
Head-driven Parsing for Lexicalist Grammars:
Experimental Results

G o s s e B o u m a & G e r t j a n v a n N o o r d

vakgroep Alfa- informat ica , Univers i ty of Gron ingen

Pos tbus 716

NL 9700 AS Gron ingen

Abstract

We present evidence that head-driven pars-
ing strategies lead to efficiency gains over
standard parsing strategies, for lexicalist,
concatenative and unification-based gram-
mars. A head-driven parser applies a rule
only after a phrase matching the head has
been derived. By instantiating the head
of the rule important information is ob-
tained about the left-hand-side and the
other elements of the right-hand-side. We
have used two different head-driven parsers
and a number of standard parsers to parse
with lexicalist grammars for English and
for Dutch. The results indicate that for
important classes of lexicalist grammars it
is fruitful to apply parsing strategies which
are sensitive to the linguistic notion 'head'.

1 In t roduc t ion

Lexicalist grammar formalisms, such as Head-driven
Phrase Structure Grammar (HPSG) and Categorial
Unification Grammar (CUG) have two characteristic
properties. Lexical elements and phrases are associ-
ated with categories that have considerable internal
structure. Second, instead of construction specific
rules, a small set of generic rule schemata is used.
Consequently, the set of constituent structures de-
fined by a grammar cannot be 'read off' the rule set
directly, but is defined by the interaction of the rule
schemata and the lexicM categories.

Applying standard parsing algorithms to such
grammars is unsatisfactory for a number of rea-
sons. Earley parsing is intractable in general, as the
rule set. is simply too general. For some grammars,

naive top-down prediction may even fail to termi-
nate. [Shieber, 1985] therefore proposes a modified
version of the Earley-parser, using restricted top-
down prediction. While this modification leads to
termination of the prediction step, in practice it eas-
ily leads to a trivial top-down prediction step, thus
leading to inferior performance.

Bottom-up parsing is far more attractive for lexi-
calist formalisms, as it is driven by the syntactic in-
formation associated with lexical elements. Certain
inadequacies remain, however. Most importantly,
the selection of rules to be considered for application
may not be very efficient. Consider, for instance, the
following DCG rule:

s([]) -~ Arg, vp([Arg]). (1)

A parser in which application of a rule is driven by
the left-most daughter, as it is for instance in a stan-
dard bottom-up active chart parser, will consider the
application of rule (1) each time an arbitrary con-
stituent Arg is derived. For a bottom-up active chart
parser, for instance, this may lead to the introduc-
tion of large amounts of active items. Most of these
items will be useless. For instance, if a determiner
is derived, there is no need to invoke the rule in (1),
as there are simply no vP's selecting a determiner as
subject.

Parsers in which the application of a rule is driven
by the rightmost daughter, such as shift-reduce and
inactive bottom-up chart parsers, encounter a similar
problem for rules such as (2).

vp(Args) --* vp([Arg[Args]), Arg. (2)

Each time an arbitrary constituent Arg is derived,
the parser will consider applying rule (2), and a
search for a matching vP-constituent will be carried
out. Again, in many cases (if Arg is instantiated as

71

a determiner or preposition, for instance) this search
is doomed to fail, as a vp subcategorizing for a cat-
egory Arg may simply not be derivable by the gram-
mar. The problem may seem less acute than that
posed by uninstantiated left-most daughters for an
active chart parser, as only a search of the chart is
carried out and no additional items are added to it.
Note, however, that the amount of search required
may grow exponentially, if more than one uninstan-
tiated daughter is present (3) or if the number of
daughters is not specified by the rule (4), as appears
to be the case for some of the rule-schemata used in
HPSG:

vp(Args) --* vp([A1, A2]Args]), A1, A2. (3)

vp[Ao]) --+ vp([Ao,..., AnD, A1, . . . , An. (4)

Several authors have suggested parsing algorithms
which appear to be more suitable for lexicalist gram-
mars. [Kay, 1989] discusses the concept of head-
driven parsing. The key idea underlying this concept
is that the linguistic notion head can be used to ob-
tain parsing algorithms which are better suited for
typical natural language grammars. Most linguistic
formalisms assume that among the daughters intro-
duced by a rule or rule-schema there is one daugh-
ter which can be identified as the head of that rule.
There are several criteria for deciding which daugh-
ter is the head. Two of these criteria seem relevant
for parsing. First of all, the head of a rule deter-
mines to a large extent what other daughters may or
must be present, as the head subcategorizes for the
other daughters. Second, the syntactic category and
morphological properties of the mother node are, in
the default case, identical to the category and mor-
phological properties of the head daughter. These
two properties suggest that it might be possible to
design a parsing strategy in which one first identifies
a potential head of a rule, before starting to parse
the non-head daughters. By starting with the head,
important information about the remaining daugh-
ters is obtained. Furthermore, since the head is to
a large extent identical to the mother category, ef-
fective top-down identification of a potential head
should be possible. A head-driven parsing strategy
is particularly interesting for lexicalist grammars, as
these grammars normally suffer most from the prob-
lem that rules or rule-schemata hardly constrain the
search-space of the parser.

In [Kay, 1989] two different head-driven parsers
are presented. First, a 'head-driven' shift-reduce
parser is presented which differs from a standard
shift-reduce parser in that it considers the applica-
tion of a rule (i.e. a reduce step) only if a category
matching the head of the rule has been found. Fur-
thermore, it may shift elements onto the parse-stack
which are in a sense similar to the active items (or
'dotted rules') of active chart parsers. By using the
head of rule to determine whether a rule is appli-
cable, the head-driven shift-reduce parser avoids the

disadvantages of parsers in which either the leftmost
or rightmost daughter is used to drive the selection
of rules.

Kay also presents a 'head-corner' parser. The
striking property of this parser is that it does not
parse a phrase from left to right, but instead oper-
ates 'bidirectionally'. It starts by locating a poten-
tial head of the phrase and then proceeds by parsing
the daughters to the left and the right of the head.
Again, this strategy avoids the disadvantages of
parsers in which rule selection is uniformly driven by
either the leftmost or rightmost daughter. Further-
more, by selecting potential heads on the basis of a
'head-corner table' (comparable to the left-corner ta-
ble of a left-corner parser) it may use top-down filter-
ing to minimize the search-space. Head-corner pars-
ing has also been considered elsewhere. In [Satta and
Stock, 1989; Sikkel and op den Akker, 1992] chart-
based head-corner parsing for context-free grammar
is considered. It is shown that, in spite of the fact
that bidirectional parsing seemingly leads to more
overhead than left-to-right parsing, the worst-case
complexity of a head-corner parser does not ex-
ceed that of an Earley parser. [van Noord, 1991;
van Noord, 1993] argues that head-corner parsing is
especially useful for parsing with non-concatenative
grammar formalisms. In [Lavelli and Satta, 1991]
a head-driven parsing strategy for Lexicalized Tree
Adjoining Grammars is presented.

Although it has been suggested that head-driven
parsing has benefits for lexicalist grammars, this
has not been established in practice. The poten-
tial efficiency gains of a head-driven parser are of-
ten outbalanced by the cost of additional overhead.
This is particularly true for the (bidirectional) head-
corner parser. The results of the experiment we
describe in section 3 establish that efficient head-
driven parsing is possible. That is, we show that
for a radical lexicalist grammar (based on CUG) a
bottom-up head-driven chart parser (a chart-based
breadth-first implementation of Kay's head-driven
shift-reduce parser) is more efficient than standard
pure bottom-up chart parsers. Also, we show that
for a lexicalist (definite clause) grammar in which the
rules still contain a substantial amount of informa-
tion, (bidirectional) head-corner parsing, in which a
bottom-up parsing strategy is guided by top-down
prediction, is more efficient than pure bottom-up
parsing as well as left-corner parsing.

Before discussing the experiment, however, we first
discuss the two head-driven parsers used in the ex-
periment, and how they relate to standard parsing
algorithms.

2 T w o H e a d - d r i v e n P a r s e r s

In this section we present two head-driven parsing
algorithms. Prolog code for simplifications of the al-
gorithms is included in the appendix. For each gram-
mar rule LHS --~ D1, . . . , Dh, . . . , Dn, it is assumed

72

goal

• A •
lex

goal

.

A
Figure 1: The head-corner parser.

that there is one daughter Dh which has been iden-
tified (by the grammar writer) as the head of that
rule.

2.1 H e a d - d r i v e n C h a r t P a r s i n g

The head-driven chart parser scans a sentence from
left to right, storing items representing (partial)
derivations in a chart. Items are of the form
item(Cat, ToParse, BeginPos, EndPos). If ToParse
is empty, the item is inactive, otherwise it is ac-
tive. The parser is a bot tom-up active chart parser
without prediction, in which the addition of an ac-
tive item based on a rule R is considered when-
ever an inactive item H is entered into the chart
which matches the head of R. More precisely, if
item(Cat, [], B, E) is derived, and there is a rule
LHS --* D1,.. . ,Dh-1, Ca~,Dh+l, Dn and there
are inactive items matching D1...Dh-1, ranging
from B0 to B, an iIem(LHS, Dh+I...Dn,Bo, E) is
added to the chart.

If the leftmost daughter of each grammar rule is
the head of the rule, then the head-driven chart
parser reduces to an ordinary bottom-up active chart
parser. If the rightmost daughter of each rule is the
head, then the head-driven chart parser reduces to an
inactive bot tom-up chart parser (i.e. a breadth-first
implementation of a shift-reduce parser).

The head-driven strategy has a potential advan-
tage over active bot tom-up chart parsers, as it will
assert substantially less active items for grammars
that contain rules with an underspecified leftmost
daughter (as in rule 1). In particular it avoids enter-
ing active items into the chart for which it is clear
that the missing daughters cannot be derived.

The head-driven parser also has a potential advan-
tage over inactive bot tom-up chart parsers for gram-
mars that contain rules with an underspecified right-
most daughter. An inactive chart parser must search
in the chart for items matching the remaining daugh-
ter of such a rule each time an arbitrary category is
derived. The head-driven parser on the other hand
only needs to search for matching active items. The
difference may lead to important efficiency improve-
ments, especially if searching the chart is expensive.
For example this is the case if the unification opera-
tion is expensive.

2.2 H e a d - c o r n e r P a r s i n g

Head-corner parsing is a more radical approach to
head-driven parsing in that it gives up the idea that

parsing should proceed form left to right• Rather,
the order of processing in a head-corner parser is
bidirectional, starting from a head outward ('island'-
driven)• A head-corner parser can be thought of as a
generalization of the left-corner parser [Rosenkrantz
and Lewis-II, 1970]. As in the left-corner parser, the
flow of information in a head-corner parser is both
bottom-up and top-down.

The basic idea of the head-corner parser is illus-
trated in figure 1. The parser selects the head of the
string (1), and proves that this element is the head-
corner of the goal. To this end, a rule is selected of
which this lexical entry is the head daughter. Then
the other daughters of the rule are parsed recursively
in a bidirectional fashion: the daughters left of the
head are parsed from right to left (starting from the
head), and the daughters right of the head are parsed
from left to right (starting from the head). The re-
sult is a slightly larger head-corner (2). This process
repeats itself until a head-corner is constructed which
dominates the whole string (3).

Note that a rule is triggered only with a fully in-
stantiated head-daughter. The 'generate-and-test '
behavior observed for example 1 is avoided in a head-
corner parser, because the rule is applied only if the
vP is found, and hence Arg is instantiated. For ex-
ample if At# = np(sg3, [], Snbj), the parser continues
to search for a singular NP, and need not consider
other categories.

The head-relation holds between two categories h
and m with respect to a grammar G iff G contains a
rule with left hand side m and head daughter h. The
relation 'head-corner' is the reflexive and transitive
closure of the head relation. As in the left-corner'
parser, a 'linking' table is maintained which repre-
sents important aspects of this head-corner relation.
For some grammars this table simply represents the
fact that the HEAD features of a category and its
head-corner are shared•

Note that unlike the left-corner parser, the head-
corner parser may need to consider alternative words
as a possible head-corner of a phrase, e.g. when pars-
ing a sentence which contains several verbs• This
problem is reduced because of the following three
observations.

T h e Q u i c k s o r t Ef fec t . A simplified version of the
head-corner parser is provided in the appendix. The
main difference with a simple version of the left-
corner parser is - - apart from the head-driven se-

73

lection of rules - - the use of two pairs of indices, to
implement the bidirectional way in which the parser
proceeds through the string.

Observe that each parse-goal in the left-corner
parser is provided with a category and a left-most
position. In the head-corner parser a parse-goal is
provided either with a begin or end position (de-
pending on whether we parse from the head to the
left or to the right) but also with the extreme posi-
tions between which the category should be found.
In general the parse predicate is thus provided with a
category and two pair of indices. The first pair indi-
cates the begin and end position of the category, the
second pair indicates the extreme positions between
which the first pair should lay. The following figure
illustrates this point with an example:

vp

v np

5 6 7 8

Suppose we found for a goal category s a possible
head-corner v from position 5 to 6. In order to con-
struct a complete tree s for this head-comer, a rule
is selected which dictates that a category np should
be parsed to the right, starting from position 6. To
parse np, we predict the head-corner n between 7
and 8. Suppose furthermore that in order to connect
n to np a rule is selected which requires a category
adjp to the left of n. It will be clear that this cat-
egory should end in position 7, but can never start
before position 6. Hence the only candidate head-
corner of this phrase is to be found between 6 and
7. This example illustrates that the use of two pairs
of string positions reduces the number of possible
head-corners for a given goal.

S t r ing posi t ions in head-corner table. Sec-
ondly, the head-corner table includes information
about begin and end positions, following an idea in
[Sikkel and op den Akker, 1992]. For example, if the
goal is to parse a phrase with category sbar from po-
sition 7, and within positions 7 and 12, then for some
grammars it can be concluded that the only possible
head-corner for this goal should be a complementizer
starting at position 7. Such information is compiled
into the table as well. Hence the number of possible
head-corners is reduced.

Wel l - formed subs t r ing tables. Thirdly, the
problem of multiple possible heads is reduced be-
cause a well-formed substring table is maintained.
This is implemented by a memo-ization technique.
This reduces the problem because even if the wrong
head-corner is predicted for a given goal, it may turn
out to be the case that the computations based on
this wrong prediction may be useful later (each lexi-
cal category usually is the head of some projection).

The well-formed substring table is implemented
using an interesting generalization of the subsump-
tion relation. A goal need not be investigated any-
more if a more general goal has already been com-
pleted. It is easy to see that a certain goal with
extreme positions 3 to 6 is more general than an oth-
erwise identical goM with extreme positions 4 and 6.

Head-dr iven vs. func to r -d r lven pars ing. For
categorial unification grammars in which we choose
the functor as the head of a rule, the head-corner
table is not going to be discriminating, because the
grammar rules in such a grammar may simply be
(in DCG notation, given appropriate operator defi-
nitions): 1

Val ---* Val/ Arg, Arg
Pal --* Arg, Arg\ Val (5)

As no information about word-class or morphology
is stated in the rules, such information will not be
found in the head-corner table.

A possibly useful approach here is to compile some
lexical information into the rule set, along the lines
proposed in [Bouma, 1991]. In that paper it is pro-
posed to compile lexical information into the rule-set,
and parse with this 'enriched' rule-set. What seems
to be most useful here, is to use this enriched gram-
mar only for the compilation of the head-corner ta-
ble. The parser then uses the general rule schemata
themselves.

However, given the usual analysis of modifiers as
functors, even this approach may fail to yield an in-
teresting head-corner table. Note that some analyses
in categorial grammar prescribe that even in such
cases certain morphological features are shared be-
tween the functor and its resulting value [Bouma,
1993].

2.3 Compar i son

The important differences between both head-driven
parsing algorithms can be summarized as follows
(see Mso table 1). Firstly the head-driven chart
parser proceeds from left-to-right as usual, whereas
the head-corner parser proceeds bidirectionally. Sec-
ondly, the head-driven chart parser is an active chart
parser (i.e. it also stores partial analyses of phrases);

1 the second author prefers to write the second rule as

Val .-~ Arg, Val~Arg

74

the head-corner parser uses memo-ization of the
parse predicate and the head-corner predicate (i.e.
it only stores complete analyses of phrases, and par-
tim analyses of head-corners).

We also implemented an active head-corner chart
parser along the lines of [Sikkel and op den Akker,
1992], but preliminary experiments indicate that
(our implementation of) this parser is not useful for
the grammars used in the experiments to be dis-
cussed in the next section. Note that it is not possible
to incorporate top-down filtering in the head-driven
chart parser in a simple way, because the necessary
active items may not be available yet.

Thirdly, although in both algorithms the way rules
are applied is bottom-up in an important sense, there
is an important flow of information in top-down di-
rection in the head-corner parser. For grammars in
which the head-corner table is discriminating, this
should have important effects in practice. This ex-
pectation is confirmed in the experiments discussed
in the next section.

3 T h e e x p e r i m e n t

This section describes experimental results for the
parsing algorithms discussed above, in comparison
with some obvious alternative strategies. The exper-
iment consists of two parts.

The first part of the experiment compares pars-
ing strategies which proceed in a bottom-up fash-
ion without the use of any top-down prediction. For
CUG such parsers are suitable as no top-down in-
formation can be compiled from the rule schemata
in a simple way. 2 It turns out that the head-driven
bottom-up chart parser performs better than both
an inactive and an active bottom-up chart parser,
for a particular CUG for English. If the cost of uni-
fication is relatively high, the use of the head-driven
chart parser pays off. If unification is cheap, then the
inactive chart parser may still be the most efficient
choice.

The second part of the experiment concentrates on
the comparison between the head-corner parser and
the left-corner parser. Both of these parsers proceed
in a bottom-up fashion, but use important top-down
prediction. Such parsers are interesting for gram-
mars in which interesting top-down information can
be extracted from the rule schemata. It can be con-
cluded from the experiment that for a specific lexi-
calist Definite Clause Grammar for Dutch the head-
corner parser performs much better than the left-
corner parser.

These results indicate that at least for some gram-
mars it is fruitful to apply parsing strategies which
are sensitive to the linguistic notion 'head'.

A C U G for Engl i sh . The first grammar is a
CUG for English which includes rules for leftward

2but see the discussion on head-driven vs. functor-
driven parsing in the previous section.

and rightward application and four construction spe-
cific rules to implement gap-threading. The gram-
mar covers the basic sentence types (declaratives,
WH and yes-no questions, and relative clauses) and
a wide range of verbal and adjectival subcategoriza-
tion types. PPs may modify nouns as well as vPs,
leading to so-called PP-attachment ambiguities. The
syntax of unbounded dependency constructions is
treated rather extensively, including accounts of con-
straints on extraction, pied-piping, and the possibil-
ity of nested dependencies (as in which violin is this
sonata easy to play on). The grammar is defined in
terms of feature-structures, which may be combined
using feature-unification. Furthermore, the treat-
ment of nested dependencies uses lists of gaps. The
interaction of these lists with certain lexical entries
(such as easy) as well as the interaction of these lists
with the checking of island-constraints requires that
attempts at cyclic unifications must be detected and
must fail. Therefore, the feature-unification proce-
dure includes an occurs check.

If the standard techniques for compiling a left-
corner resp. a head-corner table are applied for this
grammar, then, at best, the 'trivial' link would re-
sult, because the rule schemata do not specify any
interesting information about morphological features
etc.

A lexical is t D C G for D u t c h . This grammar is
a definite clause grammar for Dutch, in which sub-
categorization requirements are implemented using
subcat-lists. The grammar handles topicalization us-
ing gap-threading. Verb-second is accounted for by
a feature-based simulation of head-movement. The
grammar analyses cross-serial dependencies by con-
catenating subcategorization lists (implemented as
difference lists). As opposed to the CUG grammar,
the second grammar uses actual 'empty elements' to
introduce the traces corresponding to the topicalized
phrases and verbs occurring in second position. An-
other difference with the first grammar is that first-
order terms are used, rather than feature structures.

The compilation of the left-corner resp. the head-
corner table was done using the same restrictor. The
left-corner table contained 94 entries, and the head-
corner table contained 25 entries.

T h e parsers . The parsers used in the experiment
have a number of important properties in common
(see table 1). First of all, they all use a chart to rep-
resent (partially or fully developed) analyses of sub-
strings. Second, as categories are feature-structures
or terms, rather than atomic symbols, special re-
quirements are needed to ensure that the chart is
always 'minimal'. That is, items are only added to
the chart if no subsuming item exists, and, if an item
is added to the chart, all more specific items are
deleted from the chart. Finally, information about
the derivational history of phrases is added to the
chart in such a way that parse-trees can be recovered.

75

"well-formed substrings
packing
subsumption-checking
active items
left-to-right processing
top-down filtering
head-driven processing

inact
+
+
+

+

hdc act lc hc
+ '+ + +
+ + + +
+ + + +
+ + + -
+ + + -

- + +

+ - +

Table 1: The parsers used in the experiment

items recognition
n parses hdc inact act hdc inact act

% % see % %
1 25 67 170 .8 63 191
1 43 73 180 .9 87 199

9 2 89 74 179 2.5 91 208
12 3 141 75 181 4.0 102 211
15 4 193 79 184 5.5 111 214
18 6 254 82 184 7.0 124 215
21 32 369 84 181 10.9 135 224
24 98 452 86 181 13.7 140 225
27 55 472 87 185 14.1 142 233
30 95 592 87 179 19.9 144 218

parsing
hdc inact act
s e c % %

1.1 67 168
1.4 90 164
3.6 94 179
6.2 101 175
8.2 109 180

10.8 113 175
30.0 117 147
87.0 106 120
29.7 119 164

172.7 107 120

Table 2: Results for the English grammar

This is done by using 'packed structures' (also called
'parse-forests') to obtain structure sharing in the case
of ambiguities; semantic constraints (if present) are
only evaluated when the syntactic analysis phase is
completed. Our implementation of 'packing' follows
that of [Moore and Alshawi, 1992], who implement
it for a (unification-based) left-corner parser.

Three different bottom-up chart parsers are im-
plemented. The first one (hdc) is the head-driven
chart parser presented above, in which the head of
the rule is given by the grammar writer. The ac-
tive chart parser (act) is the same as the head-chart
parser, but now it is assumed that for each rule the
left-most daughter is the head (active chart). The
inactive chart parser (inact) is a version of the head-
corner parser where each right-most daughter is as-
sumed to be the head of the rule. Since the parser
does not use active items, some (slight) simplifica-
tions of the head-driven chart parser were possible.

The left-corner parser is a generalized version of
the chart-based left-corner parser of [Rosenkrantz
and Lewis-II, 1970]. As we also add items to
construct parse-trees using 'packing', the resulting

arser should be comparable to the CLE parser
oore and Alshawi, 1992]. The head-corner parser

is the parser discussed in the previous section, a

ZWe also implemented a generalized Earley parser.
This parser was extremely slow for all sentences of both
grammars.

Resul t s for CUG. One hundred arbitrarily cho-
sen sentences (10 of length 3, 10 of length 6, etc.)
were parsed, using the three pure bottom-up parsers
(hde, inact, and act). The columns in table 2 give, for
each sentence length (column 1), the average num-
ber of readings (column 2), the average number of
items produced by hdc, and the average percentage
of items produced by inaet and act, when compared
with hdc (columns 3-6), the average time it took hdc
to parse a sentence without recovering the different
analyses and the average percentage of time needed
for inact and act to do that (columns 7-9), and fi-
nally the average time it took to parse a sentence
and recover all analysis trees for hde and the aver-
age percentage of time needed by inact and act to do
that.

The number of chart items illustrate clearly that
hdc combines features of an inactive chart parser
with that of an active chart-parser. Note that, in
spite of the fact that English is mostly a head-initial
language, act produces 80% more items than hdc,
whereas inact almost produces 80% of the items pro-
duced by hdc. For languages which are predomi-
nantly head-final, the difference between act and hdc
will probably be larger, whereas that between iaact
and hdc should be smaller.

The recognition times show that an active bottom-
up chart parser is two-times slower for this grammar
than a head-driven chart parser. The difference be-
tween the inactive chart parser and the head-driven

76

n parses he
s e c

3 1 .3
6 2 .8
9 6 1.2

12 5 2.0
15 9 3.1
18 16 5.1
21 20 7.4
24 23 10.2
27 61 13.8
30 87 17.3

recognition pars ing
hdc lc act inact hc hdc lc act

% % % % sec % % %
2647 80 2804 390 .5 1699 79 i759
5407 343 5968 1044 1.6 3698 215 4265

550 1170 2.9 334
428 2333 3.8 285
355 2521 6.7 210
248 2408 10.7 160
195 1918 15.3 127
147 19.8 104
209 34.3 131
145 62.4 102

inact
%

428
1300
1474

Table 3: Results for the Dutch grammar. For parsers which did not succeed within a given period, the entry
in the table has not been filled in.

parser is less extreme, and is notably in favor of the
head-driven parser only for relatively long and com-
plex (in terms of number of analyses) sentences. Nev-
ertheless, the difference is of enough significance to
establish the superiority of a head-driven strategy in
this case.

The final three columns show that if recovery of
parse trees is taken into account as well, the differ-
ences are much less extreme. The reason for this dif-
ference is simply that recovery (for which we used an
Earley-style top-down algorithm which reconstructs
explicit analysis trees on the basis of inactive items)
may take up to eight times as long as doing parsing
without recovery. Since the amount of time needed
for recovery is (approximately) equal for all three
parsers, this explains why the relative differences are
much smaller in this case.

The head-corner parser was applied to the same
grammar and sentence set as well. It behaves much
worse (up to 100 times as slow for recognition of 24-
words sentences) than the parsers listed in the ta-
bles due to the lack of guiding top-down information.
The left-corner parser without top-down prediction
reduces to the active chart parser.

We also applied the same sentence set to a com-
piled version of the same CUG. In this compiled ver-
sion first-order terms were used, rather than feature
structures. Furthermore, we used ordinary Prolog
unification on such terms rather than the previously
mentioned feature unification including occurs check.
This implied that we had to forbid multiple extrac-
tions in the compiled version of the grammar. Ex-
periments indicate that in such cases the inactive
chart parser performs consistently better than both
the head-driven chart parser and the active chart
parser. This should not come as a surprise given
the discussion in section 2.1 where we expected the
head-driven chart parser to be useful for grammars
with an 'expensive' unification operation.

R e s u l t s fo r t h e D C G . The next table encodes
the results for the Dutch grammar (cf. table 3).
Again, one hundred sentences were chosen (ten of
three words, ten of six words, etc).

The head-corner parser improved with a well-
formed substring table and packing beats the
bot tom-up chart parsers. This is explained by the
fact that these parsers proceed strictly bottom-up,
whereas the left-corner and head-corner parser em-
ploy both top-down and bot tom-up information.
The top-down information is available through a left-
corner resp. head-corner table, which turn out to be
quite informative for this grammar.

The head-corner parser performs considerably bet-
ter than the left-corner parser on average, especially
if we only take the recognition phase into account.
For longer sentences the differences are somewhat
less extreme than for shorter sentences. This dif-
ference is due to the fact that the left-corner parser
seems somewhat better suited for grossly ambiguous
sentences. Furthermore, the number of items used
for the representation of parse trees is not the same
for the left-corner and head-corner parser . For am-
biguous sentences the head-corner parser produces
more useless items, in the sense that such items car
never be used for the construction of an actual parse
tree. As a consequence, it is more expensive to re-
cover the parse trees based on this representation,
than it is for the recovery of parse trees based on the
smaller representation built by the left-corner parser.
A few numbers for three typical (long) sentences are
shown in table 4.

This is a somewhat puzzling result. Useless items
are asserted only in case the parser is following a
dead-end. However, the fact that the number of use-
less items is larger for the head-corner parser than
for the left-corner parser implies that the head-corner
parser follows more dead-ends, yet the head-corner
parser is much faster during the recognition phase.
A possible explanation for this puzzling fact may be
the overhead involved in keeping track of the ac-

77

h c

parses "items recognition recovery total items
sec sec sec #

26 768 12 12 24 503
100 1420 20 37 57 831

30 543 9 10 19 430

lc
recognition

SeE

recovery
SeE

33 8
43 29
20 8

total
s e e

41
72
28

Table 4: Comparison of the size of the parse forest for the left-corner and head-corner parser for a few (longer)
sentences.

tive items in the left-corner parser whereas no ac-
tive items are asserted for the head-corner parser.
Clearly for grammars with rules that contain many
daughters (unlike the grammar under consideration)
the use of active items may start to pay off.

Note that we also implemented a version of the
head-corner parser that asserts less useless items by
delaying the assertion of items until a complete head-
corner has been found. However, given the fact that
this technique leads to a more complex implementa-
tion of the memo-ization of the head-corner relation,
it turned out that this immediately leads to longer
recognition times, and an overall worse behavior.

4 C o n c l u s i o n

The main conclusion to be drawn from the exper-
iments discussed above is that the influence of the
grammar can hardly be underestimated. The parser
that works best for one grammar may easily turn out
to be the most inefficient one for a different gram-
mar. This observation also holds for the grammars
discussed above even though these are both lexicalist
grammars.

Head-corner parsing appears to be superior for
grammars in which the head-corner table contains
discriminating information. A typical DCG gram-
mar for a head-final language such as Dutch is an
example of such a grammar. On the other hand, for
grammars in which top-down filtering is difficult to
implement, strictly bot tom-up parsing strategies are
more useful, especially if the number of active items
can be reduced, either by a lazy strategy which never
enters active items in the chart or, even more success-
ful for the CUG grammar for English we considered,
a head-driven strategy.

Clearly many other factors may be relevant in find-
ing the best parser for a particular grammar. For
example the cost of unification turns out to be an
important factor. As indicated above a cheap unifi-
cation procedure may favor an inactive chart parser,
even if in that parser many useless reductions are
at tempted. However, if the cost of unification is rel-
atively high, the cost of the use of active items to
reduce the number of useless reductions, for exam-
ple by a head-driven strategy, may be worthwhile.

Another result we obtained during the experi-
ments is that the use of a head-corner and left-corner

table may also lead to inefficiency. It may be the
case that on the basis of the left-corner table (resp.
head-comer table) very little derivations are actually
filtered out. Furthermore, the use in the table may
even lead to more derivations as now certain sub-
cases are considered which are considered as a single
derivation in a parser without prediction. An impor-
tant problem thus is to come up with the most use-
ful left-corner (resp. head-corner) table for a given
grammar.

A final factor in determining the best parser is
the actual use we want to make of the parser. For
example, are we interested in the times needed to
do recognition, or do we need to consider the times
used for the recovery of parse trees as well. In some
systems these different parse trees are never actually
built but the semantic and pragmatic components
directly work on the items built by the parser [Moore
and Alshawi, 1992]. We conjecture that even in such
applications it is probably a good thing to limit the
size of the parse forest, but the importance may vary
from application to application.

78

R e f e r e n c e s

[Bouma, 1991] Gosse Bouma. Prediction in chart
parsing algorithms for categorial unification gram-
mar. In Fifth Conference of the European Chapter
of the Association for Computational Linguistics,
Berlin, 1991.

[Bouma, 1993] Gosse Bouma. Nonmonotonicity and
Categoriai Unification Grammar. PhD thesis, Uni-
versity of Groningen, 1993.

[Kay, 1989] Martin Kay. Head driven parsing. In
Proceedings of Workshop on Parsing Technologies,
Pittsburg, 1989.

[Laveili and Satta, 1991] Alberto Lavelli and Gior-
gio Satta. Bidirectional parsing of lexicalized tree
adjoining grammar. In Fifth Conference of the Eu-
ropean Chapter of the Association for Computa-
tional Linguistics, Berlin, 1991.

[Moore and Alshawi, 1992] Robert C. Moore and
Hiyan Alshawi. Syntactic and semantic process-
ing. In Iliyan Alshawi, editor, The Core Language
Engine, pages 129-148. ACL-MIT press, 1992.

[Rosenkrantz and Lewis-II, 1970] D.J. Rosenkrantz
and P.M. Lewis-II. Deterministic left corner pars-
ing. In 1EEE Conference of the 11th Annual Sym-
posium on Switching and Automata Theory, pages
139-152, 1970.

[Satta and Stock, 1989] Giorgio Satta and Oliviero
Stock. Head-driven bidirectional parsing, a tab-
ular method. In Proceedings of the Workshop
on Parsing Technologies, pages 43-51, Pittsburg,
1989.

[Shieber, 1985] Stuart M. Shieber. Using restric-
tion to extend parsing algorithms for complex-
feature-based formalisms. In 23th Annual Meeting
of the Association for Computational Linguistics,
Chicago, 1985.

[Sikkel and op den Akker, 1992] Klaas Sikkel and
Rieks op den Akker. Head-corner chart parsing.
In Proceedings Computing Science in the Nether-
lands (CSN '92}, Utrecht, 1992.

[van Noord, 1991] Gertjan van Noord. Head corner
parsing for discontinuous constituency. In 29th
Annual Meeting of the Association for Computa-
tional Linguistics, Berkeley, 1991.

[van Noord, 1993] Gertjan van Noord. Reversibilitgt
in Natural Language Processing. PhD thesis, Uni-
versity of Utrecht, 1993.

A A h e a d - d r i v e n c h a r t p a r s e r

The main omission consists of the administration
concerning the packed items, for the recovery of
parse-trees. Also this version assumes that no empty
productions occur in the grammar.

Rules are of the form ruleCBead, LHS, LeftDs ,
RightDs), where LeftDs is in reversed order. The
predicate l ex(Cat , P0, P) is true if the word connect-
ing the positions P0 and P has category Cat.

The chart consists of (dynamically asserted) facts
of the form itemCCat,ToParse,PO,P), indicating
that if there is a list of categories ToParse from po-
sition P to Q then there is category Cat from position
P0 to Q. The predicate asser tz_check is used to as-
serts such items. That predicate asserts its argument
only if no more general clause exists; furthermore it
deletes all more specific clauses.

7. scan(+P0,+P) parses from P0 to P,
P is current position

scanCP,P).
scanCP0,P) :-

Pl is PO + 1,
C lexCCat,pO,pl),

add_item(Cat, [] ,PO,P1),
fail

; scanCPl ,P)
).

add_item(+Cat,+ToParse,+Begin,+End)
asserts item and computes all its
consequences, if inactive item

add_itemCCat,[],B,E) "-
assertz_checkCitemCCat.[].B,E)),
closure(Cat,B,E).

add_itemCCat,[H]T],B,E) :-
assertz_checkCitemCCat,[H[T],B,E)).

closureC+Cat,+Begin,+End)
computes all the items on basis
of item Cat from Begin to End

closure(Cat,Pi,P) :-
itemCLhs,[CatlToParse],PO,P1),
add itemCLhs,ToParse,PO,P),
fail.

closureCCat,PI,P) "-
ruleCCat,Lhs,Left,Right),
leftCLeft,PO,Pl),
add_item(Lhs,Right,PO,P),
fail.

c losu re (.).

Y, left(+Ds,?Begin,+End) if there are Ds
~, from right from Begin to End
l e f t ([] ,B0,B0) .
left([DIDs] ,BO.E) :-

itemCD, [] ,B,E),
left (Ds ,BO,B).

79

B A h e a d - c o r n e r p a r s e r

The main omission of the following version of the
head-corner parser is the administration concerning
the well-formed substring table, packing and the pos-
sibility of rules with an empty right hand side. In the
head-corner parser used in the experiment the parse
predicate and the head-corner predicate are memo-
ized. Furthermore items for the parse forest are as-
serted in the head-corner predicate. Finally some
special arrangements are made to allow for rules with
an empty right hand side, by allowing underspecifi-
cation of the string position in the comparison pred-
icates.

The relation hc_t able (Cat, PO, P, Goal, qO, £]) im-
plements the head-corner table. If PO=qO the phrase
is head-initial; if P=I~ the phrase is head-final. Rules
and lexical entries are represented as before.

7. parseCCat,PO,P,EO,E) if there is
7, Cat from PO to P, ,ithin range EO,E
parse (Goal, P0, P, EO,E) :-

predict (Goal, PO, P, Lex, QO, Q, EO, E),
head_corner (Lex, QO, Q, Goal, PO, P, EO, E).

7. head_cornerCCat,CO,C,Goal,G0,G,EO,E)
7. if Cat from CO to C is a head-corner of
7. Goal from GO to G within EO to E.
head_corner(Cat,qO,q,Cat,QO,Q).
head_corner(Small,Qi,Q2,Goal,PO,P,E0,E) :-

rule(Small,Mid,Left,Right),
left(Left,QO,Q1,E0),
right(Right,~2,Q,E),
hc_table(Mid,QO,Q,Goal,PO,P),
head_corner(Mid,QO,Q,Goal,PO,P,EO,E).

7. predictCGoal,PO,P,Lex,qO,Q,EO,E)
7. i f Lex from Q0 to Q may be head-corner
7. of Goal from PO to P wi th in EO, E.
predict(Goal,POoP,Lex,QO,Q,EO,E) : -

hc_table(Lex,QO,Q,Goal,PO,P),
lexCLex,QO,Q),
EO =< QO,
q =< E.

7. left(Ds,PO,P,EO) if (reversed) De exist
7. from P to PO with left-extreme EO
l e f t (~ , p , p , _) .
IeftC[HIT],PO,P,E0) :-

parseCH,P1,P,EO,P),
IeftCT,PO,P1,EO).

7. right(Ds,PO,P,E) if Ds exist from
7. PO to P with right-extreme E
r i g h t ([] , P , P , _) .
r i g h t ([H I T], PO, P, E) :-

parse(H,PO,P1,PO,E),
right(T,Pi,P,E).

80

