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Abstract

Large multi-label datasets contain labels that
occur thousands of times (frequent group),
those that occur only a few times (few-shot
group), and labels that never appear in the
training dataset (zero-shot group). Multi-label
few- and zero-shot label prediction is mostly
unexplored on datasets with large label spaces,
especially for text classification. In this pa-
per, we perform a fine-grained evaluation to
understand how state-of-the-art methods per-
form on infrequent labels. Furthermore, we
develop few- and zero-shot methods for multi-
label text classification when there is a known
structure over the label space, and evaluate
them on two publicly available medical text
datasets: MIMIC II and MIMIC III. For few-
shot labels we achieve improvements of 6.2%
and 4.8% in R@10 for MIMIC II and MIMIC
III, respectively, over prior efforts; the corre-
sponding R@10 improvements for zero-shot
labels are 17.3% and 19%.

1 Introduction

Unlike in binary or multi-class problems, for
multi-label classification a model assigns a set of
labels to each input instance (Tsoumakas et al.,
2010). Large-scale multi-label text classification
problems can be found in several domains. For
example, Wikipedia articles are annotated with
labels used to organize documents and facilitate
search (Partalas et al., 2015). Biomedical arti-
cles indexed by the PubMed search engine are
manually annotated with medical subject head-
ings (Tsatsaronis et al., 2012). In healthcare fa-
cilities, medical records are assigned a set of
standardized codes for billing purposes (NCHS,
1978). Automatically annotating tweets with
hashtags, while the labels are not fixed, can also
be represented as a large-scale multi-label classifi-
cation problem (Weston et al., 2014).
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Figure 1: This plot shows the label frequency distribu-
tion of ICD-9 codes in MIMIC III.

There are two major difficulties when devel-
oping machine learning methods for large-scale
multi-label text classification problems. First, the
documents may be long, sometimes containing
more than a thousand words (Mullenbach et al.,
2018). Finding the relevant information in a large
document for a specific label results in needle in a
haystack situation. Second, data sparsity is a com-
mon problem; as the total number of labels grows,
a few labels may occur frequently, but most labels
will occur infrequently. Rubin et al. (2012) refer to
datasets that have long-tail frequency distributions
as “power-law datasets”. Methods that predict in-
frequent labels fall under the paradigm of few-shot
classification which refers to supervised methods
in which only a few examples, typically between 1
and 5, are available in the training dataset for each
label. With predefined label spaces, some labels
may never appear in the training dataset. Zero-
shot problems extend the idea of few-shot classi-
fication by assuming no training data is available
for the labels we wish to predict at test time. In
this paper, we explore both of these issues, long
documents and power-law datasets, with an em-
phasis on analyzing the few- and zero-shot aspects
of large-scale multi-label problems.
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In Figure 1, we plot the label frequency distri-
bution of diagnosis and procedure labels for the
entire MIMIC III (Johnson et al., 2016) dataset. A
few labels occur more than 10,000 times, around
5,000 labels occur between 1 and 10 times, and of
the 17,000 diagnosis and procedure labels, more
than 50% never occur. There are a few reasons
a label may never occur in the training dataset.
In healthcare, sevearl disorders are rare; there-
fore corresponding labels may not have been ob-
served yet in a particular clinic. Sometimes new
labels may be introduced as the field evolves lead-
ing to an emerging label problem. This is intu-
itive for applications such as hashtag prediction on
Twitter. For example, last year it would not have
made sense to annotate tweets with the hashtag
#EMNLP2018. Yet, as this year’s conference ap-
proaches, labeling tweets with the #EMNLP2018
will help users find relevant information.

Infrequent labels may not contribute heavily to
the overall accuracy of a multi-label model, but
in some cases, correct prediction of such labels
is crucial but not straightforward. For example,
in assigning diagnosis labels to EMRs, it is im-
portant that trained human coders are both accu-
rate and thorough. Errors may cause unfair finan-
cial burden on the patient. Coders may have an
easier time assigning frequent labels to EMRs be-
cause they are encountered more often. Also, fre-
quent labels are generally easier to predict using
machine-learning based methods. However, infre-
quent or obscure labels will be easily confused or
missed causing billing mistakes and/or causing the
coders to spend more time annotating each record.
Thus, we believe methods that handle infrequent
and unseen labels in the multi-label setting are im-
portant.

Current evaluation methods for large-scale
multi-label classification mostly ignore infrequent
and unseen labels. Popular evaluation measures
focus on metrics such as micro-F1, recall at
k (R@k), precision at k (P@k), and macro-F1. As
it is well-known that micro-F1 gives more weight
to frequent labels, papers on this topic also report
macro-F1, the average of label-wise F1 scores,
which equally weights all labels. Unfortunately,
macro-F1 scores are generally low and the corre-
sponding performance differences between meth-
ods are small. Moreover, it is possible to im-
prove macro-F1 by only improving a model’s per-
formance on frequent labels, further confounding

its interpretation. Hence we posit that macro-F1
is not enough to compare large-scale multi-label
learning methods on infrequent labels and it does
not directly evaluate zero-shot labels. Here, we
take a step back and ask: can the model predict
the correct few-shot (zero-shot) labels from the
set of all few-shot (zero-shot) labels? To address
this, we test our approach by adapting the general-
ized zero-shot classification evaluation methodol-
ogy by Xian et al. (2017) to the multi-label setting.

In this paper, we propose and evaluate a neural
architecture suitable for handling few- and zero-
shot labels in the multi-label setting where the out-
put label space satisfies two constraints: (1). the
labels are connected forming a DAG and (2). each
label has a brief natural language descriptor. These
assumptions hold in several multi-label scenar-
ios including assigning diagnoses/procedures to
EMRs, indexing biomedical articles with medical
subject headings, and patent classification. Tak-
ing advantage of this prior knowledge on labels is
vital for zero-shot prediction. Specifically, using
the EMR coding use-case, we make the following
contributions:

1. We overcome issues arising from processing
long documents by introducing a new neural
architecture that expands on recent attention-
based CNNs (ACNNs (Mullenbach et al.,
2018)). Our model learns to predict few- and
zero-shot labels by matching discharge sum-
maries in EMRs to feature vectors for each
label obtained by exploiting structured label
spaces with graph CNNs (GCNNs (Kipf and
Welling, 2017)).

2. We provide a fine-grained evaluation of state-
of-the-art EMR coding methods for frequent,
few-shot, and zero-shot labels. By evaluating
power-law datasets using an extended gen-
eralized zero-shot methodology that also in-
cludes few-shot labels, we present a nuanced
analysis of model performance on infrequent
labels.

2 Related Work

Large-Scale Text Classification. Linear meth-
ods have been successfully applied to large-scale
problems (Tang et al., 2009; Papanikolaou et al.,
2015; Rios and Kavuluru, 2015). For traditional
micro- and macro-F1 measures, Tang et al. (2009)
show that linear methods suffer using naive thresh-
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olding strategies because infrequent labels gener-
ally need a smaller threshold. Generative models
have also been promising for datasets with many
labels (Rubin et al., 2012). Intuitively, by us-
ing a prior distribution over the label space, in-
frequent labels can be modeled better. Finally,
large-scale classification is also pursued as “ex-
treme classification” (Yu et al., 2014; Bhatia et al.,
2015) where the focus is on ranking measures that
ignore infrequent labels. Neural networks (NNs)
perform well for many small-scale classification
tasks (Kim, 2014; Kalchbrenner et al., 2014). Re-
cently, researchers have been exploring NN meth-
ods for large-scale problems. Yang et al. (2016)
develop a hierarchical attentive NN for datasets
with over a million documents, but their datasets
contain few labels. Nam et al. (2014) show that
feed-forward NNs can be successfully applied to
large-scale problems through the use of a multi-
label binary cross-entropy loss function. Vani et al.
(2017) introduce a grounded recurrent neural net-
work (RNN) that iteratively updates its predictions
as it processes a document word-by-word. Baumel
et al. (2018) experiment with both CNNs and
RNNs for medical coding. Finally, Mullenbach
et al. (2018) expand on prior ACNNs (Yang et al.,
2016; Allamanis et al., 2016) to develop a label-
wise attention framework where the most infor-
mative ngrams are extracted for each label in the
dataset. Our attention mechanism extends their
work to the zero-shot setting.

Few-Shot and Zero-Shot Learning. While
neural networks are generally considered to need
large datasets, they have been shown to work well
on few-shot classification tasks. To handle in-
frequent labels, most NN methods use a k-NN-
like approach. Siamese NNs (Koch et al., 2015)
learn a nonlinear distance metric using a pair-
wise loss function. Matching networks (Vinyals
et al., 2016) introduce an instance-level attention
method to find relevant neighbors. Prototypical
Networks (Snell et al., 2017) average all instances
in each class to form “prototype label vectors”
and train using a traditional cross-entropy loss.
In our prior work (Rios and Kavuluru, 2018), we
combine matching networks with a sophisticated
thresholding strategy. However, in Rios and Kavu-
luru (2018) we did not explore the few- and zero-
shot settings.

Zero-shot learning has not been widely ex-
plored in the large-scale multi-label classification

scenario. Like neural few-shot methods, neural
zero-shot methods use a matching framework. In-
stead of matching input instances with other in-
stances, they are matched to predefined label vec-
tors. For example, the Attributes and Animals
Dataset (Xian et al., 2017) contains images of an-
imals and the label vectors consist of features de-
scribing the types of animals (e.g., stripes: yes).
When feature vectors for labels are not available,
the average of the pretrained word embeddings of
the class names have been used. The attribute la-
bel embedding method (Akata et al., 2016) uses a
pairwise ranking loss to match zero-shot label vec-
tors to instances. Romera-Paredes and Torr (2015)
introduced the “embarrassingly simple zero-shot
learning” (ESZSL) method which is trained us-
ing a mean squared error loss. A few zero-shot
methods do not translate well to multi-label prob-
lems. CONSE (Mikolov et al., 2013) averages
the embeddings for the top predicted supervised
label vectors to match to zero-shot label vectors.
CONSE assumes that both supervised and zero-
shot labels cannot be assigned to the same in-
stance. In this paper, we expand on the gen-
eralized zero-shot evaluation methodology intro-
duced by Xian et al. (2017) to large-scale multi-
label classification. Finally, it is important to note
that zero-shot classification has been previously
studied in the multi-label setting (Mensink et al.,
2014). However, they focus on image classifica-
tion and use datasets with around 300 labels.

Graph Convolutional Neural Networks. GC-
NNs generalize CNNs beyond 2d and 1d
spaces. Defferrard et al. (2016) developed spec-
tral methods to perform efficient graph convolu-
tions. Kipf and Welling (2017) assume a graph
structure is known over input instances and ap-
ply GCNNs for semi-supervised learning. GCNNs
are applied to relational data (e.g., link prediction)
by Schlichtkrull et al. (2018). GCNNs have also
had success in other NLP tasks such as semantic
role labeling (Marcheggiani and Titov, 2017), de-
pendency parsing (Strubell and McCallum, 2017),
and machine translation (Bastings et al., 2017).

There are three GCNN papers that share simi-
larities with our work. (i) Peng et al. (2018) use a
GCNN on a word co-occurrence graph for large-s-
cale text classification where the GCNN operates
on documents/words, while our GCNN operates
on the labels. (ii) Chen et al. (2017) use GC-
NNs on structured label spaces. However, their
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Figure 2: This figure provides a visual overview of our method. Intuitively, our method has two main components.
The first component is a CNN that operates operates on the EMRs. The other component is a 2-layer GCNN which
creates the label-specific attention vectors and label-vectors used for ranking using ICD-9 descriptions as input.

experiments focus on smaller label spaces and do
not handle/assess zero-shot and few-shot labels.
Also, their experiments for text classification do
not incorporate attention and simply use an aver-
age of word vectors to represent each document.
(iii) Wang et al. (2018) propose a zero-shot GCNN
image classification method for structured multi-
-class problems. We believe their method may
transfer to the multi-label text classification setting
but exact modifications to affect that are not clear
(i.e., their semi-supervised approach may not be
directly applicable). Likewise, porting to text is
nontrivial for long documents.

3 Method

Figure 2 shows the overall schematic of our archi-
tecture. Intuitively, we incorporate four main com-
ponents. First, we assume we have the full English
descriptor/gloss for each label we want to predict.
We form a vector representation for each label by
averaging the word embeddings for each word in
its descriptor. Second, the label vectors formed
from the descriptor are used as attention vectors
(label-wise attention) to find the most informative
ngrams in the document for each label. For each
label, this will produce a separate vector repre-
sentation of the input document. Third, the label
vectors are passed through a two layer GCNN to
incorporate hierarchical information about the la-
bel space. Finally, the vectors returned from the
GCNN are matched to the document vectors to

generate predictions.

Convolutional Neural Network. Contrary to
prior CNN methods for text (Kim, 2014), instead
of using a max-over-time pooling layer, we learn
to find relevant ngrams in a document for each
label via label-wise attention (Mullenbach et al.,
2018). The CNN will return a document feature
matrix D ∈ R(n−s+1)×u where each column of D
is a feature map, u is the total number of convolu-
tion filters, n is the number of words in the docu-
ment, and s is the width of convolution filters.

Label Vectors. To be able to predict labels that
were not in the training dataset, we avoid learn-
ing label specific parameters. We use the label
descriptors to generate a feature vector for each la-
bel. First, to preprocess each descriptor, we lower-
case all words and remove stop-words. Next, each
label vector is formed by averaging the remaining
words in the descriptor

vi =
1

|N |
∑
j∈N

wj , i = 1, . . . , L, (1)

where vi ∈ Rd, L is the number of labels, and N
is the index set of the words in the descriptor. Prior
zero-shot work has focused on projecting input in-
stances into the same semantic space as the label
vectors (Sandouk and Chen, 2016). For zero-shot
image classification, this is a non-trivial task. Be-
cause we work with textual data, we simply share
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the word embeddings between the convolutional
layer and the label vector creation step to form vi.

Label-Wise Attention. Similar to the work
by Mullenbach et al. (2018), we employ label-wise
attention to avoid the needle in the haystack situa-
tion encountered with long documents. The issue
with simply using a single attention vector or using
max-pooling is that we assume a single vector can
capture everything required to predict every label.
For example, with a single attention, we would
only look at one spot in the document and assume
that spot contains the relevant information needed
to predict all labels. In the multi-class setting, this
assumption is plausible. However, for large multi-
label problems, the relevant information for each
label may be scattered throughout the document
– the problem is worse when the documents are
very long. Using label-wise attention, our model
can focus on different sections. We also need to
find relevant information for zero-shot classes. So
we use the label vectors vi rather than learning la-
bel specific attention parameters. First, we pass
the document feature matrix D through a simple
feed-forward neural network

D2 = tanh(DWb + bb)

where Wb ∈ Ru×d and bb ∈ Rd. This mapping is
important because the dimensionality of the ngram
vectors (rows) in D depends on u, the number of
scores we generate for each ngram. Given D2, we
generate the label-wise attention vector

ai = softmax(D2 vi), i = 1, . . . , L, (2)

where ai ∈ Rn−s+1 measures how informative
each ngram is for the i-th label. Finally, we use
D, and generate L label-specific document vector
representations

ci = aTi D, i = 1, . . . , L,

such that ci ∈ Ru. Intuitively, ci is the weighted
average of the rows in D forming a vector repre-
sentation of the document for the i-th label.

GCNN Output Layer. Traditionally, the output
layer of a CNN would learn label specific param-
eters optimized via a cross-entropy loss. Instead,
our method attempts to match documents to their
corresponding label vectors. In essence, this be-
comes a retrieval problem. Before using each doc-
ument representation ci to score its corresponding

label, we take advantage of the structured knowl-
edge we have over our label space using a 2-layer
GCNN. For both the MIMIC II and MIMIC III
datasets, this information is hierarchical. A snip-
pet of the hierarchy can be found in Figure 2.

Starting with the label vectors vi, we combine
the label vectors of the children and parents for the
i-th label to form

v1
i = f(W1vi+

∑
j∈Np

W1
pvj

|Np|
+

∑
j∈Nc

W1
cvj

|Nc|
+b1

g)

where W1 ∈ Rq×d, W1
p ∈ Rq×d, W1

c ∈ Rq×d,
b1
g ∈ Rq, f is the rectified linear unit (Nair and

Hinton, 2010) function, and Nc (Np) is the index
set of the i-th label’s children (parents). We use
different parameters to distinguish each edge type.
In this paper, given we only deal with hierarchies,
the edge types include edges from parents, from
children, and self edges. This can be adapted to
arbitrary DAGs, where parent edges represent all
incoming edges and the child edges represent all
outgoing edges for each node.

The second layer follows the same formulation
as the first layer with

v2
i = f(W2v1

i +
∑
j∈Np

W2
pv

1
j

|Np|
+

∑
j∈Nc

W2
cv

1
j

|Nc|
+b2

g)

where W2 ∈ Rq×q, W2
p ∈ Rq×q, W2

c ∈ Rq×q,
and b2

g ∈ Rq. Next, we concatenate both the av-
eraged description vector (from equation (1)) with
the GCNN label vector to form

v3
i = vi || v2

i ,

where v3
i ∈ Rd+q. Now, to compare the final label

vector v3
i with its document vector ci, we trans-

form the document vector into

ei = ReLU(Woci + bo), i = 1, . . . , L,

where Wo ∈ R(q+d)×u and bo ∈ Rq+d. This
transformation is required to match the dimension
to that of v3

i . Finally, the prediction for each label
i is generated via

ŷi = sigmoid(eTi v3
i ), i = 1, . . . , L.

During experiments, we found that using either the
output layer GCNN or a separate GCNN for the
attention vectors (equation (2)) did not result in an
improvement and severely slowed convergence.
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Training. We train our model using a multi-
label binary cross-entropy loss (Nam et al., 2014)

L =

L∑
i=1

[
− yi log(ŷi)− (1− yi) log(1− ŷi)

]
,

where yi ∈ {0, 1} is the ground truth for the i-th
label and ŷi is our sigmoid score for the i-th label.

4 Experiments

In this paper, we use two medical datasets for
evaluation purposes: MIMIC II (Jouhet et al.,
2012) and MIMIC III (Johnson et al., 2016).
Both datasets contain discharge summaries anno-
tated with a set of ICD-9 diagnosis and proce-
dure labels. Discharge summaries are textual doc-
uments consisting of, but not limited to, physi-
cian descriptions of procedures performed, diag-
noses made, the patient’s medical history, and dis-
charge instructions. Following a generalized zero-
shot learning evaluation methodology (Xian et al.,
2017), we split the ICD-9 labels into three groups
based on frequencies in the training dataset: The
frequent group S that contains all labels that oc-
cur > 5 times, the few-shot group F that contains
labels that occur between 1 and 5 times, and the
zero-shot group Z of labels that never occur in the
training dataset, but occur in the test/dev sets. The
groups are only used for evaluation. That is, dur-
ing training, systems are optimized over all labels
simultaneously. Instances that do not contain few-
or zero-shot classes are removed from their re-
spective groups during evaluation. This grouping
is important to assess how each model performs
across labels grouped by label frequency. Our
evaluation methodology differs from that of Xian
et al. (2017) in two ways. First, because each in-
stance is labeled with multiple labels, the same
instance can appear in all groups — S, F, and Z.
Second, instead of top-1 accuracy or HIT@k eval-
uation measures, we focus on R@k to handle mul-
tiple labels. At a high level, we want to examine
whether a model can distinguish the correct few-
shot (zero-shot) labels from the set of all few-shot
(zero-shot) labels. Therefore, the R@k measures
in Tables 2 and 3, and Figure 3 are computed rela-
tive to each group.

Evaluation Measures. The overall statistics for
these two datasets are reported in Table 1. For
reproducibility purposes, we use the same train-
ing/test splits of the MIMIC II as Perotte et al.

# Labels
Dataset # Train # Test S F Z

MIMIC II 18822 1711 3228 3459 355
MIMIC III 37016 1356 4403 4349 178

Table 1: Dataset statistics for MIMIC II and
MIMIC III.

(2013). Following the procedures in Perotte et al.
(2013) and Vani et al. (2017), for each diagnosis
and procedure label assigned to each medical re-
port, we add its parents using the ICD-9 hierarchy.
Each report in MIMIC II is annotated with nearly
37 labels on average using hierarchical label ex-
pansion.

MIMIC III does not contain a standardized
training/test split. Therefore, we create our own
split that ensures the same patient does not appear
in both the training and test datasets. Unlike the
MIMIC II dataset, we do not augment the labels
using the ICD-9 hierarchy. The ICD-9 hierarchy
has three main levels. For MIMIC III, level 0 la-
bels make up about 5% of all occurrences, level 1
labels make up about 62%, and level 2 (leaf level)
labels make up about 33%. Also, each MIMIC III
instance contains16 ICD-9 labels on average.

ICD-9 Structure and Descriptors. The Inter-
national Classification of Diseases (ICD) contains
alphanumeric diagnosis and procedure codes that
are used by hospitals to standardize their billing
practices. In the following experiments, we use
the 9th edition of the ICD1. Each ICD-9 identifier
contains between 3 to 5 alphanumeric characters
of the form abc.xy. The alphanumeric structure
defines a simple hierarchy over all ICD-9 codes.
For example, “systolic heart failure” (428.2) and
“diastolic heart failure” (428.3) are both children
of the “heart failure” code 428. Furthermore, se-
quential codes are grouped together. For instance,
numeric codes in the range 390-459 contain “Dis-
eases of the Circulatory System”. Furthermore,
each code, including groups of codes (390-459),
contain short descriptors, where the average de-
scriptor length contains seven words2. In this
work, we use both the group descriptors and in-

1The US transitioned from ICD-9 to ICD-10 in 2015. Un-
fortunately, at the time of publication, large publicly available
ICD-10 EMR datasets are unavailable.

2The descriptors and hierarchy used in this paper can be
found at https://bioportal.bioontology.org/
ontologies/ICD9CM

https://bioportal.bioontology.org/ontologies/ICD9CM
https://bioportal.bioontology.org/ontologies/ICD9CM
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S F Z Harmonic Average
R@5 R@10 R@5 R@10 R@5 R@10 R@5 R@10

Random 0.000 0.000 0.000 0.000 0.011 0.032 0.000 0.000

Logistic (Vani et al., 2017) * 0.137 0.247 0.001 0.003 – – – –
CNN (Baumel et al., 2018) * 0.138 0.250 0.050 0.082 – – – –
ACNN (Mullenbach et al., 2018) * 0.138 0.255 0.046 0.081 – – – –
Match-CNN (Rios and Kavuluru, 2018) 0.137 0.247 0.031 0.042 – – – –

ESZSL + W2V 0.074 0.119 0.008 0.017 0.080 0.172 0.020 0.041
ESZSL + W2V 2 0.050 0.086 0.025 0.044 0.103 0.189 0.043 0.076
ESZSL + GRALS 0.135 0.238 0.081 0.123 0.085 0.136 0.095 0.152

ZACNN 0.135 0.245 0.103 0.149 0.147 0.221 0.128 0.205
ZAGCNN 0.135 0.247 0.130 0.185 0.269 0.362 0.160 0.246

Table 2: MIMIC II results across frequent (S), few-shot (F), and zero-shot (Z) groups. We mark prior methods for
MIMIC datasets that we implemented with a *.

S F Z Harmonic Average
R@5 R@10 R@5 R@10 R@5 R@10 R@5 R@10

Random 0.000 0.000 0.000 0.000 0.038 0.052 0.000 0.000

Logistic (Vani et al., 2017) * 0.273 0.427 0.014 0.014 – – – –
CNN (Baumel et al., 2018) * 0.269 0.413 0.058 0.085 – – – –
ACNN (Mullenbach et al., 2018) * 0.288 0.458 0.130 0.168 – – – –
Match-CNN (Rios and Kavuluru, 2018) 0.278 0.426 0.049 0.060 – – – –

ESZSL + W2V 0.135 0.191 0.031 0.051 0.157 0.257 0.065 0.105
ESZSL + W2V 2 0.127 0.189 0.031 0.048 0.148 0.305 0.063 0.102
ESZSL + GRALS 0.256 0.393 0.033 0.060 0.076 0.138 0.064 0.114

ZACNN 0.278 0.435 0.152 0.195 0.364 0.442 0.232 0.310
ZAGCNN 0.283 0.445 0.166 0.216 0.428 0.495 0.252 0.337

Table 3: MIMIC III results across frequent (S), few-shot (F), and zero-shot (Z) groups. We mark prior methods for
MIMIC datasets that we implemented with a *.

dividual descriptors as input to the GCNN. At test
time, we ignore the group codes.

Implementation Details. For the CNN com-
ponent of our model, we use 300 convolution
filters with a filter size of 10. We use 300 dimen-
sional word embeddings pretrained on PubMed
biomedical article titles and abstracts. To avoid
overfitting, we use dropout directly after the em-
bedding layer with a rate of 0.2. For training we
use the ADAM (Kingma and Ba, 2015) optimizer
with a minibatch size of 8 and a learning rate
of 0.001. q, the GCNN hidden layer size, is set
to 300. The code for our method is available
at https://github.com/bionlproc/
multi-label-zero-shot.

Thresholding has a large influence on traditional
multi-label evaluation measures such as micro-F1
and macro-F1 (Tang et al., 2009). Hence, we re-
port both recall at k (R@k) and precision at k

(P@k) which do not require a specific threshold.
R@k is preferred for few- and zero-shot labels,
because P@k quickly goes to zero as k increases
and gets bigger than the number of group specific
labels assigned to each instance. Furthermore, for
medical coding, these models are typically used as
a recommendation engine to help coders. Unless
a label appears at the top of the ranking, the anno-
tator will not see it. Thus, ranking metrics better
measure the usefulness of our systems.

Baseline Methods. For the frequent and few-
shot labels we compare to state-of-the-art meth-
ods on the MIMIC II and MIMIC III datasets in-
cluding ACNN (Mullenbach et al., 2018) and a
CNN method introduced in Baumel et al. (2018).
We also compare with the L1 regularized logistic
regression model used in Vani et al. (2017). Fi-
nally, we compare against our prior EMR coding
method, Match-CNN (Rios and Kavuluru, 2018).

https://github.com/bionlproc/multi-label-zero-shot
https://github.com/bionlproc/multi-label-zero-shot
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P@10 R@10 Macro-F1

CNN 0.562 0.407 0.028
ACNN 0.624 0.452 0.068
Match-CNN 0.561 0.415 0.033
ZACNN 0.577 0.429 0.037
ZAGCNN 0.587 0.439 0.038

Table 4: P@k, R@k, and macro-F1 results over all la-
bels (the union of S, F, and Z).

For zero-shot learning, we compare our results
with ESZSL (Romera-Paredes and Torr, 2015).
To use ESZSL, we must specify feature vectors
for each label. For zero-shot methods, the label
vectors used are crucial regardless of the learning
method used. Therefore, we evaluate ESZSL with
three different sets of label vectors. We average
200 dimensional ICD-9 descriptor word embed-
dings generated by Pyysalo et al. (2013) which are
pretrained on PubMed, Wikipedia, and PubMed
Central (ESZSL + W2V). We lowercased descrip-
tors and removed stop-words. We also compare
with label vectors derived from our own 300 di-
mensional embeddings (ESZSL + W2V 2) pre-
trained on PubMed indexed titles and abstracts.
Finally, we generate label vectors using the ICD-9
hierarchy. Specifically, let Y ∈ RN×L be the doc-
ument label matrix where N is the total number
of documents. We factorize Y into two matrices
U ∈ RN×300 and V ∈ R300×L using graph reg-
ularized alternating least squares (GRALS) (Rao
et al., 2015). Finally, we also report a baseline
using a random ordering on labels, which is im-
portant for zero-shot labels — because the total
number of such labels is small, the chance that the
correct label is in the top k is higher compared to
few-shot and frequent labels.

We compare two variants of our method: zero-
shot attentive GCNN (ZAGCNN), which is the full
method described in Section 3 and a simpler vari-
ant without the GCNN layers, zero-shot attentive
CNN (ZACNN)3.

Results. Table 2 shows the results for MIMIC II.
Because the label set for each medical record is
augmented using the ICD-9 hierarchy, we expect
methods that use the hierarchy to have an advan-

3We name our methods with the “zero-shot” prefix be-
cause they are primarily designed for such scenarios, al-
though as we show later that these methods are effective for
both few-shot and frequent labels
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Figure 3: This graph plots the MIMIC III R@k for few-
shot (F) labels at different k values.

tage. Table 2 results do not rely on thresholding
because we evaluate using the relative ranking of
groups with similar frequencies. ACNN performs
best on frequent labels. For few-shot labels, ZA-
GCNN outperforms ACNN by over 10% in R@10
and by 8% in R@5; compared to these R@k gains
for few-shot labels, our loss on frequent labels is
minimal (< 1%). We find that the word embed-
ding derived label vectors work best for ESZSL
on zero-shot labels. However, this setup is out-
performed by GRALS derived label vectors on the
frequent and few-shot labels. On zero-shot labels,
ZAGCNN outperforms the best ESZSL variant by
over 16% for both R@5 and R@10. Also, we find
that the GCNN layers help both few- and zero-
shot labels. Finally, similar to the setup in Xian
et al. (2017), we also compute the harmonic av-
erage across all R@5 and all R@10 scores. The
metric is only computed for methods that can pre-
dict zero-shot classes. We find that ZAGCNN out-
performs ZACNN by 4% for R@10.

We report the MIMIC III results in Table 3.
Unlike for MIMIC II, the label sets were not ex-
panded using the ICD-9 hierarchy. Yet, we find
substantial improvements on both few- and zero-
shot labels using a GCNN. ZAGCNN outperforms
ACNN by almost 5% and ZACNN by 1% in
R@10 on few-shot classes. However, ACNN still
outperforms all other methods on frequent labels,
but by only 0.3% when compared with ZAGCNN.
For zero-shot labels, ZAGCNN outperforms ZA-
CNN by over 5% and outperforms the best ES-
ZSL method by nearly 20% in R@10. We find
that ZACNN slightly underperforms ZAGCNN on
frequent labels with more prominent differences
showing up for infrequent labels.

In Table 4 we compare the P@10, R@10, and
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macro-F1 measures across all three groups (the
union of S, F , and Z) on the MIMIC III dataset.
We emphasize that the evaluation metrics are cal-
culated over all labels and are not averages of the
metrics computed independently for each group.
We find that R@10 is nearly equivalent to the
R@10 on the frequent group in Table 3. Further-
more, we find that ACNN outperforms ZAGCNN
in P@10 by almost 4%. To compare all meth-
ods with respect to macro-F1, we simply threshold
each label at 0.5. Both R@k and P@k give more
weight to frequent labels, thus it is expected that
ACNN outperforms ZAGCNN for frequent labels.
However, we also find that ACNN outperforms our
methods with respect to Macro-F1.

Given macro-F1 equally weights all labels, does
the higher macro score mean ACNN performs bet-
ter across infrequent labels? In Figure 3, we plot
the MIMIC III R@k for the neural methods with
k ranging from 1 to 100. We find as k increases,
the differences between ZAGCNN and ACNN be-
come more evident. Given Figure 3 and the scores
in Table 3, it is clear that ACNN does not per-
form better than ZAGCNN with respect to few-
and zero-shot labels. The improvement in macro-
F1 for ACNN is because it performs better on fre-
quent labels. In general, infrequent labels will
have scores much less than 0.5. If we rank all
labels (S ∪ F ∪ Z), we find that few-shot labels
only occur among the top 16 ranked labels (aver-
age number of labels for MIMIC III) for 6% of the
test documents that contain them. This suggests
that many frequent irrelevant labels have higher
scores than the correct few-shot label.

Why do the rankings among few- and zero-shot
labels matter if they are rarely ranked above irrel-
evant frequent labels? If we can predict which in-
stances contain infrequent labels (novelty detec-
tion), then we can help human coders by provid-
ing them with multiple recommendation lists — a
list of frequent labels and a list of infrequent/zero-
shot labels. Also, while we would ideally want a
single method that performs best for both frequent
and infrequent labels, currently we find that there
is a trade-off between them. Hence it may be rea-
sonable to use different methods in combination
depending on label frequency.

5 Conclusion and Future Work

In this paper, we performed a fine-grained evalu-
ation of few- and zero-shot label learning in the

large-scale multi-label setting. We also introduced
a neural architecture that incorporates label de-
scriptors and the hierarchical structure of the label
spaces for few- and zero-shot prediction. For these
infrequent labels, previous evaluation methodolo-
gies do not provide a clear picture about what
works. By evaluating power-law datasets using
a generalized zero-shot learning methodology, we
provide a staring point toward a better understand-
ing. Our proposed architecture also provides large
improvements on infrequent labels over state-of-
the-art automatic medical coding methods.

We believe there are two important avenues for
future work.

1. For medical coding, a wealth of unstructured
domain expertise is available in biomedical
research articles indexed by PubMed. These
articles are annotated with medical subject
headings (MeSH terms), which are organized
in a hierarchy. Relationships between MeSH
terms and ICD-9 codes are available in Uni-
fied Medical Language System (UMLS (Bo-
denreider, 2004)). If we can take advantage
of all this structured and unstructured infor-
mation via methods such as transfer learning
or multi-task learning, then we may be able
to predict infrequent labels better.

2. For our method to be useful for human
coders, it is important to develop an accurate
novelty detector. We plan to study methods
for determining if an instance contains an in-
frequent label and if it does, how many in-
frequent labels it should be annotated with.
In essence, this is an extension of the Meta-
Labeler (Tang et al., 2009) methodology and
open classification (Shu et al., 2017). If we
can predict if an instance contains infrequent
labels, then we can recommend few- and
zero-shot labels only when necessary.
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