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A B S T R A C T  
In 1989, our group first reported on the development of SUM- 

MIT, a segment-based speaker-independent continuous-speech re- 
cognition system [13] . The initial version of SUMMIT made use 
of fairly simple context-independent models for the lexical labels. 
Recently, we have begun to incorporate more complex models of 
lexical labels that take into account a variety of contextual fac- 
tors. These changes, along with an improved corrective training 
procedure for adapting pronunciation arc weights and a larger set 
of training data, have resulted in the reduction of error rate by 
almost a factor of two on the Resource Management task. 

I N T R O D U C T I O N  
Variability in speech arises from many different sources. 

For example, acoustic variability can be due to noise or chain 
nel characteristics, phonetic variability can be due to contex- 
tual or speaker-specific effects, and dialect effects can alter 
speakers' pronunciations of words. Speech recognition sys- 
tems must have mechanisms to model these various types of 
variability, and sometimes it may be necessary to deal with 
different types of variability with different mechanisms. For 
example, it may be difficult to find a single model that  is able 
to deal effectively with both low-level acoustic variability and 
dialect differences among speakers. 

find mechanisms that  are able to account for many different 
types of contextual factors. 

In this paper, we will describe a number of experiments in- 
tended to address some of the problems mentioned above. So 
far, we have a t tempted to account for some of the contextual 
effects on our phonetic models, although the approach that  
we have taken should apply to the higher levels of the system 
also. Briefly, we have found that  we can increase recogni- 
tion performance by creating context-specific models or by 
using more flexible models. However, we did not see a per- 
formance increase when we combined the two in a straight- 
forward manner, presumably due to the fact that  more flex- 
ible models tend to require more training data. If, instead 
of using context-specific models, we accounted for context 
by adjusting the input to the phonetic models (creating a 
context-normalized input vector), we were able to account 
for contextual effects and were able to use more flexible pho- 
netic models, resulting in the highest performance for our 
system. 

In the following sections, we will first provide an overview 
of the system. This will be followed by a more detailed de- 
scription of the changes we have made to the system, and 
evaluation results on the Resource Management task. 

In the SUMMIT system, we have made a rough distinc- 
tion between the sort of variability that  we can deal with 
within our phonetic models (including acoustic variability 
and speaker differences at a phonetic level), and higher level 
phonological variation (including dialect effects and word- 
boundary effects). In both cases, our goal is to account for 
as much of the variability as possible, and it is clear that  
at least some of the variability is due to contextual effects. 
Just as there are many types of variability, there are many 
types of contextual effects, including local phonetic effects 
(coarticulation), effects of stress, phrase-level effects (such as 
prepausal lengthening), and higher level effects (such as sen- 
tential stress or dialect differences). Therefore, we need to 
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S Y S T E M  O V E R V I E W  
C o m p o n e n t  D e s c r i p t i o n  

A block diagram of the SUMMIT system is shown in Fig- 
ure 1. The acoustic processing consists of a model of the 
human peripheral auditory system as a front-end, a hierarchi- 
cal segmentation algorithm to produce a network of possible 
acoustic segments, an automatically defined set of segmental 
measurements for each hypothesized segment, and finally, a 
statistical classifier for providing a probability of each label 
given a segment. The result of this analysis branch of the 
system is a network of possible phonetic interpretations of 
the speech signal. Each arc in the network has a list of prob- 
abilities of the labels used to represent the lexicon [13]. 
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Figure  1: The major components of the SUMMIT system. 

The lexicon is also represented as a network, which is de- 
rived by applying a set of transformation rules to a set of 
baseform pronunciations of the words in the lexicon. These 
transformation rules are defined by hand and are intended 
to account for some known phonological effects such as flap- 
ping and gemination. The pronunciation networks for the 
individual word~ are combined into a single network allowing 
all possible word strings. Inter-word pronunciation rules and 
local granmaatical constraints are taken into account when 
the words are combined into this network. 

Finding the highest scoring word sequence is accomplished 
by finding the best match between a path in the acoustic net- 
work and a path in the lexical network. The initial version of 
the system used Viterbi search to find the single best match. 
More recently we have been using the A*, N-best  search de- 
scribed in [15] and [11] to find a list of top scoring sentence 
hypotheses. 

Scoring Strategy 
Since the overall score of a path consists of a number of 

components (acoustic model score, duration model score, seg- 
mentation score, and, in some cases, language model score), 
we must determine a way to combine them. If these were sta- 
tistically independent probabilities of paths given the acous- 
tics, we could simply combine them by multiplication. Un- 
fortunately, it is unlikely that  the component scores are sta- 
tistically independent. Besides, they are likely to be poor 
estimates of probabilities both because of lack of training 
da ta  and because the models used by these components also 
make mistaken assumptions about their probabili ty distribu- 
tions and about the statistical independence of the segments 
making up the path.  

In addition, we have the problem in a segment-based sys- 

tem that  different paths contain different acoustic segments 
and therefore have different observation spaces [6]. We can- 
not simply compare probabilities of word sequences given 
acoustic observations since the probabilities are computed 
using different observations. Normalizing the probabilities 
by the length of the segments helps to some degree (since all 
paths have the same duration), but then longer duration seg- 
ments have a greater influence on the path  score than short 
segments. 

In the past, we have dealt with these problems by using 
a weighted linear combination of estimates of the log prob- 
ability of component scores along with a segment-transition 
penalty and word-transition penalty as our overall path score. 
The component weights and transit ion penalties were ob- 
tained by optimizing performance on a portion of the training 
data. 

Recently we have begun to use the N-best  search men- 
tioned previously to obtain the top N scoring paths. With  
the availability of these paths,  we can then use the individ- 
ual component scores as input to a classifier which can be 
trained to discriminate between correct and incorrect paths. 
So far, we have been using a linear discriminate function 
as this classifier, but more complex classifiers can clearly be 
used. Treating this as a classification problem allows us to 
not make assumptions about the meaning of the component 
scores (other than the assumption that  we would like them 
to help discriminate correct from incorrect paths).  

This new scoring strategy also permits us to apply, as 
a post-proccess, constraints that  do not fit well into the ini- 
tial search strategy. For example, we can make use of context 
dependent models that  can consider the global utterance con- 
text in addition to the local context. 

R E C O  G N I T I O N  E X P E R I M E N T S  
All the experiments described in this paper are performed 

on the 1,000-word Resource Management (RM) task [7]. In 
all cases, we have used the perplexity 60 word-pair language 
model. Except for the baseline system, we have used the 
now standard 109-speaker training set. To facilitate a mean- 
ingful comparison, all the experiments were conducted using 
the February 1989 speaker-independent test set consisting of 
300 utterances, 30 each from 10 different talkers. The exper- 
iments that  we conducted are summarized in Figure 2, and 
will be described in this section. 

L e x i c a l  M o d e l s  

In the initial version of SUMMIT reported in [13], each 
label used in the pronunciation of words in the lexicon is rep- 
resented by a single diagonal Gaussian model. This proce- 
dure is i l lustrated by path  (a) in Figure 2. The input to these 
models is a transformation of a set of segmental acoustic mea- 
surements, which were determined automatically using an 

7 2  



(a) 

[- 

(b) (¢) (d) (e) 

Figure  2: Illustration of the various experimental conditions. 
DG denotes a diagonal Gaussian classifiers, whereas CD Tree and 
CN Tree denote context-dependent and context-normalized tree 
classifiers, respectively, as described in text. 

optimization procedure where the optimization criterion was 
a measure of phonetic discrimination performance [8]. These 
measurements are based on a n  entire segment and therefore 
can potentially take into account both the static and dynamic 
properties of the segment and its surroundings. The outputs 
of these measurements form a vector for each segment. This 
vector is transformed by a combination of linear discriminant 
functions and principle components analysis to allow for bet- 
ter modelling by the diagonal Gaussian models. The resulting 
vector has 52 dimensions. This context-independent system 
achieved a word error rate of 13.6% on the RM task, as shown 
in the first row of Table 1. This baseline system was trained 
on the then standard 72 speaker training set. By increas- 
ing the training da ta  to 109 speakers and using an improved 
corrective training procedure described in [14] for training 
the pronunciation weights, We reduced the word error rate to 
12.9%. This new context-independent result is shown in the 
second row, marked 109-TRAIN, of Table 1. 

The intention of using such simple models of the lexical 
labels was to serve both as a baseline for experiments with 
more complex models and to allow us to use a simple dis- 
tortion measure as a criterion for selecting a set of context- 
dependent models. We have begun both sets of experiments 
and have been exploring the trade-offs between adding flex- 
ibility to our models (which generally require more training 
da ta  per model) and making use of more specific context- 
dependent models (which generally allow us to use less train- 
ing data  per model). 

Our initial a t tempts  at using more complex models have 
focused on the use of mixtures of diagonal Gaussians, since 
this is a natural  extension of our baseline system, and mix- 

tures of Gaussians have been shown to be effective in other 
continuous-density speech-recognition systems [3]. This is il- 
lustrated by path  (b) in Figure 2. Our mixtures are seeded 
with a VQ codebook generated with standard hierarchical 
procedures. A threshold is used to prune away mixtures with 
too few members. When we replaced the single Gaussian 
model for each label in system 109-TRAIN (cf. Table 1) by a 
mixture Gaussian model with a maximum of 16 mixtures per 
class,-the error rate decreased from 12.9% to 10.3%. The de- 
tailed results can be seen in the row marked CI-MIXTURES 
(context-independent mixtures) of Table 1. 

Thus far we have kept the transformation of the origi- 
nal acoustic input dimensions intact when using these more 
flexible models. There are some indications that  this trans- 
formation may not be necessary, and in fact its elimination 
may lead to bet ter  performance. In addition, we have been 
experimenting with the use of distinctive features as an in- 
termediate representation [5]. The use of distinctive features 
may turn out to be a bet ter  representation in which to ac- 
count for factors such as context, speaker, and dialect effects. 

C o n t e x t  D e p e n d e n t  M o d e l s  

Many researchers have found that  the use of context- 
dependent models can lead to an increase in word recognition 
performance [10,4]. We have been concerned not only with 
context-dependent modelling but  also with the more general 
problem of lexical representation. The choice of lexical repre- 
sentation involves not only the choice of an inventory of units 
(such as context-independent or context-dependent models) 
but  also the structure of the pronunciation networks. Many 
systems currently make use of a rather complex set of units, 
but  then rely on only a single pronunciation path  for each 
word in the lexicon. Although context-dependent models can 
account for some of the variability due to context, altering 
the structure of the pronunciation networks may be a more 
natural  way to account for phonological effects such as flap- 
ping and gemination, as well as certain types of inter-speaker 
variability due to dialect differences. Since we are interested 
in this more general problem of lexical representation, it has 
been our goal to find a mechanism to automatically define 
both an inventory of lexical units and a set of pronunciation 
networks for a given lexicon. We have been treating this as 
an optimization problem where the goal is to find a set of 
transformation rules that ,  when applied to a set of baseform 
pronunciations, results in a ]exical network that  optimizes 
some measure of recognizer performance. 

These transformation rules can alter both the labels on 
the arcs in the network (resulting in context-dependent units) 
and can also alter the structure of the networks (resulting in 
networks of alternate pronunciations). The rules are able to 
take into account a variety of contextual factors including lo- 
cal contexts (e.g., whether the left label is a stressed vowel 
or whether the right label is a / t / ) ,  as well as global contexts 
(e.g. whether the segment is in the last syllable of the sen- 
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tence). For the experiments reported in this paper, we have 
limited the opt in~at ion to use only rules that alter the la- 
bels on the arcs in order to cc.mpare to performance increases 
achieved by other researchers using only context-dependent 
modelling. 

When applying only label-alteration rules, the optimiza- 
tion procedure that we use is basically a top-down tree grow- 
ing procedure similar to that used by other researchers [1,2,9]. 
We start with all samples of a given class in the top node of 
the tree and then in each iteration, try splitting each leaf 
node in the tree with each of the available contextual factors 
(such as whether the left label is a stressed vowel), keeping 
the split that maximizes the criterion over all leaf nodes of 
the tree. We only allow splits that result in nodes with at 
least some minimum number of samples in each node. The 
resulting leaf nodes define the set of context-dependent mod- 
els. In our case, we would like to use a splitting criterion 
that is related to the overall recognition performance (since 
we are trying to obtain the set of context-dependent labels 
that maximizes recognizer performance). So far we have only 
experimented with the total squared distance from the mean 
for the resulting lexical models. 

Currently, we are using the following contextual functions 
for the splits in the context trees: 

LEFT-LABEL-IN-CATEGORY (class) 
RIGHT-LABEL-IN-CATEGORY (class) 

LEFT-WB O 
RIGHT-WB () 

where class refers to one of a number of categories that we 
have defined by hand. So far, we have defined 64 categories 
for the left and right labels. These categories include classes 
based on broad categories, stress, and distinctive features. 
Examples of categories include front-vowel, nasal, stressed 
vowel, etc. The LEFT-WB () and RIGHT-WB () functions re- 
turn TRUE or FALSE depending on whether the segment in 
question is at a left or right word boundary. 

If we grow a tree using these contextual factors, using a 
minimum of 50 samples per leaf node as a stopping criterion, 
we are able to reduce the squared error in the resulting models 
by approximately 30%. Using single diagonal Gaussian mod- 
els in each of the leaf nodes of the tree, we compute a context- 
dependent model score for each of the N-best paths obtained 
from the context-independent recognition system. This is il- 
lustrated by path (c) in Figure 2. Since we are currently only 
using local constraints in the context-dependent models, we 
could have incorporated the models into the initial search. 
Applying the context-dependent models to the N-best paths 
saves computation for the current experiments, but more im- 
portantly allows us to begin to incorporate more global con- 
straints without changing the experimental paradigm. Using 
these models as another input to the discrimination classi- 
fier discussed above to reorder the N-best paths, we obtain 

a word error rate of 10.1%. The detailed results are shown 
in Table 1 in the row marked CD-TREE. In this experiment, 
we are using a total of 1,300 context-dependent models (this 
number is obtained by counting the number of leaf nodes in 
all of the contextual trees). The average number of leaf nodes 
per contextual tree is approximately 17. 

Context Normalized Inputs 

We have also experimented with accounting for contex- 
tual effects separately for each of the model's input dimen- 
sions. That is, rather than growing a single contextual tree 
for each label, we grow a separate tree for each input dimen- 
sion. This allows for a more detailed accounting for contex- 
tual effects, since different input dimensions are likely to be 
affected differently by the context. In addition, it also alle- 
viates the dimension scaling problem in the distance metric 
for the distortion criterion. When growing a single contex- 
tual tree for a label, our distortion measure must take into 
account the distortion in all the dimensions at once, so the 
scaling of the input dimensions will affect the results. This 
problem disappears if we consider the distortion one dimen- 
sion at a time. On the other hand, if context somehow affects 
the relationship among the input dimensions, we could per- 
haps take that into account in the single contextual tree but 
not in the separate input dimension trees. 

Since diagonal Gaussian models treat each input dimen- 
sion separately, we can compute statistics for each dimension 
based on the contextual tree for that dimension. This is 
illustrated by path (d) in Figure 2. Using these scores as 
an additional component into the reordering of the N-best 
paths gives us a word error rate of 8.5%. The detailed results 
are shown in the row marked CN-TREE (context-normalized 
tree) of Table 1. Since we have a different contextual tree for 
each dimension, we can no longer come up with a meaningful 
count of the number of context dependent models. However, 
if we count the leaf nodes of each contextual trees, we find 
we are using an average 6.8 contexts per input dimension for 
each class. 

Since we have found performance increases both by in- 
creasing the flexibility of the models (by using mixture Gaus- 
sian models) and by using more specific models (by having 
separate models depending on context), we wonder if even 
better results can be obtained by combining both of these 
procedures. Unfortunately, it turns not to be true due to 
conflicting requirements of the modelling procedures. More 
flexible models tend to require a larger number of training 
samples to obtain good performance, and using more specific 
models causes us to use a smaller portion of the training data 
for each model. For example, when we replaced single diag- 
onal Gaussian models with mixture Gaussian models in the 
leaf nodes of the CD-TREE experiment discussed above, we 
found no increase in performance. Even if we vary the stop- 
ping criterion of the tree splitting procedure (thus control- 
ling the number of training samples we allow for the mixture 
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Gaussian models) we were not able to obtain any significant 
increase in performance. 

Rather  than using the contextual trees to define more spe- 
cific models, we can use this contextual information to adjust 
the input dimensions for the effects of the context. This pro- 
cedure permits us to once again train the models using all 
of the available training data.  Specifically~ we grow separate 
contextual trees for each input dimension as discussed above. 
Then~ rather than using the means and variances to train a 
Gaussian model for each leaf node, we use only the difference 
between the mean of the leaf node and mean of the overall 
class as an adjustment to the vector to account for the con- 
textual effects on samples falling into that  leaf node. This of 
course assumes that  we can treat  the input dimensions sepa- 
rately when accounting for context (because we are using sep- 
arate contextual trees for each dimension). It also assumes 
that  contextual effects only cause a shift in the observed in- 
put  dimensions (and no change in the shape of the distribu- 
tion of the input dimension). Note that  using single diagonal 
Gaussian models on the resulting context-normalized input 
vectors is equivalent to using single diagonal Gaussian models 
in the leaf nodes of the separate dimension contextual trees 
with the variances tied across all of the leaf nodes for a given 
input dimension for a given label. 

Using context-normalized input dimensions (rather than 
context-specific models) allows us to use all of the training 
da ta  for the models for each class. When we replace the single 
diagonal Gaussian model with the mixture Gaussian models, 
illustrated by path  (el in Figure 2, we obtained a word error 
rate of 7%. This represents the best that  we have been able to 
achieve thus far, reducing the error rate of the baseline system 
by nearly one-half.. The detailed scores for this experiment 
can be seen in the row labeled CN-MIXTURES (context- 
normalized mixtures) in Table 1. 

System Correct Sub Del 
Baseline 87.6 10.3 2.1 
109-TRAIN 88.4 9.6 2.0 
CI-MIXTURES 91.2 7.4 1.4 
CD-TREE 90.9 7.7 1.4 
CN-TREE 92.6 6.4 1.0 
C'N-MIXTURES 93.7 5.3 0.7 

Ins Error Sent. Error 
1.2 13.6 ~ 54.7 
1.3 12.9 54.7 
1.4 10.3 47.7 
1.1 10.1 48.0 
1.1 8.5 43.7 
0.7 7.0 36.0 

Table 1: This table shows the results obtained for each of the 
experiments described in the paper. The columns indicate the 
percentage of words correct, the percentage of substitutions, dele- 
tion, and insertions, the percentage word error (Sub + Del + Ins), 
and the percentage of sentence error. The systems include: the 
baseline system, the baseline system trained on the 109 speaker 
training set, the context-independent mixture Gaussian system, 
the system using context-dependent trees, the system using con- 
text-normalization trees for each input dimension, and finally 
the system using context-normalization trees along with mixture 
Gaussian models. 

B E N C H M A R K  R E S U L T S  
In connection with the Fourth DARPA Speech and Nat- 

ural Language workshop, we part ic ipated in the benchmark 
evaluation of the SUMMIT system on the Resource Managen- 
emet task, using the February-91 test set released by NIST. 
The system used context-normalized input dimensions with 
mixture Gaussian models, and was trained on the standard 
109-speaker training set. The results are shown in Table 2. 
Comparing the last row of Table 1 with Table 2, we see that  
our system's performance is quite similar on the two differ- 
ent test sets. We are encouraged by the results of our first 
a t tempt  at context-dependent modelling. We expect that  ad- 
ditional performance gain can be realized when more complex 
models are introduced. 

System Correct,Sub,ON,Ins  rror Sent Error 
CN-MIXTUI~ES 93.3 I I 1 6 " 0  0.7 1.2 8.0 33.7 

Table 2: SUMMIT benchmark performance on the Resource Man- 
agement task with a perplexity 60 language model, using the 
February-91 test set released by NIST. The system used con- 
text-normalization trees for each input dimension, with mixture 
Gaussian models. 

D I S C U S S I O N  & F U T U R E  P L A N S  
While the experiments presented here only address local 

contextual effects, it is important  to note that  the mechanism 
that  we have developed can account for both local contextua 
effects and more global contextual effects. Furthermore, th( 
general approach we have taken not only allows us to account 
for contextual effects on the phonetic models, but also to al- 
ter the structure of the pronunciation networks to account for 
contextual effects. Admittedly, we have only experimented 
with context-dependent models in these recognition experi- 
ments. Even within the limited scope of the current exper- 
iments, however, we have achieved substantial performance 
improvements over our baseline system. In related work, we 
have experimented with altering the structure of pronuncia- 
tion networks, resulting in substantial performance increases 
on the task of recognizing a small set of isolated words over 
telephone network. We hope that  when we extend the present 
experiments by altering the structure of the pronunciation 
networks and by considering more contextual effects, we will 
find further performance increases on the Resource Manage- 
ment task as well. 

In the present work we have kept the form of the input 
representation fixed. Since this particular transformation of 
the original acoustic dimensions was intended to allow us to 
model context-independent labels with rather simple diag- 
onal Caussian models, it may not be an appropriate input 
representation for the more flexible models discussed here. 
In particular, since we have so far found that  we can achieve 
the best performance by using the context-normalized in- 
put  dimensions (which assumes that  the normalization can 

7 5  



be carried out for each input dimension independently), we 
would now like to have input dimensions where context af- 
fects the dimensions independently. It is unlikely that the 
set of dimensions resulting from our current principle com- 
ponents analysis is the best input for this type of normaliza- 
tion. We are now beginning to experiment with applying the 
normalization to the original input dimensions, which should 
be more directly affected by contextual effects. 

We would also like to explore the use of distinctive fea- 
tures as the input representation since there is some evidence 
that this might be a better representation for accounting for 
contextual effects [12]. For example, in the environment of 
a nasal, we could expect the nasality feature of a vowel to 
be affected in a particular way whereas other features of the 
vowel would be affected by other contextual effects. 

Finally, if we account for context by making specific mod- 
els for particular contexts (e.g., triphones or the context- 
dependent tree discussed above), we are constrained to some 
degree by the amount of training data we would have avail- 
able to train each of these more specific models. This has led 
us in the past to use fairly simple and easily trained para- 
metric distributions for these models. 

Accounting for context by normalizing the input dimen- 
sions reduces the need to split up the training data, and there- 
fore should lead to more flexible and robust models for the 
labels in the lexicon. We have thus far presented results using 
mixture Gaussian models, but are now experimenting with 
other types of models and discriminators including multi- 
layer perceptrons and radial basis functions. 
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