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I n t r o d u c t i o n  

This paper is concerned with tile treatment of dis- 
continuous constituency within Categorial Grammar.  
In particular, I address the problem of providing an 
adequate formalisation of categorial commctives l)ro- 
l)osed by Moortgat (1988), which are useful for han- 
dling certain forms of diseontimmus eonstitnency, l)e- 
spite some interesting proposals, a satisfactory logic 
for these e{mnectives has so far remained dnsive. I 
will provide such a h)gie, using an approach that falls 
within the general framework of labelled deductive sys- 
tems (Gabbay, 1991), employing novel methods for 
reasoning ahout linear order in resource nsage. The 
approach is illusl;rated by linguistic al}plications for 
extraction, pied-piping and quanti[ieation. 

T h e  L a m b e k  c a l c t f l u s  

Our general fran,ework is the associative I,ambelc cal- 
culus (L: l,mnbek, 1958), a system which falls within 
the class of formalisms known as Categorial Gram- 
mars. The set of types is freely generated firom a 
set of primitiw; (atomic) types (e.g. {s, np . . . .  }), us- 
ing binary infix el)craters \ ,  / ,  . .  The 'meaning'  of 
these connectives in L is fixed hy a senlanties for the 
logic, based on a (se,nigroup)algehra of strings (Z:,.), 
i.e. where • is an associative, notl-coulmtltative bi- 
nary operator, with two-sided identity e, and E is the 
se t  Of n o n - e H l p t y  (-7 t:- g)  strings over s o m e  v o c a b u l a r y .  

An interpretation funcl;ion [[~ assigns some subset of 
Z; to each type, satisfying the conditions be.low for 
conlplex types and gyp(', sequence.s. A type comhi-. 
l i a r / o i l  X 1 . . . . .  Xtz --> X0 h.ohls in a model ((£,.), [[]l ), 
if {[x~ .... ,x.]]_cl[Xol], a . d  is ~ l i d  if it is true in all 
models. '1'here are several formulations of L that all 
realise this same meaning for the connectives.t 

~x,v]] = {.~,v < z. I .~ e [[xll A ~ < {[v]] } 

[[X/Y]J = {,: e Z; I V; ~: [~Y~. :,:.y e ~[X]] } 

I[vxx]] - -  {~. < / :  I V,,~ e IIY]].,>,. e gx]}} 

[[x~ ..... x,,]} = {:,:~ ......... e c  I <  e [Ix]~] A , . , A  .... C EX,,I]} 

]The  a l te rna t lve  formula t ions  include e.g. seqnent  (l,aml}ek 
1958), p roof  net  (l~.oor(la 199:1 ), and  n a t u r a l  deduct.ion systems 
(Morrill e! aL 1990, Ba r ry  eg al. 1991). Al ternat ive  formula- 
t ions ca r ry  different advan tages ,  e.g. na tu r a l  dcduc t lon  is well 
suil.cd for lh,guisl.ic prcsental. ion, whereas proof  nets haw~ ben- 
efits for a u t o m a t e d  theorem proving.  

l ) i s c o n t i n u o u s  t y p e  c o n s t r u c t o r s  

The I,ambek calculus is a purely concatenative system: 
where any two types are combined, the string of the 
result is arrived at by concatenating the strings of the 
types combined. This point is illustrated graphically 
in (la,b), for the Lambek tractors,  where (follow- 
ing Moortgat, 1991) each triangle represents a result 
string, and unshaded and shaded areas represent fnne- 
tor and argutlre.nt stril/gs, respectively. 

(1) (a) X/Y (b) YXX (c) XIY (d) XIY 

Y Y Y y 

l ' rclixa~ion Suffixal.ion Ex t r ac t i on  Infixation 

Various linguistic phenomena, however, suggest the 
existence of discontinous constituency, i.e. situations 
the result string from combining two constituents is 
not produced by concatenating the component strings. 
(See e.g. Bitch, 1981.) Moortgat (1988) suggests aug- 
men£ing ]T, with two discontinuous type construct, ors. 
An exh'aclion fimctor X]Y is one whose argument cor- 
responds to a non-peripheral (or more precisely, nor  
necessaribj peripheral) suhstring of the result of con> 
binaries, as it, (lc). An infixation fimetor XIY itself 
corresponds to a non-l)eril)heral substring of the re- 
sult of combination, as in (ld).  Given these intuitiw'~ 
characterisations, two options arise for the meaning of 
each comlecLive as to whether the point of insertion 
of one striug into the other is free (universal) for lixed 
(existential). In this paper, I will focus on the exis- 
tential variants of the commctives, which appear to he 
the most linguistically useful, and whose interpretive 
conditions arc as follows: 

P r e v i o u s  p r o p o s a l s  

F, ach connective should have two inference rules: a rule 
of proof (showing how to derive a type containing the 
connective), and it rule of nse (showing how to employ 
such a type). This indicates a possible eight infer- 
ence rules that we might hope to state (i.e. proof/use 
x universal/existential x infixation/extraction). V~ri~ 
ous attempts have I~eeu made to provide a logic for tile 
discoutiuuous type constructors, but all have proved 
ullsu('cessflll or unsatisI'actory in some way or another. 
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M oor tga t  (1988), for example ,  uses an ordered se- 
quent  calculus f ramework ,  which allows only two of  the 
possible  eight  rules to be s ta ted:  a rule of p roof  for ex- 
is tent ial  T, and a rule of  nse for universal  ~. Moor t ga t  
(1.991) nses a p roof  m e t h o d  in which types  are not  or- 
dered in p roof  represen ta t ions ,  where  l inear order  con- 
s t ra in ts  and  consequences are ins tead  handled  using a 
sys tem of  s t r ing  labell ing,  i.e. types  are associa ted 
wi th  s t r ing te rms ,  which are explici t ly m a n i p u l a t e d  
by inference rules. Th i s  approach  allows two fur ther  
rules to be s ta ted ,  bu t  the  four expressible  rules are 
d i s t r ibn ted  one per  connect ive,  i.e. a comple te  logic is 
not  given for even any one connective.  As Versmissen 
(1991) notes,  M o o r t g a t ' s  s t r ing label sys t em does not  
allow the recording of  a specific pos i t ion  for inser t ing 
one s t r ing into another ,  as would seem to be required.  

Morrill  & Solias (1993) avoid this  la t te r  p rob lem by 
augmen t ing  the  s t r ing ]al~elling a lgebra  with a non- 
associa(,ive pair ing opera to r  (., .), a l lowing labels such 
as {st ,  s2), ind ica t ing  an insert ion point  in between sl  
and s2. 'lPhis sys t em allows versions of  T and ~ oper- 
a tors  to be specified, hu t  ones whose in terpre t ive  def- 
ini t ions differ f rom Moor tga t ' s .  T h e  non-assoc ia t iv i ty  
of pair ing gives rise to l imi ted  flexibility for the  sys tem 
in t e rms  of  the type combina t ions  tha t  can be derived,  
and even the types  t ha t  can be cons t ruc ted ,  e.g. no 
f lmctor  (X~Y) /Z ,  where a ] a rgumen t  is not  the  first 
sought ,  is allowed. 

L a b e l l e d  d e d u c t i o n  &: L a m b e k  c a l c u l u s  

I next  develop a fo rmula t ion  of L which can be e×- 
tended to allow for the  (existent ial)  d iscont inui ty  con- 
nectives. Our  s t a r t i ng  po in t  is a l a m b d a  t e rm se- 
mant ics  for impl ica t iona l  L due to Bnszkowski (1987), 
ba.sed on the  well kuown C n r r y - H o w a r d  interpretal; ion 
of proofs ( I loward,  1969)3 This  uses a b idi rect ional  
var iant  of the  l a m b d a  calculus whose basic te rms  are 
direct ional ly  typed  variables.  If t is a t e rm of  type 
Y \ X  (resp. X / Y ) ,  and u one of  type  Y, then  (at)  t 
(resp. ( tu)")  is a t e rm of type  X. If v is a variable of 
type Y, and t a t e rm of  type  X, then  klv.t (resp. 2"v.t) 
is a te rm of  type  Y \ X  (resp. X / Y ) .  A semant ics  for 
impl icat ional  L is given by the class of  t e rms  which 

2Under the Curry-lloward interpretation (lloward, 1969), 
logical formulas are regarded as types of expressions in typed 
lalnbda calculus, with atomic formulas corresponding to basic 
types, and a formula A--~B to the type of functions from A to tl. 
It is dmnonstrable that the set of formulas for which there exists 
stone correspondingly typed lambda term is precisely the theo- 
rems of the impfieatlonal fragment of intuitlonistlc logic. Thus, 
typed lambda calculus provides a s emantlcs for implicational in- 
tuitlonlstic logic, i.e. an independent, characterlsation of 'valid 
deductlon',just as the algebralc semantics of L provides an inde- 
pendent characterisatlon of validity for that system. Semantics 
for vm'ious other logics can be given in terms of classes of typed 
lambda terms, i.e. subsets of the typed lambda terms which 
satisfy certain stated criteria, van Benthem (1983) provides a 
lambda semantics for the system LP, a eonmmtative variant 
of L. Wansing (1990) provides lambda semantics for a range of 
subloglcs of intultlonistie logic. The Curry-tloward interpreta- 
tion so permeates categorlal work that the terms "formula" and 
"type" have become almost interchangeable. Note that I have 
slightly modified BuszkowsM's notation. 

satisfy the condit ions:  ( l l l )  each s u b t e r m  conta ins  a 
flee variable,  (132) no s u b t e r m  conta ins  > 1 free occur- 
renee of any variable,  (133) each A t ( resp . )? ' )  b inds  the  
le f tmos t  (resp. r igh tmos t )  free variable in its scope. 

This  semant ics  can be used in fo rmula t ing  ( implica-  
t ionM) L as a labelled deductive s y s t em  (LDS: Gabbay,  
1991). a LM)els are te rms  of  the direct ionM l a m b d a s y s -  
tern, and p ropaga t ion  of  labels is via  appl ica t ion  and 
abs t rac t ion  in the  s t anda rd  manne r .  Na tura l  deduc- 
t ion rules label led in this  way are as follows: 

(2) a / B : a  B:b [B:v] 
/E A:a  

a : (~b) ~ - - / I  
A/B : X:v.a 

B:b B\A :(~ [B :v] 

A : (b~) l \E~ _ _ _ A  :a \~ 

/3\A : ,~v.a 

We can eusure tha t  only deduc t ions  appropr i a t e  to 
( impl icat ional)  L are m a d e  by requir ing tha t  the  la- 
bel t ha t  results wi th  any inference is a t e rm sat isfy-  
ing Buszkowski 's  three  condi t ions .  To faci l i ta te  test-  
ing this  requ i rement ,  I use a f lmct ion E, which m a p s  
f rom label t e rms  to the  s t r ing of their  free variables  
occurr ing in the lef t - r ight  order  tha t  follows f rom type  
direct ional i ty  (giving w h a t  I call a m a r k e r  t e rm) .  A 
not ion of  ' s t r ing  equivalence '  ( ~- ) for marker  t e rms  is 
definecl by the  axioms:  

( -~ .1)  * , ( > z ) ± ( x . y ) . z  
( -  2) . - ~ . .  
( - . 3 )  .~-x .c  

E is recursively specified by the following clauses (where 
PV re turns  the  set of  fi'ee variables  in a t e rm) ,  but 
it  is defined for all and only those t e rms  tha t  sat isfy 
Bnszkowski 's  three condi t ions .  4 Thus ,  we can ensure 
correct  deduct ion  by requir ing of the  label tha t  results  
with each inference tha t  there  exists  some  marker  te rm 
m such tha t  )_'(a) = m. 

(~;.I) }2(v) = v where v E Vats  

( r .~)  ~( (~b)  ~) = ~(( ,) .~(1,)  
where l,'v((0 n lW(b) = 0 

(~.a) ~((~,~)~) = ~(.).~(~) 
where FV(a )  ffl l!'V(b) = 13 

(~.4) ~(~%.,) =/3 
where l~'V(2~..) ¢ O, ~(a)=' v.~ 

(~.~) >~(Xv..) = 9 
where l"V(~"v.( 0 ¢ ~, ~(a) - p,v 

The  followiug proofs i l lus t ra te  this  LDS (nsing t ~ m  

3111 labelled deduction, each fornulla is associated with a la- 
bel, which records information of the use of resources (i.e. as- 
smnptions) in proving that formula. Inference rules indicate 
how labels are propagated, and may have side conditions which 
refer to labels, using the information recorded to ensure co l  
recL infcrencing. Evidently, the Moortgat (1991) and Morrill & 
Solias (1993) formalisms arc LDSs. 

4Condition B2 is enforced by the requirement on the ap- 
plication cases of E. Conditions B1 and B3 are enforced by 
the first and second rcquirement on the ahstraction cases of E, 
respectively. 
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as s h o r t h a n d  for E ( t ) - m ,  to  ind ica te  a s ignif icant  
n ia rker  equivalence) :  

x / v : ~ .  Y / Z : ~  [Z:z] 
/i,: 

Y : ( y z ) "  
/ i ,;  >: 

x :  (~(vO")" ,+ ~.v.~ 

x / z :  yz. (~(vzy)"  

X/(Y/(Z\Y))  : m [Z:z] [Z\Y:y] 
\1;: r, 

Y : (z~) ~ ~ z.y 

Y / ( z \ v )  : a';>(<D ~ /~ 
/1," ~: 

x : ( ~  x';>(zv)|) " /I . . . . .  

XlZ.. x"~.(~ X',v.(~v)|) " 

T h i s  sys t em can be ex t ended  to cover p r o d u c t  us ing 
the  inference rules (3), and t he  add i t iona l  )2 elanses 
shown following (wi th  the  obvious  impl ic i t  ex tens ions  
of the  d i rec t ional  l a m b d a  sys tem,  and  of Buszkowski ' s  
semant ics ) .  Labe l l ing  of [.I] inferences is v ia  pai r ing,  
and  t h a t  of [,.El inferences llses all ope ra to r  ada.pged 
f rom ] lenton el al, (1992),  where  a t e r m  [ b / v . w ] . a  
impl ic i t ly  represents  tim suhsl, i t i i t iol |  of b for v + w  iii 
a. Th i s  rule is nsed hi (4). 

(a) D : , ] [ c : , I , ]  a : ,  i~:~ 
,1 

A : a t3.0 : b AIB : (a, b) 
i E  

(s .u)  >:((<,, O) = ::(a).>~(~,) 
where  l! 'V(a) rl FV(b)  :: 0 

07.7) >_,([b/v.w].a) = fll')',(b)"fl2 
whe,.~ 1,'v((,)r: ~.'vo) = 0 

(4) x / v / z : , :  [ z : q  [v:,v] z . v : ~  
/ E 

X l V  : (~ , ) '  

x :  ((*'z)"vy ~ . . . .  v 
• I') 

x .. [wl~.v].((.~O"v)'  5+ x.~,, 

x / ( z . v )  : ~'~.([,, ,/~.v].((=)":D ~)/:  

L a b e l l e d  d e d u c t i o n  gz d i s c o n t i n u i t y  

'] 'his a l )proach can be exi;eilded l;o allow for exist.enl, ial 
i a.nd ,[. These  conneci;iw;s have sLatidard iinl)lica- 
t ional  inference rules, | ls ing add i t iona l  d i s t ingu ished  
opera to r s  for label l ing  (wi th  supersc r ip t  e for extrac-  
t ion and  i tbr  lu l l×a t |on) :  

(5) AtI~:~, ~:b [1~:~} 

k : (oby - -  t* 
A'~B : ,Vv.a 

AIB:a  B:b [B:u] 
A:(ab) i ]E A:a  

- - - - l l  
A [ B : ,\iv.c, 

( lens | t ie r  /irsl;ly how >; Iiuist; I)e ex tended  for the 
abstract . ion cases of |;he new in t roduc t ion  rules. For 
a [II] ter in  such as Aev.a, l.]|e re levant  E case allows 
v to appea r  non-pe r iphe ra l ly  in the  marke r  t e rm  of 

a. For a [Ill t e rm  such as ,~v.a,  v is al lowed to he 
d i scon t inuous  in the  m a r k e r  of a (we shal l  see shor t ly  
how th is  is possible) ,  bug requires  i ts  c o m p o n e n t s  to 
appea r  per ipheral ly .  

where ~W(.\%..) ¢ ~, ~:(a)-'  ,q~.v.,e~ 

To allow for the  new app l i ca t ion  opera tors ,  the  m a r k e r  
sys t em m u s t  be ex tended .  Recall  t h a t  the  l inear  order  
i n fo rma t ion  impl ic i t  in lahcls  is p ro jec ted  on to  the  left,- 
r ight  d imens ion  in markers .  W i t h  1" and  1, however,  
| l ie  possibi l i ty  exists  t h a t  e i ther  f iuletor  or a r g u m e n t  is 
d iscont i rmous  in the  resul t  of the i r  c o m b i n a t i o n .  For 
s t r ings  x G [[XTY]] and  y G [[Y]~, for example ,  we 
know there  is some way of w r a p p i n g  x a r o u n d  y to 
give a resnll, in X, bu t  we do no~ in general  know how 
the  divis ion of .v should  be made .  Th i s  p rob l em of un- 
cer ta in ly  ix hand led  by us ing  ope ra to r s  L and  R, where  
1,(rn) and I t ( m ) r e p r e s e n t  indef in i le  bu t  complemen~ 
lary  left and  r ight  s u h c o m p o n e n t s  of the  m a r k e r  t e r m  
m. (L arlcl 1{ are not  pro jec t ion  t ime | ions . )  Th i s  idea 
of the  s ignif icance of :1, and  II, in given con ten t  v ia  the  
add i t i ona l  ax iom ( =' .d), which allows t h a t  if the  eom- 
plemenl;ary left; and  r ight  s n h c o m p o n e n t s  of a marke r  
appea r  in ,q)propl:iate l e l ' t - r i gh t jux tapos i t i on ,  then  the  
l~ la rker~s  r e s o t i r e e s  Irmy be t r ea ted  as cont inuous .  5 

( = .d) I,(a:).]{,(x) : :  :c 

The  remain i i ,g  clauses for L; then are: 

(>2.10) >:((,.t,)' 0 : V~ : (~O) .~ (b ) . l t (~ ( a ) )  
wh..,.o l , ' v ( . )  n l?V(~) = 0 

(:: . l  I)  ~((<,~y) = l , (>~( : ) ) .~ ( , ) . l~ (~(~) )  
where  I~V(~)n  v v ( b )  = 

Some example  deriw~tions follow: 

x / v : ~ .  [v:,v] x/v: ,~-  [v:v] 
/1.', ~: ]1,; z 

x :  (~:,v)" . . . . .  ,~.~ x :  0,~)" . . . . . .  u 
t: JA 

X1Y : ,\%.(~:y)" X IY '. ,~iy.(zy) r 

[x lv:×]  Y:y [x tv :x ]  Y:y  
If': IE 

x :  (<D' x :  (~y)~ 
l~ ,U 

Xl (X IY):  ,\q,:.(z.~D ~' X I (XIY) :  A%'.(:vy)' 

(X/Y) lZ:x  [Z:z] [Y:y] 
l ]" x/Y: (~:~)~ 

x:  ((:~.~yy)" ,~, J : & O d ~ ( ~ ) . v  
I| ) \  

xtz:,\'~,.((~.~V.v)' I ,(x).aO).v - ~..v 
/I 

( x l z ) / v  ,\>v~.((:,:~)tD" 

5rl'his a x i o m  m a y  I)e seen  as s t a t i n g  the  lhnl t  of w h a t  cml  be 
sa id  cmtccr ld i lg  'uncer l .a in ly  d i v i d e d '  resources ,  i.e. only  where  
tile unccrt.aint.y is elimina{.cd by j u x t a p o s i t i o n  can  the  l,,t{ oper-  
~k[ ol's })e ielllov(!(Ii iiiitkii/~ r bOll/(l o[.herwise q i idden  ~ l 'esource vis- 
ible. I , 'm'ther r easonab le  a x i o m s  (not  in p r ac t i ce  r e q u i r e d  here)  
a re  l , (e)  -::e and  l / (e)  ~ e, i.e. |.he only  poss ib le  left  a n d  r i gh t  
s u b c o n l p o n e n t s  of ml ' m n p t y '  m a r k e r  a re  l ikewise  e m p t y .  
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x / Y : ~  [YlZ:v] [z:~] 

Y : (yz) ~ 

x:  (~(w)q" ~ =.L(v).~.R(y) 

xtz : ~ . ( ~ ( v , ) ~ )  ~ ~ ~.~ 
/ i  

(x tz ) / (v , z ) :  ::v~o~.( ,4vz)*y 

W o r d  o r d e r  a n d  N L  s e m a n t i c s  

Labels encode both the functional structure and lin- 
ear order information of proofs, and hence are used 
in identifying both the NL semantic and word order 
consequences of combinations. Label terms, however, 
encode distinctions not needed for NL semantics, but 
can easily be simplified to terms involving only a single 
abstraetor (A) and with application notated by simple 
left-right juxtaposition, e.g. 

x~A%.(~(w)") '  ~ ~z~.((vz)~). 
To determine the linear order consequences of a 

proof with label a, we might seek a marker m consist- 
ing only of concatenated variables, where E(a) - m. 
These variables would be the labels of the proof's undis- 
charged assumptions, and their order in m would pro- 
vide an order for the types combined under the proof. 
Alternatively, for linguistic derivatlons, we mlght: sub- 
stitute lexical string atoms in place of variables, and 
seeker a marker consisting only of concatenated string 
atoms, i.e. a word string. This method is adeqnate 
for basic L, but problems potentially arise in relation 
to the discontinuity connectives. 

Consider the transformation X / Y  => Xi"Y. The con- 
nective of the result type does not record all the lin- 
ear order import  of the input type's connective, and 
neither consequently will the application label opera- 
tor for a subsequent []E]. Itowever, fl-normalisation 
yields a simpler label term whose operators record the 
linear order information originally encoded in the con- 
nectives of the types combined. For exarnple, the fol- 
lowing proof includes a subderivation of X / Y  =~ X]Y. 
The overall proof term does not simply order the proof's 
assumptions under )3 (giving marker L(z).y.l/,(x)),' but 
its t -normal  form (xy)" does (giving x.y). 

X / Y : \  [V:v] Y:y 
/l,: 

x :(~)~ 
II 

XIY : ):v.(~:v) r 

x: ( ( ~ % . ( ~ ) , )  ~:)~ 

Of course, normalisation can only bring out ordering 
information that is impl ic i t  in the types combined. 1:'or 
example, the combination X T Y : ~ , Y : y  => X : ( x y )  ~ is 
a, theorem, but the label (xy) ~ does not simply o f  
der x and y. However, if we require that lexical sub- 
categorisation is stated only using the standard Lam- 
bek connectives, then adequate ordering information 
will always be encoded in labels to allow simple order- 
ing for linguistic derivations. Alternatively, we could 
allow discontinuity connectives to be used in stating 
lexical subcategorisation, and farther allow that lex- 

ical types be associated with c o m p l e x  sh ' i ng  t e r m s ,  
constrncted using label operators, which encode the 
requisite ordering information. For example, a word 
w with lexical type XTY might have a string term 
, V v . ( w v ) " ,  which does encode the relative ordering of 
w and its argument. A more radical idea is that de- 
duction be made over lexical types together with their 
(possibly complex) lexical string terms, and that  the 
testing of side conditions on inferences be done on 
the /3-normal form of the end label, so that  the im- 
plicit ordering information of the lexical string term 
is 'brought out ' ,  extending proof possibilities. Then, 
tile lexical units of the approach are in effect partial 
proofs or derivationsfi Such a change would greatly 
extend the power of tile approach. (We shall meet a 
linguistic usage for this extension shortly.) 

L i n g u i s t i c  a p p l i c a t i o n s  

We shall next briefly consider some linguistic uses of 
the discontinuity connectives in the new approach. The 
most obvkms role for ] is in handling extraction (hence 
its name). Adapting a standard approach, a rela- 
tive pronoun might have type rel/(sTnp), i.e. giving 
a relative clause (rel) if combined with s]np (a 'sen- 
tence missinga NP somewhere'). Note that  standard 
L allows only types r e l / ( s / n p )  and rel /(np\s) ,  which 
are appropriate for extraction from, respectively, right 
and left peripheral positions only. For example, w h o m  
M a r y  cons iders  _ f oo l i sh  can be derived under the 
following proof. The atom string (6a) results via 
substitution of lexical string terms in the proof label, 
and )3. Substitntion of lexical semantics and deletion 
of directional distinctions gives (6b). 

(wl ..... ) ( ...... .y) (considers) (foolish) 

rel/(slnp) . . . . . .  p:~: ((nl>\S)/adi)/np:y [np:u] adj:z 

(nl~\S)/adj : (Vu)" 
/S 

,,p\s: ((v,,)'~)" 
s: (x((!:O"~y) * 

sJ,,p : a<~,,.(~,( (~:,)' ~)" ) i T~ 
/ E  

rel :  (,~ . \ ° , . (~ ( (V , , )~ ) " )b  ~ 

(6) a. w h o m . m m ' y . c o n s i d e r s . f o o l i s h  
b. whom' (,~u.considers / u foolish I mary I) 

Moortgat (1991) suggests that a (for example) sen- 
tentially scoped NP quantifier could be typed s~(s~np), 
i f  inlixation and extraction could be linked so that 
infixation wan to the position of the 'missing np' of 
sTnp. r Such linkage does not follow from tile defini- 
tions of the connectives but can be implemented in the 

6Thls idea invi~.es cmnparlsons to formalisms such as lea:i- 
ealised tree adjoining 9':aramar (see Joshi et al, 1991), where 
the basic lexical and derivatiomfl units are partial phrase struc- 
ture trees associated with h:xical items. 

7In the approach of Morrill & Solias (1993) such linkage fol- 
lows automatically given the int~erpretive definitions of their con- 
nectives. Moorgat (1990,1991) proposes special purpose quan- 
tification I,ype const.rnetors. 
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present approach by assigning a complex lexical string 
term, as in the lexical entry (<'rYeE,STmNG,SEM>): 

< s t ( s T n p ) ,  A,,.,, ~,°so,,~eone, s o m e o n e ' >  
Such a string term would result under a 'type raising' 
transformation sud, as: np => s~(s[np). 'Phe example 
goh.u gave someone money can be derived am follows, 
with string and semantic results in (7). 

(~ot~,~on,,) (john) ( g , ~ )  (money) 

stCslm,):q ,w:~  ((m,\~)lm,)/m,:v [m,:~] m,:~ 

( n p \ s ) / n l )  : (yv)  r 
/F 

m,\~: ( ( w ) ~ )  " \l.: 
s: (~((yv)'~)')' 

II 
sit, p: Z~v.(x((yv)~ z)") ~ 

s: (q ,\%.(,~((wl"~)U q ~ 

(7) a. john.gave.someone.money 
b. sorneone' (Av.gave' v money' john')  

Tllere is a sense in which this view of quantifiers 
seems very natural.  Quantifiers behave distribution- 
ally like simple NPs, but  semantically are of a higher 
type. I{aising the string component under tile trans- 
formation np => s.[(slnp) resolves this incompatibility 
without imposing additional word order constraints. 

This aeCOllnt as stated does not allow for multi- 
ple quantitication, 8 bu~, would if lexical string terms 
were l;reated as part;\el proofs used in assembling larger 
deriwfl, ions, as suggested in the previous section. 

In interesting test case, combining both movement 
and scope issues, arises with pied piping construcl, ions, 
where a whdtem moving to clause initial position is 
accompanied by (or 'pied pipes') some larger phrase 
that conl, ains it, as in e.g. the relative clause to whom 
John spoke, where the PP to whom is fronted. Fol- 
lowing Morrill & Sol\as (1993), and ultimately Mor- 
rill (1992), a treatment of pied piping can be given 
using ]" and 1. Again, linkage of in[ixation and ex- 
traction is achieved via complex lexical string assign- 
mont. A l)P lfied-piping relative t~rono,m might b(' 
( rel / (s]pp)) l( l )plnp)  allowing it to infix to a NP I,O- 
sit\on within a Pl', giving a functor rel/(s]pp), i.e. 
which prefixes to a 'sentence missing I 'P '  to give a 
relative clause. Ilence, for example, lo whom wonld 
have type rel/(slpp),  and so Io whom ,/oh~z spoke is 
~ relative clause. The lexical semantics of whom will 
ensure that the resulting meaning is eqnivalent to the 
nonq)ied piping w~riant whom John spoke to. 

R e f e r e n c e s  

Bach, 1",. 1981. ' l)iscontinuons Constituents in Gener- 
alized Categorial Grmmnars. '  N RLS, 11, ppl-  12. 

Barry, G., llepple, M., l,eslie, N. and Morrill, G. 1991. 
'Proof ligures and structm:al operators for eategorial 

8For example ,  we m i g h t  seek Lo ex~.cnd the  ln 'oof jus t  g iven  
by a b s t r a c t i n g  over  z in a [ l I] inference,  as  a basis  for a d d i n g  in a 
flu'thor quant i f ie r ,  b u t  the  c u r r m ~  p roof  label  would  no t  l icense 
such an  inference,  due  to the  p resence  of  the  0 i appl ica t ion .  

grammar' .  Ill P'lvc. of t3ACL-5, Berlin. 
vm, l~cnthcm, 3. 1983. 'The semantics of variety in 

Catcgorial Grammar. '  R.cport 83-29, Dept. of Math- 
mnatics, Simon Fraser University. Also in W. Busz- 
kowski, W. Marciszewski an<l J. van llenthem (Eds), 
Catcgorial Grammar, Vol. 25, Linguistic and Mtcrary 
Studies ill Eastern F, urope, John Benjamins. 1988. 

Benton, N., lfierman, G., dc Paiva, V. & tIyland, M. 
1992, "Ihrm a~ssignment for intuitionistic linear logic.' 
Tedmical Report, Cambridge University Computer 
Laboratory. 

Buszkowski, W. 1987. 'The Logic of Types. '  In J. 
Srzednicki (Ed), Initiatives iu Logic, Martinns Ni- 
jhoff Publishers, l)ordrecht. 

Gabbay, 1). 1991. Labelled deduclivc syslems. Draft 
1991. (to appear: Oxford University Press). 

11epple, M. 1990. The Grammar and Processing of Or- 
de'r and Dependency: A Categorial Approach. Ph.1). 
dissertation, (~entre for Cognitive Science, University 
of l!klinbnrgh. 

l[oward, W.A. 1!)69. 'The formulae-as-types notion of 
construction.'  In ./.l{. [[indley & J.P. Seldin (Eds), 
7b II.lL Cuv~'y, Essays on (2ombiuatory Logic, Lambda 
Calculus and l,brmalism, AP, 1980. 

Josh\, A.K., Vijay-Shanker, K. & Vgeir, D. 1991. 'The 
convergence, of mihtly context-sensitive formalisms'. 
In P. Sells, S. Shiebor & T. Wasow (Eds.) l,'ounda- 
ZioTzal issues in Nal'~lral Lauguage Processing. M1T 
I}ress, Canll)ridge MA. 

Lambeth, J. 1958. "t'he mathelnatics of sentence struc- 
ture.' Americau Mathcmalical Monlhly, 65. 

Moortgat, M. 1988. Calegorial Investigations: Logical 
and Liuguislic Aspects of lhe Lambck Calculus, For\s, 
Dordrecht. 

Moortgat, M. 1990. 'The quantification calculus.' In 
lIendriks, 1[. and Moortgat, M. (Eds), Theory of 
l;'le~:ible Inlerprelalion. Esprit DYANA Deliverable 
R.I.2.A, lnstitul;e for l,anguage, l,ogic and Informa- 
tion, Univ<~rsity of Amsterdam. 

Moortgat, C. l!)91. 'Generalized Quantification and 
Discontinuous type constructors'. To appear: W. 
SijI;sm~t & A. van I lorck (li',ds) Poor. Tilbury Sympoo 
slum on I)iscoTdinuolts Uouslilucncy. l)e Gruyter. 

Morrill, (.;. 1992. 'Cat;egorial l)'ormalisation of ILela- 
rio\sat\on: l'ied Piping, Islands and Extraction Sites.' 
Research l(.eport, l)ept, de Lhmguatges i Sistemes In- 
formgtties, Universitat Politdcniea de Catalunya. 

Morrill, G. & Sol\as, M.T. 1993. "lhlples, I)iscontinu- 
ity, and Clapping in Categorial Grammar. '  In: Proc. 
of £'ACI; 6, Utrecht. 

t/x)orda., 1). 1991. lgesource Logics: Proof Theorelical 
hzves~igalions. Ph.l). Dissertation, Amsterdam. 

Versmissen, I£. 1991. ' l)iscontinuous type construe- 
t o t s  ill ( ) a L e g o r i a l  ( ] r a n l i l l a r . '  i n s .  Or ] 'S ,  Universiteit 
Utrecht, Netherlands. 

Wansing, W. 1990. q!'ormulas-as-types for a hierar- 
chy of sublogies of Intuition\stir  Propositional Logic.' 
ms. lnst i tnt  fiir Philosol)hie , Freie Universitgt Berlin. 

1239 


