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This paper describes an implemented parser-interpreter which 
is intended as an abstract formal model of part of the process of 
sentence comprehension. It is illustrated here for Phrase Structure 
Grammars with a translation into a familiar type of logical form, 
although the general principles are intended to apply to any gram- 
matical theory sharing certain basic assumptions, which are dis- 
cussed in the paper. The procedure allows for incremental seman- 
tic interpretation as a sentence is parsed, and provides a principled 
explanation for some familiar observations concerning properties of 
deeply recursive constructions. 

Background  

The starting point for the present work is a set of familiar 
and, for the most part, uncontroversial c|~Lm~ s about the nature of 
grammatical description and of human parsing of natural language. 
These claims and assumptions can be briefly summarised as follows: 

A Hierarchical S t r u c t u r e  

Linguists assign constituent structures to sentences on the ba- 
sis ~f distributional tests of various kinds. On the basis of these 
tests, the 'correct' structures are always hierarchical and often 

deeply nested. The tree representing a sentence may impose a 
great deal of structure on it, with string-adjacent items often ap- 

pearing at very different levels in the tree. In general, shallow, 

'flat' structures are not generated by grammars, nor warranted on 
distributional grounds. However, as we shall see, it is likely that 
these deeply nested structures may be somewhat remote from any 

that are actually computed during parsing. 

B Semantics  is (1) composi t ional  and (ll) syntax-drlven.  

Both of these claims can be made in a variety of versions 
of different strengths, from the trivially true to the fairly clearly 
false. What is intended here is the assumption sometimes called 
the 'rule to rule' hypothesis, shared by almost all current grammat- 
ical frameworks, that to each syntactic rule of a grammar (or for 
each subrree induced by such a rule) there is an associated seman- 
tic rule, either producing an interpretation directly, or translating 
into some formal language. Interpretations for whole sentences are 
built up from the constituent parts in ways specified by these rules, 
in a fashion which mimics and uses the syntactic structure of the 
sentence. 

C Incremental interpretation 

As a sentence is parsed, its interpretation is built up word by 

word: there is little or no delay in interpreting it. In particular, 
we do not wait until all syntactic constituents have been completed 

before beginning to integrate then into some non-syntactic repre- 
sentation. Ample intuitive and experimental evidence supports this 

uncontroversial observation. 

D Limi ted  recurs lon .  

One of the most firmly established facts about human syntac- 
tic processing is that constructions which are ineliminably deeply 
recursive (such as central self-embeddings) are difficult or impossi- 
ble to parse. A sentence like: 

I The boy who the girl that the dog bit liked ran away 

is clumsy at best, and one like: 

2 The boy the girl the dog the cat scratched bit saw left 

is utterly unmanageable under normal circumstances. 

Under the further assumption, recently more controversial (Katz 
1981), that grammars have some kind of mental reality as repre- 
sentations of linguistic knowledge, it is clear that A to D, although 
simple and generally agreed upon observations, by no means obvi- 
ously consistent with each other. Consider, for example, the nat- 
ural way in which one might set about implementing a system 
which observed B, a principle which, in itself, is a computation- 
ally natural principle. Such a system might first parse a sentence, 
annotating nodes in the resulting tree with an indication of the syn- 
tactic rules used. This annotated tree would then be passed to an 
interpretation routine which applied the appropriate semantic op- 
eration to the topmost node (guided by the syntactic information 
found there, in particular a pointer to the semantic information 
necessary), calling itself recursively on each subtree to build up the 
complete interpretation. (Systems operating in more or less this 
manner are described in Rosenschein and Shieber 1982, Gawron et 
al. 1982 and Schubert and Pelletier 1982. They are not intended as 
psychological models in any but the most abstract sense, of course.) 

Such a system would, in observing B, also naturally be con* 
sistent with A. Obviously, though, this type of system requires a 
complete syntactic analysis to be available before it can even be- 
gin the process of interpretation, thus conflicting straightforwardly 

with C. 

Consider next A and D. The structures which linguists postu- 
late in accordance with A are often recursive, and it is in the nature 
of hierarchical structures that this should be a possibility. This is 
rather puzzling in the light of D, for if D is correct, it seems to show 
that a class of structures which are natural from one point of view 
(i.e. centre embeddings) are extremely unnatural from another. 
It is not necessarily to be expected that human linguistic abili- 
ties have evoh'ed in a harmonious and homogeneous manner, but 
other things being equal, we would not expect to find two appar- 
ently co-operating modules so ill-suited to each other. Why should 
grammars be able to generate things that parsers can't parse? 

When we consider left and right recursions, some further ten- 
sion between Ao B and D emerges. Multiple left recursions in En- 
glish are most clearly illustrated by possessive determiner phrases, 
which are generally assumed to have a structure something like 3: 
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and multiple right recursions by a variety of structures, for 
example, relative clauses: 

4 That's [the company that manufactures [the drugs that have 
[the side effects that made her come out in n rash]]] 

There are several facts which suggest that the structures as- 
signed to these examples by a grammar in accordance with A can- 
not realistically be assumed to play any very direct role in the 
actual processing of them in performance. Firstly, there is the fa* 
miliar .bservatioa (Chomsky 1965: 13.-14, Langeadoen 1975: 544), 
that examples like 3 and 4 do not have the intonation contours 
that would be predicted for them on the basis of the constituent 
s~rucrures assigned to them by a grammar. For example, in 3, the 
intonation of the sequence of possessives is not defined over the 
whole constituent, as might be expected, but is more like a 'list' 
intonation. In sentences like 4, the intonation contour somethnes 
breaks the sentence up in the way indicated informally here: 

5 [That's the company[ [that manufactures the drugs] [that 
have the side effects] [that made her come out in a rash] 

This chunking of the sentence does not respect its syntactic 
structure, splitting the head NP of the relative clause from its 
modifier and grouping it with the main clause instead. The condi- 
tions under which this happens are clearly connected with matters 
of length and so on, so the actual examples here are also capable of 
receiving the 'correct' contour, bur the effect is clearly to be seen in 
longer and more complex sequences. This observation is generally 
taken to indicate that, whatever else is happening in the produc- 
tion and comprehension of such examples, it is not the case that 
complete syntactic structures of the type assigned by a grammar 
are being computed. 

A filrther argument that this is so derives from the fact that 
although 4 was displayed as a right branching structure, it would 

also receive a left branching analysis, and if sufficiently complex. 
all possible combinations of the two. This means that the number 
of parses such a structure would receive goes up massively with 
the number of clauses invoh, ed (see Church and Patil 1982 for dis- 
cussion of this. Analogous comments hold for PP modifiers and 
conjunctions on most analyses). It is clearly stretching credibility 
to assume that a parsing procedure follows very faithfully what a 
grammar says about such cases. 

While ditficult to reconcile with A (and hence B) these obser- 
vations are consistent with D. This perhaps needs some elaboration: 
it is a reasonable conjecture, given what we know about short term 
linguistic memory, that the human parsing mechanism operates in 
a way which has the formal properties of a finite state device (see 
e.g. Chomsky 1963, Chomsky and Miller 1963, or, more recently, 
Langendoeu and Langsam 1984). The fact that unlimited right or 
left recursiou can be recognised, whereas centre recursion cannot, 
is consistent with this, for any (CF) language with bounded centre 
embedding is also a finite state language. However, when we turn to 
full parsing, as opposed to recognition, it turns out that the proper 
analysis even of left and fight recursion demands non-finite-state 
resources (Langendoen 1975). Intuitively, this is easily seen: pars- 
ing a language can be regarded, abstractly, as a traasduction from 
strings of terminal items to labelled bracketings representing struc- 
tural descriptions. For the labelled bracketings to be well formed, 
left and right brackets bearing the same label must be paired up 
correctly. In the case of recursion, this means that the bracket lan- 
guage contains cases where some number of left brackets of type X 
must be paired up with the same number of right brackets of type 
X, for any number. This is a classic non-finite state language, and 
thus even if the input to the transducer is finite state, the overall 
transduction must be at least of context-free power, given no finite 
bound on recursion. Full parsing, therefore, of strnctures like 3 and 
4, will demand resources of at least this power. 

Let us now assume that D should be taken to apply, not just 
to cases of centre embedding, but to all types of recursion (as in 
Miller and Isard's original {1963) discussion of centre embedding). 
This is, in effect, a conjecture that the human parsing mechanism 
is forced to operate with no more than finite state resources, even 
though the class of languages generated by the grammars found 
natural by human beings might lie far outside the finite state class. 
Under such circumstances it would be expected that in the left and 
right recursive cases, a full parsing would not always be available, 
an expectation that we may take to be supported by the intona- 
tional evidence, and by the combinatorial explosion considerations 
alluded to above. 

If this is a plausible line of reasoning, it nevertheless presents 
us with a further difficulty in the fight of observation B. For if se- 
mantics is driven by syntax, it would seem to follow that structures 
which are not properly parsed should not be fully interpretable ei- 
ther. While this is clearly the case for centre embeddings, it is 
not the case for either left or right recursion: semantically speak- 

ing they are completely unproblematic. This is a further conflict 
which our model of parsing will have to resolve. 
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A n  I n c r e m e n t a l  P a r s e r - I n t e r p r e t e r  

My aim was to develop a parser and interpreter which was 
compatible with A to D, resolving the apparent conflicts between 
them, and which also incorporated in a fairly concrete form the 
assumption that  grammars  have some status,  independently of 
parsers, as mental  objects. That  is to say, it was assumed that  
what linguists say about natural  language in the form of a gram- 
mar  {including semantic interpretation rules} is available to the 
parser-interpreter as some kind of da ta  structure having roughly 
the form that  the linguist's pencil and paper description would 
suggest. The aim was also to demonstrate  a serious commitment  
to C by getting the parser to build up explicit representations of the 
meaning of a sentence piece by piece during the course of a parse. 
To my knowledge, the only other work which takes this commit-  
meat  seriously at the appropriate level of formal detail {there is 
no shortage of well intentioned hand-waving} is that  of Ades and 
Steedmau (1982). In Pu lman  (forthcoming), I discuss some of the 
similarities and differences between these two approaches. 

For purposes of illustration, I will assume that  the underly- 
ing grammatical  theory involved is some form of Phrase Structure 
Grammar,  where semantic interpretation consists of translation 
into a simple form of higher order logic. Neither of these assump- 
tions is crucial: the parsing procedure can be adapted to certain 
types of transformational grammar,  and the associated process of 
semantic interpretation requires only that the semantic theory can 
h,, driven hy syntactic structures, and that  there is some way of 
d,,ing function application and composition. It is unlikely that  this 
this rules ,,at any candidates at all. 

The pr,,cedure is best thought of as a type of stack-based 
ghift-r,,duee algorithm, though with the ability to deal with in- 
complete constituents. In the current implementation it operates 
aon-deterministicalb': I (and others) have argued elsewhere (Pub 
nian. f .r thcoming) that there is no good reason to suppose that  
parsing {as opposed to a more global process of comprehension) is 
deterministic. (Contra Marcus 1980, Berwick and Weinberg 1984. 
See al~- Crain and Steedman, forthcoming;, Briscoe 1984). 

The driving mechanism of the parser-interpreter maintains an 
agenda of configurations, each representing a particular state of a 
pars,,. A configuration is a pair consisting of a representation of 
the state of the stack, and the current position in the input string. 
The stack is a list of entries, of which (usually} only the top two 
are accessible to the basic operations of the parser. Each entry 
repr,,sonts a wholly or partially recognised constituent, along with 
its interpretation in terms of a translation into a logical expres- 
sion. An entry is a triple, consisting of a category label, indicating 
what type of constituent is being recognised, a 'needed' list of con- 
sti tuents which must  be found before the category is complete, and 
the interpretation so far. The parser s tar ts  with an initial configu- 
ration and proceeds by trying to produce new ones from that  until 
either m~ more alternatives a,.e left, and the parse has failed, or one 
or more complete parses are produced. 

There are four basic operations which produce a new config- 
uration from an old one. Which one is performed depends on the 
state of the stack. If there is a choice between two, both are per- 
formed, producing two new configurations. 

SHIFT: takes the next word from the input and creates a new 
stack entry for it (for each lexical entry it has in the dictionary). 
For example, given a lexicai entry like 

{every, Det, A P A Q A.x P x  - -  Qx} 

Shift produces a stack entry like: 

{Det. nil, A P A Q Ax P x  - -  Qx} 

The interpretation of non-logical words is assumed to be the 
associated constant,  as is customary. Since lexical categories are 
always complete the second 'needed' element in a stack entry will 
always be empty. Having created a new stack entry, Shift records 
a new configuration with that  entry on top of the stack, and an 
updated input pointer. 

INVOKE-RULE: applies when there is a completed entry on 
top of the stack. Essentially, it checks the rules in the g rammar  
to see whether the category represented by that  entry could begin 
some higher level constituent.  Although this is not strictly neons- 
saD', a one-word 1oo "l'l'l'lmhead is incorporated for efficiency. 

If Invoke-rule succeeds in matching a category of an entry with 
the first member  of the right hand side of a rule, it creates a new en- 
tr)" from them. Logically speaking, this process happens as follows: 
assume, for illustration, an entry of the form 

{Det, nil. every} 

(where the interpretation of 'every' might actually be as above) 
and a example rule of the form: 

NP - -  Det N ; Det '  (N'} 

where the part offer the semi-colon is the semantic component.  
The entry matches the beginning of the right hand side of the rule 
and so could begin an NP constituent. Now assume a function, call 
it Abstract ,  which when applied to a rule of this form produces from 
its right hand side and semantic component the result of lambda 
abstracting over all the right hand side symbols (in the order spec- 
ified in the rule) which appear in the semantic component. Thus 
Abstract  applied to the rub  above would produce 

A det A n { det In)} 

If applied to a rule like 

S - -  NP VP ; VP'  (NP') 

it would produce 

np ~ vp { vp {np)} 
This is simply a more literal rendering of what the rule actually 

says, in fact: making explicit the fact that  the i tems occurring in 
the semantic part of the rule are to be interpreted as variables. 

When Invoke-rule has matched an entry to a rule it produces 
a new entry where the category is the left hand side of the rule, 
the 'needed' list is all but the first of the right hand side, and the 

interpretation is the result of applying Abstract  to the rule and 
then applying that  to the interpretation of the original entry. In 
the example above the result of all this would be: 

{NP, N, A n { every (n)} } 

In other words, the interpretation is simply that  of the whole 
rule with that  of the existing entry put in the appropriate place: a 
semantic equivalent of the 'needed' field. In general, the interpreta- 
tion of an incomplete constituent is that  it is a function expecting 
to find the needed items as arguments.  

COMBINE: combines a complete entry on top of the stack 
with an incomplete one below it, if the category label of the for- 
mer matches the first 'needed' item of the latter. For example, if 
the stack contained an entry like the one just  described, with a 
complete entry on top: 

{N, nil, man} 
{NP, N, A u { every (u)} } 

then Combine would produce a new entry with the category of 
the incomplete one, the remainder, if any, of the needed list, and an 
interpretation which is the result of applying that  of the incomplete 
entry to tllat of the complete one. Here the result would be: 

{NP. nil, ever)" {man) } 
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when beta reduction of the lambda expressions has taken place, 
which is a complete constituent, in this instance, although this need 
not be the c,'~se. If the needed field is not nil, the interpretation 
will always reflect this. 

These three operations are in fact sufi|cient to allow the parser 
to operate. However, a further operation is also necessary" if we are 
to maintain consistency with our original assumptions. 

CLEAR: Clear is intended to correspond to the intuition that  
.nee a c.mplete or completable representation of a proposition has 
l..en built up. the syntactic information needed to do this is no 
hm~cr required, under normal circumstances. The conditions under 
which Clear operates in the present implementation ensures that 
dlis type of syntactic information is discarded as soon as possible: 
aldvmgh this is probably not a realistic claim about human parsing. 

Clear operates when: 

(i) there are only two items on the stack (in a less enthusiastic 
version. Clear would be constrained to operate only on the bottom 
two items on the stack) 

(ii) the topmost one potentially contains everything needed to 
complete 'the bottom one 

(iii) the topmost one is a VP or S 

The first two conditions correspond to the obvious truth that 
you can only get rid of syntactic information when it is safe to 
do so, and that 'selective forgetting' is not possible: either all the 
syntactic information relevant to the earlier portion of the sentence 
is discarded, or none of it is. Otherwise, the claim, and the later 
explanations which depend on it, would be vacuous. The third is 
intended to capture the intuition that it is the main predicate of s 

sentence which when encountered provides enough information to 
be able to continue parsing safely after that point with no reference 
to anything before. For example, when a verb is encountered, the 
number and type of (obligatory} arguments will be known. 

When the conditions for Clear are met, the effect is that the 
interpretation of the bottommost entry is composed with that of 
the topmost, the bottom one then being erased. For example, in a 
situation like: 

{VP, NP, A np {likes (np)} } 
{S, VP, A vp {vp {some (man})} } 

where the topmost entry is of the type that the one underneath 
is looking for, the result of Clear is that the stack will contain just: 

{VP, NP, A x {A vp {vp (some (man))} {A up {likes (up)} 
(.~)}}} 

When this VP finds the NP it is looking for, the interpretation 
will reduce to what we would have had more directly if Clear had 
not operated. 

Here is a trace of the parser to show how all these operations 
work together. The meanings of the individual lexical items have 
been suppressed in the interests of readability. 

S - - N P  V P ;  VP (NP} 
VP - -  V N P  ; V  (NP) 
NP - -  Det N ; Det (N) 

Input: The farmer killed the duckling 

Shift: 
{Det, nil, the} 

Invoke: 
{NP, N, A n {the (n)} } 

Shift: 
{N, nil, farmer} 

{NP, N, A n {the (n)} } 

Combine: 
{,NT, N, the (farmer) } 

Invoke: 
{S. VP, A vp { vp (the (farmer))} } 

Shift: 
{V, nil, killed} 

{S, VP, A vp { vp (the (farmer))} } 

Invoke: 
{VP, NP, A np { killed (rip}} } 

{S, VP, A vp { vp (the (farmer))} } 

Clear:. 
{VP, NP, A x {A vp {vp (the (farmer))} {A np {killed (rip)} (x) 

}}} 
Shift: 

{Dec, nil, the} 
{VP, NP, A x {A vp {vp (the (farmer))} {A np {killed (np)} (x) 

}}} 

Invoke: 
{NP, N, A n {the (n)} } 

{VP, NP, ,X x (A vp {vp (the (farmer))} {A np {kilted (up}} {x) 
}}} 

Shift: 
{N, nil, duckling} 

{NP, N, A n {the (n)} } 
{VP, NP, A x {A vp {vp (the (farmer))} {A np {killed (up)} (x) 

}}} 
Combine: 

{NP, nil, the {duckling)} 
{VP, NP, A x {A vp {vp (the (farmer))} {A np {killed (np)} (x) 

}}} 
Combine: {VP, nil, A x {k vp {vp (the (farmer))} {k np {killed 

(np)} (x) }} (the (duckling)) } 

At this point the parse is complete, and the complex interpre- 
tation beta-reduces to: 

{killed (the (duckl!ng))} (the (farmer)) 

The resulting interpretation is exactly what would have been 
obtained by a 'classical' system operating as described earlier. 

M o d e l l i n g  I n c r e m e n t a l  I n t e r p r e t a t i o n  

How does the parsing procedure manage to remain faithful to 
A to D simultaneously? Let us begin with B: the compositional, 
syntax-driven nature of semantics. The parser assumes that  se- 
mantic information can be associated with syntactic rules in some 
way (though it is not ruled out - in fact, it is assumed - that  some 
extra aspects of interpretation may need to be computed by sep- 
arate procedures: for example, identification of variables for the 
purposes of indicating coreference; cases of wide scope of quantifier 
phrases in syntactic narrow scope positions, etc.). Once the rule in 
question has been identified by Invoke-rule, the semantic informa- 
tion involved is extracted and used to form the next stack entry. 
The syntactic information is also used to form expectations about 
what constituents must come next, although it is conceivable that  
if semantic type is entirely predictable from syntactic category and 
vice versa this information is actually redundant. No other mech- 
anisms for linking syntax with semantics are required. Hence the 
parser obeys condition B absolutely literally and faithfully. 
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The important thing to notice is that this is achieved without 
building any explicit syntax trees during the course of parsing a 
sentence. Syntactic information is used to build up the interpreta- 
tion and to guide the parse, but does not result in the construction 
of an independent level of representation. As the title of the paper 
indicates, there is no parse tree built for a sentence at all, While 
it is tr~w that in some sense trees are implicit in the sequence of 
operations of the parser, this is an inevitable consequence of the 
fact that the rules used themselves define trees, and as we shall 
see, even in this weak sense the tree structures implicit for certain 
types of recursive construction are not isomorphic to those which 
would be defined by the grammar. 

I like to think of this aspect of the operation of the parser as 
embodying the intuition often expressed (most often in the oral 
traditiou, though explicit in Isard 1974), that syntax is a 'control 

structure' for semantics. It also has the merit of being consistent 
both with the widespread agreement among linguists that syntax 
play's a central role in language understanding, and with the ap- 

parently equally widespread failure of psycholinguists to llnd any 

evidence that purely syntactic representations are computed at any 

stage during normal comprehension. 

Turuing now to C, the observation that sentences are under- 
stood on {at least) a word by word basis on a pass through from 
left to right, it should be clear that our procedure provides a direct 
model of this process, on the assumption that at least a central 

part of the meaning of a sentence is given by a translation into 

a logical form of this kind. As soon as a word is encountered, it 
is integrated into the logical form being built up. At every stage, 
this logical form, though possibly not yet complete, is a perfectly 

meaningful object (within the higher order logic assumed here it is 
just a term like any other}: it can be used to perform inferences, 
be the antecedent for anaphora or ellipsis, be integrated with the 
context so as to assess and discard alternative interpretations cor- 

responding to different parsings, and in general perform any of the 
functions we expect the meaning of a sentence or sentence fragment 
to be able to do. 

The satisfying of A is in a sense automatic but trivial, given 
that the parser uses ordinary grammatical rules, rather than some 
preprocessed version altering the output of the rules to produce 
fiat structures (as, for example, in Langendoen 1975, Langendoen 
and Langsam 1984, and also - wrongly, on the present approach - 
in Pulman 1983}. More interesting is the way the parser produces 
a similar effect to that achieved with these preprocessings, without 
altering the rules themselves, as a side effect of its observance of D 
- the limitation on recursion. 

Reeurs lon  L imi t a t ions  

I have argued eLsewhere (Puiman, forthcoming) that attempts 
to explain the difficulty of centre embedded sentences as a conse- 
quence of parsing strategies axe unsuccessful, and that the simplest 
explanation is the original one (Miller and Isard 1963): that the 
human parsing mechanism is fundamentally incapable of operating 
recursively. To be more precise: if (in the worst case} the parser 

encounters an instance of a construction in the course of trying to 
parse an earlier instance of it, the record of the earlier instance will 
be erased and 'forgotten', causing confusion in those cases where 

the information is needed to complete a parse successfully, as in 
the centre embedding cases. Clearly this is not absolute: some ia- 
stances of centre embedding can be found to a depth of 4 or 5, but 
for simplicity we will assume that there is some small fixed limit, 
L. 

The present procedure implements this restriction quite lit- 
erally: if Invoke-rule attempts to put on the stack an incomplete 
constituent of category X, when there are already L instances of 
such incomplete Xs on the stack, then the earliest instance is erased 
before Invoke-rule can succeed. The interesting and striking thin# 
about this restriction is that as stated, it applies to all types of 
recursion, and thus might be expected to result in parsing failures 
not just for centre embedded e.xamples of a depth greater than L, 
but for left and right recursions deeper than L too. However, this 
does not happen: the basic operations of the parser in fact conspire 
to bring it about that both left and right recursions can be parsed, 
the former fully, and the latter to just the extent, apparently, that 
is needed to be able to provide them with an appropriate inter- 
pretation. Thus a perfectly general and simple restriction can be 
in, posed, rather than some version (implausibly) qualified so as to 
distinguish between different types of recursion. 

The simplest case is that of left recursiou, which we will illus- 
trate with an artifical example grammar: 

A - - * A a : A ( a )  
A ~ a ; a  

When processing a string 'aaa...', the parser operates as in the 
following trace ('b' is the interpretation of 'a'): 

Shift: 
{~, nil, b} 

Invoke: 
{A, ~ ,  b} 

Invoke: {A, a, Aa {b (a)}} 

Shift: 
{a, nil, b} 

{.'., ,~ ~a {b (a)}} 
Combine: 

{A, nil, b ( b ) )  

Invoke: 
{A, a, Aa {b (b (a))})  

At this point the cycle of operations has become evident: at 
no point is there ever more than one occurrence of an incomplete 
A constituent on the stack, and so there is never any situation in 
which the recursion limitation would come into effect. In other 
words, like any shift-reduce mechanism, this parser can process 
unbounded left recursion without the stack growing beyond a con- 
stant depth. 

Centre embeddings of a depth greater than L will not be parsed 
correctly. To see how this might work out in detail we will assume 
some simple rules for relatives: 

NP -. NP R.EL : REL'(NP')  
REL --, NP VP : NP'(VP')  

and we will ignore the question of how wh words are linked 
with gaps appropriately, other than the assumption that this infor- 
mation is contained somewhere in the trees defined by these rules. 
Notice that we are assuming for simplicity that relative clauses are 
a distinct constituent from S, and also, that no recursion at all is 
allowed. For clarity, rather than build the incremental semantic in- 
terpretations yielded by the parser we will display the partial tree 
that a more conventional parser might build. 

For a sentence like: 

7 The woman the boy the child knew waved to laughed 

we ought to build a tree like: 
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the wcaan the hey the child knew waved to laughed 

Things proceed as follows, ignoring some obvious steps: 

{i) { NP, nil, {NP the woman}} 

(ii) { NP, REL, {NP {NP the woman}{REL ...}}} 

(iii) {N'P, nil, {NP the boy}} 
{ NP, REL, {NP {NP the woman}{REL ...}}} 

At this point, if we are to lind the correct interpretation or build 
the appropriate parse tree Invoke must recognise the NP 'the girl' 
as the beginning of another relative clause, and place on the stack 
an entry like: 

{NP, REL, {NP{NP the girl}{IZEL ...}}} 

But of course this will violate the recursion restriction, for 
there is already an {NP, REL...} on the stack. Let as assume that 
this earlier one is thus 'forgotten', or at least rendered inaccessible 
to the parsing procedure in some way. Things now proceed - again 
ignoring obvious details - until we have recognised the sentence as 
far as the word 'knew': 

(iv) {NP, nil, {NP {NP the girl}{RgL {NP the boy}{VP 
knew}}}} 

At this point the procedure runs into trouble. If the parser 
merely continues with 'waved to' it will be stuck: 'waved to' in its 
own is not a complete VP, for it is missing an object. So a possible 
parse in which what is on the stack is the subject of'waved to' will 
fail. But there is no other option available for it. In order to treat 
'waved to' correctly, the parser needs to know that it is part of 
a relative clause and thus can legitimately have a missing object. 
But this of course is precisely the information that is no longer 
avail~ble to it, for the REL entry which would have signalled this 
has been erased. So the parser cannot proceed beyond this point 
coherently. It is reassuring that this is exactly the point - after the 
first verb ,,f the sequence stacked up - where both intuitive and 
exp*,rimental evidence {Miller and Isard 1963} suggest the onset of 
difficulty with these constructions. Our parsing procedure seems 
to get stuck at exactly the same point people do in these centre 
embedded constructions. 

With right recursion there are two cases of interest. With 
u|ultilde sentential complementation like 

9 .I.e th.,tght that Bill expected that Mary knew .... 

then the c,peration of Clear means that the recursion limit will 
never be exceeded. Whenever we have a stack of the form: 

{VP. S, beta} 
{S, VP, alpha } 

Clear will erase the bottom entry leaving:. 

{VP, S, Ax {alpha {beta (x)}} } 

Whenever there is a stack of the form: 

{S, VP, beta} 
{VP, S. alpha} 

Clear will likewise produce: 

{S, VP, Ax {alpha {beta (x)}} } 

Thus neither recursive category will ever have more than one 
instance on the stack at a time. As in the earlier illustrative ex- 
amples, the process of function composition means that, when the 
final constituent is encountered, the whole complex logical expres- 
sion reduces down to exactly what we would have had under the 

'classical' view: the difference here is that we do not depend on the 
whole syntactic tree being explicitly constructed first in order to 
get the correct results. 

While the general idea here seems correct, the details are 
not entirely satisfactory, however. In the current implementation, 
Clear operates whenever it can, which, as remarked above, does 
not seem very plausible. Since the motivation for Clear is partly 
via considerations of short term memory load, in a more realistic 
model some extra parameter to reflect this transient load should 
clearly be involved, such that Clear only operates when a certain 
threshold is exceeded. This would mean that there was room for 
some decoupling of the recursion limitation from the conditions on 
Clear: at present, with a recursion limit of 1, even a sentence like 

10 John expected that Bill would leave 

could not be parsed unless Clear had operated. But it seems 
unlikely that such a short sentence imposes any very great strain 
on syntactic short term memory. Furthermore, in the present im- 
plementation, Clear will prevent sententinl conjunctions from being 
parsed at all, for by the time the conjunction is reached, the only 
constituent left on the stack is labelled as a VP, not an S, and 
so Invoke-rule cannot find an appropriate candidate to continue. 
Fortunately, both of these wrinkles are easily amended by mak- 
ing Clear more conservative in its operation, while preserving the 
present type of explanation for why this type of right recursive 
construction can still be parsed with little apparent effort. 

Not all cases of right recursion need be 'rescued' by Clear, 
however. Given nmltiple PP modifiers, introduced by a rule: 

NP --  NP PP 

we have the potential for the type of situation described earlier, 
where there may be many distinct parse trees, only one of which 
may aecurat*.ly reflect the actual pattern of attachment of PPs to 
the NP tit,')" modify. 

I I  

The house in the woods by the river 
The book on rock climbing by the writer from 
Scotland 
The bird in the tree near the flowerbed with a red 
beak 

Assuming a recursion limit of 1. there is only one 'parse' of 
such strucrltres that will succeed, since Clear-  applying only to 
projeeti(ms of +V, recall - cannot be involved. The parsing proce- 
dure witl process these cases in a way which corresponds to a left 
branching or stacked analysis: 
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~IP PP : 

I~P pp : : 

This might seem to be a serious disadvantage, for there are 
clearly readings of the above examples which appear not to be 
those suggested by such a 'parse'.  However, it is actually a good 
result: when there is more than one parse of a sequence like this, the 
'correct' one - i.e. that  consistent with the preferred a t tachments  - 
must be decided on by a mLxture of semantic and contextual con- 
straints on what can modify what. A full and exhaustive parse is 
thus still not sufficient to arrive at a unique interpretation. But  if 
the real work of deciding what a t tachments  are to be made is done 
by these non-syntactic procedures, then all but the lowest level of 
syntactic analysis, (into non-recursive NIP and PP  constituents}, 
is entirely redundant. All but one of the more complex analyses 
will be thrc,wn away, and all of the semantic information to be 
gained from that analysis has already been computed in the course 
of deciding that  it is the 'correct'  one. (As everyone who has ever 
written a practical parser has discovered, this is in any case an 
extremely silly way to do things). Thus an exhaustive syntactic 
anal.vsis is neither necessary nor sufficient for the correct handling 
of these sequences. All that  is required is that  the low level con- 
stituent structure be recogaised: thereafter, the meaning of a mod- 
ifier can be assumed to be a function which seeks an appropriate 
argatment to modify, and is thus just applied to the representation 
of the meaning of the sentence that  has already been built up. Ino 
cid,-~tall.v.n.dco that  this latter assumption is almost forced on 
us indq~,,mleutly by the existence of rightward extraposed nomi- 
nal nxmlili,,rs which may be encountered without warning after an 
appar,ut ly e,mxplete sentence meaning has been assembled: 

12 1 gave the book back to the girl in the library that  you 
asked me to photocopy 

The level of analysis provided by our t reatment  appears to be 
exa,'tl.v what is needed for the at tachment of these modifiers to be 
ace,mmmdated appropriately. 

S~.queuces of ordinary relative clauses, and multiple conjunc- 
ti,,ns will he treated in a similar way, and similar arguments apply 
to them. In the case of conjunctions, of course, the fact that  no 
informati .n is lost hy not computing massive parse trees is even 
m o r e  ~ ] o . , i m l s .  

It is int~'re~ting to note, in connection with sequences of rela- 
tives, that the stacked 'parse' which the operation of the procedure 
mimics is actually the one which corresponds almost exactly to the 
unexpected intonation patterns noted by Chomsky and Langen- 
doen: 

13 {That 's  the company} {that manufactures the drugs} {that 
have the side effects} {that made her come out in a rash} 

~P 

~P RZL 

• P ~ : 

l~P I F  J,  : : 

: : : : : 

". : : ." : 

t h e  company t h a t . . ,  t h a t . . ,  t h a t . . ,  

In general, then, the recursion limitation and the basic opera- 
tions of the parser-interpreter seem to combine to provide a fairly 
satisfactory model of the parsing and understanding of these dif- 
ferent types of recnrsive constructions. 

S u m m a r y  

I have presented an algorithm for parsing and interpreting 
grammars  and semantic descriptions of a certain formal type, which 
is consistent with a set of clear and uncontroversial facts about 
human linguistic performance. In particular, I hope to have show 
that  a (partial) theory of competence can be li terary embedded 
within a model of performance, in such a way that  simple principles 
belonging to the latter (recursion limitations) explain phenomena 
that  have sometimes bee,, taken to pertain to the former. 

There are some further practical consequences arising from 
this work: there is not space to go into the details here, but there 
is an interpretation of the parsing algorithm above - as one might 
suspect, given its formal properties - as a finite state transducer 
mapping strings of (labelled} terminal items directly into logical 
forms. While the construction of such a device from a g rammar  of 
the original type is rather complex, the result would be a 'linguistic 
engine' {sentences in, logical forms out) of formidable efficency. 

F o o t n o t e  

The parser-interpreter is written in Franz Lisp under 4.2 Unix 
on a Sun workstation. The current grammar  provides syntactic 
and semantic coverage for simple complement types, phrasal and 
sentential conjunction, relative clauses, and questions. 
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