
Squibs and Discussions
Nonminimal Derivations in Unification-based
Parsing

Noriko Tomuro*
DePaul University

Steven L. Lytinen t
DePaul University

Shieber's abstract parsing algorithm (Shieber 1992)for unification grammars is an extension of
Earley's algorithm (Earley 1970)for context-free grammars to feature structures. In this paper,
we show that, under certain conditions, Shieber ' s algorithm produces what we call a nonminimal
derivation: a parse tree which contains additional features that are not in the licensing productions.
While Shieber's definition of parse tree allows for such nonminimal derivations, we claim that they
should be viewed as invalid. We describe the sources of the nonminimal derivation problem, and
propose a precise definition of minimal parse tree, as well as a modification to Shieber's algorithm
which ensures minimality, although at some computational cost.

1. Introduction

Unification grammar is a term often used to describe a family of feature-based gram-
mar formalisms, including GPSG (Gazdar et al. 1985), PATR-II (Shieber 1986), DCG
(Pereira and Warren 1980), and HPSG (Pollard and Sag 1994). In an effort to formalize
the common elements of unification-style grammars, Shieber (1992) developed a logic
for describing them, and used this logic to define an abstract parsing algorithm. The
algorithm uses the same set of operations as Earley's (1970) algorithm for context-free
grammars, but modified for unification grammars.

In this paper, we show that, under certain conditions, Shieber's algorithm produces
unintended, spurious parses in addition to the intended ones. We call these spurious
parses nonminimal derivations (or nonminimal parse trees), because they contain
extra features which are not in the productions that license the parse, a We claim that
such nonminimal derivations are invalid. The basis of our claim is that the unifica-
tion operation as set union preserves minimality; thus any correct unification-based
parsing algorithm should produce parses that contain all and only features from the
licensing productions (i.e., minimal derivations or minimal parse trees). Nonminimal
derivations are also undesirable in practice because, given a parse tree, we cannot tell
whether a particular feature should be in the model or not unless we reconstruct the
whole tree.

Despite the nonminimal derivations, Shieber (1992) proved the correctness of his
algorithm. As it turned out, his definition of parse tree, which his proof relied on, was

* School of C o m p u t e r Science, Telecommunicat ions and Informat ion Systems, Chicago, IL 60604. E-mail:
tomuro@cs.depaul .edu

t School of Compu te r Science, Telecommunicat ions and Informat ion Systems, Chicago, IL 60604. E-maih
lyt inen@cs.depaul .edu

1 In this paper, we use "nonmin ima l der ivat ions" s y n o n y m o u s l y wi th "nonmin ima l parses" . Normal ly
the not ions of der ivat ion and parse tree are different. However , in this paper we focus on parse trees as
the final resul t of derivation, thus we m e a n that a der ivat ion is n o n m i n i m a l w h e n its result is a
n o n m i n i m a l parse, in contrast to a min ima l der ivat ion wh ich p roduces a min ima l parse. Unfortunately,
formal definit ions of m i n i ma l and n o n m i n i m a l der ivat ions are outs ide the scope of this shor t paper;
interested readers are encouraged to read Tomuro (1999).

(~) 2001 Associat ion for Computa t iona l Linguist ics

Computational Linguistics Volume 27, Number 2

((cat) - S
/ (1 cat) =" NP
.J (2 cat) -- VP

P0 = (2, ~0 :] (head) -- (2 head)
/ / head subj) - (1 head}
~, (head agr> - (1 head agr>

((cat) - VP
J <1 cat/----" V

P2 : (1, q)2 : ~ (head) -- (1 head} >
I, (head type) - intrans ,/

Figure 1
Examples of productions.

((cat) -- NP
pl = ("John",~l : ~ (head agr pers) - 3rd } >

~, (head agr n u m) - singJ

((cat) -- V "]
~l (head agr pers) - 3rd / P3 = ("sleeps", ,I~ 3 :] (head agr num) - sing)
I, (head tense} - pres

not cons t r a in ing e n o u g h to d i sa l low n o n m i n i m a l de r iva t ions . To so lve this t w o f o l d
p r o b l e m , w e p r o p o s e an a l t e rna te def in i t ion of m i n i m a l p a r s e tree for un i f ica t ion g r a m -
mar s , a n d p r e s e n t a mod i f i ca t i on to S h i e b e r ' s a l g o r i t h m w h i c h ensu re s min imal i ty .

It is i m p o r t a n t to no te tha t the s a m e s p u r i o u s p a r s e s also occur in context - f ree
pa r s ing , specif ical ly in Ea r l ey ' s a lgor i thm. H o w e v e r , s ince the on ly i n f o r m a t i o n a con-
s t i tuent carr ies in context - f ree g r a m m a r is the g r a m m a r s y m b o l , the s p u r i o u s de r iva -
t ions on ly p r o d u c e exac t ly the s a m e resul ts as the n o r m a l ones. W h e n the a l g o r i t h m
is e x t e n d e d to un i f ica t ion g r a m m a r , h o w e v e r , these s p u r i o u s pa r s e s are a p r o b l e m .

2. Unification Grammar and Parse Trees

Shieber (1992) def ines a un i f ica t ion g r a m m a r as a 3 - tup le (G, P, p0), w h e r e ~ is the
v o c a b u l a r y of the g r a m m a r , P is the set of p r o d u c t i o n s , a n d P0 E P is the s ta r t p ro -
duc t ion . G con ta ins L, a set of l abe l s (feature names) ; C, a set of constants (feature
values) ; a n d W, a set of terminals. There are t w o k inds of p r o d u c t i o n s in P: phrasal
a n d lexical . A p h r a s a l p r o d u c t i o n is a 2- tuple (a, ~) , w h e r e a is the arity of the ru le (the
n u m b e r of r i gh t -hand - s ide [RHS] cons t i tuents) , a n d ~ is a logical fo rmula . Typically,
q~ is a con junc t ion of equa t ions of the f o r m pl - p2 or pl -" c, w h e r e pl, p2 E L* are
pa t h s , a n d c E C. In an equa t ion , a n y p a t h w h i c h beg in s w i t h an in teger i (1 < i < a)
r ep re sen t s the ith RHS cons t i tuen t of the rule. 2 A lexical p r o d u c t i o n is a 2 - tup le (w, ~) ,
w h e r e w E W a n d q~ is the s a m e as above , excep t tha t there are no RHS cons t i tuents .
F igure 1 s h o w s s o m e e x a m p l e p h r a s a l a n d lexical p r o d u c t i o n s (P0 c o r r e s p o n d s to the
context - f ree ru le S --+ N P VP a n d is the s tar t p roduc t ion) . T h e n a m o d e l M rela tes to
a f o r m u l a q~ b y a sa t i s fac t ion re la t ion ~ as u sua l (M ~ ~) , a n d w h e n q~ is the f o r m u l a
in a p r o d u c t i o n p = (a, ~) , p is sa id to l i cense M.

Based on the logic above , Shieber def ines a p a r s e t ree a n d the l a n g u a g e of a
g r a m m a r e x p r e s s e d in his f o rma l i sm . To def ine a va l id p a r s e tree, he first def ines the
set of poss ib le p a r s e t rees I1 = Ui>_0 Hi for a g i v e n g r a m m a r G, w h e r e each Eli is de f ined
as fol lows:

Definition
A pa r se tree r is a m o d e l tha t is a m e m b e r of the infini te u n i o n of sets of b o u n d e d -

d e p t h pa r se t rees FI = Ui_>0 I1i, w h e r e each IIi is de f i ned as:

2 Shieber (1992) also uses a path that begins with 0 for the left-hand-side (LHS) constituent of a rule. In
this paper, we omit the 0 arcs and place the features of the LHS constituent directly at the root. This
change does not affect the formalism for the purpose of this paper.

278

Tomuro and Lytinen Nonminimal Derivations

.

.

rio is the set of models 7- for which there is a lexical product ion
p = <w, q)) E G such that 7- ~ 4<

I I i (i > 0) is the set of models 7- for which there is a phrasal product ion
p = (a, q~) C G such that 7- ~ ~ and, for all 1 < i < a, 7-/{i) is defined and
7-/<i} C Uj<iIIy.

In the second condition, the extraction operator, denoted b y / , retrieves the feature
structure found at the end of a particular path; so for instance 7-/<1) retrieves the first
subconsti tuent on the RHS of the product ion that licenses 7-. In the definition above,
II0 contains all models that satisfy any lexical product ion in the grammar, while Hi
contains all models that satisfy a phrasal production, and whose subconstituents are
all i n UjGi I]j.

To specify what constitutes a valid parse for a particular sentence, the next step is
to define the yield of a parse tree. It is defined recursively as follows: if 7- is licensed by
some lexical product ion p = {w, q~/, then the yield of 7- is w; or if 7- is licensed by some
phrasal product ion {a, q~} and O~ 1 (X a are the yields of 7-/(1) 7-/<a) respectively,
then the yield of 7- is ~1 . . . %.

Finally, Shieber defines a valid parse tree 7- c II for sentence Wl . . . wn as follows:

o

2.

The yield of 7- is Wl . . . Wn

7- is licensed by the start product ion po

Notice that this definition allows extra features in a parse tree, because a parse tree
7- is defined by the satisfaction relation (7- ~ ~), which allows the existence of features
in the model that are not in the licensing product ion 's formula. Given this definition,
for any valid parse tree 7-, we can construct another parse tree 7-' by s imply adding an
arbitrary (nonnumeric) feature to any node in 7-. Such a parse tree T' is nonminimal
because extra features are nonminimal with respect to the minimal features in the
licensing productions. We will re turn to the issue of minimal and nonminimal parse
trees in Section 4.

3. The Abstract Parsing Algorithm

Based on the logic described above, Shieber defines an abstract parsing algori thm as a
set of four logical deduct ion rules. Each rule derives a new item, from previous items
a n d / o r product ions in the grammar. An item is a 5-tuple {i,j, p, M, d), where i and j are
indices into the sentence and specify which words in the sentence have been used to
construct the item; p is the product ion used to construct the item; M is a model; and d
is the posit ion of the "dot"; i.e., how many subconstituents in p have been completed
so far.

The logical rules of the abstract algori thm are shown in Figure 2. The Initial I tem
rule produces the first item, and is constructed from the start product ion P0. It spans
none of the input (i and j are both 0), and its model is the minimal model (ram) of P0.

The Prediction rule is essentially the top-down rewriting of the expectation (a
subconsti tuent just after the dot) in a prior item. In this rule, the extraction of M / (d +
1 / retrieves the d + 1st submodel in M (i.e., expectation). The function p, which is
left underspecified as a parameter in the abstract algorithm, filters out some features
predef ined in the various instantiations of the algorithm. Here, it is applied to the
expectation, by which it effectively controls the top-down predictive power of the

279

Computational Linguistics Volume 27, Number 2

INITIAL ITEM:
{O,O, po, mm(~o),O)

PREDICTION:

SCANNING:

li, j,p = la, ~ l ,M,d)
(j,j, p', p(M/(d+l)) t3 mm(~'), 0) '

where d K a and p' = (a',O') • P

(i,j ,p = (a, ~} ,M,d}
{i,j+lip, M t_l (mm(~2') \ { d + l)) , d + l } ' w h e r e d < a a n d (wj+l, O'} • P

COMPLETION: li'j'P = la' ~ l 'M 'd) (j,k,p' = (a',/I~'),M',a' / where d < a
I {i, kip, M El (M' \ {d+l)),d+l)

Figure 2
Shieber's parsing operations.

I0 = (O,O, po, mm(420),O)
11 = (O, 1,po, Ml,1)
12 = (1,1,p2,M2,0 I
I3 = (1,2,p2,M3,1)
I4 = (0, 2, p0, M4, 2)

ag 5 ?yP°
pers~ - n ~ p mtrans

3rd sing

Figure 3
Items produced in the parse of John sleeps, and the final parse.

algorithm and provides flexibility to the instantiated algorithms. Then the expectation
is unified with a production (~'), which can consistently rewrite it. By this operation,
some features in the expectation may be propagated down in the production.

The remaining two rules advance the dot in a prior item, by unifying the sub-
constituent to the right of the dot with either a lexical item from the input string (the
Scanning rule) or some other completed higher-level item (the Completion rule). Both
rules perform the correct unification by utilizing the embedding operator (signified
by \), which places a model M under a path p (M\p) .

We illustrate these operators with a simple step-by-step example parse. Consider
the grammar that consists of the rules presented in Figure 1. Using this grammar,
Figure 3 shows the parse of the sentence John sleeps. First, the Initial Item operator
is applied, producing item I0, whose model is mm(~o). Next, the Scanning operator
scans the word John, producing 11. The Prediction operator then produces 12. Next,
the word sleeps is scanned (since the first subconstituent of the model in 12 is a V),
producing 13. Finally, since the item in 13 is complete (d = 1, the arity of production
p2), Completion is applied to items 11 and/3, producing 14. Model M4 is the final parse
of the sentence.

4. Nonminimal Derivations

In Section 2, we noted that Shieber's definition of parse trees allows them to be non-
minimal. We consider these to be invalid based on a principle that, since the unification
operation as set union preserves minimality (as proved in Shieber, [1992]), repeated
applications of unification using licensing productions should result in parses that
contain features only from those productions and nothing more. In this section, we

280

Tomuro and Lytinen Nonminimal Derivations

((cat) - VP
I (1 cat) -- VP

p4 = (2,~4: { (2 cat} -- ADV }
| (head) - (1 head) /
((head modified) - true)

Figure 4
A phrasal production that results in a nonminimal derivation.

I~ = (1,1,p4,M~, 0}
/~' = (1,1, p2,M~r, 0)
I~ = (1,2,p2,M~, 1)
I~ = {0, 2, p0, M~, 2}

M 4 ~ ."

cat~-43

c S a l t

NP n e a ~ / l ~ V u b ~ V t

ag~.. 7se.t~pe~modified
per~ n ~ lntrans t}ue

3rd sing

Figure 5
Nonminimal derivation of John sleeps.

formally define minimal and nonminimal parse trees, and show an example in which
nonminimal parse trees are p roduced by Shieber 's algorithm.

Our definition of minimal parse tree is to a large extent similar to Shieber 's def-
inition, but to ensure minimality, our definition uses the equali ty relation instead of
D, and inductively specifies a minimal parse tree bot tom-up.

Definition
Given a g rammar G, a minimal parse tree r admit ted by G is a model that is a member

of the infinite union of sets of bounded-dep th parse trees 11' = Oi>0 IIl, where each
171 is defined as:

.

2.

For each lexical product ion p = (w, ~b) E G, mm(~) E 11'o.

For each phrasal product ion p = (a, ~} E G, let rl ra E Uj<i I1;. If
r = mm(~) l i t1 \ (1) t3 . . . I l r l \ (a} , then r E 1I;.

It is obvious that 1I' is a subset of 17 in Shieber 's definition. Then, a nonminimal parse
tree is defined as a model that is a member of the difference of the two sets (II - 1I'). 3

Here is a simple example in which a nonminimal parse is p roduced in Shieber 's
algorithm. Say that we add the product ion in Figure 4 to the grammar in the previous
section. The intent of this product ion is to mark the verb with the feature modified if an
adverb follows. Using this grammar, Shieber 's algori thm will p roduce a nonminimal
parse for the sentence John sleeps, in addit ion to the minimal parse shown in the
previous section. 4 The nonminimal parse, shown in Figure 5, arises as follows: after
scanning John, Prediction can produce items I~ and I~', first using product ion p4 (thus
inserting /head modified} - true into the model), and then P2. Scanning the word

3 Note that using subsumption (which we will discuss in Section 5) here does not work, for instance by
saying "a model r " is a nonminimal parse tree if r " E 17 and there exists r ' E II such that r ' _< r"" ,
because some r " ' s are minimal. See the example in Section 5.

4 Here, we are assuming that the filtering function/9 is the identity function.

281

Computational Linguistics Volume 27, Number 2

sleeps then produces I~ from I~ I. Completion then can be applied directly to 11 and 11 by
skipping a completion using I~ and I~, thereby producing item I~. The feature modified
remains in I~, even though an adverb was never encountered in the sentence. The
final parse M~, shown in Figure 5, is clearly nonminimal according to our definition
because of this feature.

Note that the example grammar can be changed to prevent the nonminimal parse,
by moving the feature modified off of the head path in ff~4 (i.e., (modified / - true
instead of (head modified / - true), s However, the point of the example is not to argue
whether or not well-designed grammars will produce erroneous parses. A formally
defined parser (see the discussion below) should in principle produce correct parses
regardless of the grammar used; otherwise, the grammar formalism (i.e., Shieber's logic
for unification grammars) must be revised and properly constrained to allow only the
kinds of productions wi th which the parser produces correct results.

In general, nonminimal derivations may arise whenever two or more predictions
that are not mutual ly exclusive can be produced at the same point in the sentence;
i.e., two prediction items (i, i, p, M, 0 / and (i, i, p', M ~, 0 / are produced such that M
M / and M and M ~ are unifiable. In the example, items 12 = (1,1, p2, M2, 0/ and I~ --
(1,1, P4, M~, 0) (as well as I2 and I~ ~ = (1,1, p2, M~ ~, 0/) are two such items. Since the two
predictions did not have any conflicting features from the beginning, a situation may
occur where a completion generated from one prediction can fill the other prediction
without causing conflict. When this happens, features that were in the other prediction
but not the original one become nonminimal in the resulting model.

As to what causes nonminimal situations, we speculate that there are a number
of possibilRies. First, nonminimal derivations occur when a prediction is filled by a
complete item that was not generated from the prediction. This mismatch will not
happen if parsing is done in one direction only (e.g. purely top-down or bottom-up
parsing). Thus, the mixed-direction parsing strategy is a contributing factor.

Second, wrong complete items are retrieved because Shieber's item-based algo-
r i thm makes all partial results available during parsing, as if they are kept in a global
structure (such as a chart in chart parsing). But if the accessibility of items were some-
how restricted, prediction-completion mismatch would not happen. In this respect,
other chart-based algorithms for unification grammars which adopt mixed-direction
parsing strategy, including head-corner parsing (van Noord 1997) and left-corner pars-
ing (Alshawi 1992), are subject to the same problem.

Third, extra features can only appear when the grammar contains rules which
interact in a certain way (such as rules P2 and P4 above). If the grammar contained
no such rules, or if p (the filtering function applied in Prediction) filtered out those
features, even the prediction-completion mismatch would not produce nonminimal
derivations.

As we stated in the beginning of this section, we consider nonminimal parses to
be invalid on the basis of minimality. It then immediately follows that any parsing
algorithm that produces nonminimal parses is considered to be unsound; in particular,
Shieber's algorithm is unsound. However, since nonminimal parse trees have the same
yield as their minimal counterparts, his algorithm does indeed recognize exactly the
language of a given grammar. So, Shieber's algorithm is sound as a recognizer, 6 but
not as a transducer or parser (as in van Noord, [1997]) where the correctness of output
models (i.e., parse trees) is critical. In other words, Shieber's algorithm is correct up to

5 Note that adding (head modified) -- false to ~2 (VP --* V) or ~3 (sleeps) is not feasible, because they
cannot specify the modified feature at their level,

6 In fact, Shieber hints at this: "The process of parsing (more properly, recognition)..." (Shieber 1992, 78).

282

Tomuro and Lytinen Nonminimal Derivations

l icensing, bu t incorrect on the basis of a s t ronger criteria of minimali ty . Thus , to guar -
antee correctness based on minimal i ty , w e n e e d ano the r a lgor i thm; such an a lgo r i t hm
is exact ly the so lu t ion to the n o n m i n i m a l de r iva t ion p rob lem.

5. Practical Techniques

Before p resen t ing our so lu t ion to the n o n m i n i m a l de r iva t ion p rob lem, w e discuss
several possible pract ical t echniques to get a r o u n d the p r o b l e m in i m p l e m e n t e d sys-
tems. These are k n o w n techniques , w h i c h h a v e been appl ied to solve o ther p r o b l e m s
in uni f ica t ion-based systems. H o w e v e r , m o s t of t h e m on ly offer par t ia l so lut ions to
the n o n m i n i m a l der iva t ion p rob lem. First, w h e n e v e r Sh ieber ' s a lgo r i thm p r o d u c e s a
n o n m i n i m a l der ivat ion, it also p r o d u c e s a c o r r e s p o n d i n g min ima l de r iva t ion (Tomuro
1999). Thus, one possible solut ion is to use s u b s u m p t i o n to d iscard i tems that are m o r e
specific than any other i tems that are p r o d u c e d . S u b s u m p t i o n has of ten been used in
uni f ica t ion-based sys tems to p a c k i tems or m o d e l s (e.g., A l shawi 1992). Howeve r ,
s imple s u b s u m p t i o n m a y filter ou t va l id parses for some g r a m m a r s , thus sacrif icing
comple teness . 7

A n o t h e r possibi l i ty is to filter ou t p rob lemat ic features in the Predic t ion step b y
us ing the func t ion p. Howeve r , au tomat i c de tec t ion of such features (i.e., au tomat i c
der iva t ion of p) is undec idab le for the same reason as the prediction nontermination
p r o b l e m (caused b y left recurs ion) for unif icat ion g r a m m a r s (Shieber 1985). M a n u a l
detec t ion is also problemat ic : w h e n a g r a m m a r is large, par t i cu la r ly if semant ic fea-
tures are inc luded , comple te de tec t ion is nea r ly impossible . As for the t echniques
d e v e l o p e d so far w h i c h (partially) solve p red ic t ion n o n t e r m i n a t i o n (e.g., Shieber 1985;
H a a s 1989; Samue l s son 1993), they do no t a p p l y to n o n m i n i m a l der iva t ions because
n o n m i n i m a l der iva t ions m a y arise w i t h o u t left r ecurs ion or recurs ion in g e n e r a l s One
w a y is to define p to filter ou t all features except the context-free b a c k b o n e of predic-
tions. H o w e v e r , this severe ly restricts the range of possible ins tant ia t ions of Shieber ' s
a lgor i thm. 9

A third possibi l i ty is to m a n u a l l y fix the g r a m m a r so that n o n m i n i m a l der iva t ions
do no t occur, as w e no t ed in Section 4. H o w e v e r , this a p p r o a c h is p rob lemat ic for the
same reason as the m a n u a l de r iva t ion of p m e n t i o n e d above.

6. Modified Algorithm

Finally, w e p r o p o s e an a lgor i thm that does no t p r o d u c e n o n m i n i m a l der ivat ions . It is a
modi f ica t ion of Shieber ' s a lgo r i thm that incorpora tes pa ren t pointers . F igure 6 s h o w s

7 For example, when there are two predictions M1 and M2 for category C and a production p where
M1 : {<cat> -- C, <x> - a}, M2 : {<cat> - C, <y> - b}, and p = <1, {<cat> - C, <1 cat> "- D, <x> - a}>
respectively, the resulting model M2 ~ = {<cat> - C, <1 cat> - D, <x> -- a, <y> -- b} will have strictly more
information than the other resulting model MI' = {<cat> ~ C, <1 cat> - D, <x> - a}, although both
models are minimal.

8 We do not show any particular example here, but if we change the left-recursive VP rule in the earlier
example to a non-left-recursive rule, for instance VP --* VP2 ADV, and add some rules, a nonrninimal
parse will indeed arise.

Note also that some (but not all) cases of prediction nontermination will produce nonminimal
derivations. Those cases occur when there is a prediction for a category, and repeated applications of
some left-recursive rule(s) generate predictions for the same category that are not mutually exclusive to
the original prediction or each other.

9 In head-corner parsing, Sikkel (1997) proposes the use of transitive features: features that propagate
only through head arcs. However, this method does not solve nonminimal derivations either, because
problematic features may be subfeatures of a head (such as the example case shown earlier), which will
not be filtered.

283

Computational Linguistics Volume 27, Number 2

INITIAL ITEM:

PREDICTION:

(id, nil, (O,O, po, mm(~o),O)) ' where id is a new symbol

(id, pid, (i,j,p = (a, ~),M,d))
(id', id, (j,j, p', p(M/ (d+l)) U mm(~I,'), 0))'

where id I is a new symbol, and d (a and pl = (ar,~t) C P

SCANNING:

COMPLETION:

(id, pid, (i,j,p = (a, ~),M,d))
(id, pid, (i ,j+l,p,M U mm(~') \ (d+l),d+l)) ' where d < a and (wj+D ~') E P

(id, pid,(i,j,p,M,d)) (id",id,(j,k,p',M',a')) where d < a
(ia, pie, (i,k,p, U U (U' \ (d+l)),d+l)) '

Figure 6
Shieber's parsing operations modified.

the modified algorithm. In the figure, an item is represented by a nested 3-tuple, where
the first argument is the self index, the second is the parent index/pointer, and the
third is the old 5-tuple used in Shieber's original algorithm. A parent pointer, then,
is set in Prediction--the resulting item has the index of the antecedent item (id) as
its parent. By generating a new symbol for the self index in every Prediction item
(id'), parent pointers in those items are threaded to form a prediction path. Then in
Completion, the parent pointer is used to restrict the antecedent items: the complete
item (on the right) must have the prior expectation (on the left) as its parent (id),
thereby ensuring a prediction path to be precisely restored.

While this modified algorithm offers a complete solution on the level of logic, it
has some undesirable implications in implemented systems. The most prominent one
is that the parent pointer scheme makes implementation of m e m o i z a t i o n rather diffi-
cult. Normally, memoization is used to avoid storing duplicate items that are identical;
however, in the modified algorithm, many items that are otherwise identical will have
different parent pointers, thereby changing the polynomial time algorithm (O(n3); Ear-
ley [1970]) to an exponential one. To avoid computational inefficiency, a way must be
devised for items that are identical except for parent poInters to share information,
especially models, and thus avoid the expense of duplicate identical unification opera-
tions. One possibility is to represent the 5-tuple from Shieber's original algorithm by a
separate structure and have an index to it in the new 3-tuple item. This way, not only
can the items be shared, they can still be memoized in the usual way as well. Another
possibility is to adopt an efficiency technique along the line of selective memoization
(van Noord 1997). Implementation and empirical analysis is our future research.

Whatever the practical performance will turn out to be, it is important to note
that the proposed algorithm is a formal solution that guarantees minimality for any
grammar defined in Shieber's logic. Moreover the algorithm preserves the same gen-
erality and flexibility as Shieber's: a mixed top-down, bottom-up parsing with the
filtering function p to allow various instantiations of the algorithm to characterize
their algorithms.

References
Alshawi, H., editor. 1992. The Core Language

Engine. MIT Press.
Earley, J. 1970. An efficient context-free

parsing algorithm. Communications of the
ACM, 13(2).

Gazdar, G., E. Klein, G. Pullum, and I. Sag.
1985. Generalized Phrase Structure Grammar.
Blackwell Publishing.

Haas, A. 1989. A parsing algorithm for
unification grammar. Computational
Linguistics, 15(4):219-232.

284

Tomuro and Lytinen Nonminimal Derivations

Pereira, F. and D. Warren. 1980. Definite
clause grammars for language analysis.
Arti~'cial Intelligence, 13:231-278.

Pollard, C. and I. Sag. 1994. Head-driven
Phrase Structure Grammar. CSLI. University
of Chicago Press.

Samuelsson, C. 1993. Avoiding
non-termination in unification grammars.
In Natural Language Understanding and Logic
Programming IV.

Shieber, S. 1985. Using restriction to extend
parsing algorithms for complex-feature-
based formalisms. In Proceedings of the 23rd
Annual Meeting, Association for

Computational Linguistics.
Shieber, S. 1986. An Introduction to

UniX'cation-Based Approaches to Grammar.
CSLI. University of Chicago Press.

Shieber, S. 1992. Constraint-based Grammar
Formalisms. MIT Press.

Sikkel, K. 1997. Parsing Schemata.
Springer°Verlag.

Tomuro, N. 1999. Left-Corner Parsing
Algorithm for UniX'cation Grammars. Ph.D.
thesis, DePaul University.

van Noord, G. 1997. An efficient
implementation of the head-corner parser.
Computational Linguistics, 23(3):425-456.

285

