
Fini te -State Approx imat ions of Grammars

Fernando Pereira

AT&T Bell Laboratories
600 Mountain Ave., Murray Hill, NJ 07974

Motivat ion
Grammars for spoken language systems are subject to
the conflicting requirements of language modeling for
recognition and of language analysis for sentence inter-
pretation. Current recognition algorithms can most di-
rectly use finite-state acceptor (FSA) language models.
However, these models are inadequate for language inter-
pretation, since they cannot express the relevant syntac-
tic and semantic regularities. Augmented phrase struc-
ture grammar (APSG) formalisms, such as unification
grammars, can express many of those regularities, but
they are computationally less suitable for language mod-
eling, because of the inherent cost of computing state
transitions in APSG parsers.

The above problems might be circumvented by us-
ing separate grammars for language modeling and lan-
guage interpretation. Ideally, the recognition grammar
should not reject sentences acceptable by the interpreta-
tion grammar, but it should contain as much as possible
of the constraints built into the interpretation grammar.
However, if the two grammars are built independently,
those constraints are difficult to maintain. For this rea-
son, we have developed a method for constructing au-
tomatically a finite-state approximation for an 'APSG.
Since the purpose of the approximation is to serve as a
filter in a speech-recognition front-end to the real parser,
the approximation language is a superset of the language
accepted by the APSG. The term "approximation" will
always be used in this sense in what follows.

If no further constraints were placed on the close-
ness of the approximation, the trivial algorithm that
assigns to any APSG over alphabet ~ the regular lan-
guage ~* would do. Clearly, this is not what is required.
One possible criterion for "goodness" of approximation
arises from the observation that many interesting phrase-
structure grammars have substantial parts that accept
regular languages. Tha t does not mean that the gram-
mar rules are in the standard forms for defining :regular
languages (left-linear or right-linear), because syntactic
and semantic considerations often require that strings in
a regular set be assigned structural descriptions not de-
finable by regular productions. A useful criterion is thus
that if a grammar generates a regular language, the ap-
proximation algorithm yields an acceptor for that :regular

language. In other words, one would like the algorithm
to be exact for APSGs yielding regular languages.

We have not yet proved that our method satisfies the
above exactness criterion, but some experiments have
shown that the method is exact for a variety of interest-
ing grammars.

The Algor i thm
Our approximation method applies to any context-free
grammar (CFG), or any unification grammar that can
be fully expanded into a context-free g r a m m a r) The re-
sulting FSA accepts a superset of the sentences accepted
by the input grammar.

The current implementation accepts as input a form
of unification grammar in which features can take only
atomic values drawn from a specified finite set. It is
clear that such grammars can only generate context-free
languages, since an equivalent CFG can be obtained by
instantiating features in rules in all possible ways.

The heart of our approximation method is an al-
gorithm to convert the LR(0) characteristic machine
AA(G) (Aho and Ullman, 1977; Uackhouse, 1979) of a
CFG G into an FSA for a superset of the language L(G)
defined by G. The characteristic machine for a CFG G
is an FSA for the viable prefixes of G, which are just the
possible stacks built by the standard shift-reduce recog-
nizer for G when recognizing strings in L(G).

This is not the place to review the characteristic ma-
chine construction in detail. However, to explain the
approximation algorithm we will need to recall the main
aspects of the construction. The states of .hA(G) are sets
of dotted rules A ---+ or. fl where A ---+ aft is some rule of
G..A4(G) is the determinization by the standard subset
construction (Aho and Ullman, 1977) of the FSA defined
as follows:

• The initial state is the dotted rule S' ~ S. where S
is the start symbol of G and S' is a new auxiliary
start symbol.

• The final state is S' ---, S..

1 Unification g r a m m a r s not in this class m u s t first be weakened
using techniques such as Shieber 's res t r ic tor (Shieber, 1985).

2 0

1
S'->.S ~ , , S'->S.
S ->. Ab 3
A->.Aa (4 S'>Ab" A ->. A~2S -> A. b

A -> A. a

a A->Aa.

Figure 1: Characteristic Machine for G1

• The other states are all the possible dotted rules of
G.

* There is a transition labeled X, where X is a
terminal or nonterminal symbol, from dotted rule
A ~ a . X / 3 to A ~ a X ./3.

• There is an e-transition from A -+ a . B/3 to B ~ "7,
where B is a nonterminal symbol and B ~ "7 a rule
in G.

.M(G) can be seen as a finite state control for a non-
deterministic shift-reduce pushdown recognizer for G. A
state transition labeled by a terminal symbol z from
state s to state s' licenses a shift move, pushing onto
the stack of the recognizer the pair (s, Ix). Arrival at a
state containing a completed dotted rule A ~ a. licenses
a reduction move. This pops from the stack as many
pairs as the symbols in a, checking that the symbols in
the pairs match the corresponding elements of a, and
then takes the transition out of the last state popped s
labeled by A, pushing (s, A) onto the stack.

The basic ingredient of our approximation algorithm
is the f lat tening of a shift-reduce recognizer for a gram-
mar G into an FSA by eliminating the stack and turning
reduce moves into e-transitions. However, as we will see
below, flattening the characteristic machine recognizer
directly will lead to poor approximations in many inter-
esting cases. Instead, the characteristic machine must be
unfolded into a larger machine whose states carry infor-
mation about the possible shift-reduce stacks at states
of the characteristic machine. The quality of the ap-
proximation is crucially influenced by how much stack
information is encoded in the states of the unfolded ma-
chine: too little leads to coarse approximations, while
too much leads to redundant au tomata needing very ex-
pensive optimization.

The algorithm is best understood with a simple exam-
ple. Consider the left-linear grammar G1

S - - - t A b
A---+ A a l e

.M(G1) is shown on Figure 1. Unfolding is not required
for this simple example, so the approximating FSA is ob-
tained from .A//(G1) by the flattening method outlined
above. The reducing states in .h4(G1), those contain-
ing completed dotted rules, are states 0, 3 and 4. For
instance, the reduction at state 4 would lead to a tran-
sition on nonterminal A, to state 2, from the state that

Figure 2: Flattened FSA

activated the rule being reduced. Thus the correspond-
ing e-transition goes from state 4 to state 2. Adding all
the transitions that arise in this way we obtain the FSA
in Figure 2. From this point on, the arcs labeled with
nonterminals can be deleted. Doing that and simplify-
ing, we get finally the FSA in Figure 3. which is the
minimal FSA for the input left-linear grammar.

If flattening were applied to the LR(0) characteristic
machine as in the example above, even simple grammars
defining regular languages might be inexactly approxi-
mated by the algorithm. The reason for this is that in
general the reduction at a given reducing state in the
characteristic machine transfers to different states de-
pending on stack contents. In other words, the reducing
state might be reached by different routes which use the
result of the reduction in different ways. Consider for
example the grammar G2

S --~ a X a [bXb
X ---~ c

which accepts the two strings aca and bcb. Flattening
.A4(G2) will produce an FSA that will also accept acb
and bca, clearly an undesirable outcome. The reason for
this is that the e-transitions leaving the reducing state
containing X ~ c. do not distinguish between the dif-
ferent ways of reaching that state, which are encoded in
the stack of the characteristic recognizer.

One way of solving the above problem is to unfold each
state of the characteristic machine into a set of states cor-
responding to different stacks at that state, and flatten-
ing the unfolded acceptor rather than the original one.
However, the set of possible stacks at a state is in general
infinite. Therefore, it is necessary to do the unfolding not
with respect to stacks, but with respect to a finite par-

®

a

b-©

Figure 3: Minimal Acceptor

2 1

tition of the set of stacks possible at the state, induced
by an appropriate equivalence relation. The relation we
use currently makes two stacks equivalent if they can
be made identical by collapsing loops, that is, remov-
ing portions of stack pushed between two arrivals at the
same state in the finite-state control of the shift-reduce
recognizer. The purpose of collapsing loops is to "for-
get" stack segments that may be arbitrari ly repeated3
Clearly, each equivalence class is uniquely defined by the
shortest stack in the class, and the classes can be con-
structed without having to consider all the (infinitely)
many possible stacks.

S o u n d n e s s o f t h e A l g o r i t h m
We will show here that the approximation method de-
scribed informally in the previous section is sound, in the
sense that the approximat ing FSA will always accept a
superset of the language accepted by the input CFG.

In what follows, G is a fixed CFG with terminal vo-
cabulary ~, nonterminal vocabulary N and s tar t symbol
S . . M is the characteristic machine for G, with state set
Q, s tar t s tate so, final states F, and transition function
6 : S x (E U N) --~ S. As usual, transition functions such
as 6 are extended from input symbols to input strings
by defining 6(s, e) = s and 6(s, aft) = 6(6(s, a) , fl).

The shift-reduce recognizer T¢ associated to .M has the
same states, s tar t s ta te and final states. I ts configura-
tions are triples i s, 05 w) of a state, a stack and an input
string. The stack is a sequence of pairs (s, X) of a state
and a terminal or nonterminal symbol. The transitions
of the shift-reduce recognizer are given as follows:

Sh i f t : i s, o', xw) ~- (s', o'is, x), w) if 6(s, x) = s '

R e d u c e : (s, ar, w) ~- (s', o'is" , A), w} if 6(s", A) = s '
and either (1) A + • is a completed dotted
rule in s, s" = s and r is empty, or (2) A
X 1 . . . X n - is a completed dotted rule in s,
r = (s x , X i) - - . (s . , X . } and s" = sl .

The initial configurations of ~ are is0, e, w) for some
input string w, and the final configurations are
(s, (s0,S},e) for some state s E F . A derivation of a
string w is a sequence of configurations c o , . . . , cm such
that co = (so, e, w}, cm = i s, (So, S}, e} for some final
s tate p, and ci-1 ~- ci for 1 < i < n.

Let s be a state. The set Stacks(s) contains
each sequence (s o , X o } . . . i s k , X k } such t h a t si =
6(s~_i,X~_~), 1 < i < k and s = 6(sk ,Xk) . In addition,
Stacks(s0) contains the empty sequence e. By construc-
tion, it is clear tha t if i s, o', w} is reachable from an initial
configuration in 7~, then (r E Stacks(s).

A stack congruence on T¢ is a family of equivalence
relations _---~ on Stacks(s) for each s tate s E S such that
if o" =--, tr' and 6(s, X) = s' then ~(s, X) _---,, ais , X} . A

2Since possible stacks can be easily shown to form a regular
language, loop collapsing has a direct connection to the pumping
lemma for regular languages.

stack congruence ~ parti t ions each Stacks(s) into equiv-
alence classes [a], of the stacks in Stacks(s) equivalent
to a under ~ , .

Each stack congruence ~ on T~ induces a correspond-
ing unfolded recognizer ~ _ . The states of the unfolded
recognizer are pairs of a state and stack equivalence class
at that state. The initial s ta te is (so, [e]so), and the fi-
nal states are all (s, [a]s) with s E F . The transition
function 5__- of the unfolded recognizer is defined by

M,), x) = (6(s, x), X)l,(,,x))

Tha t this is well-defined follows immediate ly from the
definition of stack congruence.

The definitions of dotted rules in states, configura-
tions, shift and reduce transitions given above carry over
immediately to unfolded recognizers. Also, the charac-
teristic recognizer can also be seen as an unfolded recog-
nizer for the trivial coarsest congruence.

For any unfolded s tate p, let Pop(p) be the set of states
reachable from p by a reduce transition. More precisely,
Pop(p) contains any state p ' such tha t there is a com-
pleted dotted rule A --~ c~. in p and a s tate p" such that
6___(p",c~) = p and 6 - (p " , A) = p' . Then the flattening
U - of 7~_- is a nodeterministie FSA with the same state
set, s tar t s tate and final states as 7~- and nondetermin-
isti¢ transition function ¢ - defined as follows:

• If 6~_(p,x) = p ' for some x E E, then p ' E ¢_=(p,x)

• If p ' E Pop(p) then p ' E ¢= (p, e).

Let co , . . . , cm be a derivation of string w in TO, and
put ci = (qi, o'i, wi}, and Pi = (qi, [o'i]p,}. By construc-
tion, if ci-1 F- ci is a shift move on x (wi-1 = zwi),
then 6_--(pi-1, x) = Pi, and thus P i e ¢_=(Pi-1, x). Alter-
natively, assume the transition is a reduce move associ-
ated to the completed dotted rule A ~ a. . We consider
first the case a # e. Put a = X 1 . . . X , . By definition
of reduce move, there is a sequence of states r a , . . . , rn
and a stack a such tha t o'i-1 = a (r l , X 1) . . . (r n , X , } ,
ai = o ' i r l ,A), 6 i r l ,A) = qi, and 6 (r j , X j) = rj+l for
1 < j < n. By definition of stack congruence, we will
then have

where n = and = {r, , X -i) for j > 1.
Furthermore, again by definition of stack congruence we
have 6_=((rl, [o']r,),A) = Pi. Therefore, Pi E Pop(pi-1)
and thus Pi E ¢_=(Pi-1, e). A similar but simpler argu-
ment allows us to reach the same conclusion for the case
a = e. Finally, the definition of final s tate for TO__- and
.T~ makes Pm a final state.

We have thus shown how to construct from a deriva-
tion of a string in T¢ an accepting pa th for the same
string in .T=-. This proves tha t every string in L(G) is
accepted by .T~, tha t is, that our construction is sound.

Finally, we should show that the stack collaps-
ing equivalence informally described earlier is indeed
a stack congruence. A stack r is a loop if r =

22

Symbol Category Features
s

n p

v p

a r g s

d e t

n

pron
v

sentence
noun phrase
verb phrase
verb arguments
determiner
noun
pronoun
verb

n (number), p (person)
n, p, c (case)
n, p, t (verb type)
t
n

n

n, p, c

n, p, t

Table 1: Categories of Example Grammar

(s l , X 1) . . . (s k , X k) and 6(sk,Xk) = sx. A stack a col-
lapses to a stack a ' if o" = pry, ~' = pv and r is a loop.
Two stacks are equivalent if they can be collapsed to the
same stack. Clearly, this equivalence relation is closed
under suffixing, therefore it is a stack congruence.

A Complete Example
The example grammar in the appendix shows an APSG
for a small fragment of English, written in the notation
accepted by the curent version of our grammar compiler.
The categories and features used in the grammar are
described in Tables 1 and 2 (categories without features
are omitted). The example grammar accepts sentences
such as

I give a cake to Tom
Tom sleeps
I eat every nice cake

but rejects ill-formed inputs such as

I sleeps
I eats a cake
I give
Tom eat

The current grammar compiler factors out terminal
productions to make the approximation algorithm inde-
pendent of vocabulary size; transitions are labeled by
automatically generated preterminal symbols instead of
terminal symbols. After this factoring, the full instan-
tiation of the example grammar has 181 rules, its char-
acteristic machine 222 states and 922 transitions, the

Feature Values
n (number)

p (person)

¢ (case)

t (verb type)

s (singular), p (plural)

1 (first), 2 (second), 3 (third)

s (subject), o (nonsubject)

i (intransitive), t (transitive), d
(ditransitive)

Table 2: Features of Example Grammar

unfolded and flattened FSA 3417 states and 4255 tran-
sitions, and the determinized and minimized final DFA
18 states and 67 transitions. The compilation time is
123.19 seconds on a Sun SparcStation 1, with the deter-
minizer and minimizer written in C and the rest of the
compiler in Quintus Prolog. Most of the t ime is spent in
the unfolding and flattening phases (90.62 seconds un-
folding and 17.33 flattening). It is hoped that recoding
t h e s e phases in C using carefully tuned data structures
will speed them up by between one and two orders of
magnitude.

Substantially larger grammars, with thousands of in-
stantiated rules, have been developed for a speech-to-
speech translation project. Compilation times range
from the very reasonable (around 10 minutes) to the very
high (10 hours). Very long compilations are caused by a
combinatorial explosion in the unfolding of right recur-
sions that will be discussed further in the next section.

Informal Analysis
The present algorithm has not yet been analyzed suffi-
ciently to determine the class of context-free grammars
generating regular languages for which it is exact. IIow-
ever, it is exact for in a variety of interesting cases, in-
cluding the examples of Church and Patil (Church and
Patil, 1982), which illustrate how typical at tachment am-
biguities arise as structural ambiguities on regular string
sets.

For example, the left-linear grammar

S - - t A b
A - - , Aa le

and the right-linear grammar

S---~aS [b

both of which generate the regular set a'b, are mapped
by the algorithm into the FSA in Figure 3.

The algorithm is also exact for some self-embedding
grammars s of regular languages, such as

S---+ aS [Sb l c

defining the regular language a*cb*.
A more interesting example is the following simplified

grammar for the structure of English noun phrases:

NP ~ Det Nom I PN
Det ~ Art] N P ' s
Nom ~ N I Nom PP I Adj Nom
PP ~ P NP

The symbols Art, N, PN and P correspond to the parts of
speech article, noun, proper noun and preposition. From
this grammar, the algorithm derives the FSA in Figure
4.

3A grammar is self-embeddlng if and only if licenses the deriva-
tion X ~ c~X~ for nonempty a and/3. A language is regular if and
only if it can be described by some non-self-embedding grammar.

2 3

Figure 4: Acceptor for Noun Phrases

As an example of inexact approximation, consider the
the self-embedding CFG

S --~ aSb] e

for the nonregular language anb n, n _> O. This grammar
is mapped by the algorithm into an FSA accepting e I
a+b +. The effect of the algorithm is thus to "forget" the
pairing between a's and b's mediated by the stack in a
pushdown acceptor for the CFG.

As noted earlier, right recursion is rather bad for the
present unfolding scheme. It is easy to see that the num-
ber of unfolded states for a grammar of the form

S--~ X1S] . . . I XnS I Y

is exponential in n. However, the problem can be cir-
cumvented by left factoring the grammar as follows:

S ~ Z S i Y
z xl I . . . Ix.

This kind of situation often arises indirectly in the expan-
sion of an APSG when some features in the right-hand
side of a rule are unconstrained and thus lead to many
different instantiated rules.

Rela ted Work and Conc lus ions
Our work can be seen as an algorithmic realization of
suggestions of Church and Patil (Church, 1980; Church
and Patil, 1982) on algebraic simplifications of CFGs of
regular languages. Other work on finite state approxi-
mations of phrase structure grammars has typically re-
lied on arbitrary depth cutoffs in rule application. While
this is reasonable for psycholinguistic modeling of perfor-
mance restrictions on center embedding (Pulman, 1986),
it does not seem appropriate for speeech recognition
where the approximating FSA is intended to work as
a filter and not reject inputs acceptable by the given
grammar. For instance, depth cutoffs in the method
described by Black (1989) lead to approximating FSAs
whose language is neither a subset nor a superset of the
language of the given phrase-structure grammar, In con-
trast, our method will produce an exact FSA for many
interesting grammars generating regular languages, such

as those arising from systematic attachment ambiguities
(Church and Patil, 1982). It important to note, however,
that even when the result FSA accepts the same lan-
guage, the original grammar is still necessary because in-
terpretation algorithms are generally expressed in terms
of phrase structures described by that grammar, not in
terms of the states of the FSA.

The current algorithm can be combinatorially explo-
sive in two places: the instantiation of unification gram-
mar rules to derive an equivalent CFG, and the unfold-
ing of the characteristic machine, in particular for right-
recursive rules. The former problem can be alleviated by
avoiding full instantiation of unification grammar rules
with respect to "don't care" features, that is, features
that are not constrained by the rule. This can also
help decrease the right-recursion unfolding explosion dis-
cussed earlier. As for the cost of unfolding, preliminary
experiments suggest that dividing the grammar into non-
mutually-recursive components and applying the LR(0)
construction and unfolding separately to those compo-
nents could lead to much smaller unfolded automata.

A c k n o w l e d g m e n t s
Thanks are due to Mark Liberman for suggesting that
finite-state approximations might be worth investigating
to David Roe and Pedro Moreno for using the gram-
mar compiler prototype and patiently putting up with
its bugs and inefficiencies.

References
Alfred V. Aho and Jeffrey D. Ullman. 1977. Principles

of Compiler Design. Addison-Wesley, Reading, Mas-
sachusetts.

Roland C. Backhouse. 1979. Syntax of Programming
Languages--Theory and Practice. Series in Computer
Science. Prentice-Hall, Englewood Cliffs, New Jersey.

Alan W. Black. 1989. Finite state machines from fea-
ture grammars. In Masaru Tomita, editor, Interna-
tional Workshop on Parsing Technologies, pages 277-
285, Pittsburgh, Pennsylvania. Carnegie Mellon Uni-
versity.

Kenneth W. Church and Ramesh Patil. 1982. Coping
with syntactic ambiguity or how to put the block in
the box on the table. Computational Linguistics, 8(3-
4):139-149.

Kenneth W. Church. 1980. On memory limitations in
natural language processing. Master's thesis, M.I.T.
Published as Report MIT/LCS/TR-245.

Steven G. Pulman. 1986. Grammars, parsers, and mem-
ory limitations. Language and Cognitive Processes,
1(3):197-225.

Stuart M. Shieber. 1985. Using restriction to ex-
tend parsing algorithms for complex-feature-based for-
malisms. In 23rd Annual Meeting of the Association

24

for Computational Linguistics, pages 145-152, Mor-
ristown, New Jersey. Association for Computat ional
Linguistics.

Appendix
Nonterminal symbols (syntactic categories) may have
features that specify variants of the category (eg. sin-
gular or plural noun phrases, intransitive or transitive
verbs). A category cat with feature constraints is writ-
ten

CarE[el,... , Crn] .

Feature constraints for feature f have the form

f = v

for a single value v or

f = (, 1 , . . . , v,)

for several alternative values. The symbol ")" appear-
ing as the value of a feature in the right-hand side of
a rule indicates that that feature must have the same
value as the feature of the same name of the category in
the left-hand side of the rule. This can be used to en-
force feature agreement, for instance, number agreement
between subject and verb.

It is convenient to declare the features and possible
values of categories with category declarations appearing
before the grammar rules. Category declarations have
the form

c a t c a t # [f l • (V l l , . . . , V l k l) , . . . ,

/m=(Vml ,Vmk) 1.

giving all the possible values of all the features for the
category.

The declaration

s t a r t cat.

declares cat as the start symbol of the grammar.
In the grammar rules, the symbol " ' " prefixes terminal

symbols, commas are used for sequencing and " l" for
alternation.

start s.

cat s#[n=(s,p),p=(l,2,3)].
cat np#[n=(s,p) ,p=(1,2,3) ,c=(s,o)] .
cat vp#[n=(s,p) ,p=(1,2,3) ,type=(i,t,d)].
cat args# [type=(i,t,d)] .

ca t d e t # [n = (s , p)] .
ca t n # [n = (s , p)] .
ca t p r o n # [n = (s , p) , p = (1 , 2 , 3) , c = (s , o)] .
ca t v # [n = (s , p) , p = (1 , 2 , 3) , t y p e = (i , t , d)] .

s => n p # [n = ! , p = ! , c = s] , v p # [n = ! , p = !] .

np#[p=3] => det#[n=!], adjs, n#[n=!].
np#[n=s,p=3] => pn.
np => pron#[n=!, p=!, c=!].

pron#[n=s,p=l,c=s] => 'i.
pron#[p=2] => 'you.
pron#[n=s,p=3,c=s] => 'he I 'she.
pron#[n=s,p=3] => 'it.
pron#[n=p,p=l,c=s] => ',e.
pron#[n=p,p=3,c=s] => 'they.
pron#[n=s,p=l,c=o] => 'me.
pron#[n=s,p=3,c=o] => 'him I 'her.
pron#[n=p,p=l,c=o] => 'us.
pron#[n=p,p=3,c=o] => 'them.

vp => v # [n = ! , p = ! , t y p e = !] , a r g s # [t y p e = !] .

adjs => [1.
adjs => adj, adjs.

args#[type=i] => [].
args#[type=t] => np#[c=o].
args#[type=d] => np#[c=o], ' t o , np#[c=o].

pn => 'tom] 'dick I 'harry.

det => 'somel 'the.
det#[n=s] => 'every I 'a.
det#[n=p] => 'all I 'most.

n#[n=s] => 'child ['cake.
n#[n=p] => 'children ['cakes.

adj => 'nice ['sweet.

v#[n=s,p=3,type=i] => 'sleeps.
v#[n=p,type=i] => 'sleep.
v#[n=s,p=(l,2),type=i] => 'sleep.

v # [n = s , p = 3 , t y p e = t] => ' e a t s .
v # [n = p , t y p e = t] => ' e a t .
v # [n = s , p = (1 , 2) , t y p e = t] => 'eat.

v#[n=s,p=3,type=d] => 'gives.
v#[n=p,type=d] => 'give.
v#[n=e,p=(1,2),type=d] => 'give.

25

