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Abstract

We propose the use of a generative model
to simulate user behaviour in a novel task-
oriented dialog domain, where user goals
are spatial routes across artificial land-
scapes. We show how to derive an effi-
cient feature-based representation of spa-
tial goals, admitting exact inference and
generalising to new routes. The use of
a generative model allows us to capture
a range of plausible behaviour given the
same underlying goal. We evaluate intrin-
sically using held-out probability and per-
plexity, and find a substantial reduction in
uncertainty brought by our spatial repre-
sentation. We evaluate extrinsically in a
human judgement task and find that our
model’s behaviour does not differ signif-
icantly from the behaviour of real users.

1 Introduction

Automated dialog management is an area of re-
search that has undergone rapid advancement in
the last decade. The driving force of this innova-
tion has been the rise of the statistical paradigm
for monitoring dialog state, reasoning about the
effects of possible dialog moves, and planning fu-
ture actions (Young et al., 2013). Statistical di-
alog management treats conversations as Markov
Decision Processes, where dialog moves are as-
sociated with a utility, estimated online by inter-
acting with a simulated user (Levin et al., 1998;
Roy et al., 2000; Singh et al., 2002; Williams and
Young, 2007; Henderson and Lemon, 2008). Slot-
filling domains have been the subject of most of
this research, with the exception of work on trou-
bleshooting domains (Williams, 2007) and rela-
tional domains (Lison, 2013).

Although navigational dialogs have received
much attention in studies of human conversational

behaviour (Anderson et al., 1991; Thompson et
al., 1993; Reitter and Moore, 2007), they have not
been the subject of statistical dialog management
research, and existing systems addressing naviga-
tional domains remain largely hand crafted (Ja-
narthanam et al., 2013). Navigational domains
present an interesting challenge, due to the dispar-
ity between the spatial goals and their grounding
as utterances. This disparity renders much of the
statistical management literature inapplicable. In
this paper, we address this deficiency.

We focus on the task of simulating user be-
haviour, both because of the important role sim-
ulators plays in the induction of dialog managers,
and because it provides a self-contained means of
developing the domain representations which fa-
cilitate dialog reasoning. We show how a genera-
tive model of user behaviour can be induced from
data, alleviating the manual effort typically in-
volved in the development of simulators, and pro-
viding an elegant mechanism for reproducing the
natural variability observed in human behaviour.

1.1 Spatial Goals of Users

Users in task-oriented domains are goal-directed,
with a persistent notion of what they wish to ac-
complish from the dialog. In slot-filling domains,
goals are comprised of a group of categorical en-
tities, represented as slot-value pairs. These en-
tities can be placed directly into the user’s utter-
ance. For example, in a flight booking domain, if
a user’s goal is to fly to London from New York
on the 3rd of November, then the goal takes the
form: {origin=“New York”, dest=“London”, de-
part date=“03-11-13”}, and expressing the desti-
nation takes the form: Provide dest=“London”.

In contrast, consider the task of navigating
somebody across a landscape. Figure 1 shows a
pair of maps taken from a spatial navigation do-
main, the Map Task. Because the Giver aims to
communicate their route, one can view the route
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Natural Language Semantic Representation
G: you are above the camera shop Instruct POSITION(ABOVE, LM)

F : yeah Acknowledge
G: go left jus– just to the side of the paper, ? Instruct MOVE(TO, PAGE LEFT) ?

then south, Instruct MOVE(TOWARDS, ABSOLUTE SOUTH)
under the parked van � Instruct MOVE(UNDER, LM) �
you have a parked van? Query-yn
F : a parked van no Reply-n

G: you go– you just go west, ? Clarify MOVE(TOWARDS, ABSOLUTE WEST) ?
and down, Clarify MOVE(TOWARDS, ABSOLUTE SOUTH)

and then you go along to the– you go east � Clarify MOVE(TOWARDS, ABSOLUTE EAST) �
F : south then east Check

G: yeah Reply-y

Table 1: A Giver (G) and a Follower (F ) alternating turns in a dialog concerning the maps in Figure 1.
The utterances are shown in natural language (left), and the semantic equivalent (right), which is com-
posed of Dialog Acts and SEMANTIC UNITS. Utterances marked ? demonstrate a plausible variability in
expressing the same part of the route on the Giver’s map, and similarly those marked �. We model the
Giver’s behaviour, conditioned on the Follower’s, at the semantic level.

as the Giver’s goal for the dialog. However, unlike
goals in slot-filling domains, it is unclear whether
the route can be represented categorically in a
form that would allow the giver to communicate
it by placing it directly into an utterance. As raw
data, a specific route is represented numerically as
a series of pixel coordinates. Before modelling in-
terlocutors in this domain, we must derive a mean-
ingful representation for the spatial goals, and then
devise a mechanism that takes us from the spatial
goals to the utterances which express them.

1.2 Utterance Variability for the Same Goal

In addition to making sensible utterances, a con-
cern for user simulation is providing plausible
variability in utterances, to provide dialog man-
agers with realistic training scenarios. Consider
the dialog in Table 1, resulting from the maps in
Figure 1. Utterances marked ? (and similarly those
marked �) illustrate how the same route can be
described in different ways, not only at the natu-
ral language level, but also at the semantic level1.
A model providing a 1-to-1 mapping from spatial
routes to semantic utterances would fail to capture
this phenomenon. Instead, we need to be able to
account for plausible variability in expressing the
underlying spatial route as semantic utterances.

1Route descriptor TOWARDS indicates a movement in the
direction of the referent ABS WEST, whereas TO indicates a
movement until the referent is reached.

Giver Follower

Figure 1: In the Map Task, the instruction Giver’s
task is to communicate a route to a Follower,
whose map may differ. The route can be seen as
the Giver’s goal which the Follower tries to infer.
A corresponding dialog is shown in Table 1.

1.3 Overview of Approach

In order to perform efficient reasoning, we pro-
pose a new feature-based representation of spatial
goals, transforming them from coordinate space to
a low-dimensional feature space. This groups sim-
ilar routes together intelligently, permitting exact
inference, and generalising to new routes. To ad-
dress the problem of variability of utterances given
the same underlying route, we learn a distribution
over possible utterances given the feature vector
derived from a route, with probability proportional
to the plausibility of the utterance.

Because this domain has not been previously
addressed in the context of dialog management or
user simulation, there is no directly comparable
prior work. We thus conduct several novel evalu-
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ations to validate our model. We first use intrinsic
information theoretic measures, which compute
the extent of the reduction in uncertainty brought
by our feature-based representation of the spatial
goals. We then evaluate extrinsically by gener-
ating utterances from our model, and comparing
them to held-out utterance of real humans in the
test data. We also utilise human judgements for
the task, where the judges score the output of the
different models and the human utterances based
on their suitability to a particular route.

2 Related Work

2.1 Related Work on the Map Task

To our knowledge, there are no attempts to model
instruction Givers as users in the Map Task do-
main. Two studies model the Follower, in the con-
text of understanding natural language instructions
and interpreting them by drawing a route (Levit
and Roy, 2007; Vogel and Jurafsky, 2010). Both
studies exclude dialog from their modelling. Al-
though their work is not directly comparable to
ours, they provide a corpus suitable for our task.

2.2 Related Work on User Simulation

Early user simulation techniques are based on N-
grams (Eckert et al., 1997; Levin and Pieraccini,
2000; Georgila et al., 2005; Georgila et al., 2006),
ensuring that simulator responses to a machine ut-
terance are sensible locally. However, they do not
enforce user consistency throughout the dialog.

Deterministic simulators with trainable parame-
ters mitigate the lack of consistency using rules in
conjunction with explicit goals or agendas (Schef-
fler and Young, 2002; Rieser and Lemon, 2006;
Pietquin, 2006; Ai and Litman, 2007; Schatzmann
and Young, 2009). However, they require large
amounts of hand crafting and restrict the variabil-
ity in user responses, which by extension restricts
the access of the dialog manager to potentially in-
teresting states. An alternative approach to dealing
with the lack of consistency is to extend N-grams
to explicitly model user goals and condition utter-
ances on them (Pietquin, 2004; Cuayáhuitl et al.,
2005; Pietquin and Dutoit, 2006; Rossignol et al.,
2010; Rossignol et al., 2011; Eshky et al., 2012).

3 The Model

Our task is to model the Giver’s utterances in re-
sponse to the Follower’s, at the semantic level. A

Giver’s utterance takes the form:

g = Instruct, u = MOVE (UNDER, LM)

consisting of a dialog act g and a semantic unit u2.
Aligned with u, is an ordered set of waypoints W ,
corresponding only to part of the route u describes.
Figure 2(a) shows an example of such a sub-route.
The point-setW can be seen as the Giver’s current
goal on which they base their behaviour. Because
the routes are drawn on the Giver’s maps, we treat
W as observed.

To model some of the interaction between the
Giver and the Follower, we additionally consider
in our model the previous dialog act of the Fol-
lower, which could for example be:

f = Acknowledge

Given point-set W and preceding Follower act
f , as the giver, we need to determine a procedure
for choosing which dialog act g and semantic unit
u to produce. In other words, we are interested in
the following distribution:

p (g, u|f,W ) (1)

which says that, as the Giver, we select our utter-
ances on the basis of what the Follower says, and
on the set of waypoints we next wish to describe.

To formalise this idea into a generative model,
we assume that the Giver act g depends only on
the Follower act f . We further assume that the se-
mantic unit u depends on the set of waypoints W
which it describes, and on the Giver’s choice of
dialog act g. Thus, u and f are conditionally in-
dependent given g. This provides a simple way of
incorporating the different sources of information
into a complete generative model3. Using Bayes’
theorem, we can rewrite Equation (1) as:

p (g, u|f,W ) =
p(u) p(g|u) p(f |g) p(W |u)∑

g′u′ p(u′) p(g′|u′) p(f |g′) p(W |u′) (2)

requiring four distributions: p(u), p(g|u), p(f |g),
and p(W |u). The first three become the seman-
tic component of our model, to which we dedi-
cate Section 3.1. The fourth is the spatio-semantic
component, to which we dedicate Sections 3.2–
3.4.

2We align g and u in a preprocessing step, and store the
names of landmarks which the units abstract away from.

3Further advancements to this work would investigate the
effects of relaxing the conditional independence assumption.
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3.1 The Semantic Component
The semantic component concerns only the cate-
gorical variables, f , g, and u, and addresses how
the Giver selects their semantic utterances based
on what the Follower says. We model the distri-
butions u, g|u, and f |g from Equation (2) as cate-
gorical distributions with uniform Dirichlet priors:

u ∼ Cat(α) α ∼ Dir(ε) (3a)

g|u ∼ Cat(β) β ∼ Dir(κ) (3b)

f |g ∼ Cat(γ) γ ∼ Dir(λ) (3c)

We use point estimates for α, β and γ, fixing them
at their posterior means in the following manner:

β̂gu = p(g|u) =
Count(g, u) + 1∑
g′ Count(g′, u) + L

(4)

and similarly for α̂ and γ̂ (L = size of vector β).

3.2 Spatial Goal Abstraction
Each ordered point-set W on some given map can
be seen as the Giver’s current goal, on which they
base their behaviour. Let W = {wi; 0 ≤ i < n},
where wi = (xi, yi) is a waypoint, and xi, yi are
pixel coordinates on the map, typically obtained
through a vision processing step.

Given this goal formulation, from Equation (2)
we require p(W |u), i.e. the probability of a set
of waypoints given a semantic unit. However,
there are two problems with deriving a generative
model directly over W . Firstly, the length of W
varies from one point-set to the next, making it
hard to compare probabilities with different num-
bers of observations. Secondly, deriving a model
directly over x, y coordinates introduces sparsity
problems, as we are highly unlikely to encounter
the same set of coordinates multiple times. We
thus require an abstraction away from the space of
pixel coordinates.

Our approach is to extract feature vectors of
fixed length from the point-sets, and then derive a
generative model over the feature vectors instead
of the point-sets. Feature extraction allows point-
sets with similar characteristics, rather than exact
pixel values, to give rise to similar distributions
over units, thus enabling the model to reason given
previously unseen point-sets. The features we ex-
tract are detailed in Section 3.4.

3.3 The Multivariate Normal Distribution
Let M be an unordered point-set describing map
elements, such as landmark locations and map

boundary information. M = {mj ; 0 ≤ j < k},
where mj = (xj , yj) is a map element with pixel
coordinates xj and yj . We define a spatial feature
function ψ : W,M → Rn which captures, as fea-
ture values, the characteristics of the point-set W
in relation to elements in M . Let the spatial fea-
ture vector, extracted from the point-setW and the
map elements M , be:

v = ψ(W,M) (5)

Figure 2(b) illustrates the feature extraction pro-
cess. We now define a distribution over the feature
vector v given the semantic unit u. We model v|u
as a multivariate normal distribution (recall that v
is in Rn):

v|u ∼ N (µu,Σu) (6)

where µ and Σ are the mean vectors and covari-
ance matrices respectively. Subscript u indicates
that there is one such parameter for each unit u.

Since the alignments between units u and point-
sets W are fully observed, parameter estimation
is a question of estimating the mean vectors µu′

and the covariance matrices Σu′ from the point-
sets co-occuring with unit u′. We use maximum
likelihood estimators. To avoid issues with de-
generate covariance matrices resulting from small
amounts of data, we consider diagonal covariance
matrices. Because v|u is normally distributed, in-
ference, both for parameters and conditional distri-
butions over units, can be performed exactly, and
so the model is exceptionally quick to learn and
perform inference.

3.4 The Spatial Feature Sets

We derive four feature sets from the ordered point-
set W , while considering the map elements in the
unordered point-set M :

1. Absolute features capture directions and dis-
tances of movement. We compute the distance
between the first and last points inW , and com-
pute the angle between unit vector <0,-1> and
the line connecting first and last points in W

2. Polynomial features capture shapes of move-
ments as straight lines or curves. We compute
the mean residual of a degree one polynomial
fit to the points in W (linear), and a degree two
polynomial (quadratic)4

4These features are computed quickly and efficiently, re-
quiring only the solution to a least squares problem.
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(a) sub-route aligned with u (c) the model(b) spatial feature extraction

Figure 2: (a) At training time, a Giver’s semantic unit u is aligned with an ordered point-set W , repre-
senting a sub-route. (b) We extract a spatial feature vector v of fixed length, from point-sets W and M
of varying lengths. (c) We define a generative model of the Giver, over Giver act g and semantic unit u,
preceding Follower act f , and spatial feature vector v. Latent parameters and priors are shown.

3. Landmark features capture how close the
route takes the Follower to the nearest land-
mark. We compute the distance between the
end-point inW and the nearest landmark inM ,
and compute the angle between the route taken
in W and the line connecting the start point in
to the nearest landmark

4. Edge features capture the relationship between
the movement and the map edges. We compute
the distance from the start-point in W to the
nearest edge and corner inM , and similarly for
the end-point in W

3.5 The Complete Generative Model
Our complete generative model of the Giver is a
distribution over Giver act g and semantic unit u,
given the preceding Follower act f and the spatial
feature vector v. Vector v is the result of apply-
ing the feature extraction function ψ over W and
M , where W is the ordered point-set describing
the sub-route aligned with u, and M is the point-
set describing landmark locations and map edge
information. We rewrite Equation (2) as:

p (g, u|f, v) =
p(u) p(g|u) p(f |g) p(v|u)∑

g′u′ p(u′) p(g′|u′) p(f |g′) p(v|u′) (7)

We call our model the Spatio-Semantic Model,
SSM, and depict it in Figure 2(c).

4 Corpus Statistics and State Space

We conduct our experiments on the Map Task cor-
pus (Anderson et al., 1991), a collection of cooper-
ative human-human dialogs arising from the task
explained in Figure 1 and Table 1. The original
corpus was labelled with dialog acts, such as Ac-
knowledge and Instruct. The semantic units can

be obtained through a semantic parse of the nat-
ural language utterances, while the spatial infor-
mation can be obtained through vision processing
of the maps. We use an existing extension of the
corpus by Levit and Roy (2007), which is seman-
tically and spatially annotated. The spatial anno-
tation are x, y pixel coordinates of landmark loca-
tions and evenly spaces points on the routes. All
15 maps were annotated. The semantic units take
the predicates MOVE, TURN, POSITION, or ORI-
ENTATION, and two arguments: a route descrip-
tor and a referent. The semantic annotations were
restricted to the Giver’s Instruct, Clarify, and Ex-
plain acts. Out of the original 128 dialogs, 25 were
semantically annotated.

For our experiments, we use all 15 pairs of
maps, and all 25 semantically annotated dialogs.
A dialog on average contain 57.5 instances, where
an instance is an occurrence of f , g, u, and W .
We find 87 unique semantic units u in our data,
however, according to the semantic representation,
there can be 456 distinct possible values for u5.
As for the rest of the variables, f takes 15 values,
g takes 4, and v is a real-valued vector of length
10, extracted from the real valued sets W and M
of varying lengths. We thus reason in a semantic
state space of 87× 15× 4 = 5220, and an infinite
spatial state space.

5 Intrinsic Evaluation

Our first evaluation metric is an information theo-
retic one, based on notion that better models find
new instances of data (not used to train them) to be
more predictable. One such metric is the probabil-
ity a model assigns to the data, (higher is better). A

520×2 for TURN and ORIENTATION, + 208×2 for
MOVE and POSITION.
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second metric is perplexity, which computes how
surprising a model finds the data (lower is better).
Both metrics have been used to evaluate user simu-
lators in the literature (Georgila et al., 2005; Eshky
et al., 2012; Pietquin and Hastie, 2013). We com-
pute the per-utterance probability of held-out data,
instead of the per-dialog probability, since the lat-
ter was deemed incompatible across dialogs of dif-
ferent lengths by Pietquin and Hastie (2013). Per-
plexity is 2−log2(d) where d is the probability of the
instance in question. We evaluate using leave-one-
out validation, which estimates the model from all
but one dialog, then evaluates the probability of
that dialog. We repeat this process until all dialogs
have been evaluated as the unseen dialog.

Because we evaluate on held-out dialogs, we
need to be able to assign probabilities to pre-
viously unseen instances. We therefore smooth
our models (at training time) by learning a back-
ground model which we estimate from all the
training data. This results in high variance in the
distribution over features and a flat overall dis-
tribution. Where no model can be estimated for
a particular semantic unit, we use that semantic
unit’s smoothed prior probability combined with
the background model for its likelihood.

We first consider the suitability of the differ-
ent feature sets for predicting utterances. Fig-
ure 4 shows the mean per-utterance probability our
model assigns to held-out data when using differ-
ent sets. The more predictable the model finds the
data, the higher the probability. Note that the tar-
get metric here is not 1, as there is no single cor-
rect answer. It can be seen that the most success-
ful features in order of predictiveness are: Abso-
lute, then Polynomial, then Landmark, and finally
Edge. The combination of all buys us further im-
provement. Perplexity is shown in Table 2.

Secondly, we consider two baselines inspired by
similar approaches of comparison in the literature
(Eckert et al., 1997; Levin and Pieraccini, 2000;
Georgila et al., 2005). Both are variants of our
model that lack the spatial component, i.e. they are
not goal-based. Although the baselines are weak,
they allow us to measure the reduction in uncer-
tainty brought by the introduction of the spatial
componenet to our model, which is the purpose
of this comparison. Baseline 1 is p(g, u) while
Baseline 2 is (g, u|f). The first tells us how pre-
dictable giver utterances are (in the held-out data),
based only on the normalised frequencies. The
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Figure 3: Mean per-utterance probability, as-
signed to held-out data by our model, when de-
fined over the four feature sets and their combina-
tions, estimated through leave-one-out validation.
A=Absolute, P=Polynomial, L=Landmark, and
E=Edge. Error bars are standard deviations.

Feature Set Perplexity
Absolute (A) 7.26± 4.08

Polynomial (P) 12.86± 8.39
Landmark (L) 15.16± 6.27

Edge (E) 17.92± 8.47
All 4.66± 2.22

Table 2: Perplexity scores (and standard devia-
tions) of our model, computed over the four fea-
ture sets and their combination, estimated through
leave-one-out validation. (A) outperforms all indi-
vidual sets, while the combination performs best.

second tells us how predictable they become when
we condition on the previous follower act. Details
of the baselines are similar to Section 3.1.

Figure 4 shows the mean per-utterance prob-
ability our model assigns to held-out data when
compared to the two baselines. Baseline 2 slightly
improves our predictions over Baseline 1, al-
though not reliably so, when considering the small
increase in perplexity in Table 3. SSM demon-
strates a much larger relative improvement across
both metrics. The results demonstrate that our
spatial component enables substantial reduction in
uncertainty, brought by the transfer of information
from the maps to the utterances.

Intrinsic metrics, such as the probability of
held-out data and perplexity, provide us with an el-
egant way of evaluating probabilistic models in a
setting where there is no single correct answer, but
a range of plausible answers, because they exploit
the model’s inherit ability to assign probability to
behaviour. However, the metrics can be hard to in-
terpret in an absolute sense, providing much better
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Figure 4: Mean per-utterance probability, assigned
to held-out data by our model (SSM), compared to
two baselines which lack the spatial componenet,
estimated through leave-one-out validation. Error
bars are standard deviations.

Model Perplexity
Baseline1 24.95± 4.05
Baseline2 25.06± 12.02

SSM 4.66± 2.22

Table 3: Perplexity scores of our model (SSM),
compared to the two baselines, estimated through
leave-one-out validation. SSM finds the held-out
data to be least surprising.

information about the relative strengths of differ-
ent models rather than their absolute utility. In the
next section, we explore methods for determining
the utility of the models when applied to tasks.

6 Extrinsic Evaluation

In this section, we undertake a task-based evalu-
ation of model output. We train on 22 of the di-
alogs, holding out 3 at random for testing. The
task is to then generate, for each sub-route in the
test dialogs, the most probable unit to describe it6.
Figure 5 shows some examples of sub-routes taken
from the test dialogs, and shows the the most prob-
able unit to describe each under our model, SSM.

We first explore a naive notion of accuracy:
the percentage of model-generated units matching
Real Giver units observed in the test dialogs. We
compute the same for Baseline 1 from Section 5
as a lower bound. A quick glance at the results in
Table 4 might suggest that both models have lit-
tle utility: SSM is “correct” only 33% of the time.
However, the extent to which this conclusion fol-
lows depends on the suitability of accuracy as a

6The models can generate 1 of the 87 units observed in
the training set, but are made to output the most probable in
this experiment.

Baseline SSM
Match to Real Giver 7.69% 33.08%

Table 4: Percentage of model-generated units that
match Real Giver units in the test set. The models
output the most probable unit to describe a given
sub-route. We argue that this metric is unsuitable
as it assumes one correct answer.

Mismatch Baseline SSM Real Giver
1.45 3.04 5.27 5.11

Table 5: Average scores assigned by human judges
to model-generated units on a 7-level Likert scale.
Mismatch is judged to be the worst, followed by
Baseline. SSM and Real Giver are scored well,
and are judged to be of similar quality.

means of evaluating dialog. In most situations,
there is not a single correct description and a host
of incorrect ones, but rather a gradient of descrip-
tions from the highly informative and appropriate
to the nonsensical and confusing. Such subtleties
are not captured by an accuracy test (or the closely
related recall and precision). In demonstration of
this point, we next conduct qualitative evaluation
of model output.

We ask humans to rate, on a Likert scale of 7,
the degree to which a given unit provides a suitable
description of a given sub-route. Sub-routes are
taken from the test dialogs, and are marked simi-
larly to Figure 5 but on the complete map. Units
are generated from SSM, Baseline, Real Giver,
and a control condition: a deliberate Mismatch
to the sub-route. The Mismatch is generated au-
tomatically by taking the least probable unit under
SSM, of the form MOVE(TOWARD, x) where x is
one of the four compass directions. We collect 5
judgements for each sub-route-unit combinations
on Mechanical Turk, and randomise so that no
judge sees the same order of pairs. Test dialogs
contained 94 distinct sub-routes.

We analyse the results with a two-way ANOVA,
with the first factor being model, and the second
being the sub-route, for a 4×94 design. The means
of the “model” factor are shown in Table 5. It
can be seen that Mismatch and Baseline are scored
sensibly poorly, while SSM and Real Giver are
scored reasonably well, and are judged to be of a
similar quality. We thus proceed with a more rig-
orous analysis. The ANOVA summary is shown
in Table 6. A significant effect of the model fac-
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(c) (d) (e)(a) (b)

Figure 5: Given a sub-route marked with start-point ◦ and end-point × (in red), SSM generates the
following u: (a) MOVE(TOWARDS, ABS NORTHEAST) (b) TURN(ABS WEST) (c) MOVE(FOLLOW-
BOUNDARY, LM) (d) MOVE(AROUND, LM) (e) MOVE(TOWARDS, ABS SOUTHWEST)

Factor S Sq Df F Pr(>F)
Model 4845.3 3 783.93 <0.001

Sub-route 1140.0 93 5.95 <0.001
M:S 2208.7 279 3.84 <0.001

Residuals 3263.5 1584

Table 6: Two way ANOVA with factors model (4
possibilities), and sub-route (94 possibilities). Re-
sults show a model effect accounting for most of
the variance. Meaning that the scores assigned to
the units by human judges are significantly influ-
enced by the model used to generate the units.

Model Comparison t value Pr(>|t|)
Mismatch : Baseline -16.974 <0.001

SSM : Baseline 23.882 <0.001
Real Giver : Baseline 23.192 <0.001

SSM : Mismatch 40.857 <0.001
Real Giver : Mismatch 40.507 <0.001

SSM : Real Giver 1.171 0.646

Table 7: Tukey HSD shows that all models are
assigned significantly different scores by judges,
apart from SSM and Real Giver. This asserts that,
although only 33% of SSM units match Real Giver
units (as shown in Table 4), the quality of the units
are not judged to be significantly different.

tor is present, meaning that the scores assigned by
human judges to the units are significantly influ-
enced by which model was used to generate the
units. Additionally, a significant effect for the sub-
route factor can be seen, which is due to some sub-
routes being harder to describe than others. An in-
teraction effect is also present, which is expected
given such a large number of examples. Note how
the model factor accounts for the largest amount
of variance of all the factors.

Having confirmed the presence of a model ef-
fect, we conduct a post-hoc analysis of the model
factors. Table 7 shows a Tukey HSD test, demon-
strating that all models are significantly different

from one another, except Real Giver and SSM. Re-
sults show that, despite the large number of judge-
ments collected, we are unable to separate the
quality of our model’s unit from that in the origi-
nal data, against which accuracy was being judged
in Table 4. This demonstrates that when many an-
swers are feasible, scoring correctness against the
original human units is unsuitable. It also firmly
demonstrates the suitability of our spatial repre-
sentation, and the strength of the generative model
we have induced for the task.

7 Conclusion and Discussion

We have shown how to represent spatial goals in a
navigational domain, and have validated our rep-
resentation by inducing (fully from data) a gen-
erative model of the Giver’s semantic utterances
conditioned on the spatial goal and the previous
Follower act. Intrinsic and extrinsic evaluation
demonstrate the strength of our model.

A direct application of this work is robot guid-
ance, by using the Giver’s simulator to induce an
optimal Follower: an MDP-based dialog manager
that interprets and follows navigational instruc-
tions. Another variation would be to learn a gen-
erative model of the Follower, by extracting fea-
tures from Follower maps (labelled with routes
drawn by real Followers). Finally, this work has
broader applications beyond simulation, in partic-
ular for systems that describe routes to users (spa-
tial goal representation and model dependencies
would hold). Decisions about which part of the
route to describe next is one extension to that end.
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