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Shieber's abstract parsing algorithm (Shieber 1992)for unification grammars is an extension of 
Earley's algorithm (Earley 1970)for context-free grammars to feature structures. In this paper, 
we show that, under certain conditions, Shieber ' s algorithm produces what we call a nonminimal 
derivation: a parse tree which contains additional features that are not in the licensing productions. 
While Shieber's definition of parse tree allows for such nonminimal derivations, we claim that they 
should be viewed as invalid. We describe the sources of the nonminimal derivation problem, and 
propose a precise definition of minimal parse tree, as well as a modification to Shieber's algorithm 
which ensures minimality, although at some computational cost. 

1. Introduction 

Unification grammar is a term often used to describe a family of feature-based gram- 
mar formalisms, including GPSG (Gazdar et al. 1985), PATR-II (Shieber 1986), DCG 
(Pereira and Warren 1980), and HPSG (Pollard and Sag 1994). In an effort to formalize 
the common elements of unification-style grammars, Shieber (1992) developed a logic 
for describing them, and used this logic to define an abstract parsing algorithm. The 
algorithm uses the same set of operations as Earley's (1970) algorithm for context-free 
grammars, but modified for unification grammars. 

In this paper, we show that, under certain conditions, Shieber's algorithm produces 
unintended, spurious parses in addition to the intended ones. We call these spurious 
parses nonminimal derivations (or nonminimal parse trees), because they contain 
extra features which are not in the productions that license the parse, a We claim that 
such nonminimal derivations are invalid. The basis of our claim is that the unifica- 
tion operation as set union preserves minimality; thus any correct unification-based 
parsing algorithm should produce parses that contain all and only features from the 
licensing productions (i.e., minimal derivations or minimal parse trees). Nonminimal 
derivations are also undesirable in practice because, given a parse tree, we cannot tell 
whether a particular feature should be in the model or not unless we reconstruct the 
whole tree. 

Despite the nonminimal derivations, Shieber (1992) proved the correctness of his 
algorithm. As it turned out, his definition of parse tree, which his proof relied on, was 
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1 In this paper, we  use  "nonmin ima l  der ivat ions"  s y n o n y m o u s l y  wi th  "nonmin ima l  parses" .  Normal ly  
the not ions  of der ivat ion and  parse  tree are different. However ,  in this paper  we  focus on parse  trees as 
the final resul t  of  derivation,  thus  we  m e a n  that  a der ivat ion is n o n m i n i m a l  w h e n  its result  is a 
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((cat) - S 
/ (1 cat) =" NP 
.J (2 cat) -- VP 

P0 = (2, ~0 : ] (head) -- (2 head) 
/ / head subj) - (1 head} 
~, (head agr> - (1 head agr> 

((cat) - VP 
J <1 cat/----" V 

P2 : (1, q)2 : ~ (head) -- (1 head} > 
I, (head type) - intrans ,/ 

Figure 1 
Examples of productions. 

((cat) -- NP 
pl = ("John",~l : ~ (head agr pers) - 3rd } > 

~, (head agr n u m ) -  singJ 

((cat) -- V "] 
~l (head agr pers) - 3rd / P3 = ("sleeps", ,I~ 3 : ] (head agr num) - sing ) 
I, (head tense} - pres 

not  cons t r a in ing  e n o u g h  to d i sa l low n o n m i n i m a l  de r iva t ions .  To so lve  this t w o f o l d  
p r o b l e m ,  w e  p r o p o s e  an  a l t e rna te  def in i t ion  of m i n i m a l  p a r s e  tree for  un i f ica t ion  g r a m -  
mar s ,  a n d  p r e s e n t  a mod i f i ca t i on  to S h i e b e r ' s  a l g o r i t h m  w h i c h  ensu re s  min imal i ty .  

It is i m p o r t a n t  to no te  tha t  the  s a m e  s p u r i o u s  p a r s e s  also occur  in context - f ree  
pa r s ing ,  specif ical ly  in Ea r l ey ' s  a lgor i thm.  H o w e v e r ,  s ince the on ly  i n f o r m a t i o n  a con-  
s t i tuent  carr ies  in context - f ree  g r a m m a r  is the  g r a m m a r  s y m b o l ,  the  s p u r i o u s  de r iva -  
t ions  on ly  p r o d u c e  exac t ly  the s a m e  resul ts  as the  n o r m a l  ones.  W h e n  the  a l g o r i t h m  
is e x t e n d e d  to un i f ica t ion  g r a m m a r ,  h o w e v e r ,  these  s p u r i o u s  pa r s e s  are a p r o b l e m .  

2. Unification Grammar and Parse Trees 

Shieber  (1992) def ines  a un i f ica t ion  g r a m m a r  as a 3 - tup le  (G, P, p0), w h e r e  ~ is the 
v o c a b u l a r y  of the  g r a m m a r ,  P is the  set  of  p r o d u c t i o n s ,  a n d  P0 E P is the s ta r t  p ro -  
duc t ion .  G con ta ins  L, a set  of l abe l s  ( feature  names ) ;  C, a set  of  constants ( feature  
values) ;  a n d  W, a set  of  terminals. There  are t w o  k inds  of p r o d u c t i o n s  in P: phrasal 
a n d  lexical .  A p h r a s a l  p r o d u c t i o n  is a 2- tuple  (a, ~) ,  w h e r e  a is the arity of the  ru le  (the 
n u m b e r  of  r i gh t -hand - s ide  [RHS] cons t i tuents ) ,  a n d  ~ is a logical  fo rmula .  Typically,  
q~ is a con junc t ion  of equa t ions  of the  f o r m  pl - p2 or pl -" c, w h e r e  pl,  p2 E L* are  
pa t h s ,  a n d  c E C. In  an  equa t ion ,  a n y  p a t h  w h i c h  beg in s  w i t h  an  in teger  i (1 < i < a) 
r ep re sen t s  the ith RHS cons t i tuen t  of  the  rule.  2 A lexical p r o d u c t i o n  is a 2 - tup le  (w, ~) ,  
w h e r e  w E W a n d  q~ is the  s a m e  as above ,  excep t  tha t  there  are no  RHS cons t i tuents .  
F igure  1 s h o w s  s o m e  e x a m p l e  p h r a s a l  a n d  lexical p r o d u c t i o n s  (P0 c o r r e s p o n d s  to the 
context - f ree  ru le  S --+ N P  VP a n d  is the s tar t  p roduc t ion ) .  T h e n  a m o d e l  M rela tes  to 
a f o r m u l a  q~ b y  a sa t i s fac t ion  re la t ion  ~ as u sua l  (M ~ ~) ,  a n d  w h e n  q~ is the f o r m u l a  
in a p r o d u c t i o n  p = (a, ~ ) ,  p is sa id  to l i cense  M. 

Based  on  the logic above ,  Shieber  def ines  a p a r s e  t ree a n d  the  l a n g u a g e  of a 
g r a m m a r  e x p r e s s e d  in his  f o rma l i sm .  To def ine  a va l id  p a r s e  tree, he  first def ines  the  
set  of  poss ib le  p a r s e  t rees  I1 = Ui>_0 Hi for  a g i v e n  g r a m m a r  G, w h e r e  each  Eli is de f ined  
as fol lows:  

Definition 
A pa r se  tree r is a m o d e l  tha t  is a m e m b e r  of the  infini te u n i o n  of sets of  b o u n d e d -  

d e p t h  pa r se  t rees  FI = Ui_>0 I1i, w h e r e  each  IIi is de f i ned  as: 

2 Shieber (1992) also uses a path that begins with 0 for the left-hand-side (LHS) constituent of a rule. In 
this paper, we omit the 0 arcs and place the features of the LHS constituent directly at the root. This 
change does not affect the formalism for the purpose of this paper. 
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. 

. 

rio is the set of models  7- for which there is a lexical product ion  
p = <w, q)) E G such that 7- ~ 4< 

I I i ( i  > 0) is the set of models  7- for which there is a phrasal  product ion  
p = (a, q~) C G such that 7- ~ ~ and, for all 1 < i < a, 7-/{i) is defined and 
7-/<i} C Uj<iIIy. 

In the second condition, the extraction operator, denoted  b y / ,  retrieves the feature 
structure found at the end of a particular path; so for instance 7-/<1) retrieves the first 
subconsti tuent on the RHS of the product ion  that licenses 7-. In the definition above, 
II0 contains all models  that satisfy any lexical product ion  in the grammar,  while Hi 
contains all models  that satisfy a phrasal  production,  and whose subconstituents are 
all i n  UjGi I]j. 

To specify what  constitutes a valid parse for a particular sentence, the next  step is 
to define the yield of a parse tree. It is defined recursively as follows: if 7- is licensed by  
some lexical product ion p = {w, q~/, then the yield of 7- is w; or if 7- is licensed by  some 
phrasal product ion  {a, q~} and O~ 1 . . . . .  (X a are the yields of 7-/(1) . . . . .  7-/<a) respectively, 
then the yield of 7- is ~1 . . .  %. 

Finally, Shieber defines a valid parse tree 7- c II for sentence Wl . . .  wn as follows: 

o 

2. 

The yield of 7- is Wl . . .  Wn 

7- is licensed by  the start product ion  po 

Notice that this definition allows extra features in a parse tree, because a parse tree 
7- is defined by  the satisfaction relation (7- ~ ~), which allows the existence of features 
in the model  that are not  in the licensing product ion 's  formula. Given this definition, 
for any valid parse tree 7-, we can construct another  parse tree 7-' by  s imply adding an 
arbitrary (nonnumeric) feature to any node in 7-. Such a parse tree T' is nonminimal  
because extra features are nonminimal  with respect to the minimal  features in the 
licensing productions.  We will re turn to the issue of minimal and nonminimal  parse 
trees in Section 4. 

3. The Abstract Parsing Algorithm 

Based on the logic described above, Shieber defines an abstract parsing algori thm as a 
set of four logical deduct ion rules. Each rule derives a new item, from previous items 
a n d / o r  product ions  in the grammar.  An item is a 5-tuple {i,j, p, M, d), where  i and j are 
indices into the sentence and specify which words  in the sentence have been used to 
construct the item; p is the product ion  used to construct the item; M is a model;  and d 
is the posit ion of the "dot";  i.e., how many  subconstituents in p have been completed 
so far. 

The logical rules of the abstract algori thm are shown in Figure 2. The Initial I tem 
rule produces  the first item, and is constructed from the start product ion  P0. It spans 
none of the input  (i and j are both 0), and its model  is the minimal model (ram) of P0. 

The Prediction rule is essentially the top-down rewriting of the expectation (a 
subconsti tuent just after the dot) in a prior item. In this rule, the extraction of M / ( d  + 
1 / retrieves the d + 1st submodel  in M (i.e., expectation). The function p, which is 
left underspecified as a parameter  in the abstract algorithm, filters out some features 
predef ined in the various instantiations of the algorithm. Here, it is applied to the 
expectation, by  which it effectively controls the top-down predictive power  of the 
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INITIAL ITEM: 
{O,O, po, mm(~o),O) 

PREDICTION: 

SCANNING: 

li, j,p = la, ~ l ,M,d)  
(j,j, p', p(M/(d+l))  t3 mm(~'), 0) ' 

where d K a and p' = (a',O') • P 

(i,j ,p = (a, ~} ,M,d}  
{i,j+lip, M t_l (mm(~2') \ { d + l ) ) , d + l }  ' w h e r e  d < a a n d  (wj+l, O'} • P 

COMPLETION: li'j'P = la' ~ l 'M 'd)  (j,k,p' = (a',/I~'),M',a' / where d < a 
I {i, kip, M El (M' \ {d+l) ),d+l) 

Figure 2 
Shieber's parsing operations. 

I0 = (O,O, po, mm(420),O) 
11 = (O, 1,po, Ml,1) 
12 = (1,1,p2,M2,0 I 
I3 = (1,2,p2,M3,1) 
I4 = (0, 2, p0, M4, 2) 

ag 5  ?yP° 
pers~ - n ~  p mtrans 

3rd sing 

Figure 3 
Items produced in the parse of John sleeps, and the final parse. 

algorithm and provides flexibility to the instantiated algorithms. Then the expectation 
is unified with a production (~'), which can consistently rewrite it. By this operation, 
some features in the expectation may be propagated down in the production. 

The remaining two rules advance the dot in a prior item, by unifying the sub- 
constituent to the right of the dot with either a lexical item from the input string (the 
Scanning rule) or some other completed higher-level item (the Completion rule). Both 
rules perform the correct unification by utilizing the embedding operator (signified 
by \), which places a model M under a path p (M\p) .  

We illustrate these operators with a simple step-by-step example parse. Consider 
the grammar that consists of the rules presented in Figure 1. Using this grammar, 
Figure 3 shows the parse of the sentence John sleeps. First, the Initial Item operator 
is applied, producing item I0, whose model is mm(~o). Next, the Scanning operator 
scans the word John, producing 11. The Prediction operator then produces 12. Next, 
the word sleeps is scanned (since the first subconstituent of the model in 12 is a V), 
producing 13. Finally, since the item in 13 is complete (d = 1, the arity of production 
p2), Completion is applied to items 11 and/3, producing 14. Model M4 is the final parse 
of the sentence. 

4. Nonminimal Derivations 

In Section 2, we noted that Shieber's definition of parse trees allows them to be non- 
minimal. We consider these to be invalid based on a principle that, since the unification 
operation as set union preserves minimality (as proved in Shieber, [1992]), repeated 
applications of unification using licensing productions should result in parses that 
contain features only from those productions and nothing more. In this section, we 
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((cat) - VP 
I (1 cat) -- VP 

p4 = (2,~4: { (2 cat} -- ADV } 
| (head) - (1 head) / 
( (head modified) - true ) 

Figure 4 
A phrasal production that results in a nonminimal derivation. 

I~ = (1,1,p4,M~, 0} 
/~' = (1,1, p2,M~r, 0) 
I~ = (1,2,p2,M~, 1) 
I~ = {0, 2, p0, M~, 2} 

M 4  ~ ." 

cat~-43 

c S a l t  

NP n e a ~ / l ~ V u b ~ V  t 

ag~..  7se.t~pe~modified 
per~ n ~  lntrans t}ue 

3rd sing 

Figure 5 
Nonminimal derivation of John sleeps. 

formally define minimal and nonminimal  parse trees, and show an example in which 
nonminimal  parse trees are p roduced  by  Shieber 's  algorithm. 

Our  definition of minimal parse tree is to a large extent similar to Shieber 's  def- 
inition, but  to ensure minimality, our  definition uses the equali ty relation instead of 
D, and inductively specifies a minimal  parse tree bot tom-up.  

Definition 
Given a g rammar  G, a minimal  parse tree r admit ted by  G is a model  that is a member  

of the infinite union of sets of bounded-dep th  parse trees 11' = Oi>0 IIl, where  each 
171 is defined as: 

. 

2. 

For each lexical product ion  p = (w, ~b) E G, mm(~) E 11'o. 

For each phrasal  product ion  p = (a, ~} E G, let rl . . . . .  ra E Uj<i I1;. If 
r = mm(~) l i t1 \ (1)  t3 . . .  I l r l \ (a} ,  then r E 1I;. 

It is obvious that 1I' is a subset of 17 in Shieber 's  definition. Then, a nonminimal  parse 
tree is defined as a model  that is a member  of the difference of the two sets (II - 1I'). 3 

Here is a simple example in which a nonminimal  parse is p roduced  in Shieber 's  
algorithm. Say that we add  the product ion  in Figure 4 to the grammar  in the previous  
section. The intent of this product ion  is to mark the verb with the feature modified if an 
adverb follows. Using this grammar,  Shieber 's algori thm will p roduce  a nonminimal  
parse for the sentence John sleeps, in addit ion to the minimal parse shown in the 
previous section. 4 The nonminimal  parse, shown in Figure 5, arises as follows: after 
scanning John, Prediction can produce  items I~ and I~', first using product ion  p4 (thus 
inserting /head modified} - true into the model),  and then P2. Scanning the word  

3 Note that using subsumption (which we will discuss in Section 5) here does not work, for instance by 
saying "a model r "  is a nonminimal parse tree if r "  E 17 and there exists r '  E II such that r '  _< r"" ,  
because some r " ' s  are minimal. See the example in Section 5. 

4 Here, we are assuming that the filtering function/9 is the identity function. 
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sleeps then produces I~ from I~ I. Completion then can be applied directly to 11 and 11 by 
skipping a completion using I~ and I~, thereby producing item I~. The feature modified 
remains in I~, even though an adverb was never encountered in the sentence. The 
final parse M~, shown in Figure 5, is clearly nonminimal  according to our definition 
because of this feature. 

Note that the example grammar can be changed to prevent the nonminimal  parse, 
by moving the feature modified off of the head path in ff~4 (i.e., (modified / - true 
instead of (head modified / - true), s However, the point of the example is not to argue 
whether  or not well-designed grammars will produce erroneous parses. A formally 
defined parser (see the discussion below) should in principle produce correct parses 
regardless of the grammar used; otherwise, the grammar formalism (i.e., Shieber's logic 
for unification grammars) must  be revised and properly constrained to allow only the 
kinds of productions wi th  which the parser produces correct results. 

In general, nonminimal  derivations may  arise whenever  two or more predictions 
that are not mutual ly  exclusive can be produced at the same point in the sentence; 
i.e., two prediction items (i, i, p, M, 0 / and (i, i, p', M ~, 0 / are produced such that M 
M / and M and M ~ are unifiable. In the example, items 12 = (1,1, p2, M2, 0/ and I~ -- 
(1,1, P4, M~, 0) (as well as I2 and I~ ~ = (1,1, p2, M~ ~, 0/) are two such items. Since the two 
predictions did not have any conflicting features from the beginning, a situation may  
occur where a completion generated from one prediction can fill the other prediction 
without  causing conflict. When this happens,  features that were in the other prediction 
but  not the original one become nonminimal  in the resulting model. 

As to what  causes nonminimal  situations, we speculate that there are a number  
of possibilRies. First, nonminimal  derivations occur when  a prediction is filled by a 
complete item that was not generated from the prediction. This mismatch will not 
happen if parsing is done in one direction only (e.g. purely top-down or bottom-up 
parsing). Thus, the mixed-direction parsing strategy is a contributing factor. 

Second, wrong complete items are retrieved because Shieber's item-based algo- 
r i thm makes all partial results available during parsing, as if they are kept in a global 
structure (such as a chart in chart parsing). But if the accessibility of items were some- 
how restricted, prediction-completion mismatch would  not happen. In this respect, 
other chart-based algorithms for unification grammars  which adopt  mixed-direction 
parsing strategy, including head-corner parsing (van Noord 1997) and left-corner pars- 
ing (Alshawi 1992), are subject to the same problem. 

Third, extra features can only appear when  the grammar contains rules which 
interact in a certain way  (such as rules P2 and P4 above). If the grammar contained 
no such rules, or if p (the filtering function applied in Prediction) filtered out those 
features, even the prediction-completion mismatch would  not produce nonminimal  
derivations. 

As we stated in the beginning of this section, we consider nonminimal  parses to 
be invalid on the basis of minimality. It then immediately follows that any parsing 
algorithm that produces nonminimal  parses is considered to be unsound;  in particular, 
Shieber's algorithm is unsound.  However, since nonminimal  parse trees have the same 
yield as their minimal counterparts, his algorithm does indeed recognize exactly the 
language of a given grammar. So, Shieber's algorithm is sound as a recognizer, 6 but  
not as a transducer or parser (as in van Noord, [1997]) where the correctness of output  
models (i.e., parse trees) is critical. In other words, Shieber's algorithm is correct up to 

5 Note that adding (head modified) -- false to ~2 (VP --* V) or ~3 (sleeps) is not feasible, because they 
cannot specify the modified feature at their level, 

6 In fact, Shieber hints at this: "The process of parsing (more properly, recognition)..." (Shieber 1992, 78). 
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l icensing,  bu t  incorrect  on  the basis  of  a s t ronger  criteria of  minimali ty .  Thus ,  to guar -  
antee  correctness  based  on  minimal i ty ,  w e  n e e d  ano the r  a lgor i thm;  such  an  a lgo r i t hm 
is exact ly the so lu t ion  to the n o n m i n i m a l  de r iva t ion  p rob lem.  

5. Practical Techniques 

Before p resen t ing  our  so lu t ion  to the n o n m i n i m a l  de r iva t ion  p rob lem,  w e  discuss  
several  possible  pract ical  t echniques  to get  a r o u n d  the p r o b l e m  in i m p l e m e n t e d  sys-  
tems. These are k n o w n  techniques ,  w h i c h  h a v e  been  appl ied  to solve o ther  p r o b l e m s  
in uni f ica t ion-based  systems.  H o w e v e r ,  m o s t  of  t h e m  on ly  offer par t ia l  so lut ions  to 
the n o n m i n i m a l  der iva t ion  p rob lem.  First, w h e n e v e r  Sh ieber ' s  a lgo r i thm p r o d u c e s  a 
n o n m i n i m a l  der ivat ion,  it also p r o d u c e s  a c o r r e s p o n d i n g  min ima l  de r iva t ion  (Tomuro  
1999). Thus,  one  possible  solut ion is to use  s u b s u m p t i o n  to d iscard  i tems that  are m o r e  
specific than  any  other  i tems that  are p r o d u c e d .  S u b s u m p t i o n  has  of ten  been  used  in 
uni f ica t ion-based sys tems  to p a c k  i tems or  m o d e l s  (e.g., A l shawi  1992). Howeve r ,  
s imple  s u b s u m p t i o n  m a y  filter ou t  va l id  parses  for some  g r a m m a r s ,  thus  sacrif icing 
comple teness .  7 

A n o t h e r  possibi l i ty  is to filter ou t  p rob lemat ic  features  in the Predic t ion  step b y  
us ing  the func t ion  p. Howeve r ,  au tomat i c  de tec t ion  of  such  features  (i.e., au tomat i c  
der iva t ion  of  p) is undec idab le  for  the same  reason  as the prediction nontermination 
p r o b l e m  (caused  b y  left recurs ion)  for  unif icat ion g r a m m a r s  (Shieber 1985). M a n u a l  
detec t ion is also problemat ic :  w h e n  a g r a m m a r  is large, par t i cu la r ly  if semant ic  fea- 
tures are inc luded ,  comple te  de tec t ion  is nea r ly  impossible .  As  for  the t echniques  
d e v e l o p e d  so far w h i c h  (partially) solve p red ic t ion  n o n t e r m i n a t i o n  (e.g., Shieber 1985; 
H a a s  1989; Samue l s son  1993), they  do  no t  a p p l y  to n o n m i n i m a l  der iva t ions  because  
n o n m i n i m a l  der iva t ions  m a y  arise w i t h o u t  left r ecurs ion  or  recurs ion  in g e n e r a l  s One  
w a y  is to define p to filter ou t  all features  except  the context-free b a c k b o n e  of  predic-  
tions. H o w e v e r ,  this severe ly  restricts the range  of  possible  ins tant ia t ions  of  Shieber ' s  
a lgor i thm.  9 

A third  possibi l i ty  is to m a n u a l l y  fix the g r a m m a r  so that  n o n m i n i m a l  der iva t ions  
do  no t  occur,  as w e  no t ed  in Section 4. H o w e v e r ,  this a p p r o a c h  is p rob lemat ic  for  the 
same  reason  as the m a n u a l  de r iva t ion  of  p m e n t i o n e d  above.  

6. Modified Algorithm 

Finally, w e  p r o p o s e  an  a lgor i thm that  does  no t  p r o d u c e  n o n m i n i m a l  der ivat ions .  It is a 
modi f ica t ion  of  Shieber ' s  a lgo r i thm that  incorpora tes  pa ren t  pointers .  F igure  6 s h o w s  

7 For example, when there are two predictions M1 and M2 for category C and a production p where 
M1 : {<cat> -- C, <x> - a}, M2 : {<cat> - C, <y> - b}, and p = <1, {<cat> - C, <1 cat> "- D,  <x> - a}> 
respectively, the resulting model M2 ~ = {<cat> - C, <1 cat> - D, <x> --  a, <y> --  b} will have strictly more 
information than the other resulting model MI' = {<cat> ~ C, <1 cat> - D, <x> - a}, although both 
models are minimal. 

8 We do not show any particular example here, but if we change the left-recursive VP rule in the earlier 
example to a non-left-recursive rule, for instance VP --* VP2 ADV, and add some rules, a nonrninimal 
parse will indeed arise. 

Note also that some (but not all) cases of prediction nontermination will produce nonminimal 
derivations. Those cases occur when there is a prediction for a category, and repeated applications of 
some left-recursive rule(s) generate predictions for the same category that are not mutually exclusive to 
the original prediction or each other. 

9 In head-corner parsing, Sikkel (1997) proposes the use of transitive features: features that propagate 
only through head arcs. However, this method does not solve nonminimal derivations either, because 
problematic features may be subfeatures of a head (such as the example case shown earlier), which will 
not be filtered. 
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INITIAL ITEM: 

PREDICTION: 

(id, nil, (O,O, po, mm( ~o),O) ) ' where id is a new symbol 

(id, pid, (i,j,p = (a, ~),M,d) ) 
(id', id, (j,j, p', p(M/ (d+l) ) U mm(~I,'), 0))' 

where id I is a new symbol, and d ( a and pl = (ar,~t) C P 

SCANNING: 

COMPLETION: 

(id, pid, (i,j,p = (a, ~),M,d) ) 
(id, pid, (i ,j+l,p,M U mm( ~') \ (d+l),d+l)) ' where d < a and (wj+D ~') E P 

(id, pid,(i,j,p,M,d)) (id",id,(j,k,p',M',a')) where d < a 
(ia, pie, (i,k,p, U U  (U' \ (d+l)),d+l)) ' 

Figure 6 
Shieber's parsing operations modified. 

the modified algorithm. In the figure, an item is represented by a nested 3-tuple, where 
the first argument is the self index, the second is the parent index/pointer, and the 
third is the old 5-tuple used in Shieber's original algorithm. A parent pointer, then, 
is set in Prediction--the resulting item has the index of the antecedent item (id) as 
its parent. By generating a new symbol for the self index in every Prediction item 
(id'), parent pointers in those items are threaded to form a prediction path. Then in 
Completion, the parent pointer is used to restrict the antecedent items: the complete 
item (on the right) must have the prior expectation (on the left) as its parent (id), 
thereby ensuring a prediction path to be precisely restored. 

While this modified algorithm offers a complete solution on the level of logic, it 
has some undesirable implications in implemented systems. The most prominent one 
is that the parent pointer scheme makes implementation of m e m o i z a t i o n  rather diffi- 
cult. Normally, memoization is used to avoid storing duplicate items that are identical; 
however, in the modified algorithm, many items that are otherwise identical will have 
different parent pointers, thereby changing the polynomial time algorithm (O(n3); Ear- 
ley [1970]) to an exponential one. To avoid computational inefficiency, a way must be 
devised for items that are identical except for parent poInters to share information, 
especially models, and thus avoid the expense of duplicate identical unification opera- 
tions. One possibility is to represent the 5-tuple from Shieber's original algorithm by a 
separate structure and have an index to it in the new 3-tuple item. This way, not only 
can the items be shared, they can still be memoized in the usual way as well. Another 
possibility is to adopt an efficiency technique along the line of selective memoization 
(van Noord 1997). Implementation and empirical analysis is our future research. 

Whatever the practical performance will turn out to be, it is important to note 
that the proposed algorithm is a formal solution that guarantees minimality for any 
grammar defined in Shieber's logic. Moreover the algorithm preserves the same gen- 
erality and flexibility as Shieber's: a mixed top-down, bottom-up parsing with the 
filtering function p to allow various instantiations of the algorithm to characterize 
their algorithms. 
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