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A B S T R A C T  
In this paper we present some of the algorithm improvements 
that have been made to Dragon's continuous speech recog- 
nition and training prograxns, improvements that have more 
than halved our error rate on the Resource Management task 
since the last SLS meeting in February 1991. We also report 
the "dry run" results that we have obtMned on the 5000-word 
speaker-dependent Wall Street Journal recognition task, and 
outline our overall research strategy and plans for the future. 

In our system, a set of output distributions, known as the 
set of PELs (phonetic elements), is associated with each 
phoneme. The HMM for a PIC (phoneme-in-context) is rep- 
resented as a linear sequence of states, each having an out- 
put distribution chosen from the set of PELs for the given 
phoneme, and a (double exponential) duration distribution. 

In this paper we report on two methods of acoustic modeling 
and tr~ning. The first method involves generating a set of 
(unimodal) PELs for a given speaker by clustering the hypo- 
thetical frames found in the spectral models for that speaker, 
and then constructing speaker-dependent PEL sequences to 
represent each PIC. The "spectral model" for a PIC is sim- 
ply the expected value of the sequence of frames that would 
be generated by the PIC. The second method represents the 
probability distribution for each parameter in a PEL as a 
mixture of a fixed set of unimodal components, the mixing 
weights being estimated using the EM algorithm. In both 
models we assume that the parameters axe statistically inde- 
pendent. 

We report results obtained using each of these two meth- 
ods (RePELing/Respelling and univariate "tied mixtures") 
on the 5000-word closed-vocabulary verbalized punctuation 
version of the Wall Street Journal task. 

1. I N T R O D U C T I O N  

This paper  presents "dry run" results of work done 
at Dragon Systems on the Wall Street Journal  (WSJ) 
benchmark task. After we give a brief description of our 
continuous speech recognition system, we describe the 
two different kinds of acoustic models that  were used 
and explain how they were trained. Then we present 

*This work was sponsored by the Defense Advanced Research 
Projects Agency and was monitored by the Space and Naval War- 
fare Systems Command under contract N00039-86-C-0307. 

and discuss the results obtained so far and review our 
plans for further research. 

In our system a set of output  distributions, known as the 
set of PELs (phonetic elements), is associated with each 
phoneme. The HMM for a PIC (phoneme-in-context) 
is represented as a linear sequence of states, each hav- 
ing an output  distribution chosen from the set of PELs 
for the given phoneme, and a (double exponential) dura- 
tion distribution. The model for a particular hypothesis 
is constructed by concatenating the necessary sequence 
of PICs, based on the specified pronunciation (sequence 
of phonemes) for each of the component  words. Thus 
our system models both  word-internal and cross-word 
co-articulation. When a model for a PIC that  is needed 
does not exist, a "backoff" s trategy is used, whereby the 
model for a different, but  related, PIC is used instead. 

The two methods to be compared in this paper  consti- 
tute different strategies for representing and training the 
output  distributions to be used for the nodes found in the 
PIC models. The first method involves generating a set 
of (unimodal) PELs for a given speaker by clustering the 
hypothetical frames found in the spectral  models for that  
speaker, a step we call "rePELing",  and then construct- 
ing speaker-dependent PEL sequences to represent each 
PIC as an HMM, which we call "respelling". The spec- 
tral model for a PIC can be thought of as the expected 
value of the sequence of frames that  would be generated 
by the PIC, normalized to an average length. The sec- 
ond method, a univariate version of tied mixtures, rep- 
resents the probability distribution for each parameter  
in a PEL as a mixture of a fixed set of unimodal compo- 
nents, the mixing weights being est imated using the EM 
algorithm [9]. In both the RePELing/Respel l ing and the 
tied mixture models, we assume that  the parameters  are 
statistically independent. A more detailed explanation 
of these two methods can be found in sections 3 and 4. 

2.  O V E R V I E W  O F  D R A G O N  

T R A I N I N G  A N D  R E C O G N I T I O N  

The continuous speech recognition system developed by 
Dragon Systems was presented at the June 1990 DARPA 
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SLS meeting ([5], [6], [11]) and at the February 1991 
DARPA SLS meeting ([4]). The version presented in 
this paper is speaker-dependent, and was demonstrated 
to be capable of near real-time performance on a 1000- 
word task when running on a 486-based PC. When run- 
ning live, a TMS320C25-based board performs the sig- 
nal processing and the speech is sampled at 12ktIz. In 
the experiments reported in this paper, the speech was 
sampled at 16kiiz, the speech waveforms having been 
supplied in a standard format by NIST. 

An important contribution to our improved performance 
in the last year was our switch to 32 signal processing 
parameters (consisting of our eight original spectral pa- 
rameters together with 12 cepstral parameters and their 
estimated time derivatives). The cepstral parameters 
were computed via an inverse Fourier transform of the 
log magnitude spectrum. At recognition time, the pa- 
rameters are computed every 20 ms, while for purposes 
of training, 10 ms data was used. 

The recognition algorithm relies on frame-synchronous 
dynamic programming (an implementation of the for- 
ward pass of the Baum-Welch algorithm) to extend sen- 
tence hypotheses subject to the elimination of poor paths 
by beam pruning. In addition, the Continuous Speech 
Recognizer uses the DARPA-mandated digram language 
model ([15]), which is a modification of the backoff al- 
gorithm from [13]. The rapid matcher, as described in 
[11], is another important component of the system. For 
any frame, it limits the number of word candidates that 
can be hypothesized as starting at that frame. For pur- 
poses of this paper, which is primarily concerned with 
the quality of our modeling, most of the rapid match er- 
rors have been eliminated by passing through long lists 
of words for the detailed match to consider, at the cost 
of considerable additional computation. Similarly, most 
of the pruning errors have been eliminated by running 
with a high threshold. A companion paper [10], that ap- 
pears in this volume, describes a new strategy for train- 
ing the rapid match models directly from the IIidden 
Markov Models specified by the PICs. This new strat- 
egy shows promise for reducing the average length of the 
rapid match list that must be returned at any given time, 
and thus, speeding up the recognizer. 

In the experiments described below, models were trained 
for each of the 12 speaker-dependent Wall Street Jour- 
nal speakers, using the approximately 600 training sen- 
tences (300 with verbalized punctuation and 300 with- 
out). Testing was done using the approximately 40 
recorded sentences (per speaker) available as the 5000- 
word closed-vocabulary verbalized punctuation develop- 
ment test set. 

In order to incorporate context information at the 
phoneme level, triphone structures were constructed that 
include information about the immediate phonetic en- 
vironment that affects a phoneme's acoustic character. 
These augmented triphones, called "PIC"s, are the fun- 
damental unit of the system, and are closely related to 
other approaches that have appeared in the literature 
([16] and [14]). The information that the PICs currently 
contain is the identity of the preceding and succeeding 
phonemes, and, optionally, an estimate of the degree of 
the phoneme's prepausal lengthening. Each PIC is rep- 
resented acoustically by a sequence of nodes. Each node 
is taken to have an output distribution specified by a 
PEL, and a duration distribution. PIC models repre- 
senting the same phoneme may share PELs, but PELs 
can never be shared across phonemes. The parametric 
family used for modeling the probability distributions of 
the durations as well as of the individual acoustic param- 
eters is assumed to have the double exponential form 

1 _ I x - , , I  
P ( x )  = ~ a e  , , 

where p is the mean and a is the mean absolute devia- 
tion. 

A detailed description of the original models for PICs 
and how they were formerly trained can be found in [6]. 
The following sections explain how a variety of modi- 
fications have been made to the original PIC training 
algorithm. 

The English phoneme alphabet used by the system in- 
cludes 26 consonants (including the syllabic consonants, 
/ L / , / M / ,  and /N / )  and three levels of stress for each of 
17 vowels, constituting a total of 77 phonemes. Approxi- 
mately 10% of the lexical entries for the 5000-word WSJ 
task have multiple pronunciations, because of stress dif- 
ferences in the vowels and expected pronunciation vari- 
ations. 

Of course, the number of possible PICs that can ap- 
pear in hypotheses at recognition time (including cross- 
word PICs) is vast compared to the number of PICs that 
typically appear in 600 sentences of Wall Street Journal 
training data. This paper reports results when around 
35,000 PICs are built for the rePEL/respell models and 
when around 14,000 PICs are built for the tied mixture 
models. When the recognizer asks for a model for a PIC 
that has not been built, a backoff strategy is invoked 
which supplies a model for a related PIC instead. 
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3. R E P E L I N G / R E S P E L L I N G  

In earlier reports [6], [7], we described a straightforward 
procedure that generated speaker-dependent models via 
several passes of adaptation of the reference speaker's 
models. The adaptation process modified the PEL prob- 
ability distributions and the PIC-dependent duration 
distributions. However, no new PELs were created, nor 
was the PEL sequence for a given PIC allowed to change. 
The sharing of PELs by different PICs was determined 
by the acoustics of the reference speaker's speech, and 
was assumed to generalize to other speakers. 

At the last SLS meeting in Feb 1991 [4], we reported on 
a method for choosing the sequence of PELs for a PIC 
in a speaker-dependent fashion, essentially in the same 
manner as had been done for the reference speaker. This 
step could be performed once the original PELs had been 
adapted using the reference speaker's PIC spellings. To 
the extent that differences in PEL sequences for a given 
PIC can reflect different choices of allophones, this ex- 
tra step can capture allophonic variation among differ- 
ent speakers, and lifts the restriction that  the sharing of 
PELs be the same for all speakers. This change produced 
a significant improvement in performance. 

In order to take full advantage of our new more infor- 
mative signal processing parameters, however, a further 
change was required. We needed to construct a new set 
of PELs to serve as the class of output  distributions for 
the HMMs to be constructed. It was not adequate to 
simply extend, by adaptation, the 8 parameter PELs we 
had been working with, to 32 parameter PELs, as this 
would prevent us from making distinctions that  could 
not even be seen with the old signal processing. 

In the previous reports [6] and [4], we described how 
a set of PELs for the reference speaker was initially 
hand-constructed while running an interactive program 
for "labeling" spectrograms of the reference speaker's 
speech. We needed to be able to construct a new set 
of PELs automatically; thus, we implemented a k-means 
clustering algorithm whose purpose was to create a new 
set of (32 parameter) PELs for each speaker whose mod- 
els were to be trained. This step involved clustering 
the fxames in the "spectral models" for all of the PICs 
to be constructed for that  phoneme. A spectral model 
for a PIC is obtained by performing linear stretching 
and shrinking operations on PIC tokens (examples of the 
given PIC and of related PICs, available from a prior seg- 
mentation of the training data, based on the best models 
then available) and then averaging the resulting trans- 
formed tokens (which have a common length), to obtain 
a kind of "expected" PIC token. 

The primary motivation behind the rePELing step was 

to make it likely that  each spectral frame would have at 
least one PEL that  matched it fairly well. As each of the 
77 phonemes was limited to having only 63 PELs avail- 
able for building PICs, about 4500 PELs were created 
per speaker. 

Once the new set of PELs had been created, a dy- 
namic programming algorithm was used for converting 
the spectral model to an HMM containing up to six 
nodes, with each node assigned a PEL and a duration 
distribution. This respelling step drew on about 4000 of 
the 4500 PELs in constructing the HMMs. 

A summary of the overall training procedure is outlined 
below, with rePELing and respelling appearing as steps 
4 and 5: 

1. Six passes of adaptation were run on each speaker's 
training data, starting with the reference speaker's 
models, using the old 8 parameter signal processing. 

2. Segmentation of each speaker's data was performed, 
using the best available models (originally, those 
produced in step 1). 

3. Spectral models were built for each PIC, using all 
32 parameters, based on the segmentation in step 2. 

4. RePELing was done for each speaker in order to 
generate a speaker-dependent set of output  distri- 
butions. 

5. For each speaker, respelling was performed to de- 
termine the PEL sequences that  would be used in 
the resulting HMMs. 

6. For each speaker, one additional pass of adapta- 
tion was performed in order to better estimate the 
mean absolute deviations for each parameter for 
each PEL. 

7. Steps 2 - 6 could then be repeated, if desired. 

Results for this method appear in section 5. 

4. TIED M I X T U R E S  
Were the model described in section 3 correct, the 32 
parameters in each acoustic frame corresponding to a 
given PEL would be distributed as if they were gener- 
ated by 32 independent (unimodal) double exponential 
distributions. However, graphical displays reveal that 
the frame distributions for many PELs have multiple 
modes. Furthermore, it is well known that  the parame- 
ters within a frame are correlated. In order to deal with 
the multimodality of the data  and to capture the de- 
pendence among parameters, Dragon has implemented 
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a modeling strategy in which the output  distributions 
are represented in a more flexible way. This represen- 
tation, similar to other tied mixture models developed 
elsewhere ([8], [12]), also provides the basis for achieving 
speaker independence. 

If we divide the parameters into groups or "streams", 
with the property that  parameters in different streams 
can be assumed to be independent, then our new mod- 
eling strategy represents the probability of a frame in 
a given state as the product  of probability densities for 
each stream, and the probability density for a stream is 
assumed to be a mixture distribution over a fixed set of 
basis distributions specific to the stream. 

More formally, we let f ( z )  represent the probability den- 
sity of a PEL, where x is a frame, and we assume that  
f ( z )  is the product  of s probability densities, f i ( z i ) ,  one 
for each stream: 

3 

f (~) = H fi(xi). 
i = 1  

Furthermore, we assume that  each fi can be represented 
in terms of a set of basis distributions gij : 

Ci 
fi = ~ Aijgij, 

j=l 

where Ci is the number of components for stream i. 

At the present time, we are using 32 streams; i.e., each 
parameter is assumed to be statistically independent of 
every other parameter  in a given state. We have as- 
sumed the 32 parameters to be independent both as a 
way of relating our new results to our old results (which 
were also based on the same strong independence as- 
sumption), and as a debugging tool. We chose our ba- 
sis distributions to be equally spaced double exponential 
distributions with a fixed mean absolute deviation, ar- 
ranged so as to cover the full range of each parameter.  
Thus, when a mixture distribution was estimated, it was 
easy to see what values in the space were relatively likely 
or unlikely. In the system reported here, the set of basis 
components is the same for each stream, which would 
not be the case in a more general setting. 

The tied mixture P!C models were assumed to be ei- 
ther 1-node or 2-node models, with the number of nodes 
being determined based on the proportion of very short 
PIC tokens. At the present time, no PEL is used as an 
output  distribution for more than one node. Each tied 
mixture PIC model was built via the EM algorithm from 

instances of the given PIC found in the training data for 
the given speaker (based on segmentations obtained us- 
ing the best available models). Unfortunately, most of 
the PICs that  occur in the training data  occur very few 
times, and, not surprisingly, most of the PICs that  could 
in principle occur never in fact do. 

Thus, two key problems that  must be solved in training 
the recognizer are (1) the smoothing problem and (2) 
the backoff problem. The maximum likelihood estima- 
tor (MLE), together with many related asymptotically 
efficient estimators, has the defect of being a rather poor 
estimator when it is given only a small amount of data  to 
work with: think of estimating the probability of "heads" 
from only one coin flip. Thus, it is important  to smooth 
the MLE when there is clearly an insufficient supply of 
data. We have chosen to implement a smoothing al- 
gorithm with a strong Bayesian flavor. In this paper we 
will not address the backoff problem in any detail; at the 
present time, when we do not have a model for a PIC 
available to the recognizer, we substitute a "generic" PIC 
model, which has less specific context information. 

The Bayesian solution to the coin flip problem amounts 
to representing the prior information we may have about 
the probability of "heads" as a prior number of flips, of 
which a certain number are taken to be heads, and then 
combining those "prior" flips with the real flips. We have 
taken a similar approach to the problem of estimating 
the mixing probabilities in our tied mixture models. We 
build the more common PICs before we build the less 
common PICs (see below). At the time that  we are ready 
to build a given PIC, we make our best judgement as to 
what the mixing probabilities are for each stream of each 
state in the PIC. This guess is based on the models that 
have already been built for related PICs. Not only do 
we guess the mixing probabilities, but we also make a 
judgement about the "relevance" of our estimate, which 
is to say, the number of frames of real data  that  we 
judge our guess to be w o r t h .  We then use these prior 
estimates to initialize the EM algorithm, and in addition, 
we combine the accumulated fractional counts for each 
mixture component with the prior counts based on our 
prior guess, in forming the estimate to be used during 
the next iteration. Thus we have as our re-estimation 
formula: 

~ij = k ~ j  "4" nij 

E(k Tt + n.)' 

where Ai~ is the a priori estimate based on the PICs 
that have already been built, k is the relevance of this 
estimate, and nij is the accumulated fractional count for 
the j th  component when estimating the distribution for 
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the ith parameter in a given node. 

PICs are currently built in a prescribed order in our sys- 
tem: we build those for which there is the most data  first. 
Thus, we begin by building the doubly-sided generic 
PICs, i.e. models for phonemes averaged over all left 
and right contexts. Then we move on to build singly- 
sided generic PICs, i.e. models for phonemes where the 
context is specified only on the right or on the left; we 
use the doubly generic PIC models to smooth the mod- 
els for the singly generic ones. Finally we build our fully 
contextual PICs, but  again we build the most common 
ones first, using the doubly and singly generic PICs to 
smooth the fully contextual ones. When building a rel- 
atively uncommon fully contextual PIC, it is useful to 
smooth the model using models of related fully contex- 
tual PICs which share some of the context or have closely 
related contexts. 

5. R E S U L T S  O N  W S J  DATA 
This section contains results on the 5000-word closed- 
vocabulary speaker-dependent verbalized punctuation 
version of the Wall Street Journal task, using the devel- 
opment test data. Table 1 lists results for all the WSJ 
speakers, displaying the word error rates using three dif- 
ferent models. The first column contains the results of 
the first recognition run we did using models obtained by 
merely adapting our reference speaker's original models, 
using our old 8 parameter signal processing, yielding an 
overall word error rate of 35.6%. The second column con- 
tains our best 32 parameter  unimodal models using the 
rePELing/respelling training strategy, after several iter- 
ations of training, with an overall error rate of 16.4%. Fi- 
nally the last column contains the results of our first ex- 
periment recognizing Wall Street Journal sentences with 
the 32 stream tied mixture models described above, but 
based on only one segmentation step (segmentation into 
phonemes). This produced a word error rate of 14.8%. 
It is encouraging that  the tied mixture models yielded 
better performance than did the unimodal models on 11 
out of the 12 speakers, given that  there has not yet been 
any opportunity for parameter optimization. 

6. C O N C L U S I O N S  
The training paradigm outlined above in the description 
of our tied mixture modeling has only recently been fully 
implemented at Dragon. Many aspects of the training 
strategy await full exploration, but the early results we 
have described are very encouraging. Already we have 
improved our performance relative to our old modeling 
and training paradigms. 

In the coming months we plan to focus on a number 
of different aspects of training. First, we will be con- 

Speaker I Adapt REPEL 

I only Respell 

001 24.8 8.0 
002 21.9 9.6 
00A 64.5 24.6 
00B 36.8 22.3 
00C 47.1 28.6 
00D 56.5 23.0 
00F 43.3 20.6 
203 27.1 14.4 
400 27.6 12.5 
430 30.5 13.5 
431 29.4 14.5 
432 18.3 5.5 

AVG I 35.6 16.4 

6.7 
6.7 

26.8 
21.8 
28.1 
20.5 
16.9 
13.9 
12.4 
9.6 
9.8 
4.7 

14.8 

Tied 
Mixtures 

Table 1: Summary of Wall Street Journal Results. 
5000-word speaker-dependent closed-vocabulary 
development test set word error rate (%) using verbalized 
punctuation. 

structing basis distributions for streams with more than 
one parameter and studying the effect of this modeling 
on performance. We anticipate that  we should obtain 
improved performance as we will then be modeling the 
dependence among parameters in an individual frame. 
We will also be studying a variety of backoff strategies, 
which involve substituting fully contextual PICs instead 
of generic PICs, when a PIC model has not been built. 
Another issue of importance will be the nature of our 
Bayesian smoothing, which we hope to implement in a 
more "data driven" way. Furthermore, we expect that 
the use of tied mixture modeling will allow us to develop 
a high-performance speaker-independent recognizer, an 
important  goal for the coming year. 
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