
Parallel Replacement in Finite State Calculus

A n d r 6 K e m p e a n d L a u r i K a r t t u n e n
R a n k Xerox Research Cent re - Grenoble Labora to ry

6, chemin de Maupe r tu i s -- 38240 Meylan - France
{kempe, karttunen}~xerox, fr http ://www. xerox, fr/grenoble/mltt

Abstract
This paper extends the calculus of regular ex-
pressions with new types of replacement ex-
pressions that enhance the expressiveness of
the simple replace operator defined in Kart-
tunen (1995). Parallel replacement allows
multiple replacements to apply simultaneously
to the same input without interfering with
each other. We also allow a replacement to
be constrained by any number of alternative
contexts. With these enhancements, the gen-
eral replacement expressions are more versa-
tile than two-level rules for the description of
complex morphological alternations.

1 Introduct ion
A replacement expression specifies that a given
symbol or a sequence of symbols should be replaced
by another one in a certain context or contexts.
Phonological rewrite-rules (Kaplan and Kay, 1994),
two-level rules (Koskenniemi 1983), syntactic dis-
arnbiguation rules (Kar]sson et al 1994, Kosken-
niemi, Tapanainen, and Voutilainen 1992), and
part-of-speech assignment rules (Brill 1992, Roche
and Schabes 1995) are examples of replacement in
context of finite-state grammars.

Kaplan and Kay (1994) describe a general
method representing a replacement procedure as
finite-state transduction. Kart tunen (1995) takes a
somewhat simpler approach by introducing to the
calculus of regular expression a replacement opera-
tor that is defined just in terms of the other regular
expression operators. We follow here the latter ap-
proach.

In the regular expression calculus, the replace-
ment operator, ->, is similar to crossproduct, in
that a replacement expression describes a rela-
tion between two simple regular languages. Con-
sequently, regular expresmons can be conveniently
combined with other kinds of coperations, such as
composition and union to form complex expres-
sions.

A replacement relation consists of pairs of strings
that are related to one another in the manner
sketched below:

x u.~ y, u~ z upper string [1]
x 1~ y 1~ z lower string

We use u i and u~ to represent instances of Ui (with

i C [1, n])and 1~ and 1~ to represent instances of Li.
The upper string contains zero or more instances of
Ui, possibly interspersed with other material (de-
noted here by x, y, and z). In the corresponding

lower string the sections corresponding to Ui are in-
stances of Li, and the intervening material remains
the same (Karttunen, 1995).

The -> operator makes the replacement obliga-
tory, (->) makes it optional. For the sake of com-
pleteness, we also define the inverse operators, <-
and (<-) , and the bidirectional variants, <-> and
(<->).

We have incorporated the new replacement ex-
pressions into our implementation of the finite-
state calculus (Kempe and Karttunen, 1995).
Thus, we can construct transducers directly from
replacement expressions as part of the general cal-
cnlus, without invoking any special rule compiler.

1 .1 S i m p l e r e g u l a r e x p r e s s i o n s

The table below describes the types of regular ex-
pressions and special symbols that are used to de-
fine the replacement operators.

(h) option, [h I 0] [2]
h* Kleene star
h+ Kleene plus
h/B ignore (A possibly interspersed with

strings from B)
"h colnplement (negation)
$h contains (at least one) A
h B concatenation
h I B union
h g~ t3 intersection
h - B relative complement (minus)
h .x. B crossproduct (Cartesian product)
h .o. 13 composition
0 or [J epsilon (the empty string)
[. .] affects empty string replacement (see. 2.2)
? any symbol
?* the universal ("sigma-star") language

(contains MI possible strings of any length
including the empty string)

.#. string beginldng or end (see. 2.1)

Note that expressions that contain the cross-
product (. x .) or the composition (o . . .) opera-
tot, describe regular relations rather than regular
hmguages. A regular relation is a mapping from
one regular language to another one. t{egular lan-
guages correspond to simple finite-state automata;
regular relations are modelled by finite-state trans-
ducers.

In the relation A .x. B, we call the first lnern-
ber, h, the u p p e r language and the second mem-
ber, B, the lower language. This choice of words
is motivated by the linguistic tradition of writ-
ing the result of a rule application underneath
the original form. In a cascade of compdsitions,
I~3..o. 1~2 o. Rn, which models a linguistic
derivation by rewrite-rules, the upper side of the
first relation, R1, contains the "underlying lexical

622

form", while the lower side of the last relation, Rn,
contains the resulting "surface form".

We recognize two kinds of symbols: simple sym-
bols (a, b, c, etc.) and fst p'drs)ai (a:b, y :z , etc.).
An Nt pair a : b can be thought of as tim crossprod-
uct of a and b, the minimal relation consisting of a
(the upper syml)ol) and b (the lower symbol).

2 P a r a l l e l Replacement
Conditional parallel replacement denotes a relation
which maps a set of n expressions Ui (i E [1, n]) in
the upper language into a set of corr~;sponding n
expressions Li in the lower language if, and only if,
they occur between a Left and a right context (ll,
ri).

{ U~ - > L , I I l~ _ r , } [3]
. . . . { U,~ - > L,~ II l~_ rn }

Unconditiomd parallel replacement denotes a
similar relation where the replacement is not con-
straint by contexts.

Conditional parallel replacement corresponds to
what Kaplan and Kay 0994) call "batch rules"
where a. set of rules (replacements. .) is collected to-
gel;her m a batch and performed m parallel, at the
same time, in a way that all of them work on the
same input, i.e. not one applies to the output of
another replacement.

2 . 1 E x a m p l e s

Regular expressions based on [3] can be abbrevi-
ated if some of the Ut 1 EIt-I,OWF, I{ pairs, and/or
some of the LEI.'T-I{IGIIT pairs, are equivalent. The
complex expression:

{ a -> b , b -> c I I x _ y } ; [4]

which contains multiple replacement in one left and
right context, can be written in a more elementary
way as two parallel replacements:

{ a - > b I I x _ y } , { b - > c I I x _ y } ; [5]

c Y

a ?

(X

Figure 1: Transducer encoding [4] ~rnd [5] (Every arc
with more than one label actually stands for a set of
arcs with one label each.)

Figure 1 shows the state diagram of a trans-
ducer resulting from [4] or [5]. 'Fhe transducer
maps the string xaxayby to xaxbyby following the
path 0 - 1 - 2 - 1 - 3 - 0 - 0 - 0 and the string xbybyxa to
xcybyxa following the path 0 - 1 - 3 - 0 - 0 - 0 - 1 - 2 .

The complex expression

{ a - > b , b - > c I I x _ y , v _ w } , [6]
{ a - > c [I p - q } ;

contains five single parallel replacements:

{ a - > b I I x _ y } , [7]
{ a-> b II v.~w } ,
{ b - > c II x _ y } ,
{ b - > c II v_w} ,
{ a - > c I I p - q } ;

Contexts can be unspecified as in

{ a - > b II x _ y , v _ , _ w } ; [8]

where a is replaced by b only when occuriug be-
tween x and y, or after v, or before w.

An unspecitied context is equivalent to ?% the
universal (sigma-star) language. Similarly, a spec-
itied context, such as x _ y, is actually interpreted
as ?* x _ y ?*, that is, implicitly extending the
context to infinity on both sides of the replacement.
'l'his is a useful convention, but we also need to be
able to refer explicitly to the beginning or the end
of a string. For this purpose, we introduce a special
symbol, .#. (Kaplan and Kay, 1994, p. 349).

In the example

{ a - > b I I . # . - , v _ 7 ? . # , } ; [9]

a is replaced by b only when it is at the beginning
of a string or/)etween v and the two tinal symbols
of a string I.

2 . 2 ReI) la (' ement o f t h e E m p t y S t r i n g

The language described by the UI)PER [)art of a
replacement expression 2

UPPER - > LOWER I I LEFT _ RIVET [10]

can contain the empty string e. In this case, every
string that is in the upper-side language of the re-
lation, is mapped to an infinite set of strings in the
lower-side language as the upper-side string can be
considered as a concatenation of empty and non-
empty substrings, with e at any position and in
any number. E.g.

~ * - > ~ II - ; [11]

maps the string bb to the infinite set of strings bb,
xbb, xbxb, xbxbx, xxbb, etc., since the language
described by a* contains e, and the string bb can
be considered as a result of any one of the concate-
nations b~b, e~'b~b, e ~ ' b ~ b , ~ b ~ e . ~ b ~ c ,
~ e ~ b ~ b , etc.

For many practical l)urposes it is convenient to
construct a version of empty-string replacement
that allows only one application between any two
adjacent symbols (Karttunen, 1995). In order not
to confllse the notation by a non-standard interpre-
tation of the notion of empty string, we introduce a
special pair of brackets, [. .] , placed around the

1Note t h a t .# . d en o t e s the 1)eginning or the end of a
s t r i n g d e p e n d i n g on w h e t h e r it occur s in t he left or t he r igh t
con tex t .

2We descr ibe th i s topic on ly for un i -d i r ee t iona l rep!.ace-
meri t f r o m the u p p e r to the lower side of a r e g u l a r r e l a t ion ,
trot a n a l o g o u s s t a t e m e n t s can be m a d e for all o t h e r t y p e s of
r e p l a c e m e n t m e n t i o n e d in sec t ion 3.

523

upper side of a replacement expression that presup-
poses a strict al ternation of empty substrings and
non-empty substrings of exactly one symbol:

e x e y e z e . . . [12]

In applying this to the above example, we obtain

[. a* .1 -> x II - ; [13]

that maps the string bb o n l y to xbxbx since bb is
here considered exclusively as a result of the con-
catenation c . ~ b ~ ¢ ~ b ~ .

If contexts are specified (in opposition to the
above example) then they are taken into account.

2 . 3 T h e A l g o r i t h m

2.3.1 A u x i l i a r y B r a c k e t s

The replacement of one substring by another one
inside a context, requires the introduction of aux-
iliary symbols (e.g. brackets). Kaplan and Kay
(1994) mot ivate this step.

If we would use an expression like

1, [Ui . x . L i] ri [14]

to map. a particular Ui (i E .[1, n]) to l,i when oc-
curing between a left and a right context, li and ri,
then every li and ri would map substring adjacent
to Ui.

However, this approach is impossible for the fol-
lowing reason (Kaplan and Kay, 1994): In an ex-
ample like

{ a - > b I I x _ x } ; [15]

where we expect xaxax to be replaced by xbxbx,
the middle x serves as a context for both a's. A
relation described by [14] could not accomplish this.
The middle x would be mapped either by an ri or
by an li but not by both at the same time. Tha t is
why only one a could be replaced and we would get
two alternative lower strings, xbxax and xaxbx.

Therefore, we have to use the contexts, li and ri,
without mapping them. For this purpose we intro-
duce auxiliary brackets <i after every left context
li and >i before every right context ri. The re-
placement maps those brackets without looking at
the actual contexts.

We need separate brackets for empty and non-
empty UPPER. If we used the same bracket for both
this would mean an overlap of the substrings to
replace in an example like X > l < l a > l . Here we
might have to replace >1<1 and < l a > l where <1
is part of both substrings. Because of this overlap,
we could not replace both substrings in parallel, i.e.
at the same time. To make the two replacements
sequentially is also impossible in either order, for
reasons in detail explained in (Kempe and Kart-
tunen, 1995).

A regular relation describing replacement in con-
text (and a transducer that represents it), is defined
by the composition of a set of "simpler" auxiliary
relations. Context brackets occur only in interme-
diate relations and are not present in the final re-
suit.

2.3.2 P r e p a r a t o r y S t e p s

Before tile replacement we make the following three
transformations:

(1) Complex regular expressions like [4] are
transformed into elementary ones like [5], where ev-
ery single replacement consists of only o n e UI-'I~ER,
one LOWER, one LEI?T and one RIGHT expression.
E.g.

{ [. (a) .] - > b II x _ y } ,
{ [] -> c , e -> f II v _ ~ } ; [16]

would be expanded to

{ [. (a) .] -> b l[x _ y } ,
{ [] - > ~ I I v _ . } , [lr]
{~->f II v _ w } ;

(2) Since we have to use different types of brack-
ets for the replacement of empty and non-empty
U P P E R (el . 2.3.1), we split the set of parallel re-
placements into two groups, one containing only
replacements with empty UPPER and the other one
only with non-empty UPPER. If an UPPER contains
the empty string but is not identical with it, the
replacement will be added to both groups but with
a different UPPER. E.g. [].7] wou ldbe split into

{ a - > b II x _ y } ,
{ e - > f II v _ • } ; [18]

the group of non-empty UPPER and
{ [. .] -> b II x _ y } ,
{ [] - > e I I v _ ~ } ; [19]

the group of empty UPPER.

(3) All empty U P P E R of type [] are trans-
formed into type [. .] and the corresponding
LOWER are replaced by their Kleene star flmction.
E.g. [19] would be transformed into

{ [. .] - > b II x _ y } ,
{ [. .] -> c* I I v _ w } ; [20]

The following algorithm of conditional parallel
replacement will consider all empty UPPER as being
of type [. .] , i.e. as not being adjacent to another
empty string.

2.3.3 T h e R e p l a c e m e n t i t s e l f

Apart fi'om the previously explained symbols, we
will make use of the following symbols in the next
regular expressions: [21]

< o , , [< , ~ I...I <mE], union of all left brackets
for e m p t y U P P E R .

> ~ ,~ [> ~ I...I > r ,~], union of all right brackets
tor e m p t y U P P E R .

><,uE [<~uE I >~uE]
<~,~,~ [<l I...I < -], union of all left brackets for

n o n - e m p t y U P P E R .
> ~ , N , [>1 I...I >.,], union of Ml right brackets for

n o n - e m p t y U P P E R . ><alINEl<allNE]>al~N]]
<all <all14 <aliNE
>all ~>allrg >aliNE

.1 Ignore-inside operator.
Example: abc. /x = [abc/x] - [x ?*]- [?* x],
inside the string abe, i.e_ laetween'a and b
and between b and c, alL x will be ignored
any number of times.

624

We compose the condit ional parallel replacement
of the six auxil iary relations described by Kaplan
and Kay (1994) and Karttunen (1995) which are:

(1) InsertBrackets [22]
(2) ConstrainBrackets
(3) LeftContext
(4) RightContext
(5) Replace
(6) RemoveBrackets

The composition of these relations in the above
order, defines the npward-oriented replacement.
The resulting transducer maps UPPER inside a n irt-
put string to LOWER: when UPl't,;I/, is between l,l~]l,"["
and tlIGHT in the input context, leaving everything
else unchanged. Other wu:iants of the replacement
opel:ator will be defined later.

For every single replacement { Ui -> 1,i II li
ri } we introduce a separate pair of brackets <i

and >i with i • [1E. . .mE] if UPI 'Et{ is identical
with the empty string and i ff []. . .n] if UPPEI-t does
not contain the empty string. A left bracket <i
indicates the end of a complete left context. A right
bracket >i marks the beginning of a complete right
context.

We define the component relations irl the fol-
lowing way. Note that UI'PI,]R, LOW|!]t{, I,I,;FT and
IHGtIT (Ui, Li, li and ri) stand for regular expres-
sions of any complexity but restricted to denote
regular languages. Consequently, they are repre-
sented by networks thai; contain no fst pairs.

(1) I n s e r t B r a c k e t s
[] <- ><~u [23]

The relation inserts instances of all brackets on
the lower side (everywhere and in any numl)er and
order).

(2) C o n s t r a i n B r a e k e t s
~$[>~tz~¢ [>,,uN~,"]] [24]
"$[<,uF, [>, , ,]]

g ~$[<.rove [<,mzz I >~u]]
The language does not apply to single brackets

but to their types and allows them to be only in
the following order:

>atlNt,7,* >a/IF,* <all/';* <aaNI,:* [25]

The composition of the steps (1) and (2) invokes
this constraint, which is necessary for the tbllowing
reasons:

If we allowed sequences like <3 Ua <1>3 U1 >1
we would have an overlap of the two substrin~s
<a U3 >:l and < , U1 >1 which have to be replacea.
Itere, either U1 or Ua could be replaced but not
both at the same time.

If we permit ted sequences like >11z<=<ll~' U2 >2
we would also have an overlap of the two re-
placements which means we could either replace
<2 U2 >u or >lU<lle but not both.

(3) L e f t C o n t e x t

~ ~ . . . e ~ [26]

fo r a l l i 6 [lE...mE, 1...n] , l i =
~$[- [h . l><au] (> < . u - < O * <,]

g~ ~$[[l i . l > < ~ u] (> < . t , - <i)* ~<i]

The constraint forces every instance of a left
bracket <i to be immediately preceded by tilt; cor-
responding left context li and every instance of'li to
be immediately folk)wed by <i, ignoring all brack-
ets that are different from <i irlbetween, and all
brackets (<i included. •) inside, . Ii (. . . . /.) We ,separately.,.
make the constraints Ai for every <i and li and then
intersect them in order to get tim constraint for all
left brackets and contexts.

(4) R i g h t C o n t e x t

o , ~ . . . e, o , , [27]
for a l l i 6 [1 E . . . m E , l...n] , pl =

~$[>i (><~u - >i)* ~[r i . l>< ,u]]
g: ~$[">/ (><aU -- >i)* [r i . l>< ,u]]

'l'he constraint relates instances of right brackets
>i and of right contexts ri, attd is the mirror im-
age of step (3). We &;rive it from the left context
constraint by reversing every right context r~, be-
fore making the single constraints ,~i (not pi) and
revel:sing again the result after having intersected
all)h.
(5) R e p l a c e

E H n] , A r [28]

'i'he relation mal)s every bracketed I.Jl'l 'l,;I/,
<i Ui >i for non-empty UI'PEI{ and >i<i for empty
UPPI)]I/., to the corresponding bracketed LOWEll,
<i Li >i, leaving everything else unchanged.

i '] string not 'l'he term N" n [28 means a that does
contain ~my bracketed UPPEI{:

.IV" = J~IE g...g #~mE g J~'l gO...g J~n [29]

A particular bracketed empty UPPEll >i<i is ex-
cluded l¥om the correspondiug N (i • [~Z,:, ,,,lC])
by

aV, = ~$[>, [><,a,,~ - >i - <i]* <d [30]
and a bracketed non-empty UPPER <i Ui >i is ex-
cluded from the corresponding A// (i • [1, n]) by

= ~$[<~ [< ~ U N ~ , : - < d * [31]
UI ,/'><all [>allNt,1 - >i]* >i]

I he term T¢m expression [28] abbrevmtes a re-
lation that maps any bracketed -UPPER to the cor-
responding bracketed I,OWER. It is the union ot' all
single TQ relations mapping all occurl:ences of one
Ui (empty and non-empty) to the corresponding
Li:

T¢ = "R.~r, I . . . I "1"¢,,~; I 7~ I . . . I T¢,, [32]

T h e r e p l a c e m e n t "/6i o f n o n - e m p t y UPPEIL
Ui (i • [1, n]) is performed by:

<i [[U~ .Z>< . , ,] . x . [L~ .Z><~ ,]] >¢ [33]

To illustrate this: Suppose we have a set of re-
placements containing among others

a - > b II x _ y ; [34:]
This particular replacement is done by mapping in-
side an input string every substring that looks like
(underlined part) [35]
. . . x >2>l>IE<1N<2 < 1 8 - > 1 >2>IE<IE<I<2y...

using the brackets <1 and >t to a substring (un-
derlined part)

625

r,l~l
• . . X > 2 > 1 > l E < l E < 2 <lb>l > 2 > 1 / ~ < 1 E < 1 < 2 ~ ,'.vj.

T h e r e p l a c e m e n t T~i of e m p t y UPPER Ui
(i 6 [1E, mE]) is performed by:

[0.x. [[><au~ - < i] I d[<aZZN~]]]* [37]
[> i . x . < i] [0 .x . [Li . l><~u]] [< i . x . > i]

[0.x.E[><au~ - >i] I E>~,INE]]]*

In the following example we replace the empty
U2E by L2E. Suppose we have in total one replace-
ment of non-empty UPPER and two of empty UP-
PER, one of which is

[. .] -> b I I x _ y ; [38]

This replacement is done by mapping inside a
string every substring that looks like (underlined
part)

. . . x >1>1E >2E <2E <1E<1 y . . . [39]

using the brackets >2E<2E into a substring (un-
derlined part)

. . . x >1>1. I>1 I<1. I<d* [40]
<2Eb>2E

[>1 I>1~ [<1~ I <2El* <1E<1 y . . .

The occurrence of exactly one bracket pair >iE
and <iE between a left and a right context, actually
corresponds to the definition of a (single) empty
string expressed by [. .] (ef. sac. 2.2).

The brackets [>2E t >lE I <lE I <1] and
[>1]>rE I < lE] <2El in [40] are inserted on the
lower side any number of times (including zero), i.e.
they exist optionally, which makes them present if
checking for the left or right context requires them,
and absent if they are not allowed in this place.
This set of brackets does not contain those ones
used for the replacement, >i<i, because if we later
check for them we do not want this check to be al-
ways satisfied but only when the specified contexts
are present, in order to be able to confirm or to
cancel the replacement a posteriori.

This set of optionally inserted brackets equally
does not contain those which potentially could be
used for the replacement of adjacent non-empty
strings, i.e. >aUNE on the left and <aUNE on the
right side of the expression. Otherwise, checking
later for the legitimacy of the adjacent replace-
ments would no longer be possible.

(6) R e m o v e B r a c k e t s

- > [] [41]

The relation eliminates from the lower-side lan-
guage all brackets that appear on the upper side.

3 V a r i a n t s o f R e p l a c e m e n t

3 . 1 A p p l i c a t i o n o f c o n t e x t c o n s t r a i n t s

We distinguish four ways how context can constrain
the replacement. The difference between them is
where the left and the right contexts are expected,
on the upper or on the lower side of the relation, i.e.
LEFT and RIGHT contexts can be checked before or
after the replacement.

We obtain these four different applications of
context constraints (denoted by I1, / / , \ \ and

V) by varying the order of the auxiliary rela-
tions (steps (3) to (5)) described in section 2•3.3
(cf. [221):

(a) Upward-oriented
{ U1 -> L1 II 11 _ ra } [42]
. . . . { U . - > L. II In _ r . }

• . . L e f t C o n t e x t .o. RightContext .o. Replace•. .

(b) Right-oriented
{ U1 -> LI II h - r l } [43]

• . . R i g h t e o n t e x t .o. Replace . o. Lef tContext . . .

(c) Left-oriented
{ vl -> L1 \ \ 11 - ,'1 } [44]

•..LeftContext .o. Replace .o. RightContext...

(d) Downward-oriented
{ /]1 -> L1 \ / 11 _ r l } [45]

• . . R e p l a c e .o. LeftContext .o. RightContext . . .

The versions (a) to.()c roughly, correspond to
the three alternative interpretations of phonolog-
ical rewrite rules discussed in Kaplan and Kay
(1994). The upward-oriented version corresponds
to the simultaneous rule application; the right- and
left-oriented versions can model rightward or left-
ward iterating processes, such as vowel harmony
and assimilation.

In the downward-oriented replacement the oper-
ation is constrained by the lower (left and right)
context. Here the Ui get mapped to the corre-
sponding L/ just in case they end up between l{
and ri in the output string.

3 . 2 Inverse , b i d i r e c t i o n a l a n d o p t i o n a l
r e p l a c e m e n t

Replacement as described above, ->, maps every
U{ on the upper side unambiguously to the corre-
sponding Li on the lower side but not vice versa.
A L{ on the lower side gets mapped to Li or U{ on
the upper side.

The inverse replacement, <-, maps unambigu-
ously from the lower to the upper side only. The
bidirectional replacement, <->, is unambiguous in
both directions.

Replacements of all of these three types (direc-
tions) can be optional, (->) (<-) (<->), i.e. they
are either made or not. We define such a relation
by changing Af (the part not containing any brack-
eted UPPER) in expression [28] into ?* that accepts
every substring:

[?* ~]* ?* [46]

Here an Ui is either mapped by the corresponding
TQ contained in 7~ (cf. [32]) and therefore replaced
by Li, or it is mapped by ?* and not replaced.

4 A P r a c t i c a l Application
In this section we illustrate the usefulness of the
replace operator using a practical example.

We show how a lexicon of French verbs ending in
-it, inflected in the present tense subjunctive mood,
can be derived from a lexicon containing the corre-
sponding present indicative forms. We assume here
that irregular verbs are encoded separately.

It is often proposed that the present subjunctive
o f - i t verbs be derived, for the most basic case, from

626

a s tem in -iss- (e.g.: f inir/f iniss) ra ther than from
a more general root (e.g.: fin(i)) because once this
stern is assumed, the snbjunct ive ending itself be-
comes completely regular:

(that l finish) (that I run)
que je flniss-c que je cour-e
que tu finiss-cs quc tu cour-es

que ils flniss-ent qucils cour-en*

']?he a lgor i thm we propose },ere, is strMghtfor-
ward: We first derive the present subjunct ive s tem
f rom the third person plural t)resent indicative
(e.g'...fini~%'~ cour), then append the suffix corre-
sponding to the given person and number.

The first step can be described as follows:

de f ine LETTER : [47]
a I b I c I d I ;

define TAG : [48]
SubjPI . . . I s G I . . . IPal . . . IVerb l . . . ;

de f ine StemRegular : [49]
[[. .] <-> IndP PL P3 Verb [[LETTER _ TAG]

. o .
[LexInd TAG+]

°o.
[e n t <-> SUFF 1] _ TAG] ;

The first t ransducer in [49] inserts the tags of the
third person plural present indicative between the
word and the tags of the actual ly required subjunc-
tive form. The second t ransducer in[49] which is an
indicative lexicon of -Jr verbs, concatenated with a
sequence of at least one tag, provides the indica-
tive fo rm and keeps the initial subjunct ive tags.
The last t ransducer in [49] replaces the suffix -cut
by the symbol SUFF. E.g.:

i n i r SubjP PL P2 V e r b
f i n i r _ IndP PL P3_Verb S u b j P PL_P2 V e r b
f i n i s s e n t SubjP PL_P2 V e r b
finis s_SUFF Subj P_PL_P2_Verb

'I?o append the appropriate suffix to the subjunc-
tive stem, we use the following t ransducer which
maps the symbol SUFF to a suffix and deletes all

tags: [50]

de f ine Suf f ix :
[{ SUFF -> e II _ TAG* SG [PIIP3] },

{ SUFF -> e s 11 _ TAG* SG P2 },
{ SUFF -> i o n s II _ TAG* PL P1 },
{ SUFF -> i e z I I _ TAG* PL P2 },
{ SUFF -> e n t It _ TAG* PL P3 }]

. o .
[TAG -> []] ;

The complete generat ion of subjunct ive forms can
be described by the composi t ion:

d e f i n e L e x S n b j P : [51]
StemRegular . o . Suffix ;

The result ing (single) t ransducer LexSubjP rep-
resents a lexicon of present subjunct ive forms of
French verbs ending in -iv. I t maps the infinitive of
those verbs followed by a sequence of subjunct ive
tags, to the corresponding inflected surface form
and vice versa.

All in termediate t ransducers ment ioned in this
section will contr ibute to this finM t, ransducer bnt
will themselves disappear.

The regular expressions in this section could also

be written in the two-level formalism (Kosken-
niemi, 1983). However, some of them can be ex-
pressed more conveniently in the above way, espe--
ciMly when tile replace operator is used.

E.g., the first line of [49], wri t ten above as:
[. .] < -> I n d P PL P3 V e r b I I LETTER _ TAG [52]

would have to be expressed in the two-level formal-
ism by four rules:

O : I n d P <=> LETTER _ (: P L) (: P 3) (: V e r b) TAG; [53]
O:PL <=> LETTER (: I n d P) _ (: P 3) (: V e r b) TAG;
O :P3 <=> LETTER (: I n d P) (: P L) _ (: V e r b) TAG;
0 : V e r b <=> LETTER (: I n d P) (: P L) (: P 3) TAG ;

IIere, the difficulty comes not only f rom the large
nmnber of rules we would have to write in the above
example, but also from the fact that writing one of
lihese rules requires to have in mind all the others,
to avoid inconsistencies between them.

Acknowledgements
This work builds on the research by Ronald Kaplan
and Martin Kay on the finite-state calculus and the
implementation of phonological rewrite rules (1994).

Many thanks to our collegues at PARC and RXR.C
Grenoble who helped us in whatever respect, partic-
ularly to Annie Zaenen, Jean-Pierre Chanod, Marc
Dymetman, Kenneth Beesley and Anne Schiller h)r
helpfifl discussion on different topics, and to Irene
Maxwell for correcting the paper.

R e f e r e n c e s
Brill, Eric (1992). A Simple Rule-Based Part of Speech

Tagger. I¥oc. 3rd conference on Applied Natural
Language Processing. 'lYento, Italy, pp. 1152-155.

Kaplan, Ronald M., and Kay, Martin (1981). Phono-
logical Rules and Finite-State Transducers. Atmmd
Meeting of the Linguistic Society of America. New
York.

l(aplan, R,onald M. and Kay, Martin (1994). Regular
Models of Phonological Rule Systems. Computational
Linguistics. 20:3, pp. 331-378.

Karlsson, Fred, Voutilainei,, Atro, Heikkil£, Juha,
and Anttila, Arto (1994). Constraint Grammar:
a Language-Independent System for Parsing Unre-
stricted Text. Mouton de Gruyter, Berlin.

Karttunen, Lauri (1995). The Replace Operator. Prec.
ACL-95. Cambridge, MA, USA. crap-lg/9504032

Kempe, Andre and Karttunen, Lauri (1995). The Par-
allel Replacement Operation in Finite State Calculus.
Technical Report MLTT-021. Rank Xerox Research
Centre, Grenoble Laboratory. Dec 21, 11995.
h t t p : / /Www. x e r o x , f r / g r e n o b l e / m l t t / r e p o r t s / h o m e , h t r a l

Koskenniemi, Kimmo (1983). Two-Level Morphol-
ogy: A General Computational Model for Word-Form
Recognition and Production. Dept. of General Lin-
guistics. University of Helsinki.

Koskcnniemi, Kimmo (1990). Finite-State Parsing and
l)isambiguation. Prec. Coling-90. Helsinki, Finland.

Koskenniemi, Kimmo, 'l'apanainen, Pasi, and Vouti-
lainen, Atro (1992). Compiling and using finite-state
syntactic rules. Proc. Coling-92. Nantes, France.

Roche, Emmanuel and Schabes, Yves (1995). De-
terministic Part-of-Speech Tagging with Finite-State
Transducers. Computational Linguistics. 21, 2, pp.
227-53.

Voutilainen, Atro (1994). Three Studies o] Grammar-
Based Surface Parsing of Unrestricted English ~l~xt.
The University of Helsinki.

627

