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Abstract

This paper presents a large-scale evaluation
study of dependency-based distributional
semantic models. We evaluate dependency-
filtered and dependency-structured DSMs
in a number of standard semantic similarity
tasks, systematically exploring their param-
eter space in order to give them a “fair shot”
against window-based models. Our results
show that properly tuned window-based
DSMs still outperform the dependency-
based models in most tasks. There appears
to be little need for the language-dependent
resources and computational cost associ-
ated with syntactic analysis.1

1 Introduction

Distributional semantic models (DSMs) based on
syntactic dependency relations (Padó and Lapata,
2007; Baroni and Lenci, 2010) represent a more
linguistically informed version of the widely-used
window-based DSMs (Sahlgren, 2006; Bullinaria
and Levy, 2007; Bullinaria and Levy, 2012). Both
types of DSMs operationalize the meaning of a
target word t as a set of co-occurrence patterns
extracted from language corpora. While window-
based DSMs adopt a surface-oriented perspective
(two words co-occur if they appear within a certain
span, e.g. of 4 tokens), dependency-based DSMs
adopt a syntactic perspective on co-occurrence:
“nearness” is defined by the presence of a syntactic
relation between target and features (e.g. direct ob-
ject, subject, adjectival modifier), which may also
correspond to a path along several edges of a depen-
dency graph. If syntactic relations are only used
to determine co-occurrence contexts, we talk of

1The analysis presented in this paper is complemented by
supplementary materials, which are available for download at
http://www.linguistik.fau.de/dsmeval/.

dependency-filtered DSMs; if the type of relation
is explicitly encoded in the context features (e.g.
“subj dog”), we talk of dependency-typed DSMs.

The fortune of syntax-based models in distri-
butional semantics has been mixed. Early work
on dependency-filtered (Padó and Lapata, 2007)
or dependency-typed (Rothenhäusler and Schütze,
2009; Baroni and Lenci, 2010) DSMs indicated
that syntax-based semantic representations are in-
deed superior. These evaluation studies, however,
were restricted to a specific corpus (BNC in Padó
and Lapata (2007)) or task (noun clustering in
Rothenhäusler and Schütze (2009)), or based on a
very specific notion of co-occurrence (Baroni and
Lenci, 2010)2. Meanwhile, extensive evaluation
studies and parameter tuning led to significant im-
provements in the performance of window-based
models (Bullinaria and Levy, 2007; Bullinaria and
Levy, 2012; Lapesa and Evert, 2014) to the point
that dependency-based DSMs currently hold the
state-of-the-art only in very few standard seman-
tic similarity tasks; see Baroni et al. (2014) and
Lapesa and Evert (2014) for an overview of the
state of the art. Among recent comparative evalua-
tion studies, only Kiela and Clark (2014) attempt
a direct comparison between the parameter spaces
of window-based and syntax-based DSMs: once
again, window-based models are found to perform
better (with the exception of models built from the
large Google Books N-gram corpus), but the scope
of this comparison is rather limited.

The aim of this paper is to establish a fair ground
for the comparison between window-based and
dependency-based DSMs. To that end, we take as a
reference point the large parameter set evaluated by

2Among the dependency-based DSMs evaluated by Baroni
and Lenci (2010), the best performing one relies on type-based
co-occurrence: the co-occurrence strength between a target
and a context is quantified as the number of different patterns
in which they occur.
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Lapesa and Evert (2014) and Lapesa et al. (2014)
for window-based models. We carry out a parallel
evaluation for dependency-based DSMs using the
same tasks, datasets, parameters – adding some pa-
rameters specific to syntax-based models (such as
the parser used and the type of allowed dependency
relations) – and model selection methodology, al-
lowing for a direct comparison of the results.

We address the question of whether dependency-
based models can significantly improve DSM per-
formance if the parameters are properly set, and
whether the degree of the improvement justifies the
increased complexity of the extraction process. In
either case, a more thorough understanding of the
parameter space will be beneficial for applications
that prefer dependency-based DSMs on general
grounds, e.g. because of an integration with syntac-
tic structure (Erk et al., 2010). While the evalua-
tion reported here does not encompass predict-type
models, we believe that our findings also apply to
the usefulness of dependency information in neural
word embeddings (Levy and Goldberg, 2014).

2 Evaluation setting

Tasks & Datasets Our evaluation covers all
tasks and datasets used by Lapesa and Evert (2014)
and Lapesa et al. (2014). For space reasons,
we present detailed results for one representa-
tive dataset from each task3: the TOEFL syn-
onym test dataset (Landauer and Dumais, 1997)
for the multiple-choice synonymy task (perfor-
mance: accuracy); the Generalized Event Knowl-
edge (McRae and Matzuki, 2009) dataset (GEK),
a collection of 402 triples (target, consistent prime,
inconsistent prime), for the multiple-choice seman-
tic priming task (performance: accuracy)4; the
WordSim-353 (WS353) dataset, which contains
353 noun pairs with similarity/relatedness ratings
(Finkelstein et al., 2002) for the task of predicting
human similarity ratings (performance: Pearson’s
r); and the Almuhareb-Poesio (AP) dataset, con-
taining 402 nouns grouped into 21 semantic classes
(Almuhareb, 2006) for the noun clustering task

3If more than one dataset was available for a task, we pre-
ferred larger datasets (for which results are more reliable).
Results for all datasets will be made available in the supple-
mentary materials.

4In contrast to the paradigmatic relation targeted by
TOEFL (i.e., synonymy), the GEK dataset focuses on related-
ness of a more syntagmatic nature. See Lapesa et al. (2014)
for more details on this dataset.

(performance: cluster purity5).

DSM parameters We employ a large vocabu-
lary of target words (27,522 lemma types), based
on the vocabulary of Distributional Memory (Ba-
roni and Lenci, 2010) and extended to cover all
items in our datasets. After extracting dependency
paths from the source corpora, the DSMs were com-
piled using the UCS toolkit6 and the wordspace
package for R (Evert, 2014). We evaluate the fol-
lowing parameters:

Source corpus (abbreviated in the plots as cor-
pus): BNC7, WaCkypedia EN, and ukWaC8;

Format of dependency relations (dep.style):
Basic vs. collapsed with propagation of conjuncts
(De Marneffe et al., 2006; De Marneffe and Man-
ning, 2008);

Annotation pipeline (parser): TreeTagger
(Schmid, 1995) and MALT parser (Nivre, 2003)
vs. bidirectional POS tagger and Neural Network
parser of Stanford CoreNLP (Chen and Manning,
2014);

Path length (path.length): we include paths
with a maximum length of 1, 2, 3, 4 or 5 edges;

Type of dependency relations (dep.type):
paths composed only of core dependencies (main
actants of the sentence) vs. paths that also allow
external dependencies (inter-clausal relations and
conjuncts);

Threshold for context selection (orig.dim): we
select the 5k, 10k, 20k, 50k, or 100k most frequent
context dimensions;

Score for feature weighting (score): frequency,
tf.idf, Dice coefficient, simple log-likelihood, Mu-
tual Information (MI), t-score, or z-score;9

Feature transformation (transformation): an
additional square root, sigmoid (tanh), or logarith-
mic transformation applied to feature scores vs. no
transformation;

Number of latent SVD dimensions (red.dim):
we project vectors into 1000 dimensions using ran-
domized SVD (Halko et al., 2009), then select the
first 100, 300, 500, 700, or 900 latent dimensions;

Number of skipped SVD dimensions
(dim.skip): exclude the first 0, 50 or 100 latent

5Based on k-medoids clustering (Kaufman and Rousseeuw,
1990, Ch. 2) with standard parameter settings.

6http://www.collocations.de/software.html
7http://www.natcorp.ox.ac.uk/
8Both ukWaC and WaCkypedia EN are available from

http://wacky.sslmit.unibo.it/doku.php?id=corpora.
9All methods use sparse non-negative variants; e.g. our MI

corresponds to positive pointwise MI (PPMI).
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dimensions (e.g., those with the highest singular
values); previous work on window-based DSMs
(Bullinaria and Levy, 2012; Lapesa and Evert,
2014; Lapesa et al., 2014) showed that model
performance improves when the initial components
of the reduced matrix (i.e., those with the highest
variance) are discarded.

Distance metric (metric): cosine distance (i.e.
the angle between vectors) vs. Manhattan distance;

Index of distributional relatedness (rel.index):
the semantic relatedness of words a and b in a DSM
is quantified either by their metric distance d(a, b)
or by neighbor rank (rank of b among the neighbors
of a for TOEFL and GEK, mean of log rank(a, b)
and log rank(b, a) for WS353 and AP).

Among the evaluated parameters, parser,
dep.type and dep.style are specific to dependency-
based DSMs. Path.length is the dependency-based
equivalent of window size in a bag-of-words DSM.
The comparison between filtered vs. typed DSMs
can be considered roughly equivalent to the com-
parison between undirected and directed windows
in a bag-of-words DSM. All the other parameters
are shared with window-based DSMs.

Evaluation methodology We tested all pos-
sible combinations of the parameters described
above, resulting in a total of 806400 runs per model
class (filtered vs. typed), which were generated
and evaluated on a large HPC cluster within ap-
proximately 6 weeks. To meaningfully interpret
the evaluation results, we apply a model selection
methodology that is sensitive to parameter interac-
tions and robust to overfitting. Following Lapesa
and Evert (2013), we analyze the influence of in-
dividual parameters and their interactions using
general linear models with performance (accuracy,
correlation, purity) as a dependent variable and the
model parameters as independent variables, includ-
ing all two-way interactions. Analysis of variance –
which is straightforward for our full factorial design
– is used to quantify the impact of each parameter
or interaction. Robust optimal parameter settings
are identified with the help of effect displays (Fox,
2003), which show the partial effect of one or two
parameters by marginalizing over all other param-
eters. Unlike coefficient estimates, they allow an
intuitive interpretation of the effect sizes of cate-
gorical variables irrespective of the dummy coding
scheme used.

3 Results

As model runs without dimensionality reduction
performed consistently worse than the correspond-
ing SVD-reduced runs, we only report results for
the latter in this paper.

Impact of parameters We use a feature ab-
lation approach to assess which parameters have
the strongest impact on model performance. The
ablation value of a parameter is the proportion of
variance accounted for by the parameter together
with all its interactions (corresponding to the reduc-
tion in adjusted R2 of the model fit if the parameter
were left out). Figures 1 and 2 visualize the feature
ablation values of all evaluated parameters in the
dependency-filtered and dependency-typed setting,
respectively. Table 1 shows R2 for the full model
as well as all major interactions (partial R2 > 1%).
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Figure 1: Feature ablation (dependency-filtered)
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Figure 2: Feature ablation (dependency-typed)

Filtered Typed
T G W A T G W A

Full model 88 83 88 83 89 84 90 88
score × transf 8.3 7.8 11.2 8.6 2.4 3.5 5.0 5.7
score × metric 1.3 1.5 1.5 1.8 – – – –
corpus × metric – – – – – – 1.0 4.6
metric × red.dim – 2.5 1.4 – – 2.0 1.3 4.7
metric × dim.skip 4.0 1.0 1.1 3.4 4.9 1.6 2.2 1.2
metric × orig.dim 1.0 2.0 1.2 – 3.3 6.6 2.0 2.3

Table 1: R2 of full model and major interactions
for T[OEFL], G[EK], W[S353] and A[P] datasets
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Figure 3: Corpus (filt)
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Figure 4: Rel. index (filt)
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Figure 5: Path length (filt)
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Figure 6: Context dim. (filt)
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Figure 7: Red. SVD dim. (filt)
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Figure 8: Skip SVD dim. (filt)

Parameters can be divided into three groups.
First, a group of parameters with a strong im-
pact on model performance, which is dominated
by metric in both settings. Metric also has strong
interactions with many other parameters. Further
parameters in this group are score and transfor-
mation, again with a strong interaction across all
datasets and both settings (Lapesa and Evert (2014)
found this interaction to be the strongest also for
window-based DSMs), as well as corpus. Second,
a group of parameters with an intermediate impact
includes the two SVD-related parameters (red.dim
and dim.skip) and, to a lesser extent, the number
of context dimensions (orig.dim) and the related-
ness index (rel.index). Path.length only affects
dependency-filtered models on the GEK dataset
(that directly involves syntagmatic relatedness) and,
but to a lesser extent, on AP (which encodes co-
hyponymy). It is almost irrelevant in a dependency-
typed setting. This is probably due to the fact
that direct dependency relations already capture
the “core” of the semantic space and the informa-
tion contributed by longer paths is neutralized by
the additional noise. Third, a group of irrelevant
parameters, which comprises the details of the de-
pendency scheme (dep.style and dep.type) as well
as the parser used.

Best parameter values In this section, we
identify the best parameter settings by inspect-
ing partial effect plots. We focus on dependency-
filtered models because they consistently achieve
better results and only discuss the dependency-
typed ones when the best parameters are differ-

ent. As for window-based DSMs, the Manhattan
metric always performs much worse than cosine
distance; the different behaviour of the two metrics
also accounts for most of the interactions listed in
table 1. We therefore exclude runs with Manhattan
metric from further analysis and the effect plots
below. The two bigger corpora are always a better
choice (figure 3), with a preference for ukWaC in
the multiple choice tasks. Neighbor rank (figure
4) outperforms distance, but the increased com-
putational cost may only be justified for AP and
WS353; the effect is much stronger for unreduced
models in all tasks. As far as path length (figure
5) is concerned, datasets containing syntagmatic
(GEK) or non-attributional relatedness (WS353)
need longer paths to reach optimal performance.
While the TOEFL task only requires 5k context di-
mensions (figure 6), more dimensions are necessary
for AP and WS353 (20k and 50k) and even more
for GEK (100k). Performance in all tasks improves
with an increasing number of reduced dimensions,
but 300 appear to be sufficient for AP and WS353
(figure 7); skipping the first 50 latent dimensions is
beneficial for all tasks except AP (figure 8). The
strong interaction between score and transforma-
tion, displayed in figure 12 for AP dataset and in
figure 13 for GEK, indicates a preference for sim-
ple log-likelihood with log transformation or MI
without any transformation (similar tendencies to
AP hold for the remaining datasets). Parameters
which are not explanatory can be set to the most
”economic” value: MALT for parser, basic for de-
pendency style, and core for dependency type.

Let us now briefly turn to dependency-typed
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Figure 9: Corpus (typed)
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Figure 10: Path length (typed)
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Figure 11: Context dim. (typed)
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Figure 12: AP: Score × Transformation (filt)
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Figure 13: GEK: Score × Transformation (filt)

models. Preference for corpus remains on bigger
corpora (figure 9). Figure 10 reveals that longer
paths are detrimental (only exception being GEK’s
minor improvement with paths of length two). Fig-
ure 11 shows that the highest number of context
dimensions (100k) is necessary for all tasks.

Dependency filtered
corpus path o.dim r.dim d.sk b.set b.bow soa

TOEFL ukwac 1 5k 900 100 85 92.5 100
GEK ukwac 3 100k 700 50 92.6 97.0 –
WS wacky 5 50k 300 50 0.67 0.68 0.81
AP wacky 1 20k 300 0 69.6 69.0 79.0

Dependency typed
corpus path o.dim r.dim d.sk b.set b.bow soa

TOEFL wacky 1 100k 900 100 81.2 92.5 100
GEK ukwac 2 100k 900 50 86.8 97.0 –
WS ukwac 1 100k 700 50 0.62 0.68 0.81
AP wacky 1 100k 300 0 71.9 69.0 79.0

Table 2: Best parameter settings for each task, com-
pared with window-based DSM and state-of-the-art

Best settings Table 2 reports the robustly opti-
mal parameter settings for dependency-filtered and
dependency-based models10 and their perfomance

10Common parameters: parser: MALT; dep.style: basic;
dep.type: core; score: simple log-likelihood; transformation:

corpus path o.dim r.dim d.sk T G W A
Filter ukwac 2 50k 700 50 86.2 90.1 0.67 65.4
Typed ukwac 1 100k 900 50 77.5 82.1 0.62 69.4

Table 3: General best settings (filtered and typed)

(b.set). For comparison, we also show the perfor-
mance of the optimized window-based DSM from
Lapesa and Evert (2014) or Lapesa et al. (2014)
(b.bow), and the state of the art for the task (soa).
Table 3 reports the parameter values of general set-
tings for the dependency filtered (Filter) and typed
(Typed) models and their performance on the four
datasets.

4 Conclusion

We presented the results of a large-scale evalua-
tion study of syntax-based DSMs. We show that,
even after extensive parameter tuning, syntax-based
DSMs outperform comparable window-based mod-
els only in one task out of four (noun cluster-
ing). We found many similarities to window-based
DSMs: a significant core of the parameter space
(metric, score, transformation, relatedness index)
is common to both types of models, in terms of
their impact on performance as well as the best
parameter values; path length trades off between
paradigmatic similarity and non-attributional relat-
edness, in the same way window-size does; most
tasks require more SVD dimensions than are com-
monly used, and synonymy is better modeled by
discarding the first SVD dimensions. It is left for
future work to establish to what extent our con-
clusions generalize to different languages11 and to
more linguistically challenging tasks (e.g., predic-
tion of thematic fit ratings).

log; metric: cosine; rel.index: rank.
11For example, DSM evaluation on German reveals a mixed

picture: on the one hand, Bott and Schulte im Walde (2015)
found no advantage for syntax-based models over bag-of-
words ones in a quite linguistic task: the prediction of particle
verb compositionality; on the other, Utt and Padó (2014) did
find advantages in the use of syntactic information in the
German counterparts of TOEFL and WS353.
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