
An ISU Dialogue System Exhibiting Reinforcement Learning of Dialogue
Policies: Generic Slot-filling in the TALK In-car System

Oliver Lemon, Kallirroi Georgila, and James Henderson

School of Informatics

University of Edinburgh

olemon@inf.ed.ac.uk

Matthew Stuttle

Dept. of Engineering

University of Cambridge

mns25@cam.ac.uk

Abstract

We demonstrate a multimodal dialogue system

using reinforcement learning for in-car sce-

narios, developed at Edinburgh University and

Cambridge University for the TALK project1.

This prototype is the first “Information State

Update” (ISU) dialogue system to exhibit rein-

forcement learning of dialogue strategies, and

also has a fragmentary clarification feature.

This paper describes the main components and

functionality of the system, as well as the pur-

poses and future use of the system, and surveys

the research issues involved in its construction.

Evaluation of this system (i.e. comparing the

baseline system with handcoded vs. learnt dia-

logue policies) is ongoing, and the demonstra-

tion will show both.

1 Introduction

The in-car system described below has been con-

structed primarily in order to be able to collect data

for Reinforcement Learning (RL) approaches to mul-

timodal dialogue management, and also to test and fur-

ther develop learnt dialogue strategies in a realistic ap-

plication scenario. For these reasons we have built a

system which:

� contains an interface to a dialogue strategy learner

module,

� covers a realistic domain of useful “in-car” con-

versation and a wide range of dialogue phenom-

ena (e.g. confirmation, initiative, clarification, in-

formation presentation),

�
can be used to complete measurable tasks (i.e.

there is a measure of successful and unsuccessful

dialogues usable as a reward signal for Reinforce-

ment Learning),

� logs all interactions in the TALK data collection

format (Georgila et al., 2005).

1This research is supported by the TALK project (Euro-
pean Community IST project no. 507802), http://www.talk-
project.org

In this demonstration we will exhibit the software

system that we have developed to meet these require-

ments. First we describe the domain in which the di-

alogue system operates (an “in-car” information sys-

tem). Then we describe the major components of the

system and give examples of their use. We then discuss

the important features of the system in respect to the

dialogue phenomena that they support.

1.1 A System Exhibiting Reinforcement Learning

The central motivation for building this dialogue sys-

tem is as a platform for Reinforcement Learning (RL)

experiments. The system exhibits RL in 2 ways:

� It can be run in online learning mode with real

users. Here the RL agent is able to learn from suc-

cessful and unsuccessful dialogueswith real users.

Learning will be much slower than with simulated

users, but can start from an already learnt policy,

and slowly improve upon that.

� It can be run using an already learnt policy (e.g.

the one reported in (Henderson et al., 2005;

Lemon et al., 2005), learnt from COMMUNICA-

TOR data (Georgila et al., 2005)). This mode can

be used to test the learnt policies in interactions

with real users.

Please see (Henderson et al., 2005) for an expla-

nation of the techniques developed for Reinforcement

Learning with ISU dialogue systems.

2 System Overview

The baseline dialogue system is built around the DIP-

PER dialogue manager (Bos et al., 2003). This sys-

tem is initially used to conduct information-seeking di-

alogues with a user (e.g. find a particular hotel and

restaurant), using hand-coded dialogue strategies (e.g.

always use implicit confirmation, except when ASR

confidence is below 50%, then use explicit confirma-

tion). We have then modified the DIPPER dialogue

manager so that it can consult learnt strategies (for ex-

ample strategies learnt from the 2000 and 2001 COM-

MUNICATOR data (Lemon et al., 2005)), based on its

119



current information state, and then execute dialogue ac-

tions from those strategies. This allows us to compare

hand-coded against learnt strategies within the same

system (i.e. the other components such as the speech-

synthesiser, recogniser, GUI, etc. all remain fixed).

2.1 Overview of System Features

The following features are currently implemented:

� use of Reinforcement Learning policies or dia-

logue plans,

�
multiple tasks: information seeking for hotels,

bars, and restaurants,

� overanswering/ question accommodation/ user-

initiative,

�
open speech recognition using n-grams,

�
confirmations - explicit and implicit based on

ASR confidence,

� fragmentary clarifications based on word confi-

dence scores,

�
multimodal output - highlighting and naming en-

tities on GUI,

� simple user commands (e.g. “Show me all the in-

dian restaurants”),

�
dialogue context logging in ISU format (Georgila

et al., 2005).

3 Research Issues

The work presented here explores a number of research

themes, in particular: using learnt dialogue policies,

learning dialogue policies in online interaction with

users, fragmentary clarification, and reconfigurability.

3.1 Moving between Domains:

COMMUNICATOR and In-car Dialogues

The learnt policies in (Henderson et al., 2005) focussed

on the COMMUNICATOR system for flight-booking di-

alogues. There we reported learning a promising initial

policy for COMMUNICATOR dialogues, but the issue

arises of how we could transfer this policy to new do-

mains – for example the in-car domain.

In the in-car scenarios the genre of “information

seeking” is central. For example the SACTI corpora

(Stuttle et al., 2004) have driver information requests

(e.g. searching for hotels) as a major component.

One question we address here is to what extent di-

alogue policies learnt from data gathered for one sys-

tem, or family of systems, can be re-used or adapted

for use in other systems. We conjecture that the slot-

filling policies learnt from our experiments with COM-

MUNICATOR will also be good policies for other slot-

filling tasks – that is, that we are learning “generic”

slot-filling or information seeking dialogue policies. In

section 5 we describe how the dialogue policies learnt

for slot filling on the COMMUNICATOR data set can be

abstracted and used in the in-car scenarios.

3.2 Fragmentary Clarifications

Another research issue we have been able to explore

in constructing this system is the issue of generating

fragmentary clarifications. The system can be run with

this feature switched on or off (off for comparison with

COMMUNICATOR systems). Instead of a system sim-

ply saying “Sorry, please repeat that” or some such sim-

ilar simple clarification request when there is a speech

recognition failure, we were able to use the word con-

fidence scores output by the ATK speech recogniser to

generate more intelligent fragmentary clarification re-

quests such as “Did you say a cheap chinese restau-

rant?”. This works by obtaining an ASR confidence

score for each recognised word. We are then able to

try various techniques for clarifying the user utterance.

Many possibilities arise, for example: explicitly clarify

only the highest scoring content word below the rejec-

tion threshold, or, implicitly clarify all content words

and explicitly clarify the lowest scoring content word.

The current platform enables us to test alternative

strategies, and develop more complex ones.

4 The “In-car” Scenario

The scenario we have designed the system to cover is

that of information seeking about a town, for example

its hotels, restaurants, and bars. We imagine a driver

who is travelling towards this town, or is already there,

who wishes to accomplish relatively complex tasks,

such as finding an italian restaurant near their hotel,

or finding all the wine bars in town, and so on. The

driver/user should be able to specify queries using nat-

ural dialogue, and will receive system output that is a

mixture of spoken and graphical information (e.g. a de-

scription of an item and a map showing its location).

The example town is taken from the (Stuttle et al.,

2004) corpus collection materials, and contains a num-

ber of hotels, bars, restaurants, and tourist attractions.

The user should be able to get information on a range

of locations in the town, and the dialogue system will

be used to specify and refine the user queries, as well

as to present information to the user. See the example

dialogue in table 1.

We now describe the dialogue system components.

5 Component-level Description

This section describes the components of the baseline

in-car dialogue system. Communication between com-

ponents is handled by OAA’s asynchronous hub archi-

tecture (Cheyer and Martin, 2001). The major compo-

nents are:

� DIPPER (Bos et al., 2003) ISU dialogue manager,

�
Dialogue Policy Reinforcement Learner Agent2,

�
ATK for speech recognition,

� Festival speech synthesiser,

2This is written in Python and has an OAA wrapper in C.

120



Utterance Feature

S How can I help you? Open initiative ini-
tial question

U I’m looking for a cheap chinese
restaurant.

User initiative

S Would you like something cen-
tral?

Intention recogni-
tion

U Yes.
S The Dragon Way is an af-

fordable cantonese restaurant
located on Main Street [dis-
played on map].

Multimodal presen-
tation

S Are you happy with those op-
tions?

U Yes, and I also want a double
room.

S Would you like something ex-
pensive, cheap, or reasonably
priced?

Intention recogni-
tion

U A luxury hotel, in the center of
town.

S There are 2 hotel options meet-
ing your requirements. The
Royal Hotel [displayed on
map] is a renovated nineteenth
century palace ����� The Hotel
Primus [displayed on map] has
big, bright, clean rooms �����

Which hotel option would you
like?

Multimodal presen-
tation

U The second one please.
S The phone number of the Hotel

Primus is 2094-227.
S Would you like any further in-

formation?
U I want to find a jazz bar.
S I’m sorry, what kind of bar are

you looking for?
Intention recogni-
tion, Fragmentary
clarification

U A jazz bar.
S A jazz bar. Would you like

something central?
Implicit confirma-
tion

Table 1: Example dialogue, showing system features

� Multimodal Map interface (a java OAA agent),

�
Database agent (java OAA wrapper to MySQL).

5.1 Dialogue Policy Learner Agent

This agent acts as an interface between the DIPPER

dialogue manager and the system simulation based on

RL. In particular it has the following solvable:

callRLsimulation(IS file name,

conversational domain, speech act, task,

result).

The first argument is the name of the file that contains

all information about the current information state,

which is required by the RL algorithm to produce

an action. The action returned by the RL agent is

a combination of conversational domain,

speech act, and task. The last argument shows

whether the learnt policy will continue to produce

more actions or release the turn. When run in online

learning mode the agent not only produces an action

when supplied with a state, but at the end of every

dialogue it uses the reward signal to update its learnt

policy. The reward signal is defined in the RL agent,

and is currently a linear combination of task success

metrics combined with a fixed penalty for dialogue

length (see (Henderson et al., 2005)).

This agent can be called whenever the system has

to decide on the next dialogue move. In the original

hand-coded system this decision is made by way of a

dialogue plan (using the “deliberate” solvable). The

RL agent can be used to drive the entire dialogue pol-

icy, or can be called only in certain circumstances. This

makes it usable for whole dialogue strategies, but also,

if desired, it can be targetted only on specific dialogue

management decisions (e.g. implicit vs. explicit confir-

mation, as was done by (Litman et al., 2000)).

One important research issue is that of tranferring

learnt strategies between domains. We learnt a strat-

egy for the COMMUNICATOR flight booking dialogues

(Lemon et al., 2005; Henderson et al., 2005), but

this is generated by rather different scenarios than the

in-car dialogues. However, both are “slot-filling” or

information-seeking applications. We defined a map-

ping (described below) between the states and actions

of both systems, in order to construct an interface be-

tween the learnt policies for COMMUNICATOR and the

in-car baseline system.

5.2 Mapping between COMMUNICATOR and

the In-car Domains

There are 2 main problems to be dealt with here:

�
mapping between in-car system information states

and COMMUNICATOR information states,

� mapping between learnt COMMUNICATOR sys-

tem actions and in-car system actions.

The learnt COMMUNICATOR policy tells us, based

on a current IS, what the optimal system action

is (for example request info(dest city) or

acknowledgement). Obviously, in the in-car sce-

nario we have no use for task types such as “destina-

tion city” and “departure date”. Our method therefore

is to abstract away from the particular details of the

task type, but to maintain the information about dia-

loguemoves and the slot numbers that are under discus-

sion. That is, we construe the learnt COMMUNICATOR

policy as a policy concerning how to fill up to 4 (or-

dered) informational slots, and then access a database

and present results to the user. We also note that some

slots are more essential than others. For example, in

COMMUNICATOR it is essential to have a destination

city, otherwise no results can be found for the user.

Likewise, for the in-car tasks, we consider the food-

type, bar-type, and hotel-location to be more important

to fill than the other slots. This suggests a partial order-

ing on slots via their importance for an application.

In order to do this we define the mappings shown

in table 2 between COMMUNICATOR dialogue actions

and in-car dialogue actions, for each sub-task type of

the in-car system.

121



COMMUNICATOR action In-car action

dest-city food-type
depart-date food-price
depart-time food-location

dest-city hotel-location
depart-date room-type
depart-time hotel-price

dest-city bar-type
depart-date bar-price
depart-time bar-location

Table 2: Action mappings

Note that we treat each of the 3 in-car sub-tasks (ho-

tels, restaurants, bars) as a separate slot-filling dialogue

thread, governed by COMMUNICATOR actions. This

means that the very top level of the dialogue (“How

may I help you”) is not governed by the learnt policy.

Only when we are in a recognised task do we ask the

COMMUNICATOR policy for the next action. Since the

COMMUNICATOR policy is learnt for 4 slots, we “pre-

fill” a slot3 in the IS when we send it to the Dialogue

Policy Learner Agent in order to retrieve an action.

As for the state mappings, these follow the same

principles. That is, we abstract from the in-car states to

form states that are usable by COMMUNICATOR . This

means that, for example, an in-car state where food-

type and food-price are filled with high confidence is

mapped to a COMMUNICATOR state where dest-city

and depart-date are filled with high confidence, and

all other state information is identical (modulo the task

names). Note that in a future version of the in-car sys-

tem where task switching is allowed we will have to

maintain a separate view of the state for each task.

In terms of the integration of the learnt policies with

the DIPPER system update rules, we have a system flag

which states whether or not to use a learnt policy. If

this flag is present, a different update rule fires when

the system determines what action to take next. For

example, instead of using the deliberate predicate

to access a dialogue plan, we instead call the Dialogue

Policy Learner Agent via OAA, using the current Infor-

mation State of the system. This will return a dialogue

action to the DIPPER update rule.

In current work we are evaluating howwell the learnt

policies work for real users of the in-car system.

6 Conclusions and Future Work

This report has described work done in the TALK

project in building a software prototype baseline “In-

formation State Update” (ISU)-based dialogue system

in the in-car domain, with the ability to use dialogue

policies derived from machine learning and also to per-

form online learning through interaction. We described

the scenarios, gave a component level description of

the software, and a feature level description and exam-

3We choose “orig city” because it is the least important
and is already filled at the start of many COMMUNICATOR
dialogues.

ple dialogue.

Evaluation of this system (i.e. comparing the sys-

tem with hand-coded vs. learnt dialogue policies) is

ongoing. Initial evaluation of learnt dialogue policies

(Lemon et al., 2005; Henderson et al., 2005) suggests

that the learnt policy performs at least as well as a rea-

sonable hand-coded system (the TALK policy learnt for

COMMUNICATOR dialogue management outperforms

all the individual hand-coded COMMUNICATOR sys-

tems).

The main achievements made in designing and con-

structing this baseline system have been:

�
Combining learnt dialogue policies with an ISU

dialogue manager. This has been done for online

learning, as well as for strategies learnt offline.

�
Mapping learnt policies between domains, i.e.

mapping Information States and system actions

between DARPA COMMUNICATOR and in-car in-

formation seeking tasks.

� Fragmentary clarification strategies: the combina-

tion of ATK word confidence scoring with ISU-

based dialogue management rules allows us to ex-

plore word-based clarification techniques.

References

J. Bos, E. Klein, O. Lemon, and T. Oka. 2003.
DIPPER: Description and Formalisation of an
Information-State Update Dialogue System Archi-
tecture. In 4th SIGdial Workshop on Discourse and
Dialogue, Sapporo.

A. Cheyer and D. Martin. 2001. The open agent archi-
tecture. Journal of Autonomous Agents and Multi-
Agent Systems, 4(1):143–148.

K. Georgila, O. Lemon, and J. Henderson. 2005. Au-
tomatic annotation of COMMUNICATOR dialogue
data for learning dialogue strategies and user sim-
ulations. In Ninth Workshop on the Semantics and
Pragmatics of Dialogue (SEMDIAL), DIALOR’05.

J. Henderson, O. Lemon, and K. Georgila. 2005.
Hybrid Reinforcement/Supervised Learning for Di-
alogue Policies from COMMUNICATOR data. In
IJCAI workshop on Knowledge and Reasoning in
Practical Dialogue Systems.

O. Lemon, K. Georgila, J. Henderson, M. Gabsdil,
I. Meza-Ruiz, and S. Young. 2005. D4.1: Inte-
gration of Learning and Adaptivity with the ISU ap-
proach. Technical report, TALK Project.

D. Litman, M. Kearns, S. Singh, and M. Walker. 2000.
Automatic optimization of dialoguemanagement. In
Proc. COLING.

M. Stuttle, J. Williams, and S. Young. 2004. A frame-
work for dialog systems data collection using a sim-
ulated ASR channel. In ICSLP 2004, Jeju, Korea.

122


