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Abstract

Accurate and robust metrics for automatic eval-
uation are key to the development of statistical
machine translation (MT) systems. We first
introduce a new regression model that uses a
probabilistic finite state machine (pFSM) to
compute weighted edit distance as predictions
of translation quality. We also propose a novel
pushdown automaton extension of the pFSM
model for modeling word swapping and cross
alignments that cannot be captured by stan-
dard edit distance models. Our models can eas-
ily incorporate a rich set of linguistic features,
and automatically learn their weights, elimi-
nating the need for ad-hoc parameter tuning.
Our methods achieve state-of-the-art correla-
tion with human judgments on two different
prediction tasks across a diverse set of standard
evaluations (NIST OpenMT06,08; WMT06-
08).

1 Introduction

Research in automatic machine translation (MT) eval-
uation metrics has been a key driving force behind
the recent advances of statistical machine transla-
tion (SMT) systems. The early seminal work on
automatic MT metrics (e.g., BLEU and NIST) is
largely based on n-gram matches (Papineni et al.,
2002; Doddington, 2002). Despite their simplicity,
these measures have shown good correlation with hu-
man judgments, and enabled large-scale evaluations
across many different MT systems, without incurring
the huge labor cost of human evaluation (Callison-
Burch et al. (2009; 2010; 2011), inter alia). Recent
studies have also confirmed that tuning MT systems
against better MT metrics — using algorithms like

MERT (Och, 2003) — leads to better system perfor-
mance (He and Way, 2009; Liu et al., 2011).

Later metrics that move beyond n-grams achieve
higher accuracy and improved robustness from re-
sources like WordNet synonyms (Miller et al., 1990),
and paraphrasing (Snover et al., 2009; Denkowski
and Lavie, 2010). But a common problem in these
metrics is they typically resort to ad-hoc tuning
methods instead of principled approaches to incor-
porate linguistic features. Recent models use linear
or SVM regression and train them against human
judgments to automatic learn feature weights, and
have shown state-of-the-art correlation with human
judgments (Kulesza and Shieber, 2004; Albrecht and
Hwa, 2007a; Albrecht and Hwa, 2007b; Sun et al.,
2008; Pado et al., 2009). The drawback, however,
is they rely on time-consuming preprocessing mod-
ules to extract linguistic features (e.g., a full end-to-
end textual entailment system was needed in Pado et
al. (2009)), which severely limits their practical use.
Furthermore, these models employ a large number
of features (on the order of hundreds), and conse-
quently make the model predictions opaque and hard
to analyze.

In this paper, we propose a simple yet powerful
probabilistic Finite State Machine (pFSM) for the
task of MT evaluation. It is built on the backbone of
weighted edit distance models, but learns to weight
edit operations in a probabilistic regression frame-
work. One of the major contributions of this pa-
per is a novel extension of the pFSM model into a
probabilistic Pushdown Automaton (pPDA), which
enhances traditional edit-distance models with the
ability to model phrase shift and word swapping. Fur-
thermore, we give a new log-linear parameterization
to the pFSM model, which allows it to easily incor-
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porate rich linguistic features. We experiment with a
set of simple features based on labeled head-modifier
dependency structure, in order to test the hypothesis
that modeling overall sentence structure can lead to
more accurate evaluation measures.

We conducted extensive experiments on a di-
verse set of standard evaluation data sets (NIST
OpenMT06, 08; WMT06, 07, 08). Our model
achieves or surpasses state-of-the-art results on all
test sets.

2 pFSMs for MT Regression

We start off by framing the problem of machine trans-
lation evaluation in terms of weighted edit distances
calculated using probabilistic finite state machines
(pFSMs). A FSM defines a language by accepting
a string of input tokens in the language, and reject-
ing those that are not. A probabilistic FSM defines
the probability that a string is in a language, extend-
ing on the concept of a FSM. Commonly used mod-
els such as HMMs, n-gram models, Markov Chains
and probabilistic finite state transducers all fall in
the broad family of pFSMs (Knight and Al-Onaizan,
1998; Eisner, 2002; Kumar and Byrne, 2003; Vidal
et al., 2005). Unlike all the other applications of
FSMs where tokens in the language are words, in
our language tokens are edit operations. A string of
tokens that our pFSM accepts is an edit sequence that
transforms a reference translation (denoted as ref )
into a system translation (sys).

Our pFSM has a unique start and stop state, and
one state per edit operation (i.e., Insert, Delete, Sub-
stitution). The probability of an edit sequence e is
generated by the model is the product of the state tran-
sition probabilities in the pFSM, formally described
as:

w(e | s,r) =
∏

|e|
k=1 exp θ · f(ek−1,ek,s,r)

Z
(1)

We featurize each of the state changes with a log-
linear parameterization; f is a set of binary feature
functions defined over pairs of neighboring states
(by the Markov assumption) and the input sentences,
and θ are the associated feature weights; r and s are
shorthand for ref and sys; Z is a partition function.
In this basic pFSM model, the feature functions are
simply identity functions that emit the current state,

and the state transition sequence of the previous state
and the current state.

The feature weights are then automatically learned
by training a global regression model where some
translational equivalence judgment score (e.g., hu-
man assessment score, or HTER (Snover et al.,
2006)) for each sys and ref translation pair is the
regression target (ŷ). We introduce a new regression
variable y ∈ R which is the log-sum of the unnormal-
ized weights (Eqn. (1)) of all edit sequences, formally
expressed as:

y = log ∑
e′⊆e∗

|e′ |

∏
k=1

exp θ · f(ek−1,ek,s,r) (2)

e∗ denotes a valid edit sequence. Since the “gold”
edit sequence are not given at training or prediction
time, we treat the edit sequences as hidden variables
and sum them out. The sum over an exponential
number of edit sequences in e∗ is solved efficiently
using a forward-backward style dynamic program.
Any edit sequence that does not lead to a complete
transformation of the translation pair has a probability
of zero in our model. Our regression target then seeks
to minimize the least squares error with respect to ŷ,
plus a L2-norm regularizer term parameterized by λ :

θ
∗ = min

θ
{∑

si,ri

[ŷi − (
yi

|si|+ |ri|
+α)]2 +λ‖θ‖2}

(3)
The |si|+ |ri| is a length normalization term for the
ith training instance, and α is a scaling constant for
adjusting to different scoring standards (e.g., 7-point
scale vs. 5-point scale), whose value is automatically
learned. At test time, y/(|s|+ |r|)+ α is computed
as the predicted score.

We replaced the standard substitution edit opera-
tion with three new operations: Sword for same word
substitution, Slemma for same lemma substitution, and
Spunc for same punctuation substitution. In other
words, all but the three matching-based substitutions
are disallowed. The start state can transition into any
of the edit states with a constant unit cost, and each
edit state can transition into any other edit state if
and only if the edit operation involved is valid at the
current edit position (e.g., the model cannot transi-
tion into Delete state if it is already at the end of ref ;
similarly it cannot transition into Slemma unless the
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Figure 1: This diagram illustrates an example translation pair in the Chinese-English portion of OpenMT08 data set
(Doc:AFP CMN 20070703.0005, system09, sent 1). The three rows below are the best state transition sequences
according to the three proposed models. The corresponding alignments generated by the models (pFSM, pPDA,
pPDA+f ) are shown with different styled lines, with later models in the order generating strictly more alignments than
earlier ones. The gold human evaluation score is 6.5 (on a 7-point scale), and model predictions are: pPDA+f 5.5, pPDA
4.3, pFSM 3.1, METEORR 3.2, TERR 2.8.

lemma of the two words under edit in sys and ref
match). When the end of both sentences are reached,
the model transitions into the stop state and ends
the edit sequence. The first row in Figure 1 starting
with pFSM shows a state transition sequence for an
example sys/ref translation pair. 1 There exists a one-
to-one correspondence between substitution edits and
word alignments. Therefore this example state tran-
sition sequence correctly generates an alignment for
the word 43 and people.

It is helpful to compare with the TER met-
ric (Snover et al., 2006), which is based on the idea
of word error rate measured in terms of edit distance,
to better understand the intuition behind our model.
There are two major improvements in our model: 1)
the edit operations in our model are weighted, as
defined by the feature functions and weights; 2) the
weights are automatically learned, instead of being
uniform or manually set; and 3) we model state transi-
tions, which can be understood as a bigram extension
of the unigram edit distance model used in TER. For
example, if in our learned model the feature for two
consecutive Sword states has a positive weight, then
our model would favor consecutive same word sub-

1It is safe to ignore the second and third row in Figure 1 for
now, their explanations are forthcoming in Section 2.2.

stitutions, whereas in the TER model the order of
the substitution does not matter. The extended TER-
plus (Snover et al., 2009) metric addresses the first
problem but not the other two.

2.1 Soft-max Interpretation
There is also an alternative interpretation of the model
as a simple soft-max approximation that is very intu-
itive and easy to understand. For ease of illustration,
we introduce a quantity Q(e | s,r) to be the score of
an edit sequence, defined simply as the sum of the
dot product of feature values and feature weights:

Q(e | s,r) =
|e|

∑
i=1

θ · f(ei−1,ei,s,r)

For the regression task, the intuition is that we want
y to take on the score (Q) of the best edit sequence:

y = max
e⊆e∗

Q(e | s,r)

But since the max function is non-differentiable, we
replace it with a softmax:

y = log ∑
e⊆e∗

exp︸ ︷︷ ︸
softmax

Q(e | s,r)

Substituting in Q, we arrive at the same objective
function as (2).
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2.2 Restricted pPDA Extension

A shortcoming of edit distance models is that they
cannot handle long-distance word swapping — a
pervasive phenomenon found in most natural lan-
guages. 2 Edit operations in standard edit distance
models need to obey strict incremental order in their
edit position, in order to admit efficient dynamic pro-
gramming solutions. The same limitation is shared
by our pFSM model, where the Markov assumption
is made based on the incremental order of edit po-
sitions. Although there is no known solution to the
general problem of computing edit distance where
long-distance swapping is permitted (Dombb et al.,
2010), approximate algorithms do exist. We present
a simple but novel extension of the pFSM model to a
restricted probabilistic pushdown automaton (pPDA),
to capture non-nested word swapping within limited
distance, which covers a majority of word swapping
in observed in real data (Wu, 2010).

A pPDA, in its simplest form, is a pFSM where
each control state is equipped with a stack (Esparza
and Kucera, 2005). The addition of stacks for each
transition state endows the machine with memory,
extending its expressiveness beyond that of context-
free formalisms. By construction, at any stage in a
normal edit sequence, the pPDA model can “jump”
forward within a fixed distance (controlled by a max
distance parameter) to a new edit position on either
side of the sentence pair, and start a new edit subse-
quence from there. Assuming the jump was made on
the sys side, 3 the machine remembers its current edit
position in sys as Jstart , and the destination position
on sys after the jump as Jlanding.

We constrain our model so that the only edit op-
erations that are allowed immediately following a
“jump” are from the set of substitution operations
(e.g., Sword). And after at least one substitution
has been made, the device can now “jump” back
to Jstart , remembering the current edit position as
Jend . Another constraint here is that after the back-
ward “jump”, all edit operations are permitted except
for Insert, which cannot take place until at least one

2The edit distance algorithm described in Cormen et
al. (2001) can only handle adjacent word swapping (transpo-
sition), but not long-distance swapping.

3Recall that we transform ref into sys, and thus on the sys
side, we can only insert but not delete. The argument applies
equally to the case where the jump was made on the other side.

substitution has been made. When the edit sequence
advances to position Jlanding, the only operation al-
lowed at that point is another “jump” forward opera-
tion to position Jend , at which point we also clear all
memory about jump positions and reset.

An intuitive explanation is that when pPDA makes
the first forward jump, a gap is left in sys that has
not been edited yet. It remembers where it left off,
and comes back to it after some substitutions have
been made to complete the edit sequence. The sec-
ond row in Figure 1 (starting with pPDA) illustrates
an edit sequence in a pPDA model that involves three
“jump” operations, which are annotated and indexed
by number 1-3 in the example. “Jump 1” creates an
un-edited gap between word 43 and western, after
two substitutions, the model makes “jump 2” to go
back and edit the gap. The only edit permitted im-
mediately after “jump 2” is deleting the comma in
ref, since inserting the word 43 in sys before any sub-
stitution is disallowed. Once the gap is completed,
the model resumes at position Jend by making “jump
3”, and completes the jump sequence. The “jumps”
allowed the model to align words such as western In-
dia, in addition to the alignments of 43 people found
by the pFSM.

In a general pPDA model without the limited dis-
tance and non-nestedness jump constraints, there
could be recursive jump structures, which violates
the finite state property that we are looking for. The
constraints we introduced upper-bounds possible re-
ordering, and the resulting model is finite state. In
practice, we found that our extension gives a big
boost to model performance (cf. Section 4.1), with
only a modest increase in computation time. 4

2.3 Parameter Estimation
Since the least squares operator preserves convexity,
and the inner log-sum-exponential function is con-
vex, the resulting objective function is also convex.
For parameter learning, we used the limited memory
quasi-newton method (Liu and Nocedal, 1989) to
find the optimal feature weights and scaling constant
for the objective. We initialized θ =~0, α = 0, and
λ = 5. We also threw away features occurring fewer
than five times in training corpus. Two variants of the

4The length of the longest edit sequence with jumps only
increased by 0.5 ∗max(|s|, |r|) in the worst case, and on the
whole swapping is rare in comparison to basic edits.
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forward-backward style dynamic programming algo-
rithm were used for computing gradients in the pFSM
and pPDA models, similar to other sequence models
such as HMMs and CRFs. Details are omitted here
for brevity.

3 Rich Linguistic Features

In this section we will add new substitution opera-
tions beyond those introduced in Section 2, to capture
various linguistic phenomena. These new substitu-
tion operations correspond to new transition states in
the pPDA.

3.1 Synonyms

Our first set of features matches words that have
synonym relations according to WordNet (Miller et
al., 1990). Synonyms have been found to be very
useful in METEOR and TERplus, and can be easily
built into our model as a new substitution operation
Ssyn.

3.2 Paraphrasing

Newer versions of METEOR and TERplus both
found that inclusion of phrase-based matching greatly
improves model robustness and accuracy (Denkowski
and Lavie, 2010; Snover et al., 2009). We add a sub-
stitution operator (Spara) that matches words that are
paraphrases. To better take advantage of paraphrase
information at the multi-word phrase level, we ex-
tended our substitution operations to match longer
phrases by adding one-to-many and many-to-many
n-gram block substitutions. In preliminary experi-
ments, we found that most of the gain came from
unigrams and bigrams, with little to no additional
gains from trigrams. Therefore, we limited our ex-
periments to bigram pFSM and pPDA models, and
pruned the paraphrase table adopted from TERplus 5

to unigrams and bigrams, resulting in 2.5 million
paraphrase pairs.

3.3 Sentence Structure

A problem that remains largely unaddressed by most
popular MT evaluation metrics is the overall good-
ness of the translated sentence’s structure (Liu et al.,
2005; Owczarzak et al., 2008). Translations with

5Available from www.umiacs.umd.edu/~snover/terp.

good local n-gram coverage but horrible global syn-
tactic ordering are not unusual in SMT outputs. Such
translations usually score well with existing metrics
but poorly among human evaluators.

In our model, when we detect consecutive bigram
substitutions in the state transition, we examine the
head-modifier dependency between the two words on
each side of the sentence pair. A feature is triggered if
and only if there is a head-modifier relation between
the two words on each side, the labeled dependency
on the two sides match, and it is one of subject, ob-
ject or predicative relations. We deliberately left out
features that model mismatches of dependency labels,
because we found parsing output from translations
to be usually very poor. Since parsing results are
generally more reliable for more fluent translations,
our hope is that by only modeling parse matches, our
model will be able to pick them up as positive signals,
indicating good translation quality.

4 Experiments

The goal of our experiments is to test both the ac-
curacy and robustness of the proposed new models.
We then show that modeling word swapping and rich
linguistics features further improve our results.

To better situate our work among past research
and to draw meaningful comparison, we use exactly
the same standard evaluation data sets and metrics
as Pado et al. (2009), which is currently the state-
of-the-art result for regression-based MT evaluation.
We consider four widely used MT metrics (BLEU,
NIST, METEOR (v0.7), and TER) as our baselines.
Since our models are trained to regress human eval-
uation scores, to make a direct comparison in the
same regression setting, we also train a small lin-
ear regression model for each baseline metric in the
same way as described in Pado et al. (2009). These
regression models are strictly more powerful than
the baseline metrics and show higher robustness and
better correlation with human judgments. 6 We also
compare our models with the state-of-the-art linear
regression models reported in Pado et al. (2009) that

6The baseline metric (e.g., BLEU) computes its raw score by
taking the geometric mean of n-gram precision scores (1≤ n≤ 4)
scaled by a brevity penalty. The regression model learns to com-
bine these fine-grained scores more intelligently, by optimizing
their weights to regress human judgments. See Pado et al. (2009)
for more discussion.
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combine features from multiple MT evaluation met-
rics (MT), as well as rich linguistic features from a
textual entailment system (RTE).

In all of our experiments, each reference and sys-
tem translation sentence pair is tokenized using the
Penn Treebank (Marcus et al., 1993) tokenization
script, and lemmatized by the Porter Stemmer (Porter,
1980). For the overall sentence structure experi-
ment, translations are additionally part-of-speech
tagged with MXPOST tagger (Ratnaparkhi, 1996),
and parsed with MSTParser (McDonald et al., 2005) 7

labeled dependency parser. Statistical significance
tests are performed using the paired bootstrap resam-
pling method (Koehn, 2004).

We divide our experiments into two sections, based
on two different prediction tasks — predicting abso-
lute scores and predicting pairwise preference.

4.1 Exp. 1: Predicting Absolute Scores

The first task is to evaluate a system translation
on a seven point Likert scale against a single ref-
erence. Higher scores indicate translations that are
closer to the meaning intended by the reference. Hu-
man ratings in the form of absolute scores are avail-
able for standard evaluation data sets such as NIST
OpenMT06,08.8 Since our model makes predictions
at the granularity of a whole sentence, we focus on
sentence-level evaluation. A metric’s goodness is
judged by how well it correlates with human judg-
ments, and Spearman’s rank correlation (ρ) is re-
ported for all experiments in this section.

We used the NIST OpenMT06 corpus for develop-
ment purposes, and reserved the NIST OpenMT08
corpus for post-development evaluation. The
OpenMT06 data set contains 1,992 English trans-
lations of Arabic newswire text from 8 MT systems.
For development, we used a 2-fold cross-validation
scheme with splits at the first 1,000 and last 992 sen-
tences. The OpenMT08 data set contains English
translations of newswire text from three languages
(Arabic has 2,769 pairs from 13 MT systems; Chi-
nese has 1,815 pairs from 15; and Urdu has 1,519
pairs, from 7). We followed the same experimental
setup as Pado et al. (2009), using a “round robin”
training/testing scheme, i.e., we train a model on data

7Trained on the entire Penn Treebank.
8Available from http://www.nist.gov.

from two languages, making predictions for the third.
We also show results of models trained on the entire
OpenMT08 data set and tested on OpenMT06.

4.1.1 pFSM vs. pPDA

Data Set pFSM pPDA
tr te n1 n2 j1 j2 j5 j10
A+C U 54.6 54.8 55.6 55.0 55.3 55.3
A+U C 59.9 59.8 58.0 61.4 63.8 64.0
C+U A 61.2 61.2 60.2 59.9 60.4 60.2

Table 1: pFSM vs. pPDA results for the round-robin
approach on OpenMT08 data set over three languages
(A=Arabic, C=Chinese, U=Urdu). Numbers in this table
are Spearman’s ρ for correlation between human assess-
ment scores and model predictions; tr stands for training
set, and te stands for test set. nx means the model has
x-gram block edits. jy means the model has jump distance
limit y. The Best result for each test set row is highlighted
in bold.

The second and third columns under the pFSM
label in Table 1 compares our bigram block edit ex-
tension for the pFSM model. Although we do not
yet see a significant performance gain (or loss) from
adding block edits, they will enable longer paraphrase
matches in later experiments.

Columns 5 through 8 in Table 1 show experimental
results validating the contribution of our pPDA ex-
tension to the pFSM model (cf. Section 2.2). We can
see that the pPDA extension gave modest improve-
ments on the Urdu test set, but at a small decrease
in performance on the Arabic data. However, for
Chinese, there is a substantial gain, particularly with
jump distances of five or longer. This trend is even
more pronounced at the long jump distance of 10,
consistent with the observation that Chinese-English
translations exhibit much more medium and long dis-
tance reordering than languages like Arabic (Birch et
al., 2009).

4.1.2 Evaluating Linguistic Features
Experimental results evaluating the benefits of

each linguistic feature set are presented in Table 3.
The first row is the pPDA model with jump distance
limit 5, without other additional features. The next
three rows are the results of adding each of the three
feature sets described in Section 3.

Overall, we observed that only paraphrase match-
ing features gave a significant boost to performance.
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Data Set Our Metrics Baseline Metrics Combined Metrics
train test pFSM pPDA pPDA+f BLEUR NISTR TERR METR MTR RTER MT+RTER
A+C U 54.6 55.3 57.2 49.9 49.5 50.1 49.1 50.1 54.5 55.6
A+U C 59.9 63.8 65.8 53.9 53.1 50.3 61.1 57.3 58.0 62.7
C+U A 61.2 60.4 59.8 52.5 50.4 54.5 60.1 55.2 59.9 61.1
MT08 MT06 65.2 63.4 64.5 57.6 55.1 63.8 62.1 62.6 62.2 65.2

Table 2: Overall Comparison: Results from OpenMT08 and OpenMT06 evaluation data sets. The R (as in BLEUR)
refers to the regression model trained for each baseline metric, same as Pado et al. (2009). The first three rows are
round-robin train/test results over three languages on OpenMT08 (A=Arabic, C=Chinese, U=Urdu). The last row are
results trained on entire OpenMT08 (A+C+U) and tested on OpenMT06. Numbers in this table are Spearman’s rank
correlation ρ between human assessment scores and model predictions. The pPDA column describes our pPDA model
with jump distance limit 5. METR is shorthand for METEORR. +f means the model includes synonyms, paraphrase
and parsing features (cf. Section 3). Best results and scores that are not statistically significantly worse are highlighted
in bold in each row.

Urdu Chinese Arabic
pPDA 55.3 63.8 60.4
+Synonym 55.6 63.7 60.7
+Tree 55.3 63.8 60.3
+Paraphrase 57.1 65.4 60.0
+Syn+Tree+Para 57.2 65.8 59.8

Table 3: Results for OpenMT08 with linguistic features,
using the same round robin scheme as in Table 1. Numbers
in this table are Spearman’s rank correlation ρ between
human assessment scores and model predictions. Best
results on each test set are highlighted in bold.

The row starting with pPDA+f in Figure 1 shows
an example where adding paraphrase features allow
pPDA+f to find more correct alignments and make
better predictions than pPDA.

No significant improvements from synonym and
dependency tree matching features are evident from
the results. An examination of the feature statistics in
training data showed that the parse tree features have
very low occurrence counts. On the Chinese+Urdu
training set, for example, the features for subject,
object and predicative labeled dependency matches
fired only 55, 784 and 13 times, respectively. As a
reference point for the scale of feature counts, the
“same word” match feature fired 875,375 times on
the same data set. And our qualitative assessment of
the labeled dependency parser outputs was that the
quality is very poor on system translations. For future
work, more elaborate parse feature engineering could
be a promising direction, but is outside the scope of
our study.

In combination, the joint feature set of synonym,

paraphrase and parse tree features gave modest im-
provements over the paraphrase feature alone on the
Chinese test set.

4.1.3 Overall Comparison
Results of our proposed models compared against

the baseline models described in Pado et al. (2009)
are shown in Table 2. The pPDA+f model has access
to paraphrase information, which is not available
to the baselines, so it should not be directly com-
pared with. But the pFSM and pPDA models do
not use any additional information other than words
and lemmas, and thus make a fair comparison with
the baseline metrics. 9 We can see from the table
that pFSM significantly outperforms all baselines on
Urdu and Arabic, but trails behind METEORR on
Chinese by a small margin (1.2 point in Spearman’s
ρ). On Chinese data set, the pPDA extension gives
results significantly better than the best baseline met-
rics for Chinese (2.7 better than METEORR). Both
the pFSM and pPDA models also significantly outper-
form the MTR linear regression model that combines
the outputs of all four baselines, on all three source
languages. This demonstrates that our regression
model is more robust and accurate than a state-of-
the-art system combination linear-regression model.
Both pFSM and pPDA learned to assign a lower neg-
ative feature weight for deletion than insertion (i.e.,
it is bad to insert an unseen word into system trans-

9METEORR actually has an unfair advantage in this compari-
son, since it uses synonym information from WordNet; TERR
on the other hand has a disadvantage because it does not use
lemmas. Lemma is added later in the TERplus extension (Snover
et al., 2009).
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lation, but worse if words from reference translation
are deleted), which corresponds to the setting in ME-
TEOR where recall is given more importance than
precision (Banerjee and Lavie, 2005).

The RTER and MT+RTER linear regression mod-
els benefit from the rich linguistic features in the
textual entailment system’s output. It has access to
all the features in pPDA+f such as paraphrase and de-
pendency parse relations, and many more (e.g., Norm
Bank, part-of-speech, negation, antonyms). However,
our pPDA+f model rivals the performance of RTER
and MT+RTER on Arabic (with no statistically sig-
nificant difference from RTER), and greatly improve
over these two models on Urdu and Chinese. Most
noticeably, pPDA+f is 7.7 points better than RTER
on Chinese.

Consistent with our earlier observation on
OpenMT08 data set that the pPDA model performs
slightly worse than the pFSM model on Arabic, the
same performance decrease is seen in OpenMT06
data set, which is also Arabic-to-English.

As shown earlier in Table 3, the combined set of
paraphrase, parsing and synonym features in pPDA+f
helps for Urdu and Chinese, but not for Arabic. Here
we found that even though the pPDA+f model is still
worse than pFSM on OpenMT06 tests, it did give a
decent improvement to pPDA model, closing up the
gap with pFSM.

Other than robustness and accuracy, simplicity is
also an important trait we seek in good MT met-
rics. Our models only have a few tens of features
(instead of hundreds of features as found in RTER
and MT+RTER), which makes interpretation of the
model’s prediction relatively easy. On an important
practical note, our model is much more lightweight
than the RTER or MTR system. It runs at a much
faster speed with a smaller memory footprint, hence
potentially useable in MERT training.

4.2 Exp. 2: Predicting Pairwise Preferences
To further test our model’s robustness, we evaluate
it on WMT data sets with a different prediction task
in which metrics make pairwise preference judg-
ments between translation systems. The WMT06-
08 data sets are much larger in comparison to the
OpenMT06 and 08 data. They contain MT outputs of
over 40 systems from five different source languages
(French, German, Spanish, Czech, and Hungarian).

The WMT06, 07 and 08 sets contains 10,159, 5,472
and 6,856 sentence pairs, respectively. We used por-
tions of WMT 06 and 07 data sets 10 that are anno-
tated with absolute scores on a five point scale for
training, and the WMT08 data set annotated with
pairwise preference for testing.

To generate pairwise preference predictions, we
first predict an absolute score for each system trans-
lation, then compare the scores between each system
pair, and give preference to the higher score. We
adopt the sentence-level evaluation metric used in
Pado et al. (2009), which measures the consistency
(accuracy) of metric predictions with human prefer-
ences. The random baseline for this task on WMT08
data set is 39.8%. 11

Models WMT06 WMT07 WMT06+07
pPDA+f 51.6 52.4 52.0
BLEUR 49.7 49.5 49.6
METEORR 51.4 51.4 51.5
NISTR 50.0 50.3 50.2
TERR 50.9 51.0 51.2
MTR 50.8 51.5 51.5
RTER 51.8 50.7 51.9
MT+RTER 52.3 51.8 52.5

Table 4: Pairwise preference prediction results on WMT08
test set. Each column shows a different training data set.
Numbers in this table are model’s consistency with human
pairwise preference judgments. Best result on each test
set is highlighted in bold.

Results are shown in Table 4. Similar to the results
on OpenMT experiments, our model consistently out-
performed BLEUR, METEORR, NISTR and TERR.
Our model also gives better performance than the
MTR ensemble model on all three tests; and ties with
RTER in two out of the three tests but performs sig-
nificantly better on the other test. The MT+RTER
ensemble model is better on two tests, but worse
on the other. But overall the two systems are quite
comparable, with less than 0.6% accuracy difference.
The results also show that our method is stable across
different training sets, with test accuracy differences
less than 0.4%.

10Available from http://www.statmt.org.
11The random baseline is not 50% for two reasons: (1) human

judgments include contradictory and tie annotations; (2) tran-
sitivity constraints need to be respected in total ordering. For
details, see Pado et al. (2009).
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4.3 Qualitative Analysis
Example (1) shows a system and reference translation
pair in the Chinese test portion of OpenMT08.

(1) REF: Two Jordanese sentenced1 for plotting2
an attack3 on Americans4

SYS: The name of Jordan plotting2 attacks3
Americans4 were sentenced1 to death

Human annotators give this example a score of 4.0,
but TERR and METEORR both assigned erroneously
low scores (1.0 and 2.2, respectively). Words with the
same subscript index were aligned by pPDA model.
This example exhibits a word swapping phenomenon,
and our model was able to capture it correctly. TERR
clearly suffered from not being able to model word
swapping in this case. It also missed out the word
pair attack and attacks due to the lack of lemma sup-
port. The reason why METEORR assigned such a low
score for this example is because none of the matched
words in the reference were adjacent to each other,
causing a high fragmentation penalty. The fragmenta-
tion penalty term has two parameters that need to be
manually tuned, and has a high variance across exam-
ples and data sets. This example illustrates models
that require ad-hoc tuning tend not to be robust. Our
pPDA model (without linguistic feature) was able
to make a prediction of 3.7, much closer to human
judgment.

4.4 MetricsMATR10 and WMT12 Results
An earlier version of the pFSM model that was
trained on the OpenMT08 data set was submitted
to the single reference sentence level track at Met-
ricsMATR10 (Peterson and Przybocki, 2010) NIST
evaluation. Even though our system was not in the
most ideal state at the time of the evaluation, 12 and
was trained on a small amount of data, the pFSM
model still performed competitively against other
metrics. Noticeably, we achieved second best results
for Human-targeted Translation Edit Rate (HTER)
assessment, trailing behind TERplus with no statisti-
cally significant difference. On average, our system
made 5th place among 15 different sites and 7th place
among 25 different metrics, averaged across 9 assess-
ment types.

12Unfortunately the version we submitted in 2010 was plagued
with a critical bug. More general enhancements have been made
to the model since.

We submitted the version of the pPDA+f model
trained on the WMT07 dataset to the “into English”
segment-leval track of the WMT 2012 Shared Eval-
uation Metrics Task (Callison-Burch et al., 2012).
Our model achieved the highest score (measured by
Kendall’s tau correlation) on all four language pairs
(Fr-En, De-En, Es-En and Cs-En), and tied for the
first place with METEOR v1.3 on average correla-
tion.

5 Related Work

Features and Representation

One of the findings in our experimentation is that
paraphrasing helps boosting model accuracy, and
the idea of using paraphrases in MT evaluation was
first proposed by Zhou et al. (2006). Several re-
cent studies have introduced metrics over dependency
parses (Liu et al., 2005; Owczarzak et al., 2008; He et
al., 2010), but their improvements over n-gram mod-
els at the sentence level are not always consistent (Liu
et al., 2005; Peterson and Przybocki, 2010). Other
than string-based methods, recent work has explored
more alternative representations for MT evaluation,
such as network properties (Amancio et al., 2011),
semantic role structures (Lo and Wu, 2011), and the
quality of word order (Birch and Osborne, 2011).

Modeling

The idea of using extended edit distance models with
block movements was also explored in Leusch et
al. (2003). However, their model is largely empirical
and not in a probabilistic learning setting. The line
of work on probabilistic tree-edit distance models
bears a strong connection to this work (McCallum
et al., 2005; Bernard et al., 2008; Wang and Man-
ning, 2010; Emms, 2012). In particular, our pFSM
model and the log-linear parameterization were in-
spired by Wang and Manning (2010). Another body
of literature that is closely related to this work is
FSM models for word alignment (Vogel et al., 1996;
Saers et al., 2010; Berg-Kirkpatrick et al., 2010). The
stochastic Inversion Transduction Grammar in Saers
et al. (2010) for instance, is a pFSM with special
constraints. More recently, Saers and Wu (2011) fur-
ther explored the connection between Linear Trans-
duction Grammars and FSMs. There is a close tie
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between our pFSM model and the HMM model in
Berg-Kirkpatrick et al. (2010). Both models adopted
a log-linear parameterization for the state transition
distribution, 13 but in their case the HMM model and
the pFSM arc weights are normalized locally, and the
objective is non-convex.

6 Conclusion

We described a probabilistic finite state machine
based on string edits and a novel pushdown automa-
ton extension for the task of machine translation eval-
uation. The models admit a rich set of linguistic
features, and are trained to learn feature weights auto-
matically by optimizing a regression objective. The
proposed models achieve state-of-the-art results on
a wide range of standard evaluations, and are much
more lightweight than previous regression models,
making them suitable candidates to be used in MERT
training.
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