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Abstract

Entity typing aims to classify semantic types
of an entity mention in a specific context.
Most existing models obtain training data us-
ing distant supervision, and inevitably suf-
fer from the problem of noisy labels. To
address this issue, we propose entity typing
with language model enhancement. It uti-
lizes a language model to measure the com-
patibility between context sentences and la-
bels, and thereby automatically focuses more
on context-dependent labels. Experiments
on benchmark datasets demonstrate that our
method is capable of enhancing the entity typ-
ing model with information from the language
model, and significantly outperforms the state-
of-the-art baseline. Code and data for this pa-
per can be found from https://github.
com/thunlp/LME.

1 Introduction

Entity typing classifies semantic types of an en-
tity mention in a context sentence, and can be
beneficial for a large number of natural language
processing tasks (Neelakantan and Chang, 2015),
such as entity linking (Chabchoub et al., 2016),
relation extraction (Miwa and Sasaki, 2014), and
question answering (Yahya et al., 2013). Fine-
grained entity typing (FET) (Ling and Weld, 2012;
Yosef et al., 2012; Yao et al., 2013; Gillick
et al., 2014; Del Corro et al., 2015; Yogatama
et al., 2015; Yaghoobzadeh and Schütze, 2015;
Ren et al., 2016a; Yuan and Downey, 2018) is
based on a large set of fine-grained types and is
therefore more challenging. So far, neural mod-
els (Dong et al., 2015; Shimaoka et al., 2017; Xin
et al., 2018) have achieved state-of-the-art results
on FET.

All current FET models rely on distant super-
vision (DS) (Mintz et al., 2009) to obtain training
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Raw Schwarzenegger was elected to be the governor.
Schwarzenegger acted in the film Terminator.

Good (A) politician was elected to be the governor.
(An) actor acted in the film Terminator.

Bad (An) actor was elected to be the governor.
(A) politician acted in the film Terminator.

Table 1: Examples of entity mention—type name re-
placement.

data, due to the lack of large-scale human-labeled
data. Such reliance on DS has been a signifi-
cant problem for entity typing. In DS, an entity
mention in the context sentence is first linked to
a named entity in the knowledge base (KB). The
entity has type labels1 stored in the KB, and all
labels will be assigned to this entity mention. In
other words, these are noisy global labels with-
out considering the specific context of the entity
mention. On the other hand, entity typing aims
to predict context-dependent types of the entity
mention, and test datasets are all human-labeled.
The difference between DS and human annotation
leads to a huge gap in performances between train-
ing/development and test dataset.2

To address this problem, we propose En-
tity Typing with Language Model Enhancement
(LME). It is able to measure the compatibility be-
tween the context sentence and each distantly su-
pervised label, in an unsupervised manner using
meaning of the label.

In previous works, the hierarchical structure of
labels has been considered (Ren et al., 2016b;
Karn et al., 2017; Xu and Barbosa, 2018). How-
ever, to the best of our knowledge, precious

1 Since entities are classified into labels of types, type and
label have the same meaning in this paper.

2 In the WIKI dataset, strict accuracies and macro-F1
scores are respectively 72.3%/89.2% on the development set
and 59.7%/79.0% on the test set, using the model NFGEC
from (Shimaoka et al., 2017).

https://github.com/thunlp/LME
https://github.com/thunlp/LME
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information inside names of labels has never
been used. For example, whether the label is
/person/actor or /foo/bar makes no dif-
ference. We argue that, the meaning of entity men-
tion words can also be expressed by the name of its
context-dependent type, to some extent. Based
on this argument, replacements with context-
dependent types make more sense than those with
global-but-context-irrelevant ones. We provide an
example in Table 1. The entity Schwarzenegger
has types /actor and /politician, and we
can see that replacements with context-dependent
types produce better sentences.

The natural way to evaluate the soundness of
sentences is language modeling (Bengio et al.,
2003; Mikolov et al., 2010). Our method em-
ploys a language model to evaluate the soundness
of each synthetic sentence generated by replacing
the entity mention with its type’s name. It is able
to focus more on context-dependent types.

We conduct experiments to compare our model
with the state-of-the-art baseline on two widely
used datasets. The results demonstrate that LME
is capable of improving entity typing systems by
considering the meaning of labels, and alleviating
the problem of noise in distantly-supervised entity
typing.

2 Model

Our model (Figure 1) consists of two parts: an en-
tity typing (ET) module, and a language model en-
hancement (LME) module.

ET predicts a probability distribution vector y
for an entity mention, where each entry yi repre-
sents the predicted probability for each type label.

In the training phase, LME optimizes a lan-
guage model whose input includes y, and also
back-propagates gradients through y to parame-
ters inside ET. In the testing phase, LME is not
involved and y is directly used for inference: if yi

is greater than a threshold 0.5, the ith type is con-
sidered true; if all entries are below the threshold,
the type with the greatest entry is considered true.

2.1 Entity Typing Module

Entity typing is defined on an ontology T (the set
of all labels). Given an entity mention e and its
context sentence s = {l1, l2, ..., e, r1, r2, ...} (li
and ri are left and right context words), the typing
model predicts a vector y indicating the probabil-

Schwarzenegger acted in the film Terminator
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…
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Figure 1: Our model: an entity typing (ET) module and
a language model enhancement (LME) module.

ity distribution over all labels in the ontology:

y = σ(Wy [vM ;vC ;vF ]), (1)

where σ is the sigmoid function, Wy is a param-
eter matrix, and [; ; ] denotes concatenation. Three
vectors: Mention, Context and Feature, are built
from e and s as follows:

Entity mention vector There may be multi-
ple words e1, e2, ... in the entity mention, and vM

is the average of word embeddings of these words.
Context vector Two bi-directional LSTMs

(Hochreiter and Schmidhuber, 1997; Schuster and
Paliwal, 1997) are used for left and right con-
text words. The outputs of BiLSTMs further go
through a self-attention layer. vC is the concate-
nation of the attention-layer outputs.

Hand-crafted feature vector A sparse fea-
ture vector f is built from the entity mention e. The
features are adopted from those used by Gillick
et al. (2014) and Yogatama et al. (2015). vF is a
dense projection of f :

vF = Wf f , (2)

where Wf is the projection matrix.
After y is calculated, DS provides a label vector

y∗ ∈ {0, 1}|T |, where |T | is the number of labels.
The loss function for typing is the cross-entropy
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between y and y∗:

Jtype = H(y∗,y)
= −

∑
i y
∗
i log(yi) + (1− y∗i ) log(1− yi),

(3)

2.2 Language Model Enhancement Module
The core part of the LME module is an LSTM lan-
guage model (Sundermeyer et al., 2012). The lan-
guage model takes a sentence {w1, w2, ..., wn} as
input, and assigns a probability to this sentence.
Concretely, at step i, the LSTM reads the word
sub-sequence {w1, ..., wi}, and predicts the prob-
ability of wi+1 succeeding the sub-sequence. A
well trained language model predicts high proba-
bility for a reasonable sentence.

Before applying the LME module to enhance
the ET module, the language model is pre-trained
with sentences from the training set. The loss
function for s in the pre-train phase is:

Jpre = LM({l1, l2, ..., e, r1, r2, ...}), (4)

where bold face letters are word embeddings
for corresponding words. LM(·) is the language
model loss function: accumulative step-wise log-
probability of each word of the input sequence.
A well-trained language model calculates smaller
loss for a more reasonable sentence.

After pre-training the language model, the LME
module is combined with the ET module. Con-
cretely, we assign an embedding vector Li for
each label, and take the sum of label embeddings
weighted by y. The sum h replaces e in the input
sequence of the language model:

h =
∑T

i=1 yiLi, (5)

Jlm = LM({l1, l2, ...,h, r1, r2, ...}), (6)

where L is the matrix of all label embeddings, and
Jlm is loss function of the language model used
in the training phase. In order to ensure that label
embeddings are in the same semantic space with
word embeddings, L is initialized with word em-
beddings of the labels’ names.

In the training phase, parameters of the ET mod-
ule are updated w.r.t.

Jtrain = Jtype + λJlm, (7)

where λ is the weight to balance the loss.
The ET module has a much smaller parame-

ter space than the language model. In order to

make full use of the gradients, we only update pa-
rameters of the ET module and fix the language
model in the training phase. Now that the lan-
guage model is fixed, when Jlm is being mini-
mized, it adjusts the probability distribution in y.
If a label i is compatible with the context sen-
tence, its corresponding entry yi is expected to
have a high value. Gradients are back-propagated
through y and update parameters of the ET mod-
ule. In this way, y can learn to be more context-
dependent.

3 Experiments

3.1 Dataset
We employ two well-established and widely-used
dataset for evaluating our model: WIKI (Ling
and Weld, 2012) and ONTONOTES (Gillick et al.,
2014).

Training parts of both datasets are labeled with
DS, and testing parts are annotated by human.
Therefore they are suitable for evaluating how
our model can narrow the gap between DS and
ground-truth context-dependent labels. Statistics
of the two datasets are provided in Table 2.

Dataset Train Development Test

WIKI 2,000,000 10,000 563
ONTONOTES 251,039 2,202 8,963

Table 2: Number of instances in each part of datasets.

3.2 Experiment Settings
The baseline for comparison is the hybrid model
NFGEC proposed by Shimaoka et al. (2017). It
is described as the ET module of our model. Our
own model is referred to as NFGEC+LME.

We implement our model based on the source
code of NFGEC.3 For a fair comparison, the ET
module is unchanged, including all hyperparame-
ters and methods of parameter random initializa-
tion. Word embeddings are initialized with pre-
trained embeddings provided by Pennington et al.
(2014).

There are a few additional hyperparameters in
our model. The most important one is λ, the
weight between two parts of the loss function.
Other ones include the learning rate r for pretrain-
ing the language model and the hidden size h of
LSTM used in the language model. We perform

3https://github.com/shimaokasonse/
NFGEC

 https://github.com/shimaokasonse/NFGEC
 https://github.com/shimaokasonse/NFGEC
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a grid-search based on performances on the de-
velopment set, and set r = 0.005 and h = 500.
Details of λ will be discussed in Section 3.4.

3.3 Overall Results
We compare vanilla NFGEC and NFGEC+LME
in Table 3. The results of NFGEC come from
the paper by Shimaoka et al. (2017). For run-
ning NFGEC+LME, λ is set to 0.005 in WIKI and
0.001 in ONTONOTES.

Evaluation metrics include strict accuracy,
macro-F1 score and micro-F1 score (Ling and
Weld, 2012).

Dataset WIKI ONTONOTES

Metric Strict Macro Micro Strict Macro Micro

NFGEC 59.68 78.97 75.36 50.89 70.80 64.93
+LME 62.88 80.61 76.95 52.90 72.41 65.17

Table 3: Performance of entity typing, evaluated by
strict accuracy, macro-F1 and micro-F1 score. (%)

From the results we see that:
(1) In both datasets, LME consistently helps

NFGEC to better classify entity mentions into
their context-dependent types. We can see im-
provements in all metrics. This is because LME is
capable of evaluating the appropriateness of each
label and distinguishing context-dependent ones
from global-but-context-irrelevant ones. There-
fore LME helps the system to focus on more rea-
sonable types.

(2) Among all metrics, the improvement on
strict accuracy is the most significant. Strict ac-
curacy is the proportion of entity mentions whose
predicted types are completely identical with hu-
man annotation. It is therefore the most impor-
tant metric for evaluating how robust the system is
against noisy labels. The ability of LME alleviat-
ing noises from DS contributes to improving strict
accuracy most.

3.4 Analysis of λ
We choose the optimal λ values for results in Table
3 according to their performances on the develop-
ment set. After they are chosen, we compare the
results on the test set under different values of λ in
Figure 2.

Conclusions from the previous subsection can
be seen again: when λ is set to a proper value,
our model can consistently outperform the base-
line over all metrics; strict accuracy is the metric
with the most significant improvements.
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Figure 2: The performance under different λ values.
λ = 0 is the vanilla NFGEC. Note that values of
the vertical axis are improvements compared to vanilla
NFGEC.

Also, we notice that the performances deteri-
orate when λ grows too large, and may even be
worse than the baseline. The reason is that LME
is a kind of regularization: its role is only in the
training phase, exchanging the performance on
training set with that on test set. So λ, as a reg-
ularization coefficient, must be carefully chosen.

3.5 Qualitative Analysis
In order to have an intuitive feeling of the model,
we provide an example of LME’s effect.

In the following sentence (from the test set of
WIKI), both models try to predict the type of Lake
Placid which, in this very context, is a town in
New York. We show all labels with at least one
score over the threshold 0.5, or is annotated true
by human in Table 4.

Scaringe dismissed Brian Barrett of Lake
Placid as one of his defense attorneys.

Type NFGEC +LME Human

/person 0.622 0.150 False
/location 0.323 0.627 True
/location/city 0.024 0.208 True

Table 4: An example, showing the scores by two mod-
els as well as human annotation.

NFGEC predicts a high score for /person
and a low score for /location, probably be-
cause both words of the entity mention are first-
letter capitalized and thus look like a person’s
name. LME, however, may consider the sen-
tence structure person of location to be more rea-
sonable than person of person, and makes the
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correct judgment between these two labels. As
for /location/city, LME also shows higher
confidence than NFGEC, but it is still regretfully
below the threshold. This also demonstrates a
weakness of LME: limited by the performance of
the ET module. Addressing this limitation can be
considered as a future direction for improvement.

4 Conclusion

In this paper, we propose a novel architecture
LME to improve entity typing systems. It utilizes
a language model and a set of label embeddings
to judge the compatibility between labels and con-
text sentences, and reduces noises introduced by
DS. Experiments demonstrate that LME is capable
of helping NFGEC, a state-of-the-art entity typing
model, to alleviate the problem of noisy labels,
and reaching a new state-of-the-art performance.
Since the LME module does not depend on the ET
module, we are confident that LME can be adapted
to other entity typing systems as well.

Future Work Utilizing meaning of labels to al-
leviate the problem of noises from DS is an intere-
sting direction. We make the first attempt in this
paper, and we believe the direction is worth further
exploring. For example, (1) how to train a lan-
guage model that is sensitive with incorrect labels;
(2) how to combine meaning of labels with the hi-
erarchical structure of types; (3) how to find the
optimal λ easily for a new dataset. LME may also
be extended to other tasks that also suffer from
noises and incompleteness of DS, such as relation
extraction (Takamatsu et al., 2012; Ritter et al.,
2013; Lin et al., 2016). However, since a relation
does not have a specific location in the sentence, it
needs more effort than a simple replacement.
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Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and

Christian Jauvin. 2003. A neural probabilistic lan-
guage model. JMLR.

Mohamed Chabchoub, Michel Gagnon, and Amal
Zouaq. 2016. Collective disambiguation and seman-
tic annotation for entity linking and typing. In Pro-
ceedings of SWEC.

Luciano Del Corro, Abdalghani Abujabal, Rainer
Gemulla, and Gerhard Weikum. 2015. Finet:
Context-aware fine-grained named entity typing. In
Proceedings of EMNLP.

Li Dong, Furu Wei, Hong Sun, Ming Zhou, and Ke Xu.
2015. A hybrid neural model for type classification
of entity mentions. In Proceedings of IJCAI.

Dan Gillick, Nevena Lazic, Kuzman Ganchev, Jesse
Kirchner, and David Huynh. 2014. Context-
dependent fine-grained entity type tagging. arXiv
preprint arXiv:1412.1820.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation.

Sanjeev Karn, Ulli Waltinger, and Hinrich Schütze.
2017. End-to-end trainable attentive decoder for hi-
erarchical entity classification. In Proceedings of
EACL.

Yankai Lin, Shiqi Shen, Zhiyuan Liu, Huanbo Luan,
and Maosong Sun. 2016. Neural relation extraction
with selective attention over instances. In Proceed-
ings of ACL.

Xiao Ling and Daniel S Weld. 2012. Fine-grained en-
tity recognition. In Proceedings of AAAI.
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