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Abstract

Event detection (ED) aims to locate trigger
words in raw text and then classify them into
correct event types. In this task, neural net-
work based models became mainstream in re-
cent years. However, two problems arise when
it comes to languages without natural delim-
iters, such as Chinese. First, word-based mod-
els severely suffer from the problem of word-
trigger mismatch, limiting the performance
of the methods. In addition, even if trigger
words could be accurately located, the ambi-
guity of polysemy of triggers could still af-
fect the trigger classification stage. To ad-
dress the two issues simultaneously, we pro-
pose the Trigger-aware Lattice Neural Net-
work (TLNN). (1) The framework dynami-
cally incorporates word and character informa-
tion so that the trigger-word mismatch issue
can be avoided. (2) Moreover, for polysemous
characters and words, we model all senses of
them with the help of an external linguistic
knowledge base, so as to alleviate the prob-
lem of ambiguous triggers. Experiments on
two benchmark datasets show that our model
could effectively tackle the two issues and
outperforms previous state-of-the-art methods
significantly, giving the best results. The
source code of this paper can be obtained from
https://github.com/thunlp/TLNN.

1 Introduction

Event Detection (ED) is a pivotal part of Event
Extraction, which aims to detect the position of
event triggers in raw text and classify them into
corresponding event types. Conventionally, the
stage of locating trigger words is known as Trig-
ger Identification (TI), and the stage of clas-
sifying trigger words into particular event types
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(a) An example of trigger-word mismatch.

(b) An example of polysemous trigger.

Figure 1: Examples about trigger-word mismatch and
polysemous trigger in Event Detection.

is called Trigger Classification (TC). Although
neural network methods have achieved significant
progress in event detection (Nguyen and Grish-
man, 2015; Chen et al., 2015; Zeng et al., 2016),
both steps are still exposed to the following two
issues.

In the TI stage, the problem of trigger-word
mismatch could severely impact the performance
of event detection systems. Because in languages
without natural delimiters such as Chinese, main-
stream approaches are mostly word-based models,
in which the segmentation should be firstly per-
formed as a necessary preprocessing step. Unfor-
tunately, these word-wise methods neglect an im-
portant problem that a trigger could be a specific
part of one word or contain multiple words. As
shown in Figure 1(a), “射” (shoot) and “杀” (kill)

https://github.com/thunlp/TLNN
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Datasets
Trigger-word Match Trigger Polysemy
Match Mismatch Polysemy Univocal

ACE 2005 85.39% 14.61% 41.64% 58.36%
KBP 2017 76.28% 23.72% 52.14% 47.86%

Table 1: Proportion of Trigger-word mismatch and Pol-
ysemous Triggers on ACE 2005 and KBP 2017.

are two triggers that both are parts of the word “射
杀” (shoot and kill) . In the other case, “示威游
行” (demonstration) is a trigger that crosses two
words. Under this circumstance, triggers could
not be located correctly with word-based methods,
thereby becoming a serious limitation of the task.
Some feature-based methods are proposed (Chen
and Ji, 2009; Qin et al., 2010; Li and Zhou, 2012)
to alleviate the issue, but they heavily rely on the
hand-crafted features. Lin et al. (2018) proposes
the nugget proposal networks (NPN) in terms of
this issue, which uses a neural network to model
character compositional structure of trigger words
in a fix-sized window. However, the mechanism
of the NPN limits the scope of trigger candidates
within a fix-sized window, which is inflexible and
suffering from the problem of trigger overlaps.

Even if the locations of triggers can be correctly
detected in the TI step, the TC step could still be
severely affected by the inherent problem of am-
biguity of polysemy. Because a trigger word with
multiple word senses could be classified into dif-
ferent event types. Take 1(b) as an example, a
polysemous trigger word “释放” (release) could
represent two distinctly different event types. In
the first case, the word ’release’ triggers an Attack
event (release tear gas). But in the second case,
the event triggered by ’release’ becomes Release-
Parole (release a man in court).

To further illustrate that the two problems men-
tioned above do exist, we make manual statistics
on the proportion of mismatch triggers and poly-
semous triggers on two widely used datasets. The
statistics are illustrated in Table 1, and we can ob-
serve that data with trigger-word mismatch and
trigger polysemy do account for a considerable
proportion and then affect the task.

In this paper, we propose the Trigger-aware Lat-
tice Network (TLNN), a comprehensive model
that can simultaneously tackle both issues. To
avoid error propagation by NLP tools like seg-
mentor, we take characters as the basic units of
the input sequence. Moreover, we utilize HowNet
(Dong and Dong, 2003), an external knowledge

base that manually annotates polysemous Chinese
and English words, to obtain the sense-level infor-
mation. Further, we develop the trigger-aware lat-
tice LSTM as the feature extractor of our model,
which could leverage character-level, word-level
and sense-level information at the same time.
More specifically, in order to address the trigger-
word mismatch issue, we construct short cut paths
to link the cell state between the start and the end
characters for each word. It is worth mentioning
that the paths are sense-level, which means all the
sense information of words that end in one spe-
cific character will flow into the memory cell of
the character. Hence, with the utilization of mul-
tiple granularity of information (character, word
and word sense), the problem of polysemous trig-
gers could be effectively alleviated.

We conduct sets of experiments on two real-
world datasets in the task of event detection. Em-
pirical results of the main experiments show that
our model can efficiently address both mentioned
issues. With comprehensive comparisons with
other proposed methods, our model achieves the
state-of-the-art results on both datasets. Further,
sets of subsidiary experiments are conducted to
further analyze how TLNN addresses the two is-
sues.

Figure 2: The architecture of TLNN.
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2 Methodology

In the paper, event detection is regarded as a se-
quence labelling task. For each character, the
model should identify if it is a part of one trigger
and correctly classify the trigger into one specific
event type.

The architecture of our model is shown in Fig-
ure 2, which primarily includes the following three
parts: (1) Hierarchical Representation Learn-
ing, which reveals the character-level, word-level
and sense-level embedding vectors in an unsuper-
vised way. (2) Trigger-aware Feature Extractor,
which automatically extracts different levels of se-
mantic features by a tree structure LSTM model.
(3) Sequence Tagger, which calculates the prob-
ability of being a trigger for each character candi-
date.

2.1 Hierarchical Representation Learning
Given an input sequence S = {c1, c2, ..., cN},
where ci represents the ith character in the se-
quence. In character level, each character will be
represented as an embedding vector xc by Skip-
Gram method (Mikolov et al., 2013).

xc
i = e(ci) (1)

In the word level, the input sequence S could also
be S = {w1, w2, ..., wM}, where the basic unit is
a single word wi. In this paper, we will use two
indexes b and e to represent the start and the end
of a word. In this case, the word embeddings are:

xw
b,e = e(wb,e) (2)

However, the Skip-Gram method maps each word
to only one single embedding, ignoring the fact
that many words have multiple senses. Hence rep-
resentation of finer granularity is still necessary
to represent deep semantics. With the help of
HowNet (Dong and Dong, 2003), we can obtain
the representation of each sense of a character or a
word. For each character c, there are possible mul-
tiple senses sen(ci) ∈ S(c) annotated in HowNet.
Similarly, for each word w, the senses could be
sen(wi) ∈ S(w). Consequently, we can obtain the
embeddings of senses by jointly learning word and
sense embeddings via Skip-gram manner. This
mechanism is also applied to (Niu et al., 2017).

scij = e(sen
(ci)
j ) (3)

s
wb,e

j = e(sen
(wb,e)
j ) (4)

where sen
(ci)
j and sen

(wb,e)
j represents the jth

sense for the character ci and word wb,e in the se-
quence. And then scij and swb,e

j are the embed-
dings of ci and wb,e.

2.2 Trigger-Aware Feature Extractor
The trigger-aware feature extractor is the core
component of our model. After training, the out-
puts of the extractor are the hidden state vectors h
of an input sentence.

Conventional LSTM. LSTM (Hochreiter and
Schmidhuber, 1997) is an extension of the recur-
rent neural network (RNN) with additional gates
to control the information. Traditionally, there are
following basic gates in LSTM: input gate i, out-
put gate o and forget gate f . They collectively
controls which information will be reserved, for-
gotten and output. All three gates are accompanied
by corresponding weight matrix W . Current cell
state c records all historical information flow up
to the current time. Therefore, the character-based
LSTM functions are:

ici
oci
f c
i

c̃ci

 =


σ

σ

σ

tanh

 (W c>

[
xc
i

hc
i−1

]
+ bc) (5)

cci = f
c
i � cci−1 + ici � c̃ci (6)

hc
i = o

c
i � tanh(cci ) (7)

where hci is the hidden state vector.
Trigger-Aware Lattice LSTM. Trigger-Aware

Lattice LSTM is the core feature extractor of our
framework, which is an extension of LSTM and
lattice LSTM. In this subsection, We will derive
and theoretically analyze the model in detail.

In this section, characters and words are as-
sumed to have K senses. As mentioned in 2.1, for
the jth sense of the ith character ci, the embed-
ding would be scij . Then an additional LSTMCell
is utilized to integrate all senses of the character,
hence the calculation of the cell gate of the multi-
sense character ci would be: i

ci
j

f ci
j

c̃cij

 =

 σ

σ

tanh

 (W c>

[
scij
hci−1

]
+ bc) (8)

ccij = f ci
j � c

ci−1 + icij � c̃
ci
j (9)
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Figure 3: The structure of Trigger-Aware Feature Extractor, the input of the example is a part of the sentence
“若罪名成立，他将被逮捕” (If convicted, he will be arrested) . In this case, “罪名成立” (convicted) is a trigger
with event type Justice: Sentence. “成立” (convicted/found) and “立” (stand/conclude) are polysemous words.
To keep the figure concise, we (1) only show two senses for each polysemous word; (2) only show the forward
direction.

where ccij is the cell state of the jth sense of the ith
character, cci−1 is the final cell state of the i− 1th
character. In order to obtain the cell state of the
character, an additional gate is used:

gcij = σ(W>

[
xc
i

ccij

]
+ b) (10)

Then all the senses should be dynamically inte-
grated into the temporary cell state:

c∗ci =
K∑
j

αci
j � c

ci
j (11)

whereαci
j is the character sense gate after normal-

ization:

αci
j =

exp(gcij )

K∑
k

exp(gcik )

(12)

Eq.11 obtains the temporary cell state of the char-
acter c∗ci by incorporating all the senses informa-
tion of the character. However, word-level infor-
mation needs to be considered as well. As men-
tioned in 2.1, swb,e

j is the embedding for the jth
sense of the word out wb,e. Similar to characters,

extra LSTMCell is used to calculate the cell state
of each word that matches the lexicon D. i

wb,e

j

f
wb,e

j

c
wb,e

j

 =

 σ

σ

tanh

 (W c>

[
s
wb,e

j

hcb−1

]
+ bc) (13)

c
wb,e

j = f
wb,e

j � ccb−1 + i
wb,e

j � c̃wb,e

j (14)

Similar to Eq.11, the cell state of the word could
be computed by incorporating all the cells of
senses.

g
wb,e

j = σ(W>

[
xc
b

c
wb,e

j

]
+ b) (15)

cwb,e =

K∑
j

α
wb,e

j � cwb,e

j (16)

where αwb,e

j is the word sense gate after normal-
ization:

α
wb,e

j =
exp(g

wb,e

j )

K∑
k

exp(g
wb,e

k )

(17)
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For a character ci, the temporary cell state c∗ci that
contains sense information is calculated by Eq.11.
Moreover, we could calculate all the cell states of
words that end in the index i by Eq.16, which are
represented as {cwb,i |b ∈ [1, i], wb,i ∈ D}. In or-
der to ensure the corresponding information could
flow into the final cell state of ci, an extra gate gmb,i
is used to merge character and word cells:

gmb,i = σ(W l>

[
xc
i

cwb,i

]
+ bl) (18)

and the computation of the final cell state of the
character cci is:

cci=
∑

b∈{b′|wd
b′,i∈D}

αwb,i � cwb,i+αci � c∗ci (19)

where αwb,i and αci are word gate and character
gate after normalization. The computation is sim-
ilar to Eq. 12 and Eq. 17.

Therefore, the final cell state cci could repre-
sent the ambiguous characters and words in a dy-
namic manner. Similar to Eq. 7, hidden state vec-
tors could be calculated to transmit to the sequence
tagger layer.

2.3 Sequence Tagger
In this paper, the event detection task is regarded
as a sequence tagging problem. For an input se-
quence S = {c1, c2, ..., cN}, there is a correspond-
ing label sequence L = {y1, y2, ..., yN}. Hidden
vectors h for each character obtained in 2.2 are
used as the input. We use a classic CRF layer to
perform the sequence tagging, thus the probability
distribution is:

P (L|S)=
exp(

N∑
i=1

(S(yi)+T (yi−1, yi)))

∑
L′∈C

exp(
N∑
i=1

(S(y′i)+T (y
′
i−1, y

′
i)))

,

(20)
where S is the score function to compute the emis-
sion score from hidden vector hi to the label yi:

S(yi) =W
yi
CRFhi + byiCRF . (21)

W yi
CRF and byiCRF are learned parameters specific

to yi. And in Eq. 20, T is the transition func-
tion to compute the transition score from yi−1 to
yi. C contains all the possible label sequences on
sequence S and L′ is a random label sequence in
C.

We use standard Viterbi (Viterbi, 1967) algo-
rithm as a decoder to decode the highest scored
label sequence. The loss function of our model is
log-likelihood in sentence-level.

Loss =
M∑
i=1

log(P (Li|Si)) (22)

whereM is the number of sentences, Li is the cor-
rect label for the sentence Si.

3 Experiments

3.1 Datasets and Experimental Settings
Datasets. In this paper, we conduct a series
of experiments on two real-world datasets: ACE
2005 Chinese dataset (ACE2005) and TAC KBP
2017 Event Nugget Detection Evaluation dataset
(KBP2017). For better comparison, we use the
same data split as previous works (Chen and
Ji, 2009; Zeng et al., 2016; Feng et al., 2018;
Lin et al., 2018). Specifically, the ACE2005
(LDC2006T06) contains 697 articles, with 569 ar-
ticles for training, 64 for validating and the rest
64 for testing. For KBP2017 Chinese dataset
(LDC2017E55), we follow the same setup as Lin
et al. (2018), using 506/20/167 documents as train-
ing/development/test set respectively.

Evaluation Metrics. Standard micro-averaged
Precision, Recall and F1 are used as evaluation
metrics. For ACE2005 the computation is the
same as Chen and Ji (2009). To remain rigorous,
we use the official evaluation toolkit 1 to perform
the metrics for KBP2017.

Hyper-Parameter Settings. We tune the pa-
rameters of our models by grid searching on the
validation dataset. Adam (Kingma and Ba, 2014)
with a learning rate decay is utilized as the op-
timizer. The embedding sizes of characters and
senses are all 50. To avoid overfitting, Dropout
mechanism (Srivastava et al., 2014) is used in the
system, and the dropout rate is set to 0.5. We se-
lect the best models by early stopping using the
F1 results on the validation dataset. Because of
the limited influence, we follow empirical settings
for other hyper-parameters.

3.2 Overall Results
In this section, we compare our model with previ-
ous state-of-the-art methods. The proposed mod-
els are as follows:

1github.com/hunterhector/EvmEval
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Model
ACE2005 KBP2017

Trigger Identification Trigger Classification Trigger Identification Trigger Classification
P R F1 P R F1 P R F1 P R F1

Char
DMCNN 60.10 61.60 60.90 57.10 58.50 57.80 53.67 49.92 51.73 50.03 46.53 48.22
C-BiLSTM* 65.60 66.70 66.10 60.00 60.90 60.40 - - - - - -
HBTNGMA 41.67 59.29 48.94 38.74 55.13 45.50 40.52 46.76 43.41 35.93 41.47 38.50

Word
DMCNN 66.60 63.60 65.10 61.60 58.80 60.20 60.43 51.64 55.69 54.81 46.84 50.51
HNN* 74.20 63.10 68.20 77.10 53.10 63.00 - - - - - -
HBTNGMA 54.29 62.82 58.25 49.86 57.69 53.49 46.92 53.57 50.02 37.54 42.86 40.03

Feature
Rich-C* 62.20 71.90 66.70 58.90 68.10 63.20 - - - - - -
KBP2017 Best* - - - - - - 67.76 45.92 54.74 62.69 42.48 50.64

Hibird
NPN 70.63 64.74 67.56 67.13 61.54 64.21 58.03 59.91 58.96 52.04 53.73 52.87
TLNN (Ours) 67.34 74.68 70.82 64.45 71.47 67.78 65.93 59.07 62.31 60.72 54.41 57.39

Table 2: Overall results of proposed methods and TLNN on ACE2005 and KBP2017. * indicates the results
adapted from the original paper. For KBP2017, ”Trigger Identification” and ”Trigger Classification” correspond
to the ”Span” and ”Type” metrics in the official evaluation.

DMCNN (Chen et al., 2015) put forward a dy-
namic Multi-pooling CNN as a sentence-level fea-
ture extractor. Moreover, we add a classifier to
DMCNN using IOB encoding.

C-BiLSTM (Zeng et al., 2016) put forward the
Convolutional Bi-LSTM model for the event de-
tection task.

HNN (Feng et al., 2018) designed a Hybrid
Neural Network model which combines CNN
with Bi-LSTM.

HBTNGMA (Chen et al., 2018) put forward
a Hierarchical and Bias Tagging Networks with
Gated Multi-level Attention Mechanisms to inte-
grate sentence-level and document-level informa-
tion collectively.

NPN (Lin et al., 2018) proposed a comprehen-
sive model by automatically learning the inner
compositional structures of triggers to solve the
trigger mismatch problem.

The results of all the models are shown in Table
2. From the results, we can observe that:

(1) Both for ACE2005 and KBP2017, TLNN
outperform other proposed models significantly,
achieving the best results on two datasets. This
demonstrates that the trigger-aware lattice struc-
ture could enhance the accuracy of locating trig-
gers. Further, thanks to the usage of sense-level
information, triggers could be more precisely clas-
sified into correct event types.

(2) On the TI stage, TLNN gives the best perfor-
mance. By linking shortcut paths of all word can-
didates with the current character, the model could
effectively exploit both character and word infor-
mation, and then alleviates the issue of trigger-
word mismatch.

Model
ACE2005 KBP2017
TI TC TI TC

Word baseline 61.13 57.81 56.68 50.98
+char CNN 61.11 57.52 57.14 51.66
+char LSTM 61.51 58.15 56.14 50.46

Char baseline 64.97 61.78 53.95 49.63
+bigram 66.89 62.95 57.01 52.71
+softword 67.79 64.11 60.68 54.57
+softword+bigram 68.22 64.23 60.42 54.85

TLNN 70.82 67.78 62.31 57.39

Table 3: F1-score of Word-based and Character-based
baselines and TLNN on ACE2005 and KBP2017.

(3) On the TC stage, TLNN still maintain its
advantages. The results indicate that the linguis-
tic knowledge of HowNet and the unique struc-
ture to dynamically utilize sense-level information
could enhance the performance on the TC stage.
More located triggers could be classified into cor-
rect event types by considering the ambiguity of
triggers.

3.3 Effect of Trigger-aware Feature
Extractor

In this section, we design a set of experiments
to explore the effect of the trigger-aware feature
extractor. We implement strong character-based
and word-based baselines by replacing the trigger-
aware lattice LSTM with the standard Bi-LSTM.

For word-based baselines, the input is seg-
mented into word sequences firstly. Furthermore,
we implement extra CNN and LSTM to learn
character-level features as additional modules. For
character-based baselines, the basic units of the
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Model
ACE2005 KBP2017

Match Mismatch Match Mismatch
Char Baseline 65.58 63.89 55.65 42.76
Word Baseline 66.30 2.78 64.43 17.63
NPN 65.94 55.56 56.47 41.53

TLNN 69.93 72.22 65.52 48.56

Table 4: Recall rates of two trigger-word match splits
of two datasets on Trigger Identification task.

input sequence are characters. Then we enhance
the character representation by adding external
word-level features including bigram and softword
(word in which the current character is located).
Hence, both baselines could collectively utilize
character and word information.

As shown in Table 3, experiments of two types
of baselines and our model are conducted on
ACE2005 and KBP2017. For the word baseline,
although adding character-level features can im-
prove the performance, the effects are relative lim-
ited. For the char baseline, it gains considerable
improvements when word-level features are taken
into account. The results of baselines indicate
that integrating different level of information is
an effective strategy to improve the performance
of models. Compared with baselines, the TLNN
achieves the best F1-score compared to all the
baselines on both datasets, showing remarkable
superiority and robustness. The results show that
by dynamically combining multi-grained informa-
tion, the trigger-aware feature extractor could ef-
fectively explore deeper semantic features than the
feature-based strategies used in baselines.

3.4 Influence of Trigger Mismatch

In order to explore the influence of trigger mis-
match problem, we split the test data of ACE2005
and KBP2017 into two types: match and mis-
match. Table 1 shows the proportion of word-
trigger match and mismatch on two datasets.

The recall of different methods of each split on
Trigger Identification task is shown in Table 4. We
can observe that:

(1) The result indicates that the word-trigger
mismatch problem could severely impact the per-
formance of the task. All approaches except ours
give lower recall rates in the trigger-mismatch
part than in the trigger-match part. In contrast,
our model could robustly address the word-trigger
mismatch problem, reaching the best results on
both parts of the two datasets.

Model
ACE2005 KBP2017
TI TC TI TC

NPN 67.56 64.21 58.96 52.87

TLNN 70.82 67.78 62.31 57.39
- w/o Sense info 68.65 65.83 61.17 56.55

Table 5: F1-score of NPN, TLNN and TLNN - w/o
Sense info on ACE2005 and KBP2017.

Model
ACE2005 KBP2017

Poly Mono Poly Mono
NPN 66.27 61.08 51.15 48.63

TLNN 69.11 62.56 58.61 56.56
- w/o Sense info 67.53 62.89 56.01 55.96

Table 6: F1-score of two splits of two datasets on Trig-
ger Classification task. The splits are based on the pol-
ysemy of triggers. ”Poly” and ”Mono” correspond to
polysemous and monosemous trigger splits.

(2) To a certain extent, the NPN model could
alleviate the problem by utilizing hybrid represen-
tation learning and nugget generator in a fix-sized
window. However, the mechanism is still not flex-
ible and robust to integrate character and word in-
formation.

(3) The word-based baseline is most severely
affected by the trigger-word mismatch problem.
This phenomenon is explainable because if one
trigger could not be segmented as a specific word
in the preprocessing stage, it is impossible to be
located correctly.

3.5 Influence of Trigger Polysemy

In this section, we mainly focus on the influence
of polysemous triggers. We select NPN model
for comparison. And we implement a version of
TLNN without sense information, which is de-
noted as TLNN - w/o Sense info in Table 5 and
Table 6.

Empirical results in Table 5 show the overall
performance on ACE2005 and KBP2017. We can
observe that the TLNN is weakened by removing
sense information, which indicates the effective-
ness of the usage of sense-level information. Even
without sense information, our model could still
outperform the NPN model on both two datasets.

To further explore and analyze the effect of
word sense information, we split the KBP2017
dataset into two parts based on the polysemy of
triggers and their contexts. The F1-score of each
split is shown in Table 6, in which the TLNN
yields the best results on both ”Poly” parts. With-
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Sentence 1 Word baseline NPN TLNN Answer
立刻/抗抗抗敌援友 (抗敌援友,Attack) (刻抗,Attack) (抗,Attack) (抗,Attack)
Resist the enemies and aid the allies at once

Sentence 2 NPN TLNN - Sense info TLNN Answer
送送送/他/一笔/赴/欧洲/的/旅费 (送,TransferPerson) (送,TransferPerson) (送,TransferMoney) (送,TransferMoney)

Send him money for European tourism

Table 7: Two model prediction examples. The first sentence is an example of trigger-word mismatch, while the
second one is about polysemous triggers. For each prediction result, (A,B) indicates that A is a trigger with event
type B.

out sense information, TLNN - w/o sense info
could give comparable F1-scores with TLNN on
the ”Mono” parts. The results indicate that the
trigger-aware feature extractor could dynamically
learn all the senses of characters and words, gain-
ing significant improvements under the condition
of polysemy.

3.6 Case Study

Table 7 shows two examples comparing the TLNN
model with other ED methods. The former ex-
ample is about trigger-word mismatch, in which
the correct trigger “抗”(resist) is part of the idiom
word “抗敌援友” (resist the enemies and aid the
allies). In this case, the word baseline gives the
whole word “抗敌援友” as prediction because it is
impossible for word-based methods to detect part-
of-word triggers. Additionally, the NPN model
recognizes a non-existent word “刻抗”. The rea-
son is that the NPN enumerates the combinations
of all characters within a window as trigger candi-
dates, which is likely to generate invalid words. In
contrast, our model detects the event trigger “抗”
accurately.

In the latter example, the trigger “送”(send) is
a polysemous word with two different meanings:
“送行”(see him off) and “送钱”(give him money).
Without considering multiple word senses of pol-
ysemes, the NPN and TLNN (w/o Sense info)
classify trigger “送” into wrong event type Trans-
ferPerson. On the contrary, the TLNN can dynam-
ically select word sense for polysemous triggers
by utilizing context information. Thus the correct
event type TransferMoney is predicted.

4 Related Work

Event Detection (ED) is a crucial subtask in Event
Extraction task. Feature-based methods (Ahn,
2006; Ji and Grishman, 2008; Liao and Grishman,
2010; Huang and Riloff, 2012; Patwardhan and
Riloff, 2009; McClosky et al., 2011) were widely

used in the ED task, but these traditional methods
are heavily rely on the manual features, limiting
the scalability and robustness.

Recent developments in deep learning have led
to a renewed interest in neural event detection.
Neural networks can automatically learn features
of the input sequence and conduct token-level
classification. CNN-based models are the semi-
nal neural network models in ED (Nguyen and Gr-
ishman, 2015; Chen et al., 2015; Nguyen and Gr-
ishman, 2016). However, these models can only
capture the local context features in a fixed size
window. Some approaches design comprehen-
sive models to explore the interdependency among
trigger words (Chen et al., 2018; Feng et al., 2018).
To further improve the ED task, some joint models
are designed (Nguyen et al., 2016; Lu and Nguyen,
2018; Yang and Mitchell, 2016). These methods
have achieved great success in English datasets.

However, in languages without delimiters, such
as Chinese, the mismatch of word-trigger become
significantly severe. Some feature-based meth-
ods are proposed to solve the problem (Chen and
Ji, 2009; Qin et al., 2010; Li and Zhou, 2012),
but they heavily rely on the hand-crafted features.
Lin et al. (2018) proposes NPN, a neural network
based method to address the issue. However, the
mechanism of NPNs limits the scope of trigger
candidates within a fix-sized window, which will
cause two problems in the progress. First, the
NPNs still cannot take all the possible trigger can-
didates into account, leading to meaningless com-
putation. Furthermore, the overlap of triggers is
serious in NPNs. Lattice-based models were used
in other fields to combine character and word in-
formation (Li et al., 2019; Zhang and Yang, 2018;
Yang et al., 2018). Mainstream methods also suf-
fer from the problem of trigger polysemy. Lu
and Nguyen (2018) proposes a multi-task learn-
ing model which uses word sense disambigua-
tion to alleviate the effect of the trigger polysemy
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problem. But in this work, word disambiguation
datasets are necessary. In contrast, our model can
solve both word-trigger mismatch and trigger pol-
ysemy problems at the same time.

5 Conclusion and Future Work

We propose a novel framework TLNN for event
detection, which can simultaneously address the
problems of trigger-word mismatch and polyse-
mous triggers. With the hierarchical representa-
tion learning and the trigger-aware feature extrac-
tor, TLNN efficaciously exploits multi-grained in-
formation and learn deep semantic features. Sets
of experiments on two real-world datasets show
that TLNN could efficiently address the two issues
and yield better empirical results than a variety of
neural network models.

In future work, we will conduct experiments on
more languages with and without explicit word
delimiters. In addition, we will try developing
a dynamic mechanism to selectively consider the
sense-level information rather than take all the
senses of characters and words into account.
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