
Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language
Processing (HLT/EMNLP), pages 209–216, Vancouver, October 2005. c©2005 Association for Computational Linguistics

Minimum Sample Risk Methods for Language Modeling1

Jianfeng Gao
Microsoft Research Asia

jfgao@microsoft.com

Hao Yu, Wei Yuan
 Shanghai Jiaotong Univ., China

Peng Xu

John Hopkins Univ., U.S.A.
xp@clsp.jhu.edu

1 The work was done while the second, third and fourth authors were visiting Microsoft Research Asia. Thanks to Hisami Suzuki for

her valuable comments.

Abstract
This paper proposes a new discriminative
training method, called minimum sample risk
(MSR), of estimating parameters of language
models for text input. While most existing
discriminative training methods use a loss
function that can be optimized easily but
approaches only approximately to the objec-
tive of minimum error rate, MSR minimizes
the training error directly using a heuristic
training procedure. Evaluations on the task
of Japanese text input show that MSR can
handle a large number of features and train-
ing samples; it significantly outperforms a
regular trigram model trained using maxi-
mum likelihood estimation, and it also out-
performs the two widely applied discrimi-
native methods, the boosting and the per-
ceptron algorithms, by a small but statisti-
cally significant margin.

1 Introduction
Language modeling (LM) is fundamental to a wide
range of applications, such as speech recognition
and Asian language text input (Jelinek 1997; Gao et
al. 2002). The traditional approach uses a paramet-
ric model with maximum likelihood estimation (MLE),
usually with smoothing methods to deal with data
sparseness problems. This approach is optimal
under the assumption that the true distribution of
data on which the parametric model is based is
known. Unfortunately, such an assumption rarely
holds in realistic applications.

An alternative approach to LM is based on the
framework of discriminative training, which uses a
much weaker assumption that training and test
data are generated from the same distribution but
the form of the distribution is unknown. Unlike the
traditional approach that maximizes the function
(i.e. likelihood of training data) that is loosely as-

sociated with error rate, discriminative training
methods aim to directly minimize the error rate on
training data even if they reduce the likelihood. So,
they potentially lead to better solutions. However,
the error rate of a finite set of training samples is
usually a step function of model parameters, and
cannot be easily minimized. To address this prob-
lem, previous research has concentrated on the
development of a loss function that approximates
the exact error rate and can be easily optimized.
Though these methods (e.g. the boosting method)
have theoretically appealing properties, such as
convergence and bounded generalization error, we
argue that the approximated loss function may
prevent them from attaining the original objective
of minimizing the error rate.

In this paper we present a new estimation pro-
cedure for LM, called minimum sample risk (MSR). It
differs from most existing discriminative training
methods in that instead of searching on an ap-
proximated loss function, MSR employs a simple
heuristic training algorithm that minimizes the
error rate on training samples directly. MSR oper-
ates like a multidimensional function optimization
algorithm: first, it selects a subset of features that
are the most effective among all candidate features.
The parameters of the model are then optimized
iteratively: in each iteration, only the parameter of
one feature is adjusted. Both feature selection and
parameter optimization are based on the criterion
of minimizing the error on training samples. Our
evaluation on the task of Japanese text input shows
that MSR achieves more than 20% error rate reduc-
tion over MLE on two newswire data sets, and it
also outperforms the other two widely applied
discriminative methods, the boosting method and
the perceptron algorithm, by a small but statisti-
cally significant margin.

Although it has not been proved in theory that
MSR is always robust, our experiments of cross-
domain LM adaptation show that it is. MSR can
effectively adapt a model trained on one domain to

209

different domains. It outperforms the traditional
LM adaptation method significantly, and achieves
at least comparable or slightly better results to the
boosting method and the perceptron algorithm.

2 IME Task and LM
This paper studies LM on the task of Asian lan-
guage (e.g. Chinese or Japanese) text input. This is
the standard method of inputting Chinese or
Japanese text by converting the input phonetic
symbols into the appropriate word string. In this
paper we call the task IME, which stands for input
method editor, based on the name of the commonly
used Windows-based application.

Performance on IME is measured in terms of the
character error rate (CER), which is the number of
characters wrongly converted from the phonetic
string divided by the number of characters in the
correct transcript. Current IME systems make
about 5-15% CER in conversion of real data in a
wide variety of domains (e.g. Gao et al. 2002).

Similar to speech recognition, IME is viewed as
a Bayes decision problem. Let A be the input pho-
netic string. An IME system’s task is to choose the
most likely word string W* among those candidates
that could be converted from A:

)|()(maxarg)|(maxarg
(A))(

* WAPWPAWPW
WAW GENGEN ∈∈

== (1)

where GEN(A) denotes the candidate set given A.
Unlike speech recognition, however, there is no

acoustic ambiguity since the phonetic string is
inputted by users. Moreover, if we do not take into
account typing errors, it is reasonable to assume a
unique mapping from W and A in IME, i.e. P(A|W)
= 1. So the decision of Equation (1) depends solely
upon P(W), making IME a more direct evaluation
test bed for LM than speech recognition. Another
advantage is that it is easy to convert W to A (for
Chinese and Japanese), which enables us to obtain
a large number of training data for discriminative
learning, as described later.

The values of P(W) in Equation (1) are tradi-
tionally calculated by MLE: the optimal model
parameters λ* are chosen in such a way that
P(W|λ*) is maximized on training data. The argu-
ments in favor of MLE are based on the assumption
that the form of the underlying distributions is
known, and that only the values of the parameters
characterizing those distributions are unknown. In
using MLE for LM, one always assumes a multi-
nomial distribution of language. For example, a

trigram model makes the assumption that the next
word is predicted depending only on two preced-
ing words. However, there are many cases in
natural language where words over an arbitrary
distance can be related. MLE is therefore not opti-
mal because the assumed model form is incorrect.

What are the best estimators when the model is
known to be false then? In IME, we can tackle this
question empirically. Best IME systems achieve the
least CER. Therefore, the best estimators are those
which minimize the expected error rate on unseen
test data. Since the distribution of test data is un-
known, we can approximately minimize the error
rate on some given training data (Vapnik 1999).
Toward this end, we have developed a very simple
heuristic training procedure called minimum sample
risk, as presented in the next section.

3 Minimum Sample Risk

3.1 Problem Definition
We follow the general framework of linear dis-
criminant models described in (Duda et al. 2001). In
the rest of the paper we use the following notation,
adapted from Collins (2002).

• Training data is a set of example input/output
pairs. In LM for IME, training samples are repre-
sented as {Ai, WiR}, for i = 1…M, where each Ai is an
input phonetic string and WiR is the reference tran-
script of Ai.

• We assume some way of generating a set of
candidate word strings given A, denoted by
GEN(A). In our experiments, GEN(A) consists of
top N word strings converted from A using a base-
line IME system that uses only a word trigram
model.

• We assume a set of D+1 features fd(W), for d =
0…D. The features could be arbitrary functions that
map W to real values. Using vector notation, we
have f(W)∈ℜD+1, where f(W) = [f0(W), f1(W), …,
fD(W)]T. Without loss of generality, f0(W) is called
the base feature, and is defined in our case as the
log probability that the word trigram model as-
signs to W. Other features (fd(W), for d = 1…D) are
defined as the counts of word n-grams (n = 1 and 2
in our experiments) in W.

• Finally, the parameters of the model form a
vector of D+1 dimensions, each for one feature
function, λ = [λ0, λ1, …, λD]. The score of a word
string W can be written as

210

)(),(WWScore λfλ = ∑
=

=
D

d
dd Wfλ

0
)(. (2)

The decision rule of Equation (1) is rewritten as

),(maxarg),(
(A)

* λλ
GEN

WScoreAW
W∈

= . (3)

Equation (3) views IME as a ranking problem,
where the model gives the ranking score, not
probabilities. We therefore do not evaluate the
model via perplexity.

Now, assume that we can measure the number
of conversion errors in W by comparing it with a
reference transcript WR using an error function
Er(WR,W) (i.e. the string edit distance function in
our case). We call the sum of error counts over the
training samples sample risk. Our goal is to mini-
mize the sample risk while searching for the pa-
rameters as defined in Equation (4), hence the name
minimum sample risk (MSR). Wi* in Equation (4) is
determined by Equation (3),

∑
=

=
Mi

ii
R

i

def

MSR AWW
...1

*)),(,Er(minarg λλ
λ

. (4)

We first present the basic MSR training algorithm,
and then the two improvements we made.

3.2 Training Algorithm
The MSR training algorithm is cast as a multidi-
mensional function optimization approach (Press
et al. 1992): taking the feature vector as a set of
directions; the first direction (i.e. feature) is selected
and the objective function (i.e. sample risk) is
minimized along that direction using a line search;
then from there along the second direction to its
minimum, and so on, cycling through the whole set
of directions as many times as necessary, until the
objective function stops decreasing.

This simple method can work properly under
two assumptions. First, there exists an implemen-
tation of line search that optimizes the function
along one direction efficiently. Second, the number
of candidate features is not too large, and these
features are not highly correlated. However, nei-
ther of the assumptions holds in our case. First of
all, Er(.) in Equation (4) is a step function of λ, thus
cannot be optimized directly by regular gradient-
based procedures – a grid search has to be used
instead. However, there are problems with simple
grid search: using a large grid could miss the op-
timal solution whereas using a fine-grained grid
would lead to a very slow algorithm. Secondly, in

the case of LM, there are millions of candidate
features, some of which are highly correlated. We
address these issues respectively in the next two
subsections.

3.3 Grid Line Search
Our implementation of a grid search is a modified
version of that proposed in (Och 2003). The modi-
fications are made to deal with the efficiency issue
due to the fact that there is a very large number of
features and training samples in our task, compared
to only 8 features used in (Och 2003). Unlike a
simple grid search where the intervals between any
two adjacent grids are equal and fixed, we deter-
mine for each feature a sequence of grids with
differently sized intervals, each corresponding to a
different value of sample risk.

As shown in Equation (4), the loss function (i.e.
sample risk) over all training samples is the sum of
the loss function (i.e. Er(.)) of each training sample.
Therefore, in what follows, we begin with a discus-
sion on minimizing Er(.) of a training sample using
the line search.

Let λ be the current model parameter vector,
and fd be the selected feature. The line search aims to
find the optimal parameter λd* so as to minimize
Er(.). For a training sample (A, WR), the score of each
candidate word string W∈GEN(A), as in Equation
(2), can be decomposed into two terms:

)()()(),(
'0'

'' WfWfWWScore dd

D

ddd
dd λλ +== ∑

≠∨=

λfλ ,

where the first term on the right hand side does not
change with λd. Note that if several candidate word
strings have the same feature value fd(W), their
relative rank will remain the same for any λd. Since
fd(W) takes integer values in our case (fd(W) is the
count of a particular n-gram in W), we can group the
candidates using fd(W) so that candidates in each
group have the same value of fd(W). In each group,
we define the candidate with the highest value of

∑ ≠∨=

D

ddd dd Wf
'0' '')(λ

as the active candidate of the group because no
matter what value λd takes, only this candidate
could be selected according to Equation (3).

Now, we reduce GEN(A) to a much smaller list
of active candidates. We can find a set of intervals
for λd, within each of which a particular active
candidate will be selected as W*. We can compute
the Er(.) value of that candidate as the Er(.) value for
the corresponding interval. As a result, for each

211

training sample, we obtain a sequence of intervals
and their corresponding Er(.) values. The optimal
value λd* can then be found by traversing the se-
quence and taking the midpoint of the interval with
the lowest Er(.) value.

305

306

307

308

309

310

311

312

0. 85 0. 9 0. 95 1 1.05 1.1 1. 15 1. 2lambda

SR
(.)

sample risk
smoothed sample risk

Figure 1. Examples of line search.

This process can be extended to the whole
training set as follows. By merging the sequence of
intervals of each training sample in the training set,
we obtain a global sequence of intervals as well as
their corresponding sample risk. We can then find
the optimal value λd* as well as the minimal sample
risk by traversing the global interval sequence. An
example is shown in Figure 1.

The line search can be unstable, however. In
some cases when some of the intervals are very
narrow (e.g. the interval A in Figure 1), moving the
optimal value λd* slightly can lead to much larger
sample risk. Intuitively, we prefer a stable solution
which is also known as a robust solution (with even
slightly higher sample risk, e.g. the interval B in
Figure 1). Following Quirk et al. (2004), we evaluate
each interval in the sequence by its corresponding
smoothed sample risk. Let λ be the midpoint of an
interval and SR(λ) be the corresponding sample risk
of the interval. The smoothed sample risk of the
interval is defined as

λλ
λ

λ
d

b

b
)SR(∫

+

−

where b is a smoothing factor whose value is de-
termined empirically (0.06 in our experiments). As
shown in Figure 1, a more stable interval B is se-
lected according to the smoothed sample risk.

In addition to reducing GEN(A) to an active
candidate list described above, the efficiency of the
line search can be further improved. We find that
the line search only needs to traverse a small subset
of training samples because the distribution of
features among training samples are very sparse.
Therefore, we built an inverted index that lists for

each feature all training samples that contain it. As
will be shown in Section 4.2, the line search is very
efficient even for a large training set with millions of
candidate features.

3.4 Feature Subset Selection
This section describes our method of selecting
among millions of features a small subset of highly
effective features for MSR learning. Reducing the
number of features is essential for two reasons: to
reduce computational complexity and to ensure the
generalization property of the linear model. A large
number of features lead to a large number of pa-
rameters of the resulting linear model, as described
in Section 3.1. For a limited number of training
samples, keeping the number of features suffi-
ciently small should lead to a simpler model that is
less likely to overfit to the training data.

The first step of our feature selection algorithm
treats the features independently. The effectiveness
of a feature is measured in terms of the reduction of
the sample risk on top of the base feature f0. For-
mally, let SR(f0) be the sample risk of using the base
feature only, and SR(f0 + λdfd) be the sample risk of
using both f0 and fd and the parameter λd that has
been optimized using the line search. Then the
effectiveness of fd, denoted by E(fd), is given by

))SR()(SR(max
)SR()SR(

)(
00...1,

00

iiDif

dd
d fff

fff
fE

i

λ
λ
+−

+−
=

=

, (5)

where the denominator is a normalization term to
ensure that E(f) ∈ [0, 1].

The feature selection procedure can be stated as
follows: The value of E(.) is computed according to
Equation (5) for each of the candidate features.
Features are then ranked in the order of descending
values of E(.). The top l features are selected to form
the feature vector in the linear model.

Treating features independently has the ad-
vantage of computational simplicity, but may not
be effective for features with high correlation. For
instance, although two features may carry rich
discriminative information when treated sepa-
rately, there may be very little gain if they are com-
bined in a feature vector, because of the high cor-
relation between them. Therefore, in what follows,
we describe a technique of incorporating correla-
tion information in the feature selection criterion.

Let xmd, m = 1…M and d = 1…D, be a Boolean
value: xmd = 1 if the sample risk reduction of using
the d-th feature on the m-th training sample, com-

B
A

212

puted by Equation (5), is larger than zero, and 0
otherwise. The cross correlation coefficient be-
tween two features fi and fj is estimated as

∑∑
∑

==

==
M

m mj
M

m mi

M

m mjmi

xx

xx
jiC

1
2

1
2

1),(. (6)

It can be shown that C(i, j) ∈ [0, 1]. Now, similar to
(Theodoridis and Koutroumbas 2003), the feature
selection procedure consists of the following steps,
where fi denotes any selected feature and fj denotes
any candidate feature to be selected.
Step 1. For each of the candidate features (fd, for d =
1…D), compute the value of E(f) according to
Equation (5). Rank them in a descending order and
choose the one with the highest E(.) value. Let us
denote this feature as f1.
Step 2. To select the second feature, compute the
cross correlation coefficient between the selected
feature f1 and each of the remaining M-1 features,
according to Equation (6).
Step 3. Select the second feature f according to

{ }),1()1()(maxarg*
...2

jCfEj j
Dj

αα −−=
=

where α is the weight that determines the relative
importance we give to the two terms. The value of
α is optimized on held-out data (0.8 in our experi-
ments). This means that for the selection of the
second feature, we take into account not only its
impact of reducing the sample risk but also the
correlation with the previously selected feature. It
is expected that choosing features with less corre-
lation gives better sample risk minimization.
Step 4. Select k-th features, k = 3…K, according to

⎭
⎬
⎫

⎩
⎨
⎧

−
−

−= ∑
−

=

1

1
),(

1
1)(maxarg*

k

i
j

j
jiC

k
fEj αα (7)

That is, we select the next feature by taking into
account its average correlation with all previously
selected features. The optimal number of features, l,
is determined on held-out data.

Similarly to the case of line search, we need to
deal with the efficiency issue in the feature selec-
tion method. As shown in Equation (7), the esti-
mates of E(.) and C(.) need to be computed. Let D
and K (K << D) be the number of all candidate
features and the number of features in the resulting
model, respectively. According to the feature se-
lection method described above, we need to esti-
mate E(.) for each of the D candidate features only
once in Step 1. This is not very costly due to the

efficiency of our line search algorithm. Unlike the
case of E(.), O(K×D) estimates of C(.) are required in
Step 4. This is computationally expensive even for a
medium-sized K. Therefore, every time a new fea-
ture is selected (in Step 4), we only estimate the
value of C(.) between each of the selected features
and each of the top N remaining features with the
highest value of E(.). This reduces the number of
estimates of C(.) to O(K×N). In our experiments we
set N = 1000, much smaller than D. This reduces the
computational cost significantly without producing
any noticeable quality loss in the resulting model.

The MSR algorithm used in our experiments is
summarized in Figure 2. It consists of feature se-
lection (line 2) and optimization (lines 3 - 5) steps.

1 Set λ0 = 1 and λd = 0 for d=1…D
2 Rank all features and select the top K features, using

the feature selection method described in Section 3.4
3 For t = 1…T (T= total number of iterations)
4 For each k = 1…K
5 Update the parameter of fk using line search.
Figure 2: The MSR algorithm

4 Evaluation

4.1 Settings
We evaluated MSR on the task of Japanese IME.
Two newspaper corpora are used as training and
test data: Nikkei and Yomiuri Newspapers. Both
corpora have been pre-word-segmented using a
lexicon containing 167,107 entries. A 5,000-sentence
subset of the Yomiuri Newspaper corpus was used
as held-out data (e.g. to determine learning rate,
number of iterations and features etc.). We tested
our models on another 5,000-sentence subset of the
Yomiuri Newspaper corpus.

We used an 80,000-sentence subset of the Nikkei
Newspaper corpus as the training set. For each A,
we produced a word lattice using the baseline
system described in (Gao et al. 2002), which uses a
word trigram model trained via MLE on anther
400,000-sentence subset of the Nikkei Newspaper
corpus. The two subsets do not overlap so as to
simulate the case where unseen phonetic symbol
strings are converted by the baseline system. For
efficiency, we kept for each training sample the
best 20 hypotheses in its candidate conversion set
GEN(A) for discriminative training. The oracle best
hypothesis, which gives the minimum number of
errors, was used as the reference transcript of A.

213

4.2 Results
We used unigrams and bigrams that occurred more
than once in the training set as features. We did not
use trigram features because they did not result in a
significant improvement in our pilot study. The
total number of candidate features we used was
around 860,000.

Our main experimental results are shown in
Table 1. Row 1 is our baseline result using the word
trigram model. Notice that the result is much better
than the state-of-the-art performance currently
available in the marketplace (e.g. Gao et al. 2002),
presumably due to the large amount of training
data we used, and to the similarity between the
training and the test data. Row 2 is the result of the
model trained using the MSR algorithm described
in Section 3. We also compared the MSR algorithm
to two of the state-of-the-art discriminative training
methods: Boosting in Row 3 is an implementation
of the improved algorithm for the boosting loss
function proposed in (Collins 2000), and Percep-
tron in Row 4 is an implementation of the averaged
perceptron algorithm described in (Collins 2002).

We see that all discriminative training methods
outperform MLE significantly (p-value < 0.01). In
particular, MSR outperforms MLE by more than
20% CER reduction. Notice that we used only uni-
gram and bigram features that have been included
in the baseline trigram model, so the improvement
is solely attributed to the high performance of MSR.
We also find that MSR outperforms the perceptron
and boosting methods by a small but statistically
significant margin.

The MSR algorithm is also very efficient: using a
subset of 20,000 features, it takes less than 20 min-
utes to converge on an XEON(TM) MP 1.90GHz
machine. It is as efficient as the perceptron algo-
rithm and slightly faster than the boosting method.

4.3 Robustness Issues
Most theorems that justify the robustness of dis-
criminative training algorithms concern two ques-
tions. First, is there a guarantee that a given algo-
rithm converges even if the training samples are

not linearly separable? This is called the convergence
problem. Second, how well is the training error
reduction preserved when the algorithm is applied
to unseen test samples? This is called the generali-
zation problem. Though we currently cannot give a
theoretical justification, we present empirical evi-
dence here for the robustness of the MSR approach.

As Vapnik (1999) pointed out, the most robust
linear models are the ones that achieve the least
training errors with the least number of features.
Therefore, the robustness of the MSR algorithm are
mainly affected by the feature selection method. To
verify this, we created four different subsets of
features using different settings of the feature se-
lection method described in Section 3.4. We se-
lected different numbers of features (i.e. 500 and
2000) with and without taking into account the
correlation between features (i.e. α in Equation (7)
is set to 0.8 and 1, respectively). For each of the four
feature subsets, we used the MSR algorithm to
generate a set of models. The CER curves of these
models on training and test data sets are shown in
Figures 3 and 4, respectively.

2.08

2.10

2.12

2.14

2.16

2.18

2.20

2.22

2.24

2.26

2.28

1 250 500 750 1000 1250 1500 1750 2000
of rounds

C
ER

(%
)

MSR(α=1)-2000
MSR(α=1)-500
MSR(α=0.8)-2000
MSR(α=0.8)-500

Figure 3. Training error curves of the MSR algorithm

2.94

2.99

3.04

3.09

3.14

3.19

3.24

1 250 500 750 1000 1250 1500 1750 2000
of rounds

C
ER

(%
)

MSR(α=1)-2000
MSR(α=1)-500
MSR(α=0.8)-2000
MSR(α=0.8)-500

Figure 4. Test error curves of the MSR algorithm

The results reveal several facts. First, the con-
vergence properties of MSR are shown in Figure 3
where in all cases, training errors drop consistently
with more iterations. Secondly, as expected, using
more features leads to overfitting, For example,
MSR(α =1)-2000 makes fewer errors than MSR(α
=1)-500 on training data but more errors on test
data. Finally, taking into account the correlation
between features (e.g. α = 0.8 in Equation (7)) re-

 Model CER (%) % over MLE
1. MLE 3.70 --
2. MSR (K=2000) 2.95 20.9
3. Boosting 3.06 18.0
4. Perceptron 3.07 17.8
Table 1. Comparison of CER results.

214

sults in a better subset of features that lead to not
only fewer training errors, as shown in Figure 3,
but also better generalization properties (fewer test
errors), as shown in Figure 4.

4.4 Domain Adaptation Results
Though MSR achieves impressive performance in
CER reduction over the comparison methods, as
described in Section 4.2, the experiments are all
performed using newspaper text for both training
and testing, which is not a realistic scenario if we
are to deploy the model in an application. This
section reports the results of additional experi-
ments in which we adapt a model trained on one
domain to a different domain, i.e., in a so-called
cross-domain LM adaptation paradigm. See (Su-
zuki and Gao 2005) for a detailed report.

The data sets we used stem from five distinct
sources of text. The Nikkei newspaper corpus de-
scribed in Section 4.1 was used as the background
domain, on which the word trigram model was
trained. We used four adaptation domains: Yomi-
uri (newspaper corpus), TuneUp (balanced corpus
containing newspapers and other sources of text),
Encarta (encyclopedia) and Shincho (collection of
novels). For each of the four domains, we used an
72,000-sentence subset as adaptation training data,
a 5,000-sentence subset as held-out data and an-
other 5,000-sentence subset as test data. Similarly,
all corpora have been word-segmented, and we
kept for each training sample, in the four adapta-
tion domains, the best 20 hypotheses in its candi-
date conversion set for discriminative training.

We compared MSR with three other LM adap-
tation methods:

Baseline is the background word trigram model,
as described in Section 4.1.

MAP (maximum a posteriori) is a traditional LM
adaptation method where the parameters of the
background model are adjusted in such a way that
maximizes the likelihood of the adaptation data.
Our implementation takes the form of linear in-
terpolation as P(wi|h) = λPb(wi|h) + (1-λ)Pa(wi|h),
where Pb is the probability of the background
model, Pa is the probability trained on adaptation
data using MLE and the history h corresponds to
two preceding words (i.e. Pb and Pa are trigram
probabilities). λ is the interpolation weight opti-
mized on held-out data.

Perceptron, Boosting and MSR are the three
discriminative methods described in the previous
sections. For each of them, the base feature was

Model Yomiuri TuneUp Encarta Shincho
Baseline 3.70 5.81 10.24 12.18
MAP 3.69 5.47 7.98 10.76
MSR 2.73 5.15 7.40 10.16
Boosting 2.78 5.33 7.53 10.25
Perceptron 2.78 5.20 7.44 10.18
Table 2. CER(%) results on four adaptation test sets .

derived from the word trigram model trained on
the background data, and other n-gram features (i.e.
fd, d = 1…D in Equation (2)) were trained on adap-
tation data. That is, the parameters of the back-
ground model are adjusted in such a way that
minimizes the errors on adaptation data made by
background model.

Results are summarized in Table 2. First of all,
in all four adaptation domains, discriminative
methods outperform MAP significantly. Secondly,
the improvement margins of discriminative
methods over MAP correspond to the similarities
between background domain and adaptation do-
mains. When the two domains are very similar to
the background domain (such as Yomiuri), dis-
criminative methods outperform MAP by a large
margin. However, the margin is smaller when the
two domains are substantially different (such as
Encarta and Shincho). The phenomenon is attrib-
uted to the underlying difference between the two
adaptation methods: MAP aims to improve the
likelihood of a distribution, so if the adaptation
domain is very similar to the background domain,
the difference between the two underlying distri-
butions is so small that MAP cannot adjust the
model effectively. However, discriminative meth-
ods do not have this limitation for they aim to
reduce errors directly. Finally, we find that in most
adaptation test sets, MSR achieves slightly better
CER results than the two competing discriminative
methods. Specifically, the improvements of MSR
are statistically significant over the boosting
method in three out of four domains, and over the
perceptron algorithm in the Yomiuri domain. The
results demonstrate again that MSR is robust.

5 Related Work
Discriminative models have recently been proved
to be more effective than generative models in
some NLP tasks, e.g., parsing (Collins 2000), POS
tagging (Collins 2002) and LM for speech recogni-
tion (Roark et al. 2004). In particular, the linear
models, though simple and non-probabilistic in
nature, are preferred to their probabilistic coun-

215

terpart such as logistic regression. One of the rea-
sons, as pointed out by Ng and Jordan (2002), is
that the parameters of a discriminative model can
be fit either to maximize the conditional likelihood
on training data, or to minimize the training errors.
Since the latter optimizes the objective function that
the system is graded on, it is viewed as being more
truly in the spirit of discriminative learning.

The MSR method shares the same motivation: to
minimize the errors directly as much as possible.
Because the error function on a finite data set is a
step function, and cannot be optimized easily,
previous research approximates the error function
by loss functions that are suitable for optimization
(e.g. Collins 2000; Freund et al. 1998; Juang et al.
1997; Duda et al. 2001). MSR uses an alternative
approach. It is a simple heuristic training proce-
dure to minimize training errors directly without
applying any approximated loss function.

MSR shares many similarities with previous
methods. The basic training algorithm described in
Section 3.2 follows the general framework of multi-
dimensional optimization (e.g., Press et al. 1992).
The line search is an extension of that described in
(Och 2003; Quirk et al. 2005. The extension lies in
the way of handling large number of features and
training samples. Previous algorithms were used to
optimize linear models with less than 10 features.
The feature selection method described in Section
3.4 is a particular implementation of the feature
selection methods described in (e.g., Theodoridis
and Koutroumbas 2003). The major difference
between the MSR and other methods is that it es-
timates the effectiveness of each feature in terms of
its expected training error reduction while previ-
ous methods used metrics that are loosely coupled
with reducing training errors. The way of dealing
with feature correlations in feature selection in
Equation (7), was suggested by Finette et al. (1983).

6 Conclusion and Future Work
We show that MSR is a very successful discrimina-
tive training algorithm for LM. Our experiments
suggest that it leads to significantly better conver-
sion performance on the IME task than either the
MLE method or the two widely applied discrimi-
native methods, the boosting and perceptron
methods. However, due to the lack of theoretical
underpinnings, we are unable to prove that MSR
will always succeed. This forms one area of our
future work.

One of the most interesting properties of MSR is
that it can optimize any objective function (whether
its gradient is computable or not), such as error rate
in IME or speech, BLEU score in MT, precision and
recall in IR (Gao et al. 2005). In particular, MSR can
be performed on large-scale training set with mil-
lions of candidate features. Thus, another area of
our future work is to test MSR on wider varieties of
NLP tasks such as parsing and tagging.

References
Collins, Michael. 2002. Discriminative training methods

for Hidden Markov Models: theory and experiments
with the perceptron algorithm. In EMNLP 2002.

Collins, Michael. 2000. Discriminative reranking for
natural language parsing. In ICML 2000.

Duda, Richard O, Hart, Peter E. and Stork, David G. 2001.
Pattern classification. John Wiley & Sons, Inc.

Finette S., Blerer A., Swindel W. 1983. Breast tissue clas-
sification using diagnostic ultrasound and pattern rec-
ognition techniques: I. Methods of pattern recognition.
Ultrasonic Imaging, Vol. 5, pp. 55-70.

Freund, Y, R. Iyer, R. E. Schapire, and Y. Singer. 1998. An
efficient boosting algorithm for combining preferences.
In ICML’98.

Gao, Jianfeng, Hisami Suzuki and Yang Wen. 2002.
Exploiting headword dependency and predictive clus-
tering for language modeling. In EMNLP 2002.

Gao, J, H. Qin, X. Xiao and J.-Y. Nie. 2005. Linear dis-
criminative model for information retrieval. In SIGIR.

Jelinek, Fred. 1997. Statistical methods for speech recognition.
MIT Press, Cambridge, Mass.

Juang, B.-H., W.Chou and C.-H. Lee. 1997. Minimum
classification error rate methods for speech recognition.
IEEE Tran. Speech and Audio Processing 5-3: 257-265.

Ng, A. N. and M. I. Jordan. 2002. On discriminative vs.
generative classifiers: a comparison of logistic regres-
sion and naïve Bayes. In NIPS 2002: 841-848.

Och, Franz Josef. 2003. Minimum error rate training in
statistical machine translation. In ACL 2003

Press, W. H., S. A. Teukolsky, W. T. Vetterling and B. P.
Flannery. 1992. Numerical Recipes In C: The Art of Scien-
tific Computing. New York: Cambridge Univ. Press.

Quirk, Chris, Arul Menezes, and Colin Cherry. 2005.
Dependency treelet translation: syntactically informed
phrasal SMT. In ACL 2005: 271-279.

Roark, Brian, Murat Saraclar and Michael Collins. 2004.
Corrective language modeling for large vocabulary ASR
with the perceptron algorithm. In ICASSP 2004.

Suzuki, Hisami and Jianfeng Gao. 2005. A comparative
study on language model adaptation using new
evaluation metrics. In HLT/EMNLP 2005.

Theodoridis, Sergios and Konstantinos Koutroumbas.
2003. Pattern Recognition. Elsevier.

Vapnik, V. N. 1999. The nature of statistical learning theory.
Springer-Verlag, New York.

216

