TYPED FEATURE STRUCTURES AS DESCRIPTIONS

Paul John King*

Seminar für Sprachwissenschaft, Eberhard-Karls-Universität ${ }^{\dagger}$

Abstract

A description is an entity that can be interpreted as true or false of an object, and using feature structures as descriptions accrues several computational benefits. In this paper, I create an explicit interpretation of a typed feature structure used as a description, define the notion of a satisfiable feature structure, and create a simple and effective algorithon to decide if a feature structure is satisfiable.

1. INTRODUCTION

Describing objects is one of several purposes for which linguists use feature structures. A description is an entity that can be interpreted as true or false of an object. For cxample, the conventional interpretation of the description 'it is black' is true of a soot particle, but false of a snowflake. Therefore, any use of a feature structure to describe an object demands that the feature structure can be interpreted as true or false of the object. In this paper, I tailor the semantics of [KING 1989] to suit the typed feature structures of [CariPenter 1992], and so create an explicit interpretation of a typed feature structure used as a description. I then use this interpretation to define the notion of a satisfiable feature structure.
Though no feature structure algelra provides descriptions as expressive as those provided by a feature logic, using feature structures to describe objects profits from a large stock of available computational techniques to represent, test and process feature structures. In this paper, I demonstrate the computational benefits of marrying a tractable syntax and an explicit semantics by creating a simple and effective algorithm to decide the satisfiability

[^0]of a feature structure. Gerdemann and Götz's Troll type resolution system implements both the semantics and an efficient refinement of the satisfiability algorithm I present here (see [Götz 1993], [Gerdmmann and King 1994] and [Gerdemann (fc)]).

2. A FEATURE STRUCTURE SEMANTICS

A signature provides the symbols from which to construct typed feature structures, and an interpretation gives those symbols meaning.
Definition 1. Σ is a signature iff
Σ is a sextuple $\langle\mathfrak{Q}, \mathfrak{T}, \underline{\mathfrak{S}} \mathfrak{\mathfrak { S }}, \mathfrak{A}, \mathfrak{F}\rangle$,
\mathfrak{Q} is a set,
$\langle\mathcal{T}, \underline{\underline{\prime}}$) is a partial order,
$\mathfrak{G}=\left\{\sigma \in \mathfrak{T} \left\lvert\, \begin{array}{l}\text { for cach } \tau \in \mathbb{T}, \\ \text { if } \sigma \leq \tau \text { then } \sigma=\tau\end{array}\right.\right\}$,
\mathfrak{Q}^{2} is a set,
\mathfrak{F} is a partial function from the Cartesian product of \mathfrak{T} and \mathfrak{A} to \mathfrak{T}, and
for each $\tau \in \mathfrak{T}$, each $\tau^{\prime} \in \mathbb{T}$ and each $\alpha \in \mathfrak{A}$, if $\mathfrak{F}(\tau, \alpha)$ is defined and $\tau \preceq \tau^{\prime}$
then $\mathfrak{F}\left(\tau^{\prime}, \alpha\right)$ is defined, and $\mathfrak{F}(\tau, \alpha) \preceq \mathfrak{F}\left(\tau^{\prime}, \alpha\right)$,
Henceforth, I tacitly work with a signature $(\mathfrak{Q}, \mathfrak{T}, \preceq, \mathfrak{S}, \mathfrak{A}, \mathfrak{Z})$. I call members of \mathfrak{Q} states, members of \mathfrak{T} types, \preceq subsumption, members of \mathfrak{G} species, members of \mathfrak{A} attributes, and \mathfrak{F} appropriateness.
Definition 2. I is an interpretation iff
I is a triple $\langle U, S, A\rangle$,
U is a set,
S is a total function from U to \mathfrak{S}
A is a total function from \mathfrak{A} to the set of partial functions from U to U,
for each $\alpha \in \mathfrak{A}$ and each $u \in U$, if $A(\alpha)(u)$ is defined then $\mathfrak{F}(S(u), \alpha)$ is defined, and $\mathfrak{F}(S(u), \alpha) \preceq S(A(\alpha)(u))$, and
for each $\alpha \in \mathfrak{A}$ and each $u \in U$, if $\mathfrak{F}(S(u), \alpha)$ is defined
then $A(\alpha)(u)$ is defined.
Suppose that I is an interpretation $\langle U, S, A\rangle$. I call each member of U an object in I.

Wach type denotes a set of objects in I. 'The denotations of the species partition U, and S assigns each object in I the mique species whose denotation contains the object: object u is in the denotation of species σ iff $\sigma=S(u)$. Subsumption encodes a relationship between the denotations of species and types: object u is in the denotation of type τ if $\tau \preceq S(u)$. So, if $\tau_{1} \preceq \tau_{2}$ then the denotation of lype τ_{1} contains the denotation of type τ_{2}.
Each attribute denotes a partial function from the objects in I to the objects in I, and A assigns each attribute the partial function it denotes. Appropriateness encodes a relationship between the denotations of species and attabutes: if $\mathfrak{F}(\sigma, x)$ is defined then the denotation of attribute a acts upon each object in the denotation of species σ to yield an object in the denotation of type $\mathfrak{F}\langle\sigma, \alpha\rangle$, but if $\mathfrak{F}\langle\sigma, \alpha\rangle$ is undefined then the denotation of athribute α acts upon no object in the denotation of species σ. So, if $\mathfrak{F}\langle\tau, a\rangle$ is defined then the deuotation of attribute α acts upon each olject in the denotation of type τ to yield an object in the denotation of type $\mathfrak{F}\langle\tau, a\rangle$.
I call a finite sequence of athributes a path, and write P for the set of paths.
Definition 3. l ' is the path interprotation function under $/$ ill
I is an interpretation $\langle U, S, A\rangle$,
I is a tolal function from $\left.{ }^{\prime}\right\}$ to the set of partial functions from U to U, and
for each $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\rangle \in \mathfrak{P}$,
${ }^{\prime}\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle$ is the functional composition of $A\left(\alpha_{1}\right), \ldots, A\left(\gamma_{n}\right)$.
I write P_{I} for the path interpretation funchon under l.
Definition 4. l^{\prime} is a feature structure ifl r^{\prime} is a qualruple $\langle Q, q, \delta, 0\rangle$,
Q is a finite subset of \mathfrak{Q},
$q \in Q$,
δ is a finite partial function from the
Cartesian product of Q and \mathfrak{A} to Q,
O is a total finction from Q to T, and
for each $q^{\prime} \in Q$,
for some $\pi \in \mathfrak{P}, \pi$ rums to q^{\prime} in r,
where $\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle$ rums to η^{\prime} in μ^{\prime} ill
$\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle \in \mathfrak{T}$,
$q^{\prime} \in Q$, and
for some $\left\{q 0, \ldots, q_{n}\right\} \subseteq Q$,
$q=q_{0}$,
for each $i<n$,
$\delta\left(q_{i}, \alpha_{i+1}\right)$ is definced, and
$\delta\left(q_{i}, \alpha_{i+1}\right)=q_{i+1}$, and
$q_{n}=q^{\prime}$.
Fiach feature structure is a comeded Moore
machine (see [Moorf 1956]) with finitely many states, input alphabet \mathfrak{A}, and output alphabet \mathfrak{T}.
Definition 5. F is true of u under l iff P is a feature structure $\langle Q, q, \delta, \theta\rangle$,
I is an interpretation $(U, S, A\rangle$,
u is an object in I, and
for each $\pi_{1} \in \mathfrak{P}$, each $\pi_{2} \in \mathscr{P}$ and each
$q^{\prime} \in Q$,
if π_{1} runs to q^{\prime} in l^{\prime}, and
π : rums to q^{\prime} in l^{\prime}
then $P_{I}\left(\pi_{1}\right)(u)$ is defined,
$P_{I}\left(\pi_{2}\right)(u)$ is defined,
$P_{1}\left(\pi_{1}\right)(u)=Y_{I}\left(\pi_{2}\right)(u)$, and $O\left(q^{\prime}\right) \preceq S\left(P_{I}\left(\pi_{\jmath}\right)(u)\right)$.
Definition 6. r^{\prime} is a satisfiable feature structure ifl
r^{\prime} is a Peature structure, and
for some interpretation I and some object u in I, l is true of u under I.

3. MORPHS

The abundance of interpretations seems to prechude an effective algorithm to decide if a feature struchure is satisfiable. However, I insert morphs between feature structures and objects to yield an interpretation free characterisation of a satisfiable feature structure.
Definition 7. M is a semi-morph iff M is a triple $\langle\Delta, \Gamma, \Lambda\rangle$,
Δ is a noncmpty subset of \mathfrak{P},
I' is an equivalence relation over Δ,
for each $x \in \mathscr{Q}$, each $\pi_{1} \in \mathfrak{P}$ and each
$\pi_{2} \in \mathfrak{P}$,
if $\pi_{1} \alpha \in \Delta$ and $\left\langle\pi_{1}, \pi_{2}\right\rangle \in l^{\prime}$
then $\left\langle\pi_{1}\left(x, \pi_{2}(\gamma) \in I^{\prime}\right.\right.$,
Λ is a total function from Δ to \mathcal{G},
for each $\pi_{1} \in \mathfrak{P}$ and cach $\pi_{2} \in \mathfrak{P}$, if $\left\langle\pi_{1}, \pi_{2}\right\rangle \in I$ then $\Lambda\left(\pi_{1}\right)=\Lambda\left(\pi_{2}\right)$, and
for each $\alpha \in \mathfrak{d}$ and each $\pi \in \mathscr{P}$,
if $\pi \alpha \in \Delta$
then $\pi \in \Delta, \mathfrak{F}(\Lambda(\pi), \alpha)$ is defined, and $\mathfrak{F}(\Lambda(\pi), \alpha) \preceq \Lambda(\pi \alpha)$.
Definition 8. M is a morph ifl
M is a semi-morph (Δ, I, Λ), and
for each $\alpha \in \mathfrak{A}$ and cach $\pi \in \mathfrak{P}$, if $\pi \in \Delta$ and $\mathfrak{F}(\Lambda(\pi), \alpha)$ is defined then $\pi \alpha \in \Delta$.
Pach morph is the Moshier abstraction (see [Mosnmer 1988]) of a connected and totally well-typed (see [Carrenter 1992]) Moore machine with possibly infinitely many states, imput alphabet \mathfrak{A}, and output alphabet, \mathcal{G}.

Definition 9. M abstracts u under I ifl
M is a morph $\langle\Delta, \Gamma, \Lambda\rangle$,
I is an interpretation $\langle U, S, A\rangle$,
u is an object in I,
for cach $\pi_{1} \in \mathfrak{P}$ and each $\pi_{2} \in \mathfrak{P}$,
$\left\langle\pi_{1}, \pi_{2}\right\rangle \in \Gamma$
iff $P_{I}\left(\pi_{1}\right)(u)$ is defined,
$P_{I}\left(\pi_{2}\right)(u)$ is defined, and
$P_{I}\left(\pi_{1}\right)(u)=P_{I}\left(\pi_{2}\right)(u)$, and
for each $\sigma \in \mathfrak{G}$ and cach $\pi \in \mathfrak{P}$,
$\langle\pi, \sigma\rangle \in \Lambda$
iff $P_{I}(\pi)(u)$ is defined, and $\sigma=S\left(P_{I}(\pi)(u)\right)$.
Proposition 10. For each interpretation I and each object u in I,
some unique morph abstracts u under I.
I thus write of the abstraction of u under I.
Definition 11. u is a standard olject iff u is a quadruple $\langle\Delta, \Gamma, \Lambda, E\rangle$,
$\langle\Delta, \Gamma, \Lambda\rangle$ is a morph, and
E is an equivalence class under $\mathrm{I}^{\mathbf{\prime}}$
I write \widetilde{U} for the set of standard objects, write
\widetilde{S} for the total function from \widetilde{U} to \mathcal{G}, where
for each $\sigma \in \mathfrak{G}$ and each $\left\langle\Delta, I^{\prime}, \Lambda, E\right\rangle \in \widetilde{U}$, $\widetilde{S}\langle\Delta, \Gamma, \Lambda, \mathrm{E}\rangle=\sigma$ iff for some $\pi \in \mathrm{E}, \Lambda(\pi)=\sigma$,
and write \widetilde{A} for the total function from \mathfrak{A} to the set of partial functions from \widetilde{U} to \tilde{U}, where
for each $\alpha \in \mathfrak{A}$, each $\langle\Delta, \Gamma, \Lambda, E\rangle \in \tilde{U}$ and
each $\left\langle\Delta^{\prime}, \Gamma^{\prime}, \Lambda^{\prime}, \mathrm{E}^{\prime}\right\rangle \in \widetilde{U}$,
$\widetilde{A}(\alpha)(\Delta, \Gamma, \Lambda, F)$ is defined, and
$\widetilde{A}(\alpha)\left\langle\Delta, \Gamma^{\prime}, \Lambda, E\right\rangle=\left\langle\Delta^{\prime}, \Gamma^{\prime}, \Lambda^{\prime}, H^{\prime}\right\rangle$
iff $\langle\Delta, \Gamma, \Lambda\rangle=\left\langle\Delta^{\prime}, \Gamma^{\prime}, \Lambda^{\prime}\right\rangle$, and for some $\pi \in \mathrm{E}, \pi \alpha \in \mathbf{E}^{\prime}$.
Lemma 12. $(\tilde{U}, \widetilde{S}, \widetilde{A}\rangle$ is an interpretation.
I write \widetilde{I} for $\langle\widetilde{U}, \widetilde{S}, \widetilde{\Lambda}\rangle$.
Lemma 13. For each $\langle\Delta, \Gamma, \Lambda, E\rangle \in \tilde{U}$, each
$\left\langle\Delta^{\prime}, \Gamma^{\prime}, \Lambda^{\prime}, \mathrm{E}^{\prime}\right\rangle \in \widetilde{U}$ and each $\pi \in \mathfrak{P}$,
$P_{\tilde{I}}(\pi)\left\langle\Delta, \mathrm{I}^{\prime}, \Lambda, \mathrm{F}\right\rangle$ is defined, and
$P_{\widetilde{I}}(\pi)\langle\Delta, \mathrm{\Gamma}, \Lambda, \mathrm{E}\rangle=\left\langle\Delta^{\prime}, \mathrm{\Gamma}^{\prime}, \Lambda^{\prime}, \mathrm{E}^{\prime}\right\rangle$
iff $\left\langle\Delta, \mathbf{I}^{\prime}, \Lambda\right\rangle=\left\langle\Delta^{\prime}, \Gamma^{\prime}, \Lambda^{\prime}\right\rangle$, and
for some $\pi^{\prime} \in \mathbf{E}, \pi^{\prime} \pi \in \mathrm{E}^{\prime}$.
Proof. By induction on the length of π.
Lemma 14. For each $\langle\Delta, \Gamma, \Lambda, E\rangle \in \widetilde{U}$,
if E is the equivalence class of the cmpty path under I
then the abstraction of $\langle\Delta, \Gamma, \Lambda, E\rangle$ under \widetilde{I} is $\langle\Delta, \Gamma, \Lambda\rangle$.
Proposition 15. For cach morph M,
for some interpretation I and some object u in I,
M is the abstraction of u under I.

Definition 16. F approximates M iff
F is a feature structure $\langle Q, q, \delta, \theta\rangle$,
M is a morph $\langle\Delta, \mathrm{I}, \Lambda\rangle$, and
for cach $\pi_{1} \in \mathfrak{P}$, each $\pi_{2} \in \mathfrak{P}$ and each $q^{\prime} \in Q$, if π_{1} runs to q^{\prime} in F, and
π_{2} runs to q^{\prime} in F
then $\left\langle\pi_{1}, \pi_{2}\right\rangle \in \Gamma$, and
$\theta\left(q^{\prime}\right) \leq \Lambda\left(\pi_{1}\right)$.
A feature structure approximates a morph iff the Moshier abstraction of the feature structure abstractly subsumes (see [Carpenter 1992]) the morph.
Proposition 17. For each interpretation I, each object u in I and each feature structure F,
F is truc of u under I
iff F approximates the abstraction of u under I.
Theorem 18. For each feature structure F,
F is satisfiable iff F approximates some morph.
Proof. From propositions 15 and 17.

4. RESOLVED FEATURE STRUCTURES

'Though theorem 18 gives an interpretation frce characterisation of a satisfiable feature structure, the characterisation still seems to admit of no effective algorithm to decide if a feature structure is satisfiable. However, I use theorem 18 and resolved feature structures to yield a less general interpretation free characterisation of a satisfiable feature structure that admits of such an algorithm.
Definition 19. R is a resolved feature structure iff
R is a feature structure $\langle Q, q, \delta, \rho\rangle$,
ρ is a total function from Q to \mathfrak{S}, and
for cach $\alpha \in \mathfrak{A}$ and each $q^{\prime} \in Q$,
if $\delta\left(q^{\prime}, \alpha\right)$ is defined
then $\mathfrak{F}\left(\rho\left(q^{\prime}\right), \alpha\right)$ is defined, and $\mathfrak{F}\left(\rho\left(q^{\prime}\right), \alpha\right) \preceq \rho\left(\delta\left(q^{\prime}, \alpha\right)\right)$.
Each resolved feature structure is a well-typed (see [Carpentrer 1992]) feature structure with output alphabet \mathfrak{S}.
Definition 20. R is a resolvant of F iff
R is a resolved feature structure $\langle Q, q, \delta, \rho\rangle$,
F is a feature structure $\langle Q, q, \delta, 0\rangle$, and
for each $q^{\prime} \in Q, 0\left(q^{\prime}\right) \preceq \rho\left(q^{\prime}\right)$.
Proposition 21. For each interpretation I, each object u in I and each feature structure F,
F is true of u under I
iff some resolvant of F is true of u under I.

Definition 22. $\langle\mathfrak{Q}, \mathfrak{T}, \underline{\mathfrak{L}}, \mathfrak{G}, \mathfrak{A}, \mathfrak{F}\rangle$ is rational iff for each $\sigma \in \mathfrak{S}$ and each $\alpha \in \mathfrak{A l}$, if $\mathfrak{F}(\sigma, \alpha)$ is defined then for some $\sigma^{\prime} \in \mathfrak{G}, \mathfrak{F}(\sigma, \alpha) \leq \sigma^{\prime}$.
Proposition 23. If $\{\mathfrak{Q}, \mathfrak{T}, \preceq, \mathfrak{C}, \mathfrak{A}, \mathfrak{F}\rangle$ is rational then for each resolved feature structure R, R is satisfiable.
Proof. Suppose that $R=\langle Q, q, \delta, \rho\rangle$ and β is a bijection from ordinal \langle to \mathbb{G}. Let

For each $n \in \mathrm{IN}$, let.

For each $n \in \mathbb{N},\left\langle\Delta_{n}, l_{n}, \Lambda_{n}\right)$ is a semi-morph . Let

$$
\Delta=\bigcup\left\{\Delta_{n} \mid n \in \mathbb{N}\right\}
$$

$$
\mathbf{I}=\bigcup\left\{\mathbf{I}_{n}^{\prime} \mid n \in \mathbb{N}\right\}, \text { and }
$$

$$
\Lambda=\bigcup\left\{\Lambda_{n} \mid n \in \mathbb{N}\right\}
$$

$\langle\Delta, \Gamma, \Lambda\rangle$ is a morph that R approximates. By theorem $18, R$ is satisfiable.
Theorem 24. If $(\mathfrak{Q}, \mathfrak{T}, \underline{\mathfrak{S}}, \mathfrak{Q}, \mathfrak{F})$ is rational then for each feature structure F,
F^{\prime} is satisflable iff F^{\prime} has a resolvant.
Proof. From propositions 21 and 23 .

5. A SATISFIABLLITY ALGORTTHM

In this section, I use theorem 24 to show how given a rational signature that moet.s reasonable computational conditions - to construct an effective algorithm to decide if a feature structure is satisfiable.

$$
\begin{aligned}
& \Delta_{n+1}= \\
& \begin{array}{l}
\Delta_{n+1}=\left\{\begin{array}{l}
\alpha \in \mathfrak{A}, \\
\Delta_{n} \cup\left\{\pi \in \Delta_{n},\right. \text { and } \\
\pi \in\left(\Lambda_{n}(\pi), \kappa\right) \text { is defined }
\end{array}\right\}, ~
\end{array} \\
& 1_{n+1}= \\
& \mathrm{I}_{n}^{\prime} \cup\left\{\begin{array}{l|l}
\left\langle\pi_{1} \alpha, \pi_{2} \alpha\right\rangle & \begin{array}{l}
\alpha \in \mathfrak{A}, \\
\pi_{1} \alpha \in \Delta_{n+1}, \\
\pi_{2} \alpha \in \Delta_{n+1}, \text { and } \\
\left\langle\pi_{1}, \pi_{2}\right\rangle \subset \mathrm{I}_{n}^{\prime},
\end{array}
\end{array}\right\} \text {, and } \\
& \Lambda_{n+1}= \\
& \Lambda_{n} \cup\left\{\begin{array}{l}
\langle\pi \alpha, \beta(\xi)\rangle \\
\begin{array}{l}
\alpha \in \mathfrak{R}, \\
\pi \in \Delta_{n}, \\
\pi \alpha \in \Delta_{n+1} \backslash \Delta_{n}, \text { and } \\
\xi \text { is the least ordinal } \\
\text { in } \zeta \text { such that, } \\
\mathfrak{F}\left(\Lambda_{n}(\pi),(\alpha) \leq \beta(\xi)\right.
\end{array}
\end{array}\right\} .
\end{aligned}
$$

$$
\begin{aligned}
& \Delta_{0}=\left\{\begin{array}{c}
\text { for some } q^{\prime} \in Q, \\
\pi \text { runs to } q^{\prime} \text { in } R
\end{array}\right\}, \\
& \Gamma_{0}=\left\{\begin{array}{l|l}
\left\langle\pi_{1}, \pi_{2}\right\rangle & \begin{array}{l}
\text { for some } q^{\prime} \in Q, \\
\pi_{1} \text { runs to } q^{\prime} \\
\pi_{2} \text { inuns to } q^{\prime} \text { in } R, \text { and }
\end{array}
\end{array}\right\}, \\
& \text { and } \\
& \Lambda_{0}=\left\{\begin{array}{l|l}
\langle\pi, \sigma\rangle & \begin{array}{l}
\text { for some } q^{\prime} \in Q, \\
\pi \text { runs to } q^{\prime} \text { in } h, \text { and } \\
\sigma=\rho\left(q^{\prime}\right)
\end{array}
\end{array}\right\} .
\end{aligned}
$$

Definition 25. $\langle\mathfrak{Q}, \mathfrak{T}, \underline{\mathfrak{S}}, \mathfrak{S}, \mathfrak{A}, \mathfrak{F}\rangle$ is computable iff
$\mathfrak{Q}, \mathfrak{T}$ and \mathfrak{A} are countable, \mathfrak{G} is finite,
for some effective function SUB,
for each $\tau_{1} \in \mathfrak{T}$ and each $\tau_{2} \in \mathbb{T}$, if $\tau_{1} \preceq \tau_{2}$
then $\operatorname{SUB}\left(\tau_{1}, \tau_{2}\right)=$ 'true' otherwise $\operatorname{SUB}\left(\tau_{1}, \tau_{2}\right)=$ 'false', and
for some effective function APP,
for each $r \in \mathfrak{T}$ and each $\alpha \in \mathfrak{A}$,
if $\mathfrak{F}(\tau, \alpha)$ is defined
then $\operatorname{APP}(\tau, \alpha)=\mathfrak{F}(\tau, \alpha)$
otherwise $\operatorname{APP}(\tau, \alpha)=$ 'undefined'.
Proposition 26. If $\langle\mathfrak{Q}, \mathfrak{T}, \preceq, \mathfrak{G}, \mathfrak{A}, \mathfrak{F}\rangle$ is computable then for some effective function RES, for each feature structure F,
$\operatorname{RES}\left(F^{\prime}\right)=$ a list of the resolvauts of F^{\prime}.
Proof. Since $(\mathfrak{Q}, \mathfrak{T}, \underline{\mathfrak{G}}, \mathfrak{A}, \mathfrak{F})$ is computable, for some effective function GEN,
for each Inite $Q \subseteq \mathfrak{Q}$,
$\operatorname{GEN}(Q)=$ a list of the total functions from Q to \mathfrak{G},
for some effective function TEST_{1}, for each finite set Q, each finite partial function δ from the Cartesian product of Q and \mathfrak{A} to Q, aud each total function 0 from Q to \mathbb{T},
if for each $\langle q, \alpha\rangle$ in the domain of δ,
$\mathfrak{F}(O(q), \alpha)$ is defined, and
$\mathfrak{F}(\theta(q), \alpha) \leq \theta(\delta(q, \alpha))$
When $\operatorname{TEST}_{1}(\delta, \theta)=$ 'true'
otherwise $\operatorname{TEST}_{1}(\delta, \theta)=$ 'false',
and for some effective function TEST_{2},
for each finite set Q, each total function θ_{1}
from Q to T and each total function θ_{2}
from Q to T,
if for each $q \in Q, O_{1}(q) \preceq O_{2}(q)$
then $\operatorname{TEST}_{2}\left(\theta_{1}, 0_{2}\right)=$ 'true'
otherwise $\operatorname{TEST}_{2}\left(\theta_{1}, \theta_{2}\right)=$ 'false'.
Construct RES as follows:
for each feature structure $\langle Q, q, \delta, \theta\rangle$,

$$
\text { set } \Sigma_{\mathrm{in}}=\operatorname{GEN}(Q) \text { and } \Sigma_{\mathrm{out}}=0
$$

while $\Sigma_{\mathrm{in}_{1}}=\left\langle\rho, \rho_{1}, \ldots, p_{i}\right\rangle$ is not empty
do sct $\Sigma_{\text {in }}=\left\langle p_{1}, \ldots, p_{i}\right\rangle$
if $\operatorname{TEST}_{1}(\delta, \rho)=$ 'truc',
$\operatorname{TEST}_{2}(\theta, \rho)=$ 'truc', and
$\Sigma_{\text {out }}=\left\langle\rho_{1}^{\prime}, \ldots, \rho_{j}^{\prime}\right\rangle$
then set $\Sigma_{\text {out }}=\left\langle\rho, \rho_{1}^{\prime}, \ldots, \rho_{j}^{\prime}\right\rangle$
if $\Sigma_{\text {out }}=\left\langle\rho_{1}, \ldots, \rho_{n}\right\rangle$
then output $\left\langle\left\langle Q, q, \delta, \rho_{1}\right\rangle, \ldots,\left\langle Q, q, \delta, \rho_{n}\right\rangle\right\rangle$.
RES is an effective algorithm, and for each feature structure l,
$\operatorname{RES}\left(F^{\prime}\right)=$ a list of the resolvants of l^{\prime}.

Theorem 27. If $\langle\mathfrak{Q}, \mathfrak{T}, \underline{\mathfrak{S}}, \mathfrak{A}, \mathfrak{F}\rangle$ is rational and computable then for some effective function SAT,
for each feature structure F, if F is satisfiable then $\operatorname{SAT}(F)=$ 'true otherwise $\operatorname{SAT}(F)=$ 'false'.
Proof. From theorem 24 and proposition 26.
Gerdemann and Götz's Troll systern (see [Götz 1993], [Gerdemann and King 1994] and [Gerdemann (FC)]) employs an efficient refinement of RES to test the satisfiability of feature structures. In fact, Troll represents each feature structure as a disjunction of the resolvants of the feature structurc. Loosely speaking, the resolvants of a feature structure have the same underlying finite state automaton as the feature structure, and differ only in their output function. Troll exploits this property to represent each feature structure as a finite state automaton and a set of output functions. The Troll unifier is closed on these representations. Thus, though RES is computationally expensive, Troll uses ReS only during compilation, never during run time.

References

[Carpfnter 1992] Robert Carpenter The logic of typed feature structures. Cambridge tracts in theoretical computer science 32. Cambridge University Pross, Cambridge, England. 1992.
[Gbrdemann (fC)] Dale Gerdemann. Troll: type resolution system, user's guide. Sonderforschungsbereich 340 technical report. Eberhard-Karls-Universität, Tübingen, Germany. Forthcoming.
[Gerdemann and King (1994)] Dale Gerdemann and Paul John King. The correct and efficient implementation of appropriateness specifications for typed feature structures. In these proceedings.
[Göтz 1993] Thilo Götz. A normal form for typed feature structures. Master's thesis. Eberhard-Karls-Universität, Tübingen, Germany. 1993.
[King 1989] Paul John King. A logical formalism for head-driven phrase structure grammar. Doctoral thesis. The University of Manchester, Manchester, England, 1989.
[Moore 1956] E.F. Moore. 'Gedanken experiments on sequential machines'. In Automata Studies. Princeton University P'ress, Princeton, New Jersey, USA. 1956.
[Moshifr 1988] Michael Andrew Moshier. Extensions to unification grammar for the description of programming languages. Doctoral thesis. The University of Michigan, Ann Arbor, Michigan, USA. 1988.

[^0]: *The research presented in this paper was sponsored by T'eilprojekt B4 "Constraints on (Trammar for Efficient Generation" of the Sonderforschungsbereich 340 of the Deutsche Forschungsgemeinsthaft. I also wish to thank Bob Carpenter, Dale Gerdemann, Thilo Götz and Jennifer King for their invaluable help with this paper.
 tWilhelmstr. 113, 72074 Tübingen, Gemmany. Email: king@sfs.mphil.uni-tuebingen.de.

