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Abstract 
In this paper, we describe the Template Matcher, a sys- 
tem built at SRI to provide robust natural-language 
interpretation in the Air Travel Information System 
(ATIS) domain. The system appears to be robust to 
both speech recognition errors and unanticipated or dif- 
ficult locutions used by speakers. We explain the mo- 
tivation for the Template Matcher, describe in general 
terms how it works in comparison with similar systems, 
and examine its performance. We discuss some limita- 
tions of this approach, and sketch a plan for integrating 
the Template Matcher with an analytic parser, which we 
believe will combine the advantages of both. 

Introduction 
One of the conclusions SRI has drawn from working with 
the ATIS common task data  is that ,  even with a very 
constrained user task, there will always be unanticipated 
expressions and difficult constructions in the spoken lan- 
guage elicted by the task that  will cause problems for 
a conventional, analytical approach to natural-language 
processing. However, it also seems that  requests for only 
a few types of information account for a very large pro- 
portion of the utterances produced by users performing 
a task like air travel planning. This point is illustrated 
by some of the more difficult queries in the June 1990 
test set: 

discontinuity. The third example would be straightfor- 
ward, except for the fact that  the verb "servicing" has 
been substituted for the more conventional "serving." 
Despite the difficult linguistic problems posed by these 
queries, the information they request is very simple--- 
just  fares, flights, and airlines for travel between a pair 
of specified cities. 

Consideration of examples such as these has led us to 
modify our approach to natural-language processing in 
spoken language systems. The key modification to our 
system is the addition of a Template Matcher to pro- 
vide robust interpretation for the most common types 
of requests in the task domain. The Template Matcher 
achieves robustness in two ways: (1) it provides an inter- 
pretation when not all the words or constructions in an 
utterance have been accounted for, and (2) it provides 
a mechanism for trading-off the risk of wrong answers 
with the degree of coverage. These properties arise from 
a mechanism that  assigns scores to interpretations, pe- 
nalizing interpretations that  do not account for words 
in the utterance. The bulk of this paper is devoted to 
describing the Template Matcher and discussing its per- 
formance as a stand-alone system for interpretation of 
naturM-language queries for the ATIS task. Later in the 
paper we consider how such a module might best fit into 
a complete system for spoken-language understanding. 

Give me a list of all airfares for round-trip tick- 
ets from Dallas to Boston flying on American 
Airlines. 

Show me all the flights and their fares from San 
Francisco to Boston on June second. 

I need information on airlines servicing Boston 
flying from Dallas. 

In the first example the phrase "flying on American 
Airlines" apparently modifies "tickets," with the flights 
that  the tickets are for apparently being the implied sub- 
ject of "flying." The second example seems to contain 
a discontinuous constituent, "flights .. from San Fran- 
cisco to Boston on June second," which is the antecedent 
of the pronoun "their" that  occurs in the middle of the 

Description of the System 
The Template Matcher operates by trying to build "tem- 
plates" from information it finds in the sentence. Based 
on an analysis of the types of sentences observed in the 
ATIS corpus, we devised four templates that  account 
for most of the data: flight, fare, ground transportation, 
and meanings of codes and headings. We have recently 
added several new templates, including aircraft, city, air- 
line, and airport. Templates consist of slots which the 
Template Matcher fills with information contained in the 
user input. Slots are filled by looking through the sen- 
tence for particular kinds of short phrases. For example, 
"from" followed by an airport or city name will cause 
the "origin" slot to be filled with the appropriate name. 
The sentence 
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Show me all the United flights Boston to Dallas 
nonstop on the third of November leaving after 
four in the afternoon. 

would generate the following flight template: 

If i ight, [stops ,nonstop], 
[airline ,UA], 
[origin, BOSTON], 
[destination,DALLAS], 
[departing_after, [16001], 
[date, [november, 3, current_year] ] ] 

The template score is basically the percentage of words 
in the sentence that  contribute in some way to the build- 
ing of that  template. Given an input sentence, the Tem- 
plate Matcher constructs one template of each sort, and 
the one with the best score is used to construct the 
database query, provided its score is greater than a cer- 
tain "cut-off" parameter.  The cut-off parameter is what 
permits the risk trade-off mentioned above: the higher 
the cut-off, the more conservative the system is in at- 
tempting to produce a response. Words can contribute 
to a score in different ways: words that  fill a slot (e.g., 
"Boston") add to the score, words that  help get a slot 
filled (e.g. "from") also add to the score. Some words 
may not contribute to the interpretation, but  nonethe- 
less confirm the choice of a particular template (e.g., 
"downtown" for the ground transportat ion template), 
and hence are added to the score for that  template. 
Other words are ignored for the purposes of scoring (e.g., 
"and, . . . .  please, . . . .  ok," and "show"), since they do not 
tend to confirm particular templates. 

In certain cases the Template Matcher may modify the 
basic score of a template. Each template has a set of key 
words (or key phrases). The presence of these words or 
phrases in a sentence is a strong indication that  the asso- 
ciated template is the appropriate one for that  sentence. 
For the flight template, the keywords include words like 
"flight," "fly," and "go"; for the fare template, words 
and phrases such as "how much," "fare," and "price" 
are examples; for the meaning template, examples in- 
clude "what is," "explain," and "define." If none of a 
template 's  key words are present in a sentence then that  
template 's  score is docked by a certain keyword punish- 
ment factor, which varies from template to template. In 
most cases the lack of a keyword will prevent the asso- 
ciated template from scoring above the cut-off. 

There are two situations in which the Template 
Matcher will "abort" a given template, that  is, give it 
a score of zero and cease processing it. First, if the sys- 
tem tries to fill a slot in a certain template with two 
different values, that  template is aborted. Since we have 
no better  than a fifty-fifty chance of guessing which is the 
correct filler, we are better  off not at tempting any an- 
swer. Second, if a template has no slots filled, it will re- 
ceive a score of zero. This restriction is relaxed when the 
Template Matcher is operating in "context-dependent" 
mode, where follow-up questions are expected. A query 
like "show me the fares," which would not fill any slots, 

would be much more likely as a follow-up question than 
as a context-independent query. 

Comparison with Other Systems 
Systems using the basic idea behind the Template 
Matcher go back as least as far as the SAM system at 
Yale [2], and include the Phoenix system at CMU [3, 4] 
and the SCISOR system at General Electric [5] as re- 
cent examples. There is also a degree of similarity to 
"case-frame"-based parsing methods [6, 7]. The main 
distinction is that  the slots in our templates are domain- 
specific concepts rather than general linguistic or con- 
ceptual cases. 

Of these precursors, the Phoenix system seems most 
similar to the Template Matcher. Like the Template 
Matcher, the Phoenix system has templates (which they 
call "frames") with slots that  get filled with information 
from the sentence. The scoring mechanisms of the two 
systems are similar, but  not identical. For both, the 
basic score of an interpretation is the number of words 
in the sentence that  the interpretation accounts for. In 
the Phoenix system, for a word in a sentence to count 
for an interpretation's score, it must help fill some slot in 
that  interpretation's frame. For the Template Matcher, 
the word will also count if it is an "ignore" or "confirm" 
word as discussed above. 

There are several other differences between the scoring 
mechanisms of the two systems: The Template Matcher 
punishes templates that  do not have a keyword present 
in the sentence, and the Template Matcher requires that 
at least one slot in a template be filled. Also, the two 
systems behave differently when an a t tempt  is made to 
fill a single slot with two different fillers. The Template 
Matcher will abort a template if this happens, while 
the Phoenix system will fill the slot with the second of 
the two possible fillers. The latter approach will handle 
certain types of false starts, but  might be expected to 
yield more incorrect answers in other situations. Finally, 
CMU is not currently using a cutoff to weed out bad in- 
terpretations, although given the existence of a scoring 
mechanism in their system, this is something they clearly 
could do. 

Results  
After two weeks of development this system was tested 
on the June 1990 ATIS test set. This was a fair test to 
the extent that  the implementor of the matching rou- 
tines and the templates themselves (Jackson) had not 
examined the data  from this test set prior to the eval- 
uation. (Moore had noted, however, that  the test set 
queries seemed amenable to a template-matching ap- 
proach). For various values of the cut-off parameter we 
obtained the results shown in the following table. 
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Cut-off Right Wrong No Answer 
0 .000 55 13 22 
0.833 42 4 44 
1.000 37 2 51 

(These results were determined by visual inspection of 
the templates; the database retrieval code was not imple- 
mented at this point.) The conclusion we drew from this 
test is that  a template-matching approach could quickly 
yield results that  were competitive with the some of the 
better results reported in the original June 1990 ATIS 
test. 

After completing the implementation of the system 
and extensive development using the ATIS training data, 
we used the Template Matcher for the February 1991 
ATIS class A evaluation, in both the NL and SLS tests. 
The results as measured by NIST are shown below. 

Test Right Wrong No Answer 
NL only 109 9 27 
SLS 96 11 38 

We used a cut-off of 0.8 for this evaluation, as we had 
previously determined from training data  that  this value 
should come close to optimizing the number of right an- 
swers minus the number of wrong answers. 

The system for the SLS tests was a serial connection 
of the version of SRI's DECIPHER system used in the 
ATIS SPREC evaluation and the Template Matcher de- 
scribed above. The answers reported in the SPREC eval- 
uation were edited to be in lexical SNOR format and 
run through the Template Matcher exactly as in the 
NL tests. It is interesting to note the relatively small 
degradation from the NL to the SLS results, despite a 
18.0 percent word error rate in the speech recognition; 
this seems to indicate the robustness of the Template 
Matcher to recognition errors. 

We had not planned to participate in the D1 evalua- 
tion, but at the request of NIST, we did those tests as 
well, taking context into account by using the answer to 
the first query in the D1 pair to restrict the database 
search in answering the second query, the same tech- 
nique used in our ATIS demo system. In addition, the 
Template Matcher was run in context-dependent mode 
for the second query of each D1 pair. The results on 
the second queries of the pairs as measured by NIST are 
shown in the table below. 

Test Right Wrong No Answer 
NL only 22 3 13 
SLS 15 11 12 

We have not yet analyzed why there was a greater degra- 
dation in going from the NL to the SLS results in the 
D1 tests. 

Limi ta t ions  
In this section, we discuss some sentences that  cause 
problems for the Template Matcher that  are not easily 
resolvable. 

Show me flights returning from Dallas into San 
Francisco by ten P M. 

This sentence is a good example of the need for syn- 
tactic information. The problem is that  the Template 
Matcher cannot tell that  the phrase "by ten P M" mod- 
ifies "returning," and thus constrains the arrival time. 
By default, it treats the "by" phrase as restricting the 
departure time, and thus misinterprets the query. 

What  is an A fare? 

The problem here is that  "A" is ambiguous; it may 
be either the indefinite article or a fare class code. We 
have been forced to leave the fare class code "A" out of 
the Template Matcher lexicon. Adding it would do more 
harm than good, for we would then misinterpret every 
occurence of the phrase "a fare" (with the indefinite ar- 
ticle), as in "Give me a fare from Boston to Dallas." 
Syntactic information could help resolve this ambiguity, 
as could speech information, since the determiner "a" 
and the letter "A" have different acoustic properties. 

List the fares for Delta flight eight oh seven 
and Delta flight six twenty one from Dallas to 
Denver. 

Conjunctions of complex noun phrases are beyond the 
scope of the Template Matcher as it currently stands. 
The system could be modified to handle such phenom- 
ena, but an analytical grammar might be the more nat- 
ural tool for the job. 

Do you have to take a Y N flight only at night? 

This is an example of a sentence where all the words 
contribute to a certain template (the flight template, in 
this case) and yet that  template is not the correct one. 

A N e w  A r c h i t e c t u r e  
As the examples in the previous section suggest, the 
Template Matcher by itself is probably not the ulti- 
mate solution to the problem of robust interpretation of 
natural-language queries. We believe that  the template- 
matching approach and an analytical parser-based ap- 
proach have complementary strengths and that  an ap- 
proach that  combines both of them is likely to be ulti- 
mately superior than either one alone. We have therefore 
begun developing a new architecture for language pro- 
cessing in spoken language systems that  combines the 
two approaches. Our basic strategy will be to use the 
analysis produced by the parser whenever we can, but 
to fall back on the Template Matcher when the parser- 
based system fails to produce a complete analysis. It is 
our conjecture, supported at least in part  by the best 
results reported in the June 1990 ATIS evaluation, that 
an analytical, parser-based approach can be designed so 
that  when it succeeds in providing a complete analysis 
of the input, that  analysis has a very high probability 
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of being correct. With the Template Matcher it seems 
that  there will inevitably be a larger possibility for error, 
because it uses strictly less of the information available 
in the utterance than a parser. In particular, our Tem- 
plate Matcher can ignore words; it ignores order; and it 
has almost no notion of structure. By using the Tem- 
plate Marcher as a backup to the parser-based system, 
we eliminate the possibility of the Template Matcher get- 
ting a wrong interpretation of something that  could be 
successfully analyzed by the parser. 

A second reason for running the Template Matcher 
after the parser is to enable the Template Matcher to 
use partial results of parsing in its operation. Our cur- 
rent Template Matcher uses only single words and fixed 
phrases as key words or slot fillers. We are in the pro- 
cess of extending the Template Matcher so that  it uses 
whole phrases that  have been identified by the parser 
in at tempting to analyze the entire utterance. For ex- 
ample, we saw that  the Template Matcher is unable to 
analyze a phrase as complex as "returning from Dallas 
into San Francisco by ten P M." Generalized to work 
from parsed phrases, the Template Matcher might be 
able to successfully interpret a complex utterance con- 
taining this phrase even if the entire utterance could not 
be parsed. Additionally, running the Template Matcher 
on parsed phrases should cut down on the sheer number 
of particular word patterns that  have to be included in 
the template specifications. 

The use of robust interpretation methods changes the 
way in which the constraints embodied in a grammar 
are viewed. They must be treated as soft, rather than 
hard, constraints. This has significant implications for 
the rest of a spoken language system. If we want the 
parser to find grammatical fragments of the input that  
may be of use to the Template Matcher, then the parsing 
algorithm we previously used, which imposed strong left- 
context constraints, is no longer appropriate. We want 
something closer to pure bot tom-up parsing to find all 
the phrases that  the Template Matcher might use. We 
have developed such a parser, whose details are outlined 
in another paper for this workshop [1]. 

Perhaps the most significant consequence of using ro- 
bust interpretation methods in a spoken language sys- 
tem, however, is that  the failure to find a complete parse 
can no longer be used as a hard constraint to reduce per- 
plexity for the speech recognizer. An analytical grammar 
still contains valuable information that  should be used by 
the recognizer, however. We feel that  one promising ap- 
proach to making use of this information is to extend the 
idea of a word-based statistical language model, such as 
a bi-gram model, to a phrase-based statistical language 
model, e.g., a "bi-phrase" model. The idea is simply 
to estimate the probability of occurrence of a particular 
type of phrase conditioned on the type of phrase that  
precedes it. In making this work effectively, however, it 
is important  to include some lexical information in the 
categorization of phrases, usually information about the 
lexical head of the phrase. 

The ability of such a framework to capture long dis- 

tance constraints not captured by N-gram models is il- 
lustrated by an utterance such as "What  airlines that 
serve Boston fly 747s?" If we want to predict the like- 
lihood of "fly" occuring in this context, the preceding 
word "Boston" gives us essentially no information. If, 
however, we have identified "What  airlines that  serve 
Boston" as a noun phrase whose lexical head is "air- 
lines" then the likelihood of a verb whose lexical head is 
"fly" should be relatively high. 

The incorporation of a probabilistic element into the 
system raises a number of other interesting possibilities, 
including incorporation of probabilistic scoring based on 
observations of likelihoods of particular templates for 
sentences in the corpus, of particular slots for each tem- 
plate, and of particular words for each slot; and the pos- 
sibility of using the Template Matcher itself as the basis 
of a statistical language model to guide recognition. 

S u m m a r y  
In sum, the Template Matcher represents a complemen- 
tary approach to traditional natural-language process- 
ing. It has the virtues of robustness and broad coverage 
of many linguistic variants for requests for specific types 
of information. Although we have not discussed the issue 
of computational efficiency in this paper, the Template 
Matcher is noticably faster than a typical parser. The 
approach also has the advantage of rapid development 
time which should enhance portability to new domains. 
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