
I M P L E M E N T A T I O N  A S P E C T S  O F  L A R G E  V O C A B U L A R Y  R E C O G N I T I O N  BA S ED O N  

I N T R A W O R D  AND I N T E R W O R D  P H O N E T I C  U N I T S  

R. Pieraccini, C. H. Lee, E. Giachint , L. R. Rabiner 

Speech Research Department 
A T & T  Bell Laboratories 
Murray Hill, NJ 07974 

A B S T R A C T  

Most large vocabulary speech recognition systems 
essentially consist of a training algorithm and a 
recognition structure which is essentially a search for the 
best path through a rather large decoding network. 
Although the performance of the recognizer is crucially 
tied to the details of the training procedure, it is 
absolutely essential that the recognition structure be 
efficient in terms of computation and memory, and 
accurate in terms of actually determining the best path 
through the lattice, so that a wide range of training (sub- 
word unit creation) strategies can be efficiently evaluated 
in a reasonable time period. We have considered an 
architecture in which we incorporate several well known 
procedures (beam search, compiled network, etc.) with 
some new ideas (stacks of active network nodes, 
likelihood computation on demand, guided search, etc.) 
to implement a search procedure which maintains the 
accuracy of the full search but which can decode a single 
sentence in about one minute of computing time (about 
20 times real time) on a vectorized, concurrent processor. 
The ways in which we have realized this significant 
computational reduction are described in this paper. 

I. INTRODUCTION 

Most large vocabulary speech recognition systems are 
implemented as network searches for the best path 
through a large, but finite grid. The best path generally 
corresponds to the most likely sequence of words as 
constrained by a finite state network which implements 
the grammar or syntactic component of the system. 
When the number of basic speech (sub-word) units is 
small (i.e., on the order of 50-200 units), the details of 
implementation of the search strategy don't have a major 
impact on the overall complexity of the recognition task 
and experimental tuning and assessment of different 
training strategies and overall performance of the 
recognizer is relatively straightforward. However, when 

t Now with CSELT, Torino, Italy. 

highly detailed (context dependent) speech units are used, 
including both intraword and interword context 
dependent units, the complexity of the overall 
implementation often increases quadratically with the 
number of basic units, and correspondingly the details of 
how the network search is implemented become of major 
importance in accessing the suitability of various network 
structures. We have especially found this to be the case 
when we use context dependent interword speech units 
where the fan-out at the end of a word and the fan-in at 
the beginning of the next word are both very high, and 
the bookkeeping to keep track of all possible phonetic 
contexts in which a word occurs can dominate the 
computation (to the extent that it can make even the 
likelihood computation with mixture density HMM's be 
negligible compared to the bookkeeping overhead), since 
at every frame, all possible connections between every 
valid pair of words in the grammar must be examined. 
When this is the case, a full search implementation of the 
speech recognition algorithm is totally impractical, if not 
impossible. For a task like the DARPA resource 
management task, the number of grid points to be 
examined is on the order of tens of millions while the 
number of connections between grid points ranges in the 
hundreds of millions. An effective solution to this 
problem consists of performing an intelligent search 
through the grid and using reasonable but effective 
heuristics to eliminate unlikely path candidates from 
consideration. There are several ways for reducing the 
computational cost of a search for the most likely path 
through a finite but large grid of points, including 
different versions of stack decoding [1] [2], and A* 
algorithms[3] [4] 

Perhaps the most widely used search algorithm for large 
vocabulary speech recognition is the so called beam 
search algorithm introduced first by Bruce Lowerre in 
the Harpy system Is] . In its original form the algorithm 
carries out the search by exploring, at every step, only a 
fixed number, N, of best scoring paths (beam). The 

311 



assumption behind this heuristic is that the globally 
optimal path is very unlikely to lie outside of  the N best 
paths at each stage during the search. The 
implementation of this form of beam search presents 
some computational problems in finding the N best paths, 
since all explored paths must be sorted according to their 
likelihoods. An approximation to the original beam 
search consists in finding the current best scoring path 
among the active ones and extending only those paths for 
which the difference between their score and the best 
score is less than a given threshold (the so called beam 
width). In this case the number of preserved (active) 
paths is variable during the search and depends on the 
distribution of the likelihoods among the paths 
themselves. Again, a sufficiently large value of the 
threshold can make the probability of missing the 
globally optimal path sufficiently small. An advantage of 
the beam search strategy, over other strategies, is that 
being a breadth first search it can be conveniently 
implemented in a real time fashion, in the sense that the 
processing can proceed frame synchronously. Also, since 
all active paths at every step of the search have the santo 
length, the scores of all active paths can be compared on 
an equal basis. 

For the reasons described above, a beam strategy is 
generally the one used in large vocabulary continuous 
speech recognition systems. Although the algorithm is 
simple and straightforward to implement in theory, in 
practice there are a number of factors which strongly 
affect the overall efficiency of the implementation. It is 
the purpose of this paper to discuss these factors and 
show how proper design lead to an efficient and accurate 
implementation of a large vocabulary recognition system. 

The resulting recognizer structure has been designed to 
take advantage of the capabilities of a vectofized 
concurrent processor (an Alliant FX/80) which consists 
of a cluster of up to 8 computing elements (CE's) that 
can execute code in vector concurrent mode. The 
iterations of a loop within a program can execute 
concurrendy provided that there is no data dependency 
within the loop itself, i.e. operations in one iteration 
don't use and are independent of results obtained in other 
iterations. Moreover, since every CE works as an array 
processor that pipelines operations performed on data 
vectors, vector operations, instead of single scalar 
operations, are actually distributed across processors for 
concurrent execution. Of course, for taking advantage of 
the vector capabilities of each processor, the code must 
be structured so that the heart of the computation is 
performed in such a way that it can be distributed to the 
concurrent processors and can readily be performed in 
vector mode. Thus the algorithms must be implemented 
as a sequence of simple vector operations which are 
iterafively applied to a set of computing elements sharing 

the same data structure. Furthermore the size of the data 
structure, required by each CE for computation, must be 
small enough to fit within a local CE cache so that the 
inherent speed of the processor is not compromised by 
excessive memory faults outside the cache. 

Based on the above discussion it should be clear that a 
single HMM state constitutes a data structure that is 
simple enough simple to be used as a basic element for 
vectofized processing. Since there is no difference in the 
processing of HMM states with regard to their position 
within the model (with the exception of word initial or 
word final states), the operations performed on single 
states can be easily expressed in vectorized form. Hence 
a vector is the ideal structure for storing the information 
related to the states in the decoding network. Depending 
on the size of the task, the algorithm can be implemented 
with static or dynamic state allocation. In the static 
memory case, when the memory needed to allocate all 
the states of the decoding network is sufficiently small, 
each state is assigned an address within the state vector 
at the beginning of the program, and the address remains 
constant. When the number of states of the decoding 
network is very large, hence the amount of memory 
needed for static allocation is too big for practical 
implementation, a different solution is required to avoid 
memory faults within individual processors. The 
solution to this problem is to allocate memory only for 
those states that are active at any particular time, i.e. 
stack the alive nodes within a small memory stack. The 
address of a state within the state vector is therefore not 
predictable a priori. Hence a more sophisticated 
addressing scheme is needed to perform the decoding. 
This scheme, unfortunately, is not well suited to a 
parallel and vectorized implementation. The amount of 
memory needed in the DARPA resource management 
task, both in the no grammar case and with the word pair 
grammar, permits a static state allocation. However for 
more complex tasks (e.g. vocabularies of the order of 
10,000 words) a dynamic allocation of states should be 
implemented. 

In our implementation of the DARPA resource 
management task all the states are sequentially allocated 
in the same order as they appear in the HMM chains that 
represent the words. Given the simple HMM structure 
used to represent the units, the local path optimization in 
the Viterbi decoding has to be performed between states 
that are stored m consecutive locations of the state 
vector, except for those states that are at the boundaries 
of word segments. In this way, the decoding problem is 
split into two sub-problems, namely processing of 
internal word segment states and processing of word 
boundary states. The method of path extension, during 
the Viterbi decoding, involving boundary states that 
coincide with the beginning and end of a word model, is 

33_2 



driven by the syntactic constraints used in the recognition 
system as well as by the phonological constraints 
imposed at the word junction level. Since the word 
models used in the recognition system have a number of 
possible different beginning and end segments (heads and 
tails) represented by individual interword context 
dependent phones, and since the language may be 
represented by a finite state network with word pair 
constraints, the connection scheme between the boundary 
states may be fairly complex. The check of all the 
connection conditions (syntactic and phonological) for 
every word beginning and word ending state is thus very 
expensive computationally. Hence we use a compiled 
form of the list of possible connections between 
boundary states. This gives a significantly more efficient 
implementation of the recognition algorithm. 

A final issue in the recognizer implementation concerns 
the use of a guided search algorithm which is used only 
for evaluation and assessment of different recognition 
and training strategies. When the uttered sentence is 
known, as is the case during the phase of development 
and performance evaluation of a speech recognition 
system, the beam search threshold can be based on the 
best path obtained through a forced alignment of the 
input speech with the HMM representation of the true 
sentence. This allows a further reduction of the search 
space, since the beam search threshold will be greatly 
reduced whenever the correct path is the same as the best 
path found by the forced alignment. This occurs often 
during long content words, and rarely during short 
function words. Overall it leads to a useful reduction in 
computation. 

2. REVIEW OF THE RECOGNIZER STRUCTURE 

A more detailed description of the large vocabulary 
continuous speech recognition system implemented by 
the algorithms described in this paper can be found in 
Refs[6] [7]. Three state, continuous density, HMM's are 
used to represent each of the units (except silence which 
is represented by a single state HMM). There are only 
two transitions leaving from a state, a self loop transition 
and a transition to the next state. Transition probabilities 
are not used during the likelihood computation, since it 
has been experimentally shown that they don't affect the 
recognition performance. 

Within each state S~ of each model, the spectral 
observation probability density is represented by a 
weighted mixture of My multivariate normal density 
functions. In addition, each state has associated with it a 
log energy histogram El(e) representing the logarithm of 
the probability of observing a frame with log-energy e 
while in state S~. 

3 1 3  

3. STRUCTURE OF THE LEXICON 

When using intraword and interword units, every word in 
the lexicon is represented by three distinct segments, 
namely a head a body and a tail. The head and the tail 
take into account all the possible types of coarficulation 
with adjacent words, according to the unit set chosen for 
representing the vocabulary. Hence the head and tail of a 
particular word consist of a collection of all the possible 
conjuction units at the beginning and at the end of a 
word. The body of each word is a simple linear sequence 
of units and is assumed to be independent of the 
neighboring words. It should be noted that words 
composed of two phones and words composed of one 
phone are special cases of this kind of model. A two 
phone word does not have a body; hence all the possible 
beads merge with all the possible tails. 

head tail 
0 o ~ o  body ~ o o 
0 0 0 0 0 0 0 0 

a) 0 0 0 0 

0 0 ( ~ - - ~  _..____..._Q 0 O 
b) 0 0 O O ~ ~ 0 O 

0 0 0 
0 0 0 

c) 0 0 0 

Figure  1. Examples of word models. 

The concept of word head and tail cannot be extended to 
one phone words. Depending on the neighboring words, 
a single phone word consists of a particular inter-word 
unit. Hence a one phone word, in all its possible 
contexts, is represented by a collection of all the inter- 
word units whose central phone corresponds to the word 
itself. Fig.l shows an example of a word model for 
three cases; namely for a word consisting of more than 2 
phones (a), for a 2 phone word (b), and for a single 
phone word (c). (the self transition of HMM states has 
not been drawn in the figure). Silence at the beginning 
and at the end of a sentence is represented as a single 
phone word. 

The connections between the tails of a word and the 
beads of the following word are based on a precomputed, 
syntax dependent connection matrix CONN(phi,phj) 
whose generic element assumes the logic value true if 
unit Phi may follow unit phi in the conjunction of two 
consecutive words. The matrix CONN(phi,phj) may be 
set according to phonological rules [8] 

4. THE GRAMMAR COMPONENT 

The sequence of words defining legal sentences within 
the task grammar are expressed through a finite state 
network (FSN) and a list of permitted word pairs. In the 
FSN used in the experiments, the entire vocabulary is 
divided into four independent sets, with no overlap. 



These sets consist of the following: BE which includes 
the words that can he spo_ken at the beginning of a 
sentence but not at the end; BE which includes the words 
that can he spoken at the end of a sentence but not at the 
beginning; BE which includes the words that can he 
s_p_oken either at the beginning or end of a sentence; and 
BE, which includes the words that cannot be spoken 
either at the beginning or at the end of a sentence. 
Language constraints, in the form of word occurrence 
statistics such as bigrams or word pairs, can be used in 
the recognition algorithm. The word pair grammar, 
specifying the words that are allowed to follow a given 
word, has a perplexity of about 60 for the resource 
management task. The language perplexity is equal to the 
number of different words (i.e. 991) when no word 
constraints are used. 

5. STATIC I N F O R M A T I O N  USED IN T H E  D E C O D E R  

The decoding (recognition) algorithm uses a network 
(decoding network) that integrates acoustic, phonological, 
lexical, and syntactical models, in order to find the 
sequence of words that gives the best interpretation of 
the input sentence in terms of likelihood. The decoding 
network is obtained by substituting the corresponding 
lexical models along every arc of the FSN that represents 
the language. Of course, if interword units are used, the 
connections between words at the FSN nodes must be 
made according to the phonological rules defined for 
those units. The use of a word pair grammar greatly 
increases the complexity of the decoding network since 
new nodes must be added to the original FSN in order to 
allow only the valid sequences of word pairs. Thus, even 
a simple FSN can become very large when interword 
units and word pairs are taken into account. 

Generally speaking, one can always trade off memory for 
computing time. In this particular case the network does 
not have to be completely compiled (i.e. a detailed list 
made of all nodes and arcs) but, for instance, word pair 
constraints can be taken into account by saving the run 
time decoding information associated with every arc of 
the network which joins at a given node of the original 
FSN at a given flame, and using this information to 
check the word pair constraints before extending new 
paths out of the same node. This procedure, that we call 
interpreted decoding as opposed to compiled decoding, 
has been used in preliminary versions of the algorithm. 
The interpreted decoding leads to a highly inefficient 
implementation in terms of computing time, to decode a 
given string. This is because the basic operation for 
decoding, namely checking matches for word pair 
constraints, cannot generally be coded in a form that can 
be efficiently parallelized and vectofized. Thus, as stated 
in the introduction of this paper, a vectofized compiled 
representation of the decoding networks is necessary for 

taking advantage of the parallel and vectofized 
architecture of the computer used for the recognition 
experiments. An even better structure for the algorithm 
is a network which is represented by two different levels 
of information, namely lexical information, encoded by 
the sequence of HMM states that form word bodies, 
heads and tails, and the connection information that is 
needed for propagating the score among bodies, heads 
and tails during the decoding procedure. The lexical 
information is encoded into a state vector. Every 
element of the state vector corresponds to a particular 
HMM state in the word representation. Hence every 
element of the vector has to he identified as a state of a 
particular HMM. The information needed for this 
identification is the unit number (UNIT(i)) and the state 
number (STATE(i)). An additional vector, called A (i), is 
used to control the transition between consecutive states. 
Since we do not use transition probabilities in the 
likelihood computation, A(i) can be either 0 or -o0, 
depending on whether the transition from that state to the 
next state in the vector is allowed or not. A(i) is solely 
used to prevent the propagation of the score from the last 
state of a piece of a word model (head, tail or body) to 
the first state of the following part of the word model in 
the vector, since the score propagation among different 
segments must he fully controlled by the connection 
information. Hence the last state of every piece of word 
model has A(i)=--~,o while all other states have A(i)=O. 
The location of items within the vector is stored in 
auxiliary (directory) arrays. Thus all beginning and end 
states of every segment may be directly accessed. 

There are two different types of connection information, 
namely inner connections, i.e. the ones among heads, 
body and tails of the same word, and outer connections, 
between tails and heads of temporally consecutive word 
hypotheses. Outer connection information, conveying 
phonological (i.e. the matrix CONN(phl.phj) ) and 
linguistic (i.e. the word pair grammar) constraints, can be 
stored either in an interpretable form or in a compiled 
form. It is obvious that compiled connection information 
leads to a far more efficient version of the decoder than 
one running on interpretable connections. In the 
interpretable version the decoder has to check, at every 
frame and for every word head, all the arcs 
corresponding to legal preceding words (i.e. according to 
the word pair grammar), and for each one of them find, 
among all the tails, those that are connectable to the 
head, each time checking the CONN(phi,phj) matrix. In 
a compiled version all the pointers to the legal tail ends 
are pre-stored in an array ( connection list ) addressable 
by the head identifier. Table l shows statistics on the 
number of heads and tails, and the overall number of 
states and outer connections in two different cases, 
namely using 1172 and 1769 context dependent units. 

314 



The state vector has been purged from all head and tail 
segments that have no outer connections (not a l l  
connections among the words are possible due to the 
word pair constraints). The number of heads and tails in 
the table is computed after the purge operation. 

5.1 Inter word silence implementation 

There are two distinct sets of units that may be followed 
by interword silence when they are used as word tails. 
The first set are those units that must always be followed 
by silence, i.e. they are constrained to have silence as the 
right context. In order to avoid problems when using a 
word pair grammar, these units are realized by appending 
the silence model (consisting of a one state HMM) to 
the specific unit model and considering the sequence of 
the two models as a single model. 

1 Units I States I Heads I Tails I Connections 1 
I I I I 

1769 1 47641 1 8082 1 3486 1 274863 
TABLE 1. Statistics on static information with two 

different unit sets 

The second set includes all those units that are followed 
by an optional silence. Again, for ease of 
implementation, these units are duplicated when they 
appear in the tail of a word and a silence model is 
appended to one of the two instantiations. 

6. DYNAMIC INFORMATION IN THE DECODER 

The information related to active states in the state vector 
must be stored at each step of the decoding algorithm. 
This information includes: the current score (SCORE), 
the pointer to the previous lexical item (BPO) on the best 
path reaching that state at the current time, and a time 
marker (BEG) indicating when the current best path 
entered into the current lexical item. Due to the 
Markovian property of the models, the decoding process 
needs only the score and the pointers relative to the last 
processed frame. Hence the three arrays are doubled in 
size, the OLD version of each array is relative to the 
previously processed frame, while the NEW version is 
relative to the current frame. At the end of the processing 
for the current frame, the pointers NEW and OLD are 
flipped. In order to be able to backtrack the best path 
from the last frame to the beginning of the sentence and 
decode the recognized sequence of words, we have to 
store the back pointers and the time markers along the 
whole decodmg process. The amount of memory needed 
for keeping this information is not negligible as this 
information must be recorded for every arc of the FSN 
and for every frame of the decoded sentence. A possible 
solution to reduce the amount of memory for the 
backtracking information consists in implementing a 
partial backtracking strategyLg1, [lo]. In the partial 

backtracking, the backpointers are checked during the 
decoding in order to find some past node that is the only 
ancestor of all the currently active nodes (immortal 
node). Hence a partial section of the global optimal path 
can be tracked back from the current immortal node to a 
previously detected immortal node, and all the 
backtracking information in the time segment between 
the two immortal nodes can be deleted, making memory 
available for new data. The partial backtracking strategy 
is advisable for a real time, continuously running, 
implementation of the decoding algorithm, where we do 
not know in advance the maximum duration of sentences. 
Since in the version of the system used for speech 
recognizer performance evaluation we know the 
maximum duration of any sentence and the memory 
needed for the backtracking information is within the 
capability of the computers we use, we didn't implement 
the partial backtracking strategy. 

For a given frame and a given arc, the backtracking 
information has to be recorded when a unique 
interpretation of the back-pointers is available for that 
arc. Since arcs have head segments joining at the first 
state of the body segment and each head segment may 
have a different back pointer at a given stage of the 
decoding, the only place where the information relative 
to the previous arc is unique is along the body segment. 
Thus the backpointers of the first state of the body 
segment of each arc are recorded at each time frame. For 
two phone words, that don't have a body segment, the 
recorded backpointers are those relative to the best path 
among those exiting from the last state of every head 
segment. 

7. THE FINAL DECODING ALGORITHM 

The diagram in Fig.2 shows the breakdown of the 
decoding process for one frame of input speech into 
functional blocks. In the remainder of this section we 
analyze the main implementation characteristics of each 
block. 

7.1 Internal states 

This block performs the dynamic programming 
optimization for all the active states in the state vector. 
The pointers to active states are kept in a list 
(LIST(i),  i=l,N,, , i ,  ) that is updated at the end of the 
processing of each frame. A state is active if its score, at 
the previous frame, is better than the beam-search 
pruning threshold defined for that frame. Since the 
HMM structure we use in our system has only two 
possible transitions from each state, namely the self loop 
and the forward transition, and since we don't use 
transition probabilities in the likelihood computation, the 
basic dynamic programming optimization consists of the 
comparison of the score of each state with the score of 

315 



the previous state. In order to inhibit the propagation of 
the score between consecutively stored word segments, 
the constant A (i) is added to the score of state i before 
comparison with state i+ l .  The backpointers 
BPO(i,NEW) and the time markers BEG(i,NEW) are 
updated according to the result of the maximization 
operation. The operation performed in this block is 
completely parallelized and vectorized. 

I INTERNAL STATES ] 
V 

I INNER CONNECTIONS I 
V I otrrER CONNECTIONS t 

I LIST UPDATING I 
V 

I LOCAL LIKELH"IOOD I 

Figure 2. Steps in the decoding of one frame 

7.2 Inner connections 

Inner connections are those among the heads, the body 
and the tails of the same word. Only words with a 
number of  phones greater than or equal to 2 have inner 
connections. In order to keep efficiency of the 
implementation high, arcs have been ordered according 
to the number of phones of corresponding words. Hence, 
in our implementation, the arcs whose order number goes 
from 1 to  Narcsgt2 correspond to words with more than 
two phones; the arcs from Narcsg,2+l to Na,cs2 correspond 
to words with two phones and the arcs from Na,c,2+l to 
N~,~ 1 correspond to words composed of only one phone. 
This block performs three basic functions: 

1. For arcs 1 to Na,~g,2. Finds the best scoring end 
state among all the possible heads of the word and 
propagates the corresponding path to the first state 
of the body if it has a greater score. This is a 
vectofized and parallelized operation. 

2. For a r C S  Narcss,2+l tO Narcs 2. Finds the best 
scoring end state among all the possible heads of  
the word and propagates the corresponding path to 
the first state of each tail, if it has a greater score. 
This is a vectofized and parallelized operation. 

3. For arcs 1 to Na,~,g,2. Propagates the path 
corresponding to the last state of the body to the 
first state of each tail of the word, if it has a 
greater score. This is a parallelized operation. 

7.3 Outer connections 

Outer connections are those among the tails of a word 
and the heads of another word. This operation is 
performed only for active arcs. An arc is considered 
active when at least one tail end state is active. The 
pointers to active arcs are kept in a list 
LSTC( i ) ,  i=l,N~cave c that is updated at the end of the 

processing of each frame. In the most efficient 
implementation the connections are compiled into a 
vector. The elements of this vector are the locations, 
within the state vector, of the states that are connected to 
a given word tail. 

7.4 List updating 

The beam search pruning of states is performed in this 
block. In the standard implementation, at the i - th  frame, 
a prumng threshold O; is set as: 

O i = AinU'_ A 

where A m~' is the maximum likelihood among the active 
states at the i - th  frame and A is a fixed constant. Hence 
the likelihood of all states that are active at the i - th  
frame is compared with (9,.. A state is then included in 
the new list if its likelihood is greater than the threshold 
O i. The list updating operation is computationally 
demanding due to the sequential nature of the operations 
to he performed. There are five sets of states that are 
potentially active at the i - th  frame. They are all the 
states that were active at the previous frame, all the 
successors of the states that were active at the previous 
frame, all body initial states, all head initial states, and 
all tail initial states. For computing the maximum state 
likelihood A max', and for the subsequent state pruning 
and list updating, it is necessary to check all five sets of 
states. This produces a computational overhead for the 
intersection of the different sets of states (e.g. a state in 
the first set may also he in the second set; hence the 
checking operation is performed twice for that state) 
which leads to an inefficient implementation. A solution 
is to keep an additional vector LIVE (i) whose generic 
j - t h  element is set to true any time the j - t h  state in the 
state vector is set to a new likelihood value during the 
decoding (all the elements of LIVE(i) are set to false 
before the decoding of each frame). To further improve 
the implementation of this block, the list updating 
operation is performed in a concurrent mode, first 
generating partial lists of active states, and then merging 
the partial lists into the final list. Moreover, whenever a 
state is put into the active state list, the corresponding 
phonetic unit is marked as active setting to true the 
corresponding location of a vector USE(i), i= l  . . . . .  Nunit s. 

This is done in order to restrict the local likelihood 
computation only to active units. 

An additional operation is performed by this block and 
consists in updating the list of active arcs. An arc is 
considered to be active, for the purpose of propagating 
its score through outer connections, if at least a tail final 
state is active. Again, in the parallel implementation, 
partial active arc lists are computed first, and then 
merged into the final active arc list. 

3!6 



7.5 Local likelihood 

While local likelihood computation in discrete density 
HMM's is a simple table lookup, with mixture density 
HMM's it becomes one of the major computational loads 
of the entire decoding procedure. A particularly 
optimized version of the state local likelihood 
computation has been implemented, enhancing the 
vectorized structure of the computation. Also, the local 
likelihood is computed only for active units, i.e. when 
the value of USE(i) is set to true. 

7.6 Guided search 

We have also developed a particularly efficient version of 
the recognizer suited only for experimental assessment of 
speech recognition accuracy. When assessing 
performance on a test database, the correct string that has 
to be recognized is known a priori for every uttered 
sentence. The forced alignment of the test speech, with 
the network representing the actually uttered sentence, 
produces a path whose frame-by-frame score (self score) 
may be used to further reduce the size of the search 
space. The concept behind the guided search is that the 
overall best path will have a final score that cannot be 
inferior to the final score of the forced alignment 
procedure. This is not true for the local score along the 
overall best path and the forced alignment path. It may 
happen that the overall best path drops below the score 
of the forced alignment path at a certain point in the 
search, eventually attaining a better score later in the 
search. Moreover, if the guided search is performed in a 
frame synchronous fashion, i.e. the forced alignment is 
carried out frame synchronously with the recognition, we 
actually don't know which is the best path in the forced 
alignment. A non frame synchronous version that first 
performs the forced alignment, then performs a 
backtracking along the best path and saves all the local 
score values, would require too much memory to store 
the backtracking information during the alignment phase. 
Thus, only the score of the locally (not globally) best 
path is available during the frame synchronous 
alignment. The threshold is computed by decrementing 
the score of the locally best path by a fixed amount in 
order to take into account the above mentioned sources 
of error. 

7.7 Timing experiments 

Timing experiments have been performed during the 
development of the algorithm to assess the efficiency of 
the entire speech recognition system. All the performance 
scores reported in this section were obtained during the 
recognition of several sentences using a phone set of 
1172 sub-word units. The maximum number of mixture 
components per state was 16, while the dimension of the 
observation vector was 24. The guided search strategy 

was used in all the experiments. 

Table 3 shows the average time (in seconds) per sentence 
(TPS), and average time per decoded frame (TPF), in 3 
different versions of the recognizer. In RECI all the 
connections are explored at every frame, in REC2 only 
connections coming from active arcs are explored, and 
REC3 has the same features of REC2, but uses a 
compiled version of the connection list. 

RECOGNIZER TPS TPF 

RECI 555 1.8 

REC2 326 l . l  

REC3 65 0.2 

TABLE 2. Average time (in seconds) per sentence 
(TPS) and per frame (TPF) in three different 
implementations of the recognizer 

Table 4 shows the time breakdown for the five modules 
of Fig.2 when REC3 is used. The numbers shown are 
the percentages of time spent in each module during the 
decoding of one flame. 

Operation 

Internal states 

Inner connections 

Outer connections 

List updating 

Local likelihood 

Time % 

14.8 

11.8 

5.0 

13.2 

55.2 

TABLE 3. Percentage of time spem in each module 
during the decoding of one frame 

The table shows that the local likelihood computation 
accounts for more than 55% of the total decoding time 
and it is followed by the dynamic programming 
optimization on the active states, the list updating, and 
the propagation of scores for inner connections. The 
propagation of score to outer connections takes only 5% 
of the whole computation. In fact, even though the 
number of potential connections is very large (240024 in 
the experiment), only a small fraction of them are 
actually used at each frame. 

Finally Fig. 3 shows the efficiency of the whole system 
(REC3) in terms of concurrency. The figure shows the 
average decoding time per frame as a function of the 
number of computing elements used to execute the code. 
The performance shown by the solid line is that obtained 
with the recognizer REC3, while the dotted line is the 

1 
theoretical curve ~ .  The figure shows that the code 

performance is very close to that of fully concurrent 
code. 

317 



1 

.6 

. 4 - -  

. 2 - -  
" ' . . . . . . ~  

" ' ' ' ' . . . .  . . . . . . . .  

I I I I 
1 2 3 4 5 6 

Number of CEs 

Figure  3. CPU time per frame (seconds) versus number 
of CEs in REC3 (solid line) and in the 
theoretical case (dotted line). 

8. CONCLUSIONS 

This paper provided a detailed presentation of all aspects 
of the implementation of a large vocabulary speaker 
independent continuous speech recognizer to be used as a 
tool for the development of recognition algorithms based 
on hidden Markov models and Viterbi decoding. The 
complexity of HMM recognizers is greatly increased by 
the introduction of detailed context dependent units for 
representing interword coarticulafion. A vectorized 
representation of the data structures involved in the 
decoding process, along with compilation of the 
connection information among temporally consecutive 
words, has led to a speed up of the algorithm of about 
one order of magnitude. An average recognition time of 
about one minute per sentence (on the computer 
configuration used in the experiments), although far from 
real time, allows us to perform a series of training 
experiments and to tune the recogmtion system 
parameters in order to obtain high performance 
recognition on complex tasks such as the DARPA 
resource management. 

9. ACKNOWLEDGEMENTS 

The authors grateffuUy acknowledge the helpful advice 
and consultation provided by Fil Alleva of Carnegie 
Mellon University on the implementation details of the 
SPHINX system and Douglas B. Paul of Lincoln 

Laboratories, MIT, for the guided search idea. 

REFERENCES 

l. Jelinek, F. (1969). A fast sequential decoding 
algorithm using a stack. IBM J. Res. Develop., vol. 
13, pp 675-685, Nov. 1969 

2. Schwartz, R. and Chow, Y. L. (1990). The N-best 
algorithm: an efficient and exact procedure for 
finding the N most likely sentence hypotheses. Proc, 
ICASSP 90, pp. 81-94, Albuquerque, NM, April 
1990. 

3. Nilsson, N. J. (1980). Principles of artificial 
intelligence. Tioga Publishing Co., Palo Alto, CA. 

4. Huang, E. F., Soong, F. K. (1990). A fast tree-trellis 
search for finding the N-best sentence hypotheses in 
continuous speech recognition. J. Acoust. Soc. Am. 
suppl. 1, vol. 87, S105, Spring, 1990, also in Proc. 
DARPA Speech and Natural Language Workshop, 
Somerset, PA, June 1990. 

5. Lowerre, B. and Reddy, D. R. (1980) The HARPY 
speech understanding system. In Trends in Speech 
Recognition (Lee, W. ed.), 340-346. Prentice-Hall 
Inc., New York. 

6. Lee, C. H., Rabiner, L. R., Pieraccini, R., Wilpon, J. 
G. (1990). Acoustic modeling for large vocabulary 
speech recognition. Computer Speech and Language. 
4, pp. 127-165, 1990 

7. Lee, C. H., Giachin, E., Rabiner, L. R., Pieraccini, 
R., and Rosenberg, A. E. (1990). Improved acoustic 
modeling for continuous speech recognition. Proc. 
DARPA Speech and Natural Language Workshop, 
Somerset, PA, June 1990. 

8. Giachin, E. P., Rosenberg, A. E., Lee, C. H. (1990). 
Word juncture modeling using phonological rules for 
HMM-based continuous speech recognition. Proc, 
ICASSP 90, pp. 737-740, Albuquerque, NM, April 
1990. 

9. Spohrer, J. C., Brown, P. F., Hochschild, P. H., and 
Baker, J. K. (1980). Partial traceback in continuous 
speech recognition. Proc. IEEE Int Cong. 
Cybernetics and Society, Boston (MA), 1980. 

10. Cravero, M., Fissore, L., Pieraccini R., Scagliola, C. 
(1984). Syntax driven recognition of connected 
words by Markov models. Proc. of ICASSP 1984, 
San Diego, (CA), 1984. 

318 




