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Motivat ion  
Grammars  for spoken language systems are subject to 
the conflicting requirements of language modeling for 
recognition and of language analysis for sentence inter- 
pretation. Current recognition algorithms can most di- 
rectly use finite-state acceptor (FSA) language models. 
However, these models are inadequate for language inter- 
pretation, since they cannot express the relevant syntac- 
tic and semantic regularities. Augmented phrase struc- 
ture grammar  (APSG) formalisms, such as unification 
grammars,  can express many of those regularities, but 
they are computationally less suitable for language mod- 
eling, because of the inherent cost of computing state 
transitions in APSG parsers. 

The above problems might be circumvented by us- 
ing separate grammars for language modeling and lan- 
guage interpretation. Ideally, the recognition grammar 
should not reject sentences acceptable by the interpreta- 
tion grammar,  but  it should contain as much as possible 
of the constraints built into the interpretation grammar.  
However, if the two grammars are built independently, 
those constraints are difficult to maintain. For this rea- 
son, we have developed a method for constructing au- 
tomatically a finite-state approximation for an 'APSG. 
Since the purpose of the approximation is to serve as a 
filter in a speech-recognition front-end to the real parser, 
the approximation language is a superset of the language 
accepted by the APSG. The term "approximation" will 
always be used in this sense in what follows. 

If no further constraints were placed on the close- 
ness of the approximation, the trivial algorithm that  
assigns to any APSG over alphabet ~ the regular lan- 
guage ~* would do. Clearly, this is not what is required. 
One possible criterion for "goodness" of approximation 
arises from the observation that  many interesting phrase- 
structure grammars have substantial parts that  accept 
regular languages. Tha t  does not mean that  the gram- 
mar rules are in the standard forms for defining :regular 
languages (left-linear or right-linear), because syntactic 
and semantic considerations often require that  strings in 
a regular set be assigned structural descriptions not de- 
finable by regular productions. A useful criterion is thus 
that  if a grammar generates a regular language, the ap- 
proximation algorithm yields an acceptor for that  :regular 

language. In other words, one would like the algorithm 
to be exact for APSGs yielding regular languages. 

We have not yet proved that  our method satisfies the 
above exactness criterion, but  some experiments have 
shown that  the method is exact for a variety of interest- 
ing grammars. 

The Algor i thm 
Our approximation method applies to any context-free 
grammar (CFG), or any unification grammar  that  can 
be fully expanded into a context-free g r a m m a r )  The re- 
sulting FSA accepts a superset of the sentences accepted 
by the input grammar.  

The current implementation accepts as input a form 
of unification grammar in which features can take only 
atomic values drawn from a specified finite set. It is 
clear that  such grammars can only generate context-free 
languages, since an equivalent CFG can be obtained by 
instantiating features in rules in all possible ways. 

The heart of our approximation method is an al- 
gorithm to convert the LR(0) characteristic machine 
AA(G) (Aho and Ullman, 1977; Uackhouse, 1979) of a 
CFG G into an FSA for a superset of the language L(G) 
defined by G. The characteristic machine for a CFG G 
is an FSA for the viable prefixes of G, which are just  the 
possible stacks built by the standard shift-reduce recog- 
nizer for G when recognizing strings in L(G).  

This is not the place to review the characteristic ma- 
chine construction in detail. However, to explain the 
approximation algorithm we will need to recall the main 
aspects of the construction. The states of .hA(G) are sets 
of dotted rules A ---+ or. fl where A ---+ aft  is some rule of 
G..A4(G) is the determinization by the standard subset 
construction (Aho and Ullman, 1977) of the FSA defined 
as follows: 

• The initial state is the dotted rule S' ~ S. where S 
is the start  symbol of G and S' is a new auxiliary 
start symbol. 

• The final state is S' ---, S.. 

1 Unification g r a m m a r s  not  in this class m u s t  first be weakened 
using techniques such as Shieber 's  res t r ic tor  (Shieber,  1985). 
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S'->.S ~ , ,  S'->S. 
S ->. Ab 3 
A->.Aa ( 4  S'>Ab" A ->. A~2S -> A. b 

A -> A.  a 

a A->Aa. 

Figure 1: Characteristic Machine for G1 

• The other states are all the possible dotted rules of 
G. 

* There is a transition labeled X, where X is a 
terminal or nonterminal symbol, from dotted rule 
A ~ a . X / 3  to A ~ a X  ./3. 

• There is an e-transition from A -+ a .  B/3 to B ~ "7, 
where B is a nonterminal symbol and B ~ "7 a rule 
in G. 

.M(G) can be seen as a finite state control for a non- 
deterministic shift-reduce pushdown recognizer for G. A 
state transition labeled by a terminal symbol z from 
state s to state s' licenses a shift move, pushing onto 
the stack of the recognizer the pair (s, Ix). Arrival at a 
state containing a completed dotted rule A ~ a.  licenses 
a reduction move. This pops from the stack as many 
pairs as the symbols in a,  checking that  the symbols in 
the pairs match the corresponding elements of a,  and 
then takes the transition out of the last state popped s 
labeled by A, pushing (s, A) onto the stack. 

The basic ingredient of our approximation algorithm 
is the f lat tening of a shift-reduce recognizer for a gram- 
mar G into an FSA by eliminating the stack and turning 
reduce moves into e-transitions. However, as we will see 
below, flattening the characteristic machine recognizer 
directly will lead to poor approximations in many inter- 
esting cases. Instead, the characteristic machine must be 
unfolded into a larger machine whose states carry infor- 
mation about the possible shift-reduce stacks at states 
of the characteristic machine. The quality of the ap- 
proximation is crucially influenced by how much stack 
information is encoded in the states of the unfolded ma- 
chine: too little leads to coarse approximations, while 
too much leads to redundant au tomata  needing very ex- 
pensive optimization. 

The algorithm is best understood with a simple exam- 
ple. Consider the left-linear grammar G1 

S - - - t A b  
A---+ A a l e  

.M(G1) is shown on Figure 1. Unfolding is not required 
for this simple example, so the approximating FSA is ob- 
tained from .A//(G1) by the flattening method outlined 
above. The reducing states in .h4(G1), those contain- 
ing completed dotted rules, are states 0, 3 and 4. For 
instance, the reduction at state 4 would lead to a tran- 
sition on nonterminal A, to state 2, from the state that  

Figure 2: Flattened FSA 

activated the rule being reduced. Thus the correspond- 
ing e-transition goes from state 4 to state 2. Adding all 
the transitions that  arise in this way we obtain the FSA 
in Figure 2. From this point on, the arcs labeled with 
nonterminals can be deleted. Doing that  and simplify- 
ing, we get finally the FSA in Figure 3. which is the 
minimal FSA for the input left-linear grammar.  

If flattening were applied to the LR(0) characteristic 
machine as in the example above, even simple grammars 
defining regular languages might be inexactly approxi- 
mated by the algorithm. The reason for this is that  in 
general the reduction at a given reducing state in the 
characteristic machine transfers to different states de- 
pending on stack contents. In other words, the reducing 
state might be reached by different routes which use the 
result of the reduction in different ways. Consider for 
example the grammar G2 

S --~ a X a  [ bXb 
X ---~ c 

which accepts the two strings aca and bcb. Flattening 
.A4(G2) will produce an FSA that  will also accept acb 
and bca, clearly an undesirable outcome. The reason for 
this is that  the e-transitions leaving the reducing state 
containing X ~ c. do not distinguish between the dif- 
ferent ways of reaching that  state, which are encoded in 
the stack of the characteristic recognizer. 

One way of solving the above problem is to unfold each 
state of the characteristic machine into a set of states cor- 
responding to different stacks at that  state, and flatten- 
ing the unfolded acceptor rather than the original one. 
However, the set of possible stacks at a state is in general 
infinite. Therefore, it is necessary to do the unfolding not 
with respect to stacks, but  with respect to a finite par- 

® 
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Figure 3: Minimal Acceptor 
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tition of the set of stacks possible at the state, induced 
by an appropriate  equivalence relation. The relation we 
use currently makes two stacks equivalent if they can 
be made identical by collapsing loops, that  is, remov- 
ing portions of  stack pushed between two arrivals at the 
same state  in the finite-state control of the shift-reduce 
recognizer. The purpose of collapsing loops is to "for- 
get" stack segments that  may  be arbitrari ly repeated3 
Clearly, each equivalence class is uniquely defined by the 
shortest stack in the class, and the classes can be con- 
structed without  having to consider all the (infinitely) 
many  possible stacks. 

S o u n d n e s s  o f  t h e  A l g o r i t h m  
We will show here that  the approximation method de- 
scribed informally in the previous section is sound, in the 
sense that  the approximat ing FSA will always accept a 
superset of the language accepted by the input CFG. 

In what follows, G is a fixed CFG with terminal  vo- 
cabulary ~, nonterminal  vocabulary N and s tar t  symbol 
S . . M  is the characteristic machine for G, with state set 
Q, s tar t  s tate so, final states F,  and transition function 
6 : S x (E U N)  --~ S. As usual, transition functions such 
as 6 are extended from input symbols to input strings 
by defining 6(s, e) = s and 6(s, aft) = 6(6(s, a) ,  fl). 

The shift-reduce recognizer T¢ associated to .M has the 
same states, s tar t  s ta te  and final states. I ts  configura- 
tions are triples i s, 05 w) of a state, a stack and an input 
string. The stack is a sequence of pairs (s, X)  of a state 
and a terminal  or nonterminal  symbol.  The transitions 
of the shift-reduce recognizer are given as follows: 

Sh i f t :  i s, o', xw) ~- (s', o'is, x), w) if 6(s, x) = s '  

R e d u c e :  (s, ar, w) ~- (s',  o'is" , A), w} if 6(s", A) = s '  
and either (1) A + • is a completed dotted 
rule in s, s"  = s and r is empty,  or (2) A 
X 1 . . . X n -  is a completed dotted rule in s, 
r = ( s x , X i ) - - . ( s . , X . }  and s" = sl .  

The initial configurations of ~ are is0, e, w) for some 
input string w, and the final configurations are 
(s, (s0,S},e) for some state s E F .  A derivation of a 
string w is a sequence of configurations c o , . . . ,  cm such 
that  co = (so, e, w}, cm = i s, (So, S}, e} for some final 
s tate p, and ci-1 ~- ci for 1 < i < n. 

Let s be a state. The set Stacks(s) contains 
each sequence ( s o , X o } . . . i s k , X k }  such t h a t  si = 
6(s~_i,X~_~), 1 < i < k and s = 6(sk ,Xk) .  In addition, 
Stacks(s0) contains the empty  sequence e. By construc- 
tion, it is clear tha t  if i s, o', w} is reachable from an initial 
configuration in 7~, then (r E Stacks(s). 

A stack congruence on T¢ is a family of equivalence 
relations _---~ on Stacks(s) for each s tate  s E S such that  
if o" =--, tr' and 6(s, X )  = s' then ~(s, X )  _---,, ais ,  X} .  A 

2Since possible stacks can be easily shown to form a regular 
language, loop collapsing has a direct connection to the pumping 
lemma for regular languages. 

stack congruence ~ parti t ions each Stacks(s) into equiv- 
alence classes [a], of the stacks in Stacks(s) equivalent 
to a under ~ , .  

Each stack congruence ~ on T~ induces a correspond- 
ing unfolded recognizer ~ _ .  The states of the unfolded 
recognizer are pairs of a state and stack equivalence class 
at that  state. The initial s ta te  is (so, [e]so), and the fi- 
nal states are all (s, [a]s) with s E F .  The transition 
function 5__- of the unfolded recognizer is defined by 

M,), x) = (6(s, x), X)l,(,,x)) 

Tha t  this is well-defined follows immediate ly  from the 
definition of stack congruence. 

The definitions of dotted rules in states, configura- 
tions, shift and reduce transitions given above carry over 
immediately to unfolded recognizers. Also, the charac- 
teristic recognizer can also be seen as an unfolded recog- 
nizer for the trivial coarsest congruence. 

For any unfolded s tate  p, let Pop(p) be the set of states 
reachable from p by a reduce transition. More precisely, 
Pop(p) contains any state p '  such tha t  there is a com- 
pleted dotted rule A --~ c~. in p and a s tate  p"  such that  
6___(p",c~) = p and 6 - ( p " , A )  = p' .  Then the flattening 
U -  of 7~_- is a nodeterministie FSA with the same state 
set, s tar t  s tate and final states as 7~- and nondetermin- 
isti¢ transition function ¢ -  defined as follows: 

• If  6~_(p,x) = p '  for some x E E, then p '  E ¢_=(p,x) 

• If  p '  E Pop(p) then p '  E ¢= (p, e). 

Let co , . . . ,  cm be a derivation of string w in TO, and 
put ci = (qi, o'i, wi}, and Pi = (qi, [o'i]p,}. By construc- 
tion, if ci-1 F- ci is a shift move on x (wi-1 = zwi), 
then 6_--(pi-1, x) = Pi, and thus P i e  ¢_=(Pi-1, x). Alter- 
natively, assume the transition is a reduce move associ- 
ated to the completed dotted rule A ~ a. .  We consider 
first the case a # e. Put  a = X 1 . . . X , .  By definition 
of reduce move, there is a sequence of states r a , . . . ,  rn 
and a stack a such tha t  o'i-1 = a ( r l , X 1 ) . . . ( r n , X , } ,  
ai = o ' i r l ,A  ), 6 i r l ,A )  = qi, and 6 ( r j , X j )  = rj+l for 
1 < j < n. By definition of stack congruence, we will 
then have 

where n = and = {r, ,  X -i) for j > 1. 
Furthermore,  again by definition of stack congruence we 
have 6_=((rl, [o']r,),A) = Pi. Therefore, Pi E Pop(pi-1)  
and thus Pi E ¢_=(Pi-1, e). A similar but simpler argu- 
ment  allows us to reach the same conclusion for the case 
a = e. Finally, the definition of final s tate for TO__- and 
.T~ makes Pm a final state. 

We have thus shown how to construct from a deriva- 
tion of a string in T¢ an accepting pa th  for the same 
string in .T=-. This proves tha t  every string in L(G) is 
accepted by .T~, tha t  is, that  our construction is sound. 

Finally, we should show that  the stack collaps- 
ing equivalence informally described earlier is indeed 
a stack congruence. A stack r is a loop if r = 
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Symbol Category Features 
s 

n p  

v p  

a r g s  

d e t  

n 

pron  
v 

sentence 
noun phrase 
verb phrase 
verb arguments 
determiner 
noun 
pronoun 
verb 

n (number), p (person) 
n, p, c (case) 
n, p, t (verb type) 
t 
n 

n 

n, p, c 

n, p, t 

Table 1: Categories of Example Grammar  

( s l , X 1 ) . . . ( s k , X k )  and 6(sk,Xk) = sx. A stack a col- 
lapses to a stack a '  if o" = pry, ~' = pv and r is a loop. 
Two stacks are equivalent if they can be collapsed to the 
same stack. Clearly, this equivalence relation is closed 
under suffixing, therefore it is a stack congruence. 

A Complete Example 
The example grammar in the appendix shows an APSG 
for a small fragment of English, written in the notation 
accepted by the curent version of our grammar compiler. 
The categories and features used in the grammar are 
described in Tables 1 and 2 (categories without features 
are omitted).  The example grammar accepts sentences 
such as 

I give a cake to Tom 
Tom sleeps 
I eat every nice cake 

but rejects ill-formed inputs such as 

I sleeps 
I eats a cake 
I give 
Tom eat 

The current grammar compiler factors out terminal 
productions to make the approximation algorithm inde- 
pendent of vocabulary size; transitions are labeled by 
automatically generated preterminal symbols instead of 
terminal symbols. After this factoring, the full instan- 
tiation of the example grammar has 181 rules, its char- 
acteristic machine 222 states and 922 transitions, the 

Feature Values 
n (number) 

p (person) 

¢ (case) 

t (verb type) 

s (singular), p (plural) 

1 (first), 2 (second), 3 (third) 

s (subject), o (nonsubject) 

i (intransitive), t (transitive), d 
(ditransitive) 

Table 2: Features of Example Grammar  

unfolded and flattened FSA 3417 states and 4255 tran- 
sitions, and the determinized and minimized final DFA 
18 states and 67 transitions. The compilation time is 
123.19 seconds on a Sun SparcStation 1, with the deter- 
minizer and minimizer written in C and the rest of the 
compiler in Quintus Prolog. Most of the t ime is spent in 
the unfolding and flattening phases (90.62 seconds un- 
folding and 17.33 flattening). It is hoped that  recoding 
t h e s e  phases in C using carefully tuned data  structures 
will speed them up by between one and two orders of 
magnitude. 

Substantially larger grammars,  with thousands of in- 
stantiated rules, have been developed for a speech-to- 
speech translation project. Compilation times range 
from the very reasonable (around 10 minutes) to the very 
high (10 hours). Very long compilations are caused by a 
combinatorial explosion in the unfolding of right recur- 
sions that  will be discussed further in the next section. 

Informal Analysis 
The present algorithm has not yet been analyzed suffi- 
ciently to determine the class of context-free grammars 
generating regular languages for which it is exact. IIow- 
ever, it is exact for in a variety of interesting cases, in- 
cluding the examples of Church and Patil (Church and 
Patil, 1982), which illustrate how typical at tachment am- 
biguities arise as structural ambiguities on regular string 
sets. 

For example, the left-linear grammar 

S - - t A b  
A - - ,  Aa le 

and the right-linear grammar 

S---~aS [ b 

both of which generate the regular set a'b, are mapped 
by the algorithm into the FSA in Figure 3. 

The algorithm is also exact for some self-embedding 
grammars s of regular languages, such as 

S---+ aS  [ Sb l c 

defining the regular language a*cb*. 
A more interesting example is the following simplified 

grammar for the structure of English noun phrases: 

NP ~ Det Nom I PN 
Det ~ Art ] N P ' s  
Nom ~ N I Nom PP I Adj Nom 
PP ~ P NP 

The symbols Art, N, PN and P correspond to the parts of 
speech article, noun, proper noun and preposition. From 
this grammar, the algorithm derives the FSA in Figure 
4. 

3A grammar is self-embeddlng if and only if licenses the deriva- 
tion X ~ c~X~ for nonempty a and/3. A language is regular if and 
only if it can be described by some non-self-embedding grammar. 
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Figure 4: Acceptor for Noun Phrases 

As an example of inexact approximation, consider the 
the self-embedding CFG 

S --~ aSb ] e 

for the nonregular language anb n, n _> O. This grammar 
is mapped by the algorithm into an FSA accepting e I 
a+b +. The effect of the algorithm is thus to "forget" the 
pairing between a's and b's mediated by the stack in a 
pushdown acceptor for the CFG. 

As noted earlier, right recursion is rather bad for the 
present unfolding scheme. It is easy to see that the num- 
ber of unfolded states for a grammar of the form 

S--~ X1S ] . . .  I XnS  I Y 

is exponential in n. However, the problem can be cir- 
cumvented by left factoring the grammar as follows: 

S ~ Z S i Y  
z xl I . . . Ix.  

This kind of situation often arises indirectly in the expan- 
sion of an APSG when some features in the right-hand 
side of a rule are unconstrained and thus lead to many 
different instantiated rules. 

Rela ted  Work and Conc lus ions  
Our work can be seen as an algorithmic realization of 
suggestions of Church and Patil (Church, 1980; Church 
and Patil, 1982) on algebraic simplifications of CFGs of 
regular languages. Other work on finite state approxi- 
mations of phrase structure grammars has typically re- 
lied on arbitrary depth cutoffs in rule application. While 
this is reasonable for psycholinguistic modeling of perfor- 
mance restrictions on center embedding (Pulman, 1986), 
it does not seem appropriate for speeech recognition 
where the approximating FSA is intended to work as 
a filter and not reject inputs acceptable by the given 
grammar. For instance, depth cutoffs in the method 
described by Black (1989) lead to approximating FSAs 
whose language is neither a subset nor a superset of the 
language of the given phrase-structure grammar, In con- 
trast, our method will produce an exact FSA for many 
interesting grammars generating regular languages, such 

as those arising from systematic attachment ambiguities 
(Church and Patil, 1982). It important to note, however, 
that even when the result FSA accepts the same lan- 
guage, the original grammar is still necessary because in- 
terpretation algorithms are generally expressed in terms 
of phrase structures described by that grammar, not in 
terms of the states of the FSA. 

The current algorithm can be combinatorially explo- 
sive in two places: the instantiation of unification gram- 
mar rules to derive an equivalent CFG, and the unfold- 
ing of the characteristic machine, in particular for right- 
recursive rules. The former problem can be alleviated by 
avoiding full instantiation of unification grammar rules 
with respect to "don't care" features, that is, features 
that are not constrained by the rule. This can also 
help decrease the right-recursion unfolding explosion dis- 
cussed earlier. As for the cost of unfolding, preliminary 
experiments suggest that dividing the grammar into non- 
mutually-recursive components and applying the LR(0) 
construction and unfolding separately to those compo- 
nents could lead to much smaller unfolded automata. 
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Appendix 
Nonterminal symbols (syntactic categories) may have 
features that  specify variants of the category (eg. sin- 
gular or plural noun phrases, intransitive or transitive 
verbs). A category cat with feature constraints is writ- 
ten 

CarE[el,... , Crn] . 

Feature constraints for feature f have the form 

f = v  

for a single value v or 

f = ( , 1 , . . . ,  v,)  

for several alternative values. The symbol ")" appear- 
ing as the value of a feature in the right-hand side of 
a rule indicates that  that  feature must have the same 
value as the feature of the same name of the category in 
the left-hand side of the rule. This can be used to en- 
force feature agreement, for instance, number agreement 
between subject and verb. 

It is convenient to declare the features and possible 
values of categories with category declarations appearing 
before the grammar rules. Category declarations have 
the form 

c a t  c a t # [  f l  • ( V l l , . . . , V l k l ) , . . . ,  

/m=(Vml . . . .  ,Vmk ) 1. 

giving all the possible values of all the features for the 
category. 

The declaration 

s t a r t  cat. 

declares cat as the start symbol of the grammar. 
In the grammar rules, the symbol " ' "  prefixes terminal 

symbols, commas are used for sequencing and " l"  for 
alternation. 

start s. 

cat s#[n=(s,p),p=(l,2,3)]. 
cat np#[n=(s,p) ,p=(1,2,3) ,c=(s,o)] . 
cat vp#[n=(s,p) ,p=(1,2,3) ,type=(i,t,d)]. 
cat args# [type=(i,t,d)] . 

ca t  d e t # [ n = ( s , p ) ] .  
ca t  n # [ n = ( s , p ) ] .  
ca t  p r o n # [ n = ( s , p ) , p = ( 1 , 2 , 3 ) , c = ( s , o ) ] .  
ca t  v # [ n = ( s , p ) , p = ( 1 , 2 , 3 ) , t y p e = ( i , t , d ) ] .  

s => n p # [ n = ! , p = ! , c = s ] ,  v p # [ n = ! , p = ! ] .  

np#[p=3] => det#[n=!], adjs, n#[n=!]. 
np#[n=s,p=3] => pn. 
np => pron#[n=!, p=!, c=!]. 

pron#[n=s,p=l,c=s] => 'i. 
pron#[p=2] => 'you. 
pron#[n=s,p=3,c=s] => 'he I 'she. 
pron#[n=s,p=3] => 'it. 
pron#[n=p,p=l,c=s] => ',e. 
pron#[n=p,p=3,c=s] => 'they. 
pron#[n=s,p=l,c=o] => 'me. 
pron#[n=s,p=3,c=o] => 'him I 'her. 
pron#[n=p,p=l,c=o] => 'us. 
pron#[n=p,p=3,c=o] => 'them. 

vp => v # [ n = ! , p = ! , t y p e = ! ] ,  a r g s # [ t y p e = ! ] .  

adjs => [1. 
adjs => adj, adjs. 

args#[type=i] => []. 
args#[type=t] => np#[c=o]. 
args#[type=d] => np#[c=o], ' t o ,  np#[c=o]. 

pn => 'tom ] 'dick I 'harry. 

det => 'somel 'the. 
det#[n=s] => 'every I 'a. 
det#[n=p] => 'all I 'most. 

n#[n=s] => 'child [ 'cake. 
n#[n=p] => 'children [ 'cakes. 

adj => 'nice [ 'sweet. 

v#[n=s,p=3,type=i] => 'sleeps. 
v#[n=p,type=i] => 'sleep. 
v#[n=s,p=(l,2),type=i] => 'sleep. 

v # [ n = s , p = 3 , t y p e = t ]  => ' e a t s .  
v # [ n = p , t y p e = t ]  => ' e a t .  
v # [ n = s , p = ( 1 , 2 ) , t y p e = t ]  => 'eat. 

v#[n=s,p=3,type=d] => 'gives. 
v#[n=p,type=d] => 'give. 
v#[n=e,p=(1,2),type=d] => 'give. 
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