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Abstract

We propose an end-to-end deep learning
model for translating free-form natural lan-
guage instructions to a high-level plan for
behavioral robot navigation. The proposed
model uses attention mechanisms to connect
information from user instructions with a topo-
logical representation of the environment. To
evaluate this model, we collected a new dataset
for the translation problem containing 11,051
pairs of user instructions and navigation plans.
Our results show that the proposed model
outperforms baseline approaches on the new
dataset. Overall, our work suggests that a
topological map of the environment can serve
as a relevant knowledge base for translating
natural language instructions into a sequence
of navigation behaviors.

1 Introduction

Enabling robots to follow navigation instructions
in natural language can facilitate human-robot in-
teraction across a variety of applications. For in-
stance, within the service robotics domain, robots
can follow navigation instructions to help with
mobile manipulation (Tellex et al., 2011) and de-
livery tasks (Veloso et al., 2015).

Interpreting navigation instructions in natural
language is difficult due to the high variabil-
ity in the way people describe routes (Chen and
Mooney, 2011). For example, there are a variety
of ways to describe the route in Fig. 1(a):

– “Exit the room, turn right, follow the corri-
dor until you pass a vase on your left, and
enter the next room on your left”; or

– “Turn right after you exit the room, and enter
the room on the left right before the end of the
corridor”; or

– “Advance forward to the right after going out
of the door. Enter the room which is in the
middle of two vases on your left.”

∗Both authors contributed equally to this work.

Each fragment of a sentence within these instruc-
tions can be mapped to one or more than one navi-
gation behaviors. For instance, assume that a robot
counts with a number of primitive, navigation be-
haviors, such as “enter the room on the left (or on
right)” , “follow the corridor”, “cross the inter-
section”, etc. Then, the fragment “advance for-
ward” in a navigation instruction could be inter-
preted as a “follow the corridor” behavior, or as
a sequence of “follow the corridor” interspersed
with “cross the intersection” behaviors depend-
ing on the topology of the environment. Resolving
such ambiguities often requires reasoning about
“common-sense” concepts, as well as interpreting
spatial information and landmarks, e.g., in sen-
tences such as “the room on the left right before
the end of the corridor” and “the room which is in
the middle of two vases”.

In this work, we pose the problem of inter-
preting navigation instructions as finding a map-
ping (or grounding) of the commands into an ex-
ecutable navigation plan. While the plan is typ-
ically modeled as a formal specification of low-
level motions (Chen and Mooney, 2011) or a
grammar (Artzi and Zettlemoyer, 2013; Matuszek
et al., 2010), we focus specifically on translating
instructions to a high-level navigation plan based
on a topological representation of the environ-
ment. This representation is a behavioral navi-
gation graph, as recently proposed by (Sepúlveda
et al., 2018), designed to take advantage of the se-
mantic structure typical of human environments.
The nodes of the graph correspond to semanti-
cally meaningful locations for the navigation task,
such as kitchens or entrances to rooms in corri-
dors. The edges are parameterized, visuo-motor
behaviors that allow a robot to navigate between
neighboring nodes, as illustrated in Fig. 1(b). Un-
der this framework, complex navigation routes can
be achieved by sequencing behaviors without an
explicit metric representation of the world.
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Figure 1: Map of an environment (a), its (partial) behavioral navigation graph (b), and the problem setting of interest (c). The
red part of (b) corresponds to the representation of the route highlighted in blue in (a). The codes “oo-left”, “oo-right”, “cf”,
“left-io”, and “right-io” correspond to the behaviors “go out and turn left”, “go out and turn right”, “follow the corridor”, “enter
the room on left”, and “enter office on right”, respectively.

We formulate the problem of following instruc-
tions under the framework of (Sepúlveda et al.,
2018) as finding a path in the behavioral naviga-
tion graph that follows the desired route, given a
known starting location. The edges (behaviors)
along this path serve to reach the – sometimes im-
plicit – destination requested by the user. As in
(Zang et al., 2018), our focus is on the problem of
interpreting navigation directions. We assume that
a robot can realize valid navigation plans accord-
ing to the graph.

We contribute a new end-to-end model for fol-
lowing directions in natural language under the be-
havioral navigation framework. Inspired by the
information retrieval and question answering lit-
erature (Lewis and Jones, 1996; Seo et al., 2017;
Xiong et al., 2016; Palangi et al., 2016), we pro-
pose to leverage the behavioral graph as a knowl-
edge base to facilitate the interpretation of naviga-
tion commands. More specifically, the proposed
model takes as input user directions in text form,
the behavioral graph of the environment encoded
as 〈node;edge;node〉 triplets, and the initial
location of the robot in the graph. The model then
predicts a set of behaviors to reach the desired des-
tination according to the instructions and the map
(Fig. 1(c)). Our main insight is that using atten-
tion mechanisms to correlate navigation instruc-
tions with the topological map of the environment
can facilitate predicting correct navigation plans.

This work also contributes a new dataset of
11, 050 pairs of free-form natural language in-
structions and high-level navigation plans. This
dataset was collected through Mechanical Turk
using 100 simulated environments with a corre-
sponding topological map and, to the best of our
knowledge, it is the first of its kind for behavioral

navigation. The dataset opens up opportunities to
explore data-driven methods for grounding navi-
gation commands into high-level motion plans.

We conduct extensive experiments to study the
generalization capabilities of the proposed model
for following natural language instructions. We in-
vestigate both generalization to new instructions
in known and in new environments. We conclude
this paper by discussing the benefits of the pro-
posed approach as well as opportunities for future
research based on our findings.

2 Related work

This section reviews relevant prior work on fol-
lowing navigation instructions. Readers interested
in an in-depth review of methods to interpret spa-
tial natural language for robotics are encouraged
to refer to (Landsiedel et al., 2017).

Typical approaches to follow navigation com-
mands deal with the complexity of natural lan-
guage by manually parsing commands, constrain-
ing language descriptions, or using statistical ma-
chine translation methods. While manually pars-
ing commands is often impractical, the first type
of approaches are foundational: they showed that
it is possible to leverage the compositionality of
semantic units to interpret spatial language (Bug-
mann et al., 2004; Levit and Roy, 2007).

Constraining language descriptions can reduce
the size of the input space to facilitate the inter-
pretation of user commands. For example, (Tal-
bot et al., 2016) explored using structured, sym-
bolic language phrases for navigation. As in this
earlier work, we are also interested in navigation
with a topological map of the environment. How-
ever, we do not process symbolic phrases. Our aim
is to translate free-form natural language instruc-
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tions to a navigation plan using information from a
high-level representation of the environment. This
translation problem requires dealing with missing
actions in navigation instructions and actions with
preconditions, such as “at the end of the corridor,
turn right” (MacMahon et al., 2006).

Statistical machine translation (Koehn, 2009) is
at the core of recent approaches to enable robots
to follow navigation instructions. These meth-
ods aim to automatically discover translation rules
from a corpus of data, and often leverage the fact
that navigation directions are composed of sequen-
tial commands. For instance, (Wong and Mooney,
2006; Matuszek et al., 2010; Chen and Mooney,
2011) used statistical machine translation to map
instructions to a formal language defined by a
grammar. Likewise, (Kollar et al., 2010; Tellex
et al., 2011) mapped commands to spatial descrip-
tion clauses based on the hierarchical structure
of language in the navigation problem. Our ap-
proach to machine translation builds on insights
from these prior efforts. In particular, we focus on
end-to-end learning for statistical machine trans-
lation due to the recent success of Neural Net-
works in Natural Language Processing (Goodfel-
low et al., 2016).

Our work is inspired by methods that reduce the
task of interpreting user commands to a sequential
prediction problem (Shimizu and Haas, 2009; Mei
et al., 2016; Anderson et al., 2018). Similar to Mei
et al. and Anderson et al., we use a sequence-to-
sequence model to enable a mobile agent to follow
routes. But instead leveraging visual information
to output low-level navigation commands, we fo-
cus on using a topological map of the environment
to output a high-level navigation plan. This plan
is a sequence of behaviors that can be executed by
a robot to reach a desired destination (Sepúlveda
et al., 2018; Zang et al., 2018).

We explore machine translation from the per-
spective of automatic question answering. Follow-
ing (Seo et al., 2017; Xiong et al., 2016), our ap-
proach uses attention mechanisms to learn align-
ments between different input modalities. In our
case, the inputs to our model are navigation in-
structions, a topological environment map, and the
start location of the robot (Fig. 1(c)). Our results
show that the map can serve as an effective source
of contextual information for the translation task.
Additionally, it is possible to leverage this kind of
information in an end-to-end fashion.

3 Problem Formulation

Our goal is to translate navigation instructions in
text form into a sequence of behaviors that a robot
can execute to reach a desired destination from a
known start location. We frame this problem un-
der a behavioral approach to indoor autonomous
navigation (Sepúlveda et al., 2018) and assume
that prior knowledge about the environment is
available for the translation task. This prior knowl-
edge is a topological map, in the form of a behav-
ioral navigation graph (Fig. 1(b)). The nodes of
the graph correspond to semantically-meaningful
locations for the navigation task, and its directed
edges are visuo-motor behaviors that a robot can
use to move between nodes. This formulation
takes advantage of the rich semantic structure be-
hind man-made environments, resulting in a com-
pact route representation for robot navigation.

Fig. 1(c) provides a schematic view of the prob-
lem setting. The inputs are: (1) a navigation graph
m, (2) the starting node s of the robot in m, and
(3) a set of free-form navigation instructions I in
natural language. The instructions describe a path
in the graph to reach from s to a – potentially im-
plicit – destination node g. Using this informa-
tion, the objective is to predict a suitable sequence
of robot behaviors b1, . . . , bT to navigate from s
to g according to I . From a supervised learning
perspective, the goal is then to estimate:

argmax
b1,...,bT

P (b1, . . . , bT |m, s, I) (1)

based on a dataset of input-target pairs
{(xi, yi) | 0 ≤ i ≤ N}, where xi = (m, s, I)i
and yi = (b1, . . . , bT )i, respectively. The sequen-
tial execution of the behaviors b1, . . . , bT should
replicate the route intended by the instructions I .

We assume no prior linguistic knowledge.
Thus, translation approaches have to cope with the
semantics and syntax of the language by discover-
ing corresponding patterns in the data.

3.1 The Behavioral Graph: A Knowledge
Base For Navigation

We view the behavioral graph m as a knowledge
base that encodes a set of navigational rules as
triplets 〈pi; bl[attr]; pj〉, where pi and pj are ad-
jacent nodes in the graph, and the edge bl is an
executable behavior to navigate from pi to pj . In
general, each behaviors includes a list of relevant
navigational attributes attr that the robot might
encounter when moving between nodes.
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Behavior Description
oo<d> Go out of the current place and turn <d>
io<d> Turn <d> and enter the place straight ahead

oio Exit current place and enter straight ahead
<d>t Turn <d> at the intersection

cf Follow (or go straight down) the corridor
sp Go straight at a T intersection

ch<d> Cross the hall and turn <d>

Table 1: Behaviors (edges) of the navigation graphs consid-
ered in this work. The direction <d> can be left or right.

We consider 7 types of semantic locations, 11
types of behaviors, and 20 different types of land-
marks. A location in the navigation graph can be
a room, a lab, an office, a kitchen, a hall, a corri-
dor, or a bathroom. These places are labeled with
unique tags, such as ”room-1” or ”lab-2”, except
for bathrooms and kitchens which people do not
typically refer to by unique names when describ-
ing navigation routes.

Table 1 lists the navigation behaviors that we
consider in this work. These behaviors can be de-
scribed in reference to visual landmarks or objects,
such as paintings, book shelfs, tables, etc. As in
Fig. 1, maps might contain multiple landmarks of
the same type. Please see the supplementary ma-
terial (Appendix A) for more details.

4 Approach

We leverage recent advances in deep learning
to translate natural language instructions to a
sequence of navigation behaviors in an end-to-
end fashion. Our proposed model builds on the
sequence-to-sequence translation model of (Bah-
danau et al., 2015), which computes a soft-
alignment between a source sequence (natural lan-
guage instructions in our case) and the correspond-
ing target sequence (navigation behaviors).

As one of our main contributions, we augment
the neural machine translation approach of Bah-
danau et al. to take as input not only natural lan-
guage instructions, but also the corresponding be-
havioral navigation graph m of the environment
where navigation should take place. Specifically,
at each step, the graph m operates as a knowl-
edge base that the model can access to obtain in-
formation about path connectivity, facilitating the
grounding of navigation commands.

Figure 2 shows the structure of the proposed
model for interpreting navigation instructions.
The model consists of six layers:

Embed layer: The model first encodes each
word and symbol in the input sequences I and

m into fixed-length representations. The instruc-
tions I are embedded into a 100-dimensional pre-
trained GloVe vector (Pennington et al., 2014).
Each of the triplet components, pi, bl[attr], and pj
of the graph m, are one-hot encoded into vectors
of dimensionality 2N +E, where N and E are the
number of nodes and edges in m, respectively.

Encoder layer: The model then uses two bidi-
rectional Gated Recurrent Units (GRUs) (Cho
et al., 2014) to independently process the infor-
mation from I and m, and incorporate contextual
cues from the surrounding embeddings in each se-
quence. The outputs of the encoder layer are the
matrix Ī ∈ RT×2H for the navigational commands
and the matrix Ḡ ∈ RL×2H for the behavioral
graph, where H is the hidden size of each GRU,
T is the number of words in the instruction I , and
L is the number of triplets in the graph m.

Attention layer: Matrices Ī and Ḡ generated
by the encoder layer are combined using an at-
tention mechanism. We use one-way attention
because the graph contains information about the
whole environment, while the instruction has (po-
tentially incomplete) local information about the
route of interest. The use of attention provides
our model with a two-step strategy to interpret
commands. This resembles the way people find
paths on a map: first, relevant parts on the map
are selected according to their affinity to each of
the words in the input instruction (attention layer);
second, the selected parts are connected to assem-
ble a valid path (decoder layer). More formally,
let Ḡi (i ∈ [1, L]) be the i-th row of Ḡ, and Īj
(j ∈ [1, T ]) the j-th row of Ī . We use each en-
coded triplet Ḡi in Ḡ to calculate its associated
attention distribution ai ∈ RT over all the atomic
instructions Īj :

ei = [ḠiWĪᵀ1 , . . . , ḠiWĪᵀT ] (2)

ai = softmax(ei) (3)

where the matrix W ∈ R2H×2H serves to com-
bine the different sources of information Ḡ and Ī .
Each component aij of the attention distributions
ai quantifies the affinity between the i-th triplet in
Ḡ and the j-th word in the corresponding input I .

The model then uses each attention distribution
ai to obtain a weighted sum of the encodings of
the words in Ī , according to their relevance to the
corresponding triplet Ḡi. This results in L atten-
tion vectors Ri ∈ R2H , Ri =

∑T
j=1 aijIj .

The final step in the attention layer concate-
nates each Ri with Ḡi to generate the outputs
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Figure 2: Model overview. The model contains six layers, takes the input of behavioral graph representation, free-form
instruction, and the start location (yellow block marked as START in the decoder layer) and outputs a sequence of behaviors.

Fi = [Ri; Ḡi], i ∈ [1, L]. Following (Seo et al.,
2017), we include the encoded triplet Ḡi in the
output tensor Fi of this layer to prevent early sum-
maries of relevant map information.

FC layer: The model reduces the dimension-
ality of each individual vector Fi from 4H to H
with a fully-connected (FC) layer. The resulting L
vectors are output to the next layer as columns of
a context matrix C ∈ RH×L.

Decoder layer: After the FC layer, the model
predicts likelihoods over the sequence of behav-
iors that correspond to the input instructions with
a GRU network. Without loss of generality, con-
sider the t-th recurrent cell in the GRU network.
This cell takes two inputs: a hidden state vector
ht−1 from the prior cell, and a one-hot embedding
of the previous behavior bt−1 that was predicted
by the model. Based on these inputs, the GRU cell
outputs a new hidden state ht to compute likeli-
hoods for the next behavior. These likelihoods are
estimated by combining the output state ht with
relevant information from the context C:

d̂ts = vᵀa tanh(W1ht + W2Cs) (4)

dt = softmax(d̂t1, . . . , d̂tL) (5)

where W1, W2, and va are trainable parameters.
The attention vector dt ∈ RL in Eq. (5) quanti-
fies the affinity of ht with respect to each of the
columns Cs of C, where s ∈ [1, L]. The attention
vector also helps to estimate a dynamic contextual
vector St =

∑L
s=1 dtsCs that the t-th GRU cell

uses to compute logits for the next behavior:

ot = W3[St;ht] (6)

with W3 trainable parameters. Note that ot in-

cludes a value for each of the pre-defined behav-
iors in the graph m, as well as for a special “stop”
symbol to identify the end of the output sequence.

Output layer: The final layer of the model
searches for a valid sequence of robot behaviors
based on the robot’s initial node, the connectivity
of the graph m, and the output logits from the pre-
vious decoder layer. Again, without loss of gen-
erality, consider the t-th behavior bt that is finally
predicted by the model. The search for this behav-
ior is implemented as:

bt = argmax(softmax(ot + mask(m,nt)))
(7)

with mask(m,nt) a masking function that takes
as input the graph m and the node nt that the robot
reaches after following the sequence of behaviors
b1, . . . , bt−1 previously predicted by the model.
The mask function returns a vector of the same
dimensionality as the logits ot, but with zeros for
the valid behaviors after the last location nt and
for the special stop symbol, and − inf for any in-
valid predictions according to the connectivity of
the behavioral navigation graph.

5 Dataset

We created a new dataset for the problem of fol-
lowing navigation instructions under the behav-
ioral navigation framework of (Sepúlveda et al.,
2018).1 This dataset was created using Amazon
Mechanical Turk and 100 maps of simulated in-
door environments, each with 6 to 65 rooms. To
the best of our knowledge, this is the first bench-

1The dataset is publicly available through the website:
follow-nav-directions.stanford.edu.

follow-nav-directions.stanford.edu.
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Dataset # Single # Double Total
Training 4062 2002 8066

Test-Repeated 944 34 1012
Test-New 962 0 962

Table 2: Dataset statistics. “# Single” indicates the number
of navigation plans with a single natural language instruction.
“# Double” is the number of plans with two different instruc-
tions. The total number of plans is (# Single) × 2(# Double).

mark for comparing translation models in the con-
text of behavioral robot navigation.

As shown in Table 2, the dataset consists of
8066 pairs of free-form natural language instruc-
tions and navigation plans for training. This train-
ing data was collected from 88 unique simulated
environments, totaling 6064 distinct navigation
plans (2002 plans have two different navigation
instructions each; the rest has one). The dataset
contains two test set variants:

1) Test-Repeated: Contains 1012 pairs of instruc-
tions and navigation plans. These routes are not
part of the training set; however, they are collected
using environments that are part of the training set.

2) Test-New: Contains 962 pairs of instructions
and navigation plans. This test set is more chal-
lenging than the Test-Repeated dataset because it
contains new routes on 12 new indoor environ-
ments not included in the training set.

While the dataset was collected with simulated en-
vironments, no structure was imposed on the nav-
igation instructions while crowd-sourcing data.
Thus, many instructions in our dataset are am-
biguous. Moreover, the order of the behaviors in
the instructions is not always the same. For in-
stance, a person said “turn right and advance” to
describe part of a route, while another person said
“go straight after turning right” in a similar sit-
uation. The high variability present in the natu-
ral language descriptions of our dataset makes the
problem of decoding instructions into behaviors
not trivial. See Appendix A of the supplementary
material for additional details on our data collec-
tion effort.

6 Experiments

This section describes our evaluation of the pro-
posed approach for interpreting navigation com-
mands in natural language. We provide both quan-
titative and qualitative results.

6.1 Evaluation Metrics
While computing evaluation metrics, we only con-
sider the behaviors present in the route because
they are sufficient to recover the high-level navi-
gation plan from the graph. Our metrics treat each
behavior as a single token. For example, the sam-
ple plan “R-1 oor C-1 cf C-1 lt C-0 cf C-0 iol O-3”
is considered to have 5 tokens, each correspond-
ing to one of its behaviors (“oor”, “cf”, “lt”, “cf”,
“iol”). In this plan, “R-1”,“C-1”, “C-0”, and “O-
3” are symbols for locations (nodes) in the graph.

We compare the performance of translation ap-
proaches based on four metrics:

- Exact Match (EM). As in (Shimizu and Haas,
2009), EM is 1 if a predicted plan matches exactly
the ground truth; otherwise it is 0.

- F1 score (F1). The harmonic average of the pre-
cision and recall over all the test set (Chinchor and
Sundheim, 1993).

- Edit Distance (ED). The minimum number of
insertions, deletions or swap operations required
to transform a predicted sequence of behaviors
into the ground truth sequence (Navarro, 2001).

- Goal Match (GM). GM is 1 if a predicted plan
reaches the ground truth destination (even if the
full sequence of behaviors does not match exactly
the ground truth). Otherwise, GM is 0.

6.2 Models Used in the Evaluation
We compare the proposed approach for translat-
ing natural language instructions into a navigation
plan against alternative deep-learning models:

Baseline model. The baseline approach is based
on (Shimizu and Haas, 2009). It divides the task
of interpreting commands for behavioral naviga-
tion into two steps: path generation, and path ver-
ification. For path generation, this baseline uses a
standard sequence-to-sequence model augmented
with an attention mechanism, similar to (Bah-
danau et al., 2015; Zang et al., 2018). For path
verification, the baseline uses depth-first search to
find a route in the graph that matches the sequence
of predicted behaviors. If no route matches per-
fectly, the baseline changes up to three behaviors
in the predicted sequence to try to turn it into a
valid path.

Ablation model. To test the impact of using the
behavioral graphs as an extra input to our trans-
lation model, we implemented a version of our
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approach that only takes natural language instruc-
tions as input. In this ablation model, the output
of the bidirectional GRU that encodes the input in-
struction I is directly fed to the decoder layer. This
model does not have the attention and FC layers
described in Sec. 4, nor uses the masking function
in the output layer.

Ablation with mask model. This model is the
same as the previous Ablation model, but with the
masking function in the output layer.

6.3 Implementation Details

We pre-processed the inputs to the various models
that are considered in our experiment. In partic-
ular, we lowercased, tokenized, spell-checked and
lemmatized the input instructions in text-form us-
ing WordNet (Miller, 1995). We also truncated the
graphs to a maximum of 300 triplets, and the navi-
gational instructions to a maximum of 150 words.
Only 6.4% (5.4%) of the unique graphs in the
training (validation) set had more than 300 triplets,
and less than 0.15% of the natural language in-
structions in these sets had more than 150 tokens.

The dimensionality of the hidden state of the
GRU networks was set to 128 in all the experi-
ments. In general, we used 12.5% of the train-
ing set as validation for choosing models’ hyper-
parameters. In particular, we used dropout after
the encoder and the fully-connected layers of the
proposed model to reduce overfitting. Best perfor-
mance was achieved with a dropout rate of 0.5 and
batch size equal to 256. We also used scheduled
sampling (Bengio et al., 2015) at training time for
all models except the baseline.

We input the triplets from the graph to our pro-
posed model in alphabetical order, and consider a
modification where the triplets that surround the
start location of the robot are provided first in the
input graph sequence. We hypothesized that such
rearrangement would help identify the starting lo-
cation (node) of the robot in the graph. In turn, this
could facilitate the prediction of correct output se-
quences. In the remaining of the paper, we refer
to models that were provided a rearranged graph,
beginning with the starting location of the robot,
as models with “Ordered Triplets”.

6.4 Quantitative Evaluation

Table 3 shows the performance of the models con-
sidered in our evaluation on both test sets. The
next two sections discuss the results in detail.

6.4.1 Performance in the Test-Repeated Set
First, we can observe that the final model “Ours
with Mask and Ordered Triplets” outperforms the
Baseline and Ablation models on all metrics in
previously seen environments. The difference in
performance is particularly evident for the Exact
Match and Goal Match metrics, with our model in-
creasing accuracy by 35% and 25% in comparison
to the Baseline and Ablation models, respectively.
These results suggest that providing the behavioral
navigation graph to the model and allowing it to
process this information as a knowledge base in
an end-to-end fashion is beneficial.

We can also observe from Table 3 that the mask-
ing function of Eq. (7) tends to increase perfor-
mance in the Test-Repeated Set by constraining
the output sequence to a valid set of navigation be-
haviors. For the Ablation model, using the mask-
ing function leads to about 10% increase in EM
and GM accuracy. For the proposed model (with
or without reordering the graph triplets), the in-
crease in accuracy is around 4%. Note that the
impact of the masking function is less evident in
terms of the F1 score because this metric considers
if a predicted behavior exists in the ground truth
navigation plan, irrespective of its specific posi-
tion in the output sequence.

The results in the last four rows of Table 3 sug-
gest that ordering the graph triplets can facilitate
predicting correct navigation plans in previously
seen environments. Providing the triplets that sur-
round the starting location of the robot first to the
model leads to a boost of 4% in EM and GM per-
formance. The rearrangement of the graph triplets
also helps to reduce ED and increase F1.

Lastly, it is worth noting that our proposed
model (last row of Table 3) outperforms all other
models in previously seen environments. In partic-
ular, we obtain over 4% increase in EM and GM
between our model and the next best two models.

6.4.2 Performance in the Test-New Set
The previous section evaluated model perfor-
mance on new instructions (and corresponding
navigation plans) for environments that were pre-
viously seen at training time. Here, we examine
whether the trained models succeed on environ-
ments that are completely new.

The evaluation on the Test-New Set helps un-
derstand the generalization capabilities of the
models under consideration. This experiment is
more challenging than the one in the previous sec-
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Model Test-Repeated Set Test-New Set
EM ↑ F1 ↑ ED ↓ GM ↑ EM ↑ F1↑ ED ↓ GM ↑

Baseline 25.30 79.83 2.53 26.28 25.44 81.38 2.39 25.44
Ablation 36.36 90.28 1.36 36.36 24.82 88.65 1.71 24.92

Ablation with Mask 45.95 90.08 1.20 46.05 36.45 88.31 1.45 36.56
Ours without Mask 52.47 91.74 0.95 53.95 21.94 87.50 1.78 22.65

Ours with Mask 57.31 91.91 0.91 57.31 38.52 88.98 1.32 38.52
Ours without Mask and with Ordered Triplets 57.21 93.37 0.79 57.71 33.36 91.02 1.37 33.78

Ours with Mask and Ordered Triplets 61.17 93.54 0.75 61.36 41.71 90.22 1.22 41.81

Table 3: Performance of different models on the test datasets. EM and GM report percentages, and ED corresponds to average
edit distance. The symbol ↑ indicates that higher results are better in the corresponding column; ↓ indicates that lower is better.

tion, as can be seen in performance drops in Ta-
ble 3 for the new environments. Nonetheless, the
insights from the previous section still hold: mask-
ing in the output layer and reordering the graph
triplets tend to increase performance.

Even though the results in Table 3 suggest that
there is room for future work on decoding natural
language instructions, our model still outperforms
the baselines by a clear margin in new environ-
ments. For instance, the difference between our
model and the second best model in the Test-New
set is about 3% EM and GM. Note that the average
number of actions in the ground truth output se-
quences is 7.07 for the Test-New set. Our model’s
predictions are just 1.22 edits off on average from
the correct navigation plans.

6.5 Qualitative Evaluation

This section discusses qualitative results to better
understand how the proposed model uses the nav-
igation graph.

6.5.1 Attention Visualization
We analyze the evolution of the attention weights
dt in Eq. (5) to assess if the decoder layer of the
proposed model is attending to the correct parts
of the behavioral graph when making predictions.
Fig 3(b) shows an example of the resulting atten-
tion map for the case of a correct prediction. In the
Figure, the attention map is depicted as a scaled
and normalized 2D array of color codes. Each col-
umn in the array shows the attention distribution
dt used to generate the predicted output at step t.
Consequently, each row in the array represents a
triplet in the corresponding behavioral graph. This
graph consists of 72 triplets for Fig 3(b).

We observe a locality effect associated to the
attention coefficients corresponding to high val-
ues (bright areas) in each column of Fig 3(b).
This suggests that the decoder is paying atten-
tion to graph triplets associated to particular neigh-
borhoods of the environment in each prediction

Figure 3: Visualization of the attention weights of the de-
coder layer. The color-coded and numbered regions on the
map (left) correspond to the triplets that are highlighted with
the corresponding color in the attention map (right).

step. We include additional attention visualiza-
tions in the supplementary Appendix, including
cases where the dynamics of the attention distri-
bution are harder to interpret.

6.5.2 Experiments with Sub-Optimal Paths
All the routes in our dataset are the shortest
paths from a start location to a given destination.
Thus, we collected a few additional natural lan-
guage instructions to check if our model was able
to follow navigation instructions describing sub-
optimal paths. One such example is shown in
Fig. 4, where the blue route (shortest path) and the
red route (alternative path) are described by:

– Blue route: “Go out the office and make a left.
Turn right at the corner and go down the hall.
Make a right at the next corner and enter the
kitchen in front of table.”

– Red route: “Exit the room 0 and turn right, go
to the end of the corridor and turn left, go straight
to the end of the corridor and turn left again. After
passing bookshelf on your left and table on your
right, Enter the kitchen on your right.”

For both routes, the proposed model was able
to predict the correct sequence of navigation be-
haviors. This result suggests that the model is in-
deed using the input instructions and is not just ap-
proximating shortest paths in the behavioral graph.



2665

Figure 4: An example of two different navigation paths be-
tween the same pair of start and goal locations.

Other examples on the prediction of sub-obtimal
paths are described in the Appendix.

7 Conclusion

This work introduced behavioral navigation
through free-form natural language instructions as
a challenging and a novel task that falls at the
intersection of natural language processing and
robotics. This problem has a range of interesting
cross-domain applications, including information
retrieval.

We proposed an end-to-end system to trans-
late user instructions to a high-level navigation
plan. Our model utilized an attention mechanism
to merge relevant information from the navigation
instructions with a behavioral graph of the envi-
ronment. The model then used a decoder to predict
a sequence of navigation behaviors that matched
the input commands.

As part of this effort, we contributed a new
dataset of 11,051 pairs of user instructions and
navigation plans from 100 different environments.
Our model achieved the best performance in this
dataset in comparison to a two-step baseline ap-
proach for interpreting navigation instructions,
and a sequence-to-sequence model that does not
consider the behavioral graph. Our quantitative
and qualitative results suggest that attention mech-
anisms can help leverage the behavioral graph as
a relevant knowledge base to facilitate the trans-
lation of free-form navigation instructions. Over-
all, our approach demonstrated practical form of
learning for a complex and useful task.

In future work, we are interested in investigat-
ing mechanisms to improve generalization to new

environments. For example, pointer and graph
networks (Vinyals et al., 2015; Defferrard et al.,
2016) are a promising direction to help supervise
translation models and predict motion behaviors.
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