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Abstract

A challenge in creating a dataset for machine
reading comprehension (MRC) is to collect
questions that require a sophisticated under-
standing of language to answer beyond us-
ing superficial cues. In this work, we investi-
gate what makes questions easier across recent
12 MRC datasets with three question styles
(answer extraction, description, and multi-
ple choice). We propose to employ simple
heuristics to split each dataset into easy and
hard subsets and examine the performance
of two baseline models for each of the sub-
sets. We then manually annotate questions
sampled from each subset with both valid-
ity and requisite reasoning skills to investi-
gate which skills explain the difference be-
tween easy and hard questions. From this
study, we observed that (i) the baseline per-
formances for the hard subsets remarkably de-
grade compared to those of entire datasets,
(ii) hard questions require knowledge infer-
ence and multiple-sentence reasoning in com-
parison with easy questions, and (iii) multiple-
choice questions tend to require a broader
range of reasoning skills than answer extrac-
tion and description questions. These results
suggest that one might overestimate recent ad-
vances in MRC.

1 Introduction

Evaluating natural language understanding (NLU)
systems is a long-established problem in AI
(Levesque, 2014). One approach to doing so is
the machine reading comprehension (MRC) task,
in which a system answers questions about given
texts (Hirschman et al., 1999). Although recent
studies have made advances (Yu et al., 2018), it
is still unclear to what precise extent questions re-
quire understanding of texts (Jia and Liang, 2017).

In this study, we examine MRC datasets and
discuss what is needed to create datasets suit-

Article: Spectre (2015 film) on Wikipedia
Context: (s1) In November 2014, Sony Pictures En-
tertainment was targeted by hackers who released de-
tails of confidential e-mails between Sony executives
regarding [...]. (s2) Included within these were several
memos relating to the production [...]. (s3) Eon Pro-
ductions later issued a statement [...].
Question: When (k=1) did hackers get into the Sony
Pictures e-mail system?
Prediction for the full question: November 2014
Prediction for the k = 1 question: November 2014
Uni-gram overlaps between si and the question:
s1: 5, s2: 0, s3: 0

Figure 1: Example from the SQuAD dataset (Ra-
jpurkar et al., 2016). The baseline system can answer
the token-limited question and, even if there are other
candidate answers, it can easily attend to the answer-
contained sentence (s1) by watching word overlaps.

able for the detailed testing of NLU. Our moti-
vation originates from studies that demonstrated
unintended biases in the sourcing of other NLU
tasks, in which questions contain simple patterns
and systems can recognize these patterns to an-
swer them (Gururangan et al., 2018; Mostafazadeh
et al., 2017).

We conjecture that a situation similar to this
occurs in MRC datasets. Consider the question
shown in Figure 1, for example. Although the
question, starting with when, requires an answer
that is expressed as a moment in time, there is
only one such expression (i.e., November 2014)
in the given text (we refer to the text as the con-
text). In other words, the question has only a sin-
gle candidate answer. The system can solve it
merely by recognizing the entity type required by
when. In addition to this, even if another expres-
sion of time appears in other sentences, only one
sentence (i.e., s1) appears to be related to the ques-
tion; thus, the system can easily determine the cor-
rect answer by attention, that is, by matching the
words appearing both in the context and the ques-
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tion. Therefore, this kind of question does not re-
quire a complex understanding of language—e.g.,
multiple-sentence reasoning, which is known as a
more challenging task (Richardson et al., 2013).

In Section 3, we define two heuristics, namely
entity-type recognition and attention. We specif-
ically analyze the differences in the performance
of baseline systems for the following two configu-
rations: (i) questions answerable or unanswerable
with the first k tokens; and (ii) questions whose
correct answer appears or does not appear in the
context sentence that is most similar to the ques-
tion (henceforth referred to as the most similar
sentence). Although similar heuristics are pro-
posed by Weissenborn et al. (2017), ours are uti-
lized for question filtering, rather than system de-
velopment; Using these simple heuristics, we split
each dataset into easy and hard subsets for further
investigation of the baseline performance.

After conducting the experiments, we analyze
the following two points in Section 4. First, we
consider which questions are valid for testing, i.e.,
reasonably solvable. Second, we consider what
reasoning skills are required and whether this ex-
poses any differences among the subsets. To in-
vestigate these two concerns, we manually anno-
tate sample questions from each subset in terms
of validity and required reasoning skills, such as
word matching, knowledge inference, and multi-
ple sentence reasoning.

We examine 12 recently proposed MRC
datasets (Table 1), which include answer extrac-
tion, description, and multiple-choice styles. We
also observe differences based on these styles.
For our baselines, we use two neural-based sys-
tems, namely, the Bidirectional Attention Flow
(Seo et al., 2017) and the Gated-Attention Reader
(Dhingra et al., 2017).

In Section 5, we describe the advantages and
disadvantages of different question styles with re-
gard to evaluating NLU systems. We also inter-
pret our heuristics for constructing realistic MRC
datasets.

Our contributions are as follows:

• This study is the first large-scale investigation
across recent 12 MRC datasets with three ques-
tion styles.

• We propose to employ simple heuristics to split
each dataset into easy and hard subsets and ex-
amine the performance of two baseline models
for each of the subsets.

Answer extraction (select a context span)
1. SQuAD (v1.1) (Rajpurkar et al., 2016)
2. AddSent (Jia and Liang, 2017)
3. NewsQA (Trischler et al., 2017)
4. TriviaQA (Wikipedia set) (Joshi et al., 2017)
5. QAngaroo (WikiHop) (Welbl et al., 2018)

Description (generate a free-form answer)
6. MS MARCO (v2) (Nguyen et al., 2016)
7. NarrativeQA (summary) (Kočiský et al., 2018)

Multiple choice (choose from multiple options)
8. MCTest (160 + 500) (Richardson et al., 2013)
9. RACE (middle + high) (Lai et al., 2017)

10. MCScript (Ostermann et al., 2018)
11. ARC Easy (ARC-E) (Clark et al., 2018)
12. ARC Challenge (ARC-C) (Clark et al., 2018)

Table 1: Examined datasets.

• We manually annotate questions sampled from
each subset with both validity and requisite rea-
soning skills to investigate which skills explain
the difference between easy and hard questions.

We observed the following:

• The baseline performances for the hard subsets
remarkably degrade compared to those of entire
datasets.

• Our annotation study shows that hard ques-
tions require knowledge inference and multiple-
sentence reasoning in comparison with easy
questions.

• Compared to questions with answer extraction
and description styles, multiple-choice ques-
tions tend to require a broader range of reason-
ing skills while exhibiting answerability, multi-
ple answer candidates, and unambiguity.

These findings suggest that one might overes-
timate recent advances in MRC systems. They
also emphasize the importance of considering sim-
ple answer-seeking heuristics when sourcing ques-
tions, in that a dataset could be easily biased unless
such heuristics are employed.1

2 Examined Datasets and Baselines

2.1 Datasets
We analyzed 12 MRC datasets with three ques-
tion styles: answer extraction, description, and

1All scripts used in this study, along with the sub-
sets of the datasets and the annotation results, are
available at https://github.com/Alab-NII/
mrc-heuristics.

https://github.com/Alab-NII/mrc-heuristics
https://github.com/Alab-NII/mrc-heuristics
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multiple choice (Table 1). Our aim was to select
datasets varying in terms of corpus genre, context
length, and question sourcing methods.2 Other
datasets that are not covered in our study, but
can be analyzed using the same method, include:
QA4MRE (Sutcliffe et al., 2013), CNN/Daily
Mail (Hermann et al., 2015), Children’s Book Test
(Hill et al., 2016), bAbI (Weston et al., 2015),
WikiReading (Hewlett et al., 2016), LAMBADA
(Paperno et al., 2016), Who-did-What (Onishi
et al., 2016), ProPara (Dalvi et al., 2018), MultiRC
(Khashabi et al., 2018), CliCR (Suster and Daele-
mans, 2018), SQuAD (v2.0) (Rajpurkar et al.,
2018), and DuoRC (Saha et al., 2018).

2.2 Baseline Systems
We employed the following two widely used base-
lines.

Bidirectional Attention Flow (BiDAF) (Seo
et al., 2017) was used for the answer extrac-
tion and description datasets. BiDAF models
bi-directional attention between the context and
question. It achieved state-of-the-art performance
on the SQuAD dataset.

Gated-Attentive Reader (GA) (Dhingra et al.,
2017) was used for the multiple-choice datasets.
GA has a multi-hop architecture with an atten-
tion mechanism. It achieved state-of-the-art-
performance on the CNN/Daily Mail and Who-
did-What datasets.

Why we used different baseline systems: The
multiple-choice style can be transformed to an-
swer extraction, as mentioned in Clark et al.
(2018). However, in some datasets, many ques-
tions have no textual overlap to determine the cor-
rect answer span in the context. Therefore, in or-
der to avoid underestimating the baseline perfor-
mance of those datasets, we used the GA system
which is applicable to multiple choice questions.

We scored the performance using exact match
(EM)/F1 (Rajpurkar et al., 2016), Rouge-L (Lin,
2004), and accuracy for the answer extraction,
description, and multiple-choice datasets, respec-
tively (henceforth, we refer to these collectively
as the score, for simplicity). For the descrip-
tion datasets, we determined in advance the an-
swer span of the context that gives the highest
Rouge-L score to the human-generated gold an-
swer. We computed the Rouge-L score between

2The ARC Easy and Challenge were collected using dif-
ferent methods; hence, we treated them as different datasets
(see Clark et al. (2018) for further details).

the predicted span and the gold answer.3

Reproduction of the baseline performance:
We used the same architecture as the official base-
line systems unless specified otherwise. All sys-
tems were trained on the training set and tested on
the development/test set of each dataset. We also
used different hyperparameters for each dataset
according to characteristics such as context length
(see Appendix A for details). We show the base-
line performance of both the official results and
those from our implementations in Tables 2 and
3. Our implementations outperformed or showed
comparable performance to the official baseline on
most datasets. However, in TriviaQA, MCTest,
RACE, and ARC-E, our baseline performance did
not reach that of the official baseline, due to dif-
ferences in architecture or the absence of reported
hyperparameters in the literature.

3 Two Filtering Heuristics

The first goal of this paper is to determine whether
there are unintended biases of the kind exposed in
Figure 1 in MRC datasets. We examined the influ-
ence of the two filtering heuristics: (i) entity type
recognition (Section 3.1) and (ii) attention (Sec-
tion 3.2). We then investigated the performance of
the baseline systems on the questions filtered by
the defined heuristics (Section 3.3).

3.1 Entity Type-based Heuristic

The aim of this heuristic was to detect questions
that can be solved based on (i) the existence of
a single candidate answer that is restricted by ex-
pressions such as “wh-” and “how many,” and (ii)
lexical patterns that appear around the correct an-
swer. Because the query styles are not uniform
across datasets (e.g., MARCO uses search engine
queries), we could not directly use interrogatives.
Instead, we simply provided the first k tokens
of questions to the baseline systems. We chose
smaller values for k than the (macro) average of
the question length across the datasets (= 12.2 to-
kens). For example, for k = 4 of the question
will I qualify for OSAP if I’m new in Canada (ex-
cerpted from MARCO), we use will I qualify for.
Even if the tokens do not have an interrogative,
the system may recognize lexical patterns around
the correct answer. Questions that can be solved

3We used the official evaluation scripts of SQuAD and
MS MARCO to compute the EM/F1 and Rouge-L, respec-
tively.
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Dataset SQuAD AddSent NewsQA TriviaQA QAngaroo MARCO NarraQA
St

at
is

tic
s

Question style (metrics) answer extraction (exact match / F1) description (Rouge-L)

Question sourcing reading
context

reading
context

reading
headline

trivia
/ quiz

chaining
knowledge1

search
query1

reading
summary

Context genre Wikipedia Wikipedia news Wikipedia Wikipedia web moviescript

Split examined dev dev test dev2 dev dev test
# questions 10570 3560 5126 430 5129 555783 10557
Avg. # context tokens 150.1 163.3 698.8 783.4 1545.5 625.7 664.5
Avg. # question tokens 11.8 12.3 8.0 19.0 3.6 6.1 9.9
Avg. # sents in context 5.2 5.8 30.3 28.5 57.2 31.5 27.6

B
as

el
in

e
pe

rf
or

m
an

ce

Official baseline 67.7/77.3 28.2/34.3 34.1/48.2 47.5/53.7 42.9/- 17.74 36.30
Our BiDAF baseline 67.9/77.2 42.6/50.4 40.2/56.4 44.0/49.3 43.8/49.3 36.423 43.66

Q first tokens (k=4) 30.7/44.6 19.2/29.7 30.4/44.4 20.5/25.0 43.6/49.1 32.61 25.23
(k=2) 14.0/25.0 9.4/17.8 19.4/30.3 14.4/18.5 42.6/48.0 25.13 13.00
(k=1) 7.0/14.9 4.2/10.6 13.5/23.8 8.6/12.5 42.0/47.5 21.67 8.45

% of # Q (≥0.5 for k=2) 22.4 15.8 29.7 20.0 49.8 17.9 10.3

Ans in sim sent 71.4/80.6 50.2/58.2 42.9/59.7 58.0/65.1 41.7/49.2 38.96 45.17
only with sim sent 73.3/82.8 71.4/81.1 52.8/70.9 64.8/72.7 66.7/74.2 45.30 58.56

Ans not in sim sent 56.6/66.4 28.1/35.5 37.8/53.5 40.4/45.2 43.9/49.3 35.84 41.99
% of # Q (ans in sim) 76.3 65.7 46.3 20.5 4.2 18.6 52.6

Hard subset 38.7/45.2 18.2/23.4 27.9/40.9 30.0/32.5 2.3/2.6 15.42 39.61
% of hard 15.7 25.4 30.0 59.8 36.9 12.5 28.2

Table 2: Statistics from the answer extraction and description datasets and their baselines. Dev represents a devel-
opment set. Ans in sim sent refers to questions whose answer appears in the sentence that is most similar to the
question. 1The questions are not complete sentences and may start with more specific words than interrogatives.
2Verified set. 3No answer questions were removed. 4The Passage Ranking model (Nguyen et al., 2016).

by examining these patterns were also of interest
when filtering.

Results: Tables 2 and 3 present the results for
k = 1, 2, 4. In addition, to know the exact ratio of
the questions that are solved rather than the scores
for the answer extraction and description styles,
we counted questions with k = 2 that achieved
the score ≥ 0.5.4 As k decreased, so too did the
baseline performance on all datasets in Table 2 ex-
cept QAngaroo. By contrast, in QAngaroo and the
multiple-choice datasets, the performance did not
degrade so strongly. In particular, the difference
between the scores on the full and k = 1 questions
in QAngaroo was 1.8. Because the questions in
QAngaroo are not complete sentences, but rather
knowledge-base entries that have a blank, such as
country of citizenship Henry VI of England, this
result implies that the baseline system can infer
the answer merely by the first token of questions,
i.e., the type of knowledge-base entry.

In most multiple-choice datasets, the k = 1
scores were significantly higher than random-
choice scores. Given that multiple-choice ques-

4We considered that this threshold is sufficient to judge
that the system attends to the correct span because of the po-
tential ambiguity of these styles (see Section 4).

tions offer multiple options that are of valid en-
tity/event types, this gap was not necessarily
caused by the limited number of candidate an-
swers, as in the case with the answer extraction
datasets. Therefore, we inferred that in the solved
questions, incorrect options appeared less than the
correct option did or did not appear at all in the
context (such questions were regarded as solvable
exclusively using the word match skill, which we
analyzed in Section 4). Remarkably, although we
failed to achieve a higher baseline performance,
the score for the complete questions in MCTest
was lower than that of the k = 1 questions. This
result showed that the MCTest questions were suf-
ficiently difficult such that it was not especially
useful for the baseline system to consider the en-
tire question statement.

3.2 Attention-based Heuristic

Next, we examined in each dataset (i) how many
questions have their correct answers in the most
similar sentence and (ii) whether a performance
gap exists for such questions (i.e., whether such
questions are easier than the others).

We used uni-gram overlap as a similarity mea-
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Dataset MCTest RACE MCScript ARC-E ARC-C
St

at
is

tic
s

Style (metrics) multiple choice (accuracy)

Q sourcing reading
context

English
exam

script
scenario science exam

Genre narrative various narrative textbook

Split examined test test dev dev dev
# questions 840 4934 1411 2376 1171
Avg. # C tokens 249.9 339.3 195.2 142.0 138.3
Avg. # Q tokens 9.4 11.5 7.8 21.8 25.4
Avg. # sents 18.4 17.9 11.5 8.1 8.2

B
as

el
in

e
pe

rf
or

m
an

ce

Random 25.0 25.0 50.0 25.0 25.0
Official baseline 43.21 44.1 72.0 62.62 20.32

Our GA baseline 34.3 42.7 75.5 43.9 30.1

Q tokens (k=4) 36.1 38.4 73.7 38.8 30.6
(k=2) 33.9 37.7 71.1 37.0 29.0
(k=1) 34.9 36.4 70.9 35.3 28.6

Ans in sim sent 33.1 40.8 74.0 47.5 31.6
only w/ sim 32.4 40.4 74.4 48.5 28.9

Ans not in sim 34.9 43.3 75.8 40.4 29.4
% of # Q (in sim) 33.5 23.2 17.7 48.7 34.8

Hard subset 4.3 23.5 28.7 20.6 15.6
% of hard 62.4 58.8 27.1 53.9 66.4

Table 3: Statistics from the multiple-choice datasets
and their baselines. 1The Attentive Reader (Hermann
et al., 2015) from Yin et al. (2016). 2An information
retrieval system from Clark et al. (2018).

sure.5 We counted how many times question
words appeared in each sentence, where ques-
tion words were stemmed and stopwords were
dropped. We then checked whether the correct an-
swer appeared in the most similar sentence. For
the multiple-choice datasets, we selected the text
span that provided the highest Rouge-L score with
the correct option as the correct answer.

Results: Tables 2 and 3 show the results. Con-
sidering the average number of context sentences,
most datasets contained a significantly high pro-
portion of questions whose answers were in the
most similar sentence.

In the answer extraction and description
datasets, except QAngaroo, the baseline perfor-
mance improved when the correct answer ap-
peared in the most similar sentence, and gaps were
found between the performances on these ques-
tions and the others. These gaps indicated that
the dataset may lack balance for testing NLU. If
these questions tend to require the word match-
ing skill exclusively, attending the other por-
tion is useful in studying a more realistic NLU,
e.g., common-sense reasoning and discourse un-
derstanding. Therefore, we investigated whether

5Although there are other similarity measures, we used
this basic measure to obtain an intuitive result.

these questions merely require word matching (see
Section 4).

Meanwhile, in the first three multiple-choice
datasets, the performance differences were
marginal or inversed, implying that although the
baseline performance was not especially high,
the difficulty of these questions for the baseline
system was not affected by whether their correct
answers appeared in the most similar sentence.

We further analyzed the baseline performance
after removing the context and leaving only the
most similar sentence. In AddSent and QAnga-
roo, the scores remarkably improved (>20 F1).
From this result, we can infer that on these datasets
the baseline systems were distracted by other sen-
tences in the context. This observation was sup-
ported by the results from the AddSent dataset
(Jia and Liang, 2017), which contains manually
injected distracting sentences (i.e., adversarial ex-
amples).

3.3 Performance on Hard Subsets

In the previous two sections, we observed that
in the examined datasets (i) some questions were
solved by the baseline systems merely with the
first k tokens and/or (ii) the baseline performances
increased for questions whose answers were in
the most similar sentence. We were concerned
that these two will become dominant factors in
measuring the baseline performance using the
datasets; Hence, we split each development/test
set into easy and hard subsets for further inves-
tigation.

Hard subsets: A hard subset comprised ques-
tions (i) whose score is not positive when k = 2
and (ii) whose correct answer does not appear in
the most similar sentence. The easy subsets com-
prised the remaining questions. We aimed to in-
vestigate the gap of the performance values be-
tween the easy and hard subsets. If the gap is
large, the dataset may be strongly biased toward
questions that are solved by recognizing entity
types or lexical patterns and may not be suitable
for measuring the system’s ability for complex
reasoning.

Results and clarification: The bottom row of
Tables 2 and 3 shows that the baseline perfor-
mances on the hard subset remarkably decreased
in almost all examined datasets. These results
revealed that we may overestimate the ability of
the baseline systems previously perceived. How-
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ever, we clarify that our intention is not to remove
the questions solved or mitigated by our defined
heuristics to create a new hard subset because this
may generate new biases as indicated in Gururan-
gan et al. (2018). Rather, we would like to empha-
size the importance of the defined heuristics when
sourcing questions. Indeed, ill attention to these
heuristics can lead to unintended biases.

4 Annotating Question Validity and
Required Skills

4.1 Annotation Specifications

Objectives: To complement the observations in
the previous sections, we annotated sampled ques-
tions from each subset of the datasets. Our mo-
tivation can be summarized as follows: (i) How
many questions are valid in each dataset? That
is, the hard questions may not in fact be hard,
but just unsolvable, as indicated in Chen et al.
(2016). (ii) What kinds of reasoning skills explain
the easy/hard questions? (iii) Are there any differ-
ences among the datasets and the question styles?

We annotated the minimum skills required to
choose the correct answer among other candidates.
We assumed that the solver knows what type of
entity or event is entailed by the question.

Annotation labels: Our annotation labels (Ta-
ble 4) were inspired by previous works such as
Chen et al. (2016), Trischler et al. (2017), and
Lai et al. (2017). The major modifications were
twofold: (i) detailed question validity, including a
number of reasonable candidate answers and an-
swer ambiguity, and (ii) posing multiple-sentence
reasoning as a skill compatible with other skills.

Reasoning types indeed have other classifica-
tions. For instance, Lai et al. (2017) defined five
reasoning types, including attitude analysis and
whole-picture reasoning. We incorporated them
into the knowledge and meta/whole classes. Clark
et al. (2018) proposed detailed knowledge and rea-
soning types, but these were specific to science ex-
ams and, thus, omitted from our study.

Independent of the abovementioned reasoning
types, we checked whether the question required
multiple-sentence reasoning to answer the ques-
tions. As another modification, we extended the
notion of “sentence” in our annotation and con-
sidered a subordinate clause as a sentence. This
modification was intended to deal with the inter-
nal complexity of a sentence with multiple clauses,
which can also render a question difficult.

Validity
1. Unsolvable – the context coupled with the ques-

tion does not reasonably give the answer.
2. Single candidate – the question does not have

multiple candidate answers.
3. Ambiguous – the question does not have a unique,

decidable answer, or, multiple possible answers
are not covered by the gold answers.

Reasoning skill
4. Word matching – matching the context and ques-

tion words.
5. Paraphrasing – using lexical and grammatical

knowledge.
6. Knowledge – inference using commonsense

and/or world knowledge.
7. Meta/Whole – understanding meta terms, such

as “author” and “writer,” and comprehending the
general context.

8. Math/Logic – using mathematical and logical
knowledge, includeing multiple-choice questions
that ask “which option is not true.”

Multiple-sentence reasoning
9. (i) coreference (ii) causal relation (iii) spatial–

temporal relations (iv) none – gathering cues from
multiple sentences/clauses.

Table 4: Annotation labels. One of the reasoning skills
is annotated with the questions that are “no” in all va-
lidity labels. Multiple sentence reasoning is indepen-
dent of reasoning skills and annotated with all valid
questions.

Settings: For each subset of the datasets, 30
questions were annotated. Therefore we obtained
annotations for 30× 2× 12 = 720 questions. The
annotation was performed by the authors. The an-
notator was given the context, question, and candi-
date answers for multiple-choice questions along
with the correct answer. To reduce bias, the anno-
tator did not know which easy or hard subset the
questions were in, and was not told the predictions
and scores of the respective baseline systems.

4.2 Annotation Results

Tables 5 and 6 show the annotation results.
Validity: TriviaQA, QAngaroo, and ARCs

revealed a relatively high unsolvability, which
seemed to be caused by the unrelatedness between
the questions and their context. For example,
QAngaroo’s context was gathered from Wikipedia
articles that were not necessarily related to the
questions.6 The context passages in ARCs were

6Nonetheless, it is remarkable that even though the dataset
was automatically constructed, the remaining valid hard
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Dataset SQuAD AddSent NewsQA TriviaQA QAngaroo MARCO NarraQA

Subset easy hard easy hard easy hard easy hard easy hard easy hard easy hard

F1/Rouge-L 80.9 37.6 61.5 29.5 52.7 30.3 70.6 33.4 71.1 3.5 49.4 21.5 54.9 51.2
V

al
id

ity
Unsolvable 0.0 0.0 0.0 0.0 0.0 6.7 16.7 16.7 33.3 43.3 0.0 0.0 0.0 0.0
Single cand. 23.3 10.0 6.7 3.3 10.0 3.3 3.3 6.7 6.7 3.3 0.0 0.0 6.7 0.0
Ambiguous 3.3 13.3 3.3 13.3 43.3 30.0 13.3 13.3 13.3 20.0 6.7 3.3 0.0 0.0
Valid 73.3 76.7 90.0 83.3 46.7 60.0 66.7 63.3 46.7 33.3 93.3 96.7 93.3 100.0

Sk
ill

Word match 59.1 21.7 55.6 24.0 42.9 66.7 45.0 26.3 35.7 20.0 89.3 44.8 46.4 43.3
Paraphrasing 18.2 26.1 11.1 36.0 21.4 11.1 5.0 10.5 7.1 20.0 0.0 10.3 25.0 20.0
Knowledge 22.7 47.8 33.3 40.0 35.7 22.2 50.0 63.2 57.1 60.0 10.7 44.8 28.6 33.3
Meta/Whole 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.3
Math/Logic 0.0 4.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

R
el

at
io

n Multi sent. 22.7 17.4 25.9 36.0 35.7 16.7 35.0 36.8 57.1 80.0 7.1 13.8 28.6 46.7
Coreference 18.2 17.4 14.8 32.0 21.4 16.7 35.0 31.6 50.0 50.0 7.1 13.8 14.3 33.3
Causal 0.0 0.0 3.7 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.3 6.7
Space/Temp. 4.5 0.0 7.4 0.0 14.3 0.0 0.0 5.3 7.1 30.0 0.0 0.0 0.0 6.7

Table 5: Annotation results for the answer extraction and description datasets.

Dataset MCTest RACE MCScript ARC-E ARC-C

Subset easy hard easy hard easy hard easy hard easy hard

Accuracy 83.3 13.3 76.7 30.0 93.3 26.7 60.0 16.7 43.3 10.0

V
al

id
ity

Unsolvable 0.0 0.0 0.0 0.0 0.0 0.0 3.3 30.0 46.7 33.3
Single cand. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ambiguous 0.0 0.0 3.3 0.0 0.0 0.0 3.3 0.0 3.3 3.3
Valid 100.0 100.0 96.7 100.0 100.0 100.0 93.3 70.0 50.0 63.3

Sk
ill

Word match 56.7 46.7 17.2 6.7 36.7 46.7 71.4 52.4 33.3 15.8
Paraphrasing 6.7 10.0 13.8 6.7 20.0 6.7 14.3 19.0 20.0 31.6
Knowledge 30.0 26.7 34.5 43.3 20.0 36.7 14.3 23.8 40.0 42.1
Meta/Whole 3.3 3.3 31.0 33.3 20.0 10.0 0.0 0.0 0.0 0.0
Math/Logic 3.3 13.3 3.4 10.0 3.3 0.0 0.0 4.8 6.7 10.5

R
el

at
io

n Multi sent. 46.7 73.3 58.6 76.7 0.0 30.0 7.1 14.3 0.0 10.5
Coreference 33.3 56.7 44.8 60.0 0.0 16.7 7.1 9.5 0.0 0.0
Causal 6.7 6.7 3.4 13.3 0.0 3.3 0.0 0.0 0.0 0.0
Space/Temp. 6.7 10.0 10.3 3.3 0.0 10.0 0.0 4.8 0.0 10.5

Table 6: Annotation results for the multiple-choice datasets.

Label r p

Single cand (BiDAF) 0.150 0.002
Ambiguous (BiDAF) 0.098 0.044
Word matching (BiDAF) 0.266 0.000
Knowledge (BiDAF) -0.288 0.000
Multi sent (BiDAF) -0.120 0.035
Unsolvable (GA) -0.119 0.039

Table 7: Pearson’s correlation coefficients (r) between
the annotation labels and the baseline scores with p <
0.05.

curated from textbooks that may not provide suf-
ficient information to answer the questions.7 Note

questions were difficult for the baseline system.
7Our analysis was not intended to undermine the quality

that it is possible for unsolvable questions to be
permitted, and that the system must indicate them
in some datasets, such as QA4MRE, NewsQA,
MARCO, and SQuAD (v2.0).

However, for single candidate, we found that
few questions had only single-candidate an-
swers. Furthermore, there were even fewer single-
candidate answers in AddSent than in SQuAD.
This result supported the claim that the adversar-
ial examples augmented the number of possible
candidate answers, thereby degrading the baseline
performance.

In our annotation, ambiguous questions were

of these questions. We refer readers to Clark et al. (2018).
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ID: ./cnn/stories/4ca29639845a40551a62d10212a46aec7caf3369.story-2

Context: [...] This plot of land is scheduled to house
the permanent United Airlines Flight 93 memorial. [...]
Question: What was the name of the flight?
Answer: 93
Possible answers: United Airlines Flight 93, Flight 93

Figure 2: Example of an ambiguous question from
NewsQA (Trischler et al., 2017).

found to be those with multiple correct spans. Fig-
ure 2 shows an example. In this case, several an-
swers aside from “93” were correct. Ambiguity is
an important feature insofar because it can lead to
unstable scoring in EM/F1.

The multiple-choice datasets mostly comprised
valid questions, with the exception of the unsolv-
able questions in the ARC datasets.

Reasoning skills: We can see that word match-
ing was more important in the easy subsets, and
knowledge was more pertinent to the hard sub-
sets in 10 of the 12 datasets. These results con-
firmed that the manner by which we split the sub-
sets was successful at filtering questions that were
relatively easy in terms of reasoning skills. How-
ever, we did not observe this trend with paraphras-
ing, which seemed difficult to distinguish from
word matching and knowledge. With regard to
meta/whole and math/logic, we can see that these
skills were needed less in the answer extraction
and description datasets. They were more perti-
nent to the multiple-choice datasets.

Multiple-sentence reasoning: Multiple-
sentence reasoning was more correlated with the
hard subsets in 10 of the 12 datasets. Although
NewsQA showed the inverse tendency for word
matching, knowledge, and multiple-sentence
reasoning, we suspect that this was caused by
annotation variance and filtering a large portion of
ambiguous questions. For relational types, we did
not see a significant trend in any particular type.

Correlation of labels and baseline scores:
Across all examined datasets, we analyzed the cor-
relations between the annotation labels and the
scores of each baseline system in Table 7. In spite
of the small size of the annotated samples, we de-
rived statistically significant correlations for six
labels. These results confirmed that BiDAF per-
formed well for the word matching questions and
relatively poorly with the knowledge questions.
By contrast, we did not observe this trend in GA.

5 Discussion

In this section, we discuss the advantages and dis-
advantages of the question styles. We also inter-
pret the defined heuristics in terms of constructing
more realistic MRC datasets.

Differences among the question styles: The
biggest advantage to the answer extraction style
is its ease in generating questions, which enables
us to produce large-scale datasets. In contrast, a
disadvantage to this style is that it rarely demands
meta/whole and math/logic skills, which can re-
quire answers not contained in the context. More-
over, as observed in Section 4, it seems difficult to
guarantee that all possible answer spans are given
as the correct answers. By contrast, the descrip-
tion and multiple-choice styles have the advantage
of having no such restrictions on the appearance of
candidate answers (Kočiský et al., 2018; Khashabi
et al., 2018). Nonetheless, the description style
is difficult to evaluate because the Rouge-L and
BLEU scores are insufficient for testing NLU.
Whereas it is easy to evaluate the performance
on multiple-choice questions, generating multiple
reasonable options requires considerable effort.

Interpretation of our heuristics: When we re-
gard the MRC task as recognizing textual entail-
ment (RTE) (Dagan et al., 2006), the task requires
the reader to construct one or more premises from
the context and form the most reasonable hy-
pothesis from the question and candidate answer
(Sachan et al., 2015). Thus, easier questions are
those (i) where the reader needs to generate only
one hypothesis, and (ii) where the premises di-
rectly describe the correct hypothesis. Our two
heuristics can also be seen as the formalizations
of these criteria. Therefore, to make questions
more realistic, we need to create multiple hypothe-
ses that require complex reasoning to be distin-
guished. Moreover, the integration of premises
should be complemented by external knowledge
to provide sufficient information to verify the cor-
rect hypothesis.

6 Related Work

Our heuristics and annotation were motivated by
unintended biases (Levesque, 2014) and evalua-
tion overfitting (Whiteson et al., 2011), respec-
tively.

Unintended biases: The MRC task tests a read-
ing process that involves retrieving stored infor-
mation and performing inferences (Sutcliffe et al.,
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2013). However, constructing datasets that com-
prehensively require those skills is difficult. As
Levesque (2014) discussed as a desideratum for
testing AI, we should avoid creating questions that
can be solved by matching patterns, using unin-
tended biases, and selectional restrictions. For the
unintended biases, one suggestive example is the
Story Cloze Test (Mostafazadeh et al., 2016), in
which a system chooses a sentence among candi-
dates to conclude a given paragraph of the story. A
recent attempt at this task showed that recognizing
superficial features in the correct candidate is crit-
ical to achieve the state of the art (Schwartz et al.,
2017).

Similarly, in MRC, Weissenborn et al. (2017)
proposed context/type matching heuristic to de-
velop a simple neural system. Min et al. (2018)
observed that, in SQuAD, 92% of answerable
questions can be answered only using a single
context sentence. In visual question answering,
Agrawal et al. (2016) analyzed the behavior of
models with the variable length of the first ques-
tion words. Khashabi et al. (2018) more re-
cently proposed a dataset with questions for multi-
sentence reasoning.

Evaluation overfitting: The theory be-
hind evaluating AI distinguishes between task-
and skill-oriented approaches (Hernández-Orallo,
2017). In the task-oriented approach, we usually
develop a system and test it on a specific dataset.
The developed system sometimes lacks general-
ity but achieves the state of the art for that spe-
cific dataset. Further, it becomes difficult to verify
and explain the solution to tasks. The situation in
which we are biased to the specific tasks is called
evaluation overfitting (Whiteson et al., 2011). By
contrast, with the skill-oriented approach, we aim
to interpret the relationships between tasks and
skills. This orientation can encourage the devel-
opment of more realistic NLU systems.

As One of our goals was to investigate whether
easy questions are dominant in recent datasets, it
did not necessarily require a detailed classifica-
tion of reasoning types. Nonetheless, we recog-
nize there are more fine-grained classifications of
the required skills for NLU. For example, Weston
et al. (2015) defined 20 skills as a set of toy tasks.
Sugawara et al. (2017) also organized 10 prerequi-
site skills for MRC. LoBue and Yates (2011) and
Sammons et al. (2010) analyzed entailment phe-
nomena using detailed classifications in RTE. For

the ARC dataset, Boratko et al. (2018) proposed
knowledge and reasoning types.

7 Conclusion

This study examined MRC questions from 12
datasets to determine what makes such questions
easier to answer. We defined two heuristics that
limit candidate answers and thereby mitigate the
difficulty of questions. Using these heuristics, the
datasets were split into easy and hard subsets. We
further annotated the questions with their validity
and the reasoning skills needed to answer them.
Our experiments revealed that the baseline perfor-
mance degraded with the hard questions, which re-
quired knowledge inference and multiple-sentence
reasoning compared to easy questions. These re-
sults suggest that one might overestimate the abil-
ity of the baseline systems. They also empha-
size the importance of analyzing and reporting the
properties of new datasets when released. One
limitation of this work was the heavy cost of the
annotation. In future research, we plan to explore
a method for automatically classifying reasoning
types. This will enable us to evaluate systems
through a detailed organization of the datasets.
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A Hyperparameters of the Baseline
Systems

We used different hyperparameters for each
dataset because of the different characteristics of
the datasets, e.g., the context length. Tables 8 and
9 show the hyperparameters.

Dataset b h q d

SQuAD 60 100 400 20
AddSent 60 100 400 20
NewsQA 32 100 1000 20
TriviaQA 32 100 400 20
QAngaroo 16 50 4096 20
MARCO 20 40 1600 30
NarrativeQA 60 50 1000 20

Table 8: Hyperparameters (batch size b, hidden layer
size h, document size threshold d, question size thresh-
old q) of the Bidirectional Attention Flow (Seo et al.,
2017) for each dataset. The other settings basically fol-
lowed the original implementation. In TriviaQA, we
followed a method for the dataset preparation used in
Joshi et al. (2017).

Dataset b h n dr lr

MCTest 10 32 1 0.5 0.01
RACE 32 128 1 0.2 0.1
MCScript 25 64 1 0.5 0.2
ARC-E 32 256 1 0.5 0.3
ARC-C 32 256 1 0.5 0.3

Table 9: Hyperparameters (batch size b, hidden layer
size h, number of attention layers n, dropout rate dr,
learning rate lr) of the Gated-Attentive Reader (Dhin-
gra et al., 2017) for each dataset. The other settings ba-
sically followed the implementation in Lai et al. (2017).


