
sequence. One might write three thirty or half past three for a time, but 3:30 is just as
likely, and even preferable in many contexts. It would be much more likely to see $39.99
written thus, rather than as thirty-nine dollars and ninety-nine cents, or thirty-nine, ninety-
nine. For many of these cases there are differences across genres: Fully verbalized forms
are much more likely in fictional prose, whereas numerical or abbreviated forms are
much more likely in scientific texts, news, or on Wikipedia.

Following Taylor (2009), we use the term semiotic class to denote things like num-
bers, times, dates, monetary amounts, etc., that are often written in a way that differs
from the way they are verbalized. Text normalization refers to the process of verbalizing
semiotic class instances (e.g., converting something like 3 lb into its verbalization three
pounds). As part of a text-to-speech (TTS) system, the text normalization component is
typically one of the first steps in the pipeline, converting raw text into a sequence of
words, which can then be passed to later components of the system, including word
pronunciation, prosody prediction, and ultimately waveform generation.

Work on text normalization for TTS dates to the earliest complete text-to-speech
system, MITalk (Allen, Hunnicutt, and Klatt 1987). The earliest systems were based
entirely on rules hard-coded in Fortran or C. The Bell Labs multilingual TTS system
(Sproat 1996, 1997) introduced the use of weighted finite-state transducers for text
normalization, and this approach is still in use in deployed systems, such as Google’s
Kestrel text-normalization system (Ebden and Sproat 2014). Sproat et al. (2001) describe
an early attempt to apply machine learning to text normalization for TTS. The main
challenge in text normalization is the variety of semiotic classes. Sproat et al. give an

296

Zhang et al. Neural Models of Text Normalization

Table 1
A taxonomy of non-standard words, from Sproat et al. (2001), Table 1, page 293. Used with
permission.

initial taxonomy (Table 1) with three major categories: “mostly alphabetic,” “numeric,”
and “miscellaneous.” Within these broad categories finer-grained classifications depend
in part on how the input maps to the output verbalization, and in part on the kind of
entity denoted by the token.

From a modern perspective, this taxonomy has a number of obvious omissions.
Some of these omitted types did not exist, or were considerably less common, at the
time of writing, such as hashtags or “funny spellings” like slloooooww. The increasing
prominence of such categories has led to a considerable body of work on normalizing
SMS and social media text (Xia, Wong, and Li 2006; Choudhury et al. 2007; Kobus, Yvon,
and Damnati 2008; Beaufort et al. 2010; Liu et al. 2011; Pennell and Liu 2011; Aw and
Lee 2012; Liu, Weng, and Jiang 2012; Liu et al. 2012; Hassan and Menezes 2013; Yang
and Eisenstein 2013; Chrupala 2014; Min and Mott 2015, inter alia). 2 Text normalization
is thus a task of great importance for many diverse real-world applications, although
the requirements of large-scale speech applications such as TTS and automatic speech
recognition (ASR) have received comparatively little attention in the natural language

2 Text normalization of social media tends to focus on different problems from those that are the main
concern of normalization aimed at speech applications. For example, how one pronounces number
sequences is generally of little or no concern in the normalization of social media text, though it is
essential for most speech applications.

297

Computational Linguistics Volume 45, Number 2

processing literature. A recent update to this taxonomy is presented by van Esch and
Sproat (2017). Among the new categories are season/episode designations (S01/E02),
ratings (4.5/5), vision (20/20), and chess notation (Nc6). What is noteworthy about these
novel categories is that each of them has idiosyncratic ways of verbalization. Thus a
rating 4.5/5 is read four point five out of five, whereas the vision specification 20/20 is read
twenty twenty and the season/episode designation S01/E02 is read season one, episode two,
and so on.

To a first approximation, one can handle all of these cases using hand-written
grammars—as in Sproat (1997) and Ebden and Sproat (2014). However, different aspects
of the problem are better treated using different approaches. Text normalization can be
basically broken down into three notional components. The first is tokenization: How
do we segment the text into tokens each of which is a word, a punctuation token, or
an instance of a semiotic class? Second, what are the reasonable ways to verbalize that
token? And third, which reading is most appropriate for the given context?

The first component, tokenization, can be treated with hand-written grammars,
but this may be brittle and challenging to maintain. Thus it seems desirable to use
machine-learned taggers, similar to those used to segment text in writing systems that
do not separate words with spaces; see, for example, Wang and Xu (2017), who use
convolutional neural networks for Chinese word segmentation.

The second component, verbalization, can be treated with hand-written language-
specific grammars. But as is well known, such grammars may require some degree of
linguistic expertise, can be complex to develop, and with sufficient complexity become
difficult to maintain. And as noted above, there is great diversity between different
semiotic classes. 3

Finally, selecting the appropriate verbalization in context can also be framed as a
sequence labeling problem, since the verbalization of a token depends on what it rep-
resents. For instance, 4/5 can be a date, a fraction, or a rating, and once we know which
it is, the verbalization is fairly straightforward. In languages with complex inflectional
morphology, one may also need to know which morphosyntactic category a string falls
into—in Russian, for example, it is not enough to know that 323 is to be read as a
cardinal number, because one also needs to know what grammatical case to use—but
again, this is a sequence-labeling problem. 4

Although this three-component system is feasible, it is desirable—as we do in
some experiments herein—to treat earlier stages (such as tokenization or semiotic class
labeling) as a latent variable passed to later stages; thus it would be preferable to train
all three models jointly. Furthermore, because these three components involve both
labeling with a fixed tag set (for segmentation and semiotic classification) and string-
to-string transductions (for verbalization), a neural network approach, which is suited
to both types of relations, is a priori desirable.

We note two points at the outset. First, the required data, namely, raw text and
its verbalized equivalent, cannot in general be expected to occur naturally. Machine
translation can to a large extent rely on “found” data because people translate texts for
practical reasons, such as providing access to documents to people not able to read the
source language. In contrast, there is no reason why people would spend resources pro-
ducing verbalized equivalents of ordinary written text: in most cases, English speakers

3 As a consequence, much of the subsequent work on applying machine learning to text normalization for
speech applications focuses on specific semiotic classes, like letter sequences (Sproat and Hall 2014),
abbreviations (Roark and Sproat 2014), or cardinal numbers (Gorman and Sproat 2016).

4 In fact, Kestrel (Ebden and Sproat 2014) uses a machine-learned morphosyntactic tagger for Russian.

298

Zhang et al. Neural Models of Text Normalization

do not need a gloss to know how to read $10 million. Thus, if one wants to train neural
models to verbalize written text, one must produce the data.5 Second, the bar for success
in this domain seems to be higher than it is in other domains in that users expect TTS
systems to correctly read numbers, dates, times, currency amounts, and so on. As we
show subsequently, deep learning models produce good results overall; but as we shall
also show, neural networks tend to make the occasional error that would be particularly
problematic for a real application.

We distinguish between two types of error that a text normalization system might
make. The first, and less serious, kind involves picking the wrong form of a word,
while otherwise preserving the meaning. For example, if the system reads the road is
45 km long as the road is forty five kilometer long, this is wrong, but humans can easily
recover from the error and still understand the message. Such errors are particularly
likely to occur in languages with complex inflectional morphology. Errors of this first
kind, however, do not generally reduce the intelligibility of the resulting speech insofar
as the same message is conveyed, albeit ungrammatically. Contrast this with the second
kind of error, where the error results in a totally different message being conveyed. If
the system reads the sentence as the road is thirty five kilometers long, getting the number
wrong completely, it would convey the wrong meaning entirely. Unfortunately, we find
that neural network models are particularly prone to the latter type of error; similar
issues in neural machine translation are discussed by Arthur, Neubig, and Nakamura
(2016). We refer to the latter class as unrecoverable errors because they miscommunicate
information in a way that is hard for the hearer to recover from. Even if unrecoverable
errors occur only infrequently, one never knows when to expect such an error, and,
because such errors are sporadic, it is hard to guard against them if the neural model is
left to its own devices.

It is worth emphasizing up front that unrecoverable errors are one reason why
approaches like Char2Wav (Sotelo et al. 2017) that purport to provide a complete “end-
to-end” neural network that maps directly from raw text to waveforms are unlikely to
replace industrial TTS systems in the near term. Text normalization by itself is a hard
problem. If one is expecting to solve not only that, but also other aspects of speech such
as word pronunciation and prosody by inferring a model from a limited amount of
aligned text and speech data, then one is setting one’s expectations higher than what
currently seems reasonable to expect of neural models. Although research on “end-
to-end” neural TTS has produced impressive demonstrations, our own results suggest
that they will make embarrassing errors when applied to arbitrary text, and such errors
would be hard to fix in an end-to-end system. The covering grammar solution to these
errors that we present here depends on the fact that we are producing symbolic (string)

5 It has been suggested that raw text paired with speech—such as produced by ASR systems—does exist in
large volume. However, several problems prevent use of such data for text normalization at the present
time. First, many genres of text, including literary text, and even news stories, are not particularly rich in
text normalization problems. We have used Wikipedia text in many of our experiments because it is rich
in at least some semiotic classes, such as dates, measure expressions, and various other numerical
expressions. Unfortunately, while there is a spoken subset of Wikipedia, volume is very low and quality
is variable. Furthermore, many of the chosen articles are, again, not very rich in text normalization issues,
and there is often a mismatch between the version of the article that was read, and what is currently
available on (written) Wikipedia. Closed captioning is more promising, but it is notorious for
not-infrequent departures from the spoken text, and much closed captioned text is, again, not particularly
rich in text normalization issues. Finally, we note a recent trend toward “end-to-end” ASR systems (Chan
et al. 2016; Chiu et al. 2017, inter alia) that map from audio directly to written form, without an
intermediate “spoken-form” transcription. For a text written as In 1983, ... the recognizer would
transcribe In 1983, rather than in nineteen eighty three, making it useless for our purposes.

299

Computational Linguistics Volume 45, Number 2

output: It is hard to see how one would apply such methods to correct continuous
output, such as a waveform or a sequence of speech parameters. There would therefore
be no hope for solving such errors in a fully end-to-end system, other than augmenting
the training data with targeted examples and hoping for the best.

Sequence-to-sequence text normalization has the promise of providing accurate
normalization with far less development and maintenance effort than hand-written
grammars. For deployment as part of an actual TTS system, however, such an ap-
proach must also be sufficiently fast at time of inference, yield very high accuracy,
and be reliable and predictable—that is, without producing the kinds of unrecoverable
errors illustrated earlier. In this article, we explore a range of neural architectures, and
demonstrate an accuracy similar to that of heavily engineered hand-written methods.
We achieve substantial speedups with certain methods for encoding sentence context,
as well as methods for integrating constraints that forbid the more egregious kinds of
unrecoverable errors. In sum, this article presents methods for text normalization that
meet most of the engineering requirements for use in large-scale text-to-speech systems.

3. Previous Approaches to Text Normalization

3.1 Standard Approaches

The standard approach in industrial text-normalization systems uses complex hand-
written grammars to verbalize input tokens. An example of such a system is Google’s
Kestrel TTS text normalization system (Ebden and Sproat 2014). Kestrel is powered by
classification grammars, which tokenize the input and classify text tokens according
to their semiotic class; and verbalization grammars, which determine the contextually
appropriate verbalization for a token, in conjunction with machine learned morphosyn-
tactic taggers.

Tokens in Kestrel need not correspond to whitespace-delimited tokens, even in
those languages where whitespace or punctuation is used to separate words. Thus
the Kestrel grammars recognize Jan.1, 2012 as a date and parse it as a single token,
identifying the month, day, and year, and represent it internally using a protocol-buffer
representation like the following:6

date { month: "January" day: "1" year: "2012"}

Verbalization grammars then convert from a serialization of the protocol buffer repre-
sentation into actual word sequences, such as January the first twenty twelve. Tokeniza-
tion/classification and verbalization grammars are compiled into weighted finite-state
transducers (WFSTs) using the Thrax grammar development library (Roark et al. 2012).

One advantage of separating tokenization/classification from verbalization via the
intermediate protocol buffer representation is that it allows for reordering of elements,
something that is challenging with WFSTs.7 The need for reordering arises, for example,
in the treatment of currency expressions where currency symbols such as ‘$’ or ‘’ often
occur before digits, but are verbalized after the corresponding digits. An input $30
might be parsed as something like

money { currency: "USD" amount { integer: "30" } }

6 https://developers.google.com/protocol-buffers/.
7 As we will show subsequently, pushdown transducers can be used for this purpose, and are finite-state

equivalent if the vocabulary of elements to be reordered is itself finite.

300

https://developers.google.com/protocol-buffers/

Zhang et al. Neural Models of Text Normalization

which would then be reordered prior to verbalization as

money { amount { integer: "30" } currency: "USD" }

An open-source version of Kestrel includes sample grammars for a subset of English
text normalization problems.8

Similar approaches have been adopted for ASR verbalization (Sak et al. 2013, inter
alia). In this case, the problem is not generally to verbalize text at runtime, but rather as a
component of an acoustic- and language-model training procedure that ingests written
text as training data and converts it to possible spoken forms. Unlike the situation in
TTS where one usually wants just one output verbalization for a given context, in ASR
it may be desirable to produce a set of possible verbalizations; for example, 1999 might
be verbalized as nineteen ninety nine if it is a date, or as one thousand nine hundred ninety
nine if it is an ordinary number.

3.2 Previous Neural Approaches to Text Normalization

There has been some work on neural network methods for social media text normal-
ization (Chrupala 2014; Min and Mott 2015) that demonstrate competitive performance
in shared tasks. However, as we noted earlier, these systems have a somewhat different
focus than speech applications.

Sproat and Jaitly (2016) explore two neural models of text normalization. The first
involves a long short-term memory (LSTM) (Hochreiter and Schmidhuber 1997), recur-
rent neural network (RNN) that produces a lattice-like list of possible verbalizations
which are then rescored by a separate LSTM language model. The second is an RNN
with an attention mechanism modeled on Chan et al. (2016). A subsequent study (Sproat
and Jaitly 2017) focuses solely on the latter model, which outperformed the former;
despite this, it still produces a substantial number of unrecoverable errors as described
above. This paper also describes a method for preventing unrecoverable errors using
WFST-based covering grammars, a method described in much greater detail in Section 6.

Sproat and Jaitly (2016) and Sproat and Jaitly (2017) have been starting points
for our work, and our “sliding window” baseline (Section 5.2) is based on this prior
work, but the present work goes well beyond it in a number of respects. First, we
develop further neural architectures that outperform this prior system. Second, though
the covering grammar mechanism was introduced in the prior work, we extend it here
both in that we introduce a method for inducing most of the covering grammar models
from data, and in that we define more precisely how the covering grammars are actually
used during decoding. Finally, we report results on new data sets.

Arik et al. (2017) present a neural network TTS system that mimics the traditional
separation into linguistic analysis (or front-end) and synthesis (or back-end) modules.
It is unclear to what degree this system in fact performs text normalization since the
only front-end component they describe is grapheme-to-phoneme conversion, which is
a separate process from text normalization and usually performed later in the pipeline.

Some prior work, such as Shugrina (2010), focuses on the inverse problem of denor-
malizing spoken sequences into written text in the context of ASR so that two hundred
fifty would get converted to 250, or three thirty as a time would get formatted as 3:30.
Pusateri et al. (2017) describe a system in which denormalization is treated as a neural
network sequence labeling problem using a rich tag set.

8 See http://github.com/google/sparrowhawk.

301

http://github.com/google/sparrowhawk

Computational Linguistics Volume 45, Number 2

The data we report on in this article was recently released and was the subject of a
Kaggle competition (see later in this article), and a few recent studies (Pramanik and
Hussain 2018; Yolchuyeva, Németh, and Gyire-Tóth 2018, inter alia) propose neural
network approaches to text normalization using this data set. We postpone discussion
of this work until a later section (Section 7.7).

4. A Transformer Model

Before we turn to a discussion of our own neural text normalization models, we present
some results using a different approach, one that probably has already occurred to the
reader. Namely: Why not treat the text normalization problem as a machine translation
task, where the source language is raw text and the target language is normalized
text, in the same language as the source language? Thus in our case a source sentence
might be

John lives at 123 King Ave next to A&P.

and the corresponding target would be

John lives at one twenty three King Avenue next to A letter and P letter sil

Clearly, this is a much easier problem than real translation, especially when it comes to
translation between two very dissimilar languages such as English and Japanese.

To this end, we trained a Transformer model (Vaswani et al. 2017) on our En-
glish training set, as described in Section 7.1, and tested on our standard English test
set. Because the problem is a full sequence-to-sequence task, the training corpus was
transformed into a sequence of pairs of raw input sentences, and normalized output
sentences, as in the given example.

The details of our Transformer model are summarized in Appendix A.2.
Because there was no simple way to align the input tokens with the output verbal-

ization, we evaluated for sentence accuracy only. Note that the amount of training data—
about 10 million tokens—is perhaps an order of magnitude less data than is commonly
used for translation between high-resource languages. On the other hand, our task is
significantly easier than real translation. It is not clear how these two factors trade off
against one another.

The overall sentence accuracy of the Transformer system on our data was 96.53%
(sentence error rate of 3.47%), which is lower than the accuracy of 97.75% we report
here for our best system (see Table 5). As with our own purely neural systems, the
Transformer model is prone to unrecoverable errors. Among these are:

• A predilection for replacing the letter i with u so that the letter sequence
IUCN, for instance, is verbalized as u u c n.

• Inappropriate expansions such as verbalizing they’ve been outside as they
avenue been outside, or Cherokee’s 2.8 V 6 as cherokee’s two point eight volts six.

• Complete substitution of different lexical items: Yahoo! verbalized as o m l.

302

Zhang et al. Neural Models of Text Normalization

A similar experiment with our Russian data produced similar results. Here, the
sentence accuracy of the system is 93.35% (error rate of 6.65%), compared with our own
best sentence accuracy of 95.46% from Table 5. Common types of errors in Russian are:

• ‘kilometer squared’ (and morphological variants)
instead of ‘square kilometer’ (and morphological
variants). This is due to mistokenized examples of in the training data
being translated as , with the Transformer model
generalizing that pattern. Our own models do not make this error.

• Wrong choice of letters in letter sequences, as in English.

• Stopping problems in transliterations. For example, the English word
narrative transliterated not as (literally narrativ), but as

. Such stopping problems are
familiar in sequence-to-sequence models (see, e.g., Section 5.2.3 of Xie
[2017] for a discussion of this problem in neural natural language
generation).

As already noted—and see, especially, Sections 7.6 and 7.8—our own neural models
make similar kinds of errors, but the fact that the Transformer model is prone to such
errors, coupled with slightly higher overall error rates, at least serves as an answer to the
question that people often ask, namely, why we do not treat this as a machine translation
task? Simply put, state-of-the-art machine translation models do not solve the problem
because we would still need to have some mechanism to correct for these errors.

This then leads us to the more serious issue, namely, that treating the problem as
a sequence-to-sequence problem where the input and output are full sentences makes
it much more difficult to correct such errors, since it would be harder to reconstruct
which output token(s) correspond to which input token(s), and thus which portion of
the input is responsible for the errorful output. This in turn motivates architectures
that treat each input token separately. With such an architecture, one has a chance of
correcting the output by an approach such as the covering grammar approach we will
discuss in Section 6, or in the worst case by simply adding the input token to a whitelist
that forces it to be verbalized in a particular way. We view these issues as compelling
motivations for not adopting an “out-of-the-box” solution, but rather designing models
that keep the relation between input and output tokens clear. We turn immediately to a
discussion of our models.

5. Our Models

In the previous section we argued against using an architecture designed for machine
translation for text normalization. In this section we present novel models and their
components that are specifically designed for this problem. We start with a discussion
of segmentation.

5.1 Segmentation

Most of our models (except the one presented in Section 5.4) assume pre-segmented
input. Table 2 gives an example of the data used for these models. We assume the
same segmentation standard as Ebden and Sproat (2014), which generally splits off

303

Computational Linguistics Volume 45, Number 2

Table 2
An example training sentence.

John <self>
lives <self>
at <self>
123 one twenty three
King <self>
Ave avenue
next <self>
to <self>
A&P a letter and p letter
. sil

punctuation and separates words by whitespace, but also treats as a single segment
multiword sequences that represent dates (Jan. 3, 2016), certain money expressions ($5
million), and so on. We use a special token <self> to indicate that the input is to be
passed through. The token sil is used to represent silence, which is typically associated
with punctuation. We denote the set of all possible Kestrel (input) segments as S, and the
set of all possible output words (the target vocabulary) as W. We represent each sentence
in the training corpus as a sequence of pairs 〈(x1, y1), . . . , (xl, yl)〉where l is the sentence
length in segments. Each xi ∈ S is a single segment such as a complete date, address,
money expression, and so forth (e.g., xi = 123). yi ∈ {<self>, sil} ∪W+ contains the
normalized form of xi as a sequence of words (e.g., yi = 〈one, twenty, three〉).

The output word vocabulary W in our setup is relatively small because it only con-
tains words used for non-trivial normalization such as number names, and so on. On the
input side, however, we need to tokenize segments into smaller chunks to obtain a fixed-
size input vocabulary for the neural models. We denote the input vocabulary to the
neural model as T, and the mapping from segment to token sequence as tok : S→ T+.
T can be a short list of full words, word features (Section 5.3.1), subword units (Sennrich,
Haddow, and Birch 2016), or characters.

We will use the ⊕-operator to denote string concatenation.

5.2 The Sliding Window Model

In the next few sections we detail the various architectures that we have applied to the
problem of text normalization, starting with our baseline model.

We use the model of Sproat and Jaitly (2016, 2017) as a strong neural baseline,
which consists of a bidirectional RNN encoder and an attention mechanism decoder.
Appendix A.3 lists the hyper-parameters we use in our experiments.

We refer to this model as sliding window model (Figure 1) as we normalize each
segment by feeding in a context window of n segments to the left and right around the
segment of interest (where n is typically 3). The token of current interest is enclosed in
the tags <norm>...</norm> as in this example:

John lives at <norm> 123 </norm> King Ave next to A&P .

The output being predicted is just the verbalization of the current segment:

one twenty three

304

Zhang et al. Neural Models of Text Normalization

one twenty three </s>

a t <norm> 1 2 3 </norm> K i n g... ...

Figure 1
The sliding window model, with a bidirectional RNN encoder and an attention mechanism
decoder.

More formally, the model normalizes the i-th segment by learning to predict the
following probability:

P(yi|xi−n, . . . , xi+n) =
|yi|∏
t=1

P((yi)t|(yi)
t−1
1 , xi−n, . . . , xi+n)︸ ︷︷ ︸

=g(·)

(1)

where g(·) is modeled by an RNN-based attentional encoder-decoder network
(Bahdanau, Cho, and Bengio 2015) in which the encoder consumes the context window
around the to-be-normalized segment:

i−1⊕
k=max(1,i−n)

tok(xk)⊕< norm >⊕ tok(xi)⊕< /norm >⊕
min(l,i+n)⊕

k=i+1

tok(xk) (2)

If the length of the resulting sequence is l, the encoder built on gated recurrent units
(GRUenc in Figure 1) generates l hidden states ((hi)1, . . . , (hi)l). The attention mechanism
works as follows:

P((yi)t|(yi)
t−1
1 , xi−n, . . . , xi+n) = P((yi)t|(yi)

t−1
1 , (hi)

l
1)

= g((yi)t−1, si,t, ci,t)

where g is a nonlinear function that outputs the probability of (yi)t, given state si,t of the
decoder RNN (GRUdec in Figure 1) at time step t after producing (yi)

t−1
1 and attending

305

Computational Linguistics Volume 45, Number 2

over (hi)
l
1 to result in the context vector ci,t. Concretely, ci,t is a weighted sum of the

encoder hidden states.

ci,t =
l∑

j=1

(αi)tj(hi)j (3)

The weight of each hidden state is computed as

(αi)tj =
exp((ei)tj)∑l

k=1 exp((ei)tk)

where

(ei)tj = a(si,t−1, (hi)j)

and where a is the alignment model that computes the matching score between input
position j and output position t for the i-th example, which is implemented as a single-
layer multilayer perceptron with tanh(·) as the activation function.

Note that even though each segment is considered separately from the other seg-
ments, the use of an input context of three words is generally sufficient to disambiguate
in cases where a given segment might have more than one possible verbalization. Thus,
if the input were:

I raised <norm> 123 </norm> goats .

the context around 123 in this instance would be sufficient to determine that the correct
reading is:

one hundred twenty three

One advantage of processing each segment separately is that it allows for parallel
processing during decoding, which significantly speeds up decoding.

The input sequence for the sliding window model is a character sequence (i.e., tok(·)
maps to characters, and T is the English character set), because for a segment like 123,
one needs to see the individual digits to know how to read it. It is also useful to see the
individual characters for out-of-vocabulary words to determine whether they should be
mapped to <self>. 9

5.3 Contextual Sequence-to-Sequence Models

The previous section described our baseline sequence-to-sequence model where data
are presented to the model one segment at a time using a sliding window, with each
segment enclosed in <norm>...</norm> tags. In this and the following sections, we
propose alternative neural network architectures for this problem.

The models proposed in this section can be characterized as contextual sequence-
to-sequence models illustrated schematically in Figure 2. Here the problem is cast as a

9 We have also experimented with word piece and other encodings for surrounding context, as discussed
later in the paper.

306

Zhang et al. Neural Models of Text Normalization

John lives at

123

King Ave next to A&P .

one twenty three

Figure 2
Text normalization with a contextual sequence-to-sequence model.

context-aware sequence-to-sequence mapping task from the input (character) sequence 1
2 3 to the output (word) sequence one twenty three. The context of this sequence-to-
sequence problem is encoded with two vector representations: one for the left context
John lives at, and one for the right context King Ave next to A&P.

The core of this architecture is an RNN-based attentional sequence-to-sequence
network with a bidirectional encoder GRUmid built from gated recurrent units, or GRUs
(Cho et al. 2014). Appendix A.4 lists the hyper-parameters we use in our experiments.

5.3.1 Encoding the Context. We propose to use two additional RNNs to produce dis-
tributed representations of the full sentence context. Figure 3 shows the complete model
architecture. In addition to the core sequence-to-sequence encoder GRUmid (shown with
orange boxes in the figure) we use two more GRU networks (GRU→ and GRU←) to
encode the context. The hidden states of GRU→ and GRU← that are adjacent to the to-
be-normalized segment are used as context representations. Note that the tokenization
for the context is independent of the middle segment, which makes it possible to use
coarse-grained tokenization such as words or word pieces for the context and characters
for the to-be-normalized part. In our later experiments, we always use characters for the
middle segment (i.e., tokmid(·) maps to the character set Tmid), but vary the granularity
for the context tokenization tokcontext : S→ Tcontext. The choices for Tcontext include (from
coarse to fine) words, word pieces (Schuster and Nakajima 2012; Sennrich, Haddow, and
Birch 2016; Wu et al. 2016), or even characters. We also experiment with word features,
which represent words by extracting character n-gram features for n up to 3 within each
word, hashing and embedding them, and finally applying a transformation to produce
a fixed-length dense vector. The simplest transformation is a summation, but it can also
be a neural network such as an RNN. Figure 4 shows the character n-gram based word
contextual model.

Unlike the sliding window model (Equation 2), our new contextual sequence-to-
sequence model conditions on the full sentence to normalize the i-th segment:

P(yi|x1, . . . , xl) =
|yi|∏
t=1

P((yi)t | (yi)
t−1
1 , ci,t) (4)

where ci,t is the concatenation of three vectors (see Figure 3):

ci,t = (
−−→
hi−1; hmid

i,t ;
←−−
hi+1) (5)

307

Computational Linguistics Volume 45, Number 2

John lives at 123 King Ave. next ...

1 2 3

one twenty three </s>

Figure 3
Encoding the context with RNNs GRU→ and GRU←.

Here,
−→
hk and

←−
hk for 1 ≤ k ≤ l are the hidden states of GRU→ and GRU← that run

over the complete input sequence
⊕l

k=1 tokcontext(xk).10

−→
hi = GRU→(

−−→
hi−1, tokcontext(xi)) (6)

←−
hi = GRU←(

←−−
hi+1, tokcontext(xi)) (7)

The representation of the middle segment hmid
i,t at time t is computed using attention

over the hidden states of yet another bidirectional RNN GRUmid, which only consumes
the segment to normalize tokmid(xi). It is the same attention mechanism as described in
Section 5.2, with the crucial difference that the region of attention is restricted to the seg-
ment to normalize. The difference between the class of contextual models described here
and the baseline sliding window model is clear from the constrast between Equation (3)

10 Because tokcontext(·) can yield multiple tokens for a single segment, these equations may require multiple
steps.

308

Zhang et al. Neural Models of Text Normalization

John

‘<J’
‘J’
‘Jo’
‘o’
‘oh’
‘h’
‘hn’
‘n’
‘n>’

lives

‘<l’
‘l’
‘li’
‘i’
‘iv’
‘v’
‘ve’
‘e’
‘es’
‘s’
‘s>’

at

‘<a’
‘a’
‘at’
‘t’
‘t>’

123

‘<1’
‘1’
‘12’
‘2’
‘23’
‘3’
‘3>’

King

‘<K’
‘K’
‘Ki’
‘i’
‘in’
‘n’
‘ng’
‘g’
‘g>’

Ave

‘<A’
‘A’
‘Av’
‘v’
‘ve’
‘e’
‘e>’

next

‘<n’
‘n’
‘ne’
‘e’
‘ex’
‘x’
‘xt’
‘t’
‘t>’

...

Figure 4
Word contextual model based on character n-grams within each word.

and Equation (5). While the sliding window model uses surrounding context through
the attention mechanism, the contextual models use context directly as a constant vector.

5.3.2 Integrating Context Encodings. The context-aware sequence-to-sequence models
presented in the previous section concatenate a vector hmid

i,t with a constant context
vector to obtain the input ci,t to the decoder network at each time step. We refer to this
approach as the ‘concat’ strategy. This gives the decoder access to the context outside the
to-be-normalized segment at each time step but in doing so increases the dimensionality
of the decoder input. An alternative way is to only use the attention-based vector as
input to the decoder network (i.e., ci,t = hmid

i,t). The constant context is only used to
initialize the decoder RNN state; we refer to this as the ‘init’ strategy. Figure 5 contrasts
both methods. We will compare these strategies in terms of both speed and accuracy.

5.4 Stacking Tagging and Contextual Models

In the previous sections, we have assumed that the input sequence is pre-segmented
into tokens. However, in real-world applications the normalization model needs to be
fed with segmented output produced by a segmenter. A segmenter can be rule-based

309

Computational Linguistics Volume 45, Number 2

one twenty three </s>

‘concat’ strategy

one twenty three </s>

‘init’ strategy

Figure 5
Using the context representations in the decoder network.

like that in Kestrel (Ebden and Sproat 2014), or a neural network based sequence tagging
model trained together with a normalization model.

Generally speaking, the majority of tokens are either normal words that are left
alone (<self>) or punctuation symbols that are mapped to silence (sil). We refer to
these two types of tokens as trivial cases and the remaining tokens as difficult cases. Thus,
we have a three-class coarse-grained classification problem on input words: <self>,
sil, and other (difficult cases).

We treat input segmentation and coarse-grained classification as a joint tagging
problem, using a stacked multi-task strategy in modeling. In this model, the hidden
states of the sentence context RNNs are shared between the tagger and the normalizer.
At training time, the tagging loss and the normalization loss sum up to become the
total loss to minimize. At decoding time, we stack the two models. In the first stage, the
tagger predicts segmentation and class labels for trivial tokens. In the second stage,
the sequence-to-sequence normalization model predicts the normalized output for the
other input tokens.

The two-stage approach has two potential benefits. It can be more computationally
efficient because the tagging RNN has a much smaller output vocabulary than the
normalization decoder RNN and does not require an attention mechanism. With multi-
task training of a shared input encoder, the speed-up is more significant. The model

310

Zhang et al. Neural Models of Text Normalization

John lives at 123 King Ave next ...

1 2 3

one twenty three </s>

<self> <self> <self> B-I <self> B-I <self>

Figure 6
Multi-task encoder RNNs GRU→ and GRU← for tagging and contextual text normalization.

has the potential to be more accurate in classifying trivial cases because classification
crucially depends on the surrounding context.

The multi-task network is visualized in Figure 6. For the sequence tagging model,
the transition actions are the sequence of tag labels. To differentiate trivial cases from
difficult cases, we use a three-label tag set: <self>, sil, and I; the latter represents a
difficult case. To distinguish the beginning position of a segment from non-beginning
positions, we use the labels B and M. In order to learn the token boundaries and classes
jointly, we simply conjoin these two tag sets; for instance, B-I refers to the start of a
difficult case. The lower portion of Figure 6 shows the RNN architecture for the tagger.
We reuse the backward RNN encoder (GRU←) to encode the right-to-left context for
each word position. In addition to the recurrent link to its previous time step, each
hidden state of GRUtag also attends to the encoder state at the same word position from
the GRU← layer.

5.5 Incorporating Reconstruction Loss

We observe that unrecoverable errors usually involve linguistically coherent output, but
simply fail to correspond to the input. In the terminology used in machine translation,

311

Computational Linguistics Volume 45, Number 2

one might say that they favor fluency over adequacy. The same pattern has been
identified in neural machine translation (Arthur, Neubig, and Nakamura 2016), which
motivates a branch of research that can be summarized as enforcing the attention-based
decoder to pay more “attention” to the input. Tu et al. (2016) and Mi et al. (2016)
argue that the root problem lies in the attention mechanism itself. Unlike traditional
phrase-based machine translation, there is no guarantee that the entire input can be
“covered” at the end of decoding, and thus they strengthen the attention mechanism
to approximate a notion of input coverage. Tu et al. (2017) suggest that the fix can
also be made in the decoder RNN. The key insight here is that the hidden states
in the decoder RNN should keep memory of the correspondence with the input. In
addition to the standard translation loss, there should also be a reconstruction loss,
which is the cost of translating back to the input from the decoder hidden states. The
new training objective is minimizing a (weighted) combination of translation loss and
reconstruction loss. This is visualized in Figure 7. The relative weights of reconstruction

John lives at 123 King Ave. next ...

1 2 3

1 2 3 </s>

one twenty three </s>

Figure 7
Model with translation loss and reconstruction loss.

312

Zhang et al. Neural Models of Text Normalization

loss vs. translation loss represent the relative importance of adequacy and fluency. The
reconstruction component of this model can also be used in two ways. First, it can act
as a regularizer on the translation model parameters; while it slows down training it
does not affect decoding speed. Second, the jointly trained reconstruction model can be
used to rerank the translation model outputs by adding the reconstruction loss term to
hypotheses in the beam. We report results for the first setting in Section 7.

One caveat is in order, however; our translation problem is not fully symmetric.
For words that should be translated to <self> and sil, reconstruction is infeasible. For
such cases, the decoder state sequence is of length 1, and it is unrealistic to expect that
a single decoder state is capable of reconstructing the entire input sequence. Hence,
in implementation, we skip all examples that are <self> and sil and only apply
reconstruction loss on the remaining examples. This is mathematically equivalent to
setting the reconstruction loss to zero for all trivial examples.

In this section we have presented a suite of neural models for text normalization.
Before we turn to the experiments and results with these models, we describe how weak
covering grammars can be used to mitigate against some of the unrecoverable errors to
which the neural models are prone.

6. Inferring Language-Particular Covering Grammars from Data

One effective strategy for mitigating against some of the unrecoverable errors produced
by pure neural models is to constrain the output for difficult cases with covering
grammars, which are grammars that are intended to cover the set of verbalizations that
are reasonable for a given input. In principle such grammars can be implemented as
any kind of constraint on the output, but we focus on finite-state models.

The reasons for the occurrence of unrecoverable errors are not fully understood but
plausible culprits are lack of sufficient training data for given expressions, and contexts
that might favor a given output enough to make the system disregard the input.11 For
example, the model may have learned to verbalize 3 kg as three kilograms, but it may
not generalize what it has learned to cases that have occurred less often in the training
data, such as 3mA (three milliamperes) or 329,132 kg (three hundred twenty nine thousand
one hundred thirty two kilograms). Large numbers are particularly challenging because it
is unlikely the RNN will have seen enough examples of numbers in the training data
to fully grasp the number name system of the language. In general, there may not have
been enough instances of any given semiotic class (measure, money, cardinal number,
date, time . . .) for the system to learn a complete model of that class. Also problematic
are cases where a known expression is written in a way that the system has not seen
many examples of. If kilograms is usually written kg in the training data, then the model
may simply not know what to do when it sees 3.5 kilograms in new data.

In other cases, the context may introduce a bias. Consider a date like April 12, 908,
where the neural system might verbalize this as April twelfth sil nineteen o eight, even
though it has no problem correctly verbalizing three digit numbers in other contexts. In
data sources such as that in Wikipedia perhaps as many as 99% of the examples of the
form month-day-year have a four-digit year, reflecting a bias toward events occurring
after AD 1000. Thus it is not surprising that the neural system would have a bias to

11 In addition, inconsistencies in training (2010 as a year could be either twenty ten or two thousand ten) may
also confuse the model.

313

Computational Linguistics Volume 45, Number 2

interpret something as a four-digit date in such contexts, even if the input is a three-
digit date.

The role of covering grammars is to limit the choices that the neural system has to
choose from to only those reasonable given the input.

The grammars used in a largely hand-crafted text normalization system tend to be
quite complex because they need to produce the contextually appropriate rendition of
a particular token. In contrast, covering grammars—henceforth CGs—are lightweight
grammars, which enumerate the reasonable possible verbalizations for an input, rather
than trying to specify the correct version for a specific instance. It is sufficient if the CG
tells us that 3mA could be three milliampere or three milliamperes, and restricts us from
reading it as, for example, three million liters.

Clearly it would be possible to construct CGs completely by hand using a gram-
mar development toolkit as was done for the more detailed Kestrel grammars, which
were developed using the Thrax grammar compiler (Roark et al. 2012). However, it
would obviously be desirable if we could minimize the handwork needed to provide a
minimal amount of language-specific information (how one reads measure expressions
or months of the year, for example), a small number of hand-developed rules, and
otherwise rely on training data to induce the final CG. In this section we explore
this approach, and we build off our prior work on inducing number name grammars
reported by Gorman and Sproat (2016), generalizing the concept to semiotic classes in
general.

6.1 Inducing Number Name Covering Grammars

Gorman and Sproat (2016) reported on a system that can induce a number-name
grammar expressed as an FST from a minimal set of training pairs consisting of digit
sequences and their verbalizations. The method requires knowing the meanings of all
basic number words—1 is one, 20 is twenty, 100 is hundred, and so forth; and a list of
about 300 examples of complex number names and their digit representation built out of
these basic number words. In languages that inflect numbers, like Russian, all inflected
forms of all number words should be given, so that the entry for 100, for example, would
list all the forms in which the word meaning 100 might appear.

When composing complex number names, languages use a limited set of bases
(base 10 is overwhelmingly the most common across the world’s languages, with
base 20 being a distant second place), and a limited set of arithmetic operations that
can be applied to those bases. Summation and multiplication are overwhelmingly the
most common operations (with subtraction being a much rarer option), and indeed
one typically constructs a complex number name via sums of products of the bases; see
Hurford (1975) for extensive discussion of the operations used by various languages
in the construction of number names. Thus the English number name three thousand two
hundred fifty four is interpreted as the sum 3× 1,000 + 2× 100 + 50 + 4. Similarly French
quatre-vingt-dix-sept (97) is 4× 20 + 10 + 7.

If we take the French case and consider the digit representation 97, and assuming
we allow bases 10 and 20, and potential base words for 80 and 90, then some reasonable
ways to factor this are:

90 + 7
80 + 10 + 7
4× 20 + 10 + 7
. . .

314

Zhang et al. Neural Models of Text Normalization

To compute such factors, assume that we have a (universal) arithmetic FST A that
transduces from a digit string to a lattice of possible arithmetic expressions.

Now consider the verbalization quatre-vingt-dix-sept (4 20 10 7). If one knew nothing
about French except the meanings of these individual words, there would theoretically
be a number of ways that the terms could be combined arithmetically, including:

4 + 20 + 10× 7
4 + 20 + 10 + 7
4× 20 + 10 + 7
. . .

Similarly, assume that we have a language-particular lexical map L that maps a se-
quence of number words in the language to a lattice of possible arithmetic combinations.

For any training pair (i, o) (e.g., quatre-vingt-dix-sept→ 97), we seek a set of paths P
defined as follows

P = πoutput[i◦L] ∩ πinput[A −1◦o] (8)

where π is the projection operation over regular relations. In practice P will usually
contain just one path for a given training pair, though this requires some care in
choosing the training pair set; see Gorman and Sproat (2016) for further details.

Given a set of training pairs, we obtain a set of paths, from which a grammar G can
be extracted. A number name reader C can then be defined as:

C = L ◦G ◦A −1 (9)

Again, see Gorman and Sproat (2016) for further details on the method sketched above.
Note that in this discussion we have been implicitly assuming that we are talking

about cardinal (counting) numbers, but this method works equally well for ordinals (first,
sixth, twenty third . . .). Other ways of reading numbers such as digit-by-digit readings
can be handled by incorporating the learned number-name transducer C into a hand-
built rule using Thrax or similar grammar development tools.

6.2 Extending CG Induction to Other Semiotic Classes

To see how this approach might be extended to more general semiotic classes, consider
the reading of dates, as in the following examples, which give plausible written forms
and their verbalization:

Jan 4, 1999 → January the fourth nineteen ninety nine
03/15/2000 → March the fifteenth two thousand
15/03/2000 → March the fifteenth two thousand
04/07/1976 → the fourth of July nineteen seventy six

The problem is to produce a CG that can map from representations like those on the left,
to the verbalizations on the right.

We follow Ebden and Sproat (2014) in breaking this problem down into two stages,
namely, a tokenization and markup phase where the written date is mapped to a
canonical markup representation, and the second where the markup is verbalized. The

315

Computational Linguistics Volume 45, Number 2

markup system is similar to the simpler format used in the open-source version of
Kestrel, Sparrowhawk.12 For the example dates, the following representations are used:

Jan 4, 1999 → date|month:1|day:4|year:1999|

03/15/2000 → date|month:3|day:15|year:2000|

15/03/2000 → date|day:15|month:3|year:2000|

04/07/1976 → date|day:4|month:7|year:1976|

For the purely numerical formats of dates, these mappings are largely universal and
require no language-particular grammars. For cases like the first example Jan 4, 1999,
one obviously needs language-particular information on how the months, and in some
languages the months and years, may be written, but even here there are only three
orderings:

month day year

day month year

year month day

that are at all common across languages. One may therefore accomplish this first
mapping using a few language particular rules added to mostly language-independent
ones, which means that one can eschew trying to learn this phase in favor of developing
a grammar for this phase by hand, and modifying it as needed for other languages. (In
the case of dates, we make use of the tokenizer grammars for dates that are already part
of Kestrel.)

The problem then remains to learn the mappings from the markup to the verbaliza-
tion. Or in other words:

date|month:1|day:4|year:1999| → January the fourth nineteen ninety nine
date|month:3|day:15|year:2000| → March the fifteenth two thousand
date|day:15|month:3|year:2000| → March the fifteenth two thousand
date|day:4|month:7|year:1976| → the fourth of July nineteen seventy six

One further point needs to be made about the third example because it involves a
reordering of the month and day in the verbalization. Reordering of arbitrary elements
is not possible with regular relations but one can do limited reordering using pushdown
transducers (PDT) (Allauzen and Riley 2012). PDTs are FSTs that mimic the opera-
tions of pushdown automata using a set of paired parentheses, where the parentheses
simulate a stack. For example, the non-regular language anbn can be recognized by a
PDT that allows any number of a, with a parenthesis “(” before each a, followed by
any number of b, with a parenthesis “)” after each b, requiring that the parentheses
balance. For our problem, we can use the parentheses in the pushdown operations
to remember that if we insert month:3 before a day, we should delete the original
month:3 after the day. Thus in the method described below, we actually present both
orderings of month and day components, leaving the induction method described
below to determine which is the best match to the given verbalization.13 Similar

12 http://github.com/google/sparrowhawk/tree/master/documentation.
13 Reading ISO format dates like 2000/05/06 as May the sixth two thousand is not supported by the system

described here. These would involve either moving the year after the month/day sequence; or moving
the month/day combination before the year. In the first case the PDT would have to remember which
year was deleted in order to insert it at the end, with thousands of distinct years to remember; or else
remember which of 365 month/day combinations appeared after the year in order to insert it before.

316

http://github.com/google/sparrowhawk/tree/master/documentation

Zhang et al. Neural Models of Text Normalization

reorderings are needed in currency and time expressions, and in some languages,
measure expressions, and fractions.

Consider the first mapping above, date|month:1|day:4|year:1999| as January the
fourth nineteen ninety nine. We assume we have language-particular class grammars as
follows:

• C a cardinal number CG as described above.

• O a similarly-derived ordinal number CG.

• M month names (including inflected forms) for the language, mapping
from numerical designations such as month:1.

• S deletion of markup such as date or |.

• Any needed language-particular readings not covered above. In English,
years have a reading that differs from standard cardinal numbers, and so it
is worthwhile to write a grammar Y that covers years. An example of
such a grammar is given in Appendix A.1.

These transducers are assumed to be unweighted. We also assume an edit trans-
ducer E that can replace any string with any other string by inserting or deleting
characters at a cost—in the tropical semiring, a large positive number for each insertion
or deletion. Each of C , O , M , S , E , etc., is associated with a tagger T that introduces
class-specific tags at the beginning and end of each matched span. These tag insertions
have a small positive cost in order to favor longer matching spans in cases where more
than one parsing is possible for an input string, when the shortest path is computed (see
below). Thus T[O] would transduce an input 4 to <ord>fourth</ord>; these tags will be
used subsequently to induce general class rules from examples involving particular class
instances. We can then define a mapper from the markup to the tagged representation
as:

Map = (T [C] ∪ T [O] ∪ T [M] ∪ T [S] ∪ T [E])∗

In other words, we define the Map as the concatenative closure of the taggers for each of
the known types. To map from the output of Map to the verbalization (January the fourth
nineteen ninety nine) we assume a transducer D that deletes tags.

Thus the input i is composed with Map, which is then composed with D , which is
composed with the output o. Analogously to the induction of number name grammars
described above, since we wish to extract the best alignment leading to the best rule
from the instance in question, we compute the shortest path P that lies in the intersection
of the output of Map and the input of D , but here we need to preserve the input side
as well, since what we need in this case is to learn a transducer that maps between the
markup and sequences of tagged spans, and so we do not want to project to the output
of i◦Map. Thus:

P = ShortestPath[[i◦Map]◦πinput[D◦o]].

Because of the large number of entities that need to be remembered by the PDT, the approach is not
practical in this case.

317

Computational Linguistics Volume 45, Number 2

In the example at hand, date|month:1|day:4|year:1999|, and verbalization Jan-
uary the fourth nineteen ninety nine. P would be as in Figure 8.

In the next stage we replace spans that are tagged with tags other than markup or
edit with class labels on both the input and output side, and remove all tags. In the
example at hand the output is as in Figure 9.

Given a training corpus of dates and other semiotic classes (which can be the
same training corpus as is used to train the neural models), we compute the union
of all class-replaced path patterns P as in Figure 9. In practice, it is useful to remove
patterns that occur less than a minimum number of times in order to remove spuri-
ous inductions or patterns that do not generalize well: In our experiments we used

ε <markup>

date| ε
ε </markup>

ε <month>

month:1 January

ε </month>

ε <markup>

|day: ε
ε </markup>

ε <edit>

ε the

ε </edit>

ε <ord>

4 fourth

ε </ord>

| ε
ε <year>

1999 nineteen ninety nine

ε </year>

ε <markup>

| ε
ε </markup>

Figure 8
Shortest markup path for the input date|month:1|day:4|year:1999| and the verbalization
January the fourth nineteen ninety nine.

date| ε
MONTH MONTH

|day: ε
ε the

ORDINAL ORDINAL

| ε
YEAR YEAR

| ε

Figure 9
Shortest markup path for the input date|month:1|day:4|year:1999| and the verbalization
January the fourth nineteen ninety nine, after replacement with class labels.

318

Zhang et al. Neural Models of Text Normalization

a minimum count of 50. In the final step, we perform recursive transition network
replacement on the resulting union to replace the class labels with the correspond-
ingly named FSTs as defined in the language-specific grammar; thus MONTH in Figure 9
would be replaced by the M WFST. This has the result that if we have seen one pair
date|month:1|day:4|year:1999|→January the fourth nineteen ninety nine, the resulting
grammar will be able to verbalize, for example, date|month:3|day:5|year:2012| as
March the fifth twenty twelve.

6.3 Using the Covering Grammar with Neural Models

The application of covering grammar constraints to constraining the verbalizations
emitted by the neural models requires some care. Here we briefly describe the issues
and our approach to solving them.

When we apply the covering grammar to an input token, if the covering grammar
produces a lattice of possible verbalizations for that token, then we use that lattice to
guide the neural model. This is similar in principle to recent work by Ng, Gorman,
and Sproat (2017), in which covering grammars are used to generate hypotheses for a
(non-neural) reranking model. But if the covering grammar fails—for instance, because
the token is out of scope for the covering grammar (as would be the case for a typical
word that would be mapped to <self>)—then the neural model is unconstrained. We
implement the application of a covering grammar constraint as on-the-fly intersection
(Figure 10) between two deterministic automata, where the lattice from the covering
grammar is projected onto the output, and determinized to become a deterministic finite
state automaton; and the RNN decoder can be considered as a weighted deterministic
automaton with an infinite state space.

Suppose first of all that one has trained a covering grammar and then wants to
apply the constraints of the grammar (e.g., that 3 kg can be either three kilogram or
three kilograms, but nothing else) at decoding time. The obvious method of applying
the constraint and then computing the softmax as used in Sproat and Jaitly (2016, 2017)
is potentially problematic because it can distort the rankings of analysis paths produced
by the system. Suppose for an input 123 we have two outputs (among many), namely,

“123”

Decoder RNN...
one
two
ten
nine

twenty
two
nine
ninety
zero
</s>

two
three
grams
zero
</s>

eight
pounds
</s>

one

two

twenty

three

Figure 10
An illustration of on-the-fly intersection with a covering grammar; the lattice produced from the
input 123 projects to an acceptor that only accepts one two three and one twenty three, and
intersecting this with the RNN outputs at each position (where higher ranking output is
indicated by a higher position in the cell) will result in the output one twenty three.

319

Computational Linguistics Volume 45, Number 2

one two three </s> and one twenty three </s>, where </s> is the stop symbol,
and suppose that:

P(one two three </s>) = P(one two three)× P(</s> | one two three) (10)

= 0.4× 0.5 (11)

P(one twenty three </s>) = P(one twenty three)× P(</s> | one twenty three)
(12)

= 0.4× 0.9 (13)

and another, impossible, prediction:

P(one two three four </s>) = P(one two three four)× P(</s> | one two three four)
(14)

= 0.3× 0.9 (15)

Given the above, the probability of one two three being string final is less than the
comparable probability of one twenty three; so that

P(one two three </s>) < P(one twenty three </s>) (16)

Now suppose we have a covering grammar that in this instance only allows
one two three and one twenty three, thus filtering out other options like one twenty

two. Then letting Q represent the probabilities for the combined system,

Q(one two three) = P(one two three)
P(one two three) + P(one twenty three) (17)

= 0.5 (18)

= Q(one twenty three) (19)

and because both must now be string final (there is no other possibility but </s> after
either sequence),

Q(</s> | one two three) = Q(</s> | one twenty three) = 1 (20)

so now

Q(one two three </s>) = Q(one twenty three </s>) (21)

Instead, if we wish to use a covering grammar with an already trained neural model we
must first apply softmax and then constrain.

Alternatively one can constrain during training, which will guarantee that the ranks
between paths will be preserved at decoding time, in which case one can at decoding
time safely constrain and then apply softmax. The main drawback of this approach is
that if the lattice produced by the covering grammar for the given training input does
not contain the true output as defined in the training, then that training instance is lost.
In our experiments discussed later we report results both on training and decoding using
CGs, as well as decoding only, first applying softmax and then constraining.

320

Zhang et al. Neural Models of Text Normalization

7. Experiments

7.1 Description of the Data

Our data consist of all English and Russian Wikipedia text that can be properly decoded
as UTF-8, which was then divided into sentences, and run through the Google TTS
system’s Kestrel text normalization component to produce verbalizations. The original
data were mined in Spring 2016, and has been released on GitHub,14 divided into 100
files per language, in the format described in Table 2.

We chose Wikipedia for three reasons. First of all, Wikipedia is a reasonable appli-
cation of TTS in that Wikipedia text is already found as input to TTS in, for example,
the question-answering component of the Google Assistant.15 Second, Wikipedia is a
reasonable instance of what might be called “general” English or Russian text. Finally,
there are very few legal limitations on the use of Wikipedia text.

To the extent that we look to provide accuracy commensurate with this heavily en-
gineered hand-built normalization system, this is an appropriate data set for evaluating
neural text normalization. The accuracy of the Kestrel annotations is high: A manual
analysis of about 1,000 examples from the test data suggests an overall error rate of
approximately 0.1% for English and 2.1% for Russian. The largest category of errors for
Russian involves years being read as cardinal numbers rather than the expected ordinal
form.

Although the test data were of course taken from a different portion of the
Wikipedia text than the training and development data, still a huge percentage of the
individual tokens of the test data—98.9% in the case of Russian and 99.5% in the case
of English—were found in the training set. There is thus a large potential for the system
simply memorizing certain examples. Nonetheless, as Sproat and Jaitly (2016) show for
an earlier neural model, the system is not simply memorizing.

Our full data set consists of 1.1 billion words of English, and 290 million words of
Russian text. Because ultimately the goal is to produce systems that can be trained on
hand annotated data, one must therefore consider the amount of data that it is practical
to hand annotate. Clearly, nearly a billion words or even 290 million words is not very
practical. Therefore, in our experiments we train using the first file for English (about 10
million tokens) and the first four files for Russian (about 11 million tokens), and evaluate
on the first 92,000 tokens of the last file for English, and the first 93,000 tokens of the last
file for Russian. Files 90–94 are used for development.16

In late 2017 we hosted a text normalization competition on Kaggle with both our
English and Russian data sets. 17 Sproat and Gorman (2018) provide a short review of the
competition results. As part of that competition we developed new test sets consisting of
70,000 Wikipedia sentences (about 1 million tokens) in both languages. These data were
mined in Fall 2017, and were filtered to exclude any sentences present in the original
data set released on GitHub. This test data set is challenging, in particular for English,
because there were some changes to the way Kestrel tokenizes certain semiotic classes,
in particular measure expressions, between when we created the first data set and when

14 https://github.com/rwsproat/text-normalization-data.
15 https://en.wikipedia.org/wiki/Google_Assistant.
16 Note that this corresponds to the train-dev-test split that can be found in the script available with the

GitHub data (https://github.com/rwsproat/text-normalization-data/blob/master/split.sh).
17 See https://www.kaggle.com/c/text-normalization-challenge-english-language and

https://www.kaggle.com/c/text-normalization-challenge-russian-language.

321

https://github.com/rwsproat/text-normalization-data
https://en.wikipedia.org/wiki/Google_Assistant
https://github.com/rwsproat/text-normalization-data/blob/master/split.sh
https://www.kaggle.com/c/text-normalization-challenge-english-language
https://www.kaggle.com/c/text-normalization-challenge-russian-language

Computational Linguistics Volume 45, Number 2

we created this data set. In the original data set measures with fully spelled measure
words like 5 kilograms were tokenized with the measure term separate, whereas in the
later set such data were tokenized as a single measure token. Not surprisingly, neural
models have some problems with this novel tokenization since in the training data they
have not seen many instances of fully spelled measures in the same token as a preceding
number, and the model they have learned does not generalize well. One could argue
that the test set is therefore unfair, but on the other hand, it is not unreasonable to expect
that new data, say from a slightly new domain, will show differences of this kind. In
any case, as we will see, covering grammars are particularly effective at overcoming
this limitation. In the following description, we also report results on the Kaggle test
data (using the same training data as was used to evaluate on the main test set).

Finally, we have collected a set of manually annotated English Wikipedia sentences
for internal use. We describe these data and report results on them in Section 7.6.

7.2 Context Representation

We first compare different representations of linguistic context. Recall that the sliding
window model, described in Section 5.2, uses a character context within a fixed three-
word window of the token to be normalized. The architecture described in Section 5.3
can be instantiated with different choices of basic input units for sentence context.

Table 3 compares the sliding window models with three types of input units:
characters, word pieces, and word features (character 3-grams), on the English and
Russian test sets. Here and below, All denotes accuracies/errors for all tokens, Semiotic
class denotes the interesting classes (i.e., not sil, <self>, or punctuation), and Sentence
is the per-sentence accuracy/error. We observe first that two-level contextual models
are more efficient than the sliding-window baseline model due to sharing of context.
Secondly, we find that inference is more efficient with larger contextual units (see speed
in the last column), with word feature context having the best overall accuracy–speed
tradeoff.

Table 3
Results for models of different context representations: Char(acter), W(ord)P(iece),
W(ord)F(eature). For the contextual models we specify the tokenization level of the sentential
context. *: difference is statistically significant (p < .05 on the McNemar test) in comparison with
the sliding window baseline. For speed, e.g., “1.4x” means 1.4 times faster.

Accuracy(Error) Speed

All Semiotic class Sentence

English (Standard):
Sliding window 99.79% (0.21%) 98.20% (1.80%) 97.99% (2.01%) 1.0x
Context (Char) 99.79% (0.21%) 98.20% (1.80%) 97.87% (2.13%) 1.3x
Context (WP) 99.79% (0.21%) 98.35% (1.65%) 97.76% (2.24%) 1.4x
Context (WF) 99.84% (0.16%)* 98.30% (1.70%) 98.20% (1.80%) 1.4x

Russian (Standard):
Sliding window 99.64% (0.36%) 97.31% (2.69%) 95.61% (4.39%) 1.0x
Context (Char) 99.65% (0.35%) 97.26% (2.74%) 95.70% (4.30%) 1.8x
Context (WP) 99.61% (0.39%) 96.94% (3.06%)* 95.26% (4.74%) 1.8x
Context (WF) 99.62% (0.38%) 97.01% (2.99%)* 95.46% (4.54%) 2.0x

322

Zhang et al. Neural Models of Text Normalization

Table 4
Results for models with different context utilization strategies. *: statistically significant (p < .05
on the McNemar test).

Accuracy (Error) Speed
All Semiotic class Sentence

English (Standard):
Word feat. init 99.84% (0.16%) 98.30% (1.70%) 98.20% (1.80%) 1.4x

concat 99.82% (0.18%) 98.42% (1.58%) 97.96% (2.04%) 1.2x

Russian (Standard):
Word feat. init 99.62% (0.38%) 97.01% (2.99%) 95.46% (4.54%) 2.0x

concat 99.66% (0.34%)* 97.32% (2.68%)* 95.80% (4.20%) 1.7x

The results of the two context utilization strategies discussed in Section 5.3.2 are
shown in Table 4. The ‘init‘ strategy is clearly more efficient. It is also more accurate on
the sentence level for English. For Russian, the ‘concat‘ strategy is more accurate in all
metrics, indicating the importance of context.

7.3 Stacking Tagging and Normalization

We then consider the effect of stacking the tagging model and the normalization model
and training them with a multi-task loss as described in Section 5.4.

Table 5 shows the results of accuracy and speed on the English and the Russian test
sets. For both languages, stacked models for both languages are clearly more efficient
than their pure sequence-to-sequence counterparts: four times faster in English, and
faster yet in Russian. Multi-task training with tagging loss results in an even more accu-
rate model for Russian, presumably due to a regularization effect. Only 0.74% of English
sentences and 0.37% of Russian sentences contain segmentation errors, indicating that
the underlying RNN tagger is highly accurate.

Table 5
Results with stacked tagging and normalization models. “+ tag. loss”: with multi-task loss of
tokenization and semiotic class tagging. “+ tok/tag”: with a stacked tokenization and semiotic
class tagging model.

F1 Acc (Err) Speed
All Segmentation Sentence

English (Standard):
Word-feat. 99.84% (0.16%) 100.00% (0.00%) 98.20% (1.80%) 1.4x
+ tag. loss 99.83% (0.17%) 100.00% (0.00%) 98.12% (1.88%) 1.5x
+ tok./tag. 99.75% (0.25%) 99.26% (0.74%) 97.75% (2.25%) 4.0x

Russian (Standard):
Word-feat. 99.62% (0.38%) 100.00% (0.00%) 95.46% (4.54%) 2.0x
+ tag. loss 99.65% (0.35%) 100.00% (0.00%) 95.62% (4.38%) 2.2x
+ tok./tag. 99.59% (0.41%) 99.63% (0.37%) 95.46% (4.54%) 5.7x

323

Computational Linguistics Volume 45, Number 2

Table 6
Results with and without reconstruction loss. “+ reconstr. loss”: with reconstruction loss.

Accuracy (Error)

All Semiotic class Sentence

English (Kaggle):
Best model 99.17% (0.83%) 90.08% (9.92%) 89.58% (10.42%)
+ reconstr. loss 99.15% (0.85%) 90.10% (9.90%) 89.43% (10.57%)

Russian (Kaggle):
Best model 99.01% (0.99%) 94.09% (5.91%) 89.02% (10.98%)
+ reconstr. loss 99.01% (0.99%) 94.10% (5.90%) 89.05% (10.95%)

Even though the stacked models are performing a more challenging task—text
normalization without assuming existence of pre-segmented semiotic class tokens—the
degradation in accuracy is small for English and smaller for Russian.

7.4 Reconstruction Loss

Table 6 shows the effect of adding reconstruction loss, as described in Section 5.5, to the
best contextual models for English and Russian. We report results on the much-larger
Kaggle test sets to minimize the effect of noise. Unfortunately, there is little effect and
the differences are statistically insignificant (p > .05), according to the McNemar test
(Gillick and Cox 1989).

7.5 Covering Grammars

In this section, we show results of adding covering grammars to the training or decod-
ing of the RNN models. We report results for both English and Russian.

Before turning to the main result, it is worth considering the coverage of the cover-
ing grammars on held-out data, defined as:

C =

∑
i∈x Ii

|x| (22)

where x is the set of test examples where the grammar G produces a non-null output,
and Ii = 1 for a given input i iff the true output is found in πoutput[i ◦ G].

We measured this for the covering grammars for English and Russian on the second
English file (roughly 10 million tokens) and files 5–8 of Russian (also roughly 10 million
tokens). The English grammar matched about 500 thousand tokens, with about 99%
coverage; the Russian grammar matched about 400 thousand tokens, with about 99.5%
coverage.

Table 7 demonstrates that the overall best choice is training the RNN without
covering grammars and decoding with covering grammars. We speculate that covering
grammars used to constrain training may be causing overfitting. Table 8 breaks the
results down by semiotic class, with significant improvements (p < .05 on the McNemar
test) indicated. We observe improvements for four interesting semiotic classes: DATE,

324

Zhang et al. Neural Models of Text Normalization

Table 7
Results using the best neural model with and without induced covering grammars. “+ CG
decoding”: covering grammar used during decoding; “+ CG training”: covering grammar used
during training and decoding. *: difference is statistically significant (p < .05 on the McNemar
test) in comparison with the baseline model without CG.

Accuracy (Error)

All Semiotic class Sentence

English (Standard):
Best model 99.84% (0.16%) 98.30% (1.70%) 98.20% (1.80%)
+ CG decoding 99.84% (0.16%) 98.36% (1.64%) 98.24% (1.76%)
+ CG training 99.84% (0.16%) 98.56% (1.44%)* 98.17% (1.83%)

English (Kaggle):
Best model 99.17% (0.83%) 90.08% (9.92%) 89.58% (10.42%)
+ CG decoding 99.22% (0.78%)* 90.69% (9.31%)* 90.09% (9.91%)
+ CG training 99.20% (0.80%)* 90.71% (9.29%)* 89.87% (10.13%)

Russian (Standard):
Best model 99.65% (0.35%) 97.17% (2.83%) 95.62% (4.38%)
+ CG decoding 99.64% (0.36%) 97.19% (2.81%) 95.58% (4.42%)
+ CG training 99.62% (0.38%) 97.01% (2.99%) 95.26% (4.74%)

Russian (Kaggle):
Best model 99.01% (0.99%) 94.09% (5.91%) 89.02% (10.98%)
+ CG decoding 99.01% (0.99%)* 94.12% (5.88%)* 89.03% (10.97%)
+ CG training 98.94% (1.06%)* 94.17% (5.83%)* 88.13% (11.87%)

CARDINAL, MEASURE, and MONEY. But there are also two degradations, in DECI-
MAL and TELEPHONE, for Russian.

See Section 7.8 for a deeper dive into the benefits of using covering grammars.

7.6 Results on Hand-Annotated Data

Finally, we report briefly on some experiments we have conducted on human-corrected
data. Although we currently have no plans to open-source this data set, we feel it is
nonetheless useful to give the reader a sense of how the system performs on a smaller,
but cleaner and more accurate set of data.

English data from the main Kestrel-annotated data reported earlier was prepared
that included longer sentences (to minimize the number of sentence fragments), where
each sentence included at least one non-trivial text normalization token. These data
were then sent to outside vendors, who were tasked with correcting the verbalized
output where needed. Because the correction tool presented data one token per line,
we also presented the original Wikipedia sentence to raters, in order to make it easier
to determine cases where the tokenization might be unclear. Every file was sent to three
independent annotators. Note that the external annotators are not expected to have
linguistic training, merely be competent speakers of the language.

Tokens where all three annotators agreed were assumed to be correct, and if two out
of three annotators agreed, we picked the majority rating. For tokens where none of the
annotators agreed, the entire sentence containing those tokens was sent to internal anno-
tators for quality control (QC). Internal annotators are all trained linguists. Of the tokens

325

Computational Linguistics Volume 45, Number 2

Table 8
Semiotic class accuracies (errors) with and without covering grammars. *: statistically significant.

English Russian
Standard Kaggle Standard Kaggle

PLAIN:
Best model 99.9% (0.10%) 99.3% (0.70%) 99.8% (0.20%) 99.1% (0.90%)
+ CG decoding 99.9% (0.10%) 99.3% (0.70%) 99.8% (0.20%) 99.1% (0.90%)

PUNCT:
Best model 99.9% (0.10%) 99.9% (0.10%) 99.9% (0.10%) 97.5% (2.50%)
+ CG decoding 99.9% (0.10%) 99.9% (0.10%) 99.9% (0.10%) 97.6% (2.40%)

DATE:
Best model 99.5% (0.50%) 98.9% (1.10%) 98.2% (1.80%) 98.3% (1.70%)
+ CG decoding 99.5% (0.50%) 99.0% (1.00%)* 98.2% (1.80%) 98.3% (1.70%)*

LETTERS:
Best model 97.5% (2.50%) 95.9% (4.10%) 98.9% (1.10%) 96.2% (3.80%)
+ CG decoding 97.5% (2.50%) 95.9% (4.10%) 98.9% (1.10%) 96.3% (3.70%)

CARDINAL:
Best model 99.4% (0.60%) 98.8% (1.20%) 97.2% (2.80%) 89.9% (10.10%)
+ CG decoding 99.5% (0.50%) 99.1% (0.90%)* 97.1% (2.90%) 90.1% (9.90%)*

VERBATIM:
Best model 99.9% (0.10%) 99.1% (0.90%) 100.0% (0.00%) 98.6% (1.40%)
+ CG decoding 99.9% (0.10%) 99.1% (0.90%) 100.0% (0.00%) 98.6% (1.40%)

MEASURE:
Best model 97.2% (2.80%) 73.3% (26.70%) 92.2% (7.80%) 89.9% (10.10%)
+ CG decoding 97.9% (2.10%) 88.5% (11.50%)* 92.0% (8.00%) 90.1% (9.90%)*

ORDINAL:
Best model 98.1% (1.90%) 98.1% (1.90%) 99.3% (0.70%) 96.9% (3.10%)
+ CG decoding 99.0% (1.00%) 98.3% (1.70%) 99.3% (0.70%) 97.0% (3.00%)

DECIMAL:
Best model 100.0% (0.00%) 98.9% (1.10%) 91.7% (8.30%) 77.6% (22.40%)*
+ CG decoding 100.0% (0.00%) 98.9% (1.10%) 91.7% (8.30%) 76.5% (23.50%)

ELECTRONIC:
Best model 63.3% (36.70%) 3.4% (96.60%) 64.6% (35.40%) 32.2% (67.80%)
+ CG decoding 63.3% (36.70%) 3.4% (96.60%) 64.6% (35.40%) 32.2% (67.80%)

DIGIT:
Best model 86.4% (13.60%) 83.1% (16.90%) 93.8% (6.20%) 99.6% (0.40%)
+ CG decoding 86.4% (13.60%) 83.3% (16.70%) 93.8% (6.20%) 99.6% (0.40%)

TELEPHONE:
Best model 94.6% (5.40%) 88.5% (11.50%) 95.5% (4.50%) 95.5% (4.50%)*
+ CG decoding 94.6% (5.40%) 88.5% (11.50%) 95.5% (4.50%) 93.4% (6.60%)

MONEY:
Best model 97.3% (2.70%) 89.8% (10.20%) 89.5% (10.50%) 77.8% (22.20%)
+ CG decoding 97.3% (2.70%) 92.4% (7.60%)* 84.2% (15.80%) 79.9% (20.10%)*

FRACTION:
Best model 81.3% (18.70%) 77.1% (22.90%) 82.6% (17.40%) 78.8% (21.20%)
+ CG decoding 81.3% (18.70%) 77.1% (22.90%) 82.6% (17.40%) 78.8% (21.20%)

TIME:
Best model 75.0% (25.00%) 90.2% (9.80%) 75.0% (25.00%) 78.8% (21.20%)
+ CG decoding 75.0% (25.00%) 90.2% (9.80%) 75.0% (25.00%) 79.7% (20.30%)

that were not sent for QC, 97.2% had three-way agreement, and the remainder two-
way agreement. Of course even three-way agreement does not guarantee correctness. A
rough manual analysis of a sample of cases discussed below where the system actually
produced a correct output even though it differed from the gold standard, suggested an
approximately 0.2% error rate for the human annotators.

326

Zhang et al. Neural Models of Text Normalization

As of the time of writing, we have collected 3.1 million tokens of data, of which we
use 2.5 million as training and 540K tokens as testing.

We trained our baseline text normalization model and a covering grammar. Be-
cause the data in this case are not annotated with gold semiotic classes, we just report
overall accuracies. The baseline model achieves an error rate of 0.82% (4,410 errors—
corresponding to an accuracy of 99.18%); adding CG decoding reduces it to 0.80%
(4,330 errors or 99.20% accuracy). Eighty examples are impacted by the addition of CG
decoding, all of which involve correcting an unrecoverable error such as reading e90
million as ninety million dollars. As we also discuss in Section 7.8, the covering grammars
appear to be effective at targeting unrecoverable errors.

We then went through all the errors in the system with the CG decoding in more
detail and classified them into three categories:

• Unrecoverable, such as reading Ib in Excalibur Ib projectiles as the fourth.

• Recoverable, such as reading the interjection pssst as a letter sequence.

• Not an error, either cases where the system produced an acceptable
variant, or the human annotation was actually wrong.

In the last category, occasionally the human annotators introduced errors, but more
commonly they failed to correct errors that were made by the Kestrel system that
generated the data. For example, there were 97 cases where human annotators accepted
Kestrel’s prediction of a letter sequence reading, but the correct reading is <self>; for
instance, the acronym UNESCO was predicted to be a letter sequence but is convention-
ally read as if it were an ordinary word. The last category of non-errors comprised 2,794,
examples, which reduces the number of real errors to 1,536 or 0.28% (accuracy: 99.72%).

Finally, it is worth asking how well the neural model actually compares with
Kestrel. Because the annotators were correcting Kestrel’s output, we might in principle
take any correction as an indication of an error in Kestrel. Unfortunately, things are
not quite so simple since the annotation guidelines given to the raters in many cases
resulted in a different annotation where Kestrel’s prediction was not really an error. We
therefore randomly sampled the differences between Kestrel and the annotator output,
and derived an estimate of a true Kestrel error rate of about 3,600 errors, or 0.67%. This
is approximately three times the error rate of the neural system. Examples of the errors
corrected by the neural model include reading 3rd ed as third edition (ed is not expanded
by Kestrel), and id as a letter sequence rather than the word id in id: G000404.

Although this seems quite promising for a neural network approach to this prob-
lem, one must remember that the neural model still makes errors that are unrecoverable,
and that are not currently handled by the covering grammar. These errors can be quite
bad as, for instance, misreading the Roman numeral II as the third. In a few rare cases,
the neural network models even map an input word onto a completely unrelated output
word, for instance, reading but as Sunday. Kestrel does not make these sort of errors
under any circumstance. So whereas the error rates are lower for the neural system,
there is still work to be done to improve on the kinds of errors produced.

7.7 Comparison with Other Published Results

Since the publication of Sproat and Jaitly (2016) and Sproat and Jaitly (2017), and the
Kaggle competition based on the same data (Sproat and Gorman 2018), there have

327

Computational Linguistics Volume 45, Number 2

Table 9
Accuracies for the four models presented by Yolchuyeva, Németh, and Gyires-Tóth (2018) (first
four columns), Pramanik and Hussain (2018), and our own best model results from Table 8
without covering grammar restrictions, broken down by semiotic class. Results for best system(s)
in each category are underlined.

Y Mod. 1 Y Mod. 2 Y Mod. 3 (CBOW) Y Mod. 3 (SG) P&H Ours (−CG)

PLAIN 99.7 99.7 99.7 99.8 99.4 99.9
PUNCT 99.9 99.9 99.9 99.9 99.9 99.9
DATE 98.72 98.76 98.90 98.99 99.7 99.5
LETTERS 80.35 80.50 79.80 81.22 97.1 97.5
CARDINAL 98.63 95.74 98.76 98.89 99.4 99.4
VERBATIM 96.53 96.76 96.89 97.22 99.4 99.9
MEASURE 93.14 88.60 93.01 91.34 97.1 97.2
ORDINAL 92.46 91.76 92.46 93.99 98.0 98.1
DECIMAL 96.12 98.53 96.3 96.12 98.9 100.0
MONEY 86.75 79.79 97.9 87.97 97.3 97.3
DIGIT 66.16 61.11 66.83 68.01 79.5 86.4
TIME 55.33 54.66 51.33 60.6 75.0 75.0
FRACTION 28.47 32.63 27.7 37.5 92.3 81.3

been a few publications on alternative neural approaches to the same problem. Notable
among these are Yolchuyeva, Németh, and Gyire-Tóth 2018, who apply convolutional
networks (LeCun and Bengio 1995), and Pramanik and Hussain (2018), who use differ-
entiable neural computers (DNC) (Graves et al. 2016). It is instructive to briefly compare
our results with theirs.

Yolchuyeva, Németh, and Gyire-Tóth 2018 compare several models. Their Model 1
is a unidirectional LSTM, and Model 2 a bidirectional LSTM. Model 3 uses convolutional
layers, with two variants for embedding: continuous bag of words (CBOW) and skip-
gram (SG). They reported results for English, and the accuracies for all these models are
given in columns 2–5 of Table 9. Unfortunately, it is hard to compare our system directly
with their results because although they do seem to use the same data as was used by
Sproat and Jaitly (2017) for training (i.e., the same as used here), they actually split this
data into training, development, and test, which means that their test set is not identical
to either of the ones we report on.

Accuracies for the DNC system of Pramanik and Hussain (2018) are given in the
sixth column of Table 9, along with the results of our best system without covering
grammar constraints, in the final column. Once again, the systems are not directly
comparable, because although Pramanik and Hussain do test on our “standard” test
set, they train on the first 20 million tokens of the entire published data set rather than,
as in our case, the first 10 million.

In general, Pramanik and Hussain’s system does better than any of the systems
reported by Yolchuyeva et al., but for most categories, our own system does better than
either. Our system is tied with the DNC system for PUNCT, CARDINAL, MONEY, and
TIME. The DNC system gets the highest accuracies for DATE and FRACTION.

Table 10 compares accuracies for Russian from Pramanik and Hussain (2018) and
our own best system without the covering grammar restrictions. In this case, Pramanik
and Hussain’s training data set was the same as our own, so the results are more fairly
comparable. Once again, there is no obvious benefit of the DNC overall. The systems

328

Zhang et al. Neural Models of Text Normalization

Table 10
Accuracies for Russian from Pramanik and Hussain (2018) and our own best model results from
Table 8 without covering grammar restrictions, broken down by semiotic class. Results for best
system(s) in each category are underlined.

P&H Ours (−CG)

PLAIN 99.5 99.8
PUNCT 99.9 99.9
DATE 97.3 98.2
LETTERS 99.1 98.9
CARDINAL 94.2 97.2
VERBATIM 100.0 100.0
MEASURE 89.8 99.2
ORDINAL 94.6 99.3
DECIMAL 90.0 91.7
MONEY 89.4 89.5
DIGIT 100.0 93.8
TIME 75.0 75.0
FRACTION 82.6 82.6

achieve the same accuracies on PUNCT, VERBATIM, TIME, and FRACTION. The DNC
system performs better on DIGIT and LETTERS. Our system performs better on PLAIN,
MEASURE, CARDINAL, ORDINAL, DECIMAL, and MONEY.

On balance, then, the convolutional models of Yolchuyeva, Németh, and Gyires-
Tóth (2018) seem to underperform the state of the art, and the DNC models of
Pramanik and Hussain (2018) are not an obvious win. Considering that DNCs are a
much more complex and “deep” architecture than the systems we are proposing, one
has to question whether the benefits outweigh the costs of adopting such a system.

7.8 Detailed Analysis of Errors with and without Covering Grammars

Table 11 breaks down the numbers of errors per semiotic class where the raw neural
model and the neural model plus CG decoding produce a different result; in other
words, cases where at least one of the two systems is in error, but do not produce the
same error. Because the numbers of errors is much larger in the Kaggle set—reflecting
the larger size of the Kaggle test data, and the differences from the standard set already
described—we concentrate in this discussion mostly on this set.

7.8.1 English Kaggle Errors. The covering grammar corrected the only two ORDINAL
errors in the set (1243rd as twelve forty three and 19961st as one thousand nine hundred
ninety six thousand six hundred nineteen). For DIGIT, the three covering grammar errors
were all instances of reading a digit sequence as a cardinal number—for example, 14053
as fourteen thousand fifty three: the best neural system alone produced fourteen o five three
for this example, which is also arguably acceptable.

The four MONEY errors with the covering grammar were all instances of reading
a fully specified currency using a shorter name. For example: PKR 60 billion as sixty

329

Computational Linguistics Volume 45, Number 2

Table 11
Per-semiotic class error counts with and without covering grammars, covering only classes
where there is a difference between using and not using the covering grammar.

English Russian
Standard Kaggle Standard Kaggle

CARDINAL:
Best model 1 49 1 73
+ CG decoding 0 15 3 36

DATE:
Best model 2 24 0 33
+ CG decoding 1 4 0 3

DECIMAL:
Best model 0 0 0 1
+ CG decoding 0 0 0 7

DIGIT:
Best model 0 4 0 0
+ CG decoding 0 3 0 0

MEASURE:
Best model 2 453 2 38
+ CG decoding 1 75 3 29

MONEY:
Best model 0 18 0 9
+ CG decoding 0 4 1 4

ORDINAL:
Best model 1 2 0 4
+ CG decoding 0 0 0 2

billion rupees, rather than the gold form sixty billion Pakistani rupees. These are arguably
acceptable variations: The neural model alone produced six hundred billion euros, which
gets both the currency and the number wrong.

In the case of DATE, the four CG errors involved misreading cases like 3/1/03 as
March first three (rather than o three); the ambiguous date 28-05-16 as May twenty eighth,
sixteen (gold is the sixteenth of May, twenty eight); and the dubious date 1 May, 3272 as the
first of May three thousand two hundred seventy two (the neural net alone gets one million
May third twenty two).

CARDINAL errors from the CG involve misreading (mostly) long numbers as digit
sequences. In most of these cases the CG does in fact allow the cardinal reading, but also
offers the digit-by-digit reading, which in the cases at hand the neural model prefers.
For example, in the case of 10000, the CG allows both ten thousand and one o o o o, and
given the choice, the neural model picks the latter: left to its own devices, the neural
model produced one thousand.

Finally a large number of the CG MEASURE errors involved singularizations of
measures that were written as plurals. Thus, for example, 45 minutes was verbalized
as forty five minute. The covering grammar allows both but, again, the neural model
for some reason prefers the singular form. In this particular case the neural model
on its own produced forty five millimeters. Among the 75 errors, there was just one
unrecoverable error, where 4 kg was verbalized by the CG as four grams, evidently
pointing to an error in the induction.

330

Zhang et al. Neural Models of Text Normalization

7.8.2 Russian Kaggle Errors. For the Russian regular set two of the categories—
CARDINAL, MEASURE—showed slightly higher numbers of errors with the CG than
without it. For CARDINAL this turned out to be due to a bug in the data, where three
numbers were predicted by Kestrel to be sil, whereas the CG correctly decoded them as
a form of the correct number: thus 3 as mpex. The MEASURE cases were all of a similar
nature, where Kestrel had predicted sil: thus 80% predicted correctly with the CG as

.
Turning to the Kaggle test set, the CARDINAL errors with the CG were mostly

cases where the CG in fact corrected an error made by the neural model alone, but
still got the morphological form wrong. Thus 200 was predicted by the neural model
to be (‘null’), and the CG corrected this to ‘two hundred’ (genitive case),
whereas the reference form was ‘two hundred’ (nominative/accusative case). In
some cases there was an error in the reference data, as with 21, where both the “golden”
form and the neural model had ‘twenty’, whereas the CG correctly forced it
to ‘twenty one’. In a handful of cases, decoding with a CG produced
a digit sequence, as in 800 appearing as . As with English, the CG
allows both the digit sequence and the cardinal reading, but the neural model, offered
the choice, picks the digit sequence: left to its own devices, it predicted sil.

The three DATE errors were all morphological variants of the correct form, as
were all the DECIMAL and MEASURE errors. In general with the MEASURE cases,
the neural model alone produced forms that were completely wrong, often sil, or as
in cases like , an incomplete reading ’three hundred
nine cubic’, which the CG corrected to ’three hundred
nine cubic meters’.

In a similar way, all MONEY CG errors involved morphological case differences.
Thus £4 is verbalized as ‘four pounds sterling’ (instrumental
case on the number) rather than (genitive); the neural net
produced (‘four four’) on its own.

Finally one of the two ordinal errors involved a case difference; the other −10 was
a misclassified example read correctly (modulo morphological form) as
‘minus ten’ with the CG, where the reference was ‘tenth’.

7.8.3 Summary. As we have seen in the preceding analysis, the vast majority of cases
where the CG produces a different result from the neural model alone are an improve-
ment. Either the error is completely corrected, or the “error” actually corrects an error
in the gold standard, or the form is at least a reasonable alternative form for the given
input, rather than an unrecoverable error. We can therefore conclude that the CGs are
working as intended.

8. Discussion

We have presented a variety of neural architectures for text normalization intended for
speech applications. We have shown what we have called the contextual model with word
or word-feature context outperforms, in both speed and accuracy, a number of other
systems including a baseline architecture introduced by Sproat and Jaitly (2017). We also
find that a coarse-to-fine model, which first segments and tags the input, then applies
verbalization to non-trivial cases, is viable.

As we noted in the Introduction, there has been increased research interest in this
task due to our release of the data and an associated Kaggle competition, and a few

331

Computational Linguistics Volume 45, Number 2

recent papers apply neural network methods to this data set. We already discussed that
the work of Yolchuyeva, Németh, and Gyire-Tóth (2018) uses convolutional networks
(LeCun and Bengio 1995), and Pramanik and Hussain (2018) use differentiable neural
computers (Graves et al. 2016). Although the results in these papers do show some im-
provement over the results reported in Sproat and Jaitly (2016, 2017)—at least for some
semiotic classes—they do not seem to offer substantial gains compared to the results
reported here. Furthermore, the system of Pramanik and Hussain (2018) continues to
make unrecoverable errors, though they do claim that their solution fails to make such
errors in DATE examples like 11/10/2008; and while Yolchuyeva, Németh, and Gyires-
Tóth (2018) do not report whether their system makes these kinds of errors, given
that their overall per-class errors do not differ substantially from our own, it would
be surprising if such errors did not occur.

Therefore, it seems reasonable to conjecture that one is not going to eliminate the
problem of unrecoverable errors by simply choosing a different model architecture.
Rather, neural network solutions in general tend to make unrecoverable errors, and for
these we have argued that using trainable finite-state covering grammars is a reasonable
approach, but we continue to look for ways to improve covering grammar training and
coverage. 18

At the same time, we are currently exploring whether other neural approaches
can help mitigate against unrecoverable errors. One approach that seems plausible is
generative adversarial networks (Goodfellow et al. 2014; Goodfellow 2016), which have
achieved impressive results in vision-related tasks but which have been also applied to
NLP tasks including machine translation (Wu et al. 2017; Yang et al. 2018).

Given the great success of deep learning for many problems, it is tempting to simply
accrete speech and language tasks to a general class of problems and to worry less about
the underlying problem being solved. For example, at a certain level of abstraction, all of
text-to-speech synthesis can be thought of as a sequence-to-sequence problem where the
input sequence is a string of characters and the output sequence is some representation
of a waveform. “End-to-end” TTS models such as Char2Wav (Sotelo et al. 2017) treat
the problem in this way, with no attempt to consider the many subproblems involved
in this transduction. As we argued earlier, our work suggests that such approaches are
unlikely to provide a solution to issues like unrecoverable errors in text normalization.
More generally, our work suggests that domain-specific knowledge is still useful in a
deep learning paradigm. Text normalization may seem at first to be an “easy” problem,
because it is not difficult to achieve high overall label accuracy, but a great deal of further
effort is necessary to prevent unrecoverable errors. This is not to say that a pure neural
network approach to text normalization, or to TTS in general, is impossible, but it does
suggest that one should continue to pay close attention to the linguistic details of the
underlying problems.

Appendices

A.1 Thrax Covering Grammar for English Years (en year.grm)

For more information on Thrax and its syntax, see http://thrax.opengrm.org.

18 We also utilize a whitelisting mechanism that can impose a hard override for a particular case if the
system gets something wrong. Overrides can either be based on simple string matching, or else can
dispatch the input to a WFST grammar.

332

http://thrax.opengrm.org

Zhang et al. Neural Models of Text Normalization

Year readings for English.
import ’byte.grm’ as b;
import ’number.grm’ as n;

func I[expr] {
return "" : expr;

}

cardinal = n.CARDINAL_NUMBER_NAME;

d = b.kDigit;
D = d - "0";
digits = d{1,4};
cardinals = cardinal " " cardinal;

Grouping into pairs (d?d)(dd): 19 24.
pairwise = Optimize[(d{1,2} I[" "] d{2}) @ cardinals];

Reading for (d?d)00.
hundreds = Optimize[((d? D) @ cardinal) ("00" : " hundred")];

Reading for (d?D)0d.
o = Optimize[((d? D) @ cardinal) ("0" : " o ") (d @ cardinal)];

Reading for d0dd.
thousand = (d "0" d d) @ cardinal;

sigstar = Optimize[b.kBytes*];

First try digits @ hundreds, and if that fails pass through digits.
Then try digits @ pairwise, and if that fails pass through digits.
Then try digits @ o, and if that fails pass through digits.
Then try digits @ cardinals, which shall surely work.
Oh, and then make it a disjunction with thousand to allow both
"twenty ten" and "two thousand ten" readings.
export YEAR =
Optimize[
LenientlyCompose[

LenientlyCompose[
LenientlyCompose[

LenientlyCompose[digits, hundreds, sigstar],
pairwise, sigstar],

o, sigstar],
cardinal, sigstar] |
thousand];

A.2 Transformer Model Details

We utilize a Transformer sequence-to-sequence model (Vaswani et al. 2017), using the
architecture described in Appendix A.2 of Chen et al. (2018), with:

• 6 Transformer layers for both the encoder and the decoder,

• 8 attention heads,

• a model dimension of 512, and

• a hidden dimension of 2,048.

333

Computational Linguistics Volume 45, Number 2

Table A.1
Default parameters for the sliding window model.

Input embedding size 256
Output embedding size 512
Number of encoder layers 1
Number of decoder layers 1
Number of encoder units 256
Number of decoder units 512
Attention mechanism size 256

Dropout probabilities are uniformly set to 0.1. We use a dictionary of 32k word pieces
(Schuster and Nakajima 2012) covering both input and output vocabularies and employ
the Adam optimizer. All other hyperparameter settings are borrowed from Chen et al.
(2018).

A.3 Sliding Window Model Details

The hyper-parameters are summarized in Table A.1. The input vocabulary size is 254
for English and 279 for Russian, including the most frequent input characters in the
training data and <norm>, </norm>, <s>, </s>, and <unk>. The output vocabulary
is 1,002 for English and 2,005 for Russian, including the most frequent output words in
the training data and <self>, sil.

A.4 Contextual Model Details

The hyper-parameters are summarized in Table A.2. The sequence-to-sequence sub-
model shares the input and output vocabularies with the sliding window baseline.
When the context is character-based, the context vocabulary is the same as the input
vocabulary in the sliding window baseline, i.e., 254 for English and 279 for Russian.
When the context is word piece-based, the context vocabulary is 5,457 for English and
5,489 for Russian. For the word feature models, we set the bucket size to 5,000 for
hashing character trigrams. The context vocabulary is 5,000 for word feature contextual
models.

Table A.2
Default parameters for the contextual model.

Context embedding size 256
Number of tagging output embedding size 64
Number of context encoder layers 1
Number of tagging decoder layers 1
Number of context encoder units 256
Number of tagging decoder units 64
Seq2seq input embedding size 256
Seq2seq output embedding size 512
Number of seq2seq encoder layers 1
Number of seq2seq decoder layers 1
Number of seq2seq encoder units 256
Number of seq2seq decoder units 512
Attention mechanism size 256

334

Zhang et al. Neural Models of Text Normalization

Acknowledgments
The authors wish to thank Navdeep Jaitly for
his collaboration in the early stages of this
project. We thank Michael Riley and
colleagues at DeepMind for much discussion
as this work evolved. We acknowledge
audiences at Johns Hopkins University, the
City University of New York, Gothenburg
University, and Chalmers University for
comments and feedback on presentations of
this work. Alexander Gutkin assisted with
the initial data preparation. The initial
tokenization phase of our covering
grammars for measure expressions was
augmented with grammars developed by
Mark Epstein for information extraction.
Finally, Shankar Kumar provided extensive
help with the transformer models including
training reported in Section 4.

References
Allauzen, Cyril and Michael Riley. 2012. A

pushdown transducer extension for the
OpenFst library. In CIAA, pages 66–77,
Porto.

Allen, Jonathan, Sharon M. Hunnicutt, and
Dennis Klatt. 1987. From Text to Speech:
The MITalk System, Cambridge University
Press, Cambridge.

Arthur, Philip, Graham Neubig, and Satoshi
Nakamura. 2016. Incorporating discrete
translation lexicons into neural machine
translation. In EMNLP, pages 1557–1567,
Austin, TX.

Arik, Sercan, Mike Chrzanowski, Adam
Coates, Gregory Diamos, Andrew
Gibiansky, Yongguo Kang, Xian Li, John
Miller, Andrew Ng, Jonathan Raiman,
Shubho Sengupta, and Mohammad
Shoeybi. 2017. Deep voice: Real-time
neural text-to-speech. ArXiv:1702.07825.

Aw, Ai Ti and Lian Hau Lee. 2012.
Personalized normalization for a
multilingual chat system. In ACL,
pages 31–36, Jeju Island.

Bahdanau, Dzmitry, Kyunghyun Cho, and
Yoshua Bengio. 2015. Neural machine
translation by jointly learning to align and
translate. In ICLR, San Diego, CA.

Beaufort, Richard, Sophie Roekhaut,
Louise-Amélie Cougnon, and Cédrick
Fairon. 2010. A hybrid rule/model-based
finite-state framework for normalizing
SMS messages. In ACL, pages 770–779,
Uppsala.

Chan, William, Navdeep Jaitly, Quoc V. Le,
and Oriol Vinyals. 2016. Listen, attend and
spell: A neural network for large

vocabulary conversational speech
recognition. In ICASSP, pages 4960–4964,
Shanghai.

Chen, Mia Xu, Orhan Firat, Ankur Bapna,
Melvin Johnson, Wolfgang Macherey,
George Foster, Llion Jones, Niki Parmar,
Mike Schuster, Zhifeng Chen, Yonghui
Wu, and Macduff Hughes. 2018. The best
of both worlds: Combining recent
advances in neural machine translation.
CoRR, abs/1804.09849.

Chiu, Chung-Cheng, Tara N. Sainath,
Yonghui Wu, Rohit Prabhavalkar, Patrick
Nguyen, Zhifeng Chen, Anjuli Kannan,
Ron J. Weiss, Kanishka Rao, Ekaterina
Gonina, Navdeep Jaitly, Bo Li, Jan
Chorowski, and Michiel Bacchiani. 2017.
State-of-the-art speech recognition with
sequence-to-sequence models.
ArXiv:1712.01769.

Cho, Kyunghyun, Bart van Merriënboer,
Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua
Bengio. 2014. Learning phrase
representations using RNN
encoder-decoder for statistical machine
translation. In EMNLP, pages 1724–1734,
Doha.

Choudhury, Monojit, Rahul Saraf, Vijit Jain,
Sudesha Sarkar, and Anupam Basu. 2007.
Investigation and modeling of the
structure of texting language. International
Journal of Document Analysis and
Recognition, 10:157–174.

Chrupala, Grzegorz. 2014. Normalizing
tweets with edit scripts and recurrent
neural embeddings. In ACL, pages
680–686, Baltimore, MD.

Ebden, Peter and Richard Sproat. 2014. The
Kestrel TTS text normalization system.
Natural Language Engineering, 21(3):1–21.

van Esch, Daniel and Richard Sproat. 2017.
An expanded taxonomy of semiotic classes
for text normalization. In INTERSPEECH,
pages 4016–4020, Stockholm.

Gillick, Larry and Stephen J. Cox. 1989. Some
statistical issues in the comparison of
speech recognition algorithms. In ICASSP,
pages 1520–6149, Glasgow.

Goodfellow, Ian. 2016. NIPS 2016 tutorial:
Generative adversarial networks.
ArXiv:1701.00160.

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi
Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua
Bengio. 2014. Generative adversarial
networks. In NIPS, pages 2672–2680,
Montreal.

Gorman, Kyle and Richard Sproat. 2016.
Minimally supervised models for number

335

Computational Linguistics Volume 45, Number 2

normalization. Transactions of the
Association for Computational Linguistics,
4:507–519.

Graves, Alex, Greg Wayne, Malcolm
Reynolds, Tim Harley, Ivo Danihelka,
Agnieszka Grabska-Barwińska, Sergio
Gómez Colmenarejo, Edward Grefenstette,
Tiago Ramalho, John Agapiou, Adrià
Puigdomènech Badia, Karl Moritz
Hermann, Yori Zwols, Georg Ostrovski,
Adam Cain, Helen King, Christopher
Summerfield, Phil Blunsom, Koray
Kavukcuoglu, and Demis Hassabis. 2016.
Hybrid computing using a neural network
with dynamic external memory. Nature,
538:471–476.

Hassan, Hany and Arul Menezes. 2013.
Social text normalization using contextual
graph random walks. In ACL, pages
1577–1586.

Hochreiter, Sepp and Jürgen Schmidhuber.
1997. Long short-term memory. Neural
Computation, 9(8):1735–1780.

Hurford, James. 1975. The Linguistic Theory
of Numerals, Cambridge University Press,
Cambridge.

Kobus, Catherine, François Yvon, and
Géraldine Damnati. 2008. Normalizing
SMS: Are two metaphors better than one?
In COLING, pages 441–448, Manchester.

LeCun, Yann and Yoshua Bengio. 1995.
Convolutional networks for images,
speech, and time-series, In Michael A.
Arbib, editor, The Handbook of Brain Theory
and Neural Networks. MIT Press,
Cambridge, 255–258.

Liu, Fei, Fuliang Weng, and Xiao Jiang. 2012.
A broad-coverage normalization system
for social media language. In ACL,
pages 1035–1044, Jeju Island.

Liu, Fei, Fuliang Weng, Bingqing Wang, and
Yang Liu. 2011. Insertion, deletion, or
substitution? Normalizing text messages
without pre-categorization nor
supervision. In ACL, pages 71–76,
Portland, OR.

Liu, Xiaohua, Ming Zhou, Xiangyang Zhou,
Zhongyang Fu, and Furu Wei. 2012. Joint
inference of named entity recognition and
normalization for tweets. In ACL, pages
526–535, Jeju Island.

Mi, Haitao, Baskaran Sankaran, Zhiguo
Wang, and Abe Ittycheriah. 2016.
Coverage embedding models for neural
machine translation. In EMNLP,
pages 955–960, Austin, TX.

Min, Wookhee and Bradford Mott. 2015.
NCSU SAS WOOKHEE: A deep
contextual long-short term memory model

for text normalization. In WNUT,
pages 111–119, Beijing.

Munteanu, Cosmin, Ronald Baecker, Gerald
Penn, Elaine Toms, and David James.
2006. The effect of speech recognition
accuracy rates on the usefulness and
usability of webcast archives. In
Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems,
pages 493–502.

Ng, Axel H., Kyle Gorman, and Richard
Sproat. 2017. Minimally supervised
written-to-spoken text normalization. In
ASRU, pages 665–670, Okinawa.

Pennell, Deana and Yang Liu. 2011. A
character-level machine translation
approach for normalization of SMS
abbreviations. In IJCNLP, pages 974–982,
Chiang Mai.

Pramanik, Subhojeet and Aman Hussain.
2018. Text normalization using memory
augmented neural networks.
ArXiv:1806.00044.

Pusateri, Ernest, Bharat Ram Ambati,
Elizabeth Brooks, Ondrej Platek, Donald
McAllaster, and Venki Nagesha. 2017. A
mostly data-driven approach to inverse
text normalization. In INTERSPEECH,
pages 2784–2788, Stockholm.

Roark, Brian and Richard Sproat. 2014.
Hippocratic abbreviation expansion. In
ACL, pages 364–369, Baltimore, MD.

Roark, Brian, Richard Sproat, Cyril Allauzen,
Michael Riley, Jeffrey Sorensen, and Terry
Tai. 2012. The OpenGrm open-source
finite-state grammar software libraries.
In ACL, 61–66, Jeju Island.

Sak, Haşim, Françoise Beaufays, Kaisuke
Nakajima, and Cyril Allauzen. 2013.
Language model verbalization for
automatic speech recognition. In ICASSP,
pages 8262–8266, Vancouver.

Schuster, Michael and Kaisuke Nakajima.
2012. Japanese and Korean voice search.
In ICASSP, pages 5149–5152, Kyoto.

Sennrich, Rico, Barry Haddow, and
Alexandra Birch. 2016. Neural machine
translation of rare words with
subword units. In ACL, pages 1715–1725,
Berlin.

Shugrina, Masha. 2010. Formatting
time-aligned ASR transcripts for
readability. In NAACL, pages 198–206,
Los Angeles, CA.

Sotelo, Jose, Soroush Mehri, Kundan Kumar,
João Felipe Santos, Kyle Kastner, Aaron
Courville, and Yoshua Bengio. 2017.
Char2wav: End-to-end speech synthesis.
In ICLR, Toulon.

336

Zhang et al. Neural Models of Text Normalization

Sproat, Richard. 1996. Multilingual text
analysis for text-to-speech synthesis.
Natural Language Engineering, 2(4):369–380.

Sproat, Richard, editor . 1997. Multilingual
Text-to-Speech Synthesis: The Bell Labs
Approach, Kluwer Academic Publishers,
Boston.

Sproat, Richard, Alan Black, Stanley Chen,
Shankar Kumar, Mari Ostendorf, and
Christopher Richards. 2001. Normalization
of non-standard words. Computer Speech
and Language, 15(3):287–333.

Sproat, Richard and Kyle Gorman. 2018. A
brief summary of the Kaggle text
normalization challenge.
http://blog.kaggle.com/2018/02/07/
a-brief-summary-of-the-kaggle-text-
normalization-challenge/.

Sproat, Richard and Keith Hall. 2014.
Applications of maximum entropy rankers
to problems in spoken language
processing. In INTERSPEECH,
pages 761–764, Singapore.

Sproat, Richard and Navdeep Jaitly. 2016.
RNN approaches to text normalization:
A challenge. ArXiv:1611.00068.

Sproat, Richard and Navdeep Jaitly. 2017. An
RNN model of text normalization. In
INTERSPEECH, pages 754–758,
Stockholm.

Taylor, Paul. 2009. Text-to-Speech Synthesis,
Cambridge University Press, Cambridge.

Tu, Zhaopeng, Yang Liu, Lifeng Shang,
Xiaohua Liu, and Hang Li. 2017. Neural
machine translation with reconstruction.
In AAAI, pages 3097–3103.

Tu, Zhaopeng, Zhengdong Lu, Yang Liu,
Xiaohua Liu, and Hang Li. 2016. Modeling
coverage for neural machine translation. In
ACL, pages 76–85, San Francisco, CA.

Vaswani, Ashish, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. 2017. Attention is all you
need. CoRR, abs/1706.03762.

Wang, Chunqi and Bo Xu. 2017.
Convolutional neural network with word
embeddings for Chinese word
segmentation. In IJCNLP, pages 163–172,
Taipei.

Wu, Lijun, Yingce Xia, Zhao Li, Fei Tian, Tao
Qin, Jianhuang Lai, and Liu Tie-Yan. 2017.
Adversarial neural machine translation.
ArXiv:1704.06933.

Wu, Yonghui, Mike Schuster, Zhifeng Chen,
Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan
Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson,
Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo,
Hideto Kazawa, Keith Stevens, George
Kurian, Nishant Patil, Wei Wang, Cliff
Young, Jason Smith, Jason Riesa, Alex
Rudnick, Oriol Vinyals, Greg Corado,
Macduff Hughes, and Jeffrey Dean. 2016.
Google’s neural machine translation
system: Bridging the gap between
human and machine translation.
ArXiv:1609.08144.

Xia, Yunqing, Kam-Fai Wong, and Wenjie Li.
2006. A phonetic-based approach to
Chinese chat text normalization. In ACL,
pages 993–1000, Sydney.

Xie, Ziang. 2017. Neural text generation:
A practical guide. ArXiv:1711.09534.

Yang, Yi and Jacob Eisenstein. 2013. A
log-linear model for unsupervised text
normalization. In EMNLP, 61–72, Waikoloa
Beach, HI.

Yang, Zhen, Wei Chen, Feng Wang, and Bo
Xu. 2018. Improving neural machine
translation with conditional sequence
generative adversarial nets.
ArXiv:1703.04887.

Yolchuyeva, Sevinj, Géza Németh, and Bálint
Gyires-Tóth. 2018. Text normalization with
convolutional neural networks.
International Journal of Speech Technology,
21:1–12.

337

http://blog.kaggle.com/2018/02/07/a-brief-summary-of-the-kaggle-text-normalization-challenge/
http://blog.kaggle.com/2018/02/07/a-brief-summary-of-the-kaggle-text-normalization-challenge/
http://blog.kaggle.com/2018/02/07/a-brief-summary-of-the-kaggle-text-normalization-challenge/

	Introduction
	Text Normalization, and Why It Is Hard
	Previous Approaches to Text Normalization
	Standard Approaches
	Previous Neural Approaches to Text Normalization

	A Transformer Model
	Our Models
	Segmentation
	The Sliding Window Model
	Contextual Sequence-to-Sequence Models
	Stacking Tagging and Contextual Models
	Incorporating Reconstruction Loss

	Inferring Language-Particular Covering Grammars from Data
	Inducing Number Name Covering Grammars
	Extending CG Induction to Other Semiotic Classes
	Using the Covering Grammar with Neural Models

	Experiments
	Description of the Data
	Context Representation
	Stacking Tagging and Normalization
	Reconstruction Loss
	Covering Grammars
	Results on Hand-Annotated Data
	Comparison with Other Published Results
	Detailed Analysis of Errors with and without Covering Grammars

	Discussion

