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Abstract  

We present evidence that head-driven pars- 
ing strategies lead to efficiency gains over 
standard parsing strategies, for lexicalist, 
concatenative and unification-based gram- 
mars. A head-driven parser applies a rule 
only after a phrase matching the head has 
been derived. By instantiating the head 
of the rule important information is ob- 
tained about the left-hand-side and the 
other elements of the right-hand-side. We 
have used two different head-driven parsers 
and a number of standard parsers to parse 
with lexicalist grammars for English and 
for Dutch. The results indicate that for 
important classes of lexicalist grammars it 
is fruitful to apply parsing strategies which 
are sensitive to the linguistic notion 'head'. 

1 In t roduc t ion  

Lexicalist grammar formalisms, such as Head-driven 
Phrase Structure Grammar (HPSG) and Categorial 
Unification Grammar (CUG) have two characteristic 
properties. Lexical elements and phrases are associ- 
ated with categories that have considerable internal 
structure. Second, instead of construction specific 
rules, a small set of generic rule schemata is used. 
Consequently, the set of constituent structures de- 
fined by a grammar cannot be 'read off' the rule set 
directly, but is defined by the interaction of the rule 
schemata and the lexicM categories. 

Applying standard parsing algorithms to such 
grammars is unsatisfactory for a number of rea- 
sons. Earley parsing is intractable in general, as the 
rule set. is simply too general. For some grammars, 

naive top-down prediction may even fail to termi- 
nate. [Shieber, 1985] therefore proposes a modified 
version of the Earley-parser, using restricted top- 
down prediction. While this modification leads to 
termination of the prediction step, in practice it eas- 
ily leads to a trivial top-down prediction step, thus 
leading to inferior performance. 

Bottom-up parsing is far more attractive for lexi- 
calist formalisms, as it is driven by the syntactic in- 
formation associated with lexical elements. Certain 
inadequacies remain, however. Most importantly, 
the selection of rules to be considered for application 
may not be very efficient. Consider, for instance, the 
following DCG rule: 

s([ ]) -~ Arg, vp([Arg]). (1) 

A parser in which application of a rule is driven by 
the left-most daughter, as it is for instance in a stan- 
dard bottom-up active chart parser, will consider the 
application of rule (1) each time an arbitrary con- 
stituent Arg is derived. For a bottom-up active chart 
parser, for instance, this may lead to the introduc- 
tion of large amounts of active items. Most of these 
items will be useless. For instance, if a determiner 
is derived, there is no need to invoke the rule in (1), 
as there are simply no vP's selecting a determiner as 
subject. 

Parsers in which the application of a rule is driven 
by the rightmost daughter, such as shift-reduce and 
inactive bottom-up chart parsers, encounter a similar 
problem for rules such as (2). 

vp(Args) --* vp([Arg[Args]), Arg. (2) 

Each time an arbitrary constituent Arg is derived, 
the parser will consider applying rule (2), and a 
search for a matching vP-constituent will be carried 
out. Again, in many cases (if Arg is instantiated as 
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a determiner or preposition, for instance) this search 
is doomed to fail, as a vp subcategorizing for a cat- 
egory Arg may simply not be derivable by the gram- 
mar. The problem may seem less acute than that 
posed by uninstantiated left-most daughters for an 
active chart parser, as only a search of the chart is 
carried out and no additional items are added to it. 
Note, however, that the amount of search required 
may grow exponentially, if more than one uninstan- 
tiated daughter is present (3) or if the number of 
daughters is not specified by the rule (4), as appears 
to be the case for some of the rule-schemata used in 
HPSG: 

vp(Args) --* vp([A1, A2]Args]), A1, A2. (3) 

vp[Ao]) --+ vp([Ao,..., AnD, A1, . . . ,  An. (4) 

Several authors have suggested parsing algorithms 
which appear to be more suitable for lexicalist gram- 
mars. [Kay, 1989] discusses the concept of head- 
driven parsing. The key idea underlying this concept 
is that the linguistic notion head can be used to ob- 
tain parsing algorithms which are better suited for 
typical natural language grammars. Most linguistic 
formalisms assume that among the daughters intro- 
duced by a rule or rule-schema there is one daugh- 
ter which can be identified as the head of that rule. 
There are several criteria for deciding which daugh- 
ter is the  head. Two of these criteria seem relevant 
for parsing. First of all, the head of a rule deter- 
mines to a large extent what other daughters may or 
must be present, as the head subcategorizes for the 
other daughters. Second, the syntactic category and 
morphological properties of the mother node are, in 
the default case, identical to the category and mor- 
phological properties of the head daughter. These 
two properties suggest that it might be possible to 
design a parsing strategy in which one first identifies 
a potential head of a rule, before starting to parse 
the non-head daughters. By starting with the head, 
important information about the remaining daugh- 
ters is obtained. Furthermore, since the head is to 
a large extent identical to the mother category, ef- 
fective top-down identification of a potential head 
should be possible. A head-driven parsing strategy 
is particularly interesting for lexicalist grammars, as 
these grammars normally suffer most from the prob- 
lem that rules or rule-schemata hardly constrain the 
search-space of the parser. 

In [Kay, 1989] two different head-driven parsers 
are presented. First, a 'head-driven' shift-reduce 
parser is presented which differs from a standard 
shift-reduce parser in that it considers the applica- 
tion of a rule (i.e. a reduce step) only if a category 
matching the head of the rule has been found. Fur- 
thermore, it may shift elements onto the parse-stack 
which are in a sense similar to the active items (or 
'dotted rules') of active chart parsers. By using the 
head of rule to determine whether a rule is appli- 
cable, the head-driven shift-reduce parser avoids the 

disadvantages of parsers in which either the leftmost 
or rightmost daughter is used to drive the selection 
of rules. 

Kay also presents a 'head-corner' parser. The 
striking property of this parser is that it does not 
parse a phrase from left to right, but instead oper- 
ates 'bidirectionally'. It starts by locating a poten- 
tial head of the phrase and then proceeds by parsing 
the daughters to the left and the right of the head. 
Again, this strategy avoids the disadvantages of 
parsers in which rule selection is uniformly driven by 
either the leftmost or rightmost daughter. Further- 
more, by selecting potential heads on the basis of a 
'head-corner table' (comparable to the left-corner ta- 
ble of a left-corner parser) it may use top-down filter- 
ing to minimize the search-space. Head-corner pars- 
ing has also been considered elsewhere. In [Satta and 
Stock, 1989; Sikkel and op den Akker, 1992] chart- 
based head-corner parsing for context-free grammar 
is considered. It is shown that, in spite of the fact 
that bidirectional parsing seemingly leads to more 
overhead than left-to-right parsing, the worst-case 
complexity of a head-corner parser does not ex- 
ceed that of an Earley parser. [van Noord, 1991; 
van Noord, 1993] argues that head-corner parsing is 
especially useful for parsing with non-concatenative 
grammar formalisms. In [Lavelli and Satta, 1991] 
a head-driven parsing strategy for Lexicalized Tree 
Adjoining Grammars is presented. 

Although it has been suggested that head-driven 
parsing has benefits for lexicalist grammars, this 
has not been established in practice. The poten- 
tial efficiency gains of a head-driven parser are of- 
ten outbalanced by the cost of additional overhead. 
This is particularly true for the (bidirectional) head- 
corner parser. The results of the experiment we 
describe in section 3 establish that efficient head- 
driven parsing is possible. That is, we show that 
for a radical lexicalist grammar (based on CUG) a 
bottom-up head-driven chart parser (a chart-based 
breadth-first implementation of Kay's head-driven 
shift-reduce parser) is more efficient than standard 
pure bottom-up chart parsers. Also, we show that 
for a lexicalist (definite clause) grammar in which the 
rules still contain a substantial amount of informa- 
tion, (bidirectional) head-corner parsing, in which a 
bottom-up parsing strategy is guided by top-down 
prediction, is more efficient than pure bottom-up 
parsing as well as left-corner parsing. 

Before discussing the experiment, however, we first 
discuss the two head-driven parsers used in the ex- 
periment, and how they relate to standard parsing 
algorithms. 

2 T w o  H e a d - d r i v e n  P a r s e r s  

In this section we present two head-driven parsing 
algorithms. Prolog code for simplifications of the al- 
gorithms is included in the appendix. For each gram- 
mar rule LHS --~ D1, . . . ,  Dh, . . . ,  Dn, it is assumed 
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Figure 1: The head-corner parser. 

that  there is one daughter Dh which has been iden- 
tified (by the grammar writer) as the head of that  
rule. 

2.1 H e a d - d r i v e n  C h a r t  P a r s i n g  

The head-driven chart parser scans a sentence from 
left to right, storing items representing (partial) 
derivations in a chart. Items are of the form 
item(Cat, ToParse, BeginPos, EndPos). If ToParse 
is empty, the item is inactive, otherwise it is ac- 
tive. The parser is a bot tom-up active chart parser 
without prediction, in which the addition of an ac- 
tive item based on a rule R is considered when- 
ever an inactive item H is entered into the chart 
which matches the head of R. More precisely, if 
item(Cat, [ ], B, E) is derived, and there is a rule 
LHS --* D1,.. . ,Dh-1, Ca~,Dh+l, . . . .  Dn and there 
are inactive items matching D1...Dh-1, ranging 
from B0 to B, an iIem(LHS, Dh+I...Dn,Bo, E) is 
added to the chart. 

If the leftmost daughter of each grammar rule is 
the head of the rule, then the head-driven chart 
parser reduces to an ordinary bottom-up active chart 
parser. If the rightmost daughter of each rule is the 
head, then the head-driven chart parser reduces to an 
inactive bot tom-up chart parser (i.e. a breadth-first 
implementation of a shift-reduce parser). 

The head-driven strategy has a potential advan- 
tage over active bot tom-up chart parsers, as it will 
assert substantially less active items for grammars 
that  contain rules with an underspecified leftmost 
daughter (as in rule 1). In particular it avoids enter- 
ing active items into the chart for which it is clear 
that  the missing daughters cannot be derived. 

The head-driven parser also has a potential advan- 
tage over inactive bot tom-up chart parsers for gram- 
mars that  contain rules with an underspecified right- 
most daughter. An inactive chart parser must search 
in the chart for items matching the remaining daugh- 
ter of such a rule each time an arbitrary category is 
derived. The head-driven parser on the other hand 
only needs to search for matching active items. The 
difference may lead to important  efficiency improve- 
ments, especially if searching the chart is expensive. 
For example this is the case if the unification opera- 
tion is expensive. 

2.2  H e a d - c o r n e r  P a r s i n g  

Head-corner parsing is a more radical approach to 
head-driven parsing in that  it gives up the idea that  

parsing should proceed form left to right• Rather, 
the order of processing in a head-corner parser is 
bidirectional, starting from a head outward ('island'- 
driven)• A head-corner parser can be thought of as a 
generalization of the left-corner parser [Rosenkrantz 
and Lewis-II, 1970]. As in the left-corner parser, the 
flow of information in a head-corner parser is both 
bottom-up and top-down. 

The basic idea of the head-corner parser is illus- 
trated in figure 1. The parser selects the head of the 
string (1), and proves that  this element is the head- 
corner of the goal. To this end, a rule is selected of 
which this lexical entry is the head daughter. Then 
the other daughters of the rule are parsed recursively 
in a bidirectional fashion: the daughters left of the 
head are parsed from right to left (starting from the 
head), and the daughters right of the head are parsed 
from left to right (starting from the head). The re- 
sult is a slightly larger head-corner (2). This process 
repeats itself until a head-corner is constructed which 
dominates the whole string (3). 

Note that  a rule is triggered only with a fully in- 
stantiated head-daughter. The 'generate-and-test '  
behavior observed for example 1 is avoided in a head- 
corner parser, because the rule is applied only if the 
vP is found, and hence Arg is instantiated. For ex- 
ample if At# = np(sg3, [], Snbj), the parser continues 
to search for a singular NP, and need not consider 
other categories. 

The head-relation holds between two categories h 
and m with respect to a grammar G iff G contains a 
rule with left hand side m and head daughter h. The 
relation 'head-corner' is the reflexive and transitive 
closure of the head relation. As in the left-corner' 
parser, a 'linking' table is maintained which repre- 
sents important  aspects of this head-corner relation. 
For some grammars this table simply represents the 
fact that  the HEAD features of a category and its 
head-corner are shared• 

Note that  unlike the left-corner parser, the head- 
corner parser may need to consider alternative words 
as a possible head-corner of a phrase, e.g. when pars- 
ing a sentence which contains several verbs• This 
problem is reduced because of the following three 
observations. 

T h e  Q u i c k s o r t  Ef fec t .  A simplified version of the 
head-corner parser is provided in the appendix. The 
main difference with a simple version of the left- 
corner parser is - -  apart  from the head-driven se- 
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lection of rules - -  the use of two pairs of indices, to 
implement the bidirectional way in which the parser 
proceeds through the string. 

Observe that each parse-goal in the left-corner 
parser is provided with a category and a left-most 
position. In the head-corner parser a parse-goal is 
provided either with a begin or end position (de- 
pending on whether we parse from the head to the 
left or to the right) but also with the extreme posi- 
tions between which the category should be found. 
In general the parse predicate is thus provided with a 
category and two pair of indices. The first pair indi- 
cates the begin and end position of the category, the 
second pair indicates the extreme positions between 
which the first pair should lay. The following figure 
illustrates this point with an example: 

vp 

v np 

5 6 7 8 

Suppose we found for a goal category s a possible 
head-corner v from position 5 to 6. In order to con- 
struct a complete tree s for this head-comer, a rule 
is selected which dictates that a category np should 
be parsed to the right, starting from position 6. To 
parse np, we predict the head-corner n between 7 
and 8. Suppose furthermore that in order to connect 
n to np a rule is selected which requires a category 
adjp to the left of n. It will be clear that this cat- 
egory should end in position 7, but can never start 
before position 6. Hence the only candidate head- 
corner of this phrase is to be found between 6 and 
7. This example illustrates that the use of two pairs 
of string positions reduces the number of possible 
head-corners for a given goal. 

S t r ing posi t ions  in head-corner  table.  Sec- 
ondly, the head-corner table includes information 
about begin and end positions, following an idea in 
[Sikkel and op den Akker, 1992]. For example, if the 
goal is to parse a phrase with category sbar from po- 
sition 7, and within positions 7 and 12, then for some 
grammars it can be concluded that the only possible 
head-corner for this goal should be a complementizer 
starting at position 7. Such information is compiled 
into the table as well. Hence the number of possible 
head-corners is reduced. 

Wel l - formed subs t r ing  tables.  Thirdly, the 
problem of multiple possible heads is reduced be- 
cause a well-formed substring table is maintained. 
This is implemented by a memo-ization technique. 
This reduces the problem because even if the wrong 
head-corner is predicted for a given goal, it may turn 
out to be the case that the computations based on 
this wrong prediction may be useful later (each lexi- 
cal category usually is the head of some projection). 

The well-formed substring table is implemented 
using an interesting generalization of the subsump- 
tion relation. A goal need not be investigated any- 
more if a more general goal has already been com- 
pleted. It is easy to see that a certain goal with 
extreme positions 3 to 6 is more general than an oth- 
erwise identical goM with extreme positions 4 and 6. 

Head-dr iven  vs. func to r -d r lven  pars ing.  For 
categorial unification grammars in which we choose 
the functor as the head of a rule, the head-corner 
table is not going to be discriminating, because the 
grammar rules in such a grammar may simply be 
(in DCG notation, given appropriate operator defi- 
nitions): 1 

Val ---* Val/ Arg, Arg 
Pal --* Arg, Arg\  Val (5) 

As no information about word-class or morphology 
is stated in the rules, such information will not be 
found in the head-corner table. 

A possibly useful approach here is to compile some 
lexical information into the rule set, along the lines 
proposed in [Bouma, 1991]. In that paper it is pro- 
posed to compile lexical information into the rule-set, 
and parse with this 'enriched' rule-set. What seems 
to be most useful here, is to use this enriched gram- 
mar only for the compilation of the head-corner ta- 
ble. The parser then uses the general rule schemata 
themselves. 

However, given the usual analysis of modifiers as 
functors, even this approach may fail to yield an in- 
teresting head-corner table. Note that some analyses 
in categorial grammar prescribe that even in such 
cases certain morphological features are shared be- 
tween the functor and its resulting value [Bouma, 
1993]. 

2.3 Compar i son  

The important differences between both head-driven 
parsing algorithms can be summarized as follows 
(see Mso table 1). Firstly the head-driven chart 
parser proceeds from left-to-right as usual, whereas 
the head-corner parser proceeds bidirectionally. Sec- 
ondly, the head-driven chart parser is an active chart 
parser (i.e. it also stores partial analyses of phrases); 

1 the second author prefers to write the second rule as 

Val .-~ Arg, Val~Arg 
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the head-corner parser uses memo-ization of the 
parse predicate and the head-corner predicate (i.e. 
it only stores complete analyses of phrases, and par- 
tim analyses of head-corners). 

We also implemented an active head-corner chart 
parser along the lines of [Sikkel and op den Akker, 
1992], but preliminary experiments indicate that  
(our implementation of) this parser is not useful for 
the grammars used in the experiments to be dis- 
cussed in the next section. Note that  it is not possible 
to incorporate top-down filtering in the head-driven 
chart parser in a simple way, because the necessary 
active items may not be available yet. 

Thirdly, although in both algorithms the way rules 
are applied is bottom-up in an important sense, there 
is an important flow of information in top-down di- 
rection in the head-corner parser. For grammars in 
which the head-corner table is discriminating, this 
should have important effects in practice. This ex- 
pectation is confirmed in the experiments discussed 
in the next section. 

3 T h e  e x p e r i m e n t  

This section describes experimental results for the 
parsing algorithms discussed above, in comparison 
with some obvious alternative strategies. The exper- 
iment consists of two parts. 

The first part of the experiment compares pars- 
ing strategies which proceed in a bottom-up fash- 
ion without the use of any top-down prediction. For 
CUG such parsers are suitable as no top-down in- 
formation can be compiled from the rule schemata 
in a simple way. 2 It turns out that the head-driven 
bottom-up chart parser performs better than both 
an inactive and an active bottom-up chart parser, 
for a particular CUG for English. If the cost of uni- 
fication is relatively high, the use of the head-driven 
chart parser pays off. If unification is cheap, then the 
inactive chart parser may still be the most efficient 
choice. 

The second part of the experiment concentrates on 
the comparison between the head-corner parser and 
the left-corner parser. Both of these parsers proceed 
in a bottom-up fashion, but use important top-down 
prediction. Such parsers are interesting for gram- 
mars in which interesting top-down information can 
be extracted from the rule schemata. It can be con- 
cluded from the experiment that  for a specific lexi- 
calist Definite Clause Grammar for Dutch the head- 
corner parser performs much better than the left- 
corner parser. 

These results indicate that  at least for some gram- 
mars it is fruitful to apply parsing strategies which 
are sensitive to the linguistic notion 'head'. 

A C U G  for  Engl i sh .  The first grammar is a 
CUG for English which includes rules for leftward 

2but see the discussion on head-driven vs. functor- 
driven parsing in the  previous section. 

and rightward application and four construction spe- 
cific rules to implement gap-threading. The gram- 
mar covers the basic sentence types (declaratives, 
WH and yes-no questions, and relative clauses) and 
a wide range of verbal and adjectival subcategoriza- 
tion types. PPs may modify nouns as well as vPs, 
leading to so-called PP-attachment ambiguities. The 
syntax of unbounded dependency constructions is 
treated rather extensively, including accounts of con- 
straints on extraction, pied-piping, and the possibil- 
ity of nested dependencies (as in which violin is this 
sonata easy to play on). The grammar is defined in 
terms of feature-structures, which may be combined 
using feature-unification. Furthermore, the treat- 
ment of nested dependencies uses lists of gaps. The 
interaction of these lists with certain lexical entries 
(such as easy) as well as the interaction of these lists 
with the checking of island-constraints requires that  
attempts at cyclic unifications must be detected and 
must fail. Therefore, the feature-unification proce- 
dure includes an occurs check. 

If the standard techniques for compiling a left- 
corner resp. a head-corner table are applied for this 
grammar, then, at best, the 'trivial' link would re- 
sult, because the rule schemata do not specify any 
interesting information about morphological features 
etc. 

A lexical is t  D C G  for  D u t c h .  This grammar is 
a definite clause grammar for Dutch, in which sub- 
categorization requirements are implemented using 
subcat-lists. The grammar handles topicalization us- 
ing gap-threading. Verb-second is accounted for by 
a feature-based simulation of head-movement. The 
grammar analyses cross-serial dependencies by con- 
catenating subcategorization lists (implemented as 
difference lists). As opposed to the CUG grammar, 
the second grammar uses actual 'empty elements' to 
introduce the traces corresponding to the topicalized 
phrases and verbs occurring in second position. An- 
other difference with the first grammar is that first- 
order terms are used, rather than feature structures. 

The compilation of the left-corner resp. the head- 
corner table was done using the same restrictor. The 
left-corner table contained 94 entries, and the head- 
corner table contained 25 entries. 

T h e  parsers .  The parsers used in the experiment 
have a number of important properties in common 
(see table 1). First of all, they all use a chart to rep- 
resent (partially or fully developed) analyses of sub- 
strings. Second, as categories are feature-structures 
or terms, rather than atomic symbols, special re- 
quirements are needed to ensure that  the chart is 
always 'minimal'. That  is, items are only added to 
the chart if no subsuming item exists, and, if an item 
is added to the chart, all more specific items are 
deleted from the chart. Finally, information about 
the derivational history of phrases is added to the 
chart in such a way that  parse-trees can be recovered. 
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"well-formed substrings 
packing 
subsumption-checking 
active items 
left-to-right processing 
top-down filtering 
head-driven processing 

inact 
+ 
+ 
+ 

+ 

hdc act lc hc 
+ '+ + + 
+ + + + 
+ + + + 
+ + + - 
+ + + - 

- + + 

+ - + 

Table 1: The parsers used in the experiment 

items recognition 
n parses hdc inact act hdc inact act 

# % % see % % 
1 25 67 170 .8 63 191 
1 43 73 180 .9 87 199 

9 2 89 74 179 2.5 91 208 
12 3 141 75 181 4.0 102 211 
15 4 193 79 184 5.5 111 214 
18 6 254 82 184 7.0 124 215 
21 32 369 84 181 10.9 135 224 
24 98 452 86 181 13.7 140 225 
27 55 472 87 185 14.1 142 233 
30 95 592 87 179 19.9 144 218 

parsing 
hdc inact act 
s e c  % % 

1.1 67 168 
1.4 90 164 
3.6 94 179 
6.2 101 175 
8.2 109 180 

10.8 113 175 
30.0 117 147 
87.0 106 120 
29.7 119 164 

172.7 107 120 

Table 2: Results for the English grammar 

This is done by using 'packed structures' (also called 
'parse-forests') to obtain structure sharing in the case 
of ambiguities; semantic constraints (if present) are 
only evaluated when the syntactic analysis phase is 
completed. Our implementation of 'packing' follows 
that of [Moore and Alshawi, 1992], who implement 
it for a (unification-based) left-corner parser. 

Three different bottom-up chart parsers are im- 
plemented. The first one (hdc) is the head-driven 
chart parser presented above, in which the head of 
the rule is given by the grammar writer. The ac- 
tive chart parser (act) is the same as the head-chart 
parser, but now it is assumed that for each rule the 
left-most daughter is the head (active chart). The 
inactive chart parser (inact) is a version of the head- 
corner parser where each right-most daughter is as- 
sumed to be the head of the rule. Since the parser 
does not use active items, some (slight) simplifica- 
tions of the head-driven chart parser were possible. 

The left-corner parser is a generalized version of 
the chart-based left-corner parser of [Rosenkrantz 
and Lewis-II, 1970]. As we also add items to 
construct parse-trees using 'packing', the resulting 

arser should be comparable to the CLE parser 
oore and Alshawi, 1992]. The head-corner parser 

is the parser discussed in the previous section, a 

ZWe also implemented a generalized Earley parser. 
This parser was extremely slow for all sentences of both 
grammars. 

Resul t s  for CUG.  One hundred arbitrarily cho- 
sen sentences (10 of length 3, 10 of length 6, etc.) 
were parsed, using the three pure bottom-up parsers 
(hde, inact, and act). The columns in table 2 give, for 
each sentence length (column 1), the average num- 
ber of readings (column 2), the average number of 
items produced by hdc, and the average percentage 
of items produced by inaet and act, when compared 
with hdc (columns 3-6), the average time it took hdc 
to parse a sentence without recovering the different 
analyses and the average percentage of time needed 
for inact and act to do that (columns 7-9), and fi- 
nally the average time it took to parse a sentence 
and recover all analysis trees for hde and the aver- 
age percentage of time needed by inact and act to do 
that. 

The number of chart items illustrate clearly that 
hdc combines features of an inactive chart parser 
with that of an active chart-parser. Note that, in 
spite of the fact that English is mostly a head-initial 
language, act produces 80% more items than hdc, 
whereas inact almost produces 80% of the items pro- 
duced by hdc. For languages which are predomi- 
nantly head-final, the difference between act and hdc 
will probably be larger, whereas that between iaact 
and hdc should be smaller. 

The recognition times show that an active bottom- 
up chart parser is two-times slower for this grammar 
than a head-driven chart parser. The difference be- 
tween the inactive chart parser and the head-driven 
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n parses he 
s e c  

3 1 .3 
6 2 .8 
9 6 1.2 

12 5 2.0 
15 9 3.1 
18 16 5.1 
21 20 7.4 
24 23 10.2 
27 61 13.8 
30 87 17.3 

recognition pars ing 
hdc lc act inact hc hdc lc act 

% % % % sec % % % 
2647 80 2804 390 .5 1699 79 i759 
5407 343 5968 1044 1.6 3698 215 4265 

550 1170 2.9 334 
428 2333 3.8 285 
355 2521 6.7 210 
248 2408 10.7 160 
195 1918 15.3 127 
147 19.8 104 
209 34.3 131 
145 62.4 102 

inact 
% 

428 
1300 
1474 

Table 3: Results for the Dutch grammar. For parsers which did not succeed within a given period, the entry 
in the table has not been filled in. 

parser is less extreme, and is notably in favor of the 
head-driven parser only for relatively long and com- 
plex (in terms of number of analyses) sentences. Nev- 
ertheless, the difference is of enough significance to 
establish the superiority of a head-driven strategy in 
this case. 

The final three columns show that if recovery of 
parse trees is taken into account as well, the differ- 
ences are much less extreme. The reason for this dif- 
ference is simply that  recovery (for which we used an 
Earley-style top-down algorithm which reconstructs 
explicit analysis trees on the basis of inactive items) 
may take up to eight times as long as doing parsing 
without recovery. Since the amount of time needed 
for recovery is (approximately) equal for all three 
parsers, this explains why the relative differences are 
much smaller in this case. 

The head-corner parser was applied to the same 
grammar and sentence set as well. It behaves much 
worse (up to 100 times as slow for recognition of 24- 
words sentences) than the parsers listed in the ta- 
bles due to the lack of guiding top-down information. 
The left-corner parser without top-down prediction 
reduces to the active chart parser. 

We also applied the same sentence set to a com- 
piled version of the same CUG. In this compiled ver- 
sion first-order terms were used, rather than feature 
structures. Furthermore, we used ordinary Prolog 
unification on such terms rather than the previously 
mentioned feature unification including occurs check. 
This implied that we had to forbid multiple extrac- 
tions in the compiled version of the grammar. Ex- 
periments indicate that  in such cases the inactive 
chart parser performs consistently better than both 
the head-driven chart parser and the active chart 
parser. This should not come as a surprise given 
the discussion in section 2.1 where we expected the 
head-driven chart parser to be useful for grammars 
with an 'expensive' unification operation. 

R e s u l t s  fo r  t h e  D C G .  The next table encodes 
the results for the Dutch grammar (cf. table 3). 
Again, one hundred sentences were chosen (ten of 
three words, ten of six words, etc). 

The head-corner parser improved with a well- 
formed substring table and packing beats the 
bot tom-up chart parsers. This is explained by the 
fact that  these parsers proceed strictly bottom-up, 
whereas the left-corner and head-corner parser em- 
ploy both top-down and bot tom-up information. 
The top-down information is available through a left- 
corner resp. head-corner table, which turn out to be 
quite informative for this grammar.  

The head-corner parser performs considerably bet- 
ter than the left-corner parser on average, especially 
if we only take the recognition phase into account. 
For longer sentences the differences are somewhat 
less extreme than for shorter sentences. This dif- 
ference is due to the fact that  the left-corner parser 
seems somewhat better suited for grossly ambiguous 
sentences. Furthermore, the number of items used 
for the representation of parse trees is not the same 
for the left-corner and head-corner parser .  For am- 
biguous sentences the head-corner parser produces 
more useless items, in the sense that  such items car 
never be used for the construction of an actual parse 
tree. As a consequence, it is more expensive to re- 
cover the parse trees based on this representation, 
than it is for the recovery of parse trees based on the 
smaller representation built by the left-corner parser. 
A few numbers for three typical (long) sentences are 
shown in table 4. 

This is a somewhat puzzling result. Useless items 
are asserted only in case the parser is following a 
dead-end. However, the fact that  the number of use- 
less items is larger for the head-corner parser than 
for the left-corner parser implies that  the head-corner 
parser follows more dead-ends, yet the head-corner 
parser is much faster during the recognition phase. 
A possible explanation for this puzzling fact may be 
the overhead involved in keeping track of the ac- 

77 



h c  

# parses "items recognition recovery total items 
# sec sec sec # 

26 768 12 12 24 503 
100 1420 20 37 57 831 

30 543 9 10 19 430 

lc  
recognition 

SeE 

recovery 
SeE 

33 8 
43 29 
20 8 

total 
s e e  

41 
72 
28 

Table 4: Comparison of the size of the parse forest for the left-corner and head-corner parser for a few (longer) 
sentences. 

tive items in the left-corner parser whereas no ac- 
tive items are asserted for the head-corner parser. 
Clearly for grammars with rules that  contain many 
daughters (unlike the grammar under consideration) 
the use of active items may start  to pay off. 

Note that  we also implemented a version of the 
head-corner parser that  asserts less useless items by 
delaying the assertion of items until a complete head- 
corner has been found. However, given the fact that  
this technique leads to a more complex implementa- 
tion of the memo-ization of the head-corner relation, 
it turned out that  this immediately leads to longer 
recognition times, and an overall worse behavior. 

4 C o n c l u s i o n  

The main conclusion to be drawn from the exper- 
iments discussed above is that  the influence of the 
grammar can hardly be underestimated. The parser 
that  works best for one grammar may easily turn out 
to be the most inefficient one for a different gram- 
mar. This observation also holds for the grammars 
discussed above even though these are both lexicalist 
grammars. 

Head-corner parsing appears to be superior for 
grammars in which the head-corner table contains 
discriminating information. A typical DCG gram- 
mar for a head-final language such as Dutch is an 
example of such a grammar.  On the other hand, for 
grammars in which top-down filtering is difficult to 
implement, strictly bot tom-up parsing strategies are 
more useful, especially if the number of active items 
can be reduced, either by a lazy strategy which never 
enters active items in the chart or, even more success- 
ful for the CUG grammar for English we considered, 
a head-driven strategy. 

Clearly many other factors may be relevant in find- 
ing the best parser for a particular grammar.  For 
example the cost of unification turns out to be an 
important  factor. As indicated above a cheap unifi- 
cation procedure may favor an inactive chart parser, 
even if in that  parser many useless reductions are 
at tempted.  However, if the cost of unification is rel- 
atively high, the cost of the use of active items to 
reduce the number of useless reductions, for exam- 
ple by a head-driven strategy, may be worthwhile. 

Another result we obtained during the experi- 
ments is that  the use of a head-corner and left-corner 

table may also lead to inefficiency. It may be the 
case that  on the basis of the left-corner table (resp. 
head-comer table) very little derivations are actually 
filtered out. Furthermore, the use in the table may 
even lead to more derivations as now certain sub- 
cases are considered which are considered as a single 
derivation in a parser without prediction. An impor- 
tant  problem thus is to come up with the most use- 
ful left-corner (resp. head-corner) table for a given 
grammar.  

A final factor in determining the best parser is 
the actual use we want to make of the parser. For 
example, are we interested in the times needed to 
do recognition, or do we need to consider the times 
used for the recovery of parse trees as well. In some 
systems these different parse trees are never actually 
built but  the semantic and pragmatic components 
directly work on the items built by the parser [Moore 
and Alshawi, 1992]. We conjecture that  even in such 
applications it is probably a good thing to limit the 
size of the parse forest, but  the importance may vary 
from application to application. 
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A A h e a d - d r i v e n  c h a r t  p a r s e r  

The main omission consists of the administration 
concerning the packed items, for the recovery of 
parse-trees. Also this version assumes that no empty 
productions occur in the grammar. 

Rules are of the form ruleCBead, LHS, LeftDs ,  
RightDs), where LeftDs is in reversed order. The 
predicate l ex(Cat ,  P0, P) is true if the word connect- 
ing the positions P0 and P has category Cat. 

The chart consists of (dynamically asserted) facts 
of the form itemCCat,ToParse,PO,P), indicating 
that if there is a list of categories ToParse from po- 
sition P to Q then there is category Cat from position 
P0 to Q. The predicate asser tz_check is used to as- 
serts such items. That predicate asserts its argument 
only if no more general clause exists; furthermore it 
deletes all more specific clauses. 

7. scan(+P0,+P) parses  from P0 to  P, 
P is current position 

scanCP,P). 
scanCP0,P) :- 

Pl is PO + 1, 
C lexCCat,pO,pl), 

add_item(Cat, [] ,PO,P1), 
fail 

; scanCPl ,P)  
). 

add_item(+Cat,+ToParse,+Begin,+End) 
asserts item and computes all its 
consequences, if inactive item 

add_itemCCat,[],B,E) "- 
assertz_checkCitemCCat.[].B,E)), 
closure(Cat,B,E). 

add_itemCCat,[H]T],B,E) :- 
assertz_checkCitemCCat,[H[T],B,E)). 

closureC+Cat,+Begin,+End) 
computes all the items on basis 
of item Cat from Begin to End 

closure(Cat,Pi,P) :- 
itemCLhs,[CatlToParse],PO,P1), 
add itemCLhs,ToParse,PO,P), 
fail. 

closureCCat,PI,P) "- 
ruleCCat,Lhs,Left,Right), 
leftCLeft,PO,Pl), 
add_item(Lhs,Right,PO,P), 
fail. 

c losu re (  . . . . .  ).  

Y, left(+Ds,?Begin,+End) if there are Ds 
~, from right from Begin to End 
l e f t (  [] ,B0,B0) .  
left( [DIDs] ,BO.E) :- 

itemCD, [] ,B,E), 
left (Ds ,BO,B). 
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B A h e a d - c o r n e r  p a r s e r  

The main omission of the following version of the 
head-corner parser is the administration concerning 
the well-formed substring table, packing and the pos- 
sibility of rules with an empty right hand side. In the 
head-corner parser used in the experiment the parse 
predicate and the head-corner predicate are memo- 
ized. Furthermore items for the parse forest are as- 
serted in the head-corner predicate. Finally some 
special arrangements are made to allow for rules with 
an empty right hand side, by allowing underspecifi- 
cation of the string position in the comparison pred- 
icates. 

The relation hc_t able (Cat, PO, P, Goal, qO, £]) im- 
plements the head-corner table. If PO=qO the phrase 
is head-initial; if P=I~ the phrase is head-final. Rules 
and lexical entries are represented as before. 

7. parseCCat,PO,P,EO,E) if there is 
7, Cat from PO to P, ,ithin range EO,E 
parse (Goal, P0, P, EO,E) :- 

predict (Goal, PO, P, Lex, QO, Q, EO, E), 
head_corner (Lex, QO, Q, Goal, PO, P, EO, E). 

7. head_cornerCCat,CO,C,Goal,G0,G,EO,E) 
7. if Cat from CO to C is a head-corner of 
7. Goal from GO to G within EO to E. 
head_corner(Cat,qO,q,Cat,QO,Q .... ). 
head_corner(Small,Qi,Q2,Goal,PO,P,E0,E) :- 

rule(Small,Mid,Left,Right), 
left(Left,QO,Q1,E0), 
right(Right,~2,Q,E), 
hc_table(Mid,QO,Q,Goal,PO,P), 
head_corner(Mid,QO,Q,Goal,PO,P,EO,E). 

7. predictCGoal,PO,P,Lex,qO,Q,EO,E) 
7. i f  Lex from Q0 to  Q may be head-corner  
7. of Goal from PO to  P wi th in  EO, E. 
predict(Goal,POoP,Lex,QO,Q,EO,E) : -  

hc_table(Lex,QO,Q,Goal,PO,P), 
lexCLex,QO,Q), 
EO =< QO, 
q =< E. 

7. left(Ds,PO,P,EO) if (reversed) De exist 
7. from P to PO with left-extreme EO 
l e f t ( ~  , p , p , _ ) .  
IeftC[HIT],PO,P,E0) :- 

parseCH,P1,P,EO,P), 
IeftCT,PO,P1,EO). 

7. right(Ds,PO,P,E) if Ds exist from 
7. PO to P with right-extreme E 
r i g h t ( [ ] , P , P , _ ) .  
r i g h t  ( [H I T], PO, P, E) :-  

parse(H,PO,P1,PO,E), 
right(T,Pi,P,E). 
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