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Abstract

Multimodal sentiment analysis is an in-
creasingly popular research area, which
extends the conventional language-based
definition of sentiment analysis to a mul-
timodal setup where other relevant modal-
ities accompany language. In this paper,
we pose the problem of multimodal senti-
ment analysis as modeling intra-modality
and inter-modality dynamics. We intro-
duce a novel model, termed Tensor Fusion
Network, which learns both such dynam-
ics end-to-end. The proposed approach is
tailored for the volatile nature of spoken
language in online videos as well as ac-
companying gestures and voice. In the ex-
periments, our model outperforms state-of-
the-art approaches for both multimodal and
unimodal sentiment analysis.

1 Introduction

Multimodal sentiment analysis (Morency et al.,
2011; Zadeh et al., 2016b; Poria et al., 2015) is
an increasingly popular area of affective comput-
ing research (Poria et al., 2017) that focuses on
generalizing text-based sentiment analysis to opin-
ionated videos, where three communicative modal-
ities are present: language (spoken words), visual
(gestures), and acoustic (voice).

This generalization is particularly vital to part
of the NLP community dealing with opinion min-
ing and sentiment analysis (Cambria et al., 2017)
since there is a growing trend of sharing opinions
in videos instead of text, specially in social media
(Facebook, YouTube, etc.). The central challenge
in multimodal sentiment analysis is to model the
inter-modality dynamics: the interactions between

† means equal contribution

Figure 1: Unimodal, bimodal and trimodal interac-
tion in multimodal sentiment analysis.

language, visual and acoustic behaviors that change
the perception of the expressed sentiment.

Figure 1 illustrates these complex inter-modality
dynamics. The utterance “This movie is sick” can
be ambiguous (either positive or negative) by itself,
but if the speaker is also smiling at the same time,
then it will be perceived as positive. On the other
hand, the same utterance with a frown would be per-
ceived negatively. A person speaking loudly “This
movie is sick” would still be ambiguous. These
examples are illustrating bimodal interactions. Ex-
amples of trimodal interactions are shown in Fig-
ure 1 when loud voice increases the sentiment to
strongly positive. The complexity of inter-modality
dynamics is shown in the second trimodal exam-
ple where the utterance “This movie is fair” is still
weakly positive, given the strong influence of the
word “fair”.

A second challenge in multimodal sentiment
analysis is efficiently exploring intra-modality dy-
namics of a specific modality (unimodal interac-
tion). Intra-modality dynamics are particularly
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challenging for the language analysis since mul-
timodal sentiment analysis is performed on spo-
ken language. A spoken opinion such as “I think
it was alright . . . Hmmm . . . let me think . . . yeah
. . . no . . . ok yeah” almost never happens in writ-
ten text. This volatile nature of spoken opinions,
where proper language structure is often ignored,
complicates sentiment analysis. Visual and acous-
tic modalities also contain their own intra-modality
dynamics which are expressed through both space
and time.

Previous works in multimodal sentiment analysis
does not account for both intra-modality and inter-
modality dynamics directly, instead they either per-
form early fusion (a.k.a., feature-level fusion) or
late fusion (a.k.a., decision-level fusion). Early fu-
sion consists in simply concatenating multimodal
features mostly at input level (Morency et al., 2011;
Pérez-Rosas et al., 2013; Poria et al., 2016). This
fusion approach does not allow the intra-modality
dynamics to be efficiently modeled. This is due to
the fact that inter-modality dynamics can be more
complex at input level and can dominate the learn-
ing process or result in overfitting. Late fusion,
instead, consists in training unimodal classifiers in-
dependently and performing decision voting (Wang
et al., 2016; Zadeh et al., 2016a). This prevents the
model from learning inter-modality dynamics in
an efficient way by assuming that simple weighted
averaging is a proper fusion approach.

In this paper, we introduce a new model, termed
Tensor Fusion Network (TFN), which learns both
the intra-modality and inter-modality dynamics
end-to-end. Inter-modality dynamics are modeled
with a new multimodal fusion approach, named
Tensor Fusion, which explicitly aggregates uni-
modal, bimodal and trimodal interactions. Intra-
modality dynamics are modeled through three
Modality Embedding Subnetworks, for language,
visual and acoustic modalities, respectively.

In our extensive set of experiments, we show (a)
that TFN outperforms previous state-of-the-art ap-
proaches for multimodal sentiment analysis, (b) the
characteristics and capabilities of our Tensor Fu-
sion approach for multimodal sentiment analysis,
and (c) that each of our three Modality Embed-
ding Subnetworks (language, visual and acoustic)
are also outperforming unimodal state-of-the-art
unimodal sentiment analysis approaches.

2 Related Work

Sentiment Analysis is a well-studied research area
in NLP (Pang et al., 2008). Various approaches
have been proposed to model sentiment from lan-
guage, including methods that focus on opinionated
words (Hu and Liu, 2004; Taboada et al., 2011; Po-
ria et al., 2014b; Cambria et al., 2016), n-grams and
language models (Yang and Cardie, 2012), senti-
ment compositionality and dependency-based anal-
ysis (Socher et al., 2013; Poria et al., 2014a; Agar-
wal et al., 2015; Tai et al., 2015), and distributional
representations for sentiment (Iyyer et al., 2015).

Multimodal Sentiment Analysis is an emerg-
ing research area that integrates verbal and
nonverbal behaviors into the detection of user
sentiment. There exist several multimodal
datasets that include sentiment annotations,
including the newly-introduced CMU-MOSI
dataset (Zadeh et al., 2016b), as well as other
datasets including ICT-MMMO (Wöllmer et al.,
2013), YouTube (Morency et al., 2011), and
MOUD (Pérez-Rosas et al., 2013), however CMU-
MOSI is the only English dataset with utterance-
level sentiment labels. The newest multimodal sen-
timent analysis approaches have used deep neural
networks, including convolutional neural networks
(CNNs) with multiple-kernel learning (Poria et al.,
2015), SAL-CNN (Wang et al., 2016) which learns
generalizable features across speakers, and support
vector machines (SVMs) with a multimodal dictio-
nary (Zadeh, 2015).

Audio-Visual Emotion Recognition is closely
tied to multimodal sentiment analysis (Poria et al.,
2017). Both audio and visual features have been
shown to be useful in the recognition of emo-
tions (Ghosh et al., 2016a). Using facial expres-
sions and audio cues jointly has been the focus of
many recent studies (Glodek et al., 2011; Valstar
et al., 2016; Nojavanasghari et al., 2016).

Multimodal Machine Learning has been a grow-
ing trend in machine learning research that is
closely tied to the studies in this paper. Creative
and novel applications of using multiple modali-
ties have been among successful recent research
directions in machine learning (You et al., 2016;
Donahue et al., 2015; Antol et al., 2015; Specia
et al., 2016; Tong et al., 2017).

3 CMU-MOSI Dataset

Multimodal Opinion Sentiment Intensity (CMU-
MOSI) dataset is an annotated dataset of video
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Figure 2: Distribution of sentiment across different opinions (left) and opinion sizes (right) in CMU-MOSI.

opinions from YouTube movie reviews (Zadeh
et al., 2016a). Annotation of sentiment has closely
followed the annotation scheme of the Stanford
Sentiment Treebank (Socher et al., 2013), where
sentiment is annotated on a seven-step Likert scale
from very negative to very positive. However,
whereas the Stanford Sentiment Treebank is seg-
mented by sentence, the CMU-MOSI dataset is
segmented by opinion utterances to accommodate
spoken language where sentence boundaries are not
as clear as text. There are 2199 opinion utterances
for 93 distinct speakers in CMU-MOSI. There are
an average 23.2 opinion segments in each video.
Each video has an average length of 4.2 seconds.
There are a total of 26,295 words in the opinion
utterances. These utterance are annotated by five
Mechanical Turk annotators for sentiment. The
final agreement between the annotators is high in
terms of Krippendorf’s alpha α = 0.77. Figure 2
shows the distribution of sentiment across different
opinions and different opinion sizes. CMU-MOSI
dataset facilitates three prediction tasks, each of
which we address in our experiments: 1) Binary
Sentiment Classification 2) Five-Class Sentiment
Classification (similar to Stanford Sentiment Tree-
bank fine-grained classification with seven scale
being mapped to five) and 3) Sentiment Regres-
sion in range [−3, 3]. For sentiment regression, we
report Mean-Absolute Error (lower is better) and
correlation (higher is better) between the model
predictions and regression ground truth.

4 Tensor Fusion Network

Our proposed TFN consists of three major compo-
nents: 1) Modality Embedding Subnetworks take as
input unimodal features, and output a rich modality
embedding. 2) Tensor Fusion Layer explicitly mod-
els the unimodal, bimodal and trimodal interactions
using a 3-fold Cartesian product from modality em-
beddings. 3) Sentiment Inference Subnetwork is a

network conditioned on the output of the Tensor
Fusion Layer and performs sentiment inference.
Depending on the task from Section 3 the network
output changes to accommodate binary classifica-
tion, 5-class classification or regression. Input to
the TFN is an opinion utterance which includes
three modalities of language, visual and acoustic.
The following three subsections describe the TFN
subnetworks and their inputs in detail.

4.1 Modality Embedding Subnetworks

Spoken Language Embedding Subnetwork:
Spoken text is different than written text (reviews,
tweets) in compositionality and grammar. We re-
visit the spoken opinion: “I think it was alright
. . . Hmmm . . . let me think . . . yeah . . . no . . . ok
yeah”. This form of opinion rarely happens in
written language but variants of it are very com-
mon in spoken language. The first part conveys the
actual message and the rest is speaker thinking out
loud eventually agreeing with the first part. The
key factor in dealing with this volatile nature of
spoken language is to build models that are capable
of operating in presence of unreliable and idiosyn-
cratic speech traits by focusing on important parts
of speech.

Our proposed approach to deal with challenges
of spoken language is to learn a rich representa-
tion of spoken words at each word interval and
use it as input to a fully connected deep network
(Figure 3). This rich representation for ith word
contains information from beginning of utterance
through time, as well as ith word. This way as the
model is discovering the meaning of the utterance
through time, if it encounters unusable information
in word i+ 1 and arbitrary number of words after,
the representation up until i is not diluted or lost.
Also, if the model encounters usable information
again, it can recover by embedding those in the long
short-term memory (LSTM). The time-dependent
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Figure 3: Spoken Language Embedding Subnet-
work (Ul)

encodings are usable by the rest of the pipeline by
simply focusing on relevant parts using the non-
linear affine transformation of time-dependent em-
beddings which can act as a dimension reducing
attention mechanism. To formally define our pro-
posed Spoken Language Embedding Subnetwork
(Ul), let l = {l1, l2, l3, . . . , lTl

; lt ∈ R300}, where
Tl is the number of words in an utterance, be the
set of spoken words represented as a sequence of
300-dimensional GloVe word vectors (Pennington
et al., 2014).

A LSTM network (Hochreiter and Schmidhuber,
1997) with a forget gate (Gers et al., 2000) is used
to learn time-dependent language representations
hl = {h1, h2, h3, . . . , hTl

;ht ∈ R128} for words
according to the following LSTM formulation.

i
f
o
m

 =


sigmoid
sigmoid
sigmoid
tanh

Wld

(
XtWle

ht−1

)

ct = f � ct−1 + i�m
ht = o⊗ tanh(ct)
hl = [h1;h2;h3; . . . ;hTl

]

hl is a matrix of language representations formed
from concatenation of h1, h2, h3, . . . hTl

. hl is then
used as input to a fully-connected network that
generates language embedding zl:

zl = Ul(l; Wl) ∈ R128

where Wl is the set of all weights in the Ul net-
work (including Wld , Wle ,Wlfc

, and blfc
), σ is the

sigmoid function.
Visual Embedding Subnetwork: Since opin-

ion videos consist mostly of speakers talking to
the audience through close-up camera, face is the
most important source of visual information. The
speaker’s face is detected for each frame (sampled
at 30Hz) and indicators of the seven basic emotions

(anger, contempt, disgust, fear, joy, sadness, and
surprise) and two advanced emotions (frustration
and confusion) (Ekman, 1992) are extracted using
FACET facial expression analysis framework1. A
set of 20 Facial Action Units (Ekman et al., 1980),
indicating detailed muscle movements on the face,
are also extracted using FACET. Estimates of head
position, head rotation, and 68 facial landmark loca-
tions also extracted per frame using OpenFace (Bal-
trušaitis et al., 2016; Zadeh et al., 2017).

Let the visual features v̂j = [v1
j , v

2
j , v

3
j , . . . , v

p
j ]

for frame j of utterance video contain the set of p
visual features, with Tv the number of total video
frames in utterance. We perform mean pooling
over the frames to obtain the expected visual fea-
tures v = [E[v1],E[v2],E[v3], . . . ,E[vl]]. v is
then used as input to the Visual Embedding Sub-
network Uv. Since information extracted using
FACET from videos is rich, using a deep neural
network would be sufficient to produce meaningful
embeddings of visual modality. We use a deep neu-
ral network with three hidden layers of 32 ReLU
units and weights Wv. Empirically we observed
that making the model deeper or increasing the
number of neurons in each layer does not lead to
better visual performance. The subnetwork output
provides the visual embedding zv:

zv = Uv(v; Wv) ∈ R32

Acoustic Embedding Subnetwork: For each
opinion utterance audio, a set of acoustic fea-
tures are extracted using COVAREP acoustic anal-
ysis framework (Degottex et al., 2014), including
12 MFCCs, pitch tracking and Voiced/UnVoiced
segmenting features (using the additive noise ro-
bust Summation of Residual Harmonics (SRH)
method (Drugman and Alwan, 2011)), glottal
source parameters (estimated by glottal inverse
filtering based on GCI synchronous IAIF (Drug-
man et al., 2012; Alku, 1992; Alku et al., 2002,
1997; Titze and Sundberg, 1992; Childers and Lee,
1991)), peak slope parameters (Degottex et al.,
2014), maxima dispersion quotients (MDQ) (Kane
and Gobl, 2013), and estimations of the Rd shape
parameter of the Liljencrants-Fant (LF) glottal
model (Fujisaki and Ljungqvist, 1986). These ex-
tracted features capture different characteristics of
human voice and have been shown to be related to
emotions (Ghosh et al., 2016b).

1http://goo.gl/1rh1JN
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Figure 4: Left: Commonly used early fusion (multimodal concatenation). Right: Our proposed tensor
fusion with three types of subtensors: unimodal, bimodal and trimodal.

For each opinion segment with Ta audio frames
(sampled at 100Hz; i.e., 10ms), we extract the set
of q acoustic features âj = [a1

j , a
2
j , a

3
j , . . . , a

q
j ] for

audio frame j in utterance. We perform mean
pooling per utterance on these extracted acous-
tic features to obtain the expected acoustic fea-
tures a = [E[a1],E[a2],E[a3], . . . ,E[q]]. Here, a
is the input to the Audio Embedding Subnetwork
Ua. Since COVAREP also extracts rich features
from audio, using a deep neural network is suffi-
cient to model the acoustic modality. Similar to
Uv, Ua is a network with 3 layers of 32 ReLU units
with weights Wa.

Here, we also empirically observed that mak-
ing the model deeper or increasing the number
of neurons in each layer does not lead to better
performance. The subnetwork produces the audio
embedding za:

za = Ua(a;Wa) ∈ R32

4.2 Tensor Fusion Layer
While previous works in multimodal research has
used feature concatenation as an approach for multi-
modal fusion, we aim to build a fusion layer in TFN
that disentangles unimodal, bimodal and trimodal
dynamics by modeling each of them explicitly. We
call this layer Tensor Fusion, which is defined as
the following vector field using three-fold Carte-
sian product:{

(zl, zv, za) | zl ∈
[
zl

1

]
, zv ∈

[
zv

1

]
, za ∈

[
za

1

]}

The extra constant dimension with value 1 gener-
ates the unimodal and bimodal dynamics. Each
neural coordinate (zl, zv, za) can be seen as a 3-D
point in the 3-fold Cartesian space defined by the
language, visual, and acoustic embeddings dimen-
sions [zl1]T , [zv1]T , and [za1]T .

This definition is mathematically equivalent to a
differentiable outer product between zl, the visual
representation zv, and the acoustic representation
za.

zm =
[
zl

1

]
⊗
[
zv

1

]
⊗
[
za

1

]
Here⊗ indicates the outer product between vectors
and zm ∈ R129×33×33 is the 3D cube of all pos-
sible combination of unimodal embeddings with
seven semantically distinct subregions in Figure 4.
The first three subregions zl, zv, and za are uni-
modal embeddings from Modality Embedding Sub-
networks forming unimodal interactions in Tensor
Fusion. Three subregions zl ⊗ zv, zl ⊗ za, and
zv ⊗ za capture bimodal interactions in Tensor
Fusion. Finally, zl ⊗ zv ⊗ za captures trimodal
interactions.

Early fusion commonly used in multimodal re-
search dealing with language, vision and audio,
can be seen as a special case of Tensor Fusion with
only unimodal interactions. Since Tensor Fusion
is mathematically formed by an outer product, it
has no learnable parameters and we empirically
observed that although the output tensor is high
dimensional, chances of overfitting are low.
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We argue that this is due to the fact that the out-
put neurons of Tensor Fusion are easy to interpret
and semantically very meaningful (i.e., the mani-
fold that they lie on is not complex but just high
dimensional). Thus, it is easy for the subsequent
layers of the network to decode the meaningful
information.

4.3 Sentiment Inference Subnetwork

After Tensor Fusion layer, each opinion utterance
can be represented as a multimodal tensor zm. We
use a fully connected deep neural network called
Sentiment Inference Subnetwork Us with weights
Ws conditioned on zm. The architecture of the net-
work consists of two layers of 128 ReLU activation
units connected to decision layer. The likelihood
function of the Sentiment Inference Subnetwork
is defined as follows, where φ is the sentiment
prediction:

arg max
φ

p(φ | zm;Ws) = arg max
φ

Us(zm;Ws)

In our experiments, we use three variations of the
Us network. The first network is trained for binary
sentiment classification, with a single sigmoid out-
put neuron using binary cross-entropy loss. The
second network is designed for five-class sentiment
classification, and uses a softmax probability func-
tion using categorical cross-entropy loss. The third
network uses a single sigmoid output, using mean-
squarred error loss to perform sentiment regression.

5 Experiments

In this paper, we devise three sets of experiments
each addressing a different research question:

Experiment 1: We compare our TFN with previ-
ous state-of-the-art approaches in multimodal sen-
timent analysis.

Experiment 2: We study the importance of the
TFN subtensors and the impact of each individual
modality (see Figure 4). We also compare with the
commonly-used early fusion approach.

Experiment 3: We compare the performance
of our three modality-specific networks (language,
visual and acoustic) with state-of-the-art unimodal
approaches.

Section 5.4 describes our experimental method-
ology which is kept constant across all experiments.
Section 6 will discuss our results in more details
with a qualitative analysis.

Multimodal
Baseline

Binary 5-class Regression

Acc(%) F1 Acc(%) MAE r

Random 50.2 48.7 23.9 1.88 -
C-MKL 73.1 75.2 35.3 - -
SAL-CNN 73.0 - - - -
SVM-MD 71.6 72.3 32.0 1.10 0.53
RF 71.4 72.1 31.9 1.11 0.51
TFN 77.1 77.9 42.0 0.87 0.70
Human 85.7 87.5 53.9 0.71 0.82

∆SOTA ↑ 4.0 ↑ 2.7 ↑ 6.7 ↓ 0.23 ↑ 0.17

Table 1: Comparison with state-of-the-art ap-
proaches for multimodal sentiment analysis. TFN
outperforms both neural and non-neural approaches
as shown by ∆SOTA.

5.1 E1: Multimodal Sentiment Analysis

In this section, we compare the performance of
TFN model with previously proposed multimodal
sentiment analysis models. We compare to the
following baselines:

C-MKL (Poria et al., 2015) Convolutional
MKL-based model is a multimodal sentiment clas-
sification model which uses a CNN to extract tex-
tual features and uses multiple kernel learning for
sentiment analysis. It is current SOTA (state of the
art) on CMU-MOSI.

SAL-CNN (Wang et al., 2016) Select-Additive
Learning is a multimodal sentiment analysis model
that attempts to prevent identity-dependent infor-
mation from being learned in a deep neural network.
We retrain the model for 5-fold cross-validation us-
ing the code provided by the authors on github.

SVM-MD (Zadeh et al., 2016b) is a SVM
model trained on multimodal features using early
fusion. The model used in (Morency et al., 2011)
and (Pérez-Rosas et al., 2013) also similarly use
SVM on multimodal concatenated features. We
also present the results of Random Forest RF-MD
to compare to another non-neural approach.

The results first experiment are reported in Ta-
ble 1. TFN outperforms previously proposed neu-
ral and non-neural approaches. This difference is
specifically visible in the case of 5-class classifica-
tion.

5.2 E2: Tensor Fusion Evaluation

Table 4 shows the results of our ablation study. The
first three rows are showing the performance of
each modality, when no intermodality dynamics are
modeled. From this first experiment, we observe
that the language modality is the most predictive.
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Baseline Binary 5-class Regression

Acc(%) F1 Acc(%) MAE r

TFNlanguage 74.8 75.6 38.5 0.99 0.61
TFNvisual 66.8 70.4 30.4 1.13 0.48
TFNacoustic 65.1 67.3 27.5 1.23 0.36

TFNbimodal 75.2 76.0 39.6 0.92 0.65
TFNtrimodal 74.5 75.0 38.9 0.93 0.65
TFNnotrimodal 75.3 76.2 39.7 0.919 0.66

TFN 77.1 77.9 42.0 0.87 0.70
TFNearly 75.2 76.2 39.0 0.96 0.63

Table 2: Comparison of TFN with its subtensor
variants. All the unimodal, bimodal and trimodal
subtensors are important. TFN also outperforms
early fusion.

As a second set of ablation experiments, we test
our TFN approach when only the bimodal subten-
sors are used (TFNbimodal) or when only the tri-
modal subtensor is used (TFNbimodal). We observe
that bimodal subtensors are more informative when
used without other subtensors. The most interest-
ing comparison is between our full TFN model
and a variant (TFNnotrimodal) where the trimodal
subtensor is removed (but all the unimodal and bi-
modal subtensors are present). We observe a big
improvement for the full TFN model, confirming
the importance of the trimodal dynamics and the
need for all components of the full tensor.

We also perform a comparison with the early fu-
sion approach (TFNearly) by simply concatenating
all three modality embeddings < zl, za, zv > and
passing it directly as input to Us. This approach
was depicted on the left side of Figure 4. When
looking at Table 4 results, we see that our TFN
approach outperforms the early fusion approach2.

5.3 E3: Modality Embedding Subnetworks
Evaluation

In this experiment, we compare the performance
of our Modality Embedding Networks with state-
of-the-art approaches for language-based, visual-
based and acoustic-based sentiment analysis.

5.3.1 Language Sentiment Analysis
We selected the following state-of-the-art ap-
proaches to include variety in their techniques,

2We also performed other comparisons with variants of the
early fusion model TFNearly where we increased the number
of parameters and neurons to replicate the numbers from our
TFN model. In all cases, the performances were similar to
TFNearly (and lower than our TFN model). Because of space
constraints, we could not include them in this paper.

Language
Baseline

Binary 5-class Regression

Acc(%) F1 Acc(%) MAE r

RNTN - - - - -
(73.7) (73.4) (35.2) (0.99) (0.59)

DAN 73.4 73.8 39.2 - -
(68.8) (68.4) (36.7) - -

D-CNN 65.5 66.9 32.0 - -
(62.1) (56.4) (32.4) - -

CMKL-L 71.2 72.4 34.5 - -
SAL-CNN-L 73.5 - - - -
SVM-MD-L 70.6 71.2 33.1 1.18 0.46
TFNlanguage 74.8 75.6 38.5 0.98 0.62

∆SOTA
language ↑ 1.1 ↑ 1.8 ↓ 0.7 ↓ 0.01 ↑ 0.03

Table 3: Language Sentiment Analysis. Compari-
son of with state-of-the-art approaches for language
sentiment analysis. ∆SOTA

language shows improvement.

based on dependency parsing (RNTN), distribu-
tional representation of text (DAN), and convolu-
tional approaches (DynamicCNN). When possible,
we retrain them on the CMU-MOSI dataset (per-
formances of the original pre-trained models are
shown in parenthesis in Table 3) and compare them
to our language only TFNlanguage.

RNTN (Socher et al., 2013)The Recursive Neu-
ral Tensor Network is among the most well-known
sentiment analysis methods proposed for both bi-
nary and multi-class sentiment analysis that uses
dependency structure.

DAN (Iyyer et al., 2015) The Deep Average Net-
work approach is a simple but efficient sentiment
analysis model that uses information only from
distributional representation of the words and not
from the compositionality of the sentences.

DynamicCNN (Kalchbrenner et al., 2014) Dy-
namicCNN is among the state-of-the-art models
in text-based sentiment analysis which uses a con-
volutional architecture adopted for the semantic
modeling of sentences.

CMK-L, SAL-CNN-L and SVM-MD-L are
multimodal models from section using only lan-
guage modality 5.1.

Results in Table 3 show that our model using
only language modality outperforms state-of-the-
art approaches for the CMU-MOSI dataset. While
previous models are well-studied and suitable mod-
els for sentiment analysis in written language, they
underperform in modeling the sentiment in spoken
language. We suspect that this underperformance is
due to: RNTN and similar approaches rely heavily
on dependency structure, which may not be present
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Visual
Baseline

Binary 5-class Regression

Acc(%) F1 Acc(%) MAE r

3D-CNN 56.1 58.4 24.9 1.31 0.26
CNN-LSTM 60.7 61.2 25.1 1.27 0.30
LSTM-FA 62.1 63.7 26.2 1.23 0.33
CMKL-V 52.6 58.5 29.3 - -
SAL-CNN-V 63.8 - - - -
SVM-MD-V 59.2 60.1 25.6 1.24 0.36
TFNvisual 69.4 71.4 31.0 1.12 0.50

∆SOTA
visual ↑ 5.6 ↑ 7.7 ↑ 1.7 ↓ 0.11 ↑ 0.14

Table 4: Visual Sentiment Analysis. Comparison
with state-of-the-art approaches for visual senti-
ment analysis and emotion recognition. ∆SOTA

visual

shows the improvement.

in spoken language; DAN and similar sentence em-
beddings approaches can easily be diluted by words
that may not relate directly to sentiment or mean-
ing; D-CNN and similar convolutional approaches
rely on spatial proximity of related words, which
may not always be present in spoken language.

5.3.2 Visual Sentiment Analysis
We compare the performance of our models using
visual information (TFNvisual) with the following
well-known approaches in visual sentiment anal-
ysis and emotion recognition (retrained for senti-
ment analysis):

3DCNN (Byeon and Kwak, 2014) a network us-
ing 3D CNN is trained using the face of the speaker.
Face of the speaker is extracted in every 6 frames
and resized to 64× 64 and used as the input to the
proposed network.

CNN-LSTM (Ebrahimi Kahou et al., 2015) is a
recurrent model that at each timestamp performs
convolutions over facial region and uses output to
an LSTM. Face processing is similar to 3DCNN.

LSTM-FA similar to both baselines above, infor-
mation extracted by FACET is used every 6 frames
as input to an LSTM with a memory dimension of
100 neurons.

SAL-CNN-V, SVM-MD-V, CMKL-V, RF-V
use only visual modality in multimodal baselines
from Section 5.1.

The results in Table 5 show that Uv is able to
outperform state-of-the-art approaches on visual
sentiment analysis.

5.3.3 Acoustic Sentiment Analysis
We compare the performance of our models using
visual information (TFNacoustic) with the following
well-known approaches in audio sentiment analysis

Acoustic
Baseline

Binary 5-class Regression

Acc(%) F1 Acc(%) MAE r

HL-RNN 63.4 64.2 25.9 1.21 0.34
Adieu-Net 59.2 60.6 25.1 1.29 0.31
SER-LSTM 55.4 56.1 24.2 1.36 0.23
CMKL-A 52.6 58.5 29.1 - -
SAL-CNN-A 62.1 - - - -
SVM-MD-A 56.3 58.0 24.6 1.29 0.28
TFNacoustic 65.1 67.3 27.5 1.23 0.36

∆SOTA
acoustic ↑ 1.7 ↑ 3.1 ↓ 1.6 ↑ 0.02 ↑ 0.02

Table 5: Acoustic Sentiment Analysis. Compari-
son with state-of-the-art approaches for audio sen-
timent analysis and emotion recognition. ∆SOTA

acoustic

shows improvement.

and emotion recognition (retrained for sentiment
analysis):

HL-RNN (Lee and Tashev, 2015) uses an
LSTM on high-level audio features. We use the
same features extracted for Ua averaged over time
slices of every 200 intervals.

Adieu-Net (Trigeorgis et al., 2016) is an end-
to-end approach for emotion recognition in audio
using directly PCM features.

SER-LSTM (Lim et al., 2016) is a model that
uses recurrent neural networks on top of convolu-
tion operations on spectrogram of audio.

SAL-CNN-A, SVM-MD-A, CMKL-A, RF-A
use only acoustic modality in multimodal baselines
from Section 5.1.

5.4 Methodology
All the models in this paper are tested us-
ing five-fold cross-validation proposed by CMU-
MOSI (Zadeh et al., 2016a). All of our experiments
are performed independent of speaker identity, as
no speaker is shared between train and test sets
for generalizability of the model to unseen speak-
ers in real-world. The best hyperparameters are
chosen using grid search based on model perfor-
mance on a validation set (using last 4 videos in
train fold). The TFN model is trained using the
Adam optimizer (Kingma and Ba, 2014) with the
learning rate 5e4. Uv and Ua, Us subnetworks are
regularized using dropout on all hidden layers with
p = 0.15 and L2 norm coefficient 0.01. The train,
test and validation folds are exactly the same for
all baselines.

6 Qualitative Analysis

We analyze the impact of our proposed TFN mul-
timodal fusion approach by comparing it with the
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# Spoken words +
acoustic and visual behaviors

TFN-
Acoustic

TFN-
Visual

TFN-
Language

TFN-
Early TFN Ground

Truth

1
“You can’t even tell funny jokes” +

frowning expression
-0.375 -1.760 -0.558 -0.839 -1.661 -1.800

2
“I gave it a B” + smile expression +

excited voice
1.967 1.245 0.438 0.467 1.215 1.400

3

“But I must say those are some pretty

big shoes to fill so I thought maybe

it has a chance” + headshake

-0.378 -1.034 1.734 1.385 0.608 0.400

4

“The only actor who can really sell

their lines is Erin Eckart” + frown +
low-energy voice

-0.970 -0.716 0.175 -0.031 -0.825 -1.000

Table 6: Examples from the CMU-MOSI dataset. The ground truth sentiment labels are between strongly
negative (-3) and strongly positive (+3). For each example, we show the prediction output of the three
unimodal models ( TFNacoustic, TFNvisual and TFNlanguage), the early fusion model TFNearly and our
proposed TFN approach. TFNearly seems to be mostly replicating language modality while our TFN
approach successfully integrate intermodality dynamics to predict the sentiment level.

early fusion approach TFNearly and the three uni-
modal models. Table 6 shows examples taken
from the CMU-MOSI dataset. Each example is
described with the spoken words as well as the
acoustic and visual behaviors. The sentiment pre-
dictions and the ground truth labels range between
strongly negative (-3) and strongly positive (+3).

As a first general observation, we observe that
the early fusion model TFNearly shows a strong
preference for the language modality and seems to
be neglecting the intermodality dynamics. We can
see this trend by comparing it with the language
unimodal model TFNlanguage. In comparison, our
TFN approach seems to capture more complex in-
teraction through bimodal and trimodal dynamics
and thus performs better. Specifically, in the first
example, the utterance is weakly negative where
the speaker is referring to lack of funny jokes in
the movie. This example contains a bimodal inter-
action where the visual modality shows a negative
expression (frowning) which is correctly captured
by our TFN approach.

In the second example, the spoken words are
ambiguous since the model has no clue what a B is
except a token, but the acoustic and visual modal-
ities are bringing complementary evidences. Our
TFN approach correctly identify this trimodal inter-
action and predicts a positive sentiment. The third
example is interesting since it shows an interac-
tion where language predicts a positive sentiment

but the strong negative visual behaviors bring the
final prediction of our TFN approach almost to a
neutral sentiment. The fourth example shows how
the acoustic modality is also influencing our TFN
predictions.

7 Conclusion

We introduced a new end-to-end fusion method
for sentiment analysis which explicitly represents
unimodal, bimodal, and trimodal interactions be-
tween behaviors. Our experiments on the publicly-
available CMU-MOSI dataset produced state-of-
the-art performance when compared against both
multimodal approaches. Furthermore, our ap-
proach brings state-of-the-art results for language-
only, visual-only and acoustic-only multimodal sen-
timent analysis on CMU-MOSI.
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